WorldWideScience

Sample records for dual deformable mirrors

  1. Adaptive optics ophthalmologic systems using dual deformable mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S; Olivier, S; Chen, D; Sadda, S; Joeres, S; Zawadzki, R; Werner, J S; Miller, D

    2007-02-01

    Adaptive Optics (AO) have been increasingly combined with a variety of ophthalmic instruments over the last decade to provide cellular-level, in-vivo images of the eye. The use of MEMS deformable mirrors in these instruments has recently been demonstrated to reduce system size and cost while improving performance. However, currently available MEMS mirrors lack the required range of motion for correcting large ocular aberrations, such as defocus and astigmatism. In order to address this problem, we have developed an AO system architecture that uses two deformable mirrors, in a woofer/tweeter arrangement, with a bimorph mirror as the woofer and a MEMS mirror as the tweeter. This setup provides several advantages, including extended aberration correction range, due to the large stroke of the bimorph mirror, high order aberration correction using the MEMS mirror, and additionally, the ability to ''focus'' through the retina. This AO system architecture is currently being used in four instruments, including an Optical Coherence Tomography (OCT) system and a retinal flood-illuminated imaging system at the UC Davis Medical Center, a Scanning Laser Ophthalmoscope (SLO) at the Doheny Eye Institute, and an OCT system at Indiana University. The design, operation and evaluation of this type of AO system architecture will be presented.

  2. High-Resolution Adaptive Optics Scanning Laser Ophthalmoscope with Dual Deformable Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D C; Jones, S M; Silva, D A; Olivier, S S

    2006-08-11

    Adaptive optics scanning laser ophthalmoscope (AO SLO) has demonstrated superior optical quality of non-invasive view of the living retina, but with limited capability of aberration compensation. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina. We used a bimorph mirror to correct large-stroke, low-order aberrations and a MEMS mirror to correct low-stroke, high-order aberration. The measured ocular RMS wavefront error of a test subject was 240 nm without AO compensation. We were able to reduce the RMS wavefront error to 90 nm in clinical settings using one deformable mirror for the phase compensation and further reduced the wavefront error to 48 nm using two deformable mirrors. Compared with that of a single-deformable-mirror SLO system, dual AO SLO offers much improved dynamic range and better correction of the wavefront aberrations. The use of large-stroke deformable mirrors provided the system with the capability of axial sectioning different layers of the retina. We have achieved diffraction-limited in-vivo retinal images of targeted retinal layers such as photoreceptor layer, blood vessel layer and nerve fiber layers with the combined phase compensation of the two deformable mirrors in the AO SLO.

  3. Controlling the Focal Length and the Spot Size in Flying Optics by Dual-deformable-mirror-systems

    Institute of Scientific and Technical Information of China (English)

    ZHAO Quanzhong; CHENG Zhaogu; GAO Haijun; CHAI Xiongliang; LUO Hongxin

    2002-01-01

    The models of several dual-deformable-mirror-systems,which can control focal the length and the spot size in flying optics,were introduced and their operating principle and adjusting characteristics were analyzed.The simulation results indicate that dual-deformable-mirror-systems can control the focal length and the spot size.This research is a good guidance to engineering application of dual-deformable-mirror-systems.

  4. An RF Therapy System for Breast Cancer Using Dual Deformable Mirrors — Computational Study

    Science.gov (United States)

    Arunachalam, Kavitha; Udpa, Satish S.; Udpa, Lalita

    2007-03-01

    Breast cancer is the second leading cause of cancer deaths amongst women in the United States. In the past two decades, the potential of non-ionizing high power RF waves to destroy cancerous biological tissues is actively investigated for cancer therapy. This paper presents the computational feasibility study of an alternative mode of electromagnetic radiation therapy that employs dual source and deformable mirror. The adaptive focusing capability of the deformable mirror is exploited for preferential energy deposition at the tumor site in the breast irradiated by electromagnetic radiation. The outcome of the computational study for the proposed deformable mirror-based thermal therapy for breast cancer is presented in this paper.

  5. High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors for large aberration correction

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D; Jones, S M; Silva, D A; Olivier, S S

    2007-01-25

    Scanning laser ophthalmoscopes with adaptive optics (AOSLO) have been shown previously to provide a noninvasive, cellular-scale view of the living human retina. However, the clinical utility of these systems has been limited by the available deformable mirror technology. In this paper, we demonstrate that the use of dual deformable mirrors can effectively compensate large aberrations in the human retina, making the AOSLO system a viable, non-invasive, high-resolution imaging tool for clinical diagnostics. We used a bimorph deformable mirror to correct low-order aberrations with relatively large amplitudes. The bimorph mirror is manufactured by Aoptix, Inc. with 37 elements and 18 {micro}m stroke in a 10 mm aperture. We used a MEMS deformable mirror to correct high-order aberrations with lower amplitudes. The MEMS mirror is manufactured by Boston Micromachine, Inc with 144 elements and 1.5 {micro}m stroke in a 3 mm aperture. We have achieved near diffraction-limited retina images using the dual deformable mirrors to correct large aberrations up to {+-} 3D of defocus and {+-} 3D of cylindrical aberrations with test subjects. This increases the range of spectacle corrections by the AO systems by a factor of 10, which is crucial for use in the clinical environment. This ability for large phase compensation can eliminate accurate refractive error fitting for the patients, which greatly improves the system ease of use and efficiency in the clinical environment.

  6. Deformable mirror with thermal actuators.

    Science.gov (United States)

    Vdovin, Gleb; Loktev, Mikhail

    2002-05-01

    Low-cost adaptive optics is applied in lasers, scientific instrumentation, ultrafast sciences, and ophthalmology. These applications demand that the deformable mirrors used be simple, inexpensive, reliable, and efficient. We report a novel type of ultralow-cost deformable mirror with thermal actuators. The device has a response time of ~5 s , an actuator stroke of ~6mum , and temporal stability of ~lambda/10 rms in the visible range and can be used for correction of rather large aberrations with slow-changing amplitude.

  7. Deformable mirrors development program at ESO

    Science.gov (United States)

    Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus

    2016-07-01

    Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.

  8. Pulse compression by use of deformable mirrors.

    Science.gov (United States)

    Zeek, E; Maginnis, K; Backus, S; Russek, U; Murnane, M; Mourou, G; Kapteyn, H; Vdovin, G

    1999-04-01

    An electrostatically deformable, gold-coated, silicon nitride membrane mirror was used as a phase modulator to compress pulses from 92 to 15 fs. Both an iterative genetic algorithm and single-step dispersion compensation based on frequency-resolved optical gating calibration of the mirror were used to compress pulses to within 10% of the transform limit. Frequency-resolved optical gating was used to characterize the pulses and to test the range of the deformable-mirror-based compressor.

  9. Driver ASICs for Advanced Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program leverages on our extensive expertise in developing high-performance driver ASICs for deformable mirror systems and seeks to expand the capacities of the...

  10. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  11. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  12. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    Science.gov (United States)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  13. Deformable Mirrors Capture Exoplanet Data, Reflect Lasers

    Science.gov (United States)

    2014-01-01

    To image and characterize exoplanets, Goddard Space Flight Center turned to deformable mirrors (DMs). Berkeley, California-based Iris AO, Inc. worked with Goddard through the SBIR program to improve the company’s microelectromechanical DMs, which are now being evaluated and used for biological research, industrial applications, and could even be used by drug manufacturers.

  14. High-resolution adaptive optics scanning laser ophthalmoscope with multiple deformable mirrors

    Science.gov (United States)

    Chen, Diana C.; Olivier, Scot S.; Jones; Steven M.

    2010-02-23

    An adaptive optics scanning laser ophthalmoscopes is introduced to produce non-invasive views of the human retina. The use of dual deformable mirrors improved the dynamic range for correction of the wavefront aberrations compared with the use of the MEMS mirror alone, and improved the quality of the wavefront correction compared with the use of the bimorph mirror alone. The large-stroke bimorph deformable mirror improved the capability for axial sectioning with the confocal imaging system by providing an easier way to move the focus axially through different layers of the retina.

  15. Cryogenic wavefront correction using membrane deformable mirrors.

    Science.gov (United States)

    Dyson, H; Sharples, R; Dipper, N; Vdovin, G

    2001-01-01

    Micro-machined membrane deformable mirrors (MMDMs) are being evaluated for their suitability as wavefront correctors at cryogenic temperatures. Presented here are experimental results for the change in the initial mirror figure of 37-channel MMDMs from OKO Technologies upon cooling to T=78K. The changes in the influence functions are also explored. Of the sample of 3 mirrors tested, one was found to have sufficiently small initial static aberrations to be useful as a wavefront corrector at this temperature. The influence functions at T=78K were found to be similar in shape to both those at room temperature and theoretical predictions of the MMDMs surface shape. The magnitude of the surface deflection at T=78K was reduced by around 20% compared with room temperature values.

  16. Piezoelectric deformable mirror for intra-cavity laser adaptive optics.

    CSIR Research Space (South Africa)

    Long, CS

    2008-03-01

    Full Text Available This paper describes the development of a deformable mirror to be used in conjunction with diffractive optical elements inside a laser cavity. A prototype piezoelectric unimorph adaptive mirror was developed to correct for time dependent phase...

  17. Development of a miniaturized deformable mirror controller

    Science.gov (United States)

    Bendek, Eduardo; Lynch, Dana; Pluzhnik, Eugene; Belikov, Ruslan; Klamm, Benjamin; Hyde, Elizabeth; Mumm, Katherine

    2016-07-01

    High-Performance Adaptive Optics systems are rapidly spreading as useful applications in the fields of astronomy, ophthalmology, and telecommunications. This technology is critical to enable coronagraphic direct imaging of exoplanets utilized in ground-based telescopes and future space missions such as WFIRST, EXO-C, HabEx, and LUVOIR. We have developed a miniaturized Deformable Mirror controller to enable active optics on small space imaging mission. The system is based on the Boston Micromachines Corporation Kilo-DM, which is one of the most widespread DMs on the market. The system has three main components: The Deformable Mirror, the Driving Electronics, and the Mechanical and Heat management. The system is designed to be extremely compact and have lowpower consumption to enable its use not only on exoplanet missions, but also in a wide-range of applications that require precision optical systems, such as direct line-of-sight laser communications, and guidance systems. The controller is capable of handling 1,024 actuators with 220V maximum dynamic range, 16bit resolution, and 14bit accuracy, and operating at up to 1kHz frequency. The system fits in a 10x10x5cm volume, weighs less than 0.5kg, and consumes less than 8W. We have developed a turnkey solution reducing the risk for currently planned as well as future missions, lowering their cost by significantly reducing volume, weight and power consumption of the wavefront control hardware.

  18. Design of deformable mirrors for high power lasers

    Institute of Scientific and Technical Information of China (English)

    Stefano Bonora; Jan Pilar; Antonio Lucianetti; Tomas Mocek

    2016-01-01

    We present the workflow of the design, realization and testing of deformable mirrors suitable for high power diode pumped solid-state lasers. It starts with the study of the aberration to be corrected, and then it continues with the design of the actuators position and characteristic. In this paper, we present and compare three deformable mirrors realized for multi-J level laser facilities. We show that with the same design concept it is possible to realize deformable mirrors for other types of lasers. As an example, we report the realization of a deformable mirror for femtosecond lasers and for a CW CO2 laser.

  19. Advanced Actuator Concepts for High Precision Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop a variety of single crystal actuators for adaptive optics deformable mirrors. Single crystal piezoelectric actuators are...

  20. Actuators of 3-element unimorph deformable mirror

    Science.gov (United States)

    Fu, Tianyang; Ning, Yu; Du, Shaojun

    2016-10-01

    Kinds of wavefront aberrations exist among optical systems because of atmosphere disturbance, device displacement and a variety of thermal effects, which disturb the information of transmitting beam and restrain its energy. Deformable mirror(DM) is designed to adjust these wavefront aberrations. Bimorph DM becomes more popular and more applicable among adaptive optical(AO) systems with advantages in simple structure, low cost and flexible design compared to traditional discrete driving DM. The defocus aberration accounted for a large proportion of all wavefront aberrations, with a simpler surface and larger amplitude than others, so it is very useful to correct the defocus aberration effectively for beam controlling and aberration adjusting of AO system. In this study, we desired on correcting the 3rd and 10th Zernike modes, analyze the characteristic of the 3rd and 10th defocus aberration surface distribution, design 3-element actuators unimorph DM model study on its structure and deformation principle theoretically, design finite element models of different electrode configuration with different ring diameters, analyze and compare effects of different electrode configuration and different fixing mode to DM deformation capacity through COMSOL finite element software, compare fitting efficiency of DM models to the 3rd and 10th Zernike modes. We choose the inhomogeneous electrode distribution model with better result, get the influence function of every electrode and the voltage-PV relationship of the model. This unimorph DM is suitable for the AO system with a mainly defocus aberration.

  1. The deformable mirror method of adaptive phase correction

    Institute of Scientific and Technical Information of China (English)

    Bin Tang(唐斌); Yuxin Leng(冷雨欣); Hanlin Peng(朋汉林); Zhengquan Zhang(张正泉); Lihuang Lin(林礼煌)

    2003-01-01

    In this paper, a simple method of phase correction by using a micromachined deformable mirror (MMDM)is demonstrated. With correction of high-order phases due to propagating through medium, we obtaineda clean pulse shape, flattened spectral phase and decreased the femtosecond laser pulse duration. It isshown by our experiment that the deformable mirror is an effective and easy method for adaptive phasecorrection.

  2. Type Ii/heterotic Duality And Mirror Symmetry (bundle Deformation, String Duality)

    CERN Document Server

    Perevalov, E V

    1998-01-01

    Toric geometry is used to systematically construct Type II compactifications dual to Heterotic models in six dimensions involving singular K3 surfaces as well as vector bundles. Reflexive polyhedra are shown to encode the spectra of the resulting low-energy theories. Finally, the connection between mirror symmetry and deformation of bundles on K3 surfaces is exhibited via string duality.

  3. Correction of low order aberrations using continuous deformable mirrors.

    Science.gov (United States)

    Vdovin, Gleb; Soloviev, Oleg; Samokhin, Alexander; Loktev, Mikhail

    2008-03-03

    By analyzing the Poisson equation describing the static behavior of membrane and bimorph deformable mirrors and biharmonic equation describing the continuous facesheet mirror with push-pull actuators, we found that to achieve a high quality correction of low-order aberrations these mirrors should have sufficient number of actuators positioned outside the correction aperture. In particular, any deformable mirror described by the Poisson equation requires at least two actuators to be placed outside the working aperture per period of the azimuthal aberration of the highest expected order. Any deformable mirror described by the biharmonic equation, such as a continuous facesheet mirror with push-pull actuators, requires at least four actuators to be placed outside the working aperture per period of the azimuthal aberration of the highest expected order, and these actuators should not be positioned on a single circle.

  4. Integrable Deformations of T -Dual σ Models

    Science.gov (United States)

    Borsato, Riccardo; Wulff, Linus

    2016-12-01

    We present a method to deform (generically non-Abelian) T duals of two-dimensional σ models, which preserves classical integrability. The deformed models are identified by a linear operator ω on the dualized subalgebra, which satisfies the 2-cocycle condition. We prove that the so-called homogeneous Yang-Baxter deformations are equivalent, via a field redefinition, to our deformed models when ω is invertible. We explain the details for deformations of T duals of principal chiral models, and present the corresponding generalization to the case of supercoset models.

  5. Overview of deformable mirror technologies for adaptive optics and astronomy

    Science.gov (United States)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  6. Global feedforward and glocal feedback control of large deformable mirrors

    Science.gov (United States)

    Ruppel, Thomas; Sawodny, Oliver

    2011-09-01

    With an increasing demand for high spatial resolution and fast temporal response of AO components for ELTs, the need for actively controlled, electronically damped deformable mirrors is evident. With typically more than 1000 actuators and collocated sensors, the evolving multi-input multi-output control task for shaping the deformable mirror requires sophisticated control concepts. Although global position control of the mirror would be the most promising solution, the computational complexity for high order spatial control of the deformable element typically exceeds available computing power. Due to this reason, existing deformable membrane mirrors for large telescopes incorporate local feedback instead of global feedback control and neglect some of the global dynamics of the deformable mirror. As a side effect, coupling of the separately controlled actuators through the deformable membrane can lead to instability of the individually stable loops and draws the need for carefully designing the control parameters of the local feedback loops. In this presentation, the computational demands for global position control of deformable mirrors are revisited and a less demanding model-based modal control concept for large deformable membrane mirrors with distributed force actuators and collocated position sensors is presented. Both global feedforward and glocal feedback control is employed in a two-degree-of-freedom control structure allowing for separately designing tracking performance and disturbance rejection. In order to implement state feedback control, non-measureable state information is reconstructed by using model-based distributed state observers. By taking into account the circular symmetry of the deformable mirror geometry, the computational complexity of the algorithms is discussed and model reduction techniques with quasi-static state approximation are presented. As an example, the geometric layout of required sensor / actuator wiring and computational

  7. Active optics: deformable mirrors with a minimum number of actuators

    CERN Document Server

    Laslandes, Marie; Ferrari, Marc; 10.2971/jeos.2012.12036

    2012-01-01

    We present two concepts of deformable mirror to compensate for first order optical aberrations. Deformation systems are designed using both elasticity theory and Finite Element Analysis in order to minimize the number of actuators. Starting from instrument specifications, we explain the methodology to design dedicated deformable mirrors. The work presented here leads to correcting devices optimized for specific functions. The Variable Off-Axis paraboLA concept is a 3-actuators, 3-modes system able to generate independently Focus, Astigmatism and Coma. The Correcting Optimized Mirror with a Single Actuator is a 1-actuator system able to generate a given combination of optical aberrations.

  8. Deformable Membrane Mirror for Wavefront Correction (Short Communication

    Directory of Open Access Journals (Sweden)

    Amita Gupta

    2009-11-01

    Full Text Available Deformable or adaptive mirrors are used in modern adaptive optics systems for direct correction of the aberrations in the light wavefront. Conventional deformable mirrors used for this purpose are expensive electromechanical devices. Deformable membrane mirror fabricated using microelectromechanical systems (MEMS technology is a low cost, compact adaptive optical element for correction of the lower-order optical aberrations such as defocus and astigmatism. In this paper, important aspects of device design and simulation, fabrication techniques, and test results are discussed.Defence Science Journal, 2009, 59(6, pp.590-594, DOI:http://dx.doi.org/10.14429/dsj.59.1563

  9. Structure modulated electrostatic deformable mirror for focus and geometry control.

    Science.gov (United States)

    Nam, Saekwang; Park, Suntak; Yun, Sungryul; Park, Bongje; Park, Seung Koo; Kyung, Ki-Uk

    2016-01-11

    We suggest a way to electrostatically control deformed geometry of an electrostatic deformable mirror (EDM) based on geometric modulation of a basement. The EDM is composed of a metal coated elastomeric membrane (active mirror) and a polymeric basement with electrode (ground). When an electrical voltage is applied across the components, the active mirror deforms toward the stationary basement responding to electrostatic attraction force in an air gap. Since the differentiated gap distance can induce change in electrostatic force distribution between the active mirror and the basement, the EDMs are capable of controlling deformed geometry of the active mirror with different basement structures (concave, flat, and protrusive). The modulation of the deformed geometry leads to significant change in the range of the focal length of the EDMs. Even under dynamic operations, the EDM shows fairly consistent and large deformation enough to change focal length in a wide frequency range (1~175 Hz). The geometric modulation of the active mirror with dynamic focus tunability can allow the EDM to be an active mirror lens for optical zoom devices as well as an optical component controlling field of view.

  10. Single Crystal Bimorph Array (SCBA) Driven Deformable Mirror (DM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) Phase II project will research a novel deformable mirror design for NASA adaptive optics telescope applications. The...

  11. Single Crystal Bimorph Array Driven Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research (SBIR) Phase I project will research a novel deformable mirror design for NASA adaptive optics telescope applications . The...

  12. Extreme-Precision MEMS Segmented Deformable Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I research, Iris AO developed enhanced electromechanical models and calibration techniques for MEMS-based segmented deformable mirrors (DMs) applicable to a...

  13. Compact Low-Power Driver for Deformable Mirror Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Boston Micromachines Corporation (BMC), a leading developer of unique, high-resolution micromachined deformable mirrors (DMs), will develop a compact, low-power,...

  14. Unimorph deformable mirror for space telescopes: design and manufacturing.

    Science.gov (United States)

    Rausch, Peter; Verpoort, Sven; Wittrock, Ulrich

    2015-07-27

    Large space telescopes made of deployable and lightweight structures suffer from aberrations caused by thermal deformations, gravitational release, and alignment errors which occur during the deployment procedure. An active optics system would allow on-site correction of wave-front errors, and ease the requirements on thermal and mechanical stability of the optical train. In the course of a project funded by the European Space Agency we have developed and manufactured a unimorph deformable mirror based on piezoelectric actuation. The mirror is able to work in space environment and is designed to correct for large aberrations of low order with high surface fidelity. This paper discusses design, manufacturing and performance results of the deformable mirror.

  15. Computational feasibility of deformable mirror microwave hyperthermia technique for localized breast tumors.

    Science.gov (United States)

    Arunachalam, Kavitha; Udpa, Satish S; Udpa, Lalita

    2007-11-01

    Computational feasibility of a new non-invasive microwave hyperthermia technique that employs dual deformable mirror is investigated using simplified computational tools and anatomically realistic breast models. The proposed technique employs two pairs of electromagnetic sources and continuously deformable mirrors to focus the electromagnetic radiation at the target site for hyperthermia. The mirror functions like a continuum of radiating elements that offer effective scan coverage inside the breast with efficient field focusing at the target location. The electric field focusing and temperature mapping in the two-dimensional numerical simulations are investigated using wave propagation and bio-heat transfer models respectively. The method of moments, a popular numerical simulation tool, is used to model the electric field maintained by the deformable mirrors for continuous wave excitation. The electromagnetic (EM) energy deposited by the mirrors is used in the steady state bio-heat transfer equation to quantify the temperature distribution inside two-dimensional anatomically realistic breast models. Feasibility of the proposed technique is evaluated using numerical breast models derived from magnetic resonance images of patients with variation in breast density, age and pathology. The computational study indicates preferential EM energy deposition and temperature elevation inside tumor tissue with minimum collateral damage to the neighboring normal tissues. Simulation results obtained for the magnetic resonance (MR) breast data appear promising and indicate the merit in pursuing the investigation using 3D computational models.

  16. Driver ASICs for Advanced Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the SBIR program is to develop a new Application Specified Integrated Circuit (ASIC) driver to be used in driver electronics of a deformable...

  17. Ferrofluid Based Deformable Mirrors - a New Approach to Adaptive Optics Using Liquid Mirrors

    CERN Document Server

    Laird, P; Berube, V; Borra, E F; Ritcey, A; Rioux, M; Robitaille, N; Thibault, S; Yockell-Lelievre, H

    2002-01-01

    The trend towards ever larger telescopes and more advanced adaptive optics systems is driving the need for deformable mirrors with a large number of low cost actuators. Liquid mirrors have long been recognized a potential low cost alternative to conventional solid mirrors. By using a water or oil based ferrofluid we are able to benefit from a stronger magnetic response than is found in magnetic liquid metal amalgams and avoid the difficulty of passing a uniform current through a liquid. Depositing a thin silver colloid known as a metal liquid-like film (MELLF) on the ferrofluid surface solves the problem of low reflectivity of pure ferrofluids. This combination provides a liquid optical surface that can be precisely shaped in a magnetic field. We present experimental results obtained with a prototype deformable liquid mirror based on this combination.

  18. Liquid deformable mirror for high-order wavefront correction

    NARCIS (Netherlands)

    Vuelban, E.M.; Bhattacharya, N.; Braat, J.J.M.

    2006-01-01

    We propose and demonstrate a novel liquid deformable mirror, based on electrocapillary actuation, for highorder wavefront correction. The device consists of a two-dimensional array of vertically oriented microchannels filled with two immiscible liquids, an aqueous electrolyte, and a viscous dielectr

  19. Deformable mirrors : Design fundamentals for force actuation of continuous facesheets

    NARCIS (Netherlands)

    Ravensbergen, S.K.; Hamelinck, R.F.H.M.; Rosielle, P.C.J.N.; Steinbuch, M.

    2009-01-01

    Adaptive Optics is established as essential technology in current and future ground based (extremely) large telescopes to compensate for atmospheric turbulence. Deformable mirrors for astronomic purposes have a high number of actuators (> 10k), a relatively large stroke (> 10µm) on a small spacing (

  20. Ultrabroadband pulse shaping with a push-pull deformable mirror.

    Science.gov (United States)

    Bonora, Stefano; Brida, Daniele; Villoresi, Paolo; Cerullo, Giulio

    2010-10-25

    We report the programmable pulse shaping of ultrabroadband pulses by the use of a novel design of electrostatic deformable mirror based on push pull technology. We shape few-optical pulses from near-IR and visible optical parametric amplifiers, and demonstrate strong-field control of excited state population transfer in a dye molecule.

  1. A decomposition approach to distributed control of dynamic deformable mirrors

    NARCIS (Netherlands)

    Fraanje, P.R.; Massioni, P.; Verhaegen, M.

    2010-01-01

    Deformable mirrors with spatially invariant dynamic response can be considered as part of the class of decomposable systems. Such systems can be thought of as the interconnection of a number of identical subsystems, and they can be used to model certain classes of large scale systems. We show in thi

  2. Actuator tests for a large deformable membrane mirror

    NARCIS (Netherlands)

    Hamelinck, R.; Rosielle, N.; Steinbuch, M.; Ellenbroek, R.; Verhagen, M.; Doelman, N.

    2006-01-01

    In the design of a large adaptive deformable membrane mirror, variable reluctance actuators are used. These consist of a closed magnetic circuit in which a strong permanent magnet provides a static magnetic force on a ferromagnetic core which is suspended in a membrane. By applying a current through

  3. Actuator tests for a large deformable membrane mirror

    NARCIS (Netherlands)

    Hamelinck, R.; Rosielle, N.; Steinbuch, M.; Ellenbroek, R.; Verhagen, M.; Doelman, N.

    2006-01-01

    In the design of a large adaptive deformable membrane mirror, variable reluctance actuators are used. These consist of a closed magnetic circuit in which a strong permanent magnet provides a static magnetic force on a ferromagnetic core which is suspended in a membrane. By applying a current through

  4. Large adaptive deformable mirror: design and first prototypes

    NARCIS (Netherlands)

    Hamelinck, R.F.M.M.; Rosielle, P.C.J.N.; Steinbuch, M.; Doelman, N.J.

    2005-01-01

    The first prototype of an actuator for a new adaptive deformable mirror (DM) is presented together with the development of a 61-actuator grid element. The DM design consists of a thin membrane which acts as the correcting element. A grid of low voltage electro-magnetic push-pull actuators, impose ou

  5. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Sheng; Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Celestre, Rich; Church, Matthew; McKinney, Wayne R.; Morrison, Greg; Warwick, Tony

    2010-01-31

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situ visible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  6. Surface Slope Metrology on Deformable Soft X-ray Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, S.; Yashchuk, V.V.; Goldberg, K.A.; Celestre, R.; Church, M.; McKinney, W.R.; Morrison, G.; Warwick, T.

    2009-09-18

    We report on the current state of surface slope metrology on deformable mirrors for soft x-rays at the Advanced Light Source (ALS). While we are developing techniques for in situ at-wavelength tuning, we are refining methods of ex situvisible-light optical metrology to achieve sub-100-nrad accuracy. This paper reports on laboratory studies, measurements and tuning of a deformable test-KB mirror prior to its use. The test mirror was bent to a much different optical configuration than its original design, achieving a 0.38 micro-radian residual slope error. Modeling shows that in some cases, by including the image conjugate distance as an additional free parameter in the alignment, along with the two force couples, fourth-order tangential shape errors (the so-called bird shape) can be reduced or eliminated.

  7. Deformable surface modeling based on dual subdivision

    Institute of Scientific and Technical Information of China (English)

    WANG Huawei; SUN Hanqiu; QIN Kaihuai

    2005-01-01

    Based on dual Doo-Sabin subdivision and the corresponding parameterization, a modeling technique of deformable surfaces is presented in this paper. In the proposed model, all the dynamic parameters are computed in a unified way for both non-defective and defective subdivision matrices, and central differences are used to discretize the Lagrangian dynamics equation instead of backward differences. Moreover, a local scheme is developed to solve the dynamics equation approximately, thus the order of the linear equation is reduced greatly. Therefore, the proposed model is more efficient and faster than the existing dynamic models. It can be used for deformable surface design, interactive surface editing, medical imaging and simulation.

  8. Lightweight In-Plane Actuated Deformable Mirrors for Space Telescopes

    Science.gov (United States)

    2006-09-01

    a reflective surface, such as a deformable mirror. The Michelson Interferometer, as described by Hecht [63], uses a beam splitter to divide a laser...Columbia University [90, pp. 281-290]. During the period of the lectures, the “ monolithic crys- tal filter” was discovered independently by researchers in...through a monolithic lenslet module (MLM) that focuses the light onto an RS-170v monochrome Shack-Hartmann wavefront sensor. The fidelity of the data

  9. X-ray beam-shaping via deformable mirrors: analytical computation of the required mirror profile

    CERN Document Server

    Spiga, Daniele; Svetina, Cristian; Zangrando, Marco; 10.1016/j.nima.2012.10.117

    2013-01-01

    X-ray mirrors with high focusing performances are in use in both mirror mod- ules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geo- metrical deformations and surface roughness, the former usually described by geometrical optics and the latter by physical optics. In general, technological developments are aimed at a very tight focusing, which requires the mirror profile to comply with the nominal shape as much as possible and to keep the roughness at a negligible level. However, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra. The resulting profile can be characterized with a Long Trace Profilometer and correlated with the expected optical quality via a wavefront propagation code. However, if the roughness contribution can be neglected, the com- putation can be performed via a ray-tracin...

  10. Membrane based Deformable Mirror: Intrinsic aberrations and alignment issues

    CERN Document Server

    Bayanna, A Raja; Chatterjee, S; Mathew, Shibu K; Venkatakrishnan, P

    2015-01-01

    A Deformable Mirror (DM) is an important component of an Adaptive Optics system. It is known that an on-axis spherical/parabolic optical component, placed at an angle to the incident beam introduces defocus as well as astigmatism in the image plane. Although the former can be compensated by changing the focal plane position, the latter cannot be removed by mere optical re-alignment. Since the DM is to be used to compensate a turbulence-induced curvature term in addition to other aberrations, it is necessary to determine the aberrations induced by such (curved DM surface) an optical element when placed at an angle (other than 0 degree) of incidence in the optical path. To this effect, we estimate to a first order, the aberrations introduced by a DM as a function of the incidence angle and deformation of the DM surface. We record images using a simple setup in which the incident beam is reflected by a 37 channel Micro-machined Membrane Deformable Mirror for various angles of incidence. It is observed that astig...

  11. Correction of an active space telescope mirror using a deformable mirror in a woofer-tweeter configuration

    Science.gov (United States)

    Allen, Matthew R.; Kim, Jae Jun; Agrawal, Brij N.

    2016-04-01

    The Naval Postgraduate School's segmented mirror telescope (SMT) was developed using prototype silicon carbide active hybrid mirror technology to demonstrate lower cost and rapid manufacture of primary mirror segments for a space telescope. The developmental mirror segments used too few actuators limiting the ability to adequately correct the surface figure error. To address the unintended shortfall of the developmental mirrors, a deformable mirror is added to the SMT and control techniques are developed. The control techniques are similar to woofer-tweeter adaptive optics, where the SMT segment represents the woofer and the deformable mirror represents the tweeter. The optical design of an SMT woofer-tweeter system is presented, and the impacts of field angle magnification on the placement and size of the deformable mirror are analyzed. A space telescope woofer-tweeter wavefront control technique is proposed using a global influence matrix and closed-loop constrained minimization controller. The control technique simultaneously manipulates the woofer and tweeter mirrors. Simulation and experimental results demonstrate a significant improvement in wavefront error of the primary mirror and the control technique shows significant wavefront error improvement compared to sequentially controlling the woofer and tweeter mirrors.

  12. Wavefront correction with a ferrofluid deformable mirror: experimental results and recent developments

    CERN Document Server

    Brousseau, Denis; Thibaul, Simon; Ritcey, Anna M; Parent, Jocelyn; Seddiki, Omar; Dery, Jean-Philippe; Faucher, Luc; Vassallo, Julien; Naderian, Azadeh

    2008-01-01

    We present the research status of a deformable mirror made of a magnetic liquid whose surface is actuated by a triangular array of small current carrying coils. We demonstrate that the mirror can correct a 11 microns low order aberrated wavefront to a residual RMS wavefront error 0.05 microns. Recent developments show that these deformable mirrors can reach a frequency response of several hundred hertz. A new method for linearizing the response of these mirrors is also presented.

  13. Hybrid Electrostatic/Flextensional Deformable Membrane Mirror for Lightweight, Large Aperture and Cryogenic Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes innovative hybrid electrostatic/flextensional membrane deformable mirror capable of large amplitude aberration correction for large...

  14. The DeMi CubeSat: Wavefront Control with a MEMS Deformable Mirror in Space

    Science.gov (United States)

    Douglas, Ewan S.; Bendek, Eduardo; Marinan, Anne; Belikov, Ruslan; Merck, John; Cahoy, Kerri Lynn

    2017-01-01

    High-contrast imaging instruments on future space telescopes will require precise wavefront correction to detect small exoplanets near their host stars. High-actuator count microelectromechanical system (MEMS) deformable mirrors provide a compact form of wavefront control. The 6U DeMi CubeSat will demonstrate wavefront control with a MEMS deformable mirror over a yearlong mission. The payload includes both an internal laser source and a small telescope, with both focal plane and pupil plane sensing, for deformable mirror characterization. We detail the DeMi payload design, and describe future astrophysics enabled by high-actuator count deformable mirrors and small satellites.

  15. A new deformable mirror architecture for coronagraphic instrumentation

    Science.gov (United States)

    Groff, Tyler D.; Lemmer, Aaron; Eldorado Riggs, A. J.

    2016-07-01

    Coronagraphs are a promising solution for the next generation of exoplanet imaging instrumentation. While a coronagraph can have very good contrast and inner working angle performance, it is highly sensitive to optical aberrations. This necessitates a wavefront control system to correct aberrations within the telescope. The wavefront requirements and desired search area in a deformable mirror (DM) demand control of the electric field out to relatively high spatial frequencies. Conventional wisdom leads us to high stroke, high actuator density DMs that are capable of reaching these spatial frequencies on a single surface. Here we model a different architecture, where nearly every optical surface, powered or unpowered, is a controllable element. Rather than relying on one or two controllable surfaces for the success of the entire instrument the modeled instrument consists of a series of lower actuator count deformable mirrors to achieve the same result by leveraging the conjugate planes that exist in a coronagraphic instrument. To make such an instrument concept effective the imaging optics themselves must become precision deformable elements, akin to the deformable secondary mirrors at major telescope facilities. Such a DM does not exist commercially; all current DMs, while not necessarily incapable of carrying optical power, are manufactured with flat nominal surfaces. This simplifies control and manufacturing, but complicates their integration into an optical system because there is oftentimes a need to pack several into collimated space. Furthermore, high actuator count DMs cannot approximate low order shapes such as focus or tip-tilt without significant mid-spatial frequency residuals, which is not acceptable for a coronagraphic high-contrast imager. The ability to integrate the wavefront control system into the nominal coronagraphic optical train simplifies packaging, reduces cost and complexity, and increases optical throughput of any coronagraphic instrument

  16. Integrable deformations of T-dual $\\sigma$ models

    CERN Document Server

    Borsato, Riccardo

    2016-01-01

    We present a method to deform (generically non-abelian) T duals of two-dimensional $\\sigma$ models, which preserves classical integrability. The deformed models are identified by a linear operator $\\omega$ on the dualised subalgebra, which satisfies the 2-cocycle condition. We prove that the so-called homogeneous Yang-Baxter deformations are equivalent, via a field redefinition, to our deformed models when $\\omega$ is invertible. We explain the details for deformations of T duals of Principal Chiral Models, and present the corresponding generalisation to the case of supercoset models.

  17. Modeling of microelectromechanical systems deformable mirror diffraction grating

    Science.gov (United States)

    Sirbu, Dan; Pluzhnik, Eugene; Belikov, Ruslan

    2016-07-01

    Model-based wavefront control methods such as electric field conjugation require accurate optical propagation models to create high-contrast regions in the focal plane using deformable mirrors (DMs). Recently, it has been shown that it is possible to exceed the controllable outer-working angle imposed by the Nyquist limit based on the number of actuators by utilizing a diffraction grating. The print-through pattern on MEMS-based DMs formed during the fabrication process creates both an amplitude and a phase diffraction grating that can be used to enable Super-Nyquist wavefront control. Using interferometric measurements of a DM-actuator, we develop a DM-diffraction grating model. We compare the total energy enclosed in the first diffraction order due to the phase, amplitude, and combined phase-amplitude gratings with laboratory measurements.

  18. Control x-ray deformable mirrors with few measurements

    Science.gov (United States)

    Huang, Lei; Xue, Junpeng; Idir, Mourad

    2016-09-01

    After years of development from a concept to early experimental stage, X-ray Deformable Mirrors (XDMs) are used in many synchrotron/free-electron laser facilities as a standard x-ray optics tool. XDM is becoming an integral part of the present and future large x-ray and EUV projects and will be essential in exploiting the full potential of the new sources currently under construction. The main objective of using XDMs is to correct wavefront errors or to enable variable focus beam sizes at the sample. Due to the coupling among the N actuators of a DM, it is usually necessary to perform a calibration or training process to drive the DM into the target shape. Commonly, in order to optimize the actuators settings to minimize slope/height errors, an initial measurement need to be collected, with all actuators set to 0, and then either N or 2N measurements are necessary learn each actuator behavior sequentially. In total, it means that N+1 or 2N+1 scans are required to perform this learning process. When the actuators number N is important and the actuator response or the necessary metrology is slow then this learning process can be time consuming. In this work, we present a fast and accurate method to drive an x-ray active bimorph mirror to a target shape with only 3 or 4 measurements. Instead of sequentially measuring and calculating the influence functions of all actuators and then predicting the voltages needed for any desired shape, the metrology data are directly used to "guide" the mirror from its current status towards the particular target slope/height via iterative compensations. The feedback for the iteration process is the discrepancy in curvature calculated by using B-spline fitting of the measured height/slope data. In this paper, the feasibility of this simple and effective approach is demonstrated with experiments.

  19. A new concept for large deformable mirrors for extremely large telescopes

    Science.gov (United States)

    Andersen, Torben; Owner-Petersen, Mette; Ardeberg, Arne; Korhonen, Tapio

    2006-06-01

    For extremely large telescopes, there is strong need for thin deformable mirrors in the 3-4 m class. So far, feasibility of such mirrors has not been demonstrated. Extrapolation from existing techniques suggests that the mirrors could be highly expensive. We give a progress report on a study of an approach for construction of large deformable mirrors with a moderate cost. We have developed low-cost actuators and deflection sensors that can absorb mounting tolerances in the millimeter range, and we have tested prototypes in the laboratory. Studies of control laws for mirrors with thousands of sensors and actuators are in good progress and simulations have been carried out. Manufacturing of thin, glass mirror blanks is being studied and first prototypes have been produced by a slumping technique. Development of polishing procedures for thin mirrors is in progress.

  20. Prototype Small Footprint Amplifier for Piezoelectric Deformable Mirrors

    Science.gov (United States)

    Caputa, Kris; Herriot, Glen; Niebergal, Joel; Zielinski, Adam

    2011-09-01

    AO subsystems of the ELT observatories will incorporate deformable mirrors with an order of magnitude larger number of piezoelectric actuators than the AO systems currently deployed. Simply scaling up the drive electronics that are presently available commercially would substantially drive up the AO cost, pose unacceptably high demands for the supply power and heat dissipation, and occupy large physical volume. We have set out to prototype a high voltage amplifier that is compact enough to allow packaging 100 amplifier channels on a single 6U Eurocard with the goal to have a DM drive channel density of 1200 per 6U VME crate. Individual amplifier circuits should be driven by a multichannel A/D converter, consume no more than 0.5W from the +/-400V power supply, be slew rate limited in hardware, and be short-circuit protected. The component cost should be an order of magnitude less than the integrated circuit high voltage amplifiers currently on the market. We started out with modeling candidate circuits in SPICE, then built physical prototypes using inexpensive off the shelf components. In this paper we present experimental results of exposing several prototype circuits to both normal operating conditions and foreseeable fault conditions. The performance is evaluated against the AO requirements for the output range and bandwidth and the DM actuator safety requirements.

  1. Development of Organic FET (OFET)-Based Flexible Integrated Controller for Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal is to complete process development to make OFET’s on flexible substrates compatible with ultra-lightweight deformable mirrors and to demonstrate...

  2. Single Crystal Piezoelectric Deformable Mirrors with High Actuator Density and Large Stroke Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal piezoelectric deformable mirrors with high actuator density, fine pitch, large stroke and no floating wires will be developed for future NASA science...

  3. Modeling, Calibration and Control for Extreme-Precision MEMS Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Iris AO will develop electromechanical models and actuator calibration methods to enable open-loop control of MEMS deformable mirrors (DMs) with unprecedented...

  4. Development of a Low Mass, Low Power Deformable Mirror with Integrated Drive Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — "Deformable mirrors (DM) are key to achieving high contrast for any mission to image expolanets. Currently Northrup Grumman Xinetics is the only viable source...

  5. Enhanced Fabrication Processes Development for High Actuator Count Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to advance manufacturing science and technology to improve yield and optical surface figure in high actuator count, high-resolution deformable mirrors...

  6. 10^3 Segment MEMS Deformable-Mirror Process Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Iris AO will extend its proven segmented MEMS deformable mirror architecture to large array sizes required for high-contrast astrophysical imagers. Current...

  7. Deformed self-dual magnetic monopoles

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970, Campina Grande (Brazil); Casana, R.; Ferreira, M.M. [Departamento de Física, Universidade Federal do Maranhão, 65085-580, São Luís, Maranhão (Brazil); Hora, E. da, E-mail: edahora.ufma@gmail.com [Departamento de Física, Universidade Federal do Maranhão, 65085-580, São Luís, Maranhão (Brazil); Coordenadoria do Curso Interdisciplinar em Ciência e Tecnologia, Universidade Federal do Maranhão, 65080-805, São Luís, Maranhão (Brazil); Losano, L. [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970, Campina Grande (Brazil)

    2013-12-18

    We develop a deformation method for attaining new magnetic monopole analytical solutions consistent with generalized Yang–Mills–Higgs model introduced recently. The new solutions fulfill the usual radially symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify our prescription by studying some particular cases involving both exactly and partially analytical initial configurations whose deformation leads to new analytic BPS monopoles. The results show consistency among the models, the deformation procedure and the profile of the new solutions.

  8. Deformed self-dual magnetic monopoles

    CERN Document Server

    Bazeia, D; Ferreira, M M; da Hora, E; Losano, L

    2013-01-01

    We develop a deformation method for attaining new magnetic monopole analytical solutions consistent with generalized Yang-Mills-Higgs model introduced recently. The new solutions fulfill the usual radially symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify our prescription by studying some particular cases involving both exactly and partially analytical initial configurations whose deformation leads to new analytic BPS monopoles. The results show consistency among the models, the deformation procedure and the profile of the new solutions.

  9. Deformed self-dual magnetic monopoles

    Science.gov (United States)

    Bazeia, D.; Casana, R.; Ferreira, M. M.; da Hora, E.; Losano, L.

    2013-12-01

    We develop a deformation method for attaining new magnetic monopole analytical solutions consistent with generalized Yang-Mills-Higgs model introduced recently. The new solutions fulfill the usual radially symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify our prescription by studying some particular cases involving both exactly and partially analytical initial configurations whose deformation leads to new analytic BPS monopoles. The results show consistency among the models, the deformation procedure and the profile of the new solutions.

  10. Characterisation of the influence function non-additivities for a 1024-actuator MEMS deformable mirror

    CERN Document Server

    Blain, Celia; Bradley, Colin; Guyon, Olivier; Vogel, Curtis

    2010-01-01

    In order to evaluate the potential of MEMS deformable mirrors for open-loop applications, a complete calibration process was performed on a 1024-actuator mirror. The mirror must be perfectly calibrated to obtain deterministic membrane deflection. The actuator's stroke-voltage relationship and the effect of the non- additivity of the influence functions are studied and finally integrated in an open-loop control process. This experiment aimed at minimizing the residual error obtained in open-loop control.

  11. Numerical modelling of a thin deformable mirror for laser beam control

    CSIR Research Space (South Africa)

    Long, CS

    2010-01-01

    Full Text Available For intra-cavity laser beam control, a small, low-cost deformable mirror is required. This mirror can be used to correct for time- dependent phase aberrations to the laser beam, such as those caused by thermal expansion of materials. A piezoelectric...

  12. Wide aperture piezoceramic deformable mirrors for aberration correction in high-power lasers

    Institute of Scientific and Technical Information of China (English)

    Vadim Samarkin; Alexander Alexandrov; Gilles Borsoni; Takahisa Jitsuno; Pavel Romanov; Aleksei Rukosuev; Alexis Kudryashov

    2016-01-01

    The deformable mirror with the size of 410 mmstacks was developed. The results ×468 mm controlled by the bimorph piezoceramic plates and multilayer piezoceramic of the measurements of the response functions of all the actuators and of the surface shape of the deformable mirror are presented in this paper. The study of the mirror with a Fizeau interferometer and a Shack–Hartmann wavefront sensor has shown that it was possible to improve the flatness of the surface down to a residual roughness of 0.033 μm(RMS). The possibility of correction of the aberrations in high-power lasers was numerically demonstrated.

  13. VLT DSM, the control system of the largest deformable secondary mirror ever manufactured

    Science.gov (United States)

    Manetti, Mauro; Morandini, Marco; Mantegazza, Paolo; Biasi, Roberto; Andrighettoni, Mario; Gallieni, Daniele

    2014-07-01

    A proven technology for the shape control of large secondary deformable mirrors employs a magnetically levitated contactless solution and relies on voice-coil actuators co-located to capacitive position sensors. The present work focuses on the description of the latest upgrade of this technology, as applied to the Very Large Telescope Deformable Secondary Mirror, the largest continuous facesheet adaptive mirror ever manufactured. The controller is based on a completely decentralized high frequency feedback coupled to a lower frequency improved feedforward. The system enhancements and performances are verified through electromechanical tests.

  14. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Takumi; Nakamori, Hiroki; Sano, Yasuhisa; Matsuyama, Satoshi, E-mail: matsuyama@prec.eng.osaka-u.ac.jp [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Kimura, Takashi [Research Institute for Electronic Science, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021 (Japan); Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya [SPring-8/RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Yamauchi, Kazuto [Department of Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Center for Ultra-Precision Science and Technology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); CREST, JST, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2015-04-15

    An adaptive Kirkpatrick–Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  15. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.

    Science.gov (United States)

    Goto, Takumi; Nakamori, Hiroki; Kimura, Takashi; Sano, Yasuhisa; Kohmura, Yoshiki; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Yamauchi, Kazuto; Matsuyama, Satoshi

    2015-04-01

    An adaptive Kirkpatrick-Baez mirror focusing optics based on piezoelectric deformable mirrors was constructed at SPring-8 and its focusing performance characteristics were demonstrated. By adjusting the voltages applied to the deformable mirrors, the shape errors (compared to a target elliptical shape) were finely corrected on the basis of the mirror shape determined using the pencil-beam method, which is a type of at-wavelength figure metrology in the X-ray region. The mirror shapes were controlled with a peak-to-valley height accuracy of 2.5 nm. A focused beam with an intensity profile having a full width at half maximum of 110 × 65 nm (V × H) was achieved at an X-ray energy of 10 keV.

  16. Micro drilling using deformable mirror for beam shaping of ultra-short laser pulses

    Science.gov (United States)

    Smarra, Marco; Strube, Anja; Dickmann, Klaus

    2016-03-01

    Using ultra-short laser pulses for micro structuring or drilling applications reduces the thermal influence to the surrounding material. The best achievable beam profile equals a Gaussian beam. Drilling with this beam profile results in cylindrical holes. To vary the shape of the holes, the beam can either be scanned or - for single pulse and percussion drilling - manipulated by masks or lenses. A high flexible method for beam shaping can be realized by using a deformable mirror. This mirror contains a piezo-electric ceramic, which can be deformed by an electric potential. By separating the ceramic into independent controllable segments, the shape of the surface can be varied individually. Due to the closed surface of the mirror, there is no loss of intensity due to diffraction. The mirror deformation is controlled by Zernike polynomials and results e.g. in a lens behavior. In this study a deformable mirror was used to generate e.g. slits in thin steel foils by percussion drilling using ultra-short laser pulses. The influence of the cylindrical deformation to the laser beam and the resulting geometry of the generated holes was studied. It was demonstrated that due to the high update rate up to 150 Hz the mirror surface can be varied in each scan cycle, which results in a high flexible drilling process.

  17. Bispectral Operators of Rank $1$ and Dual Isomonodromic Deformations

    CERN Document Server

    Harnad, J

    1996-01-01

    A comparison is made between bispectral operator pairs and dual pairs of isomonodromic deformation equations. Through examples, it is shown how operators belonging to rank one bispectral algebras may be viewed equivalently as defining 1-parameter families of rational first order differential operators with matricial coefficients on the Riemann sphere, whose monodromy is trivial. By interchanging the rôles of the two variables entering in the bispectral pair, a second 1-parameter family of operators with trivial monodromy is obtained, which may be viewed as the dual isomonodromic deformation system.

  18. Ultraflat Tip-Tilt-Piston MEMS Deformable Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is proposed to develop a process for producing arrays of hexagonal mirror segments with deviation from flatness smaller than 1nm RMS over a 600?m segment span,...

  19. Development and control of kilo-pixel MEMS deformable mirrors and spatial light modulators

    Science.gov (United States)

    Perreault, Julie Ann

    This dissertation describes the development of kilo-pixel micro-electro-mechanical optical-quality surface-micromachined deformable mirrors and spatial light modulators along with scalable control electronics. These silicon-based deformable mirrors have the potential to modulate spatial and temporal features of an optical wavefront with applications in imaging, beam-forming, and optical communication systems. Techniques to improve the manufacturing, quality, and capability of these mirrors are detailed. The new mirror system was characterized and a scalable control system was developed to coordinate and control a large array of mirrors. Three types of kilo-pixel deformable mirrors were created: continuous membrane, segmented membrane, and a hybrid stress-relieved membrane mirrors. This new class of mirrors, deformed using electrostatically actuated surface-normal actuators, have an aperature of 10 mm, a stroke of 2 mum, position repeatability of 3 nm, surface roughness of 12 nm, reflectivity of 91%, and a bandwidth in air of 7 kHz. A custom fabrication process was developed in tandem with a new mirror design to address design and layout issues including packaging, residual stress, reliability, yield, fill factor, and surface topography. A chemo-mechanical polishing process improved the surface quality of the mirrors by decreasing surface roughness from an RMS value of 46nm to 12nm. A gold coating process increased reflectivity from 42% to greater than 91% without introducing a significant amount of stress in the mirror membrane. An alternative actuator design and layout was also developed that achieved an increased stroke of 6 mum, with the potential for even longer stroke with stress reduction. The long stroke capability was realized through introduction of split electrodes, actuation membrane cuts, and a double stacked anchor architecture. A computer-driven electronic system was developed to aid in the electro-mechanical testing of these deformable mirrors. Quasi

  20. Integrated optical design for highly dynamic laser beam shaping with membrane deformable mirrors

    Science.gov (United States)

    Pütsch, Oliver; Stollenwerk, Jochen; Loosen, Peter

    2017-02-01

    The utilization of membrane deformable mirrors has raised its importance in laser materials processing since they enable the generation of highly spatial and temporal dynamic intensity distributions for a wide field of applications. To take full advantage of these devices for beam shaping, the huge amount of degrees of freedom has to be considered and optimized already within the early stage of the optical design. Since the functionality of commercial available ray-tracing software has been mainly specialized on geometric dependencies and their optimization within constraints, the complex system characteristics of deformable mirrors cannot be sufficiently taken into account yet. The main reasons are the electromechanical interdependencies of electrostatic membrane deformable mirrors, namely saturation and mechanical clamping, that result in non-linear deformation. This motivates the development of an integrative design methodology. The functionality of the ray-tracing program ZEMAX is extended with a model of an electrostatic membrane mirror. This model is based on experimentally determined influence functions. Furthermore, software routines are derived and integrated that allow for the compilation of optimization criteria for the most relevant analytically describable beam shaping problems. In this way, internal optimization routines can be applied for computing the appropriate membrane deflection of the deformable mirror as well as for the parametrization of static optical components. The experimental verification of simulated intensity distributions demonstrates that the beam shaping properties can be predicted with a high degree of reliability and precision.

  1. Mirror actively deformed and regulated for applications in space: design and performance

    CERN Document Server

    Laslandes, Marie; Ferrari, Marc; Hourtoule, Claire; Singer, Christian; Devilliers, Christophe; Lopez, Celine; Chazallet, Frederic; 10.1117/1.OE.52.9.091803

    2013-01-01

    The need for both high quality images and lightweight structures is one of the main drivers in space telescope design. An efficient wavefront control system will become mandatory in future large observatories, retaining performance while relaxing specifications in the global system's stability. We present the mirror actively deformed and regulated for applications in space project, which aims to demonstrate the applicability of active optics for future space instrumentation. It has led to the development of a 24-actuator, 90-mm-diameter active mirror, able to compensate for large lightweight primary mirror deformations in the telescope's exit pupil. The correcting system has been designed for expected wavefront errors from 3-m-class lightweight primary mirrors, while also taking into account constraints for space use. Finite element analysis allowed an optimization of the system in order to achieve a precision of correction better than 10 nm rms. A dedicated testbed has been designed to fully characterize the...

  2. Measurement of copper vapour laser-induced deformation of dielectric-coated mirror surface by Michelson interferometer

    Indian Academy of Sciences (India)

    A Wahid; S Kundu; J S B Singh; A K Singh; A Khattar; S K Maurya; J S Dhumal; K Dasgupta

    2014-02-01

    AMichelson interferometer-based technique has been used to measure the deformation of dielectric-coated mirror, caused by an incident repetitive pulsed laser beam with high average power. Minimum measurable deformation of 17 nm is reported.

  3. Research on the optimization of a bimorph piezoelectric deformable mirror based on zeroth-order method

    Science.gov (United States)

    Wang, Hairen; Hu, Lin

    2016-07-01

    The deformable mirror adjusts the mirror surface shape to compensate the wavefront error in the adaptive optics system. Recently, the adaptive optics has been widely used in many applications, such as astronomical telescopes, high power laser systems, etc. These applications require large diameter deformable mirrors with large stroke, high speed and low cost. Thus, the bimorph piezoelectric deformable mirror, which is a good match for the applications, has attracted more and more attentions. In this paper, we use zeroth-order optimization method to optimize the physical parameters of a bimorph piezoelectric deformable mirror that consists of a metal reflective layer deposited on the top of a slim piezoelectric ceramic surface layer. The electrodes are deposited on the bottom of the piezoelectric ceramic layer. The physical parameters to be optimized include the optimal thickness ratio between the piezoelectric layer and reflective layer, inter-electrode distance, and so on. A few reasonable designs are obtained by a comparative study presented for three geometries of electrodes, which are circular, square and hexagon, respectively.

  4. Sub-nanometer flattening of a 45-cm long, 45-actuator x-ray deformable mirror

    CERN Document Server

    Poyneer, L A; Pardini, T; Palmer, D; Brooks, A; Pivovaroff, M J; Macintosh, B

    2014-01-01

    We have built a 45-cm long x-ray deformable mirror of super-polished single-crystal silicon that has 45 actuators along the tangential axis. After assembly the surface height error was 19 nm rms. With use of high-precision visible-light metrology and precise control algorithms, we have actuated the x-ray deformable mirror and flattened its entire surface to 0.7 nm rms controllable figure error. This is, to our knowledge, the first sub-nanometer active flattening of a substrate longer than 15 cm.

  5. The dual-mirror Small Size Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Pareschi, G; Antonelli, L A; Bastieri, D; Bellassai, G; Belluso, M; Bigongiari, C; Billotta, S; Biondo, B; Bonanno, G; Bonnoli, G; Bruno, P; Bulgarelli, A; Canestrari, R; Capalbi, M; Caraveo, P; Carosi, A; Cascone, E; Catalano, O; Cereda, M; Conconi, P; Conforti, V; Cusumano, G; De Caprio, V; De Luca, A; Di Paola, A; Di Pierro, F; Fantinel, D; Fiorini, M; Fugazza, D; Gardiol, D; Ghigo, M; Gianotti, F; Giarrusso, S; Giro, E; Grillo, A; Impiombato, D; Incorvaia, S; La Barbera, A; La Palombara, N; La Parola, V; La Rosa, G; Lessio, L; Leto, G; Lombardi, S; Lucarelli, F; Maccarone, M C; Malaguti, G; Malaspina, G; Mangano, V; Marano, D; Martinetti, E; Millul, R; Mineo, T; MistÒ, A; Morello, C; Morlino, G; Panzera, M R; Rodeghiero, G; Romano, P; Russo, F; Sacco, B; Sartore, N; Schwarz, J; Segreto, A; Sironi, G; Sottile, G; Stamerra, A; Strazzeri, E; Stringhetti, L; Tagliaferri, G; Testa, V; Timpanaro, M C; Toso, G; Tosti, G; Trifoglio, M; Vallania, P; Vercellone, S; Zitelli, V; Amans, J P; Boisson, C; Costille, C; Dournaux, J L; Dumas, D; Fasola, G; Hervet, O; Huet, J M; Laporte, P; Rulten, C; Sol, H; Zech, A; White, R; Hinton, J; Ross, D; Sykes, J; Ohm, S; Schmoll, J; Chadwick, P; Greenshaw, T; Daniel, M; Cotter, G; Varner, G S; Funk, S; Vandenbroucke, J; Sapozhnikov, L; Buckley, J; Moore, P; Williams, D; Markoff, S; Vink, J; Berge, D; Hidaka, N; Okumura, A; Tajima, H

    2013-01-01

    In this paper, the development of the dual mirror Small Size Telescopes (SST) for the Cherenkov Telescope Array (CTA) is reviewed. Up to 70 SST, with a primary mirror diameter of 4 m, will be produced and installed at the CTA southern site. These will allow investigation of the gamma-ray sky at the highest energies accessible to CTA, in the range from about 1 TeV to 300 TeV. The telescope presented in this contribution is characterized by two major innovations: the use of a dual mirror Schwarzschild-Couder configuration and of an innovative camera using as sensors either multi-anode photomultipliers (MAPM) or silicon photomultipliers (SiPM). The reduced plate-scale of the telescope, achieved with the dual-mirror optics, allows the camera to be compact (40 cm in diameter), and low-cost. The camera, which has about 2000 pixels of size 6x6 mm^2, covers a field of view of 10{\\deg}. The dual mirror telescopes and their cameras are being developed by three consortia, ASTRI (Astrofisica con Specchi a Tecnologia Repl...

  6. Freeform high-speed large-amplitude deformable Piezo Mirrors

    CERN Document Server

    Wapler, Matthias C; Wallrabe, Ulrike

    2013-01-01

    We present a new type of tunable mirror with sharply-featured freeform displacement profiles, large displacements of several 100\\mu m and high operating frequencies close to the kHz range at 15mm diameter. The actuation principle is based on a recently explored "topological" displacement mode of piezo sheets. The prototypes presented here include a rotationally symmetric axicon, a hyperbolic sech-icon and a non-symmetric pyram-icon and are scalable to smaller dimensions. The fabrication process is economic and cleanroom-free, and the optical quality is sufficient to demonstrate the diffraction patterns of the optical elements.

  7. Optimization of electrode geometry and piezoelectric layer thickness of a deformable mirror

    Directory of Open Access Journals (Sweden)

    Nováková Kateřina

    2013-05-01

    Full Text Available Deformable mirrors are the most commonly used wavefront correctors in adaptive optics systems. Nowadays, many applications of adaptive optics to astronomical telescopes, high power laser systems, and similar fast response optical devices require large diameter deformable mirrors with a fast response time and high actuator stroke. In order to satisfy such requirements, deformable mirrors based on piezoelectric layer composite structures have become a subject of intense scientific research during last two decades. In this paper, we present an optimization of several geometric parameters of a deformable mirror that consists of a nickel reflective layer deposited on top of a thin lead zirconate titanate (PZT piezoelectric disk. Honeycomb structure of gold electrodes is deposited on the bottom of the PZT layer. The analysis of the optimal thickness ratio between the PZT and nickel layers is performed to get the maximum actuator stroke using the finite element method. The effect of inter-electrode distance on the actuator stroke and influence function is investigated. Applicability and manufacturing issues are discussed.

  8. Single-plane multiple speckle pattern phase retrieval using a deformable mirror

    DEFF Research Database (Denmark)

    Almoro, Percival F.; Glückstad, Jesper; Hanson, Steen Grüner

    2010-01-01

    A design for a single-plane multiple speckle pattern phase retrieval technique using a deformable mirror (DM) is analyzed within the formalism of complex ABCD-matrices, facilitating its use in conjunction with dynamic wavefronts. The variable focal length DM positioned at a Fourier plane of a lens...

  9. Large adaptive deformable membrane mirror with high actuator density: design and first prototypes

    NARCIS (Netherlands)

    Hamelinck, R.; Rosielle, N.; Steinbuch, M.; Doelman, N.J.

    2005-01-01

    A large adaptive deformable mirror with high actuator density is presented. The DM consists of a thin continuous membrane which acts as the correcting element. A grid of low voltage electro-magnetical push-pull actuators, - located in an actuator plate -, impose out-of-plane displacements in the mir

  10. Large adaptive deformable membrane mirror with high actuator density: design and first prototypes

    NARCIS (Netherlands)

    Hamelinck, R.; Rosielle, N.; Steinbuch, M.; Doelman, N.J.

    2005-01-01

    A large adaptive deformable mirror with high actuator density is presented. The DM consists of a thin continuous membrane which acts as the correcting element. A grid of low voltage electro-magnetical push-pull actuators, - located in an actuator plate -, impose out-of-plane displacements in the

  11. Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems

    CERN Document Server

    Wu, Zhizheng; Ben Amara, Foued

    2013-01-01

    Modeling and Control of Magnetic Fluid Deformable Mirrors for Adaptive Optics Systems presents a novel design of wavefront correctors based on magnetic fluid deformable mirrors (MFDM) as well as corresponding control algorithms. The presented wavefront correctors are characterized by their linear, dynamic response. Various mirror surface shape control algorithms are presented along with experimental evaluations of the performance of the resulting adaptive optics systems. Adaptive optics (AO) systems are used in various fields of application to enhance the performance of optical systems, such as imaging, laser, free space optical communication systems, etc. This book is intended for undergraduate and graduate students, professors, engineers, scientists and researchers working on the design of adaptive optics systems and their various emerging fields of application. Zhizheng Wu is an associate professor at Shanghai University, China. Azhar Iqbal is a research associate at the University of Toronto, Canada. Foue...

  12. Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy.

    Science.gov (United States)

    Shaw, Michael; Hall, Simon; Knox, Steven; Stevens, Richard; Paterson, Carl

    2010-03-29

    In this paper we describe the wavefront aberrations that arise when imaging biological specimens using an optical sectioning microscope and generate simulated wavefronts for a planar refractive index mismatch. We then investigate the capability of two deformable mirrors for correcting spherical aberration at different focusing depths for three different microscope objective lenses. Along with measurement and analysis of the mirror influence functions we determine the optimum mirror pupil size and number of spatial modes included in the wavefront expansion and we present measurements of actuator linearity and hysteresis. We find that both mirrors are capable of correcting the wavefront aberration to improve imaging and greatly extend the depth at which diffraction limited imaging is possible.

  13. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  14. Development of a new technology of deformable mirror for ultra intense laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Lefaudeux, Nicolas, E-mail: nlefaudeux@imagine-optic.com [Imagine Optic, 18 rue charles de gaulle, 91400 Orsay (France); Levecq, Xavier; Dovillaire, Guillaume; Ballesta, Jerome; Lavergne, Emeric [Imagine Optic, 18 rue charles de gaulle, 91400 Orsay (France); Sauvageot, Paul; Escolano, Lionnel [ISP System (France)

    2011-10-11

    Adaptive optics is now a standard feature for the current ultra high intensity lasers facilities. Aberration induced by both the optical components and the thermal effects in the amplification stages can be corrected with an adaptive optics system to reach both maximum peak energy and fluence. In this article, we present the development of a new technology of deformable mirror. These mirrors are designed taking into account the needs and specificities of ultra intense laser applications. They provide exceptional stability, optical quality and innovative features like scalability and maintenance of the reflective surface.

  15. Demonstration of a 17 cm robust carbon fiber deformable mirror for adaptive optics

    Energy Technology Data Exchange (ETDEWEB)

    Ammons, S M; Hart, M; Coughenour, B; Romeo, R; Martin, R; Rademacher, M

    2011-09-12

    Carbon-fiber reinforced polymer (CFRP) composite is an attractive material for fabrication of optics due to its high stiffness-to-weight ratio, robustness, zero coefficient of thermal expansion (CTE), and the ability to replicate multiple optics from the same mandrel. We use 8 and 17 cm prototype CFRP thin-shell deformable mirrors to show that residual CTE variation may be addressed with mounted actuators for a variety of mirror sizes. We present measurements of surface quality at a range of temperatures characteristic of mountaintop observatories. For the 8 cm piece, the figure error of the Al-coated reflective surface under best actuator correction is {approx}43 nm RMS. The 8 cm mirror has a low surface error internal to the outer ring of actuators (17 nm RMS at 20 C and 33 nm RMS at -5 C). Surface roughness is low (< 3 nm P-V) at a variety of temperatures. We present new figure quality measurements of the larger 17 cm mirror, showing that the intra-actuator figure error internal to the outer ring of actuators (38 nm RMS surface with one-third the actuator density of the 8 cm mirror) does not scale sharply with mirror diameter.

  16. Study of a wide-aperture combined deformable mirror for high-power pulsed phosphate glass lasers

    Energy Technology Data Exchange (ETDEWEB)

    Samarkin, V V; Aleksandrov, A G; Romanov, P N; Rukosuev, A L; Kudryashov, A V [Moscow State University of Mechanical Engineering, Moscow (Russian Federation); Jitsuno, T [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2015-12-31

    A deformable mirror with the size of 410 × 468 mm controlled by bimorph piezoceramic plates and multilayer piezo stacks is developed. The response functions of individual actuators and the measurements of the flatness of the deformable mirror surface are presented. The study of mirrors with an interferometer and a wavefront sensor has shown that it is possible to improve the surface flatness down to a residual roughness of 0.033 μm (RMS). The possibility of correction of beam aberrations in an ultra-high-power laser using the created bimorph mirror is demonstrated. (letters)

  17. Design of dual-curvature mirror for linear medium concentration photovoltaic systems

    Science.gov (United States)

    Lance, Tamir; Ackler, Harold; Finot, Marc

    2012-01-01

    The impact of mirror shape on energy production in Skyline Solar's reflective trough medium concentration photovoltaic system is reviewed using a combination of commercial and proprietary modeling tools. For linear concentrators, an important parameter for efficiency optimization is the uniformity of the flux line on the photovoltaic cells. A significant source of nonuniformity is the discontinuity of reflected light due to the gap between mirrors along the length of the trough. Standard concentrating solar power trough mirrors have a typical length of 1.5 m with a gap between mirrors of 10 to 20 mm. To reduce nonuniformity of the flux line due to this mirror to mirror gap, Skyline Solar developed a dual curvature mirror that stretches the flux line along the trough axis. Extensive modeling and experiments have been conducted to analyze the impact of this design. The methodology of optimization is presented for the X14 Skyline system architecture, and benefits of up to 3% of energy can be realized at locations with latitude below 30 deg.

  18. Scalable stacked array piezoelectric deformable mirror for astronomy and laser processing applications.

    Science.gov (United States)

    Wlodarczyk, Krystian L; Bryce, Emma; Schwartz, Noah; Strachan, Mel; Hutson, David; Maier, Robert R J; Atkinson, David; Beard, Steven; Baillie, Tom; Parr-Burman, Phil; Kirk, Katherine; Hand, Duncan P

    2014-02-01

    A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 μm maximum actuator stroke, a 1.4 μm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

  19. Continuous optical zoom module based on two deformable mirrors for mobile device applications

    Science.gov (United States)

    Lin, Yu-Hung; Su, Guo-Dung J.

    2011-10-01

    In recent years, optical zoom function of the mobile camera phones has been studied. However, traditional systems use motors to change separation of lenses to achieve zoom function, suffering from long total length and high power consumption, which is not suitable for mobile phones use. Adopting MEMS polymer deformable mirrors in zoom systems has the potential to reduce thickness and have the advantage of low chromatic aberration. In this paper, we presented a 2X continuous optical zoom systems for mobile phones, using two deformable mirrors, suitable for 5-Mega-pixel image sensors. In our design, the thickness of the zoom system is about 11 mm. The smallest EFL (effective focal length) is 4.7 mm at full field angle of 52° and the f/# is 4.4. The longest EFL of the module is 9.4 mm and the f/# is 6.4.

  20. Woofer-tweeter deformable mirror control for closed-loop adaptive optics: theory and practice

    CERN Document Server

    Gavel, Donald

    2014-01-01

    Deformable mirrors with very high order correction generally have smaller dynamic range of motion than what is required to correct seeing over large aperture telescopes. As a result, systems will need to have an architecture that employs two deformable mirrors in series, one for the low-order but large excursion parts of the wavefront and one for the finer and smaller excursion components. The closed-loop control challenge is to a) keep the overall system stable, b) avoid the two mirrors using control energy to cancel each other's correction, c) resolve actuator saturations stably, d) assure that on average the mirrors are each correcting their assigned region of spatial frequency space. We present the control architecture and techniques for assuring that it is linear and stable according to the above criteria. We derived the analytic forms for stability and performance and show results from simulations and on-sky testing using the new ShaneAO system on the Lick 3-meter telescope.

  1. Wavefront correction performed by a deformable mirror of arbitrary actuator pattern within a multireflection waveguide.

    Science.gov (United States)

    Ma, Xingkun; Huang, Lei; Bian, Qi; Gong, Mali

    2014-09-10

    The wavefront correction ability of a deformable mirror with a multireflection waveguide was investigated and compared via simulations. By dividing a conventional actuator array into a multireflection waveguide that consisted of single-actuator units, an arbitrary actuator pattern could be achieved. A stochastic parallel perturbation algorithm was proposed to find the optimal actuator pattern for a particular aberration. Compared with conventional an actuator array, the multireflection waveguide showed significant advantages in correction of higher order aberrations.

  2. Swept source optical coherence tomography Gabor fusion splicing technique for microscopy of thick samples using a deformable mirror

    Science.gov (United States)

    Costa, Christopher; Bradu, Adrian; Rogers, John; Phelan, Pauline; Podoleanu, Adrian

    2015-01-01

    We present a swept source optical coherence tomography (OCT) system at 1060 nm equipped with a wavefront sensor at 830 nm and a deformable mirror in a closed-loop adaptive optics (AO) system. Due to the AO correction, the confocal profile of the interface optics becomes narrower than the OCT axial range, restricting the part of the B-scan (cross section) with good contrast. By actuating on the deformable mirror, the depth of the focus is changed and the system is used to demonstrate Gabor filtering in order to produce B-scan OCT images with enhanced sensitivity throughout the axial range from a Drosophila larvae. The focus adjustment is achieved by manipulating the curvature of the deformable mirror between two user-defined limits. Particularities of controlling the focus for Gabor filtering using the deformable mirror are presented.

  3. Mirroring

    DEFF Research Database (Denmark)

    Wegener, Gregers

    2016-01-01

    and metaphorical value of mirroring for creativity theory across two different research fields — neuroscience and learning. We engage in a mutual (possibly creative) exploration of mirroring from ‘mirror neurons’ to mirroring in social learning theory. One of the most fascinating aspects of mirroring......Most definitions of creativity emphasise originality. The creative product is recognised as distinct from other products and the creative person as someone who stands out from the crowd. What tend to be overlooked are acts of mirroring as a crucial element of the creative process. The human ability...... to empathise and socialise is partly due to another, more fundamental ability to duplicate the stance of the other (see also Chapter 13). Through mirroring, we attune to other people and thus create resonance and preparedness for mutual creative exploration. In this chapter, we investigate the object...

  4. Stable dual-wavelength microlaser controlled by the output mirror tilt angle

    Science.gov (United States)

    Pallas, Florent; Herault, Emilie; Zhou, Jie; Roux, Jean-Francois; Vitrant, Guy

    2011-12-01

    A continuous-wave dual-wavelength solid-state microlaser is presented and a technique for regulating the gain competition between the two wavelengths is proposed, based on the angular tilt of the laser cavity output mirror. Laser behavior is studied and balanced dual-wavelength emission is obtained with output power levels as high as 200 mW for 2 W pump power. Sum frequency mixing is demonstrated making the source promising for Terahertz generation in the 0.5-0.7 THz range through difference frequency generation.

  5. Real-time characterization of the spatio-temporal dynamics of deformable mirrors

    Science.gov (United States)

    Kilpatrick, James; Apostol, Adela; Khizhnya, Anatoliy; Markov, Vladimir; Beresnev, Leonid

    2016-09-01

    Innovative technologies are needed to support and augment the development of various types of deformable mirrors (DM), such as Micro Electro Mechanical Systems (MEMS), segmented, bimorph and membrane types that are currently used in adaptive-optic (AO) systems. The paper discusses the results of initial studies that, could, potentially, be employed for full characterization of the dynamic behavior of adaptive optics mirrors. The experimental data were obtained from a typical bimorph mirror using both, a Shack-Hartman wavefront sensor (SHWFS) and an Imaging Laser Doppler Vibrometer (ILDV) developed exclusively by AS and T Inc. These two sensors were employed for quantitative measurement of both the spatial and temporal dynamics of the DM under broadband excitation via the piezo electric drive elements. The need to characterize the spatial and temporal dynamic response of current and future DM mirror designs is essential for optimizing their performance to a level adequate for high bandwidth AO systems, such as those employed for real-time compensation of wavefront perturbations.

  6. Calibration strategy of the pyramid wavefront sensor module of ERIS with the VLT deformable secondary mirror

    Science.gov (United States)

    Riccardi, A.; Briguglio, R.; Pinna, E.; Agapito, G.; Quiros-Pacheco, F.; Esposito, S.

    2012-07-01

    ERIS is a new Adaptive Optics Instrument for the Adaptive Optics Facility of the VLT that foresees, in its design phase, a Pyramid Wavefront Sensor Module (PWM) to be used with the VLT Deformable Secondary Mirror (VLT-DSM) as corrector. As opposite to the concave secondary mirrors currently in use (e.g. at LBT), VLT-DSM is convex and calibration of the interaction matrix (IM) between the PWM and the DSM is not foreseen on-telescope during day-time. In this paper different options of calibration are evaluated and compared with particular attention on the synthetic evaluation and on-sky calibration of the IM. A trade-off of the calibration options, the optimization techniques and the related validation with numerical simulations are also provided.

  7. Integration of Micro-Electro-Mechanical Deformable Mirrors in Doped Fiber Amplifiers

    CERN Document Server

    Bouyge, D; Crunteanu, A; Blondy, P; Couderc, V; Lhermite, J; Grossard, L; Barthélemy, A

    2007-01-01

    We present a simple technique to produce active Q-switching in various types of fiber amplifiers by active integration of an electrostatic actuated deformable metallic micro-mirror. The optical MEMS (MOEMS) device acts as one of the laser cavity reflectors and, at the same time, as switching/ modulator element. We aim to obtain laser systems emitting short, high-power pulses and having variable repetition rate. The electro-mechanical behavior of membrane (bridge-type) was simulated by using electrostatic and modal 3D finite element analysis (FEA). The results of the simulations fit well with the experimental mechanical, electrical and thermal measurements of the components. In order to decrease the sensitiveness to fiber-mirror alignment we are developing novel optical devices based on stressed-metal cantilever-type geometry that allow deflections up to 50 $\\mu$m with increased reflectivity discrimination during actuation.

  8. Manufacturing of high performance, low cost dual mirror lamp reflector modules

    Science.gov (United States)

    Shen, Li

    The Lamp Reflector Module (LRM) is a key component in every micro display projection system, which has played a dominant role in the large-screen display market today. The goal of this research is to (1) improve the Dual Mirror prototype's light output performance, (2) investigate the underlying principles of its slow output deterioration so as to help develop effective and efficient LRM thermal management for maximized lifetime performance, and (3) improve/enable low cost mass LRM manufacturing for the projection display market. The first part of this research addresses the prototype's low output problem. More sophisticated 3D Optical Ray Tracing (ORT) models were generated to provide the output prediction depending on the arc gap, system collection etendue, etc. It was concluded that upgrading the manufacturing processes, particularly the reflector shape, surface and cold mirror coating, could effectively improve the output performance. Additionally, these theoretical models are shown to be used to design a LRM with 16% output gain for the consumer Rear Projection display market. The second part of this research focuses on the issue of lifetime performance. The electrode, arc attachment and envelope evolution were monitored by camera systems. The upgraded ORT models confirmed the arc length insensitivity property of the Dual Mirror LRM being one of the major reasons for its longer native lifetime. The third part of this research focuses on issues related to the entire LRM manufacturing. A series of quality control tools were developed to help implement manufacturing process optimization. LRMs made with the upgraded manufacturing processes showed about 25% output gain over the previous prototypes. Based on the imaging property of the Dual Mirror LRM, a lower cost lamp reflector alignment method, called cold alignment, was developed. In this method, the etendue efficiency is maintained and a slower degrading and more stable lifetime output performance are achieved

  9. Mathematical and computational modeling of a ferrofluid deformable mirror for high-contrast imaging

    Science.gov (United States)

    Lemmer, Aaron J.; Griffiths, Ian M.; Groff, Tyler D.; Rousing, Andreas W.; Kasdin, N. Jeremy

    2016-07-01

    Deformable mirrors (DMs) are an enabling and mission-critical technology in any coronagraphic instrument designed to directly image exoplanets. A new ferro fluid deformable mirror technology for high-contrast imaging is currently under development at Princeton, featuring a flexible optical surface manipulated by the local electromagnetic and global hydraulic actuation of a reservoir of ferro fluid. The ferro fluid DM is designed to prioritize high optical surface quality, high-precision/low-stroke actuation, and excellent low-spatial-frequency performance - capabilities that meet the unique demands of high-contrast coronagraphy in a space-based platform. To this end, the ferro-fluid medium continuously supports the DM face sheet, a configuration that eliminates actuator print-through (or, quilting) by decoupling the nominal surface figure from the geometry of the actuator array. The global pressure control allows independent focus actuation. In this paper we describe an analytical model for the quasi-static deformation response of the DM face sheet to both magnetic and pressure actuation. These modeling efforts serve to identify the key design parameters and quantify their contributions to the DM response, model the relationship between actuation commands and DM surface-profile response, and predict performance metrics such as achievable spatial resolution and stroke precision for specific actuator configurations. Our theoretical approach addresses the complexity of the boundary conditions associated with mechanical mounting of the face sheet, and makes use of asymptotic approximations by leveraging the three distinct length scales in the problem - namely, the low-stroke ( nm) actuation, face sheet thickness ( mm), and mirror diameter (cm). In addition to describing the theoretical treatment, we report the progress of computational multi physics simulations which will be useful in improving the model fidelity and in drawing conclusions to improve the design.

  10. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    Energy Technology Data Exchange (ETDEWEB)

    Poyneer, L A; Bauman, B; Cornelissen, S; Jones, S; Macintosh, B; Palmer, D; Isaacs, J

    2010-12-17

    We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence function characterization. We discuss the integration of the MEMS into GPI's Adaptive Optics system at Lawrence Livermore and present experimental results of 1.5 kHz closed-loop control. We detail mitigation strategies in the coronagraph to reduce the impact of abnormal actuators on final image contrast.

  11. High-precision system identification method for a deformable mirror in wavefront control.

    Science.gov (United States)

    Huang, Lei; Ma, Xingkun; Bian, Qi; Li, Tenghao; Zhou, Chenlu; Gong, Mali

    2015-05-10

    Based on a mathematic model, the relation between the accuracy of the influence matrix and the performance of the wavefront correction is established. Based on the least squares method, a two-step system identification is proposed to improve the accuracy of the influence matrix, where the measurement noise can be suppressed and the nonlinearity of the deformable mirror can be compensated. The validity of the two-step system identification method is tested in the experiment, where improvements in wavefront correction precision as well as closed-loop control efficiency were observed.

  12. Sub-nanometer flattening of 45 cm long, 45 actuator x-ray deformable mirror.

    Science.gov (United States)

    Poyneer, Lisa A; McCarville, Thomas; Pardini, Tommaso; Palmer, David; Brooks, Audrey; Pivovaroff, Michael J; Macintosh, Bruce

    2014-06-01

    We have built a 45 cm long x-ray deformable mirror (XDM) of super-polished single-crystal silicon that has 45 actuators along the tangential axis. After assembly, the surface height error was 19 nm rms. With use of high-precision visible-light metrology and precise control algorithms, we have actuated the XDM and flattened its entire surface to 0.7 nm rms controllable figure error. This is, to our knowledge, the first sub-nanometer active flattening of a substrate longer than 15 cm.

  13. Stability of the micromachined membrane deformable mirror as a freeform optical element

    Science.gov (United States)

    Vdovin, Gleb; Soloviev, Oleg; Patlan, Seva

    2014-09-01

    Micromachined membrane deformable mirror (MMDM) can serve as an ad hoc" free-form optical element. To test the repeatability and stability of the standard MMDM, we have conducted the test of surface figure during multiple thermal cycling, test of figure drift at elevated temperatures, and a long-term 16-day stability test of actively formed mirror figure. The average rms error did not exceed λ =25 at λ = 633 nm, after repeated cycling from -14 to +70 C, with return to the room temperature. The existing design provides ~10° stability in the temperature range of ~10°. Optimization of the design, eliminating astigmatism, would allow one to extend the temperature range to about 30. The long-term mirror figure instability at a constant temperature reaches λ/20 rms in 16 days. The P-V error with respect to the nearest sphere changes from λ/20 in the first day, to about λ/10 in the 16-th day. The tests show that MMDM is stable enough to make a reasonable alternative to free-form optics in applications that require various optical shapes to be formed with a single element.

  14. Digital holographic interferometry for characterizing deformable mirrors in aero-optics

    Science.gov (United States)

    Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme

    2016-08-01

    Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.

  15. Feasible optimal deformable mirror shaping algorithm for high-contrast imaging

    Science.gov (United States)

    Give'on, Amir; Kasdin, N. Jeremy; Vanderbei, Robert J.; Spergel, David N.; Littman, Michael G.; Gurfil, Pini

    2003-12-01

    The Princeton University Terrestrial Planet Finder (TPF) group has been working on a novel method for direct imaging of extra solar planets using a shaped-pupil coronagraph. The entrance pupil of the coronagraph is optimized to have a point spread function (PSF) that provides the suppression level needed at the angular separation required for detection of extra solar planets. When integration time is to be minimized, the photon count at the planet location in the image plane is a Poisson distributed random process. The ultimate limitation of these high-dynamic-range imaging systems comes from scattering due to imperfections in the optical surfaces of the collecting system. The first step in correcting the wavefront errors is the estimation of the phase aberrations. The phase aberration caused by these imperfections is assumed to be a sum of two-dimensional sinusoidal functions. Assuming one uses a deformable mirror to correct these aberrations, we propose an algorithm that optimally decreases the scattering level in specified localized areas in the image plane independent of the choice of influence function of the deformable mirror.

  16. The ASTRI Project: a mini-array of dual-mirror small Cherenkov telescopes for CTA

    CERN Document Server

    La Palombara, N; Antonelli, L A; Bastieri, D; Bellassai, G; Belluso, M; Bigongiari, C; Billotta, S; Biondo, B; Bonanno, G; Bonnoli, G; Bruno, P; Bulgarelli, A; Canestrari, R; Capalbi, M; Caraveo, P; Carosi, A; Cascone, E; Catalano, O; Cereda, M; Conconi, P; Conforti, V; Cusumano, G; De Caprio, V; De Luca, A; Di Paola, A; Di Pierro, F; Fantinel, D; Fiorini, M; Fugazza, D; Gardiol, D; Ghigo, M; Gianotti, F; Giarrusso, S; Giro, E; Grillo, A; Impiombato, D; Incorvaia, S; La Barbera, A; La Parola, V; La Rosa, G; Lessio, L; Leto, G; Lombardi, S; Lucarelli, F; Maccarone, M C; Malaguti, G; Malaspina, G; Mangano, V; Marano, D; Martinetti, E; Millul, R; Mineo, T; Mistó, A; Morello, C; Morlino, G; Panzera, M R; Pareschi, G; Rodeghiero, G; Romano, P; Russo, F; Sacco, B; Sartore, N; Schwarz, J; Segreto, A; Sironi, G; Sottile, G; Stamerra, A; Strazzeri, E; Stringhetti, L; Tagliaferri, G; Testa, V; Timpanaro, M C; Toso, G; Tosti, G; Trifoglio, M; Vallania, P; Vercellone, S; Zitelli, V

    2013-01-01

    ASTRI is a flagship project of the Italian Ministry of Education, University and Research, which aims to develop an end-to-end prototype of the CTA small-size telescope. The proposed design is characterized by a dual-mirror Schwarzschild-Couder configuration and a camera based on Silicon photo-multipliers, two challenging but innovative technological solutions which will be adopted for the first time on a Cherenkov telescope. Here we describe the current status of the project, the expected performance and the possibility to realize a mini-array composed by a few small-size telescopes, which shall be placed at the final CTA Southern Site.

  17. Wave-front correction of femtosecond terawatt lasers by deformable mirrors.

    Science.gov (United States)

    Druon, F; Chériaux, G; Faure, J; Nees, J; Nantel, M; Maksimchuk, A; Mourou, G; Chanteloup, J C; Vdovin, G

    1998-07-01

    Wave-front correction and focal spot improvement of femtosecond laser beams have been achieved, for the first time to our knowledge, with a deformable mirror with an on-line single-shot three-wave lateral shearing interferometer diagnostic. Wave-front distortions of a 100-fs laser that are due to third-order nonlinear effects have been compensated for. This technique, which permits correction in a straightforward process that requires no feedback loop, is also used on a 10-TW Ti:sapphire-Nd:phosphate glass laser in the subpicosecond regime. We also demonstrate that having a focal spot close to the diffraction limit does not constitute a good criterion for the quality of the laser in terms of peak intensity.

  18. Combinational-deformable-mirror adaptive optics system for compensation of high-order modes of wavefront

    Institute of Scientific and Technical Information of China (English)

    Huafeng Yang; Guilin Liu; Changhui Rao; Yudong Zhang; Wenhan Jiang

    2007-01-01

    A new kind of adaptive optics (AO) system, in which several low spatial frequency deformable mirrors(DMs) with optical conjugation relationship are combined to correct high-order aberrations, is proposed.The phase compensation principle and the control method of the combinational AO system are introduced.The numerical simulations for the AO system with two 60-element DMs are presented. The results indicate that the combinational DM in the AO system can correct different aberrations effectively as one single DM with more actuators, and there is no change of control method. This technique can be applied to a large telescope AO system to improve the spatial compensation capability for wavefront by using current DM.

  19. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    CERN Document Server

    Basden, A G; Bharmal, N A; Bitenc, U; Brangier, M; Buey, T; Butterley, T; Cano, D; Chemla, F; Clark, P; Cohen, M; Conan, J -M; de Cos, F J; Dickson, C; Dipper, N A; Dunlop, C N; Feautrier, P; Fusco, T; Gach, J L; Gendron, E; Geng, D; Goodsell, S J; Gratadour, D; Greenaway, A H; Guesalaga, A; Guzman, C D; Henry, D; Holck, D; Hubert, Z; Huet, J M; Kellerer, A; Kulcsar, C; Laporte, P; Roux, B Le; Looker, N; Longmore, A J; Marteaud, M; Martin, O; Meimon, S; Morel, C; Morris, T J; Myers, R M; Osborn, J; Perret, D; Petit, C; Raynaud, H; Reeves, A P; Rousset, G; Lasheras, F Sanchez; Rodriguez, M Sanchez; Santos, J D; Sevin, A; Sivo, G; Stadler, E; Stobie, B; Talbot, G; Todd, S; Vidal, F; Younger, E J

    2016-01-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory adaptive optics real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  20. A 45-element continuous facesheet surface micromachined deformable mirror for optical aberration correction

    Directory of Open Access Journals (Sweden)

    Weimin Wang

    2014-02-01

    Full Text Available A 45-element continuous facesheet surface micromachined deformable mirror (DM is presented and is fabricated using the PolyMUMPs multi-user micro-electro-mechanical system processes. The effects of the structural parameters on the characteristics of the DM, such as its stroke, frequency and actuator coupling, are analyzed. In addition, the DM design has also been verified through experimental testing. This DM prototype has a surface figure of 0.5 μm and a fill factor of 95%. The DM can provide a 0.6 μm stroke with 5.9% actuator coupling. A static aberration correction based on this DM is also demonstrated, which acts as a reference for the potential adaptive optics (AO applications of the device.

  1. Optimization with numerical simulations of the conjugate altitudes of deformable mirrors in an MCAO system

    CERN Document Server

    Femenia, B

    2003-01-01

    This article reports on the results of simulations conducted to assess the performance of a modal Multi-Conjugate Adaptive Optics (MCAO) system on a 10m telescope with one Deformable Mirror (DM) conjugated to the telescope pupil and a second DM conjugated at a certain altitude above the pupil. The main goal of these simulations is to study the dependence of MCAO performance upon the altitude of the high-altitude conjugated DM and thereby determine its optimal conjugation. The performance is also studied with respect to the geometry of the Guide Star constellation when using constellations of Natural Guide Stars (NGS), which are rare, or constellations of Laser Guide Stars (LGS) which would allow large sky coverage.

  2. Wave front adaptation using a deformable mirror for adiabatic nanofocusing along an ultrasharp gold taper.

    Science.gov (United States)

    Schmidt, Slawa; Engelke, Pascal; Piglosiewicz, Björn; Esmann, Martin; Becker, Simon F; Yoo, Kyungwan; Park, Namkyoo; Lienau, Christoph; Groß, Petra

    2013-11-01

    We describe and demonstrate the use of an adaptive wave front optimization scheme for enhancing the efficiency of adiabatic nanofocusing of surface plasmon polariton (SPP) waves along an ultrasharp conical gold taper. Adiabatic nanofocusing is an emerging and promising scheme for controlled focusing of far field light into nanometric volumes. It comprises three essential steps: SPP excitation by coupling far field light to an SPP waveguide, SPP propagation along the waveguide and adiabatic SPP nanofocusing towards a geometric singularity. For commonly used complex waveguide geometries, such as, e.g., conical metal tapers, a realistic modeling and efficiency optimization is challenging. Here, we use a deformable mirror to adaptively control the wave front of the incident far field light. We demonstrate an eight-fold enhancement in nanofocusing efficiency and analyze the shape of the resulting optimized wave front. The introduced wave front optimization scheme is of general interest for guiding and controlling light on the nanoscale.

  3. X-ray metrology and performance of a 45-cm long x-ray deformable mirror.

    Science.gov (United States)

    Poyneer, Lisa A; Brejnholt, Nicolai F; Hill, Randall; Jackson, Jessie; Hagler, Lisle; Celestre, Richard; Feng, Jun

    2016-05-01

    We describe experiments with a 45-cm long x-ray deformable mirror (XDM) that have been conducted in End Station 2, Beamline 5.3.1 at the Advanced Light Source. A detailed description of the hardware implementation is provided. We explain our one-dimensional Fresnel propagation code that correctly handles grazing incidence and includes a model of the XDM. This code is used to simulate and verify experimental results. Initial long trace profiler metrology of the XDM at 7.5 keV is presented. The ability to measure a large (150-nm amplitude) height change on the XDM is demonstrated. The results agree well with the simulated experiment at an error level of 1 μrad RMS. Direct imaging of the x-ray beam also shows the expected change in intensity profile at the detector.

  4. Experience with wavefront sensor and deformable mirror interfaces for wide-field adaptive optics systems

    Science.gov (United States)

    Basden, A. G.; Atkinson, D.; Bharmal, N. A.; Bitenc, U.; Brangier, M.; Buey, T.; Butterley, T.; Cano, D.; Chemla, F.; Clark, P.; Cohen, M.; Conan, J.-M.; de Cos, F. J.; Dickson, C.; Dipper, N. A.; Dunlop, C. N.; Feautrier, P.; Fusco, T.; Gach, J. L.; Gendron, E.; Geng, D.; Goodsell, S. J.; Gratadour, D.; Greenaway, A. H.; Guesalaga, A.; Guzman, C. D.; Henry, D.; Holck, D.; Hubert, Z.; Huet, J. M.; Kellerer, A.; Kulcsar, C.; Laporte, P.; Le Roux, B.; Looker, N.; Longmore, A. J.; Marteaud, M.; Martin, O.; Meimon, S.; Morel, C.; Morris, T. J.; Myers, R. M.; Osborn, J.; Perret, D.; Petit, C.; Raynaud, H.; Reeves, A. P.; Rousset, G.; Sanchez Lasheras, F.; Sanchez Rodriguez, M.; Santos, J. D.; Sevin, A.; Sivo, G.; Stadler, E.; Stobie, B.; Talbot, G.; Todd, S.; Vidal, F.; Younger, E. J.

    2016-06-01

    Recent advances in adaptive optics (AO) have led to the implementation of wide field-of-view AO systems. A number of wide-field AO systems are also planned for the forthcoming Extremely Large Telescopes. Such systems have multiple wavefront sensors of different types, and usually multiple deformable mirrors (DMs). Here, we report on our experience integrating cameras and DMs with the real-time control systems of two wide-field AO systems. These are CANARY, which has been operating on-sky since 2010, and DRAGON, which is a laboratory AO real-time demonstrator instrument. We detail the issues and difficulties that arose, along with the solutions we developed. We also provide recommendations for consideration when developing future wide-field AO systems.

  5. Thermal stability test and analysis of a 20-actuator bimorph deformable mirror

    Institute of Scientific and Technical Information of China (English)

    Ning Yu; Zhou Hong; Yu Hao; Rao Chang-Hui; Jiang Wen-Han

    2009-01-01

    One of the important characteristic of adaptive mirrors is the thermal stability of surface flatness. In this paper, the thermal stability from 13℃ to 25℃ of a 20-actuator bimorph deformable mirror is tested by a Shack-Hartmann wavefront sensor. Experimental results show that, the surface P-V of bimorph increases nearly linearly with ambient temperature. The ratio is 0.11 μm/℃ and the major component of surface displacement is defocused, compared with which, astigmatism, coma and spherical aberration contribute very small. Besides, a finite element model is built up to analyse the influence of thickness, thermal expansion coefficient and Young's modulus of materials on thermal stability. Calculated results show that bimorph has the best thermal stability when the materials have the same thermal expansion coefficient. And when the thickness ratio of glass to PZT is 3 and Young's modulus ratio is approximately 0.4, the surface instability behaviour of the bimorph manifests itself most severely.

  6. Principles And Design Of Multibeam Interference Devices: A Microelectromechanical-Systems Segment-Deformable-Mirror-Based Adaptive Spectrum Attenuator

    OpenAIRE

    Huang, Z.Y.; Zhu, Y. Z.; Wang, Anbo

    2005-01-01

    Fourier analysis of multibeam interference shows that the total electric field and relative time delay of the beams form a Fourier-transform pair. Fourier-analysis-based multibeam interference analysis and device design is discussed in detail. The principle of the proposed segment-deformable-mirror-based adaptive spectrum attenuator is illustrated. (c) 2005 Optical Society of America.

  7. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes.

    Science.gov (United States)

    Wang, Xiaoli; Knapp, Peter; Vaynman, S; Graham, M E; Cao, Jian; Ulmer, M P

    2014-09-20

    The desire for continuously gaining new knowledge in astronomy has pushed the frontier of engineering methods to deliver lighter, thinner, higher quality mirrors at an affordable cost for use in an x-ray observatory. To address these needs, we have been investigating the application of magnetic smart materials (MSMs) deposited as a thin film on mirror substrates. MSMs have some interesting properties that make the application of MSMs to mirror substrates a promising solution for making the next generation of x-ray telescopes. Due to the ability to hold a shape with an impressed permanent magnetic field, MSMs have the potential to be the method used to make light weight, affordable x-ray telescope mirrors. This paper presents the experimental setup for measuring the deformation of the magnetostrictive bimorph specimens under an applied magnetic field, and the analytical and numerical analysis of the deformation. As a first step in the development of tools to predict deflections, we deposited Terfenol-D on the glass substrates. We then made measurements that were compared with the results from the analytical and numerical analysis. The surface profiles of thin-film specimens were measured under an external magnetic field with white light interferometry (WLI). The analytical model provides good predictions of film deformation behavior under various magnetic field strengths. This work establishes a solid foundation for further research to analyze the full three-dimensional deformation behavior of magnetostrictive thin films.

  8. Intracavity control of a 200-W continuous-wave Nd:YAG laser by a micromachined deformable mirror.

    Science.gov (United States)

    Vdovin, G; Kiyko, V

    2001-06-01

    A silicon micromachined membrane deformable mirror with a diameter of 10 mm, reflectivity of better than 99.8%, and a surface deflection range of 3mum has been used for intracavity control of an industrial 200-W cw Nd:YAG laser. When it was placed in the resonator, the mirror demonstrated continuous (more than 40-h) stable operation under an ~550-W cw optical load, with beam diameters in the range 3-6 mm. Periodic modulation of the curvature of the deformable mirror with a frequency of 250 Hz produced quick switching between stable and unstable resonator configurations, which resulted in pulse-period Q -switched generation with average power in the range 50-200 W, modulation depth from 95% to 10%, and an M(2) parameter of 6.5 to 30.

  9. Long-term stability and temperature variability of Iris AO segmented MEMS deformable mirrors

    CERN Document Server

    Helmbrecht, M A; Kempf, C J; Marchis, F

    2016-01-01

    Long-term stability of deformable mirrors (DM) is a critical performance requirement for instruments requiring open-loop corrections. The effects of temperature changes in the DM performance are equally critical for such instruments. This paper investigates the long-term stability of three different Iris AO PTT111 DMs that were calibrated at different times ranging from 13 months to nearly 29 months prior to subsequent testing. Performance testing showed that only a small increase in positioning errors occurred from the initial calibration date to the test dates. The increases in errors ranged from as little as 1.38 nm rms after 18 months to 5.68 nm rms after 29 months. The paper also studies the effects of small temperature changes, up to 6.2{\\deg}C around room temperature. For three different arrays, the errors ranged from 0.62-1.42 nm rms/{\\deg}C. Removing the effects of packaging shows that errors are $\\le$0.50 nm rms/{\\deg}C. Finally, measured data showed that individual segments deformed $\\le$0.11 nm rm...

  10. Modified deformable mirror stroke minimization control for direct imaging of exoplanets

    Science.gov (United States)

    Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert; Groff, Tyler

    2016-08-01

    For direct imaging of faint exoplanets, coronagraphs are widely used to suppress light and achieve a high contrast. Wavefront correction algorithms based on adaptive optics are introduced simultaneously to mitigate aberrations in the optical system. Stroke minimization is one of the primary control algorithms used for high-contrast wavefront control. This technique calculates the minimum deformation across the deformable mirrors' surface under the constraint that a targeted average contrast level in the search areas, namely the dark holes, is achieved. In this paper we present a modified linear constraint stroke minimization algorithm. Instead of using a single constraint on intensity averaged over all pixels, we constrain the electric field's real and imaginary part of each pixel in the dark holes. The new control algorithm can be written into a linear programming problem. Model reduction methods, including pixel binning and singular value decomposition (SVD), are further employed to avoid over-constraining the problem and to speed up computation. In numerical simulation, we find that the revised algorithm leads to more uniform dark holes and faster convergence.

  11. A new driving method for piezo deformable mirrors: open loop control and MOAO made easy

    Science.gov (United States)

    Ouattara, Issa; Gach, Jean-Luc; Amram, Philippe

    2016-07-01

    This paper presents the design and the realisation of a technique to attenuate the hysteresis nonlinear phenomenon of piezoelectric actuators. Piezoelectric actuator are widely utilised for deformable mirrors used for MOAO and power laser beam shaping techniques. The nonlinearities of piezo are usually iteratively compensa- ted using closed-loop set-ups. In open-loop control, the hysteresis and the creep of the piezo cannot be corrected, thus this nonlinearities must be removed or at least minimised. The concept has been demonstrated on high displacement Amplified Piezoelectric Actuators (APA) mounted in a Fabry-Perot interferometer. The hysteresis attenuation technique aims to assist the Fabry-Perots nano-positioning control system to attain its main scientific specification. In such system, each APA has a maximum stroke of 270 μm within a 170 V (-20 V to +150 V) range and is used to position a high reflective mirror plate. The Fabry-Perots nano-positioning control system is specified to limit the APAs positioning steady-state noise to 3nm rms, but the hysteresis limits the positioning accuracy. In order to attenuate hysteresis, a hybrid amplifier circuit built with a high power operational amplifier has been designed and applied for each APA. The experiments results show that the hysteresis effect has almost been eliminated, and consequently the positioning steady-state noise can significantly been reduced. Because of the excellent results of this hybrid amplifier, a patent application has been introduced in June 12, 2015 under number No.1555381 and is being reviewed now.

  12. Long-term stability and temperature variability of Iris AO segmented MEMS deformable mirrors

    Science.gov (United States)

    Helmbrecht, M. A.; He, M.; Kempf, C. J.; Marchis, F.

    2016-07-01

    Long-term stability of deformable mirrors (DM) is a critical performance requirement for instruments requiring open-loop corrections. The effects of temperature changes in the DM performance are equally critical for such instruments. This paper investigates the long-term stability of three different Iris AO PTT111 DMs that were calibrated at different times ranging from 13 months to nearly 29 months prior to subsequent testing. Performance testing showed that only a small increase in positioning errors occurred from the initial calibration date to the test dates. The increases in errors ranged from as little as 1.38 nm rms after 18 months to 5.68 nm rms after 29 months. The paper also studies the effects of small temperature changes, up to 6.2°C around room temperature. For three different arrays, the errors ranged from 0.62-1.42 nm rms/°C. Removing the effects of packaging shows that errors are heated.

  13. Preparation and Characterization of Silver Liquid Thin Films for Magnetic Fluid Deformable Mirror

    Directory of Open Access Journals (Sweden)

    Lianchao Zhang

    2015-01-01

    Full Text Available Silver liquid thin film, formed by silver nanoparticles stacking and spreading on the surface of the liquid, is one of the important parts of magnetic fluid deformable mirror. First, silver nanoparticles were prepared by liquid phase chemical reduction method using sodium citrate as reducing agent and stabilizer and silver nitrate as precursor. Characterization of silver nanoparticles was studied using X-ray diffractometer, UV-vis spectrophotometer, and transmission electron microscope (TEM. The results showed that silver nanoparticles are spherical and have a good monodispersity. Additionally, the effect of the reaction conditions on the particle size of silver is obvious. And then silver liquid thin films were prepared by oil-water two-phase interface technology using as-synthesized silver nanoparticles. Properties of the film were investigated using different technology. The results showed that the film has good reflectivity and the particle size has a great influence on the reflectivity of the films. SEM photos showed that the liquid film is composed of multilayer silver nanoparticles. In addition, stability of the film was studied. The results showed that after being stored for 8 days under natural conditions, the gloss and reflectivity of the film start to decrease.

  14. Enhancing ablation efficiency in micro structuring using a deformable mirror for beam shaping of ultra-short laser pulses

    Science.gov (United States)

    Smarra, M.; Dickmann, K.

    2016-03-01

    Using ultra-short laser pulses for the generation of microstructures results in a high flexible tool for free form geometries in the micro range. Increasing laser power and repetition rates increase as well the demand of high flexible and efficient process strategies. To increase the ablation efficiency the optimal fluency can be determined, which is a material specific value. By varying the beam shape, the ablation efficiency can be enhanced. In this study a deformable mirror was used to vary the beam shape. This mirror is built by combining a piezo-electric ceramic and a mirror substrate. The ceramic is divided into several segments, which can be controlled independently. This results in a high flexible deformable mirror which influences the beam shape and can be used to vary the spot size or generate line geometries. The ablation efficiency and roughness of small generated cavities were analyzed in this study as well as the dimensions of the cavity. This can be used to optimize process strategies to combine high volume ablation and fine detail generation.

  15. Optical Correction Of Space-Based Telescopes Using A Deformable Mirror System

    Science.gov (United States)

    2016-12-01

    Experimental work first studied a severely degraded one-meter carbon fiber reinforced polymer mirror to establish a baseline. Simulations were...telescope. Experimental work first studied a severely degraded one-meter carbon fiber reinforced polymer mirror to establish a baseline. Simulations... INTRODUCTION ..................................................................................................1  A.  PURPOSE

  16. Characterising x-ray mirror deformations with a phase measuring deflectometry system

    Science.gov (United States)

    Breunig, E.; Friedrich, P.; Proserpio, L.; Winter, A.

    2014-07-01

    MPE is developing modular x-ray mirrors for the next generation of high-energy astronomy missions. The mirror segments are based on thermally formed (a.k.a. slumped) glass sheets, with a typical thickness of 400µm. One of the major challenges is the alignment and integration of the mirror segments and the associated metrology. The optical performance of the mirror can be significantly compromised by adhesive shrinkage, gravity sag or residual stresses influenced by the properties of the mirror mounting and the integration procedure. In parallel with classic coordinate measurement techniques we utilize a deflectometry based metrology system to characterization shape errors of the mirror surfaces. A typical deflectometry setup uses a TFT display to project a sinusoidal pattern onto a specular test surface (SUT) and a camera that observes the reflected image. This reflected image contains slope information of the SUT in the form of distortions of the original displayed pattern. A phase shifting technique can be used to recover this slope information with only very few exposures and reasonable computational effort. The deflectometry system enables us to characterize bonding interfaces of slumped glass mirrors, as well as influence of temporary mounting points, handling and thermal distortions. It is also well suited to measure transient effects.

  17. Enhanced Fabrication Processes Development for High Actuator Count Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and fabricate a MEMS micromirror array consisting of 1021 ultra-flat, close-packed hexagonal mirror elements, each capable of 6mrad of tip and...

  18. Multitrace Deformations of Vector and Adjoint Theories and their Holographic Duals

    CERN Document Server

    Elitzur, S; Porrati, M; Rabinovici, Eliezer

    2006-01-01

    We present general methods to study the effect of multitrace deformations in conformal theories admitting holographic duals in Anti de Sitter space. In particular, we analyse the case that these deformations introduce an instability both in the bulk AdS space and in the boundary CFT. We also argue that multitrace deformations of the O(N) linear sigma model in three dimensions correspond to nontrivial time-dependent backgrounds in certain theories of infinitely many interacting massless fields on AdS_4, proposed years ago by Fradkin and Vasiliev. We point out that the phase diagram of a truly marginal large-N deformation has an infrared limit in which only an O(N) singlet field survives. We draw from this case lessons on the full string-theoretical interpretation of instabilities of the dual boundary theory and exhibit a toy model that resolves the instability of the O(N) model, generated by a marginal multitrace deformation. The resolution suggests that the instability may not survive in an appropriate UV com...

  19. DEFORMATION MEASUREMENT USING DUAL-FREQUENCY PROJECTION GRATING PHASE-SHIFT PROFILOMETRY

    Institute of Scientific and Technical Information of China (English)

    Yanming Chen; Yuming He; Eryi Hu; Hongmao Zhu

    2008-01-01

    2π phase ambiguity problem is very important in phase measurement when a deformed object has a large out of plane displacement. The dual-frequency projection grating phaseshifting profilometry (PSP) can be used to solve such an issue. In the measurement, two properchosen frequency gratings are utilized to synthesize an equivalent wavelength grating which ensures the computed phase in a principal phase range. Thus, the error caused by the phase unwrapping process with the conventional phase reconstruct algorithm can be eliminated. Finally, experimental result of a specimen with large plastic deformation is given to prove that the proposed method is effective to handle the phase discontinuity.

  20. Theory and Applications of Surface Plasmon Resonance, Resonant Mirror, Resonant Waveguide Grating, and Dual Polarization Interferometry Biosensors

    Directory of Open Access Journals (Sweden)

    Billy W. Day

    2010-11-01

    Full Text Available Biosensors have been used extensively in the scientific community for several purposes, most notably to determine association and dissociation kinetics, protein-ligand, protein-protein, or nucleic acid hybridization interactions. A number of different types of biosensors are available in the field, each with real or perceived benefits over the others. This review discusses the basic theory and operational arrangements of four commercially available types of optical biosensors: surface plasmon resonance, resonant mirror, resonance waveguide grating, and dual polarization interferometry. The different applications these techniques offer are discussed from experiments and results reported in recently published literature. Additionally, recent advancements or modifications to the current techniques are also discussed.

  1. Development of a Lightweight Segmented Deformable Mirror for High-Order Wavefront Control

    Science.gov (United States)

    Bastaits, R.; Alaluf, D.; Horodinca, M.; Romanescu, I.; Burda, I.; Martic, G.; Preumont, A.

    2014-06-01

    This paper discusses a concept of light weight segmented bimorph mirror for adaptive optics. The first part of the paper discusses the morphing strategy and addresses the ill-conditioning of the Jacobian of the segments which are partly outside the optical pupil. A comparison of various configurations of segmented mirrors is conducted; it is shown that segmentation increases sharply the natural frequency of the system with a limited deterioration of the image quality. The second part of the paper discusses a few technological aspects of the segment design which are critical for space applications, describes a single segment demonstrator and reports on open loop shape control experimental results.

  2. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    Science.gov (United States)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  3. Deformed N = 8 supergravity from IIA strings and its Chern-Simons duals

    Energy Technology Data Exchange (ETDEWEB)

    Guarino, Adolfo [Nikhef Theory Group, Amsterdam (Netherlands); Jafferis, Daniel L. [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA (United States); Varela, Oscar [Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA (United States); Centre de Physique Theorique, Ecole Polytechnique, CNRS UMR 7644, Palaiseau (France)

    2016-04-15

    Do electric/magnetic deformations of N = 8 supergravity enjoy a string/M-theory origin, or are they just a fourdimensional artefact? We address this question for the gauging of a group closely related to SO(8): its contraction ISO(7). We argue that the deformed ISO(7) supergravity arises from consistent truncation of massive IIA supergravity on S{sup 6}, and its electric/magnetic deformation parameter descends directly from the Romans mass. The critical points of the supergravity uplift to AdS{sub 4} massive type IIA vacua and the corresponding CFT{sub 3} duals are identified as super-Chern-Simons-matter theories with gauge group SU(N) and level k given also by the Romans mass. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Coupling of a CMOS Optical Sensor to a Micromachined Deformable Mirror with an Adaline Neural Method

    NARCIS (Netherlands)

    De Lima Monteiro, D.W.; Ferreira, A.I.; Teixeira, F.B.; Melo, J.G.M.; Vdovin, G.V.

    2006-01-01

    We report on the preliminary results of an Adaline neural method for the coupling of a custom CMOS wavefront sensor to a micromachined adaptive mirror. The algorithm does not rely on a fixed basis matrix -as opposed to traditional methods-, offers excellent immunity to round-off errors and admits re

  5. Coupling of a CMOS Optical Sensor to a Micromachined Deformable Mirror with an Adaline Neural Method

    NARCIS (Netherlands)

    De Lima Monteiro, D.W.; Ferreira, A.I.; Teixeira, F.B.; Melo, J.G.M.; Vdovin, G.V.

    2006-01-01

    We report on the preliminary results of an Adaline neural method for the coupling of a custom CMOS wavefront sensor to a micromachined adaptive mirror. The algorithm does not rely on a fixed basis matrix -as opposed to traditional methods-, offers excellent immunity to round-off errors and admits re

  6. Correcting Surface Figure Error in Imaging Satellites Using a Deformable Mirror

    Science.gov (United States)

    2013-12-01

    phrase, “Going to the lab—be back in a while.” xvi THIS PAGE INTENTIONALLY LEFT BLANK 1 I. INTRODUCTION The Intelligence Community (IC...this thesis is to provide a proof-of-concept for an integral component that would serve as a mirror surface figure corrector to enable the ultimate...included in the DM sub-assembly to eliminate unwanted back reflections. A ¼ wave-plate is used after the interferometer to convert circularly

  7. Modeling of a Micro-Electronic Mechanical Systems (MEMS) Deformable Mirror for Simulation and Characterization

    Science.gov (United States)

    2016-09-01

    25  B.  MODEL USER APPLICABILITY ........................................................29  V.  CONCLUSION AND FUTURE WORK...this research, as it is the most complex mirror type. This device is composed of two mechanical systems: an array of actuations and a non- linear ...3.5) Equation (3.5) can be adapted into an algebraic expression in order to solve for the plate

  8. Design of a Compact, Bimorph Deformable Mirror-Based Adaptive Optics Scanning Laser Ophthalmoscope.

    Science.gov (United States)

    He, Yi; Deng, Guohua; Wei, Ling; Li, Xiqi; Yang, Jinsheng; Shi, Guohua; Zhang, Yudong

    2016-01-01

    We have designed, constructed and tested an adaptive optics scanning laser ophthalmoscope (AOSLO) using a bimorph mirror. The simulated AOSLO system achieves diffraction-limited criterion through all the raster scanning fields (6.4 mm pupil, 3° × 3° on pupil). The bimorph mirror-based AOSLO corrected ocular aberrations in model eyes to less than 0.1 μm RMS wavefront error with a closed-loop bandwidth of a few Hz. Facilitated with a bimorph mirror at a stroke of ±15 μm with 35 elements and an aperture of 20 mm, the new AOSLO system has a size only half that of the first-generation AOSLO system. The significant increase in stroke allows for large ocular aberrations such as defocus in the range of ±600° and astigmatism in the range of ±200°, thereby fully exploiting the AO correcting capabilities for diseased human eyes in the future.

  9. The Actuator Design and the Experimental Tests of a New Technology Large Deformable Mirror for Visible Wavelengths Adaptive Optics

    CERN Document Server

    Del Vecchio, Ciro; Arcidiacono, Carmelo; Carbonaro, Luca; Marignetti, Fabrizio; De Santis, Enzo; Biliotti, Valdemaro; Riccardi, Armando

    2012-01-01

    Recently, Adaptive Secondary Mirrors showed excellent on-sky results in the Near Infrared wavelengths. They currently provide 30mm inter-actuator spacing and about 1 kHz bandwidth. Pushing these devices to be operated at visible wavelengths is a challenging task. Compared to the current systems, working in the infrared, the more demanding requirements are the higher spatial resolution and the greater correction bandwidth. In fact, the turbulence scale is shorter and the parameter variation is faster. Typically, the former is not larger than 25 mm (projected on the secondary mirror) and the latter is 2 kHz, therefore the actuator has to be more slender and faster than the current ones. With a soft magnetic composite core, a dual-stator and a single-mover, VRALA, the actuator discussed in this paper, attains unprecedented performances with a negligible thermal impact. Pre-shaping the current required to deliver a given stroke greatly simplifies the control system, whose output supplies the current generator. As...

  10. Pair-Wise, Deformable Mirror, Image Plane-Based Diversity Electric Field Estimation for High Contrast Coronagraphy

    Science.gov (United States)

    Give'on, Amir; Kern, Brian D.; Shaklan, Stuart

    2011-01-01

    In this paper we describe the complex electric field reconstruction from image plane intensity measurements for high contrast coronagraphic imaging. A deformable mirror (DM) surface is modied with pairs of complementary shapes to create diversity in the image plane of the science camera where the intensity of the light is measured. Along with the Electric Field Conjugation correction algorithm, this estimation method has been used in various high contrast imaging testbeds to achieve the best contrasts to date both in narrow and in broad band light. We present the basic methodology of estimation in easy to follow list of steps, present results from HCIT and raise several open quations we are confronted with using this method.

  11. Monte-Carlo simulation of ELT scale multi-object adaptive optics deformable mirror requirements and tolerances

    CERN Document Server

    Basden, A G; Myers, R M; Morris, S L; Morris, T J

    2013-01-01

    Multi-object adaptive optics (MOAO) has been demonstrated by the CANARY instrument on the William Herschel Telescope. However, for proposed MOAO systems on the next generation Extremely Large Telescopes, such as EAGLE, many challenges remain. Here we investigate requirements that MOAO operation places on deformable mirrors (DMs) using a full end-to-end Monte-Carlo AO simulation code. By taking into consideration a prior global ground-layer (GL) correction, we show that actuator density for the MOAO DMs can be reduced with little performance loss. We note that this reduction is only possible with the addition of a GL DM, whose order is greater than or equal to that of the original MOAO mirrors. The addition of a GL DM of lesser order does not affect system performance (if tip/tilt star sharpening is ignored). We also quantify the maximum mechanical DM stroke requirements (3.5 $\\mu$m desired) and provide tolerances for the DM alignment accuracy, both lateral (to within an eighth of a sub-aperture) and rotationa...

  12. Large nonlinear w$_{\\infty}$ algebras from nonlinear integrable deformations of self dual gravity

    CERN Document Server

    Castro, C

    1994-01-01

    A proposal for constructing a universal nonlinear {\\hat W}_{\\infty} algebra is made as the symmetry algebra of a rotational Killing-symmetry reduction of the nonlinear perturbations of Moyal-Integrable deformations of D=4 Self Dual Gravity (IDSDG). This is attained upon the construction of a nonlinear bracket based on nonlinear gauge theories associated with infinite dimensional Lie algebras. A Quantization and supersymmetrization program can also be carried out. The relevance to the Kadomtsev-Petviashvili hierarchy, 2D dilaton gravity, quantum gravity and black hole physics is discussed in the concluding remarks.

  13. Modelling and optimization of a deformable mirror for laser beam control

    CSIR Research Space (South Africa)

    Loveday, PW

    2008-03-01

    Full Text Available -6 Normalised radius Di sp la c em en t [m ] Rayleigh-Ritz R-Dof Comsol (a) Vdrive=[200:0:0]. (b) Vdrive=[0:200:0]. (c) Vdrive=[0:0:200]. Figure 6. Comparison of mirror surface displacement prediction using different numerical models.... When a voltage is applied to the piezoelectric disc the induced strains in the plane of the disc cause bending of the unimorph. In this way relatively large displacements, compared to the 10.6 µm wavelength of a CO2 laser, can be obtained from a...

  14. Fault-tolerant drive electronics for a Xinetics deformable mirror at GeMS DM0

    Science.gov (United States)

    Barberio, Michael J.

    2016-07-01

    Gemini South is replacing one of the (3) CILAS DMs with a 349-actuator Xinetics DM in its GeMS MCAO system. Xinetics mirrors operate over a 40-100V dynamic range and require that inter-actuator stroke differences are limited to half-scale; each actuator must be within 30V of its neighbor to prevent mechanical stress and possible face sheet separation. A robust way to implement this protection is to use high power transient voltage suppressors (TVSs) as a 2D-mesh between the amplifiers and mirror, but this has system implications. A sustained clamp condition dissipates significant power in the devices, and if an actuator fails as short (which occurred once with the DM in a thermal chamber), the system is subject to a cascade failure event as multiple outputs drive the shorted actuator through the TVS network. This latter risk is readily resolved by using series fuses to the DM. In this third-generation driver, current sensing and logic inhibit amplifier outputs after a sustained TVS clamp condition or shorted output, and LED indicators show the location. Redundant thermal sensing is used on modular TVS row and column boards. A second 2D-mesh of high impedance resistors after the fuses will hold an unpowered channel to the average voltage of its neighbors, with a negligible influence function. A Failure Modes and Effects Analysis shows significant fault tolerance.

  15. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors

    Science.gov (United States)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P.; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-01

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  16. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors.

    Science.gov (United States)

    Matsuyama, Satoshi; Nakamori, Hiroki; Goto, Takumi; Kimura, Takashi; Khakurel, Krishna P; Kohmura, Yoshiki; Sano, Yasuhisa; Yabashi, Makina; Ishikawa, Tetsuya; Nishino, Yoshinori; Yamauchi, Kazuto

    2016-04-21

    Unlike the electrostatic and electromagnetic lenses used in electron microscopy, most X-ray focusing optical systems have fixed optical parameters with constant numerical apertures (NAs). This lack of adaptability has significantly limited application targets. In the research described herein, we developed a variable-NA X-ray focusing system based on four deformable mirrors, two sets of Kirkpatrick-Baez-type focusing mirrors, in order to control the focusing size while keeping the position of the focus unchanged. We applied a mirror deformation procedure using optical/X-ray metrology for offline/online adjustments. We performed a focusing test at a SPring-8 beamline and confirmed that the beam size varied from 108 nm to 560 nm (165 nm to 1434 nm) in the horizontal (vertical) direction by controlling the NA while maintaining diffraction-limited conditions.

  17. Partition functions of 3d $\\hat D$-quivers and their mirror duals from 1d free fermions

    CERN Document Server

    Assel, Benjamin; Felix, Jan

    2015-01-01

    We study the matrix models calculating the sphere partition functions of 3d gauge theories with $\\mathcal{N}=4$ supersymmetry and a quiver structure of a $\\hat D$ Dynkin diagram (where each node is a unitary gauge group). As in the case of necklace ($\\hat A $) quivers, we can map the problem to that of free fermion quantum mechanics whose complicated Hamiltonian we find explicitly. Many of these theories are conjectured to be dual under mirror symmetry to certain unitary linear quivers with extra Sp nodes or antisymmetric hypermultiplets. We show that the free fermion formulations of such mirror pairs are related by a linear symplectic transformation. We then study the large N expansion of the partition function, which as in the case of the $\\hat A$-quivers is given to all orders in 1/N by an Airy function. We simplify the algorithm to calculate the numerical coefficients appearing in the Airy function and evaluate them for a wide class of $\\hat D$-quiver theories.

  18. A new look at scalar perturbations in loop quantum cosmology: (un)deformed algebra approach using self dual variables

    CERN Document Server

    Achour, Jibril Ben; Grain, Julien; Marciano, Antonino

    2016-01-01

    Scalar cosmological perturbations in loop quantum cosmology (LQC) is revisited in a covariant manner, using self dual Ashtekar variables. For real-valued Ashtekar-Barbero variables, this `deformed algebra' approach has been shown to implement holonomy corrections from loop quantum gravity (LQG) in a consistent manner, albeit deforming the algebra of modified constraints in the process. This deformation has serious conceptual ramifications, not the least of them being an effective `signature-change' in the deep quantum regime. In this paper, we show that working with self dual variables lead to an undeformed algebra of hypersurface deformations, even after including holonomy corrections in the effective constraints. As a necessary consequence, the diffeomorphism constraint picks up non-perturbative quantum corrections thus hinting at a modification of the underlying space-time structure, a novel ingredient compared to the usual treatment of (spatial) diffeomorphisms in LQG. This work extends a similar result o...

  19. 基于静电排斥力的大冲程MEMS变形镜%Large-Stroke MEMS Deformable Mirrors Based on Electrostatic-Repulsive-Force

    Institute of Scientific and Technical Information of China (English)

    陈科帆; 姚军; 高福华; 汪为民; 倪祖高

    2011-01-01

    A large-stroke electrostatic-repulsive-force MEMS deformable mirror was designed and fabricated. This deformable mirror was prepared using a surface-micromachining polysilicon process, and consisted of three polysilicon structural layers and a metal reflective layer. Three types of the mirrors with different actuator electrodes arrangements were investigated by finite element analysis, and measured with a scanning white light interferometer. The results show that the displacement of the electrostatic-repulsive-force deformable mirrors is more than 1.7 μm at 200 V, and the stroke of which is larger than that of conventional electrostatic-attractive-force deformable mirrors. Additionally, the deformable mirror has the largest stroke of 2.42 μm at 210 V with the third polysilicon layer as the fringe electrode.%设计并制造了一种基于静电排斥力的大冲程MEMS变形镜,此变形镜采用了三个多晶硅结构层和一个金属反射层的设计.利用表面硅工艺完成了变形镜的加工,结合有限元分析软件和白光干涉仪对三种不同驱动器电极空间分布方式的静电排斥型变形镜进行了分析和研究.测试结果表明,静电排斥型变形镜在200V下能实现1.7 μm以上的位移,冲程较传统静电吸引型变形镜有显著提高.在相同电压下,第三层多晶硅作为边缘电极时的变形镜获得的位移最大,在210 V下达到2.42 μm.

  20. Gravity duals for the Coulomb branch of marginally deformed N=4 Yang-Mills

    CERN Document Server

    Hernández, R; Zoakos, D; Hernandez, Rafael; Sfetsos, Konstadinos; Zoakos, Dimitrios

    2006-01-01

    Supergravity backgrounds dual to a class of exactly marginal deformations of N supersymmetric Yang-Mills can be constructed through an SL(2,R) sequence of T-dualities and coordinate shifts. We apply this transformation to multicenter solutions and derive supergravity backgrounds describing the Coulomb branch of N=1 theories at strong 't Hooft coupling as marginal deformations of N=4 Yang-Mills. For concreteness we concentrate to cases with an SO(4)xSO(2) symmetry preserved by continuous distributions of D3-branes on a disc and on a three-dimensional spherical shell. We compute the expectation value of the Wilson loop operator and confirm the Coulombic behaviour of the heavy quark-antiquark potential in the conformal case. When the vev is turned on we find situations where a complete screening of the potential arises, as well as a confining regime where a linear or a logarithmic potential prevails depending on the ratio of the quark-antiquark separation to the typical vev scale. The spectra of massless excitat...

  1. SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    CERN Document Server

    Zech, A; Blake, S; Boisson, C; Costille, C; De-Frondat, F; Dournaux, J -L; Dumas, D; Fasola, G; Greenshaw, T; Hervet, O; Huet, J -M; Laporte, P; Rulten, C; Savoie, D; Sayede, F; Schmoll, J

    2013-01-01

    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to all...

  2. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    Directory of Open Access Journals (Sweden)

    Guo-Dung John Su

    2012-08-01

    Full Text Available Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young’s modulus and Poisson’s ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

  3. The ASTRI Project: prototype status and future plans for a Cherenkov dual-mirror small-telescope array

    CERN Document Server

    Vercellone, S; Maccarone, M C; Di Pierro, F; Vallania, P; Bonnoli, G; Canestrari, R; Pareschi, G; Tosti, G

    2013-01-01

    ASTRI ("Astrofisica con Specchi a Tecnologia Replicante Italiana") is a flagship project of the Italian Ministry of Education, University and Research. Within this framework, INAF is currently developing a wide field of view (9.6 degrees in diameter) end-to-end prototype of the CTA small-size telescope (SST), devoted to the investigation of the energy range from a fraction of TeV up to tens of TeVs, and scheduled to start data acquisition in 2014. For the first time, a dual-mirror Schwarzschild-Couder optical design will be adopted on a Cherenkov telescope, in order to obtain a compact optical configuration. A second challenging, but innovative technical solution consists of a modular focal surface camera based on Silicon photo-multipliers with a logical pixel size of 6.2mm x 6.2mm. Here we describe the current status of the project, the expected performance, and its possible evolution in terms of an SST mini-array. This CTA-SST precursor, composed of a few SSTs and developed in collaboration with CTA interna...

  4. Effects of mirror distortion by thermal deformation in an interferometry beam size monitor system at PLS-II

    Science.gov (United States)

    Hwang, Ji-Gwang; Kim, Eun-San; Kim, Changbum; Huang, Jung-Yun; Kim, Dotae

    2016-10-01

    Extraction mirrors installed at the most upstream position of interferometry beam size monitor are frequently used for measuring the beam size in storage rings. These mirrors receive the high power synchrotron radiation and are distorted owing to the heat distribution that depends on the position on the mirror surface. The distortion of the mirror changes the effective separation of the slit in the interferometry beam size monitor. Estimation of the effects of the front-end mirror distortion is important for measuring the beam size accurately. In this paper, we present the result of the numerical simulation of the temperature distribution and thermal expansion of the front-end mirror using ANSYS code, the theoretical basis of the effects of mirror distortion and compare with experimental results from Pohang Light Source II (PLS-II) at the Pohang Accelerator Laboratory (PAL). The equipment in the beam diagnosis line in PLS-II and experimental set-up for measuring the distortion of the front-end mirror using a multi-hole square array Hartmann screen are described.

  5. Dual-central-wavelength passively mode-locked diffusion-bonded Nd:YVO4/Nd:GdVO4 laser with a semiconductor saturable absorber mirror

    Science.gov (United States)

    Chang, F. L.; Sung, C. L.; Huang, T. L.; Wu, T. W.; Cho, H. H.; Liang, H. C.; Chen, Y. F.

    2017-08-01

    A dual-central-wavelength passively mode-locked laser with full modulation in the 0.31 THz optical beating is achieved by using a diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal and a semiconductor saturable absorber mirror. The output power of the dual-band emission is well balanced by tuning the focal position of the pump waist. At a pump power of 13 W, the total output power is up to 2.7 W with a repetition rate of 297.9 MHz. The autocorrelation traces clearly reveal the synchronization of the dual-band emission. Moreover, an analytical model is developed to manifest the multi-pulse structure caused by the etalon effect of the gain medium. More important, we experimentally verify that the etalon effect can be completely eliminated by using the wedge-cut diffusion-bonded Nd:YVO4/Nd:GdVO4 crystal.

  6. Mirror Symmetry for Toric Branes on Compact Hypersurfaces

    CERN Document Server

    Alim, M; Mayr, P; Mertens, A

    2009-01-01

    We use toric geometry to study open string mirror symmetry on compact Calabi-Yau manifolds. For a mirror pair of toric branes on a mirror pair of toric hypersurfaces we derive a canonical hypergeometric system of differential equations, whose solutions determine the open/closed string mirror maps and the partition functions for spheres and discs. We define a linear sigma model for the brane geometry and describe a correspondence between dual toric polyhedra and toric brane geometries. The method is applied to study examples with obstructed and classically unobstructed brane moduli at various points in the deformation space. Computing the instanton expansion at large volume in the flat coordinates on the open/closed deformation space we obtain predictions for enumerative invariants.

  7. AdS_4/CFT_3 duals from M2-branes at hypersurface singularities and their deformations

    CERN Document Server

    Martelli, Dario

    2009-01-01

    We construct three-dimensional N=2 Chern-Simons-quiver theories which are holographically dual to the M-theory Freund-Rubin solutions AdS_4 x V_{5,2}/Z_k (with or without torsion G-flux), where V_{5,2} is a homogeneous Sasaki-Einstein seven-manifold. The global symmetry group of these theories is generically SU(2) x U(1) x U(1)_R, and they are hence non-toric. The field theories may be thought of as the n=2 member of a family of models, labelled by a positive integer n, arising on multiple M2-branes at certain hypersurface singularities. We describe how these models can be engineered via generalized Hanany-Witten brane constructions. The AdS_4 x V_{5,2}/Z_k solutions may be deformed to a warped geometry R^{1,2} x T^* S^4/Z_k, with self-dual G-flux through the four-sphere. We show that this solution is dual to a supersymmetric mass deformation, which precisely modifies the classical moduli space of the field theory to the deformed geometry.

  8. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique.

    Science.gov (United States)

    Agrawal, Rupesh; Smart, Thomas; Nobre-Cardoso, João; Richards, Christopher; Bhatnagar, Rhythm; Tufail, Adnan; Shima, David; Jones, Phil H; Pavesio, Carlos

    2016-03-15

    A pilot cross sectional study was conducted to investigate the role of red blood cells (RBC) deformability in type 2 diabetes mellitus (T2DM) without and with diabetic retinopathy (DR) using a dual optical tweezers stretching technique. A dual optical tweezers was made by splitting and recombining a single Nd:YAG laser beam. RBCs were trapped directly (i.e., without microbead handles) in the dual optical tweezers where they were observed to adopt a "side-on" orientation. RBC initial and final lengths after stretching were measured by digital video microscopy, and a Deformability index (DI) calculated. Blood from 8 healthy controls, 5 T2DM and 7 DR patients with respective mean age of 52.4 yrs, 51.6 yrs and 52 yrs was analysed. Initial average length of RBCs for control group was 8.45 ± 0.25 μm, 8.68 ± 0.49 μm for DM RBCs and 8.82 ± 0.32 μm for DR RBCs (p optical tweezers method can hence be reliably used to assess RBC deformability.

  9. The influence of martensite shape, concentration, and phase transformation strain on the deformation behavior of stable dual-phase steels

    Science.gov (United States)

    Bhattacharyya, A.; Sakaki, T.; Weng, G. J.

    1993-02-01

    A continuum model is developed to examine the influence of martensite shape, volume fraction, phase transformation strain, and thermal mismatch on the initial plastic state of the ferrite matrix following phase transformation and on the subsequent stress-strain behavior of the dual-phase steels upon loading. The theory is developed based on a relaxed constraint in the ductile matrix and an energy criterion to define its effective stress. In addition, it also assumes the martensite islands to possess a spheroidal shape and to be randomly oriented and homogenously dispersed in the ferrite matrix. It is found that for a typical water-quenched process from an intercritical temperature of 760 °C, the critical martensite volume fraction needed to induce plastic deformation in the ferrite matrix is very low, typically below 1 pct, regardless of the martensite shape. Thus, when the two-phase system is subjected to an external load, plastic deformation commences immediately, resulting in the widely observed “continuous yielding” behavior in dual-phase steels. The subsequent deformation of the dual-phase system is shown to be rather sensitive to the martensite shape, with the disc-shaped morphology giving rise to a superior overall response (over the spherical type). The stress-strain relations are also dependent upon the magnitude of the prior phase transformation strain. The strength coefficient h and the work-hardening exponent n of the smooth, parabolic-type stress-strain curves of the dual-phase system also increase with increasing martensite content for each selected inclusion shape. Comparison with an exact solution and with one set of experimental data indicates that the theory is generally within a reasonable range of accuracy.

  10. Homogeneous Yang-Baxter deformations as non-abelian duals of the AdS 5 σ-model

    Science.gov (United States)

    Hoare, B.; Tseytlin, A. A.

    2016-12-01

    We propose that the Yang-Baxter deformation of the symmetric space σ-model parameterized by an r-matrix solving the homogeneous (classical) Yang-Baxter equation is equivalent to the non-abelian dual of the undeformed model with respect to a subgroup determined by the structure of the r-matrix. We explicitly demonstrate this on numerous examples in the case of the {{AdS}}5 σ-model. The same should also be true for the full {{AdS}}5× {S}5 supercoset model, providing an explanation for and generalizing several recent observations relating homogeneous Yang-Baxter deformations based on non-abelian r-matrices to the undeformed {{AdS}}5× {S}5 model by a combination of T-dualities and nonlinear coordinate redefinitions. This also includes the special case of deformations based on abelian r-matrices, which correspond to TsT transformations: they are equivalent to non-abelian duals of the original model with respect to a central extension of abelian subalgebras.

  11. Homogeneous Yang-Baxter deformations as non-abelian duals of the AdS_5 sigma-model

    CERN Document Server

    Hoare, B

    2016-01-01

    We propose that the Yang-Baxter deformation of the symmetric space sigma-model parameterized by an r-matrix solving the homogeneous (classical) Yang-Baxter equation is equivalent to the non-abelian dual of the undeformed model with respect to a subgroup determined by the structure of the r-matrix. We explicitly demonstrate this on numerous examples in the case of the AdS_5 sigma-model. The same should also be true for the full AdS_5 x S^5 supercoset model, providing an explanation for and generalizing several recent observations relating homogeneous Yang-Baxter deformations based on non-abelian r-matrices to the undeformed AdS_5 x S^5 model by a combination of T-dualities and non-linear coordinate redefinitions. This also includes the special case of deformations based on abelian r-matrices, which correspond to TsT transformations: they are equivalent to non-abelian duals of the original model with respect to a central extension of abelian subalgebras.

  12. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors.

    Science.gov (United States)

    Sutter, John P; Alcock, Simon G; Kashyap, Yogesh; Nistea, Ioana; Wang, Hongchang; Sawhney, Kawal

    2016-11-01

    Beam shaping is becoming increasingly important for synchrotron X-ray applications. Although routine for visible light lasers, this is challenging for X-rays due to the limited source coherence and extreme optical tolerances required for the shaping mirrors. In deliberate defocusing, even surface errors piezo bimorph mirrors permit a continuous range of X-ray beam sizes and shapes. A new theory is developed for applying non-periodic modifications of alternating curvature to optical surfaces. The position and length of the segments may be freely chosen. For the first time, surface modifications of alternating curvature are applied to bimorph mirrors to generate non-Gaussian X-ray beam profiles of specified width. The new theory's freedom is exploited to choose the segments to match the polishing errors of medium wavelength (>10 mm) and the piezos' influence on the mirror's figure. Five- and seven-segment modifications of alternating curvature are calculated and verified by visible light and X-ray metrology. The latter yields beam profiles with less striation than those made by defocusing. Remaining beam striations are explained by applying geometrical optics to the deviations from the ideal surface modifications of alternating curvature.

  13. Effect of deformation on microstructure and mechanical properties of dual phase steel produced via strip casting simulation

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Z.P., E-mail: zuileniwota@126.com [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Kostryzhev, A.G. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Stanford, N.E. [Institute of Frontier Materials, Deakin University, Geelong, Victoria 3216 (Australia); Pereloma, E.V. [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522 (Australia); Electron Microscopy Centre, University of Wollongong, Wollongong, NSW 2519 (Australia)

    2016-01-10

    The strip casting is a recently appeared technology with a potential to significantly reduce energy consumption in steel production, compared to hot rolling and cold rolling. However, the quantitative dependences of the steel microstructure and mechanical properties on strip casting parameters are unknown and require investigation. In the present work we studied the effects of strain and interrupted cooling temperature on microstructure and mechanical properties in conventional dual phase steel (0.08C–0.81Si–1.47Mn–0.03Al wt%). The strip casting process was simulated using a Gleeble 3500 thermo-mechanical simulator. The steel microstructures were studied using optical, scanning and transmission electron microscopy. Mechanical properties were measured using microhardness and tensile testing. Microstructures consisting of 40–80% polygonal ferrite with remaining martensite, bainite and very small amount of Widmanstätten ferrite were produced. Deformation to 0.17–0.46 strain at 1050 °C refined the prior austenite grain size via static recrystallisation, which led to the acceleration of ferrite formation and the ferrite grain refinement. The yield stress and ultimate tensile strength increased with a decrease in ferrite fraction, while the total elongation decreased. The improvement of mechanical properties via deformation was ascribed to dislocation strengthening and grain boundary strengthening. - Highlights: • A processing route of strip casting was developed to produce dual phase steel. • The mechanical properties were comparable to cold rolled and hot rolled DP steels.

  14. Close-loop performance of a high precision deflectometry controlled deformable mirror (DCDM) unit for wavefront correction in adaptive optics system

    Science.gov (United States)

    Huang, Lei; Zhou, Chenlu; Zhao, Wenchuan; Choi, Heejoo; Graves, Logan; Kim, Daewook

    2017-06-01

    We present a high precision deflectometry system (DS) controlled deformable mirror (DM) solution for optical system. Different from wavefront and non-wavefront system, the DS and the DM are set to be an individual integrated DCDM unit and can be installed in one base plate. In the DCDM unit, the DS can directly provide the influence functions and surface shape of the DM to the industrial computer in any adaptive optics system. As an integrated adaptive unit, the DCDM unit could be put into various optical systems to realize aberration compensation. In this paper, the configuration and principle of the DCDM unit is introduced first. Theoretical simulation on the close-loop performance of the DCDM unit is carried out. Finally, a verification experiment is proposed to verify the compensation capability of the DCDM unit.

  15. Performance of the Gamma-ray Cherenkov Telescope structure: a dual-mirror telescope prototype proposed for the future Cherenkov Telescope Array

    Science.gov (United States)

    Dournaux, J. L.; Amans, J. P.; Dangeon, L.; Fasola, G.; Gironnet, J.; Huet, J. M.; Laporte, P.; Abchiche, A.; Barkaoui, S.; Bousquet, J. J.; Buchholtz, G.; Dumas, D.; Gaudemard, J.; Jégouzo, I.; Poinsignon, P.; Vergne, L.; Sol, H.

    2016-07-01

    The Cherenkov Telescope Array (CTA) project aims to create the next generation Very High-Energy (VHE) gamma-ray telescope array. It will be devoted to the observation of gamma rays from 20 GeV to above 100 TeV. Because of this wide energy band, three classes of telescopes, associated with different energy ranges and different mirror sizes, are defined. The Small Size Telescopes (SSTs) are associated with the highest energy range. Seventy of these telescopes are foreseen on the Southern site of the CTA. The large number of telescopes constrains their mechanical structure because easy maintenance and reduced cost per telescope are needed. Moreover, of course, the design shall fulfill the required performance and lifetime in the environment conditions of the site. The Observatoire de Paris started design studies in 2011 of the mechanical structure of the GCT (Gamma-ray Cherenkov Telescope), a four-meter prototype telescope for the SSTs of CTA, from optical and preliminary mechanical designs made by the University of Durham. At the end of 2014 these studies finally resulted in a lightweight ( 8 tons) and stiff design. This structure was based on the dual-mirror Schwarzschild-Couder (SC) optical design, which is an interesting and innovative alternative to the one-mirror Davies-Cotton design commonly used in ground-based Cherenkov astronomy. The benefits of such a design are many since it enables a compact structure, lightweight camera and a good angular resolution across the entire field-of-view. The mechanical structure was assembled on the Meudon site of the Observatoire de Paris in spring 2015. The secondary mirror, panels of the primary mirror and the Telescope Control System were successfully implemented afterwards leading now to a fully operational telescope. This paper focuses on the mechanics of the telescope prototype. It describes the mechanical structure and presents its performance identified from computations or direct measurements. Upgrades of the design

  16. Enhanced Deformation of Azobenzene-Modified Liquid Crystal Polymers under Dual Wavelength Exposure: A Photophysical Model

    Science.gov (United States)

    Liu, Ling; Onck, Patrick R.

    2017-08-01

    Azobenzene-embedded liquid crystal polymers can undergo mechanical deformation in response to ultraviolet (UV) light. The natural rodlike trans state azobenzene absorbs UV light and isomerizes to a bentlike cis state, which disturbs the order of the polymer network, leading to an anisotropic deformation. The current consensus is that the magnitude of the photoinduced deformation is related to the statistical building up of molecules in the cis state. However, a recent experimental study [Liu and Broer, Nat. Commun. 6 8334 (2015)., 10.1038/ncomms9334] shows that a drastic (fourfold) increase of the photoinduced deformation can be generated by exposing the samples simultaneously to 365 nm (UV) and 455 nm (visible) light. To elucidate the physical mechanism that drives this increase, we develop a two-light attenuation model and an optomechanical constitutive relation that not only accounts for the statistical accumulation of cis azobenzenes, but also for the dynamic trans-cis-trans oscillatory isomerization process. Our experimentally calibrated model predicts that the optimal single-wavelength exposure is 395 nm light, a pronounced shift towards the visible spectrum. In addition, we identify a range of optimal combinations of two-wavelength lights that generate a favorable response for a given amount of injected energy. Our model provides mechanistic insight into the different (multi)wavelength exposures used in experiments and, at the same time, opens new avenues towards enhanced, multiwavelength optomechanical behavior.

  17. Separation of nucleation and growth of voids during tensile deformation of a dual phase steel using synchrotron microtomography

    Energy Technology Data Exchange (ETDEWEB)

    Requena, Guillermo, E-mail: guillermo.requena@tuwien.ac.at [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Maire, Eric; Leguen, Claire [INSA-Lyon, MATEIS CNRS UMR5510, F-69621 Villeurbanne (France); Thuillier, Sandrine [LIMATB, Université de Bretagne-Sud, rue de Saint Maudé, BP 92116, 56321 Lorient Cedex (France)

    2014-01-01

    The damage evolution in a DP980 dual phase steel is followed in situ by synchrotron microtomography during tensile deformation focusing on the effect that the triaxiality, induced by different sample geometries, exerts on damage formation and damage evolution. The growth of existing voids is separated from the voids nucleated between consecutive deformation steps using three-dimensional image analysis. The experimental results are correlated with those obtained by finite element analysis using a Gurson–Tvergaard–Needleman framework with a Chu and Needleman formulation to introduce the effect of nucleation of cavities. A relatively simple way to determine the nucleation parameters is proposed based on the volume of nucleated voids obtained from the tomographies. The evolution of the total volume fraction of cavities obtained from the calculations shows a good agreement with the experiments for the notched samples and reflects the effect of triaxiality on damage. Contrarily to experiments, the calculated accumulated volume fraction of nucleated voids does not reflect the effect of triaxiality suggesting the necessity to implement this parameter in the nucleation model.

  18. Effect of microstructure on the elasto-viscoplastic deformation of dual phase titanium structures

    Science.gov (United States)

    Ozturk, Tugce; Rollett, Anthony D.

    2017-08-01

    The present study is devoted to the creation of a process-structure-property database for dual phase titanium alloys, through a synthetic microstructure generation method and a mesh-free fast Fourier transform based micromechanical model that operates on a discretized image of the microstructure. A sensitivity analysis is performed as a precursor to determine the statistically representative volume element size for creating 3D synthetic microstructures based on additively manufactured Ti-6Al-4V characteristics, which are further modified to expand the database for features of interest, e.g., lath thickness. Sets of titanium hardening parameters are extracted from literature, and The relative effect of the chosen microstructural features is quantified through comparisons of average and local field distributions.

  19. 激光辐照下镀铬介质高吸收镜的热变形%Thermal deformation of high absorption chrome plated mirror irradiated by laser

    Institute of Scientific and Technical Information of China (English)

    聂山钧; 郭劲; 邵俊峰; 王挺峰; 汤伟

    2015-01-01

    In order to analyze the effect of thermal deformation of the mirror irradiated by laser beam on the beam quality , thermal-static structural coupled model of high absorption chrome plated mirror irradiated by la-ser beam with the incidence angle of 45°is built.Thermal deformation under different irradiation laser and the influence of mirror thickness on the deformation are analyzed .Then thermal deformation is detected with Hart-mann wavefront sensor on free boundary condition .The results show that thermal deformation increases approx-imately linearly with the increase of the power absorbed at the range of 0.085-0.185 W.When the diameter of the facula increases , the deformation decreases .When mirror's thickness keeps in the range of 1~5 mm, the deformation merely keeps constant .In the initial stage of laser irradiation , the temperature and deformation increase rapidly .After 20 s, the increase of temperature on the mirror becomes slowly .The deformation in-creases to 0.27 μm in 1 s, and then increase slowly .The deformation will reach balance after 100 s.When the irradiation laser is removed , the mirror will return to the initial state after 120 s.The analysis result shows that the testing error is mainly caused by the error of the diameter of the facula and the incident angle of the la -ser .%为了分析激光辐照下反射镜热变形对光束质量的影响,本文建立了激光光束45°角入射时镀铬介质高吸收镜的热固耦合模型,对不同辐照光束下反射镜的热变形和镜体厚度对热变形的影响进行了分析,并用哈特曼波前传感器对自由边界条件下的镜面热变形进行了检测。结果表明:吸收功率在0.085~0.185 W时,镜面热变形随吸收功率的增加近似线性增加,随辐照光斑的增加而减小;反射镜厚度在1~5 mm范围,镜面热变形基本不变。在激光照射的初始阶段,反射镜表面温度和热变形迅速增加,在激光连续照射20 s后

  20. High-Temperature Deformation Behavior of a Ti-6Al-7Nb Alloy in Dual-Phase (α + β) and Single-Phase (β) Regions

    Science.gov (United States)

    Pilehva, F.; Zarei-Hanzaki, A.; Moemeni, S.; Khalesian, A. R.

    2016-01-01

    The present study aimed to characterizing the microstructure evolution of a Ti-6Al-7Nb biomedical type titanium alloy during hot working through hot compression tests. The hot deformation cycles were conducted under the strain rate of 0.0025, 0.025, and 0.25 s-1 in the temperature range of 850-1150 °C where both dual-phase (α + β) and single-phase (β) regions could be accessible. The flow stress behavior of the material for the entire deformation regime was interpreted via microstructural observations. The results indicated that in the single-phase β region (1050-1150 °C), the dynamically recrystallized (DRX) grains were formed at the deformed and elongated beta grain boundaries as a necklace-like structure. The variations in the dynamically recrystallized grain size were determined to follow the Zener-Hollomon relationship where DRX grain size was decreased by reducing the temperature and increasing the strain rate. The alloy deformation characteristics in α + β region were somewhat different. During deformation in the upper α + β temperature range (e.g., 1000 °C), the β phase would accommodate most of the deformation, while α regions remained undeformed. In the lower α + β temperature range (e.g., 850-950 °C), the kinking/bending of α lamellae as well as the subsequent globularization of α layers were postulated to be responsible for the observed flow softening behavior.

  1. Dual influence of the rejuvenation of Southern Tianshan and Western Kunlun orogen on the Cenozoic structure deformation of Tarim Basin, northwestern China: A superposition deformation model from Bachu Uplift

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on new high-resolution seismic profiles and existing structural and sedimentary results, a superposition deformation model for Cenozoic Bachu Uplift of northwestern Tarim Basin, northwestern China is proposed. The model presents the idea that the Bachu Uplift suffered structure superposition deformation under the dual influences of the Cenozoic uplifting of Southern Tianshan and Western Kunlun orogen, northwestern China. In the end of the Eocene (early Himalayan movement),Bachu Uplift started to be formed with the uplifting of Western Kunlun, and extended NNW into the interior of Kalpin Uplift. In the end of the Miocene (middle Himalayan movement), Bachu Uplift suffered not only the NNW structure deformation caused by the Western Kunlun uplifting, but also the NE structure deformation caused by the Southern Tianshan uplifting, and the thrust front fault of Kalpin thrust system related to the Southern Tianshan orogen intrudes southeastward into the hinterland of Bachu Uplift and extends NNE from well Pil to Xiaohaizi reservoir and Gudongshan mountain, which resulted in the strata folded and denuded strongly. In the end of the Pliocene (late Himalayan movement), the impact of Southern Tianshan orogen decreased because of the stress released with the breakthrough upward of Kalpin fault extending NE, and Bachu Uplift suffered mainly the structure deformation extending NW-NNW caused by the uplifting of Western Kunlun orogen.

  2. Design, fabrication and characterization of high-stroke high-aspect ratio micro electro mechanical systems deformable mirrors for adaptive optics

    Science.gov (United States)

    Fernandez Rocha, Bautista

    Adaptive optic (AO) systems for next generation of extremely large telescopes (30--50 meter diameter primary mirrors) require high-stroke (10 microns), high-order (100x100) deformable mirrors at lower-cost than current technology. The required specifications are achievable with Micro Electro Mechanical Systems (MEMS) devices fabricated with high-aspect ratio processing techniques. This dissertation will review simulation results compared with displacement measurements of actuators utilizing a white-light interferometer. It will also review different actuator designs, materials and post-processing procedures fabricated in three different high-aspect ratio processes, Microfabrica's Electrochemical Fabrication (EFAB(TM)), HT-Micro's Precision Fabrication Technology (HTPF(TM)), and Innovative Micro Technologies (IMT) fabrication process. These manufacturing processes allow high-precision multilayer fabrication and their sacrificial layer thicknesses can be specified by the designer, rather than by constraints of the fabrication process. Various types of high-stroke gold actuators for AO consisting of folded springs with rectangular and circular membranes as well as X-beam actuators supported diagonally by beams were designed, simulated, fabricated, and tested individually and as part of a continuous facesheet DM system. The design, modeling and simulation of these actuators are compared to experimental measurements of their pull-in voltages, which characterizes their stiffness and maximum stroke. Vertical parallel plate ganged actuators fabricated with the EFAB(TM) process have a calculated pull-in voltage of 95V for a 600mum size device. In contrast, the pull-in voltages for the comb-drive actuators ranged from 55V for the large actuator, to 203V for the smallest actuator. Simulations and interferometer scans of actuator designs fabricated with HT-Micro's Precision Fabrication (HTPF(TM)) two wafer bonded process with different spring supports have shown the ability of

  3. 强光辐照下白宝石高反镜尺寸对热变形的影响%Effect of dimensions on thermal deformation of high reflectance sapphire mirrors under high power laser irradiation

    Institute of Scientific and Technical Information of China (English)

    梅艳莹; 杨涛

    2014-01-01

    为了进一步减小白宝石( Al2 O3)高反镜在强光辐照下的热变形,提高光束质量,研究了白宝石高反镜厚度、直径尺寸对热变形的影响。采用以极坐标表示的热传导方程和热变形公式来描述白宝石高反镜的温度场分布和位移场分布;在有限元分析软件中建立数值计算模型,并计算了不同厚度、直径尺寸下的温度场和位移场,得到了热变形随厚度尺寸和直径尺寸变化的规律。结果表明,影响白宝石高反镜反射面峰谷值变化的主要因素是温度,而尺寸变化对温度和刚度均有影响;选择合适的高反镜直径和厚度尺寸,可以有效降低镜面温升,同时得到合适的轴向结构刚度,从而减小反射镜镜面热变形。该研究结果对强光辐照下白宝石高反镜尺寸设计和选择具有一定的参考价值。%In order to reduce thermal deformation of high reflectance sapphire mirrors under high power laser irradiation and improve the beam quality , effect of the diameter and thickness on thermal deformation of the high reflectance mirror was studied .The heat conduction equation expressed in polar coordinate and the thermal deformation formula were used to describe the distribution of the temperature field and the displacement field of the sapphire mirror .Then, the numerical calculation model was built with the finite element analysis software and the temperature field and displacement field in different thickness and diameter was calculated .The thermal deformation with respect to the thickness and diameter was obtained .The results indicate that the main factors affecting the PV value of the sapphire mirror surface is the temperature variation and the change of the size has effect on both temperature and stiffness .Appropriate size and thickness effectively reduce the rise of mirror ’ s temperature and keep suitable axial structural stiffness , and thus the thermal deformation of the

  4. In situ synchrotron high-energy X-ray diffraction study of microscopic deformation behavior of a hard-soft dual phase composite containing phase transforming matrix

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junsong; Hao, Shijie; Jiang, Daqiang; Huan, Yong; Cui, Lishan; Liu, Yinong; Yang, Hong; Ren, Yang

    2017-05-01

    This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrix and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.

  5. 流道截面参量对微通道水冷镜热变形的影响%Influence of Channel Parameters on Thermal-Deformation of Microchannel Mirror

    Institute of Scientific and Technical Information of China (English)

    胡攀攀; 朱海红; 左都罗

    2011-01-01

    采用将有限体积法求解三维层流传热方程获得的温度场耦合到ANSYS进行热变形分析的方法,研究了流道截面形状和尺寸对微通道水冷镜内传热现象和镜面热畸变的影响.计算了矩形、梯形、圆形3种截面形状以及3种不同水力直径(百微米量级)下微通道水冷镜的平均换热系数、温升和镜面热变形.结果表明,同一条流道,各壁面温度并不随激光辐照面和镜面呈对称分布,最高温度偏向下游;侧壁的换热系数最大,且沿水流方向逐步减小;流道距进水口距离越大,其换热系数越小.在3种截面形状微通道中,减小截面尺寸可获得较大换热系数,且梯形截面微通道水冷镜能获得最小的镜面热变形量,在热流密度为14730 W/m2,水力直径为239 μm,入口速度为2.54 m/s的条件下,其镜面热变形仅为0.016 μm.%The effect of cross-section shape and geometrical parameters of the channel on heat transfer and thermal deformation of the microchannel water-cooled mirror is studied by analyzing the temperature field obtained by using finite volume method to solve the three-dimensional steady laminar flow and heat transfer equations, and the deformation obtained by coupling the temperature field to ANSYS software. Three different cross-section shapes of microchannel, i.e., rectangle, trapezoid and circle, are investigated in this paper. Average heat transfer coefficient, temperature increasing and thermal deformation of mirror of each shape examined with three geometrical dimensions, are simulated. It is found that for the same channel, temperature distribution is not symmetrical, the highest temperature moves to the downstream, the heat transfer coefficient of each interface is also different, the heat transfer coefficient of side wall is the biggest, heat transfer coefficient of other walls decreases along the water flow direction. For the mirror using the same shape microchannel and hydraulic diameter, the

  6. 反射镜热畸变对激光光束质量影响的研究%Influence of mirror thermal deformation on beam quality of laser

    Institute of Scientific and Technical Information of China (English)

    李艳娜; 谢翔云; 王刚; 唐力铁

    2016-01-01

    基于热传导理论,建立了高斯光束辐照硅反射镜的物理模型,利用多物理场数值分析软件 COMSOL Multiphysics 求解热传导方程,仿真计算得到镜面表面温度分布曲线以及镜面变形曲线,进一步结合光学仿真软件模拟计算,研究得到 Si 反射镜镜面的热畸变对输出光束质量的影响。结果表明:随着激光辐照时间的增大,反射镜热变形越显著,输出光束质量β因子越大,但β值的变化首先较快而后趋于平缓。随着辐照激光功率的增加,反射镜热变形越大,输出光束质量β因子不断增大。%The physical models of Si mirror under Gauss laser irradiation was built based on heat transfer theory.The temperature field and thermal deformation distributions on the mirror surface were calculated and analyzed by using Comsol Multiphysics software.And then the effect of thermal distortion of Si mirror on output beam quality of high -power laser has also been analyzed combining with simulation software.The results show that Si mirror thermal de-formation increases with the increase of the irradiation time,and beam quality factor βincreases accordingly,but βin-creased significantly and then approaches flat with the increase of the irradiation time.Beam quality and mirror ther-mal deformation also increase with the increase of the laser power.

  7. Einstein's Mirror

    Science.gov (United States)

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  8. Yang-Baxter deformations of W2,4 × T1,1 and the associated T-dual models

    Science.gov (United States)

    Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2017-08-01

    Recently, for principal chiral models and symmetric coset sigma models, Hoare and Tseytlin proposed an interesting conjecture that the Yang-Baxter deformations with the homogeneous classical Yang-Baxter equation are equivalent to non-abelian T-dualities with topological terms. It is significant to examine this conjecture for non-symmetric (i.e., non-integrable) cases. Such an example is the W2,4 ×T 1 , 1 background. In this note, we study Yang-Baxter deformations of type IIB string theory defined on W2,4 ×T 1 , 1 and the associated T-dual models, and show that this conjecture is valid even for this case. Our result indicates that the conjecture would be valid beyond integrability.

  9. Validating Dual Fluoroscopy System Capabilities for Determining In-Vivo Knee Joint Soft Tissue Deformation: A Strategy for Registration Error Management.

    Science.gov (United States)

    Sharma, Gulshan B; Kuntze, Gregor; Kukulski, Diane; Ronsky, Janet L

    2015-07-16

    Knee osteoarthritis (OA) causes structural and mechanical changes within tibiofemoral (TF) cartilage affecting tissue load deformation behavior. Quantifying in-vivo TF soft tissue deformations in healthy and early OA may provide a novel biomechanical marker, sensitive to alterations occurring prior to radiographic change. Dual Fluoroscopy (DF) allows accurate in-vivo TF soft tissue deformation assessment but requires validation. In-vivo healthy and early OA TF cartilage deforms 0.3-1.2mm during static standing full body-weight loading. Our aim was to establish minimum detectable displacement (MDD) for femoral translation in a DF system using a marker-based and markerless approach with variable image intensifier magnifications. An instrumented frame allowed controlled femur specimen translations. Bone positions were reconstructed from DF data using centroids of affixed steel beads (marker-based) and 2D-3D bone feature registration (markerless). Statistical analyses included independent samples t-tests and reliability analysis. Markerless measurements by three trained operators had large variations making it prudent to have an appropriate error management strategy when performing 2D-3D registration. Marker-based MDD improved with image resolution and was 0.05 mm at 3.2 LP/mm (LP: line pairs). Markerless MDD at 3.2 LP/mm was 0.08 mm. Average femur and tibia 2D-3D registrations yielded excellent reliability (84.4%). Therefore, DF images acquired at resolution greater than 3.2 LP/mm would be capable for determining accurate and reliable in-vivo healthy and early OA TF soft tissue deformation. This study provides a registration error management strategy for in-vivo TF soft tissue deformation assessment that could be applied for future clinical applications to establish non-invasive biomechanical markers for early OA diagnosis.

  10. Type IIB supergravity solution for the T-dual of the η-deformed AdS{sub 5}×S{sup 5} superstring

    Energy Technology Data Exchange (ETDEWEB)

    Hoare, B. [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489, Berlin (Germany); Tseytlin, A.A. [The Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom)

    2015-10-09

    We find an exact type IIB supergravity solution that represents a one-parameter deformation of the T-dual of the AdS{sub 5}×S{sup 5} background (with T-duality applied in all 6 abelian bosonic isometric directions). The non-trivial fields are the metric, dilaton and RR 5-form only. The latter has remarkably simple “undeformed” form when written in terms of a “deformation-rotated” vielbein basis. An unusual feature of this solution is that the dilaton contains a linear dependence on the isometric coordinates of the metric precluding a straightforward reversal of T-duality. If we still formally dualize back, we find exactly the metric, B-field and product of dilaton with RR field strengths as recently extracted from the η-deformed AdS{sub 5}×S{sup 5} superstring action in http://arxiv.org/abs/1507.04239. We also discuss similar solutions for deformed AdS{sub n}×S{sup n} backgrounds with n=2,3. In the η→i limit we demonstrate that all these backgrounds can be interpreted as special limits of gauged WZW models and are also related to (a limit of) the Pohlmeyer-reduced models of the AdS{sub n}×S{sup n} superstrings.

  11. Dwarf with dual spinal kyphotic deformity at the cervical and dorsal spine unassociated with odontoid hypoplasia: Surgical management

    Directory of Open Access Journals (Sweden)

    Guru Dutta Satyarthee

    2016-01-01

    Full Text Available Morquio's syndrome is associated with systemic skeletal hypoplasia leading to generalized skeletal deformation. The hypoplasia of odontoid process is frequent association, which is responsible for atlantoaxial dislocation causing compressive myelopathy. However, development of sub-axial cervical kyphotic deformity unassociated with odontoid hypoplasia is extremely rare, and coexistence of dorsal kyphotic deformity is not reported in the western literature till date and represents first case. Current case is 16-year-old boy, who presented with severe kyphotic deformity of cervical spine with spastic quadriparesis. Interestingly, he also had additional asymptomatic kyphotic deformity of dorsal spine; however, odontoid proves hypoplasia was not observed. He was only symptomatic for cervical compression, accordingly surgery was planned. The patient was planned for correction of cervical kyphotic deformity under general anesthesia, underwent fourth cervical corpectomy with resection of posterior longitudinal ligament and fusion with autologous bone graft derived from right fibula, which was refashioned approximating to the width of the corpectomy size after harvesting and fixed between C3 and C5 vertebral bodies and further secured with anterior cervical plating. He tolerated surgical procedure well with improvement in power with significant reduction in spasticity. Postoperative X-ray, cervical spine revealed complete correction of kyphotic deformity cervical spine. At follow-up 6 months following surgery, he is doing well. Successful surgical correction of symptomatic cervical kyphotic deformity can be achieved utilizing anterior cervical corpectomy, autologous fibular bone graft, and anterior cervical plating.

  12. Dwarf with dual spinal kyphotic deformity at the cervical and dorsal spine unassociated with odontoid hypoplasia: Surgical management

    Science.gov (United States)

    Satyarthee, Guru Dutta; Mankotia, Dipanker Singh

    2016-01-01

    Morquio's syndrome is associated with systemic skeletal hypoplasia leading to generalized skeletal deformation. The hypoplasia of odontoid process is frequent association, which is responsible for atlantoaxial dislocation causing compressive myelopathy. However, development of sub-axial cervical kyphotic deformity unassociated with odontoid hypoplasia is extremely rare, and coexistence of dorsal kyphotic deformity is not reported in the western literature till date and represents first case. Current case is 16-year-old boy, who presented with severe kyphotic deformity of cervical spine with spastic quadriparesis. Interestingly, he also had additional asymptomatic kyphotic deformity of dorsal spine; however, odontoid proves hypoplasia was not observed. He was only symptomatic for cervical compression, accordingly surgery was planned. The patient was planned for correction of cervical kyphotic deformity under general anesthesia, underwent fourth cervical corpectomy with resection of posterior longitudinal ligament and fusion with autologous bone graft derived from right fibula, which was refashioned approximating to the width of the corpectomy size after harvesting and fixed between C3 and C5 vertebral bodies and further secured with anterior cervical plating. He tolerated surgical procedure well with improvement in power with significant reduction in spasticity. Postoperative X-ray, cervical spine revealed complete correction of kyphotic deformity cervical spine. At follow-up 6 months following surgery, he is doing well. Successful surgical correction of symptomatic cervical kyphotic deformity can be achieved utilizing anterior cervical corpectomy, autologous fibular bone graft, and anterior cervical plating. PMID:27857796

  13. Study on the control of micro- deformation of resonator mirrors and windows in high power laser%控制高功率激光器腔镜与窗口微变形技术的探讨

    Institute of Scientific and Technical Information of China (English)

    马梦林; 郭劲; 张来明; 杨飞

    2007-01-01

    A few of technologies are demonstrated, such as the water- cooling, the thermoelectric cooling,the phase - change cooling and so on. All of these are induced to minimize the thermal deformation and damage of resonator mirrors and windows in high power laser. According to the working principle, these technologies are used in different lasers. The application of multi - layer complex liquid - cooling technology is more extensive, which can reduce effectively heating effect of the high power laser. And then the mirror surface deformation of the high power laser system is controlled.%阐述了用来控制和改善高功率激光器腔镜及其窗口热变形产生的破坏的几种技术,如水冷技术、半导体致冷技术和相变致冷等技术.由于各种技术应用原理不同,其适用的范围也有很大的差别.其中一种新技术多层水冷技术适应性比较广,并且能有效地减少高功率激光器热效应对其光学元件的影响,从而使镜面变形得到很好的控制.

  14. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  15. Deformation Analysis of Laser Cavity Mirror and Method of Heat Pipe Cooling%激光器腔镜变形分析及热管冷却方法研究

    Institute of Scientific and Technical Information of China (English)

    刘丽; 安朝卫; 宋洁冰; 毕祥丽

    2011-01-01

    激光器运行中,腔镜的变形造成激光输出功率下降和光束质量变坏,大大制约了高功率激光器性能的提高。通过对激光器腔镜吸热产生的热变形及冷却流体对镜片压力变形分析,提出了热管冷却腔镜的方法,介绍了热管冷却原理和热管在导热方面的优点,设计了热管冷却腔镜方案,为有效控制强激光系统中镜片表面变形提供了有效途径。%The cavity deformation can lead to the decline in the laser output power and the beam quality de terioration when the laser operates,so the performance enhancement of the high power laser is restricted greatly.The heat deformation based on the heat absorption of the laser cavity and the lens pressure deformation based on cooling fluid are analyzed,the method of the heat pipe cooling cavity mirror is proposed.The principle of the heat pipe cooling and the advantage of heat pipe in heat conductivity are introduced,the solution of heat pipe cooling cavity mirror is designed,which provides the effective way to effectively control the lens surface defor mation of the high power laser system.

  16. White Light Focusing Mirror

    Science.gov (United States)

    Johnson, Eric; Lyndaker, Aaron; Deyhim, Alex; Sullivan, Michael; Chance, Mark; Abel, Don; Toomey, John; Hulbert, Steven

    2007-01-01

    The NSLS X28C white-light beamline is being outfitted with a focusing mirror in order to increase, as well as control, the x-ray intensity at the sample position. The new mirror is a 50 mm × 100 mm × 1100 mm single crystal silicon cylindrical 43.1mm radius substrate bendable to a toroid from infinite to 1200 m radius. The unique feature of this mirror system is the dual use of Indalloy 51 as both a mechanism for heat transfer and a buoyant support to negate the effects of gravity. The benefit of the liquid metal support is the ability to correct for minor slope errors that take the form of a parabola. A bobber mechanism is employed to displace the fluid under the mirror +/- 1.5 mm. This allows RMS slope error correction on the order of 2 urad. The unique mounting of the mirror ensures the contributions to slope error from errant mechanical stresses due to machining tolerances are virtually non-existent. After correction, the surface figure error (measured minus ideal) is <= 0.5 urad rms.

  17. Closed-loop adaptive optical system with a liquid mirror.

    Science.gov (United States)

    Vdovin, Gleb

    2009-02-15

    A deformable mirror based on internal reflection from an electrostatically deformable liquid-air interface is proposed and investigated. A differential equation describing the static behavior of such a mirror is analyzed and solved numerically. Stable closed-loop operation of an adaptive optical system with a liquid deformable mirror is demonstrated, including forming and the correction of low-order aberrations described by Zernike polynomials and the real-time correction of dynamically changing aberrations.

  18. Magic Mirrors

    Science.gov (United States)

    Mills, Allan

    2011-01-01

    "Magic mirrors" were so named because, when they were positioned to throw a reflected patch of sunlight on a nearby wall, this area contained an outline of a design cast on the back of the (bronze) mirror. Investigations begun in the 19th century showed that this was a response to heavy localized pressures exerted on the face of the thin mirror…

  19. Shell Separation for Mirror Replication

    Science.gov (United States)

    1999-01-01

    NASA's Space Optics Manufacturing Center has been working to expand our view of the universe via sophisticated new telescopes. The Optics Center's goal is to develop low-cost, advanced space optics technologies for the NASA program in the 21st century - including the long-term goal of imaging Earth-like planets in distant solar systems. To reduce the cost of mirror fabrication, Marshall Space Flight Center (MSFC) has developed replication techniques, the machinery, and materials to replicate electro-formed nickel mirrors. Optics replication uses reusable forms, called mandrels, to make telescope mirrors ready for final finishing. MSFC optical physicist Bill Jones monitors a device used to chill a mandrel, causing it to shrink and separate from the telescope mirror without deforming the mirror's precisely curved surface.

  20. Mirror symmetry

    CERN Document Server

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  1. Topological R\\'enyi and Entanglement Entropy for a 2d q-deformed $U(N)$ Yang-Mills theory and its Chern-Simons dual

    CERN Document Server

    Schnitzer, Howard J

    2016-01-01

    R\\'enyi and entanglement entropies are constructed for 2d q-deformed topological Yang-Mills theories with gauge group $U(N)$, as well as the dual 3d Chern-Simons (CS) theory on Seifert manifolds. When $q=\\exp[2\\pi i/(N+K)]$, and $K$ is odd, the topological R\\'enyi entropy and Wilson line observables of the CS theory can be expressed in terms of the modular transformation matrices of the WZW theory, $\\rm{\\hat{U}(N)}_{K,N(K+N)}$. If both $K$ and $N$ are odd, there is a level-rank duality of the 2d qYM theory and of the associated CS theory, as well as that of the R\\'enyi and entanglement entropies, and Wilson line observables.

  2. Mirror neurons

    National Research Council Canada - National Science Library

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal...

  3. Mirror, mirror on the wall

    CERN Multimedia

    2005-01-01

    RICH 2, one of the two Ring Imaging Cherenkov detectors of the LHCb experiment, is being prepared to join the other detector elements ready for the first proton-proton collisions at LHC. The mirrors of the RICH2 detector are meticulously assembled in a clean room.In a large dark room, men in white move around an immense structure some 7 metres high, 10 metres wide and nearly 2.5 metres deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors. Each spherical mirror wall is made up of facets like a fly's eye. Twenty-eight individual thin glass mirrors will all point to the same point in space to within a few micro-radians. The development of these mirrors has been technically demanding : Ideally they should be massless, sturdy, precise and have high reflectivity. In practice, though not massless, they are made from a mere 6 mm thin gl...

  4. Numerical study on mirror of high power laser with heatpipe cooling

    Science.gov (United States)

    Chen, Jiayuan, II; Zhu, Haihong; Cheng, Zuhai

    2008-12-01

    Mirror surface of high power laser would be deformed by the pressure of the coolant in a liquid cooling mirror system. In order to eliminate the impact of pressure and vibration of cooling water to the stability of the output beam, a cooling mirror with heatpipe is designed. With the same structure and conditions, solid mirror, water cooling mirror and heat pipe cooling mirror are simulated by ANSYS program. The time-varying thermal deformations of the group mirrors after 60s under the net heat absorption of 12W/cm2 are obtained. The maximal peak and valley difference value of mirror surface deformation of solid mirror along Z-axis, water cooling mirror and heat pipe cooling mirror after 60s is 1.33μm, 0.845 μm and 0.1094 μm respectively.

  5. Double curvature mirrors for linear concentrators

    Science.gov (United States)

    Lance, Tamir; Ackler, Harold; Finot, Marc

    2012-10-01

    Skyline Solar's medium concentration photovoltaic system uses quasi-parabolic mirrors and one axis tracking. Improvements in levelized cost of energy can be achieved by effective management of non-uniformity of the flux line on the panels. To reduce non uniformity of the flux line due to mirror to mirror gaps, Skyline developed a dual curvature mirror that stretches the flux line along the panel. Extensive modeling and experiments have been conducted to analyze the impact of this new design and to optimize the design.

  6. [Mirror neurons].

    Science.gov (United States)

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  7. Three dimensional laser microfabrication in diamond using a dual adaptive optics system.

    Science.gov (United States)

    Simmonds, Richard D; Salter, Patrick S; Jesacher, Alexander; Booth, Martin J

    2011-11-21

    Femtosecond laser fabrication of controlled three dimensional structures deep in the bulk of diamond is facilitated by a dual adaptive optics system. A deformable mirror is used in parallel with a liquid crystal spatial light modulator to compensate the extreme aberrations caused by the refractive index mismatch between the diamond and the objective immersion medium. It is shown that aberration compensation is essential for the generation of controlled micron-scale features at depths greater than 200 μm, and the dual adaptive optics approach demonstrates increased fabrication efficiency relative to experiments using a single adaptive element.

  8. Homological Perturbation Theory and Mirror Symmetry

    Institute of Scientific and Technical Information of China (English)

    Jian ZHOU

    2003-01-01

    We explain how deformation theories of geometric objects such as complex structures,Poisson structures and holomorphic bundle structures lead to differential Gerstenhaber or Poisson al-gebras. We use homological perturbation theory to construct A∞ algebra structures on the cohomology,and their canonically defined deformations. Such constructions are used to formulate a version of A∞algebraic mirror symmetry.

  9. What do mirror neurons mirror?

    NARCIS (Netherlands)

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data acquire

  10. What do mirror neurons mirror?

    NARCIS (Netherlands)

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data

  11. Toward a large lightweight mirror for AO: development of a 1m Ni coated CFRP mirror

    Science.gov (United States)

    Thompson, S. J.; Doel, A. P.; Brooks, D.; Strangwood, M.

    2008-07-01

    We present our recent developments towards the construction of a large, thin, single-piece mirror for adaptive optics (AO). Our current research program aims to have completed fabrication and testing of a 1m diameter, nickel coated carbon-fibre reinforced cyanate ester resin mirror by the last quarter of 2009. This composite mirror material is being developed to provide a lightweight and robust alternative to thin glass shell mirrors, with the challenge of future large deformable mirrors such as the 2.5m M4 on the E-ELT in mind. A detailed analysis of the material properties of test mirror samples is being performed at the University of Birmingham (UK), the first results of which are discussed and presented here. We discuss the project progress achieved so far, including fabrication of the 1m flat moulds for the replication process, manufacturing and testing methods for 20 cm diameter sample mirrors and system simulations.

  12. Mirror monochromator

    Energy Technology Data Exchange (ETDEWEB)

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States); Shadman, Khashayar [Electron Optica, Inc., Palo Alto, CA (United States)

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  13. Mirror systems

    Energy Technology Data Exchange (ETDEWEB)

    Howells, M.R.

    1985-12-01

    The physics of VUV and x-ray reflection is reviewed. The main functions of mirrors in synchrotron beamlines are stated briefly and include deflection, filtration, power absorption, formation of a real image of the source, focusing, and collimation. Methods of fabrication of optical surfaces are described. Types of imperfections are discussed, including, aberrations, surface figure inaccuracy, roughness, and degradation due to use. Calculation of the photon beam thermal load, including computer modelling, is considered. 50 refs., 7 figs. (LEW)

  14. Design and finite element analysis of lightmass silicon carbide primary mirror

    Institute of Scientific and Technical Information of China (English)

    HAN Yuan-yuan; ZHANG Yu-min; HAN Jie-cai; ZHANG Jian-han; YAO Wang; ZHOU Yu-feng

    2006-01-01

    Primary mirror is one of the key components in the space remote sensing system. To minimize the mass of the mirror without compromising its stiffness and decrease the deformation of the mirror surface at the different temperatures are the mainly two objects in the development of the primary mirror. Silicon carbide (SiC),the most promising optical material,was used as the material of the primary mirror with triangle lightmass structure in a Cassegrain system. By using finite element method,the properties of the SiC mirror were compared with that of the traditional Be mirror and fused silica mirror. The results of static,dynamic and thermo-mechanical analysis indicate that the deformation of the mirror surface caused by temperature field is much bigger than that caused by gravity field. The SiC mirror has the best overall properties,and the SiC material is much suitable for the primary mirror.

  15. The many faces of mirror symmetry

    CERN Document Server

    Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia

    2016-01-01

    We study supersymmetry breaking perturbations of the simplest dual pair of 2+1-dimensional N = 2 supersymmetric field theories -- the free chiral multiplet and N = 2 super-QED with a single flavor. We find dual descriptions of a phase diagram containing four distinct massive phases. The equivalence of the intervening critical theories gives rise to several non-supersymmetric avatars of mirror symmetry: we find dualities relating scalar QED to a free fermion and Wilson-Fisher theories to both scalar and fermionic QED. Thus, mirror symmetry can be viewed as the multicritical parent duality from which these non-supersymmetric dualities directly descend.

  16. Lightweight Metal Mirrors

    Science.gov (United States)

    Gossett, E.; Winslow, P.

    1984-01-01

    Two "eggcrate" halves brazed together. Lightweight flat mirrors fabricated by machining pockets in two plates of beryllium and brazing machined halves together. Mirror less than half weight of same mirror made by previous design.

  17. A dual deformable reverberation chamber

    NARCIS (Netherlands)

    Leferink, Frank

    2010-01-01

    There is disclosed an arrangement for measuring the effectiveness of a shielding material against electromagnetic fields. The arrangement comprises a first and a second reverberation chamber sharing a common wall. The common wall is partly made of the shielding material. A first antenna is arranged

  18. Lightweight design and finite element analysis of primary mirror for the space telescope

    Science.gov (United States)

    Zhang, Dandan; Li, Weiyan; Lv, Qunbo; Liu, Yangyang; Chen, Xinwen

    2015-09-01

    In order to satisfy the strict requirements of the lightweight ratios and high dimensional stability for space mirror, the design method of lightweight structure and the flexible supporting structure of the primary mirror is proposed. Subsequently, the surface deformations of two different lightweight structures for primary mirror are discussed for analyzing the influence of the mirror weight on its surface. Finally, the finite element models for primary mirror assembly are built for calculating the surface deformation caused by different gravity orientations and various thermal environments. It is proved that the weight, stiffness and surface accuracy of the structure design for primary mirror can meet the engineering requirement.

  19. Large thin adaptive x-ray mirrors

    Science.gov (United States)

    Doel, Peter; Atkins, Carolyn; Thompson, Samantha; Brooks, David; Yao, Jun; Feldman, Charlotte; Willingale, Richard; Button, Tim; Zhang, Dou; James, Ady

    2007-09-01

    This paper describes the progress made in a proof of concept study and recent results of a research program into large active x-ray mirrors that is part of the UK Smart X-ray Optics project. The ultimate aim is to apply the techniques of active/adaptive optics to the next generation of nested shell astronomical X-ray space telescopes. A variety of deformable mirror technologies are currently available, the most promising of which for active X-ray mirrors are probably unimorph and bimorph piezoelectric mirrors. In this type of mirror one or more sheets of piezoelectric material are bonded to or coated with a passive reflective layer. On the back or between the piezoceramic layer/layers are series of electrodes. Application of an electric field causes the piezoelectric material to undergo local deformation thus changing the mirror shape. Starting in 2005 a proof of concept active mirror research program has been undertaken. This work included modelling and development of actively controlled thin shell mirrors. Finite element models of piezo-electric actuated mirrors have been developed and verified against experimental test systems. This has included the modelling and test of piezo-electric hexagonal unimorph segments. Various actuator types and low shrinkage conductive bonding methods have been investigated and laboratory tests of the use of piezo-electric actuators to adjust the form of an XMM-Newton space telescope engineering model mirror shell have been conducted and show that movement of the optics at the required level is achievable. Promising technological approaches have been identified including moulded piezo-ceramics and piezo-electrics fibre bundles.

  20. Investigations and experiments of a new multi-layer complex liquid-cooled mirror

    Institute of Scientific and Technical Information of China (English)

    Yuling Lu(陆宇灵); Zuhai Cheng(程祖海); Yaoning Zhang(张耀宁); Feng Sun(孙锋); Wenfeng Yu(余文峰)

    2004-01-01

    This paper describes a new multi-layer complex liquid-cooled Si mirror with 3 cooling ducts in Archimedes spirals. Utilizing the ANSYS program, the structure of the mirror is optimized and the thermal deformation model of the mirror is simulated. The simulation results show that the mirror has the following advantages:very small amount of surface deformation, uniform distribution of temperature and surface deformation,and fast surface shape restoration. The results of the experiments of thermal deformation and the surface restoration are accurately mapped to the simulation results.

  1. Communication Applications for Deformable Mirror Devices.

    Science.gov (United States)

    1997-06-01

    here labeled FBM, for flexure beam micromirror). (b) Example system for optical antenna aberration correction [after Gustafson. 1995] 1.3 General...micromirror array (here labeled FBM. for flexure beam micromirror), (b) Example system for optical antenna aberration correction [after Gustafson, 1995...Astronomical Telescope," Nature, Vol. 351, pp. 300-302. 23 May 1991. W. C. Brown. "Omi-directional Optical Antenna Element," U.S. Patent No. 5,033.833,23

  2. Double arch mirror study

    Science.gov (United States)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    The development of a method of mounting light weight glass mirrors for astronomical telescopes compatible with the goals of the Shuttle Infrared Telescope Facility (SIRTF) was investigated. A 20 in. diameter double arch lightweight mirror previously fabricated was modified to use a new mount configuration. This mount concept was developed and fabricated. The mounting concept of the double mounting mirror is outlined. The modifications made to the mirror, fabrication of the mirror mount, and room temperature testing of the mirror and mount and the extension of the mirror and mount concept to a full size (40 in. diameter) primary mirror for SIRTF are discussed.

  3. Fabrication of Electrostatically Actuated MEMS Deformable Mirror with Continuous Surface%静电驱动连续面形微机电系统变形镜的制作

    Institute of Scientific and Technical Information of China (English)

    胡放荣; 马文英; 汪为民

    2011-01-01

    Based on a three-layer polysilicon surface micromachining process and some experience formulas of adaptive optics, an electrostatically actuated microelectromechanical systems (MEMS) deformable mirror (DM) with 16 actuators and continuous surface is designed and fabricated. Both static and dynamic characteristics of the prototype are tested using a scanning white light interferometer ZygoNewView7300. The result from the static test shows that the displacement of the actuator is 0. 667 jim at 150 V, the interaction between the neighboring actuator is 9% , and the position repeatability of the surface of DM is 10%. At the same time, the result from the dynamic test shows that the response time of the prototype is less than 30 fis and a cosine curve is observed under a sine driving signal. The resonance frequency of the actuator is about 36 kHz. This type of DM can be used for free space optical communication, laser beam shaping, wavefront correction, projection, biomedical imaging and human eye aberration correction.%基于三层多晶硅表面加工工艺和自适应光学经验公式,设计并制作了一种静电驱动的16单元连续面形微机电系统(MEMS)变形镜(DM),并用ZygoNewView7300白光干涉仪对样片的静态特性和动态响应特性进行了测试.静态测试结果表明,器件在150 V电压下的最大形变量为0.667 μm,相邻单元之间的交联值为9%,镜面位置重复性为10%.动态测试结果表明,器件对正弦驱动信号的响应时间小于30μs,响应曲线近似为一条余弦曲线,谐振频率为36 kHz.该变形镜可用于自由空间光通信、激光光束整形、波前畸变校正、投影显示、生物医学成像和人眼视差校正等重要领域.

  4. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this proposal is to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight,...

  5. High Speed Magnetostrictive MEMS Actuated Mirror Deflectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop high speed magnetostrictive and MEMS actuators for rapidly deflecting or deforming mirrors. High speed, light-weight, low voltage beam...

  6. Lightweight ZERODUR: Validation of Mirror Performance and Mirror Modeling Predictions

    Science.gov (United States)

    Hull, Tony; Stahl, H. Philip; Westerhoff, Thomas; Valente, Martin; Brooks, Thomas; Eng, Ron

    2017-01-01

    Upcoming spaceborne missions, both moderate and large in scale, require extreme dimensional stability while relying both upon established lightweight mirror materials, and also upon accurate modeling methods to predict performance under varying boundary conditions. We describe tests, recently performed at NASA's XRCF chambers and laboratories in Huntsville Alabama, during which a 1.2 m diameter, f/1.2988% lightweighted SCHOTT lightweighted ZERODUR(TradeMark) mirror was tested for thermal stability under static loads in steps down to 230K. Test results are compared to model predictions, based upon recently published data on ZERODUR(TradeMark). In addition to monitoring the mirror surface for thermal perturbations in XRCF Thermal Vacuum tests, static load gravity deformations have been measured and compared to model predictions. Also the Modal Response(dynamic disturbance) was measured and compared to model. We will discuss the fabrication approach and optomechanical design of the ZERODUR(TradeMark) mirror substrate by SCHOTT, its optical preparation for test by Arizona Optical Systems (AOS). Summarize the outcome of NASA's XRCF tests and model validations

  7. Supersymmetric defect models and mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Kachru, Shamit; Torroba, Gonzalo

    2013-11-01

    We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.

  8. Supersymmetric Defect Models and Mirror Symmetry

    CERN Document Server

    Hook, Anson; Torroba, Gonzalo

    2013-01-01

    We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d N=4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d N=2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of N=4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.

  9. 镜像右位心及合并畸形彩色多普勒超声心动图特征和规律性研究%Atudy on Imaging Characteristics and Regularity of Color Doppler Echocardiography on Mirror Image Dextrocardia and Deformity

    Institute of Scientific and Technical Information of China (English)

    侯传举; 齐岩梅; 邓东安; 朱鲜阳; 韩秀敏; 卢迪

    2011-01-01

    Objective To explore the image characteristics and regularity of color Doppler echocardiography (CDE)on mirror image dextrocardia and deformity. Methods One hundred patients with mirror image dextrocardia and deformity were examined by CDE and the image characteristics and regularity of CDE were found. Ninety-five cases with mirror image dextrocardia and deformity underwent angiocardiography examination after CDE, Seventy-six cases were proved by surgical operations. Results Ninety-two cases were diagnosed correctly by the features of CDE imaging. The diagnostic rate of accuracy is 92 %,eight cases were misdiagnosed. The features in the mirrorimage dextrocardia and deformity CDE image characteristics and regularity were obvious. ① Mirror image dextrocardia usually combines twelve kinds congenital heart disease,among them, ILL type double outlet right ventricle(27 % )are common. IDD type corrected transposition of the great arteies( 17 % ),tetralogy of Fallot(16 % )and ventrcluar septal defect( 12 % )are not as common as the above. Double-inlet ventricle( 7 % ), tricuspid atresia( 5 % ), bilocular heart( 5 % ), ILL type complete transposition of the great arteies(4% ), mitral atresia(2 % ), isolated right ventricular outlet stenosis(2 % ), total anomalous pulmonary venous drainage( 2 % ), and isolated cleft mitral valve ( 1% ) are rare. ② Despite the diversity of combined congenital heart disease,all cases of adult mirror image dextrocardia have a common CDE characteristic of atria situs inversus. ③ adult mirror image dextrocardia combined double outlet right ventricle and complete transposition of the great arteies are left-transposition,combined corrected transposition of the great arteies are right-transposition.④ Mirror image dextrocardia combined pulmonary stenosis(80 % ) are common, pulmonary normal( 12 % ) and pulmonary hypertension(8%)are rare. ⑤ atral septal defect and ventricular septal defect color Doppler flow

  10. Optimum Design of Lightweight Silicon Carbide Mirror Assembly

    Institute of Scientific and Technical Information of China (English)

    HAN Yuanyuan; ZHANG Yumin; HAN Jiecai; ZHANG Jianhan; YAO Wang; ZHOU Yufeng

    2008-01-01

    According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.

  11. Mirror symmetry in the presence of branes

    Energy Technology Data Exchange (ETDEWEB)

    Mertens, Adrian

    2011-10-11

    This work deals with mirror symmetry for N=1 compactifications on compact Calabi-Yau threefolds with branes. The mayor tool is a combined deformation space for the Calabi-Yau and a hypersurface within it. Periods of this deformation space contain information about B-type branes within the hypersurface in addition to the usual closed string data. To study these periods we generalize techniques used in closed string mirror symmetry. We derive the Picard-Fuchs system and encode the information in extended toric polytopes. Solutions of the Picard-Fuchs equations give superpotentials for certain brane configurations. This is an efficient way to calculate superpotentials. The deformations we consider are massive for all branes with non trivial superpotential. Depending on a choice of a family of hypersurfaces, the superpotential of the effective low energy theory depends on different massive fields. A priori there is no reason for these fields to be lighter then other fields that are not included. We find however examples where the superpotential is nearly at. In these examples we use the Gauss-Manin connection on the combined deformation space to define an open string mirror map. We find instanton generated superpotentials of A-type branes. This gives predictions for Ooguri-Vafa invariants counting holomorphic disks that end on a Lagrangian brane on the Quintic. A second class of examples does not have preferred nearly massless deformations and different families of hypersurfaces can be used to calculate the same on-shell superpotential. We calculate examples of superpotentials for branes in Calabi-Yau manifolds with several moduli. The on-shell superpotentials are mapped to the mirror A-model to study the instanton expansion and to obtain predictions for disk invariants. The combined deformation spaces are equivalent to the quantum corrected Kaehler deformation spaces of certain non compact Calabi-Yau fourfolds. These fourfolds are fibrations of Calabi-Yau threefolds

  12. Study on imaging characteristics of color Doppler echocardiography on adult mirror image dextrocardia and deformity%成人镜像右位心及合并畸形彩色多普勒超声心动图特征研究

    Institute of Scientific and Technical Information of China (English)

    侯传举; 邹苏娅; 邓东安; 朱鲜阳; 韩秀敏; 刘剑立; 胡斌; 王巧玲

    2011-01-01

    目的:探寻成人镜像右位心及合并畸形彩色多普勒超声心动图(CDE)特征.方法:应用CDE检查31例成人镜像右位心及合并畸形,寻找CDE特征,所有病例均经心导管对照,21例手术证实.结果:根据CDE特征对29例做出正确诊断,诊断准确率93.5%,误诊2例.成人镜像右位心及合并畸形CDE特征明显;①成人镜像右位心合并11种先天性心脏病,其中ILL型右心室双出口(22.6%)、IDD型矫正性大动脉转位(19.4%)和法乐四联症(19.4%)多见,心室双人口(12.9%)和室间隔缺损(6.5%)少见,两腔心、二尖瓣闭锁、三尖瓣闭锁、全肺静脉异位引流、孤立性双腔右心室和孤立性二尖瓣裂隙(各3.2%)更少见;②成人镜像右位心无论合并那种先天性心脏病均为心房反位;③成人镜像右位心合并右心室双出口大动脉均为左转位;合并矫正性大动脉转位大动脉均为右转位;(4)成人镜像右位心合并肺动脉狭窄(93.5%)多见,肺动脉高压(6.5%)少见.肺动脉狭窄时,彩色多普勒血流显像显示过肺动脉五彩镶嵌射流束血流信号;⑤合并房间隔缺损和室间隔缺损时,彩色多普勒血流显像显示过房间隔或室间隔左向右或双向五彩镶嵌分流束血流信号.结论:成人镜像右位心及合并畸形CDE特征明显,应用CDE对成人镜像右位心及合并畸形可做出正确诊断,但检查者必须熟练掌握本病解剖.在探查手法上与正常位心脏明显不同,检查前阅读X线正位胸片对CDE正确诊断有帮助,并可提高检查效率.%Objective:To explore the characteristics of color Doppler echocardiography (CDE) adult mirror image dextrocardia and deformiry. Methods Thirty-one patients with adult mirror image dextrocardia and deformity were examined by CDE. All cases with mirror image dextrocardia and deformity underwent angiocardiography examination after CDE, twenty-one cases were proved by surgical operations. Results: Twenty-nine cases were diagnosed

  13. Quality evaluation of spaceborne SiC mirrors (I): analytical examination of the effects on mirror accuracy by variation in the thermal expansion property of the mirror surface.

    Science.gov (United States)

    Kotani, Masaki; Imai, Tadashi; Katayama, Haruyoshi; Yui, Yukari; Tange, Yoshio; Kaneda, Hidehiro; Nakagawa, Takao; Enya, Keigo

    2013-07-10

    The Japan Aerospace Exploration Agency has studied a large-scale lightweight mirror constructed of reaction-bonded silicon carbide-based material as a key technology in future astronomical and earth observation missions. The authors selected silicon carbide as the promising candidate due to excellent characteristics of specific stiffness and thermal stability. One of the most important technical issues for large-scale ceramic components is the uniformity of the material's property, depending on part and processing. It might influence mirror accuracy due to uneven thermal deformation. The authors conducted systematic case studies for the conditions of CTE by finite element analysis to know the typical influence of material property nonuniformity on mirror accuracy and consequently derived a comprehensive empirical equation for the series of CTE's main factors. In addition, the authors computationally reproduced the mirror accuracy profile of a small prototype mirror shown in cryogenic testing and hereby verified wide-range practical computational evaluation technology of mirror accuracy.

  14. Effect of intercritical temperature and cold-deformation on the kinetics of austenite formation during the intercritical annealing of dual-phase steels

    Energy Technology Data Exchange (ETDEWEB)

    El-Sesy, I.A.; Hussein, A.H.A. (Cairo Univ., Gizeh (Egypt). Dept. of Mining, Petroleum and Metallurgical Engineering); Klaar, H.J. (Technische Hochschule Aachen (Germany, F.R.). Gemeinschaftslaboratorium fuer Elektronenmikroskopie)

    1990-01-01

    The objective of this investigation was to study the effect of the intercritical temperature and percentage of cold-deformation on the kinetics of austenite formation during the intercritical annealing in the alpha + gamma ({alpha} + {gamma}) phase field of the iron-carbon phase diagram. This investigation was carried out on an Fe-0.11 C-1.58 Mn-0.4 Si ferritic-pearlitic alloy with different structures of 0% (hot-rolled), 25% and 50% cold-deformation. The intercritical annealing temperatures were 735, 750deg C and the intercritical annealing time ranged from 15 to 1815 s. It has been observed that recrystallization of the deformed ferrite was completed before any austenite formation. Surprisingly, it was noted that the recrystallized ferrite grain size was independent of percentage cold-deformation. Furthermore, it was expected that cold-deformation accelerates the kinetics of austenite formation. Nevertheless, the amounts of austenite formed from pearlite dissolution were mostly equal, irrespective of the starting condition. As has been previously reported, increasing the intercritical annealing temperature was found to increase the amount of austenite. (orig.).

  15. Mirror Neurons and Mirror-Touch Synesthesia.

    Science.gov (United States)

    Linkovski, Omer; Katzin, Naama; Salti, Moti

    2016-05-30

    Since mirror neurons were introduced to the neuroscientific community more than 20 years ago, they have become an elegant and intuitive account for different cognitive mechanisms (e.g., empathy, goal understanding) and conditions (e.g., autism spectrum disorders). Recently, mirror neurons were suggested to be the mechanism underlying a specific type of synesthesia. Mirror-touch synesthesia is a phenomenon in which individuals experience somatosensory sensations when seeing someone else being touched. Appealing as it is, careful delineation is required when applying this mechanism. Using the mirror-touch synesthesia case, we put forward theoretical and methodological issues that should be addressed before relying on the mirror-neurons account. © The Author(s) 2016.

  16. Durable solar mirror films

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  17. The Mirror Oscilloscpoe

    NARCIS (Netherlands)

    Goudriaan, B.

    2003-01-01

    This project is about designing and realizing an oscilloscope based on a laser beam reflected by two mirrors. The ¿Mirror Oscilloscope¿ uses two voice-coils actuators with mounted mirrors to reflect laser light, such that an image of a harmonic signal is projected on a projection screen. For trackin

  18. ZERODUR for stress mirror polishing

    Science.gov (United States)

    Jedamzik, Ralf; Kunisch, Clemens; Westerhoff, Thomas

    2011-09-01

    Stress mirror polishing is considered as one of several polishing technologies for the generation of the aspherical shaped primary mirror segments of the thirty meter telescope (TMT). For stress mirror polishing it is essential to precisely know the elastic response of glass ceramic substrate materials under a given deformation load. In the past it was experimentally shown that glass ceramics do not respond instantaneously to loading and unloading conditions, this effect was called "delayed elasticity." Recently SCHOTT has shown that it is possible to use a model to predict the characteristic thermal expansion behaviour of individual ZERODUR® batches for a given temperature profile. A similar approach will be used to predict the delayed elastic behavior of ZERODUR® under time dependent loads. In this presentation the delayed elasticity effect of ZERODUR® is reviewed. The delayed elastic response of the material to load conditions is shown and discussed. First results of a model approach based on experimental results and tools that have been built up for the modelling of the delayed elasticity effect of ZERODUR® will be presented.

  19. Mirror Technology Roadmap for NASA's Exoplanet Exploration Program

    Science.gov (United States)

    Lawson, Peter R.; Shaklan, Stuart B.; Balasubramanian, K.

    2011-01-01

    There are several possible approaches to designing exoplanet missions: (1) Coronagraphs (2) Interferometers (3) Starshades Wavefront sensing and control is the central concern, not mirror size (1) Starlight suppression with deformable mirrors (2) Thermal and structural stability (3) Metrology for sensing and control Diffraction-limited optical primary mirrors 4-m or larger are needed to detect Earthlike planets (1) Surface figure similar to HST required (2) Smaller primary mirrors can be used with aggressive coronagraph designs, but the stability tolerances become the driving concern (3) Stability tolerances of coronagraphs are greatly reduced when larger primaries are used in conjunction with 8th-order masks Long term vision for large telescope development includes space-based segmented-mirror telescopes using actively-controlled glass segments or silicon carbide hybrid-mirror designs

  20. The 8.2 metre primary mirrors of the VLT

    Science.gov (United States)

    Dierickx, P.; Enard, D.; Merkle, F.; Noethe, L.; Wilson, R. N.

    1990-08-01

    The Very Large Telescope (VLT) presently being developed at ESO is described in terms of technological advances which make its use both technically effective and feasible. The VLT capitalizes on advances in materials, polishing techniques, and mirror support systems. The VLT consists of four 8-m alt-az telescopes and a 2-m auxiliary telescope in a single-dish configuration with Zerodur meniscus mirrors passively supported on a lateral system. A discussion of the tradeoffs between glass and metal mirrors is presented, and computerized polishing is described in relation to optical specifications. The mirror is supported with 150 axial and 60 lateral supports with electromechanical actuators to modulate applied force. The active optics concept is employed via the flexibility of the primary mirror, which generates elastomechanical deformations and the position and orientation of the secondary mirror.

  1. Water Cooled Mirror Design

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Holloway, Michael Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pulliam, Elias Noel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  2. Surgical correction of the "Popeye biceps" deformity: dual-window approach for combined subpectoral and deltopectoral access and proximal biceps tenodesis.

    Science.gov (United States)

    Bhatia, Deepak N; DasGupta, Bibhas

    2012-09-01

    "Popeye biceps" deformity represents the appearance of a distally retracted biceps muscle resulting from either a traumatic long biceps tendon (LBT) rupture or an iatrogenic LBT tenotomy. Cosmetic and functional problems associated with the deformity may necessitate surgical correction, and surgical exposure using multiple incisions is recommended. The technique presented here describes a novel mini-open approach using a single 1-in incision that provides access to 3 peripectoral anatomical zones. Preoperative sonographic localization of the ruptured and retracted LBT is used to guide incision placement, and facilitates intraoperative tendon retrieval via a limited incision and minimal dissection. Inferolateral retraction of the mini-incision window permits infrapectoral and subpectoral LBT mobilization and dissection. Deltopectoral access via superomedial retraction of the same skin window is used to expose the suprapectoral zone and is employed for LBT retrieval and proximal tenodesis. Technical tips for safe dissection via a mini-incision, and methods for biological LBT augmentation are discussed.

  3. Optical Properties of Relativistic Plasma Mirrors

    CERN Document Server

    Vincenti, H; Kahaly, S; Martin, Ph; Quéré, F

    2013-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for optical components suitable to handle ultrahigh light intensities. Due to the unavoidable laser-induced ionization of matter, these components will have to be based on a plasma medium. An archetype of such optical elements is a plasma mirror, created when an intense femtosecond laser pulse impinges on a solid target. It consists of a dense plasma, formed by the laser field itself, which specularly reflects the main part of the pulse. Plasma mirrors have major potential applications as active optical elements to manipulate the temporal and spatial properties of intense laser beams, in particular for the generation of intense attosecond pulses of light. We investigate the basic physics involved in the deformation of a plasma mirror resulting from the light pressure exerted by the ultraintense laser during reflection, by deriving a simple model of this fundamental process, which we validate both numerically and experimentally. The understanding ...

  4. Manufacturing of Lightweight Mirror

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fabrication of the lightweight mirror is one of the key techniques for many large optical systems. CAD,CAM and CNC technologies are adopted in designing and manufacturing such mirrors in CIOMP. Better working efficiency and higher lightweight grade have been achieved. The results show that mirrors up to 70% weight reduction and 0.02λ(rms.) surface accuracy or better can be obtained.

  5. Nanoscale Deformable Optics

    Science.gov (United States)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  6. Optical Performance Modeling of FUSE Telescope Mirror

    Science.gov (United States)

    Saha, Timo T.; Ohl, Raymond G.; Friedman, Scott D.; Moos, H. Warren

    2000-01-01

    We describe the Metrology Data Processor (METDAT), the Optical Surface Analysis Code (OSAC), and their application to the image evaluation of the Far Ultraviolet Spectroscopic Explorer (FUSE) mirrors. The FUSE instrument - designed and developed by the Johns Hopkins University and launched in June 1999 is an astrophysics satellite which provides high resolution spectra (lambda/Delta(lambda) = 20,000 - 25,000) in the wavelength region from 90.5 to 118.7 nm The FUSE instrument is comprised of four co-aligned, normal incidence, off-axis parabolic mirrors, four Rowland circle spectrograph channels with holographic gratings, and delay line microchannel plate detectors. The OSAC code provides a comprehensive analysis of optical system performance, including the effects of optical surface misalignments, low spatial frequency deformations described by discrete polynomial terms, mid- and high-spatial frequency deformations (surface roughness), and diffraction due to the finite size of the aperture. Both normal incidence (traditionally infrared, visible, and near ultraviolet mirror systems) and grazing incidence (x-ray mirror systems) systems can be analyzed. The code also properly accounts for reflectance losses on the mirror surfaces. Low frequency surface errors are described in OSAC by using Zernike polynomials for normal incidence mirrors and Legendre-Fourier polynomials for grazing incidence mirrors. The scatter analysis of the mirror is based on scalar scatter theory. The program accepts simple autocovariance (ACV) function models or power spectral density (PSD) models derived from mirror surface metrology data as input to the scatter calculation. The end product of the program is a user-defined pixel array containing the system Point Spread Function (PSF). The METDAT routine is used in conjunction with the OSAC program. This code reads in laboratory metrology data in a normalized format. The code then fits the data using Zernike polynomials for normal incidence

  7. Optomechanical design software for segmented mirrors

    Science.gov (United States)

    Marrero, Juan

    2016-08-01

    The software package presented in this paper, still under development, was born to help analyzing the influence of the many parameters involved in the design of a large segmented mirror telescope. In summary, it is a set of tools which were added to a common framework as they were needed. Great emphasis has been made on the graphical presentation, as scientific visualization nowadays cannot be conceived without the use of a helpful 3d environment, showing the analyzed system as close to reality as possible. Use of third party software packages is limited to ANSYS, which should be available in the system only if the FEM results are needed. Among the various functionalities of the software, the next ones are worth mentioning here: automatic 3d model construction of a segmented mirror from a set of parameters, geometric ray tracing, automatic 3d model construction of a telescope structure around the defined mirrors from a set of parameters, segmented mirror human access assessment, analysis of integration tolerances, assessment of segments collision, structural deformation under gravity and thermal variation, mirror support system analysis including warping harness mechanisms, etc.

  8. System Estimates Radius of Curvature of a Segmented Mirror

    Science.gov (United States)

    Rakoczy, John

    2008-01-01

    A system that estimates the global radius of curvature (GRoC) of a segmented telescope mirror has been developed for use as one of the subsystems of a larger system that exerts precise control over the displacements of the mirror segments. This GRoC-estimating system, when integrated into the overall control system along with a mirror-segment- actuation subsystem and edge sensors (sensors that measure displacements at selected points on the edges of the segments), makes it possible to control the GROC mirror-deformation mode, to which mode contemporary edge sensors are insufficiently sensitive. This system thus makes it possible to control the GRoC of the mirror with sufficient precision to obtain the best possible image quality and/or to impose a required wavefront correction on incoming or outgoing light. In its mathematical aspect, the system utilizes all the information available from the edge-sensor subsystem in a unique manner that yields estimates of all the states of the segmented mirror. The system does this by exploiting a special set of mirror boundary conditions and mirror influence functions in such a way as to sense displacements in degrees of freedom that would otherwise be unobservable by means of an edge-sensor subsystem, all without need to augment the edge-sensor system with additional metrological hardware. Moreover, the accuracy of the estimates increases with the number of mirror segments.

  9. Primary mirror assemblies for large space telescopes

    Science.gov (United States)

    Malamed, Evgeny R.; Sokolsky, M. N.

    1995-09-01

    In this report are considered the basic problems which relate to developemnt, manufacture, experimental trying out, and usage of primary mirrors (PM) of the large space telescopes intended to perform distant sounding of the Earth. Attention is concentrated on development of weight-reduced passive mirrors which ensure more reliable operation of the telescope as a whole. In the report we expressed the opinion that it is quite possible to manufacture a passive weight-reduced PM if its diameter is equal approximately to 3 m. Materials which may be used for the manufacturing of PM are beryllium and silicon carbide, physical and mechanical parameters of which are the most preferable ones. But it should be taken into consideration that this is the glass ceramic of CO115M brand which has been mastered by the industry of Russia in the greatest extent. It was confirmed that parameters of this material remain unchanged during a long period of time. Constructions of the PM, made of glass ceramic, as well as constructions of holders intended to fix the mirror, are presented in this report. A holder is used first of all to prevent lowering of a PM surface quality after a mirror has been removed from a machine and fixed in a primary mirror assembly (PMA). At present two-layer construction of a PM is preferable. This construction consists of thick base including weight reduction structure, which is in a radius which is optimum from the standpoint of deformation of a mirror operating surface. In the process of manufacture a mirror is deprived of its weight with the use of special pneumatic off-loading elements. PMA is erected in vertical plane by means of using an interferometric inspection system. In the end of this report we expressed the views on an approach to engineering of a PM by taking into account potentialities both of space ships and of carrier rockets.

  10. The mirror box

    Science.gov (United States)

    Thompson, Gene; Mathieson, Don

    2001-11-01

    The mirror box is an old standby in magic shows and an impressive demonstration of the law of reflection for the physics instructor. The box creates the illusion of an object floating in space by the use of a plane mirror.

  11. Corticospinal mirror neurons.

    Science.gov (United States)

    Kraskov, A; Philipp, R; Waldert, S; Vigneswaran, G; Quallo, M M; Lemon, R N

    2014-01-01

    Here, we report the properties of neurons with mirror-like characteristics that were identified as pyramidal tract neurons (PTNs) and recorded in the ventral premotor cortex (area F5) and primary motor cortex (M1) of three macaque monkeys. We analysed the neurons' discharge while the monkeys performed active grasp of either food or an object, and also while they observed an experimenter carrying out a similar range of grasps. A considerable proportion of tested PTNs showed clear mirror-like properties (52% F5 and 58% M1). Some PTNs exhibited 'classical' mirror neuron properties, increasing activity for both execution and observation, while others decreased their discharge during observation ('suppression mirror-neurons'). These experiments not only demonstrate the existence of PTNs as mirror neurons in M1, but also reveal some interesting differences between M1 and F5 mirror PTNs. Although observation-related changes in the discharge of PTNs must reach the spinal cord and will include some direct projections to motoneurons supplying grasping muscles, there was no EMG activity in these muscles during action observation. We suggest that the mirror neuron system is involved in the withholding of unwanted movement during action observation. Mirror neurons are differentially recruited in the behaviour that switches rapidly between making your own movements and observing those of others.

  12. Advanced Mirror Technology Development

    Science.gov (United States)

    Stahl, H. Philip

    2017-01-01

    The Advanced Mirror Technology Development (AMTD) project matures critical technologies required to enable ultra-stable 4-m-or-larger monolithic or segmented ultraviolet, optical, and infrared (UVOIR) space telescope primary-mirror assemblies for general astrophysics and ultra-high-contrast observations of exoplanets.

  13. Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and Mirror Symmetry

    CERN Document Server

    Kontsevich, Maxim

    2013-01-01

    We introduce the notion of Wall-Crossing Structure and discuss it in several examples including complex integrable systems, Donaldson-Thomas invariants and Mirror Symmetry. For a big class of non-compact Calabi-Yau 3-folds we construct complex integrable systems of Hitchin type with the base given by the moduli space of deformations of those 3-folds. Then Donaldson-Thomas invariants of the Fukaya category of such a Calabi-Yau 3-fold can be (conjecturally) described in two more ways: in terms of the attractor flow on the base of the corresponding complex integrable system and in terms of the skeleton of the mirror dual to the total space of the integrable system. The paper also contains a discussion of some material related to the main subject, e.g. Betti model of Hitchin systems with irregular singularities, WKB asymptotics of connections depending on a small parameter, attractor points in the moduli space of complex structures of a compact Calabi-Yau 3-fold, relation to cluster varieties, etc.

  14. Space Mirror Alignment System

    Science.gov (United States)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  15. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Minimal Mirror Twin Higgs

    CERN Document Server

    Barbieri, Riccardo; Harigaya, Keisuke

    2016-01-01

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z2 parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z2 breaking, can generate the Z2 breaking in the Higgs sector necessary for the Twin Higgs mechanism, and has constrained and correlated signals in invisible Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z2 breaking from the vacuum expectation values of B-L breaking fields are also discussed.

  17. The Athena Mirror

    Science.gov (United States)

    Wille, Eric

    2016-07-01

    The Athena mission (Advanced Telescope for High Energy Astrophysics) requires lightweight X-ray Wolter optics with a high angular resolution and large effective area. For achieving an effective area of 2 m^2 (at 1 keV) and an angular resolution of below 5 arcsec, the Silicon Pore Optics technology was developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the current design of the Athena mirror concentrating on the technology development status of the Silicon Pore Optics, ranging from the manufacturing of single mirror plates towards complete focusing mirror modules and their integration into the mirror structure.

  18. Mirror reactor surface study

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  19. Manufacturing parabolic mirrors

    CERN Multimedia

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  20. The obsidian mirror The obsidian mirror

    Directory of Open Access Journals (Sweden)

    Maria do Socorro Reis Amorin

    2008-04-01

    Full Text Available The author James Norman is an American who has always lived in Mexico during the summer. He seems to love Mexican - Indian traditions and he is well acquainted with the pre-historic culture as it is shown in his book: "The Obsidian Mirror". "The Obsidian Mirror" is a mysterious story about an archeologist: Quigley that lives in a small village in Mexico-San Marcos. He is searching for antiques that belong to some tribes of pre-historic Indians in order to find out their mysteries. Quigley becomes so engaged in his work that his mind has reached a stage that is impossible to separate between Quigley the archeologist, and Quigley as an ancient Indian. The culture, the myth, the sensation of Omen - characteristics of the Indians are within himself. As a result, Quigley acts sometimes as a real Indian. The author James Norman is an American who has always lived in Mexico during the summer. He seems to love Mexican - Indian traditions and he is well acquainted with the pre-historic culture as it is shown in his book: "The Obsidian Mirror". "The Obsidian Mirror" is a mysterious story about an archeologist: Quigley that lives in a small village in Mexico-San Marcos. He is searching for antiques that belong to some tribes of pre-historic Indians in order to find out their mysteries. Quigley becomes so engaged in his work that his mind has reached a stage that is impossible to separate between Quigley the archeologist, and Quigley as an ancient Indian. The culture, the myth, the sensation of Omen - characteristics of the Indians are within himself. As a result, Quigley acts sometimes as a real Indian.

  1. Mirror contamination in space I: mirror modelling

    Science.gov (United States)

    Krijger, J. M.; Snel, R.; van Harten, G.; Rietjens, J. H. H.; Aben, I.

    2014-10-01

    We present a comprehensive model that can be employed to describe and correct for degradation of (scan) mirrors and diffusers in satellite instruments that suffer from changing optical Ultraviolet to visible (UV-VIS) properties during their operational lifetime. As trend studies become more important, so does the importance of understanding and correcting for this degradation. This is the case not only with respect to the transmission of the optical components, but also with respect to wavelength, polarisation, or scan-angle effects. Our hypothesis is that mirrors in flight suffer from the deposition of a thin absorbing layer of contaminant, which slowly builds up over time. We describe this with the Mueller matrix formalism and Fresnel equations for thin multi-layer contamination films. Special care is taken to avoid the confusion often present in earlier publications concerning the Mueller matrix calculus with out-of-plane reflections. The method can be applied to any UV-VIS satellite instrument. We illustrate and verify our approach to the optical behaviour of the multiple scan mirrors of SCIAMACHY (onboard ENVISAT).

  2. Self-Tuning Mechanism for the Design of Adaptive Secondary Mirror Position Control

    NARCIS (Netherlands)

    Battistelli, Giorgio; Mari, Daniele; Riccardi, Armando; Tesi, Pietro

    2015-01-01

    Deformable mirrors (DMs) are electromechanical devices used in ground-based telescopes to compensate for the distortions caused by the atmospheric turbulence, the main factor limiting the resolution of astronomical imaging. Adaptive secondary mirrors (ASMs) represent a new type of DMs; two of them

  3. Study on supporting force sensing and control during large aperture space mirror test

    Science.gov (United States)

    Zhang, Long; Hu, Wenqi; Zheng, Liehua; Hao, Peiming

    2016-10-01

    During the machining of large aperture lightweight space mirror, the mirror figure consistency between ground test and space mission is a problem. In order to effectively control the supporting deformation effect on test results in gravity environment, in view of a 1.2-m space mirror with back blind holes, a supporting method for optical axis horizontal test is proposed, with this method, mirror under test is positioned by three center hole surfaces and supported by six external hole surfaces. The effect of deformation caused by different supporting force value, area and position is analyzed by finite element method, the simulation results show that this supporting method can control the mirror supporting deformation within PV0.035λ rms0.005λ. The actual supporting system uses soft expansion mandrel to control the mirror position and pneumatic lever to realize the floating support. In order to ensure that the support force can evenly distribute on the contact surface, a pressure mapping system is adopted to measure the interface pressure between the mirror blind holes and the soft supporting pads for the first time. This method can meet the test requirements of rms=1/40λ mirror and provides a technical support for high precision test of large aperture space mirror with back blind holes.

  4. Bimodules and branes in deformation quantization

    CERN Document Server

    Calaque, Damien; Ferrario, Andrea; Rossi, Carlo A

    2009-01-01

    We prove a version of Kontsevich's formality theorem for two subspaces (branes) of a vector space $X$. The result implies in particular that the Kontsevich deformation quantizations of $\\mathrm{S}(X^*)$ and $\\wedge(X)$ associated with a quadratic Poisson structure are Koszul dual. This answers an open question in Shoikhet's recent paper on Koszul duality in deformation quantization.

  5. Mirror decay of {sup 75}Sr

    Energy Technology Data Exchange (ETDEWEB)

    Huikari, J.; Huang, W.X. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40351, Jyvaeskylae (Finland); Oinonen, M. [Helsinki Institute of Physics, FIN-00014 University of Helsinki (Finland); CERN, CH-1211 Geneva 23 (Switzerland); Algora, A.; Nacher, E. [Instituto de Fisica Corpuscular, CSIC - University of Valencia, E-46071 Valencia (Spain); Cederkaell, J.; Fraile, L.; Franchoo, S.; Fynbo, H.; Peraejaervi, K.; Weissman, L. [CERN, CH-1211 Geneva 23 (Switzerland); Courtin, S.; Dessagne, P.; Knipper, A.; Marechal, F.; Miehe, C.; Poirier, E. [Institut de Recherches Subatomiques, F-67037 Strasbourg Cedex 2 (France); Jokinen, A.; Aeystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, FIN-40351, Jyvaeskylae (Finland); Helsinki Institute of Physics, FIN-00014 University of Helsinki (Finland)

    2003-03-01

    The {beta}-decay of {sup 75}Sr to its mirror nucleus {sup 75}Rb was studied at the ISOLDE PSB facility at CERN by means of {beta}-delayed {gamma} and proton spectroscopy. The decay Q-value and {beta}-delayed {gamma} intensity were measured for the first time. These results, 10.60{+-}0.22 MeV and 4.5{sup +1.9}{sub -0.7}%, together with accurate measurements of the {beta}-decay half-life and {beta}-delayed proton branching ratio yielded the Gamow-Teller strength 0.35{+-}0.05 for the mirror transition. Implications of the results on studies of deformation effects and on the path of the rapid proton capture process are discussed. (orig.)

  6. Structural-optical integrated analysis on the large aperture mirror with active mounting

    Science.gov (United States)

    Ren, Zhiyuan; Zhu, Jianqiang; Liu, Zhigang

    2016-11-01

    Deformation of the large aperture mirror caused by the external environment load seriously affects the optical performance of the optical system, and there is a limit to develop the shape quality of large aperture mirror with traditional mounting method. It is effective way to reduce the optical mirror distortion with active support method, and the structural-optical integrated method is the effective means to assess the merits of the mounting for large aperture mirror. Firstly, we proposes a new support scheme that uses specific boundary constraints on the large lens edges and imposes flexible torque to resist deformation induced by gravity to improve surface quantity of large aperture mirror. We calculate distortion of the large aperture mirror at the edges of the flexible torque respectively with the finite element method; secondly, we extract distortion value within clear aperture of the mirror with MATLAB, solve the corresponding Zernike polynomial coefficients; lastly, we obtain the peak-valley value (PV) and root mean square value (RMS) with optical-structural integrated analysis . The results for the 690x400x100mm mirror show that PV and RMS values within the clear aperture with 0.4MPa torques than the case without applying a flexible torque reduces 82.7% and 72.9% respectively. The active mounting on the edge of the large aperture mirror can greatly improve the surface quality of the large aperture mirror.

  7. Influence functions of a thin shallow meniscus-shaped mirror.

    Science.gov (United States)

    Arnold, L

    1997-04-01

    Thin shallow spherical shell theory is used to derive the general influence function, owing to uniform and/or discrete (actuators) loads, for a thin shallow meniscus-shaped mirror of uniform thickness with a central hole and supported at discrete points. Small elastic deformations are considered. No symmetry on the load distribution constrains the model. Explicit analytical expressions of the set of equations are given for calculating the influence functions. Results agree with the finite element analysis (FEA) to within 1%. When the FEA requires megabytes of RAM memory, the analytical method needs only kilobytes and typically runs 30 times faster. This is a crucial advantage for the iterative optimization of mirror supports such as large passive or active meniscus-shaped primary mirror supports or Cassegrain/Gregorian adaptive secondary actuator configurations. References are given on estimating the shear effects (thick mirror), the thickness variation effect, and the influence of the size of the support pads.

  8. Evaluation of Spaceborne SiC Mirror Materials Using Samples Cut from the Periphery of a Mirror Body

    Science.gov (United States)

    Kotani, Masaki; Muta, Yoshikazu; Yoshimura, Akinori; Ogihara, Shinji; Imai, Tadashi; Katayama, Haruyoshi; Yui, Yukari; Tange, Yoshio; Enya, Keigo; Kaneda, Hidehiro; Nakagawa, Takao

    2014-03-01

    The Japan Aerospace Exploration Agency has studied large-scale, lightweight mirrors constructed of SiC-based materials as a key technology for future earth observations and astronomical missions. One of the most important technical issues for large-scale ceramic components is their quality stability (viz., differences in material properties depending on the part and the processing), which might influence the structural and/or thermal reliability through unforeseen deformation and breakage. In this study, the authors used a simple, low-cost method for evaluating the properties of SiC mirror materials. Using mechanical testing, thermodilatometry, and microstructural analysis on samples cut from the periphery of a prototype 800-mm-diameter mirror body, the overall quality of the mirror body material was determined.

  9. Orbifolded Konishi from the mirror TBA

    Energy Technology Data Exchange (ETDEWEB)

    De Leeuw, Marius [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institute, Am Muehlenberg 1, 14476 Potsdam (Germany); Van Tongeren, Stijn J, E-mail: Marius.de.Leeuw@aei.mpg.de, E-mail: S.J.vanTongeren@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, 3508 TD Utrecht (Netherlands)

    2011-08-12

    Starting with a discussion of the general applicability of the simplified mirror thermodynamic Bethe ansatz (TBA) equations to simple deformations of the AdS{sub 5} x S{sup 5} superstring, we proceed to study a specific type of orbifold to which the undeformed simplified TBA equations directly apply. We then use this set of equations, as well as Luescher's approach, to determine the next-to-leading-order wrapping correction to the energy of what we call the orbifolded Konishi state and show that they perfectly agree. In addition we discuss wrapping corrections to the ground-state energy of the orbifolded model under consideration.

  10. Surface micromachined scanning mirrors

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    1992-01-01

    Both aluminum cantilever and torsional scanning mirrors have been fabricated and their static and dynamic properties are studied experimentally and theoretically. The experiments showed resonance frequencies in the range of 163 k-Hz - 632 kHz for cantilever beams with Q values between 5 and 11....... Torsional mirrors showed resonance frequencies in the range of 410 kHz - 667 kHz with Q values of 10 - 17. All measurements performed at atmospheric pressure. Both types of mechanical structures were deflected electrostatically at large angles (± 5°) more than 1011 times without breaking and without any...

  11. Unification with mirror fermions

    Directory of Open Access Journals (Sweden)

    Triantaphyllou George

    2014-04-01

    Full Text Available We present a new framework unifying interactions in nature by introducing mirror fermions, explaining the hierarchy between the weak scale and the coupling unification scale, which is found to lie close to Planck energies. A novel process leading to the emergence of symmetry is proposed, which not only reduces the arbitrariness of the scenario proposed but is also followed by significant cosmological implications. Phenomenology includes the probability of detection of mirror fermions via the corresponding composite bosonic states and the relevant quantum corrections at the LHC.

  12. Mirror neurons and mirror systems in monkeys and humans.

    Science.gov (United States)

    Fabbri-Destro, Maddalena; Rizzolatti, Giacomo

    2008-06-01

    Mirror neurons are a distinct class of neurons that transform specific sensory information into a motor format. Mirror neurons have been originally discovered in the premotor and parietal cortex of the monkey. Subsequent neurophysiological (TMS, EEG, MEG) and brain imaging studies have shown that a mirror mechanism is also present in humans. According to its anatomical locations, mirror mechanism plays a role in action and intention understanding, imitation, speech, and emotion feeling.

  13. Some Considerations for Precision Metrology of Thin X-Ray Mirrors

    Science.gov (United States)

    Lehan, J. P.; Saha, T.; Zhang, W. W.; Rohrbach, S.; Chan, K.-W.; Hadjimichael, T.; Hong, M.; Davis, W.

    2008-01-01

    Determination of the shape of very thin x-ray mirrors employed in spaced-based telescopes continues to be challenging. The mirrors shapes are not readily deduced to the required accuracy because the mount induced distortions are often larger than the uncertainty tolerable for the mission metrology. In addition to static deformations, dynamic and thermal considerations are exacerbated for this class of mirrors. We report on the performance of one temporary mounting scheme for the thin glass mirrors for the Constellation-X mission and prospects for deducing their undistorted shapes.

  14. Wavefront alignment research of segmented mirror synthetic aperture optical (SAO) system

    Science.gov (United States)

    Deng, Jian; An, Xiaoqiang; Tian, Hao

    2010-05-01

    Wavefront control technology and imaging experiment are introduced for a segmented mirror SAO system with deformable sub-mirrors. This system is a RC style with 300mm aperture, 4.5 F#, +/-0.4°FOV, 0.45~0.75μm wave band, and diffraction-limit design MTF. The primary mirror is composed by three sub-mirrors, with parabolic shape, and each deformable sub-mirror has 19 actuators to control and keep the surface shape, and 5 actuators to align sub-mirrors location in 5 degree of freedom. Interferometer is used to feed back and control exit wavefront error, and base on measurement and finite element analysis, location and quanitity of actuators are optimized, making the surface shape and misadjustment errors interact and compensate each other, and the synthetic system exit pupil wavefront error is controlled. The integrated exit pupil wavefront errors are gotten by ZYGO interferometer, and central FOV is 0.077λRMS, and edge FOV is 0.093λRMS. At the end, an imaging experiment is executed, and good results are obtained, which proves, the deformable sub-mirrors have the ability to meliorate alignment and the latter can retroact the former, and this relationship iterate make system exit pupil wavefront error convergence and improve segmented mirror SAO system imaging ability.

  15. Simulations of dual morphology in spiral galaxies

    CERN Document Server

    Berman, S L

    2003-01-01

    Gas and stars in spiral galaxies are modelled with the DUAL code, using hydrodynamic and N-body techniques. The simulations reveal morphological differences mirroring the dual morphologies seen in B and K' band observations of many spiral galaxies. In particular, the gaseous images are more flocculent with lower pitch angles than the stellar images, and the stellar arm-interarm contrast correlates with the degree of morphological decoupling.

  16. Rearview Mirror Dimming Function

    Science.gov (United States)

    Layton, William

    2011-01-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge. An alternate explanation is given.

  17. Rearview Mirror Dimming Function

    Science.gov (United States)

    Layton, William

    2011-01-01

    Students are often unaware of the little tab on a rear-view mirror that is used to dim headlights from the rear. Those who know about this tab are usually interested in knowing how it works. Explanations of the optics involved can be found in Serway and Jewett and Jones and Edge. An alternate explanation is given.

  18. On deformations of triangulated models

    CERN Document Server

    De Deken, Olivier

    2012-01-01

    This paper is the first part of a project aimed at understanding deformations of triangulated categories, and more precisely their dg and A infinity models, and applying the resulting theory to the models occurring in the Homological Mirror Symmetry setup. In this first paper, we focus on models of derived and related categories, based upon the classical construction of twisted objects over a dg or $A_{\\infty}$-algebra. For a Hochschild 2 cocycle on such a model, we describe a corresponding "curvature compensating" deformation which can be entirely understood within the framework of twisted objects. We unravel the construction in the specific cases of derived A infinity and abelian categories, homotopy categories, and categories of graded free qdg-modules. We identify a purity condition on our models which ensures that the structure of the model is preserved under deformation. This condition is typically fulfilled for homotopy categories, but not for unbounded derived categories.

  19. Derived Categories of BHK Mirrors

    CERN Document Server

    Favero, David

    2016-01-01

    We prove a derived analogue to the results of Borisov, Clarke, Kelly, and Shoemaker on the birationality of Berglund-Hubsch-Krawitz mirrors. Heavily bootstrapping off work of Seidel and Sheridan, we obtain Homological Mirror Symmetry for Berglund-Hubsch-Krawitz mirror pencils to hypersurfaces in projective space.

  20. Mechanical and Thermal Tests of the Containers of Liquid Mirrors

    CERN Document Server

    Borra, E F; Tremblay, G; Daigle, A; Huot, Y

    2003-01-01

    We give a generic description of a liquid mirror system and summarize some practical information useful to making them. We compare laboratory measurements of deformations, due to the weight of mercury on the container of a 3.7-m mirror and to temperature changes on a 1-m container, to finite element computer simulations. We find that the measurements agree reasonably well with the numerical simulations. The measurements on the 1-m container show no evidence of fatigue after a few thermal cycles. These results validate the computer models of containers described in a companion article.

  1. Mirror image agnosia.

    Science.gov (United States)

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-10-01

    Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles reflected self-images. A new observation involving failure

  2. Mirror image agnosia

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2014-01-01

    Full Text Available Background: Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one′s own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Material and Methods:: Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Results: Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Discussion: Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery

  3. Deformation twinning in monazite

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R.S.; Marshall, D.B

    2003-10-20

    Polycrystalline monazite (LaPO{sub 4}) was deformed at room temperature by a spherical indenter. Deformation twins were identified by TEM in 70 grains. Five twin planes were found: (100) was by far the most common; (001) and (120) were less common; (122-bar)was rare, and kinks in (120) twins were identified as irrational '(483)' twin planes. The twinning modes on these planes were inferred from the expression of twinning shear at free surfaces, predictions of classical deformation twinning theory, and various considerations of twin morphology and crystal structure. Atomic shuffle calculations that allow formation of either a glide plane or a mirror plane at the twin interface were used to analyze twin modes. The inferred twin modes all have small atomic shuffles. For (001) twins, the smallest shuffles were obtained with a glide plane at the interface, with displacement vector R=((1)/(2))[010]. The results do not uniquely define a twin mode on (100), leaving open the possibility of more than one mode operating on this plane. Factors that may determine the operative deformation twinning modes are discussed. Crystal structure considerations suggest that the relative abundance of twinning modes may correlate with low shear modulus on the twin plane in the direction of twinning shear, and with a possible low-energy interface structure consisting of a layer of xenotime of one half-unit-cell thickness that could form at (100) and (001) twins. The three most common twins have low strains to low {sigma} coincidence site lattices (CSLs)

  4. Simulating a dual-recycled gravitational wave interferometer with realistically imperfect optics

    CERN Document Server

    Bochner, B

    2003-01-01

    We simulate the performance of a gravitational wave interferometer in the Dual Recycling (DR) configuration, as will be used for systems like Advanced-LIGO. Our grid-based simulation program models complex interferometric detectors with realistic optical deformations (e.g., fine-scale mirror surface roughness). Broadband and Tuned DR are modeled here; the results are also applied qualitatively to Resonant Sideband Extraction (RSE). Several beneficial properties anticipated for DR detectors are investigated: signal response tuning and narrowbanding, power loss reduction, and the reclamation of lost power as useful light for signal detection. It is shown that these benefits would be limited by large scattering losses in large (multi-kilometer) systems. Furthermore, losses may be resonantly enhanced (particularly for RSE), if the interferometer's modal resonance conditions are not well chosen. We therefore make two principal recommendations for DR/RSE interferometers: the DR/RSE cavity must be modally nondegener...

  5. Bosonization and Mirror Symmetry

    CERN Document Server

    Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia

    2016-01-01

    We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  6. Dynamic coherent backscattering mirror

    Energy Technology Data Exchange (ETDEWEB)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  7. Dynamic coherent backscattering mirror

    Science.gov (United States)

    Xu, M.

    2016-01-01

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296

  8. Mirror Principle, 1

    CERN Document Server

    Lian Bong H; Yau, S T

    1997-01-01

    We propose and study the following Mirror Principle: certain sequences of multiplicative equivariant characteristic classes on Kontsevich's stable map moduli spaces can be computed in terms of certain hypergeometric type classes. As applications, we compute the equivariant Euler classes of obstruction bundles induced by any concavex bundles -- including any direct sum of line bundles -- on $\\P^n$. This includes proving the formula of Candelas-de la Ossa-Green-Parkes hence completing the program of Candelas et al, Kontesevich, Manin, and Givental, to compute rigorously the instanton prepotential function for the quintic in $\\P^4$. We derive, among many other examples, the multiple cover formula for Gromov-Witten invariants of $\\P^1$, computed earlier by Morrison-Aspinwall and by Manin in different approaches. We also prove a formula for enumerating Euler classes which arise in the so-called local mirror symmetry for some noncompact Calabi-Yau manifolds. At the end we interprete an infinite dimensional transfor...

  9. Bosonization and mirror symmetry

    Science.gov (United States)

    Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia

    2016-10-01

    We study bosonization in 2 +1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O (2 )-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a "chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.

  10. Contracture deformity

    Science.gov (United States)

    Deformity - contracture ... Contracture can be caused by any of the following: Brain and nervous system disorders, such as cerebral ... Follow your health care provider's instructions for treating contracture at home. Treatments may include: Doing exercises and ...

  11. Complex/Symplectic Mirrors

    CERN Document Server

    Chuang, W; Tomasiello, A; Chuang, Wu-yen; Kachru, Shamit; Tomasiello, Alessandro

    2005-01-01

    We construct a class of symplectic non--Kaehler and complex non--Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten--dimensional supergravity and KK reduction on SU(3)--structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  12. Mirrors Containing Biomimetic Shape-Control Actuators

    Science.gov (United States)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  13. Dimer Models from Mirror Symmetry and Quivering Amoebae

    CERN Document Server

    Feng, B; Kennaway, K D; Vafa, C; Feng, Bo; He, Yang-Hui; Kennaway, Kristian D.; Vafa, Cumrun

    2005-01-01

    Dimer models are 2-dimensional combinatorial systems that have been shown to encode the gauge groups, matter content and tree-level superpotential of the world-volume quiver gauge theories obtained by placing D3-branes at the tip of a singular toric Calabi-Yau cone. In particular the dimer graph is dual to the quiver graph. However, the string theoretic explanation of this was unclear. In this paper we use mirror symmetry to shed light on this: the dimer models live on a T^2 subspace of the T^3 fiber that is involved in mirror symmetry and is wrapped by D6-branes. These D6-branes are mirror to the D3-branes at the singular point, and geometrically encode the same quiver theory on their world-volume.

  14. The meter-class carbon fiber reinforced polymer mirror and segmented mirror telescope at the Naval Postgraduate School

    Science.gov (United States)

    Wilcox, Christopher; Fernandez, Bautista; Bagnasco, John; Martinez, Ty; Romeo, Robert; Agrawal, Brij

    2015-03-01

    The Adaptive Optics Center of Excellence for National Security at the Naval Postgraduate School has implemented a technology testing platform and array of facilities for next-generation space-based telescopes and imaging system development. The Segmented Mirror Telescope is a 3-meter, 6 segment telescope with actuators on its mirrors for system optical correction. Currently, investigation is being conducted in the use of lightweight carbon fiber reinforced polymer structures for large monolithic optics. Advantages of this material include lower manufacturing costs, very low weight, and high durability and survivability compared to its glass counterparts. Design and testing has begun on a 1-meter, optical quality CFRP parabolic mirror for the purpose of injecting collimated laser light through the SMT primary and secondary mirrors as well as the following aft optics that include wavefront sensors and deformable mirrors. This paper will present the design, testing, and usage of this CFRP parabolic mirror and the current path moving forward with this ever-evolving technology.

  15. A spectrum of shadowed mirroring.

    Science.gov (United States)

    Wanamaker, Melissa C

    2012-04-01

    The central focus of this paper is to explore and extend Kohut's theory of maternal mirroring and to place it within the current context of psychoanalytic thinking. Kohut believed a child must experience "positive" mirroring from his or her mother in infancy and beyond to ensure development of a healthy self. Kohut alludes, however, to a possible situation in which the mother's face, metaphorically a mirror, can appear "faceless" to her child. From this I have inferred the concept of what I shall call "shadowed mirroring." Clinical and literary examples show that distorted, "shadowed" mirroring appears on a spectrum, with passive mirroring at one end and hostile (either verbal or nonverbal) mirroring on the other; some individuals experience both. I then consider how "shadowed mirroring," especially hostile mirroring, can be understood within the twin contexts of the overall mother-child relationship and present-day Intersubjective/Relational thinking that is both bidirectional and co-constructed. Shadowed mirroring can lead to severe personality dysfunction along the borderline-narcissistic range, as well as to difficulties in the areas of identity formation, failure of self-cohesiveness, and the blunting of certain humane qualities like empathy.

  16. Relating the "mirrorness" of mirror neurons to their origins.

    Science.gov (United States)

    Kilner, James M; Friston, Karl J

    2014-04-01

    Ever since their discovery, mirror neurons have generated much interest and debate. A commonly held view of mirror neuron function is that they transform "visual information into knowledge," thus enabling action understanding and non-verbal social communication between con-specifics (Rizzolatti & Craighero 2004). This functionality is thought to be so important that it has been argued that mirror neurons must be a result of selective pressure.

  17. Push-pull membrane mirrors for adaptive optics.

    Science.gov (United States)

    Bonora, Stefano; Poletto, Luca

    2006-12-11

    We propose an improvement to the electrostatic membrane deformable mirror technique introducing push-pull capability that increases the performance in the correction of optical aberrations. The push-pull effect is achieved by the addition of some transparent electrodes on the top of the device. The transparent electrode is an indium-tin-oxide coated glass. The improvement of the mirror in generating surfaces is demonstrated by the comparison with a pull membrane mirror. The control is carried out in open loop by the knowledge of the response of each single electrode. An effective iterative strategy for the clipping management is presented. The performances are evaluated both in terms of Zernike polynomials generation and in terms of aberrations compensation based on the statistics of human eyes.

  18. Push-pull membrane mirrors for adaptive optics

    Science.gov (United States)

    Bonora, Stefano; Poletto, Luca

    2006-12-01

    We propose an improvement to the electrostatic membrane deformable mirror technique introducing push-pull capability that increases the performance in the correction of optical aberrations. The push-pull effect is achieved by the addition of some transparent electrodes on the top of the device. The transparent electrode is an indium-tin-oxide coated glass. The improvement of the mirror in generating surfaces is demonstrated by the comparison with a pull membrane mirror. The control is carried out in open loop by the knowledge of the response of each single electrode. An effective iterative strategy for the clipping management is presented. The performances are evaluated both in terms of Zernike polynomials generation and in terms of aberrations compensation based on the statistics of human eyes.

  19. Phase-Controlled Magnetic Mirror for Wavefront Correction

    Science.gov (United States)

    Hagopian, John; Wollack, Edward

    2011-01-01

    Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the

  20. SXI Prototype mirror mount

    Science.gov (United States)

    1995-01-01

    This final report describes the work performed from June 1993 to January 1995. The purpose of this contract was to provide optomechanical engineering and fabrication support to the Solar X-ray Imager (SXI) program in the areas of mirror, optical bench and camera assemblies of the telescope. The Center for Applied Optics (CAO) worked closely with the Optics and S&E technical staff of MSFC to develop and investigate the most viable and economical options for the design and fabrication of a number of parts for the various telescope assemblies. All the tasks under this delivery order have been successfully completed within budget and schedule.

  1. Look Into the Mirror

    Institute of Scientific and Technical Information of China (English)

    夏文虹

    2007-01-01

    Look into the mirror. Who is that girl I see, staring strange back at me? Is it a true myself or someone I have never known? Who am I? Why am I in this world? What am I going to do? So many times I questioned myself. I could never find a perfect answer. Why do I have to do such a lot of hard work? Why must I have so many exams? Why do I always read and read, write and write? Don't tell me it is the very life. Don't tell me these should be my happiness.

  2. Eavesdropping with a Mirror

    Institute of Scientific and Technical Information of China (English)

    JENNIFER LIM

    1994-01-01

    It was a custom in Yidu that on New Year’s Eve, people eavesdropped outside other people’s homes with a bronze mirror hidden in the bosom after reciting a rhyme to it. People believed that what they had heard would often fortell good or bad luck. A family named Zheng once lived in Yidu. The two sons of this family were both considered intellectuals, But the older son was eager to learn while the younger was lazy and sluggish. Their parents only liked the older son. Because of this, the old couple’s attitudes toward their two daughters-in-law were also

  3. Complex/Symplectic Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Wu-yen; Kachru, Shamit; /Stanford U., ITP /SLAC; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  4. Mirror symmetry II

    CERN Document Server

    Greene, Brian R

    1997-01-01

    Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.

  5. Foundry Microfabrication of Deformable Mirrors for Adaptive Optics

    Science.gov (United States)

    1998-04-28

    R. T. Howe, and A. P. Pisano, "Wafer-to-wafer transfer of microstrucrures for vacuum packaging ," Proceedings of the Solid-State Sensor and Actuator...Liang, R. Y. Howe, and A. P. Pisano, "Wafer-to-wafer transfer of microstructures for vacuum packaging ", in Proceedings of the Solid-State Sensor and

  6. Ultraflat Tip-Tilt-Piston MEMS Deformable Mirror Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a Phase II SBIR project to develop high-resolution, ultraflat micromirror array devices using advanced silicon surface micromachining...

  7. Fabrication Process Development for Light Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This development is a collaborative effort between California Institute of Technology (Caltech) and the Jet Propulsion Laboratory (JPL). The fabrication is done...

  8. Enhanced Reliability MEMS Deformable Mirrors for Space Imaging Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to develop and demonstrate a reliable, fault-tolerant wavefront control system that will fill a critical technology gap in NASA's vision...

  9. Compact Low-Power Driver for Deformable Mirror Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a new concept to drive MEMS DMs using low-power, high-voltage multiplexing. Compared to other reported approaches, the proposed architecture...

  10. Ronchi test for flat mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, N. [Instituto de Fisica, Universidad Autonoma de San Luis Potosi (Mexico); Engelfried, J. [Instituto de Fisica, Universidad Autonoma de San Luis Potosi (Mexico)]. E-mail: jurgen@ifisica.uaslp.mx; Morelos, A. [Instituto de Fisica, Universidad Autonoma de San Luis Potosi (Mexico)

    2005-11-11

    One of the RICHes in the velocity spectrometers of the proposed CKM experiment requires a flat mirror, situated in the high intensity kaon beam. To reduce the interaction background for the experiment, this mirror has to be as thin as possible. First glass prototypes were produced in Mexico. To test the surface quality of these prototypes, we extended the Ronchi method so flat mirrors can also be tested. We present the methods and report on results of our measurements.

  11. Focusing Mirror with Tunable Eccentricity

    CERN Document Server

    Stürmer, Moritz; Brunne, Jens; Wallrabe, Ulrike

    2013-01-01

    We present a new kind of varifocal mirror with independently adjustable curvatures in the major directions. For actuation we use two stacked piezo bending actuators with crossed in-plane polarization. This mirror can be used for example as an off-axis focusing device with tunable focal length and compensation for a variable angle of incidence or for coma correction. We demonstrate the prototype of such a mirror and characterize the mechanical deflection, as well as the focusing capabilities.

  12. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  13. Deformation of rectangular thin glass plate coated with magnetostrictive material

    Science.gov (United States)

    Wang, Xiaoli; Yao, Youwei; Liu, Tianchen; Liu, Chian; Ulmer, M. P.; Cao, Jian

    2016-08-01

    As magnetic smart materials (MSMs), magnetostrictive materials have great potential to be selected as coating materials for lightweight x-ray telescope mirrors due to their capability to tune the mirror profile to the desired shape under a magnetic field. To realize this potential, it is necessary to study the deformation of the mirror substrate with the MSM coating subjected to a localized magnetic field. In this paper, an analytical model is developed to calculate the deformation of rectangular coated samples locally affected by magnetostrictive strains driven by an external magnetic field. As a specific case to validate the model, a square glass sample coated with MSMs is prepared, and its deformation is measured in a designed experimental setup by applying a magnetic field. The measured deformation of the sample is compared with the results calculated from the analytical model. The comparison results demonstrate that the analytical model is effective in calculating the deformation of a coated sample with the localized mismatch strains between the film and the substrate. In the experiments, different shape patterns of surface profile changes are achieved by varying the direction of the magnetic field. The analytical model and the experimental method proposed in this paper can be utilized to further guide the application of magnetostrictive coating to deformable lightweight x-ray mirrors in the future.

  14. Mirror development for CTA

    Science.gov (United States)

    Förster, A.; Doro, M.; Brun, P.; Canestrari, R.; Chadwick, P.; Font, L.; Ghigo, M.; Lorenz, E.; Mariotti, M.; Michalowski, J.; Niemiec, J.; Pareschi, G.; Peyaud, B.; Seweryn, K.

    2009-08-01

    The Cherenkov Telescope Array (CTA), currently in its early design phase, is a proposed new project for groundbased gamma-ray astronomy with at least 10 times higher sensitivity than current instruments. CTA is planned to consist of several tens of large Imaging Atmospheric Cherenkov Telescopes (IACTs) with a combined reflective surface of up to 10,000 m2. The challenge for the future CTA array is to develop lightweight and cost efficient mirrors with high production rates, good longterm durability and adequate optical properties. The technologies currently under investigation comprise different methods of carbon fibre/epoxy based substrates, sandwich concepts with cold-slumped surfaces made of thin float glass and different structural materials like aluminum honeycomb, glass foam or PU foam inside, and aluminum sandwich structures with either diamond milled surfaces or reflective foils. The current status of the mirror development for CTA will be summarized together with investigations on the improvement of the reflective surfaces and their protection against degradation.

  15. Haglund's Deformity

    Science.gov (United States)

    ... to follow the surgeon’s instructions for postsurgical care. Prevention To help prevent a recurrence of Haglund’s deformity: wear appropriate shoes; avoid shoes with a rigid heel back use arch supports or orthotic devices perform stretching exercises to prevent the Achilles tendon from tightening ...

  16. The ASTRI SST-2M prototype for the Cherenkov Telescope Array: primary mirror characterization by deflectometry

    Science.gov (United States)

    Sironi, Giorgia; Canestrari, Rodolfo

    2015-09-01

    In 2014 the ASTRI Collaboration, led by the Italian National Institute for Astrophysics, has constructed an end-to-end prototype of a dual-mirror imaging air Cherenkov telescope, proposed for the small size class of telescopes for the Cherenkov Telescope Array. The prototype, named ASTRI SST-2M, has been installed at the observing station located at Serra La Nave (Italy). In this project the Brera Astronomical Observatory was responsible for the production and the testing of the primary mirror. The ASTRI SST-2M telescope's primary mirror has an aperture of ~ 4 m, a polynomial design, and consists of 18 individual hexagonal facets. These characteristics require the production and testing of panels with a typical size of ~1 m vertex-to-vertex and with an aspheric component of up to several millimetres. The mirror segments were produced assembling a sandwich of thin glass foils bent at room temperature to reach the desired shape. For the characterization of the mirrors we developed an ad-hoc deflectometry facility that works as an inverse Ronchi test in combination with a ray-tracing code. In this contribution we report the results of the deflectometric measurements performed on the primary mirror segments of the ASTRI SST-2M dual mirror telescope. The expected point spread function and the contributions to the degradation of the image quality are studied.

  17. Shock Simulation of the Optics Mirror Assembly By Numerical Method

    Directory of Open Access Journals (Sweden)

    Mr. Brijeshkumar Patel

    2015-09-01

    Full Text Available Satellite faces many extreme types of loading throughout their life time from the harsh launch environment to the critical space environment. Launch load mainly dynamic is the main design concern for space structure. Shocks are the one of the most critical dynamic load occurs in spacecraft. Optics Mirror Assembly (OMA is used in the telescope of the satellite. The telescope performance relies on dimensional control & the geometric positioning of the mirror, pointing accuracy and controlled surface deformation of the mirror; Mirror fixation device (MFD is used for controlling all these factors. It should not distort due to launch loads mainly shocks as well as loads during operation of the telescope. In the present work an attempt has been made to perform experimental and computational analysis of the shock load on Optics Mirror Assembly. The FE modal for Shock Analysis purpose has been analysed with a specific Linear Transient Response Analysis in order to obtain the time history of acceleration in several output points. The analysis has been conducted over the time interval 0 to 62 ms and frequency band between 10 - 10 KHz. In order to verify the feasibility and reliability of the numerical (Implicit Finite Element Code, Nastran analysis, the numerical results obtained by Nastran have been compared with those obtained experimentally in the form of SRS. The overall outcome of the simulation method has proven its reliability in simulating Satellite payloads subjected to shocks.

  18. Active thermal figure control for the TOPS II primary mirror

    Science.gov (United States)

    Angel, Roger; Kang, Tae; Cuerden, Brian; Guyon, Olivier; Stahl, Phil

    2007-09-01

    TOPS (Telescope to Observe Planetary Systems) is the first coronagraphic telescope concept designed specifically to take advantage of Guyon's method of Phase Induced Amplitude Apodization PIAA).1 The TOPS primary mirror may incorporates active figure control to help achieve the desired wavefront control to approximately 1 angstrom RMS accurate across the spectral bandwidth. Direct correction of the primary figure avoids the need for a separate small deformable mirror. Because of Fresnel propagation, correction at a separate surface can introduce serious chromatic errors unless it is precisely conjugated to the primary. Active primary control also reduces complexity and mass and increases system throughput, and will likely enable a full system test to the 10-10 level in the 1 g environment before launch. We plan to use thermal actuators with no mechanical disturbance, using radiative heating or cooling fingers distributed inside the cells of a honeycomb mirror. The glass would have very small but finite coefficient of expansion of ~ 5x10 -8/C. Low order modes would be controlled by front-to-back gradients and high order modes by local rib expansion and contraction. Finite element models indicate that for a mirror with n cells up to n Zernike modes can be corrected to better than 90% fidelity, with still higher accuracy for the lower modes. An initial demonstration has been made with a borosilicate honeycomb mirror. Interferometric measurements show a single cell influence function with 300 nm stroke and ~5 minute time constant.

  19. Polishing technique for beryllium mirror

    Science.gov (United States)

    Froechtenigt, J. F.

    1976-01-01

    Performance tests, accomplished by inserting entire X ray telescope and polished mirror into vacuum line 67 m long and taking photographs of an X ray resolution source, indicate that polishing increases mirror efficiency from 0.06 percent for X rays at 0.8 nm and increases resolution from 15 to 3.75 arc-seconds.

  20. Generation-X mirror technology development plan and the development of adjustable x-ray optics

    Science.gov (United States)

    Reid, Paul B.; Davis, William; O'Dell, Stephen; Schwartz, Daniel A.; Tolier-McKinstry, Susan; Wilke, Rudeger H. T.; Zhang, William

    2009-08-01

    Generation-X is being studied as an extremely high resolution, very large area grazing incidence x-ray telescope. Under a NASA Advanced Mission Concepts Study, we have developed a technology plan designed to lead to the 0.1 arcsec (HPD) resolution adjustable optics with 50 square meters of effective area necessary to meet Generation-X requirements. We describe our plan in detail. In addition, we report on our development activities of adjustable grazing incidence optics via the fabrication of bimorph mirrors. We have successfully deposited thin-film piezo-electric material on the back surface of thin glass mirrors. We report on the electrical and mechanical properties of the bimorph mirrors. We also report on initial finite element modeling of adjustable grazing incidence mirrors; in particular, we examine the impact of how the mirrors are supported - the boundary conditions - on the deformations which can be achieved.

  1. Opto-thermal analysis of a lightweighted mirror for solar telescope

    CERN Document Server

    Banyal, Ravinder K; Chatterjee, S

    2013-01-01

    In this paper, an opto-thermal analysis of a moderately heated lightweighted solar telescope mirror is carried out using 3D finite element analysis (FEA). A physically realistic heat transfer model is developed to account for the radiative heating and energy exchange of the mirror with surroundings. The numerical simulations show the non-uniform temperature distribution and associated thermo-elastic distortions of the mirror blank clearly mimicking the underlying discrete geometry of the lightweighted substrate. The computed mechanical deformation data is analyzed with surface polynomials and the optical quality of the mirror is evaluated with the help of a ray-tracing software. The thermal print-through distortions are further shown to contribute to optical figure changes and mid-spatial frequency errors of the mirror surface. A comparative study presented for three commonly used substrate materials, namely, Zerodur, Pyrex and Silicon Carbide (SiC) is relevant to vast area of large optics requirements in gro...

  2. Cryogenic optical measurements of 12-segment-bonded carbon-fiber-reinforced silicon carbide composite mirror with support mechanism

    Science.gov (United States)

    Kaneda, Hidehiro; Nakagawa, Takao; Onaka, Takashi; Enya, Keigo; Makiuti, Sin'itirou; Takaki, Junji; Haruna, Masaki; Kume, Masami; Ozaki, Tsuyoshi

    2008-03-01

    A 720 mm diameter 12-segment-bonded carbon-fiber-reinforced silicon carbide (C/SiC) composite mirror has been fabricated and tested at cryogenic temperatures. Interferometric measurements show significant cryogenic deformation of the C/SiC composite mirror, which is well reproduced by a model analysis with measured properties of the bonded segments. It is concluded that the deformation is due mostly to variation in coefficients of thermal expansion among segments. In parallel, a 4-degree-of-freedom ball-bearing support mechanism has been developed for cryogenic applications. The C/SiC composite mirror was mounted on an aluminum base plate with the support mechanism and tested again. Cryogenic deformation of the mirror attributed to thermal contraction of the aluminum base plate via the support mechanism is highly reduced by the support, confirming that the newly developed support mechanism is promising for its future application to large-aperture cooled space telescopes.

  3. Mirroring patients – or not

    DEFF Research Database (Denmark)

    Davidsen, Annette Sofie; Fosgerau, Christina Fogtmann

    2015-01-01

    on studies of imitative behaviour within linguistics and psychology, we argue that interactional mirroring is an important aspect of displaying implicit mentalization. We aimed to explore if, and in that case how, mirroring is displayed by general practitioners (GPs) and psychiatrists in consultations...... with patients with depression. We wanted to see how implicit mentalizing unfolds in physician–patient interactions. Consultations were videorecorded and analysed within the framework of conversation analysis. GPs and psychiatrists differed substantially in their propensity to mirror body movements and verbal...... and acoustic features of speech. GPs mirrored their patients more than psychiatrists in all modalities and were more flexible in their interactional behaviour. Psychiatrists seemed more static, regardless of the emotionality displayed by patients. Implicitly mirroring and attuning to patients could signify...

  4. Resonance MEMS mirrors design considerations

    Science.gov (United States)

    Sourani, S.

    2010-02-01

    Resonance MEMS mirrors are widely used today for many applications such as barcode scanners and personalprojectors. bTendo manufactures Personal Projection Engines on two types of mirrors: 1. Resonance mirrors for horizontal scanning 2. Linear mirrors for vertical scanning In this lecture we will discuss the "Energy Balance" and start-up conditions for resonance mirrors. We will derive the conditions for start-up as well as the predicted curve of θ(v): (see manuscript for equation) We will show simulation results in the time domain that prove the validity of the last equation. Finite element simulation could be used to calculate the comb capacitance and to predict the performance of a new structure.

  5. IXO glass mirrors development in Europe

    Science.gov (United States)

    Pareschi, G.; Basso, S.; Bavdaz, M.; Citterio, O.; Civitani, M. M.; Conconi, P.; Gallieni, D.; Ghigo, M.; Martelli, F.; Parodi, G.; Proserpio, L.; Sironi, G.; Spiga, D.; Tagliaferri, G.; Tintori, M.; Wille, E.; Zambra, A.

    2011-09-01

    The mirrors of the International X-ray Observatory (IXO) were based on of a large number of high quality segments, aiming at achieving a global spatial resolution better than 5 arcsec (HEW). A study concerning the slumping of thin glass foils for the IXO mirrors is under development in Europe, funded by ESA and led by the Brera Observatory and is continuing even after that the programhas been descoped, in the perspective of using the technology under development for other future missions. After a preliminary trade-off study, we have focused our the effort on the "Direct" slumping approach, based on the use of convex moulds. In this case during the thermal cycle the optical surface of the glass is in direct contact with the mould surface. The thin plates are made of thin glass sheets (0.4 mm thick), with a reflecting area of 200 mm × 200 mm. The adopted integration process foresees the use of reinforcing ribs for bonding together the plates and forming in that way a rigid and stiff stack of segmented mirror shells; the stack is supported by a thick backplane. During the bonding process the plates are constrained to stay in close contact with the surface of the master (i.e. the same mould used for the hot slumping process) by the application of vacuum pump suction. In this way the spring-back deformations and low frequency errors still present on the foil profile after slumping can be corrected. In this paper we will give an overview and a status report of the project.

  6. String theory of the Omega deformation

    CERN Document Server

    Hellerman, Simeon; Reffert, Susanne

    2011-01-01

    In this article, we want to turn on real masses for the fields in the effective low energy gauge theory describing the motion of a stack of D2-branes. We do so by placing the D2-branes into the T-dual of a fluxbrane background. We furthermore show that the fluxbrane background is the string theory realization of an Omega-deformation of flat space in the directions transverse to the branes where the deformation parameters satisfy epsilon_1 = - epsilon_2. This Omega-deformation therefore serves to give real masses to the chiral fields of the gauge theory.

  7. Mirror man: a case of skilled deliberate mirror writing.

    Science.gov (United States)

    McIntosh, Robert D; De Lucia, Natascia; Della Sala, Sergio

    2014-01-01

    Mirror writing is a striking behaviour that is common in children and can reemerge in adults following brain damage. Skilled deliberate mirror writing has also been reported, but only anecdotally. We provide the first quantitative study of skilled deliberate mirror writing. K.B. can write forward or backward, vertically upright or inverted, with the hands acting alone or simultaneously. K.B. is predominantly left handed, but writes habitually with his right hand. Of his writing formats, his left hand mirror writing is by far the most similar in style to his normal handwriting. When writing bimanually, he performs better when his two hands make mirror-symmetrical movements to write opposite scripts than if they move in the same direction to write similar scripts. He has no special facility for reading mirrored text. These features are consistent with prior anecdotal cases and support a motor basis for K.B.'s ability, according to which his skilled mirror writing results from the left hand execution of a low-level motor program for a right hand abductive writing action. Our methods offer a novel framework for investigating the sharing of motor representations across effectors.

  8. Mirror symmetry, toric branes and topological string amplitudes as polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Alim, Murad

    2009-07-13

    The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

  9. Improvements in analysis techniques for segmented mirror arrays

    Science.gov (United States)

    Michels, Gregory J.; Genberg, Victor L.; Bisson, Gary R.

    2016-08-01

    The employment of actively controlled segmented mirror architectures has become increasingly common in the development of current astronomical telescopes. Optomechanical analysis of such hardware presents unique issues compared to that of monolithic mirror designs. The work presented here is a review of current capabilities and improvements in the methodology of the analysis of mechanically induced surface deformation of such systems. The recent improvements include capability to differentiate surface deformation at the array and segment level. This differentiation allowing surface deformation analysis at each individual segment level offers useful insight into the mechanical behavior of the segments that is unavailable by analysis solely at the parent array level. In addition, capability to characterize the full displacement vector deformation of collections of points allows analysis of mechanical disturbance predictions of assembly interfaces relative to other assembly interfaces. This capability, called racking analysis, allows engineers to develop designs for segment-to-segment phasing performance in assembly integration, 0g release, and thermal stability of operation. The performance predicted by racking has the advantage of being comparable to the measurements used in assembly of hardware. Approaches to all of the above issues are presented and demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  10. Abelian Yang-Baxter deformations and TsT transformations

    Science.gov (United States)

    Osten, David; van Tongeren, Stijn J.

    2017-02-01

    We prove that abelian Yang-Baxter deformations of superstring coset σ models are equivalent to sequences of commuting TsT transformations, meaning T dualities and coordinate shifts. Our results extend also to fermionic deformations and fermionic T duality, and naturally lead to a TsT subgroup of the superduality group OSp (db ,db | 2df). In cases like AdS5 ×S5, fermionic deformations necessarily lead to complex models. As an illustration of inequivalent deformations, we give all six abelian deformations of AdS3. We comment on the possible dual field theory interpretation of these (super-)TsT models.

  11. Abelian Yang-Baxter Deformations and TsT transformations

    CERN Document Server

    Osten, David

    2016-01-01

    We prove that abelian Yang-Baxter deformations of superstring coset sigma models are equivalent to sequences of commuting TsT transformations, meaning T dualities and coordinate shifts. Our results extend also to fermionic deformations and fermionic T duality, and naturally lead to a TsT subgroup of the superduality group OSp(d_b,d_b|2d_f). In cases like AdS_5 x S^5, fermionic deformations necessarily lead to complex models. As an illustration of inequivalent deformations, we give all six abelian deformations of AdS_3. We comment on the possible dual field theory interpretation of these (super-)TsT models.

  12. Abelian Yang–Baxter deformations and TsT transformations

    Directory of Open Access Journals (Sweden)

    David Osten

    2017-02-01

    Full Text Available We prove that abelian Yang–Baxter deformations of superstring coset σ models are equivalent to sequences of commuting TsT transformations, meaning T dualities and coordinate shifts. Our results extend also to fermionic deformations and fermionic T duality, and naturally lead to a TsT subgroup of the superduality group OSp(db,db|2df. In cases like AdS5×S5, fermionic deformations necessarily lead to complex models. As an illustration of inequivalent deformations, we give all six abelian deformations of AdS3. We comment on the possible dual field theory interpretation of these (super-TsT models.

  13. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  14. LSST primary/tertiary monolithic mirror

    Science.gov (United States)

    Sebag, J.; Gressler, W.; Liang, M.; Neill, D.; Araujo-Hauck, C.; Andrew, J.; Angeli, G.; Cho, M.; Claver, C.; Daruich, F.; Gessner, C.; Hileman, E.; Krabbendam, V.; Muller, G.; Poczulp, G.; Repp, R.; Wiecha, O.; Xin, B.; Kenagy, K.; Martin, H. M.; Tuell, M. T.; West, S. C.

    2016-08-01

    At the core of the Large Synoptic Survey Telescope (LSST) three-mirror optical design is the primary/tertiary (M1M3) mirror that combines these two large mirrors onto one monolithic substrate. The M1M3 mirror was spin cast and polished at the Steward Observatory Mirror Lab at The University of Arizona (formerly SOML, now the Richard F. Caris Mirror Lab at the University of Arizona (RFCML)). Final acceptance of the mirror occurred during the year 2015 and the mirror is now in storage while the mirror cell assembly is being fabricated. The M1M3 mirror will be tested at RFCML after integration with its mirror cell before being shipped to Chile.

  15. Tandem mirror and field-reversed mirror experiments

    Energy Technology Data Exchange (ETDEWEB)

    Coensgen, F.H.; Simonen, T.C.; Turner, W.C.

    1979-08-21

    This paper is largely devoted to tandem mirror and field-reversed mirror experiments at the Lawrence Livermore Laboratory (LLL), and briefly summarizes results of experiments in which field-reversal has been achieved. In the tandem experiment, high-energy, high-density plasmas (nearly identical to 2XIIB plasmas) are located at each end of a solenoid where plasma ions are electrostatically confined by the high positive poentials arising in the end plug plasma. End plug ions are magnetically confined, and electrons are electrostatically confined by the overall positive potential of the system. The field-reversed mirror reactor consists of several small field-reversed mirror plasmas linked together for economic reasons. In the LLL Beta II experiment, generation of a field-reversed plasma ring will be investigated using a high-energy plasma gun with a transverse radial magnetic field. This plasma will be further heated and sustained by injection of intense, high-energy neutral beams.

  16. MIRROR MOVEMENT: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    AA. Momen

    2008-11-01

    Full Text Available Mirror movement is an interesting but often overlooked neurological soft sign;these movements are described as simultaneous contralateral, involuntary, identical movements that accompany voluntary movements. This neurologic problem is very rarely seen in children; in familial cases there is a positive history of these movements in parents, diminishing with time. Here, we have presented the case of an 11-year old girl with mirror movements in her upper limbs which interfered with her hand writing. Her neurological examination revealed normal results. In this report, we have tried to explain some of the pathophysiologic mechanisms related to these abnormal movements.Keywords:Mirror Movements, Children, Soft neurologic sign

  17. Theta functions and mirror symmetry

    CERN Document Server

    Gross, Mark

    2012-01-01

    This is a survey covering aspects of varied work of the authors with Mohammed Abouzaid, Paul Hacking, and Sean Keel. While theta functions are traditionally canonical sections of ample line bundles on abelian varieties, we motivate, using mirror symmetry, the idea that theta functions exist in much greater generality. This suggestion originates with the work of the late Andrei Tyurin. We outline how to construct theta functions on the degenerations of varieties constructed in previous work of the authors, and then explain applications of this construction to homological mirror symmetry and constructions of broad classes of mirror varieties.

  18. Edificio Daily Mirror

    Directory of Open Access Journals (Sweden)

    Williams, Owen

    1963-07-01

    Full Text Available The building has 18 levels. The Press occupies the 4 basement floors. The ground floor is taken up with the entrance hall, and an indoor carriage way. A snack bar and the telephone operators are situated on the second floor. The production department and the medical services are located on the third storey, whilst the fourth is occupied by the offices and library. The fifth floor is the beginning of the higher section of the building. This floor and up to including the 11th floor are devoted to office space, except for the 10th storey, which contains the office apartments of the directors and the Council Chamber. Equipment related to various services of the building is housed on the 12th storey. Finally, this tall building constitutes a fine landmark in the London skyline. The Daily Mirror building is outstanding for the appropriate nature, the completeness and the quality of its installations, which thus provide the most widely read paper in the world with outstandingly efficient offices.Este edificio consta de 18 plantas. El cuerpo de Prensa se aloja en los cuatro sótanos; los vestíbulos de entrada y una calzada interior para vehículos se hallan en la planta baja; la primera alberga un snack-bar y centralita telefónica; la segunda, el departamento de producción y centro de asistencia médica, y la tercera, las oficinas y biblioteca principales. La cuarta planta señala el comienzo del bloque alto; esta planta, junto con las quinta, sexta, séptima, octava y décima, están dedicadas a oficinas. La novena contiene las oficinas-apartamentos de los directores y salas de Consejo, y la undécima, la maquinaria para las diversas instalaciones del edificio. La elevada torre constituye un grandioso hito de referencia en esta zona de Londres. El «Daily Mirror» se distingue por el acierto, número y perfección de sus instalaciones, que proporcionan, al periódico de mayor actualidad mundial, las más adecuadas y amplias oficinas modernas.

  19. Evanescent Wave Atomic Mirror

    Science.gov (United States)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  20. On the usefulness of gradient information in multi-objective deformable image registration using a B-spline-based dual-dynamic transformation model: comparison of three optimization algorithms

    NARCIS (Netherlands)

    Pirpinia, K.; Bosman, P.A.N.; Sonke, J.-J.; van Herk, M.; Alderliesten, T.

    2015-01-01

    The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previous

  1. Anisotropic plasmas from axion and dilaton deformations

    CERN Document Server

    Donos, Aristomenis; Sosa-Rodriguez, Omar

    2016-01-01

    We construct black hole solutions of type IIB supergravity that are holographically dual to anisotropic plasmas arising from deformations of an infinite class of four-dimensional CFTs. The CFTs are dual to $AdS_5\\times X_5$, where $X_5$ is an Einstein manifold, and the deformations involve the type IIB axion and dilaton, with non-trivial periodic dependence on one of the spatial directions of the CFT. At low temperatures the solutions approach smooth domain wall solutions with the same $AdS_5\\times X_5$ solution appearing in the far IR. For sufficiently large deformations an intermediate scaling regime appears which is governed by a Lifshitz-like scaling solution. We calculate the DC thermal conductivity and some components of the shear viscosity tensor.

  2. Anisotropic plasmas from axion and dilaton deformations

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P.; Sosa-Rodriguez, Omar

    2016-11-01

    We construct black hole solutions of type IIB supergravity that are holographically dual to anisotropic plasmas arising from deformations of an infinite class of four-dimensional CFTs. The CFTs are dual to AdS 5 × X 5, where X 5 is an Einstein manifold, and the deformations involve the type IIB axion and dilaton, with non-trivial periodic dependence on one of the spatial directions of the CFT. At low temperatures the solutions approach smooth domain wall solutions with the same AdS 5 × X 5 solution appearing in the far IR. For sufficiently large deformations an intermediate scaling regime appears which is governed by a Lifshitz-like scaling solution. We calculate the DC thermal conductivity and some components of the shear viscosity tensor.

  3. Responder fast steering mirror

    Science.gov (United States)

    Bullard, Andrew; Shawki, Islam

    2013-10-01

    Raytheon Space and Airborne Systems (SAS) has designed, built and tested a 3.3-inch diameter fast steering mirror (FSM) for space application. This 2-axis FSM operates over a large angle (over 10 degree range), has a very high servo bandwidth (over 3.3 Khz closed loop bandwidth), has nanoradian-class noise, and is designed to support microradian class line of sight accuracy. The FSM maintains excellent performance over large temperature ranges (which includes wave front error) and has very high reliability with the help of fully redundant angle sensors and actuator circuits. The FSM is capable of achieving all its design requirements while also being reaction-compensated. The reaction compensation is achieved passively and does not need a separate control loop. The FSM has undergone various environmental testing which include exported forces and torques and thermal vacuum testing that support the FSM design claims. This paper presents the mechanical design and test results of the mechanism which satisfies the rigorous vacuum and space application requirements.

  4. Tinbergen on mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

  5. Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories

    Science.gov (United States)

    Shapiro, Brett; Adhikari, Rana X.; Aguiar, Odylio; Bonilla, Edgard; Fan, Danyang; Gan, Litawn; Gomez, Ian; Khandelwal, Sanditi; Lantz, Brian; MacDonald, Tim; Madden-Fong, Dakota

    2017-01-01

    Interferometric gravitational wave observatories recently launched a new field of gravitational wave astronomy with the first detections of gravitational waves in 2015. The number and quality of these detections is limited in part by thermally induced vibrations in the mirrors, which show up as noise in these interferometers. One way to reduce this thermally induced noise is to use low temperature mirrors made of high purity single-crystalline silicon. However, these low temperatures must be achieved without increasing the mechanical vibration of the mirror surface or the vibration of any surface within close proximity to the mirrors. The vibration of either surface can impose a noise inducing phase shift on the light within the interferometer or physically push the mirror through oscillating radiation pressure. This paper proposes a system for the Laser Interferometric Gravitational-wave Observatory (LIGO) to achieve the dual goals of low temperature and low vibration to reduce the thermally induced noise in silicon mirrors. Experimental results are obtained at Stanford University to prove that these dual goals can be realized simultaneously.

  6. Study on the support technology of the light-weighted mirror

    Science.gov (United States)

    Zhu, Nengbing; QI, Bo; Ren, Ge; Zhu, Fuyin; Ai, Zhiwei

    2016-10-01

    To reduce the surface deformation of a space remote sensor mirror in space environments, a flexible supporting structure of space mirror is designed to improve the surface accuracy of mirror under operating conditions, making the mirror in good thermal dimensional stability and the structure stiffness meet the requirements of mechanics at the same time. Using the finite element method to do simulation analysis about the surface accuracy and structural strength and dynamic stiffness of the mirror assembly under the force-heat coupling state. Simulation results show that the first-order natural frequency of the mirror component is 393.73Hz, and the RMS values of 1g gravity respectively reach 8.920nm, 1.856nm, 4.516nm; under 1g gravity and 4 degrees centigrade rising coupling state in three directions, the RMS values respectively reach 10.02nm, 3.312nm, 5.718nm, the results meet the design specifications requirement that the RMS value less than λ/50 (λ=632.8nm). Finally, the analysis of the random vibration was carried out on the mirror components, results show that the mirror and its supporting structure was designed reasonable which can meet the requirements of space applications.

  7. Mirror Symmetry in Three Dimensions via Gauged Linear Quivers

    CERN Document Server

    Dey, Anindya; Koroteev, Peter; Mekareeya, Noppadol

    2014-01-01

    Starting from mirror pairs consisting only of linear (framed A-type) quivers, we demonstrate that a wide class of three-dimensional quiver gauge theories with N=4 supersymmetry and their mirror duals can be obtained by suitably gauging flavor symmetries. Infinite families of mirror pairs including various quivers of D and E-type and their affine extensions, star-shaped quivers, and quivers with symplectic gauge groups may be generated in this fashion. We present two different computational strategies to perform the aforementioned gauging procedure - one of them involves N=2* classical parameter space description, while the other one uses partition functions of the N=4 theories on S^3. The partition function, in particular, turns out to be an extremely efficient tool for implementing this gauging procedure as it readily generalizes to arbitrary size of the quiver and arbitrary rank of the gauge group at each node. For most examples of mirror pairs obtained via this procedure, we perform additional checks of mi...

  8. Advanced Mirror Material System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Peregrine will bring together recent laboratory developments and mature the technology so that complete mirror and telescope assemblies can be reliably and robustly...

  9. Autism: Lost in the Mirror?

    Directory of Open Access Journals (Sweden)

    Alison Barry

    2015-01-01

    Full Text Available When I began my training as an analyst I took up a placement in an early intervention centre for autistic pre-scholars. The school was run on the psychological principles of ABA and children were tutored on a reward system promoting positive behaviors. Whilst working there I noticed that a number of children had a particular fascination for their mirrored image. This fascination was pervasive and many children would do their work primarily for the reward of the mirror. Through the lens of psychoanalysis I found this very interesting and Lacan’s Mirror Phase immediately came to mind and with this it bore the question as to whether or not there was something in the Mirror Phase of development that had an impact on what we see as symptoms of Autism.

  10. Fast Picometer Mirror Mount Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a 6DOF controllable mirror mount with high dynamic range and fast tip/tilt capability for space based applications. It will enable the...

  11. Reflections on a Black Mirror

    CERN Document Server

    Good, Michael R R

    2016-01-01

    A black mirror is an accelerated boundary that produces particles in an exact correspondence to an evaporating black hole. We investigate the spectral dynamics of the particle creation during the formation process.

  12. Dielectric Coatings for IACT Mirrors

    CERN Document Server

    Förster, A; Chadwick, P; Held, M

    2013-01-01

    Imaging Atmospheric Cherenkov Telescopes for very-high energy gamma-ray astronomy need mirror with high reflectance roughly in the wavelength between 300 and 550 nm. The current standard reflective layer of such mirrors is aluminum. Being permanently exposed to the environment they show a constant degradation over the years. New and improved dielectric coatings have been developed to enhance their resistance to environmental impact and to extend their possible lifetime. In addition, these customized coatings have an increased reflectance of over 95% and are designed to significantly lower the night-sky background contribution. The development of such coatings for mirrors with areas up to 2 m2 and low application temperatures to suite the composite materials used for the new mirror susbtrates of the Cherenkov Telescope Array (CTA) and the results of extensive durability tests are presented.

  13. Polymer glazing for silver mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Neidlinger, H H; Schissel, P

    1985-07-01

    This paper reports on an evaluation and modification of polymeric glazings to protect silver mirrors. The mirrors were made using Corning 7809 glass as a substrate onto which a thin silver film is deposited. The modified polymeric films are then cast from solution onto the silver. The mirrors were characterized by measuring the hemispherical reflectance and the specular reflectance at 660 nm and selected acceptance angles (7.5 mrad or 3.5 mrad). The mirrors were exposed to environmental degradation using accelerated weathering devices and outdoor exposure. Empirical evidence has demonstrated that polymethylmethacrylate is a stable polymer in a terrestrial environment, but the polymer does not provide adequate protection for the silver reflector. The crucial role in degradation played by ultraviolet (uv) light is shown by several experimental results. It has been demonstrated that uv stabilizers added to the polymer improve the weatherability of mirrors. The relative effectiveness of different stabilizers will be discussed in terms of the weathering modes, retention of optical properties, and effectiveness of the additives. The process for silver deposition influences the reflectance of silver mirrors, and the optical properties depend on subtle relationships between the metallization and the dielectric (polymeric) films that are in contact with the silver.

  14. 1/4 BPS Wilson Loop in beta-deformed Theories

    CERN Document Server

    Chu, Chong-Sun

    2007-01-01

    We consider general BPS Wilson loop operators in the N=1 beta-deformed supersymmetric Yang-Mills theory and derive the boundary condition satisfied by the dual string worldsheet. The boundary condition is found to be deformed and is characterized by the vielbein of the deformed supergravity metric. We also construct the string dual configuration for the 1/4 BPS Wilson loop operators. The string lies on a deformed three-sphere instead of a two-sphere as in the undeformed case. We compute the expectation value of the Wilson loop operator using the AdS/CFT correspondence and find that it is independent of the deformation.

  15. Deformation Analysis of Dual Steel Sheet Pile Cofferdam with Weak Foundation in Water%软弱基础水中双排钢板桩围堰变形分析

    Institute of Scientific and Technical Information of China (English)

    张广东; 刘雄; 熊剑

    2015-01-01

    As temporary building envelope ,the stability of steel sheet pile cofferdam in water is of self-evident im-portance to construction safety .Researching the deformation monitoring of the cofferdam ,grasping deformation conditions and controlling construction risk can prevent accidents during construction ,and have great meaning to saving the project cost at the same time .The paper analyzed and discussed the deformation monitoring data of the temporary double steel sheet pile cofferdam in a lake tunnel construction project ,focusing on the relationship between deformation of cofferdam and the water head in the pumping period .By best polynomial approximation ,the result provides experience for similar projects.%作为临时围护结构,水中钢板桩围堰的稳定性对工程施工安全的重要性不言而喻. 对围堰进行变形监测研究,掌握变形状况,控制施工风险,不仅能够防范施工期间事故的发生,还能节约工程成本. 通过分析某湖中大型通道项目施工中临时双排钢板桩围堰变形监测数据,研究围堰变形量和抽水过程中水位差的联系,经过拟合分析得出结论,可为类似水上工程设计和施工提供参考.

  16. Alignment Mirror Mechanisms for Space Use

    Science.gov (United States)

    Jau, Bruno M.; McKinney, Colin M.; Smythe, Robert F.; Palmer, Dean

    2011-01-01

    The paper describes an optical Alignment Mirror Mechanism (AMM), and discusses its control scheme. The mirror's angular positioning accuracy requirement is +/- 0.2 arc-sec. This requires the mirror's linear positioning actuators to have a positioning accuracy of +/- 109 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are +/- 35 nm linear positioning capability at the actuator, which translates into +/- 0.07 arc-sec angular mirror positioning accuracy.

  17. Dual diagnosis

    OpenAIRE

    2013-01-01

    Dual diagnosis denotes intertwining of intellectual disabilities with mental disorders. With the help of systematic examination of literature, intellectual disabilities are determined (they are characterized by subaverage intellectual activity and difficulties in adaptive skills), along side mental disorders. Their influence is seen in changes of thinking, perception, emotionality, behaviour and cognition. Mental disorders often occur with people with intellectual disabilities (data differs f...

  18. Qualification and Testing of a Large Hot Slumped Secondary Mirror for Schwarzschild-Couder Imaging Air Cherenkov Telescopes

    Science.gov (United States)

    Rodeghiero, G.; Giro, E.; Canestrari, R.; Pernechele, C.; Sironi, G.; Pareschi, G.; Lessio, L.; Conconi, P.

    2016-05-01

    Dual-mirror Schwarzschild-Couder (SC) telescopes are based on highly aspherical optics, and they represent a novel design in the world of very high energy astrophysics. This work addresses the realization and the qualification of the secondary mirror for an SC telescope, named ASTRI, developed in the context of the Cherenkov Telescope Array Observatory. The discussion surveys the overall development from the early design concept to the final acceptance optical tests.

  19. AdS5×S(5) mirror model as a string sigma model.

    Science.gov (United States)

    Arutyunov, Gleb; van Tongeren, Stijn J

    2014-12-31

    Doing a double Wick rotation in the world sheet theory of the light cone AdS5×S(5) superstring results in an inequivalent, so-called mirror theory that plays a central role in the field of integrability in the AdS-CFT correspondence. We show that this mirror theory can be interpreted as the light cone theory of a free string on a different background. This background is related to dS5×H(5) by a double T-duality, and has hidden supersymmetry. The geometry can also be extracted from an integrable deformation of the AdS5×S(5) sigma model, and we prove the observed mirror duality of these deformed models at the bosonic level as a byproduct. While we focus on AdS5×S(5), our results apply more generally.

  20. A Demonstration of Wavefront Sensing and Mirror Phasing from the Image Domain

    CERN Document Server

    Pope, Benjamin; Cheetham, Anthony; Martinache, Frantz; Norris, Barnaby; Tuthill, Peter

    2014-01-01

    In astronomy and microscopy, distortions in the wavefront affect the dynamic range of a high contrast imaging system. These aberrations are either imposed by a turbulent medium such as the atmosphere, by static or thermal aberrations in the optical path, or by imperfectly phased subapertures in a segmented mirror. Active and adaptive optics (AO), consisting of a wavefront sensor and a deformable mirror, are employed to address this problem. Nevertheless, the non-common-path between the wavefront sensor and the science camera leads to persistent quasi-static speckles that are difficult to calibrate and which impose a floor on the image contrast. In this paper we present the first experimental demonstration of a novel wavefront sensor requiring only a minor asymmetric obscuration of the pupil, using the science camera itself to detect high order wavefront errors from the speckle pattern produced. We apply this to correct errors imposed on a deformable microelectromechanical (MEMS) segmented mirror in a closed l...

  1. The Active Mirror Control of the MAGIC Telescope

    CERN Document Server

    Biland, A; Anderhub, H; Danielyan, V; Hakobyan, D; Lorenz, E; Mirzoyan, R

    2007-01-01

    One of the main design goals of the MAGIC telescopes is the very fast repositioning in case of Gamma Ray Burst (GRB) alarms, implying a low weight of the telescope dish. This is accomplished by using a space frame made of carbon fiber epoxy tubes, resulting in a strong but not very rigid support structure. Therefore it is necessary to readjust the individual mirror tiles to correct for deformations of the dish under varying gravitational load while tracking an object. We present the concept of the Active Mirror Control (AMC) as implemented in the MAGIC telescopes and the actual performance reached. Additionally we show that also telescopes using a stiff structure can benefit from using an AMC.

  2. Effects of Ferrite Grain Size on Dynamic Deformation Behavior of Ferrite-martensite Dual Phase Steel DP980%铁素体晶粒尺寸对铁素体——马氏体双相钢DP980动态变形行为影响

    Institute of Scientific and Technical Information of China (English)

    代启锋; 宋仁伯; 关小霞; 郭志飞

    2012-01-01

    为了研究铁素体晶粒尺寸对铁素体一马氏体冷轧双相钢DP980动态变形行为的影响,通过连续退火试验,得到两组马氏体体积分数相同、而铁素体晶粒尺寸不同的试样.选取应变速度为1×10-4 s-1和1×10-2s-1进行准静态拉伸试验:选取应变速度为500 s-1、1 000s-1和1 750 s-1在分离式霍普金森拉杆(Split Hopkinson tensile bar,SHTB)上进行动态拉伸试验.使用不考虑晶粒尺寸影响的Johnson-Cook(J-C)率相关模型和考虑晶粒尺寸影响的修正的Khan-Huang-Liang(KHL)率相关模型分析双相钢的动态变形行为,并引入可决系数R2来判定试验结果与模型的吻合关系.分析结果得出修正的KHL模型与试验结果吻合较好,其可决系数R2达到了0.998 7,表明修正的KHL模型可以很好地描述DP980材料在低应变速度和高应变速度下的变形行为,能够反映铁素体晶粒尺寸对DP980动态变形行为的影响.%Effects of ferrite grain size on quasi-static and dynamic deformation behavior of ferrite-martensite dual phase steel (DP980) are investigated. Two groups of experimental dual phase DP steels with the same martensite volume fraction and different ferrite grain size are obtained through performing the experiment with different austenitizing temperature. The quasi-static tensile experiment and the dynamic tensile experiment for the two groups of DP steels are carried out at strain rates ranging from 10~4 to 1 750 s~' at room temperature using universal testing machine CMT4105 and split Hopkinson tensile bar (SHTB), respectively. Then the true stress-effective plastic strain curves of DP980 steel for five strain rates have been obtained through the data processing. Johnson-Cook (J-C) model, which is not concerned with effects of grain size, and modified Khan, Huang and Liang (KHL) model, which is concerned with effects of grain size, are used to research dynamic deformation behavior of dual phase steel. And coefficient of

  3. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    studies allowed proceeding to the central goal, the demonstration of the relativistically flying mirror, which was achieved at the Astra Gemini dual beam laser facility. In this experiment, a frequency shift in the backscatter signal from the visible (800nm) to the extreme ultraviolet (∝60nm) was observed when irradiating the interaction region with a counter-propagating probe pulse simultaneously. Complementary to the experimental observations, a detailed numerical study on the dual beam interaction is presented, explaining the mirror formation and reflection process in great depth, indicating a >10{sup 4} fold increase in the backscatter efficiency as compared to the expected incoherent signal. The simulations show that the created electron mirrors propagate freely at relativistic velocities while reflecting off the counter-propagating laser, thereby truly acting like the relativistic mirror first discussed in Einstein's thought experiment. The reported work gives an intriguing insight into the electron dynamics in high intensity laser nanofoil interactions and constitutes a major step towards the coherent backscattering from a relativistic electron mirror of solid density, which could potentially generate bright bursts of X-rays on a micro-scale.

  4. More questions for mirror neurons.

    Science.gov (United States)

    Borg, Emma

    2013-09-01

    The mirror neuron system is widely held to provide direct access to the motor goals of others. This paper critically investigates this idea, focusing on the so-called 'intentional worry'. I explore two answers to the intentional worry: first that the worry is premised on too limited an understanding of mirror neuron behaviour (Sections 2 and 3), second that the appeal made to mirror neurons can be refined in such a way as to avoid the worry (Section 4). I argue that the first response requires an account of the mechanism by which small-scale gestures are supposedly mapped to larger chains of actions but that none of the extant accounts of this mechanism are plausible. Section 4 then briefly examines refinements of the mirror neuron-mindreading hypothesis which avoid the intentional worry. I conclude that these refinements may well be plausible but that they undermine many of the claims standardly made for mirror neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Metamaterial mirrors in optoelectronic devices

    KAUST Repository

    Esfandyarpour, Majid

    2014-06-22

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  6. The newest observational evidence on asymmetrical deformation of the Earth

    Institute of Scientific and Technical Information of China (English)

    黄立人; 马宗晋; 朱建新

    2002-01-01

    Based on the coordinates, velocities and their error estimations of 595 GPS, SLR and VLBI stations issued by IERS in March 2001, the current asymmetrical deformation of the Earth is studied. The results show that the northern hemisphere of the Earth is undergoing compressive deformation, and the southern hemisphere is undergoing extensional deformation with the equator as the boundary. If the longitude line of 90(E and 90(W is taken as the boundary, the Pacific hemisphere (with 180( as its central longitude) is undergoing compressive deformation, and the Atlantic hemisphere (with 0( as its central longitude) is undergoing extensional deformation. The deformation patterns indicate again that the Earth is undergoing some dual-asymmetrical deformation. Moreover, taking 6 366.740 km as the standard mean curvature radius of the Earth, the velocity of volume change calculated from the data of space geodesy is 6.65(1011 m3/a.

  7. QCD Dual

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2009-01-01

    We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...

  8. Topological recursion and mirror curves

    CERN Document Server

    Bouchard, Vincent

    2012-01-01

    We study the constant contributions to the free energies obtained through the topological recursion applied to the complex curves mirror to toric Calabi-Yau threefolds. We show that the recursion reproduces precisely the corresponding Gromov-Witten invariants, which can be encoded in powers of the MacMahon function. As a result, we extend the scope of the "remodeling conjecture" to the full free energies, including the constant contributions. In the process we study how the pair of pants decomposition of the mirror curves plays an important role in the topological recursion. We also show that the free energies are not, strictly speaking, symplectic invariants, and that the recursive construction of the free energies does not commute with certain limits of mirror curves.

  9. Metrology of IXO Mirror Segments

    Science.gov (United States)

    Chan, Kai-Wing

    2011-01-01

    For future x-ray astrophysics mission that demands optics with large throughput and excellent angular resolution, many telescope concepts build around assembling thin mirror segments in a Wolter I geometry, such as that originally proposed for the International X-ray Observatory. The arc-second resolution requirement posts unique challenges not just for fabrication, mounting but also for metrology of these mirror segments. In this paper, we shall discuss the metrology of these segments using normal incidence metrological method with interferometers and null lenses. We present results of the calibration of the metrology systems we are currently using, discuss their accuracy and address the precision in measuring near-cylindrical mirror segments and the stability of the measurements.

  10. Alpha Channeling in Mirror Machines

    Energy Technology Data Exchange (ETDEWEB)

    Fisch N.J.

    2005-10-19

    Because of their engineering simplicity, high-β, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.

  11. Optimizing X-ray mirror thermal performance using matched profile cooling.

    Science.gov (United States)

    Zhang, Lin; Cocco, Daniele; Kelez, Nicholas; Morton, Daniel S; Srinivasan, Venkat; Stefan, Peter M

    2015-09-01

    To cover a large photon energy range, the length of an X-ray mirror is often longer than the beam footprint length for much of the applicable energy range. To limit thermal deformation of such a water-cooled X-ray mirror, a technique using side cooling with a cooled length shorter than the beam footprint length is proposed. This cooling length can be optimized by using finite-element analysis. For the Kirkpatrick-Baez (KB) mirrors at LCLS-II, the thermal deformation can be reduced by a factor of up to 30, compared with full-length cooling. Furthermore, a second, alternative technique, based on a similar principle is presented: using a long, single-length cooling block on each side of the mirror and adding electric heaters between the cooling blocks and the mirror substrate. The electric heaters consist of a number of cells, located along the mirror length. The total effective length of the electric heater can then be adjusted by choosing which cells to energize, using electric power supplies. The residual height error can be minimized to 0.02 nm RMS by using optimal heater parameters (length and power density). Compared with a case without heaters, this residual height error is reduced by a factor of up to 45. The residual height error in the LCLS-II KB mirrors, due to free-electron laser beam heat load, can be reduced by a factor of ∼11 below the requirement. The proposed techniques are also effective in reducing thermal slope errors and are, therefore, applicable to white beam mirrors in synchrotron radiation beamlines.

  12. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    Science.gov (United States)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  13. ATLAST ULE mirror segment performance analytical predictions based on thermally induced distortions

    Science.gov (United States)

    Eisenhower, Michael J.; Cohen, Lester M.; Feinberg, Lee D.; Matthews, Gary W.; Nissen, Joel A.; Park, Sang C.; Peabody, Hume L.

    2015-09-01

    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for a 9.2 m aperture space-borne observatory operating across the UV/Optical/NIR spectra. The primary mirror for ATLAST is a segmented architecture with pico-meter class wavefront stability. Due to its extraordinarily low coefficient of thermal expansion, a leading candidate for the primary mirror substrate is Corning's ULE® titania-silicate glass. The ATLAST ULE® mirror substrates will be maintained at `room temperature' during on orbit flight operations minimizing the need for compensation of mirror deformation between the manufacturing temperature and the operational temperatures. This approach requires active thermal management to maintain operational temperature while on orbit. Furthermore, the active thermal control must be sufficiently stable to prevent time-varying thermally induced distortions in the mirror substrates. This paper describes a conceptual thermal management system for the ATLAST 9.2 m segmented mirror architecture that maintains the wavefront stability to less than 10 pico-meters/10 minutes RMS. Thermal and finite element models, analytical techniques, accuracies involved in solving the mirror figure errors, and early findings from the thermal and thermal-distortion analyses are presented.

  14. Electronic speckle pattern interferometric testing of JWST primary mirror segment assembly

    Science.gov (United States)

    Smith, Koby Z.; Chaney, David M.; Saif, Babak N.

    2011-09-01

    The James Webb Space Telescope (JWST) Primary Mirror Segment Assembly (PMSA) was required to meet NASA Technology Readiness Level (TRL) 06 requirements in the summer of 2006. These TRL06 requirements included verifying all mirror technology systems level readiness in simulated end-to-end operating conditions. In order to support the aggressive development and technology readiness schedule for the JWST Primary Mirror Segment Assembly (PMSA), a novel approach was implemented to verify the nanometer surface figure distortion effects on an in-process non-polished beryllium mirror surface. At the time that the TRL06 requirements needed to be met, a polished mirror segment had not yet been produced that could have utilized the baselined interferometric optical test station. The only JWST mirror segment available was a finished machined segment with an acid-etched optical surface. Therefore an Electronic Speckle Pattern Interferometer (ESPI) was used in coordination with additional metrology techniques to perform interferometric level optical testing on a non-optical surface. An accelerated, rigorous certification program was quickly developed for the ESPI to be used with the unfinished optical surface of the primary mirror segment. The ESPI was quickly implemented into the PMSA test program and optical testing was very successful in quantifying the nanometer level surface figure deformation changes in the PMSA due to assembly, thermal cycling, vibration, and acoustic testing. As a result of the successful testing, the PMSA passed all NASA TRL06 readiness requirements.

  15. Considerations of One-Modulus Calabi-Yau Compactifications Picard-Fuchs Equations, K\\"ahler Potentials and Mirror Maps

    CERN Document Server

    Klemm, A D; Klemm, Albrecht; Theisen, Stefan

    1993-01-01

    We consider Calabi-Yau compactifications with one K\\"ahler modulus. Following the method of Candelas et al. we use the mirror hypothesis to solve the quantum theory exactly in dependence of this modulus by performing the calculation for the corresponding complex structure deformation on the mirror manifold. Here the information is accessible by techniques of classical geometry. It is encoded in the Picard-Fuchs differential equation which has to be supplemented by requirements on the global properties of its solutions.

  16. Harmonic Distortion in CMOS Current Mirrors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1998-01-01

    One of the origins of harmonic distortion in CMOS current mirrors is the inevitable mismatch between the MOS transistors involved. In this paper we examine both single current mirrors and complementary class AB current mirrors and develop an analytical model for the mismatch induced harmonic...... distortion. This analytical model is verified through simulations and is used for a discussion of the impact of mismatch on harmonic distortion properties of CMOS current mirrors. It is found that distortion levels somewhat below 1% can be attained by carefully matching the mirror transistors but ultra low...... distortion is not achievable with CMOS current mirrors...

  17. A deformation of the Curtright action

    CERN Document Server

    Hörtner, Sergio

    2016-01-01

    We present a deformation of the action principle for a free tensor field of mixed symmetry (2,1) --the Curtright action, a dual formulation of five-dimensional linearized gravity. It is constructed as the dual theory of the Einstein-Hilbert action linearized around a de Sitter background, and its derivation relies on the use of the two-potential formalism as an intermediate step. The resulting action principle is spatially non-local and space-time covariance is not manifest, thus overcoming previous no-go results.

  18. Variations on the Warped Deformed Conifold

    CERN Document Server

    Gubser, S S; Klebanov, I R; Gubser, Steven S.; Herzog, Christopher P.; Klebanov, Igor R.

    2004-01-01

    The warped deformed conifold background of type IIB theory is dual to the cascading $SU(M(p+1))\\times SU(Mp)$ gauge theory. We show that this background realizes the (super-)Goldstone mechanism where the U(1) baryon number symmetry is broken by expectation values of baryonic operators. The resulting massless pseudo-scalar and scalar glueballs are identified in the supergravity spectrum. A D-string is then dual to a global string in the gauge theory. Upon compactification, the Goldstone mechanism turns into the Higgs mechanism, and the global strings turn into ANO strings.

  19. Composite single crystal silicon scan mirror substrates Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Single crystal silicon is a desirable mirror substrate for scan mirrors in space telescopes. As diameters of mirrors become larger, existing manufacturing...

  20. NASA CONNECT: Algebra: Mirror, Mirror on the Universe

    Science.gov (United States)

    2000-01-01

    'Algebra: Mirror, Mirror on the Universe' is the last of seven programs in the 1999-2000 NASA CONNECT series. Produced by NASA Langley Research Center's Office of Education, NASA CONNECT is an award-winning series of instructional programs designed to enhance the teaching of math, science and technology concepts in grades 5-8. NASA CONNECT establishes the 'connection' between the mathematics, science, and technology concepts taught in the classroom and NASA research. Each program in the series supports the national mathematics, science, and technology standards; includes a resource-rich teacher guide; and uses a classroom experiment and web-based activity to complement and enhance the math, science, and technology concepts presented in the program. NASA CONNECT is FREE and the programs in the series are in the public domain. Visit our web site and register. http://connect.larc.nasa.gov In 'Algebra: Mirror, Mirror on the Universe', students will learn how algebra is used to explore the universe.

  1. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation

    Science.gov (United States)

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey

    2014-01-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. PMID:23709352

  2. The panels for primary and secondary mirror reflectors and the Active Surface System for the new Sardinia Radio Telescope

    Science.gov (United States)

    Zacchiroli, G.; Fiocchi, F.; Maccaferri, G.; Morsiani, M.; Orfei, A.; Pernechele, C.; Pisanu, T.; Roda, J.; Vargiu, G.

    In this paper we will describe the panels for the primary and secondary mirror reflectors and the active surface system that will be provided on the Sardinia Radio Telescope. The panels for the primary and secondary mirror have been designed to allow an operating frequency up to 100 GHz. The active surface system will be used to overcome the effect of gravity deformation on the antenna gain and to re-shape the primary mirror in a parabolic form, in order to avoid large phase error contribution on the gain for the highest frequencies placed in the primary focus.

  3. [The ontogeny of the mirror neuron system].

    Science.gov (United States)

    Myowa-Yamakoshi, Masako

    2014-06-01

    Abstract Humans utilize the mirror neuron system to understand and predict others' actions. However, the ontogeny of the mirror neuron system remains unknown. Whether mirror neuron function is an innate trait or whether mirror neurons acquire their sensorimotor matching properties ontogenetically remains to be clarified. In this paper, I review the ontogenetic theory of the mirror neuron system. I then discuss the functioning of the mirror neuron system in the context of social cognitive abilities, which are unique to humans. Recently, some researchers argue that it is too early to interpret the function of mirror neurons as an understanding of the underlying psychological states of others. They imply that such functioning would require inferential cognitive processes that are known to involve areas outside the mirror neuron system. Filling in this missing link may be the key to elucidating the unique ability of humans to understand others' actions.

  4. MIRROR THERAPY: A REVIEW OF EVIDENCES

    Directory of Open Access Journals (Sweden)

    Aishath Najiha

    2015-06-01

    Full Text Available The aim of this review was to identify and summarize the existing evidences on mirror box therapy for the management of various musculoskeletal conditions. A systemic literature search was performed to identify studies concerning mirror therapy. The included journal articles were reviewed and assessed for its significance. Fifty one studies were identified and reviewed. Five different patient categories were studied: 24 studies focussed on mirror therapy after stroke, thirteen studies focussed on mirror therapy after an amputation, three studies focussed on mirror therapy with complex regional pain syndrome patients, two studies on mirror therapy for cerebral palsy and one study focussed on mirror therapy after a fracture. The articles reviewed showed a trend that mirror therapy is effective in stroke, phantom limb pain, complex regional pain syndrome, cerebral palsy and fracture rehabilitation.

  5. Mirror with thermally controlled radius of curvature

    Science.gov (United States)

    Neil, George R.; Shinn, Michelle D.

    2010-06-22

    A radius of curvature controlled mirror for controlling precisely the focal point of a laser beam or other light beam. The radius of curvature controlled mirror provides nearly spherical distortion of the mirror in response to differential expansion between the front and rear surfaces of the mirror. The radius of curvature controlled mirror compensates for changes in other optical components due to heating or other physical changes. The radius of curvature controlled mirror includes an arrangement for adjusting the temperature of the front surface and separately adjusting the temperature of the rear surface to control the radius of curvature. The temperature adjustment arrangements can include cooling channels within the mirror body or convection of a gas upon the surface of the mirror. A control system controls the differential expansion between the front and rear surfaces to achieve the desired radius of curvature.

  6. Tiny Mirrors Make TV Magic

    Institute of Scientific and Technical Information of China (English)

    杨仲言

    1994-01-01

    By mounting thousands of miniature mirrors atop a silicon chip, a Texas Instruments engineer has crafted a TV display technology that can produce brighter and larger pictures than ever before. Since their invention, televisions have relied on cathode-ray tubes for their displays. These generate images by spraying electrons onto the back of

  7. Mounting and Alignment of IXO Mirror Segments

    Science.gov (United States)

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  8. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    Experimental results, theory and innovative ideas now point with increased confidence to the possibility of a Gas Dynamic Trap (GDT) neutron source which would be on the path to an attractively simple Axisymmetric Tandem Mirror (ATM) power plant. Although magnetic mirror research was terminated in the US 20 years ago, experiments continued in Japan (Gamma 10) and Russia (GDT), with a very small US effort. This research has now yielded data, increased understanding, and generated ideas resulting in the new concepts described here. Early mirror research was carried out with circular axisymmetric magnets. These plasmas were MHD unstable due to the unfavorable magnetic curvature near the mid-plane. Then the minimum-B concept emerged in which the field line curvature was everywhere favorable and the plasma was situated in a MHD stable magnetic well (70% average beta in 2XII-B). The Ioffe-bar or baseball-coil became the standard for over 40 years. In the 1980's, driven by success with minimum-B stabilization and the control of ion cyclotron instabilities in PR6 and 2XII-B, mirrors were viewed as a potentially attractive concept with near-term advantages as a lower Q neutron source for applications such as a hybrid fission fuel factory or toxic waste burner. However there are down sides to the minimum-B geometry: coil construction is complex; restraining magnetic forces limit field strength and mirror ratios. Furthermore, the magnetic field lines have geodesic curvature which introduces resonant and neoclassical radial transport as observed in early tandem mirror experiments. So what now leads us to think that simple axisymmetric mirror plasmas can be stable? The Russian GDT experiment achieves on-axis 60% beta by peaking of the kinetic plasma pressure near the mirror throat (where the curvature is favorable) to counter-balance the average unfavorable mid-plane curvature. Then a modest augmentation of plasma pressure in the expander results in stability. The GDT

  9. Research on OEF geometry control algorithm in dual-galvanometric laser scanning manufacturing

    Institute of Scientific and Technical Information of China (English)

    Huilai Sun; Shuzhong Lin; Tao Wang

    2005-01-01

    For the dual-galvanometric laser scanning manufacturing, the traditional geometry algorithm-fθ only considered the distance between the two swaying mirrors, the distance between the swaying mirror and the convex lens, the mirror swaying angle, and the lens focal length. And it could not correctly express the manufacturing track which was made geometry distorted. Based on analysis, a creative geometry control algorithm - optical entire factors (OEF) was brought forward. From the creative algorithm it can be known that OEF geometry control algorithm was concerned with not only the distance of the two swaying mirrors, distance between the swaying mirror and the convex lens, mirror swaying angle, and lens focal length, but also the lens central height, lens convex radius, and medium refractive index. The manufacturing system can manufacture satisfied geometry with the creative double ends approach (DEA) control model based on OEF in the experiments.

  10. Active optics: variable curvature mirrors for ELT laser guide star refocusing systems

    Science.gov (United States)

    Challita, Zalpha; Hugot, Emmanuel; Madec, Fabrice; Ferrari, Marc; Le Mignant, David; Vivès, Sébastien; Cuby, Jean-Gabriel

    2011-10-01

    The future generation of Extremely Large Telescopes will require a complex combination of technologies for adaptive optics (AO) systems assisted by laser guide stars (LGS). In this context, the distance from the LGS spot to the telescope pupil ranges from about 80 to 200 km, depending on the Sodium layer altitude and the elevation of the telescope. This variation leads to a defocusing effect on the LGS wave-front sensor which needs to be compensated. We propose an active mirror able to compensate for this variation, based on an original optical design including this active optics component. This LGS Variable Curvature Mirror (LGS-VCM) is a 120 mm spherical active mirror able to achieve 820 μm deflection sag with an optical quality better than 150 nm RMS, allowing the radius of curvature variation from F/12 to F/2. Based on elasticity theory, the deformation of the metallic mirror is provided by an air pressure applied on a thin meniscus with a variable thickness distribution. In this article, we detail the analytical development leading to the specific geometry of the active component, the results of finite element analysis and the expected performances in terms of surface error versus the range of refocalisation. Three prototypes have been manufactured to compare the real behavior of the mirror and the simulations data. Results obtained on the prototypes are detailed, showing that the deformation of the VCM is very close to the simulation, and leads to a realistic active concept.

  11. Manufacturing and testing a thin glass mirror shell with piezoelectric active control

    Science.gov (United States)

    Spiga, D.; Barbera, M.; Collura, A.; Basso, S.; Candia, R.; Civitani, M.; Di Bella, M.; Di Cicca, G.; Lo Cicero, U.; Lullo, G.; Pelliciari, C.; Riva, M.; Salmaso, B.; Sciortino, L.; Varisco, S.

    2015-09-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto the non-optical side of the mirrors, and several groups are already at work on this approach. The concept we are developing consists of actively integrating thin glass foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays. The actuators are commercial components, while the tension signals are carried by a printed circuit obtained by photolithography, and the driving electronic is a multi-channel low power consumption voltage supply developed inhouse. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array are determined in X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we describe the manufacturing steps to obtain a first active mirror prototype and the very first test performed in X-rays.

  12. Mirror movements in progressive hemifacial atrophy

    OpenAIRE

    2015-01-01

    Mirror movements are simultaneous, involuntary, identical movements occurring during contralateral voluntary movements. These movements are considered as soft neurologic signs seen uncommonly in clinical practice. The mirror movements are described in various neurological disorders which include parkinsonism, cranio veretebral junction anamolies, and hemiplegic cerebral palsy. These movements are intriguing and can pose significant disability. However, no such observation regarding mirror mov...

  13. Through the looking-glass: mirror reading.

    Science.gov (United States)

    Duñabeitia, Jon Andoni; Molinaro, Nicola; Carreiras, Manuel

    2011-02-14

    At early stages of object identification we process correctly oriented and mirrored versions of an object similarly. However, in letter and word perception, such tolerance to mirror reversals is harmful for efficient reading. Do readers successfully develop blindness mechanisms for mirror-letters and words? We conducted two masked priming experiments while recording participants' electrophysiological brain responses to briefly presented primes including mirror-letters (Experiment 1) or to shortly presented mirror-words (Experiment 2). Results showed that the human visual word recognition system is not totally blind to mirror-letters and mirror-words, since the early stages of processing mirror-letters and mirror-words produced effects on target word recognition that were highly similar to the effects produced by identical primes (N250 component). In a posterior stage of processing (N400 epoch), the effect of mirror-letters and mirror-words was different from the effect of identical primes, even though reversed primes still elicited N400 priming effects different from unrelated primes. These results demonstrate that readers perceive mirror-letters and words as correct at initial stages of word recognition, and that the visual word recognition system's neural representation is grounded on basic principles that govern object perception.

  14. Light Weight Silicon Mirrors for Space Instrumentation

    Science.gov (United States)

    Bly, Vincent T.; Hill, Peter C.; Hagopian, John G.; Strojay, Carl R.; Miller, Timothy

    2012-01-01

    Each mirror is a monolithic structure from a single crystal of silicon. The mirrors are light weighted after the optical surface is ground and polished. Mirrors made during the initial phase of this work were typically 1/50 lambda or better (RMS at 633 n m)

  15. The mirror neuron system : New frontiers

    NARCIS (Netherlands)

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into Studying their location and properties in the human brain. Here we review these original findings and introduce the Main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror

  16. Fourier transform optical profilometry using fiber optic Lloyd's mirrors.

    Science.gov (United States)

    Kart, Türkay; Kösoğlu, Gülşen; Yüksel, Heba; İnci, Mehmet Naci

    2014-12-10

    A fiber optic Lloyd's mirror assembly is used to obtain various optical interference patterns for the detection of 3D rigid body shapes. Two types of fiber optic Lloyd's systems are used in this work. The first consists of a single-mode optical fiber and a highly reflecting flat mirror to produce bright and dark strips. The second is constructed by locating a single-mode optical fiber in a v-groove, which is formed by two orthogonal flat mirrors to allow the generation of square-type interference patterns for the desired applications. The structured light patterns formed by these two fiber Lloyd's techniques are projected onto 3D objects. Fringe patterns are deformed due to the object's surface topography, which are captured by a digital CCD camera and processed with a Fourier transform technique to accomplish 3D surface topography of the object. It is demonstrated that the fiber-optic Lloyd's technique proposed in this work is more compact, more stable, and easier to configure than other existing surface profilometry systems, since it does not include any high-cost optical tools such as aligners, couplers, or 3D stages. The fringe patterns are observed to be more robust against environmental disturbances such as ambient temperature and vibrations.

  17. Yang-Baxter deformations of Minkowski spacetime

    CERN Document Server

    Matsumoto, Takuya; Reffert, Susanne; Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2015-01-01

    We study Yang-Baxter deformations of 4D Minkowski spacetime. The Yang-Baxter sigma model description was originally developed for principal chiral models based on a modified classical Yang-Baxter equation. It has been extended to coset curved spaces and models based on the usual classical Yang-Baxter equation. On the other hand, for flat space, there is the obvious problem that the standard bilinear form degenerates if we employ the familiar coset Poincar\\'e group/Lorentz group. Instead we consider a slice of AdS$_5$ by embedding the 4D Poincar\\'e group into the 4D conformal group $SO(2,4)$. With this procedure we obtain metrics and $B$-fields as Yang-Baxter deformations which correspond to well-known configurations such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, the T-dual of Grant space, pp-waves, and T-duals of dS$_4$ and AdS$_4$. Finally we consider a deformation with a classical $r$-matrix of Drinfeld-Jimbo type and explicitly derive the associated met...

  18. Yang-Baxter deformations of Minkowski spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Takuya [Graduate School of Mathematics and Institute for Advanced Research,Nagoya University, Nagoya 464-8602 (Japan); Orlando, Domenico [IPT Ph.Meyer, and LPTENS,24 rue Lhomond, 75005 Paris (France); Reffert, Susanne [Institute for Theoretical Physics,Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, CH-3012 Bern (Switzerland); Sakamoto, Jun-ichi; Yoshida, Kentaroh [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan)

    2015-10-28

    We study Yang-Baxter deformations of 4D Minkowski spacetime. The Yang-Baxter sigma model description was originally developed for principal chiral models based on a modified classical Yang-Baxter equation. It has been extended to coset curved spaces and models based on the usual classical Yang-Baxter equation. On the other hand, for flat space, there is the obvious problem that the standard bilinear form degenerates if we employ the familiar coset Poincaré group/Lorentz group. Instead we consider a slice of AdS{sub 5} by embedding the 4D Poincaré group into the 4D conformal group SO(2,4) . With this procedure we obtain metrics and B-fields as Yang-Baxter deformations which correspond to well-known configurations such as T-duals of Melvin backgrounds, Hashimoto-Sethi and Spradlin-Takayanagi-Volovich backgrounds, the T-dual of Grant space, pp-waves, and T-duals of dS{sub 4} and AdS{sub 4}. Finally we consider a deformation with a classical r-matrix of Drinfeld-Jimbo type and explicitly derive the associated metric and B-field which we conjecture to correspond to a new integrable system.

  19. Steps toward increasing Q in mirror systems

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.

    1979-08-20

    Experiments such as the 2XIIB experiment at Livermore have established the ability of mirror systems to confine high temperature, high density plasmas at central beta values exceeding unity. Given these results the next tasks for the mirror approach are to explore means for increasing the energy gain factor Q and to scale up the plasma volume, both of these requirements deriving from economic constraints. This report discusses means for increasng Q, including recent improvements in the tandem mirror concept and design studies of the field-reversed mirror in the context of upcoming and proposed scaled-up mirror experiments.

  20. Lax pairs on Yang-Baxter deformed backgrounds

    CERN Document Server

    Kameyama, Takashi; Sakamoto, Jun-ichi; Yoshida, Kentaroh

    2015-01-01

    We explicitly derive Lax pairs for string theories on Yang-Baxter deformed backgrounds, 1) gravity duals for noncommutative gauge theories, 2) $\\gamma$-deformations of S$^5$, 3) Schr\\"odinger spacetimes and 4) abelian twists of the global AdS$_5$\\,. Then we can find out a concise derivation of Lax pairs based on simple replacement rules. Furthermore, each of the above deformations can be reinterpreted as a twisted periodic boundary conditions with the undeformed background by using the rules. As another derivation, the Lax pair for gravity duals for noncommutative gauge theories is reproduced from the one for a $q$-deformed AdS$_5\\times$S$^5$ by taking a scaling limit.

  1. [What mirror neurons have revealed: revisited].

    Science.gov (United States)

    Murata, Akira; Maeda, Kazutaka

    2014-06-01

    The first paper on mirror neurons was published in 1992. In the span of over two decades since then, much knowledge about the relationship between social cognitive function and the motor control system has been accumulated. Direct matching of visual actions and their corresponding motor representations is the most important functional property of mirror neuron. Many studies have emphasized intrinsic simulation as a core concept for mirror neurons. Mirror neurons are thought to play a role in social cognitive function. However, the function of mirror neurons in the macaque remains unclear, because such cognitive functions are limited or lacking in macaque monkeys. It is therefore important to discuss these neurons in the context of motor function. Rizzolatti and colleagues have stressed that the most important function of mirror neurons in macaques is recognition of actions performed by other individuals. I suggest that mirror neurons in the Macaque inferior pariental lobule might be correlated with body schema. In the parieto-premotor network, matching of corollary discharge and actual sensory feedback is an essential neuronal operation. Recently, neurons showing mirror properties were found in some cortical areas outside the mirror neuron system. The current work would revisit the outcomes of mirror neuron studies to discuss the function of mirror neurons in the monkey.

  2. Limits of spherical blur determined with an adaptive optics mirror.

    Science.gov (United States)

    Atchison, David A; Guo, Huanqing; Fisher, Scott W

    2009-05-01

    We extended an earlier study (Vision Research, 45, 1967-1974, 2005) in which we investigated limits at which induced blur of letter targets becomes noticeable, troublesome and objectionable. Here we used a deformable adaptive optics mirror to vary spherical defocus for conditions of a white background with correction of astigmatism; a white background with reduction of all aberrations other than defocus; and a monochromatic background with reduction of all aberrations other than defocus. We used seven cyclopleged subjects, lines of three high-contrast letters as targets, 3-6 mm artificial pupils, and 0.1-0.6 logMAR letter sizes. Subjects used a method of adjustment to control the defocus component of the mirror to set the 'just noticeable', 'just troublesome' and 'just objectionable' defocus levels. For the white-no adaptive optics condition combined with 0.1 logMAR letter size, mean 'noticeable' blur limits were +/-0.30, +/-0.24 and +/-0.23 D at 3, 4 and 6 mm pupils, respectively. White-adaptive optics and monochromatic-adaptive optics conditions reduced blur limits by 8% and 20%, respectively. Increasing pupil size from 3-6 mm decreased blur limits by 29%, and increasing letter size increased blur limits by 79%. Ratios of troublesome to noticeable, and of objectionable to noticeable, blur limits were 1.9 and 2.7 times, respectively. The study shows that the deformable mirror can be used to vary defocus in vision experiments. Overall, the results of noticeable, troublesome and objectionable blur agreed well with those of the previous study. Attempting to reduce higher-order aberrations or chromatic aberrations, reduced blur limits to only a small extent.

  3. Mirror neurons: their implications for group psychotherapy.

    Science.gov (United States)

    Schermer, Victor L

    2010-10-01

    Recently discovered mirror neurons in the motor cortex of the brain register the actions and intentions of both the organism and others in the environment. As such, they may play a significant role in social behavior and groups. This paper considers the potential implications of mirror neurons and related neural networks for group therapists, proposing that mirror neurons and mirror systems provide "hard-wired" support for the group therapist's belief in the centrality of relationships in the treatment process and exploring their value in accounting for group-as-a-whole phenomena. Mirror neurons further confirm the holistic, social nature of perception, action, and intention as distinct from a stimulus-response behaviorism. The implications of mirror neurons and mirroring processes for the group therapist role, interventions, and training are also discussed.

  4. Design of a rapidly cooled cryogenic mirror

    Science.gov (United States)

    Plummer, Ron; Hsu, Ike

    1993-01-01

    The paper discusses the design, analysis, and testing of a rapidly cooled beryllium cryogenic mirror, which is the primary mirror in the four-element optical system for the Long Wavelength Infrared Advanced Technology Seeker. The mirror is shown to meet the requirement of five minutes for cooling to cryogenic operating temperature; it also maintains its optical figure and vacuum integrity and meets the nuclear specification. Results of a detailed thermal analysis on the mirror showed that, using nitrogen gas at 80 K as coolant, the front face of the mirror can be cooled from an initial temperature of 300 K to less than 90 K within five minutes. In a vacuum chamber, using liquid nitrogen as coolant, the mirror can be cooled to 80 K within 1.5 min. The mirror is well thermally insulated, so that it can be maintained at less than its operating temperature for a long time without active cooling.

  5. Improved cylindrical mirror energy analyzer

    Science.gov (United States)

    Baranova, L. A.

    2017-03-01

    A study has been carried out of the electron-optical properties of improved design of the cylindrical mirror energy analyzer. Both external and internal electrodes of the analyzer are divided into three isolated parts, whereby the potentials on the individual parts can be regulated independently from each other. In symmetric operating mode at identical potentials on the side parts of the electrodes, a significant increase has been obtained in resolving power and light-gathering power of the analyzer compared to the standard design of the cylindrical mirror. In asymmetric operating mode, which is implemented in a linear potential distribution on the external electrode, the conditions have been found under which the linear dispersion of the analyzer increases several times.

  6. Spectral Theory and Mirror Symmetry

    CERN Document Server

    Marino, Marcos

    2015-01-01

    Recent developments in string theory have revealed a surprising connection between spectral theory and local mirror symmetry: it has been found that the quantization of mirror curves to toric Calabi-Yau threefolds leads to trace class operators, whose spectral properties are conjecturally encoded in the enumerative geometry of the Calabi-Yau. This leads to a new, infinite family of solvable spectral problems: the Fredholm determinants of these operators can be found explicitly in terms of Gromov-Witten invariants and their refinements; their spectrum is encoded in exact quantization conditions, and turns out to be determined by the vanishing of a quantum theta function. Conversely, the spectral theory of these operators provides a non-perturbative definition of topological string theory on toric Calabi-Yau threefolds. In particular, their integral kernels lead to matrix integral representations of the topological string partition function, which explain some number-theoretic properties of the periods. In this...

  7. The study of 700mm-diameter primary mirror based on topology optimization and sensitivity analysis

    Science.gov (United States)

    Wang, Xin; He, Xiaoying; Jing, Juanjuan; Feng, Lei; Zhou, Jinsong; Wang, Wei; Li, Yacan; Wei, Lidong

    2016-10-01

    The primary mirror is an important optical component of space camera. Its performance related to the optical image quality, and the weight directly affects the whole camera weight. The traditional design of primary mirror relies on much experience, lacking of precise theory, and many design parameters obtained by empirical formulas, thus the performance of the result is unstable. For this study, a primary mirror made of SiC with the diameter of 700mm was conceptual designed to get the optimized structure. Then sensitivity analysis was carried out to determine the optimum thickness of the back muscles. Finally, the optimum primary mirror fully satisfied the required was completed, with outstanding mechanical performance and light weight. A comparison between the optimum primary and traditional primary was performed and the results showed that the optimum primary has higher lightweight ratio increased by 5%, higher modal frequency increased by 81Hz.The maximum deformation under gravity reduced by 48nm, PV of the mirror surface reduced by 8.1nm and RMS reduced by 3.1nm. All the results indicated that the optimization method in the paper is reasonable and effective, which gives a reference to the primary mirror design in the future.

  8. Integrable Deformations of Strings on Symmetric Spaces

    CERN Document Server

    Hollowood, Timothy J; Schmidtt, David M

    2014-01-01

    A general class of deformations of integrable sigma-models with symmetric space F/G target-spaces are found. These deformations involve defining the non-abelian T dual of the sigma-model and then replacing the coupling of the Lagrange multiplier imposing flatness with a gauged F/F WZW model. The original sigma-model is obtained in the limit of large level. The resulting deformed theories are shown to preserve both integrability and the equations-of-motion, but involve a deformation of the symplectic structure. It is shown that this deformed symplectic structure involves a linear combination of the original Poisson bracket and a generalization of the Faddeev-Reshetikhin Poisson bracket which we show can be re-expressed as two decoupled F current algebras. It is then shown that the deformation can be incorporated into the classical model of strings on R x F/G via a generalization of the Pohlmeyer reduction. In this case, in the limit of large sigma-model coupling it is shown that the theory becomes the relativi...

  9. A multitrace deformation of ABJM theory

    CERN Document Server

    Craps, Ben; Turok, Neil

    2009-01-01

    Motivated by the study of big crunch singularities in asymptotically $AdS_4$ spacetimes, we consider a marginal triple trace deformation of ABJM theory. The deformation corresponds to adding a potential which is unbounded below. In a 't Hooft large $N$ limit, the beta function for the triple trace deformation vanishes, which is consistent with the near-boundary behavior of the bulk fields. At the next order in the $1/N$ expansion, the triple trace couplings exhibit non-trivial running. By studying a closely related $O(N)\\times O(N)$ vector model, we provide evidence for the existence of a perturbative UV fixed point, and we comment on possible non-perturbative effects. We also show that the bulk analysis leading to big crunch singularities extends to the $\\Zbar_k$ orbifold models dual to ABJM theory.

  10. IR image properties measurement of new micro-mirror array structure beam combiner

    Science.gov (United States)

    Li, Yanhong; Zhang, Li; Li, Zhuo

    2014-11-01

    Microwave (MW)/Infrared(IR) dual-mode compound guidance technology has greatly developed recent years for enhancing guidance precision effectively. Here a new micro-mirror array structure is introduced as upright display for MW/IR beam combiner in HWIL simulation. The beam combiner is used in the IR/MW compound HWIL system for transmitting the MW signal while reflecting the IR signal. The spatial resolution and spatial uniformity are two important performance indicators for beam combiner in the application of HWIL simulation system. In this paper, the definitions, measurement methods, and results of spatial resolution and spatial uniformity are given. Through the measurement by multiple groups of black and white stripes, the spatial resolution and the spatial uniformity can be got. It shows the micro-mirror array beam combiner can be applied for MW/IR dual-mode common-aperture HWIL simulation system.

  11. Mirror agnosia and the mirrored-self misidentification delusion: a hypnotic analogue.

    Science.gov (United States)

    Connors, Michael H; Cox, Rochelle E; Barnier, Amanda J; Langdon, Robyn; Coltheart, Max

    2012-05-01

    Mirrored-self misidentification is the delusional belief that one's reflection in the mirror is a stranger. Current theories suggest that one pathway to the delusion is mirror agnosia (a deficit in which patients are unable to use mirror knowledge when interacting with mirrors). This study examined whether a hypnotic suggestion for mirror agnosia can recreate features of the delusion. Ten high hypnotisable participants were given either a suggestion to not understand mirrors or to see the mirror as a window. Participants were asked to look into a mirror and describe what they saw. Participants were tested on their understanding of mirrors and received a series of challenges. Participants then received a detailed postexperimental inquiry. Three of five participants given the suggestion to not understand mirrors reported seeing a stranger and maintained this belief when challenged. These participants also showed signs of mirror agnosia. No participants given the suggestion to see a window reported seeing a stranger. Results indicate that a hypnotic suggestion for mirror agnosia can be used to recreate the mirrored-self misidentification delusion. Factors influencing the effectiveness of hypnotic analogues of psychopathology, such as participants' expectations and interpretations, are discussed.

  12. Mirror Metrology Using Nano-Probe Supports

    Science.gov (United States)

    Robinson, David; Hong, Maoling; Byron, Glenn; McClelland, Ryan; Chan, Kai-Wing

    2012-01-01

    Thin, lightweight mirrors are needed for future x-ray space telescopes in order to increase x-ray collecting area while maintaining a reduced mass and volume capable of being launched on existing rockets. However, it is very difficult to determine the undistorted shape of such thin mirrors because the mounting of the mirror during measurement causes distortion. Traditional kinematic mounts have insufficient supports to control the distortion to measurable levels and prevent the mirror from vibrating during measurement. Over-constrained mounts (non-kinematic) result in an unknown force state causing mirror distortion that cannot be determined or analytically removed. In order to measure flexible mirrors, it is necessary to over-constrain the mirror. Over-constraint causes unknown distortions to be applied to the mirror. Even if a kinematic constraint system can be used, necessary imperfections in the kinematic assumption can lead to an unknown force state capable of distorting the mirror. Previously, thicker, stiffer, and heavier mirrors were used to achieve low optical figure distortion. These mirrors could be measured to an acceptable level of precision using traditional kinematic mounts. As lighter weight precision optics have developed, systems such as the whiffle tree or hydraulic supports have been used to provide additional mounting supports while maintaining the kinematic assumption. The purpose of this invention is to over-constrain a mirror for optical measurement without causing unacceptable or unknown distortions. The invention uses force gauges capable of measuring 1/10,000 of a Newton attached to nano-actuators to support a thin x-ray optic with known and controlled forces to allow for figure measurement and knowledge of the undeformed mirror figure. The mirror is hung from strings such that it is minimally distorted and in a known force state. However, the hanging mirror cannot be measured because it is both swinging and vibrating. In order to

  13. Mirror-Symmetric Matrices and Their Application

    Institute of Scientific and Technical Information of China (English)

    李国林; 冯正和

    2002-01-01

    The well-known centrosymmetric matrices correctly reflect mirror-symmetry with no component or only one component on the mirror plane. Mirror-symmetric matrices defined in this paper can represent mirror-symmetric structures with various components on the mirror plane. Some basic properties of mirror-symmetric matrices were studied and applied to interconnection analysis. A generalized odd/even-mode decomposition scheme was developed based on the mirror reflection relationship for mirror-symmetric multiconductor transmission lines (MTLs). The per-unit-length (PUL) impedance matrix Z and admittance matrix Y can be divided into odd-mode and even-mode PUL matrices. Thus the order of the MTL system is reduced from n to k and k+p, where p(≥0)is the conductor number on the mirror plane. The analysis of mirror-symmetric matrices is related to the theory of symmetric group, which is the most effective tool for the study of symmetry.

  14. Deformations of crystal frameworks

    CERN Document Server

    Borcea, Ciprian S

    2011-01-01

    We apply our deformation theory of periodic bar-and-joint frameworks to tetrahedral crystal structures. The deformation space is investigated in detail for frameworks modelled on quartz, cristobalite and tridymite.

  15. Deformed General Relativity

    CERN Document Server

    Bojowald, Martin

    2013-01-01

    Deformed special relativity is embedded in deformed general relativity using the methods of canonical relativity and loop quantum gravity. Phase-space dependent deformations of symmetry algebras then appear, which in some regimes can be rewritten as non-linear Poincare algebras with momentum-dependent deformations of commutators between boosts and time translations. In contrast to deformed special relativity, the deformations are derived for generators with an unambiguous physical role, following from the relationship between canonical constraints of gravity with stress-energy components. The original deformation does not appear in momentum space and does not give rise to non-locality issues or problems with macroscopic objects. Contact with deformed special relativity may help to test loop quantum gravity or restrict its quantization ambiguities.

  16. Long, elliptically bent, active X-ray mirrors with slope errors <200 nrad.

    Science.gov (United States)

    Nistea, Ioana T; Alcock, Simon G; Kristiansen, Paw; Young, Adam

    2017-05-01

    Actively bent X-ray mirrors are important components of many synchrotron and X-ray free-electron laser beamlines. A high-quality optical surface and good bending performance are essential to ensure that the X-ray beam is accurately focused. Two elliptically bent X-ray mirror systems from FMB Oxford were characterized in the optical metrology laboratory at Diamond Light Source. A comparison of Diamond-NOM slope profilometry and finite-element analysis is presented to investigate how the 900 mm-long mirrors sag under gravity, and how this deformation can be adequately compensated using a single, spring-loaded compensator. It is shown that two independent mechanical actuators can accurately bend the trapezoidal substrates to a range of elliptical profiles. State-of-the-art residual slope errors of stability over 24 h (ΔR/R = 0.07% r.m.s.) provide reliable beamline performance.

  17. First on-sky demonstration of the piezoelectric adaptive secondary mirror.

    Science.gov (United States)

    Guo, Youming; Zhang, Ang; Fan, Xinlong; Rao, Changhui; Wei, Ling; Xian, Hao; Wei, Kai; Zhang, Xiaojun; Guan, Chunlin; Li, Min; Zhou, Luchun; Jin, Kai; Zhang, Junbo; Deng, Jijiang; Zhou, Longfeng; Chen, Hao; Zhang, Xuejun; Zhang, Yudong

    2016-12-15

    We propose using a piezoelectric adaptive secondary mirror (PASM) in the medium-sized adaptive telescopes with a 2-4 m aperture for structure and control simplification by utilizing the piezoelectric actuators in contrast with the voice-coil adaptive secondary mirror. A closed-loop experimental setup was built for on-sky demonstration of the 73-element PASM developed by our laboratory. In this Letter, the PASM and the closed-loop adaptive optics system are introduced. High-resolution stellar images were obtained by using the PASM to correct high-order wavefront errors in May 2016. To the best of our knowledge, this is the first successful on-sky demonstration of the PASM. The results show that with the PASM as the deformable mirror, the angular resolution of the 1.8 m telescope can be effectively improved.

  18. Marginal Deformations with U(1)^3 Global Symmetry

    CERN Document Server

    Ahn, C; Ahn, Changhyun; Vazquez-Poritz, Justin F.

    2005-01-01

    We generate new 11-dimensional supergravity solutions from deformations based on U(1)^3 symmetries. The initial geometries are of the form AdS_4 x Y_7, where Y_7 is a 7-dimensional Sasaki-Einstein space. We consider a general family of cohomogeneity one Sasaki-Einstein spaces, as well as the recently-constructed cohomogeneity three L^{p,q,r,s} spaces. For certain cases, such as when the Sasaki-Einstein space is S^7, Q^{1,1,1} or M^{1,1,1}, the deformed gravity solutions correspond to a marginal deformation of a known dual gauge theory.

  19. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy)

    Science.gov (United States)

    Viti, C.; Brogi, A.; Liotta, D.; Mugnaioli, E.; Spiess, R.; Dini, A.; Zucchi, M.; Vannuccini, G.

    2016-05-01

    This paper reports the first example of fault mirrors developed in an unusual protolith, consisting of tourmaline crystals with interstitial goethite. The deformation mechanisms active in the fault zone have been investigated from the outcrop to the nanoscale, aiming to identify possible traces of frictional heating at seismic slip rate, as observed for other fault mirrors in different protoliths. The investigation revealed the superposition of two main deformational stages. The first was dominated by brittle processes and produced a cataclastic/ultracataclastic principal slip zone, a few mm thick; the second was associated with seismic slip and produced a sharp discontinuity (the principal slip surface) within the cataclastic/ultracataclastic zone. The mirror-like coating, a few microns thick, occurs on the principal slip surface, and is characterized by 1) absence of interstitial goethite; 2) occurrence of truncated tourmaline crystals; 3) highly variable grain size, from 200 μm to 200 nm; 4) tourmaline close packing with interlobate grain boundaries, and 5) tourmaline random crystallographic orientation. Micro and nanostructural investigations indicate the occurrence of thermally-activated processes, involving both interstitial goethite and tourmaline. In particular, close to the principal slip surface, goethite is completely decomposed, and produced an amorphous porous material, with local topotactic recrystallization of hematite. Tourmaline clasts are typically characterized by strongly lobate boundaries, indicative of reaction and partial decomposition at grain boundaries. TEM observations revealed the occurrence of tourmaline nanograins, a few tens of nm in size, characterized by rounded shape and fading amorphous boundaries, that cannot be obtained by brittle processes. Lastly, the peculiar interlobate microstructure of the mirror surface is interpreted as the result of grain boundary recrystallization processes taking place by deformation at high

  20. Reflectivity-modulated grating-mirror

    DEFF Research Database (Denmark)

    2012-01-01

    The invention relates to vertical cavity lasers (VCL) incorporating a reflectivity-modulated grating mirror (1) for modulating the laser output. A cavity is formed by a bottom mirror (4), an active region (3), and an outcoupling top grating mirror (1) formed by a periodic refractive index grating...... to the oscillation axis. A modulated voltage (91) is applied in reverse bias between the n- and p-doped layers to modulate the refractive index of the electrooptic material layer (12) and thereby the reflectivity spectrum of the grating mirror (1). The reflectivity of the grating mirror (1) can be modulated between...... a reflectivity with little or no out coupling and a reflectivity with normal out coupling, wherein lasing in the VCL is supported at both the first and the second reflectivity. As the out coupling mirror modulates the output, the lasing does not need to be modulated, and the invention provides the advantage...

  1. Standard specification for silvered flat glass mirror

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification covers the requirements for silvered flat glass mirrors of rectangular shape supplied as cut sizes, stock sheets or as lehr ends and to which no further processing (such as edgework or other fabrication) has been done. 1.2 This specification covers the quality requirements of silvered annealed monolithic clear and tinted flat glass mirrors up to 6 mm (¼ in.) thick. The mirrors are intended to be used indoors for mirror glazing, for components of decorative accessories or for similar uses. 1.3 This specification does not address safety glazing materials nor requirements for mirror applications. Consult model building codes and other applicable standards for safety glazing applications. 1.4 Mirrors covered in this specification are not intended for use in environments where high humidity or airborne corrosion promoters, or both, are consistently present (such as swimming pool areas, ocean-going vessels, chemical laboratories and other corrosive environments). 1.5 The dimensional val...

  2. Mirror Development for the Cherenkov Telescope Array

    CERN Document Server

    Förster, A; Baba, H; Bähr, J; Bonardi, A; Bonnoli, G; Brun, P; Canestrari, R; Chadwick, P; Chikawa, M; Carton, P -H; De Souza, V; Dipold, J; Doro, M; Durand, D; Dyrda, M; Giro, E; Glicenstein, J -F; Hanabata, Y; Hayashida, M; Hrabovski, M; Jeanney, C; Kagaya, M; Katagiri, H; Lessio, L; MANDAT, D; Mariotti, M; Medina, C; Michałowski, J; Micolon, P; Nakajima, D; Niemiec, J; Nozato, A; Palatka, M; Pareschi, G; Pech, M; Peyaud, B; Pühlhofer, G; Rataj, M; Rodeghiero, G; Rojas, G; Rousselle, J; Sakonaka, R; Schovanek, P; Seweryn, K; Schultz, C; Shu, S; Stinzing, F; Stodulski, M; Teshima, M; Travniczek, P; Van Eldik, C; Vassiliev, V; Wiśniewski, Ł; Wörnlein, A; Yoshida, T

    2013-01-01

    The Cherenkov Telescope Array (CTA) is a planned observatory for very-high energy gamma-ray astronomy. It will consist of several tens of telescopes of different sizes, with a total mirror area of up to 10,000 square meters. Most mirrors of current installations are either polished glass mirrors or diamond-turned aluminium mirrors, both labour intensive technologies. For CTA, several new technologies for a fast and cost-efficient production of light-weight and reliable mirror substrates have been developed and industrial pre-production has started for most of them. In addition, new or improved aluminium-based and dielectric surface coatings have been developed to increase the reflectance over the lifetime of the mirrors compared to those of current Cherenkov telescope instruments.

  3. Characterization and closed-loop performance of a liquid mirror adaptive optical system.

    Science.gov (United States)

    ten Have, Eric S; Vdovin, Gleb

    2012-04-20

    A deformable mirror based on the principle of total internal reflection of light from an electrostatically deformed liquid-air interface was realized and used to perform closed-loop adaptive optical (AO) correction on a collimated laser beam aberrated by a rotating phase disk. Equations describing the resonant and oscillatory behavior of the liquid system were obtained and applied to the system under consideration. Characterization of the mirror included open- and closed-loop frequency responses, determination of rise times, the damping times of the liquid, and the influence of liquid surface motion in the absence of external optical aberrations. The performance of the AO system was determined for static and dynamic aberrations for various sets of system parameters. The predictions of the general expressions were compared to the results of the experimental realization and were found to be in good agreement.

  4. Mirror QCD and Cosmological Constant

    CERN Document Server

    Pasechnik, Roman; Teryaev, Oleg

    2016-01-01

    An analog of Quantum Chromo Dynamics (QCD) sector known as mirror QCD (mQCD) can affect the cosmological evolution and help in resolving the Cosmological Constant problem. In this work, we explore an intriguing possibility for a compensation of the negative QCD vacuum contribution to the ground state energy density of the universe by means of a positive contribution from the chromomagnetic gluon condensate in mQCD. The trace anomaly compensation condition and the form of the mQCD coupling constant in the infrared limit have been proposed by analysing a partial non-perturbative solution of the Einstein--Yang-Mills equations of motion.

  5. Tandem mirror technology demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  6. Inhomogeneous interface laser mirror coatings.

    Science.gov (United States)

    Ledger, A M

    1979-09-01

    Methods of improving the durability of thin-film laser mirror coatings for 10.6 microm using thorium fluoride, zinc selenide, and zinc sulfide materials have been investigated. The largest improvement in film durability was obtained by using inhomogeneous interface fabrication for all the dielectric-dielectric interfaces and by incorporating cerium fluoride protective overcoating material into the film design. Experimental results are given for enhanced reflectors, polarization-selective coatings, and buried-grating aperture-sharing coatings designed for high-power laser applications.

  7. Mirror averaging with sparsity priors

    CERN Document Server

    Dalalyan, Arnak

    2010-01-01

    We consider the problem of aggregating the elements of a (possibly infinite) dictionary for building a decision procedure, that aims at minimizing a given criterion. Along with the dictionary, an independent identically distributed training sample is available, on which the performance of a given procedure can be tested. In a fairly general set-up, we establish an oracle inequality for the Mirror Averaging aggregate based on any prior distribution. This oracle inequality is applied in the context of sparse coding for different problems of statistics and machine learning such as regression, density estimation and binary classification.

  8. Transport phenomena in stochastic magnetic mirrors

    OpenAIRE

    Malyshkin, Leonid; Kulsrud, Russell

    2000-01-01

    Parallel thermal conduction along stochastic magnetic field lines may be reduced because the heat conducting electrons become trapped and detrapped between regions of strong magnetic field (magnetic mirrors). The problem reduces to a simple but realistic model for diffusion of mono-energetic electrons based on the fact that when there is a reduction of diffusion, it is controlled by a subset of the mirrors, the principle mirrors. The diffusion reduction can be considered as equivalent to an e...

  9. Mirrored Light Field Video Camera Adapter

    OpenAIRE

    Tsai, Dorian; Dansereau, Donald G.; Martin, Steve; Corke, Peter

    2016-01-01

    This paper proposes the design of a custom mirror-based light field camera adapter that is cheap, simple in construction, and accessible. Mirrors of different shape and orientation reflect the scene into an upwards-facing camera to create an array of virtual cameras with overlapping field of view at specified depths, and deliver video frame rate light fields. We describe the design, construction, decoding and calibration processes of our mirror-based light field camera adapter in preparation ...

  10. MIRROR THERAPY: A REVIEW OF EVIDENCES

    OpenAIRE

    Aishath Najiha; Jagatheesan Alagesan; Vandana J Rathod; Poongundran Paranthaman

    2015-01-01

    The aim of this review was to identify and summarize the existing evidences on mirror box therapy for the management of various musculoskeletal conditions. A systemic literature search was performed to identify studies concerning mirror therapy. The included journal articles were reviewed and assessed for its significance. Fifty one studies were identified and reviewed. Five different patient categories were studied: 24 studies focussed on mirror therapy after stroke, thirteen studies focusse...

  11. A demonstration of wavefront sensing and mirror phasing from the image domain

    Science.gov (United States)

    Pope, Benjamin; Cvetojevic, Nick; Cheetham, Anthony; Martinache, Frantz; Norris, Barnaby; Tuthill, Peter

    2014-05-01

    In astronomy and microscopy, distortions in the wavefront affect the dynamic range of a high-contrast imaging system. These aberrations are either imposed by a turbulent medium such as the atmosphere, by static or thermal aberrations in the optical path, or by imperfectly phased subapertures in a segmented mirror. Active and adaptive optics (AO), consisting of a wavefront sensor and a deformable mirror, are employed to address this problem. Nevertheless, the non-common-path between the wavefront sensor and the science camera leads to persistent quasi-static speckles that are difficult to calibrate and which impose a floor on the image contrast. In this paper, we present the first experimental demonstration of a novel wavefront sensor requiring only a minor asymmetric obscuration of the pupil, using the science camera itself to detect high-order wavefront errors from the speckle pattern produced. We apply this to correct errors imposed on a deformable microelectromechanical segmented mirror in a closed loop, restoring a high-quality point spread function and residual wavefront errors of the order of ˜10 nm using 1600 nm light, from a starting point of ˜300 nm in piston and ˜0.3 mrad in tip-tilt. We recommend this as a method for measuring the non-common-path error in AO-equipped ground based telescopes, as well as an approach to phasing difficult segmented mirrors such as on the James Webb Space Telescope primary and as a future direction for extreme AO.

  12. Single Crystal Silicon Mirrors for Spaceflight Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a well understood process for manufacturing visible quality SCSi mirrors. Areas of research include stress relief, figure, finish, and light weighting...

  13. Mirror movements in progressive hemifacial atrophy

    Science.gov (United States)

    Verma, Rajesh; Dixit, Puneet Kumar; Lalla, Rakesh; Singh, Babita

    2015-01-01

    Mirror movements are simultaneous, involuntary, identical movements occurring during contralateral voluntary movements. These movements are considered as soft neurologic signs seen uncommonly in clinical practice. The mirror movements are described in various neurological disorders which include parkinsonism, cranio veretebral junction anamolies, and hemiplegic cerebral palsy. These movements are intriguing and can pose significant disability. However, no such observation regarding mirror movements in progressive hemifacial atrophy have been reported previously. We are reporting a teenage girl suffering from progressive hemifacial atrophy and epilepsy with demonstrable mirror movements in hand. PMID:26019431

  14. Analytic solution for a quartic electron mirror

    Energy Technology Data Exchange (ETDEWEB)

    Straton, Jack C., E-mail: straton@pdx.edu

    2015-01-15

    A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.

  15. Mirror movements in progressive hemifacial atrophy

    Directory of Open Access Journals (Sweden)

    Rajesh Verma

    2015-01-01

    Full Text Available Mirror movements are simultaneous, involuntary, identical movements occurring during contralateral voluntary movements. These movements are considered as soft neurologic signs seen uncommonly in clinical practice. The mirror movements are described in various neurological disorders which include parkinsonism, cranio veretebral junction anamolies, and hemiplegic cerebral palsy. These movements are intriguing and can pose significant disability. However, no such observation regarding mirror movements in progressive hemifacial atrophy have been reported previously. We are reporting a teenage girl suffering from progressive hemifacial atrophy and epilepsy with demonstrable mirror movements in hand.

  16. Deformable Nanolaminate Optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  17. Dual Wavelength High Power Double-Clad Ytterbium-Doped Fiber Laser

    Science.gov (United States)

    Moghaddam, M. R. A.; Harun, S. W.; Shahi, S.; Ahmad, H.

    A dual wavelength high power double-clad erbium/ytterbium-doped fiber laser with a narrowest spacing of 0.4 nm and a M2 value of close to unity is presented in the region of 1565 nm. This result can be realized with a significant improvement of the mode competition problem using a loop mirror as a comb filter. The wavelength region can also be varied using polarization controllers in the loop mirror. This dual-wavelength fiber laser with side mode suppression ratio (SMSR) of 40 dB is quite stable, and the output power variance is as low as 0.46 dB.

  18. The uncanny mirror: a re-framing of mirror self-experience.

    Science.gov (United States)

    Rochat, Philippe; Zahavi, Dan

    2011-06-01

    Mirror self-experience is re-casted away from the cognitivist interpretation that has dominated discussions on the issue since the establishment of the mirror mark test. Ideas formulated by Merleau-Ponty on mirror self-experience point to the profoundly unsettling encounter with one's specular double. These ideas, together with developmental evidence are re-visited to provide a new, psychologically and phenomenologically more valid account of mirror self-experience: an experience associated with deep wariness.

  19. One mirror beam steering: determination of steering mirror parameters from image pointing direction

    Science.gov (United States)

    Andersen, Torben B.; Granger, Zachary A.

    2016-09-01

    Mathematical models are used to establish the exact path of a beam reflected by a plane mirror in terms of the mirror geometry descriptors. In particular, the mirror geometry descriptors (tilt angles) are determined as functions of the beam path in image space. This is also useful for determining scan patterns when the mirror is used as a scanning device. These formulations are readily adaptable to commercially available ray tracing programs.

  20. Neurodegeneration and mirror image agnosia

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2014-01-01

    Full Text Available Background: Normal Percept with abnormal meaning (Agnosias has been described from nineteenth century onwards. Later literature became abundant with information on the spectrum of Prosopagnosias. However, selective difficulty in identifying reflected self images with relatively better cognitive functions leads to problems in differentiating it from non-organic psychosis. Aim: In the present study, we investigated patients with dementia who showed difficulty in identifying reflected self images while they were being tested for problems in gnosis with reference to identification of reflected objects, animals, relatives, and themselves and correlate with neuropsychological and radiological parameters. Patients and Methods: Five such patients were identified and tested with a 45 cm × 45 cm mirror kept at 30-cm distance straight ahead of them. Results: Mirror image agnosia is seen in patients with moderate stage posterior dementias who showed neuropsychological and radiological evidence of right parietal dysfunction. Conclusion: Interpretation of reflected self images perception in real time probably involves distinct data-linking circuits in the right parietal lobe, which may get disrupted early in the course of the disease.

  1. FAME: freeform active mirror experiment

    Science.gov (United States)

    Aitink-Kroes, Gabby; Agócs, Tibor; Miller, Chris; Black, Martin; Farkas, Szigfrid; Lemared, Sabri; Bettonvil, Felix; Montgomery, David; Marcos, Michel; Jaskó, Attila; van Duffelen, Farian; Challita, Zalpha; Fok, Sandy; Kiaeerad, Fatemeh; Hugot, Emmanuel; Schnetler, Hermine; Venema, Lars

    2016-07-01

    FAME is a four-year project and part of the OPTICON/FP7 program that is aimed at providing a breakthrough component for future compact, wide field, high resolution imagers or spectrographs, based on both Freeform technology, and the flexibility and versatility of active systems. Due to the opening of a new parameter space in optical design, Freeform Optics are a revolution in imaging systems for a broad range of applications from high tech cameras to astronomy, via earth observation systems, drones and defense. Freeform mirrors are defined by a non-rotational symmetry of the surface shape, and the fact that the surface shape cannot be simply described by conicoids extensions, or off-axis conicoids. An extreme freeform surface is a significantly challenging optical surface, especially for UV/VIS/NIR diffraction limited instruments. The aim of the FAME effort is to use an extreme freeform mirror with standard optics in order to propose an integrated system solution for use in future instruments. The work done so far concentrated on identification of compact, fast, widefield optical designs working in the visible, with diffraction limited performance; optimization of the number of required actuators and their layout; the design of an active array to manipulate the face sheet, as well as the actuator design. In this paper we present the status of the demonstrator development, with focus on the different building blocks: an extreme freeform thin face sheet, the active array, a highly controllable thermal actuator array, and the metrology and control system.

  2. Explaining mirror-touch synesthesia.

    Science.gov (United States)

    Ward, Jamie; Banissy, Michael J

    2015-01-01

    Mirror-touch synesthesia (MTS) is the conscious experience of tactile sensations induced by seeing someone else touched. This paper considers two different, although not mutually exclusive, theoretical explanations and, in the final section, considers the relation between MTS and other forms of synesthesia and also other kinds of vicarious perception (e.g., contagious yawning). The Threshold Theory explains MTS in terms of hyper-activity within a mirror system for touch and/or pain. This offers a good account for some of the evidence (e.g., from fMRI) but fails to explain the whole pattern (e.g., structural brain differences outside of this system; performance on some tests of social cognition). The Self-Other Theory explains MTS in terms of disturbances in the ability to distinguish the self from others. This can be construed in terms of over-extension of the bodily self in to others, or as difficulties in the control of body-based self-other representations. In this account, MTS is a symptom of a broader cognitive profile. We suggest this meets the criteria for synesthesia, despite the proximal causal mechanisms remaining largely unknown, and that the tendency to localize vicarious sensory experiences distinguishes it from other kinds of seemingly related phenomena (e.g., non-localized affective responses to observing pain).

  3. Neurodegeneration and Mirror Image Agnosia

    Science.gov (United States)

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Normal Percept with abnormal meaning (Agnosias) has been described from nineteenth century onwards. Later literature became abundant with information on the spectrum of Prosopagnosias. However, selective difficulty in identifying reflected self images with relatively better cognitive functions leads to problems in differentiating it from non-organic psychosis. Aim: In the present study, we investigated patients with dementia who showed difficulty in identifying reflected self images while they were being tested for problems in gnosis with reference to identification of reflected objects, animals, relatives, and themselves and correlate with neuropsychological and radiological parameters. Patients and Methods: Five such patients were identified and tested with a 45 cm × 45 cm mirror kept at 30-cm distance straight ahead of them. Results: Mirror image agnosia is seen in patients with moderate stage posterior dementias who showed neuropsychological and radiological evidence of right parietal dysfunction. Conclusion: Interpretation of reflected self images perception in real time probably involves distinct data-linking circuits in the right parietal lobe, which may get disrupted early in the course of the disease. PMID:25317393

  4. Relativistic Tennis Using Flying Mirror

    Science.gov (United States)

    Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-06-01

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  5. Electrochromic Mirrors With Variable Reflectance

    Science.gov (United States)

    Baucke, Friedrich G. K.

    1986-09-01

    Unstructured electrochromic mirrors with variable reflectance have been developed on the basis of hydrogen tungsten bronzes. The characteristic compounds of these devices are (1) solid ion-conducting layers ("electrolytes") resulting in only few micrometer thick all-solid-state systems, which can be enclosed between the substrate and a second glass plate and are thus protected from the environment, (2) integrated reflecting metal layers, and (3) hydrogen-storing electrochromic layers. Two basically different constructions are feasible. In "diffusion-driven" devices the bronze is formed (decomposed) by the chemical reaction x/2 H2+ W03⇔HxW03, in "field-driven" systems an electrochemical bronze formation (decomposition), x H + W03+ x e HxW03, takes place. The modes of construction are presented and compared, the electrochemistry of the thin layer cells involved is discussed, the prop-erties of devices according to the state of development are reported, and possible applications, e.g. as glare-free, inside and outside, automotive rear view mirrors with adjustable reflectance, are briefly described.

  6. Mirror particles and mirror matter: 50 years of speculations and searches

    CERN Document Server

    Okun, Lev Borisovich

    2006-01-01

    This text has been prepared for the talk at the ``ITEP Meeting on the future of heavy flavor physics'', Moscow, ITEP, July 24-25, 2006 (http://www.itep.ru/eng/bellemeeting). It describes emergence and evolution of concept of ``mirror particles'' and ``mirror matter'' and presents a concise guide to the ``mirror-land''.

  7. Manufacturing and testing a thin glass mirror shell with piezoelectric active control

    CERN Document Server

    Spiga, D; Collura, A; Basso, S; Candia, R; Civitani, M; Di Bella, M; Di Cicca, G; Cicero, U Lo; Lullo, G; Pelliciari, C; Riva, M; Salmaso, B; Sciortino, L; Varisco, S

    2016-01-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or silicon in order to keep the total mass within acceptable limits. Optical modules based on thin slumped glass foils are being developed at various institutes, aiming at improving the angular resolution to a few arcsec HEW. Thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. On the other hand, this offers the opportunity to actively correct the residual deformation: a viable possibility to improve the mirror figure is the application of piezoelectric actuators onto the non-optical side of the mirrors, and several groups are already at work on this approach. The concept we are developing consists of actively integrating thin glass foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays. The actuators are commercial components, while the tension signal...

  8. Active shape correction of a thin glass/plastic X-ray mirror

    CERN Document Server

    Spiga, D; Basso, S; Civitani, M; Collura, A; Dell'Agostino, S; Cicero, U Lo; Lullo, G; Pelliciari, C; Riva, M; Salmaso, B; Sciortino, L

    2015-01-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the application of piezoelectric actuators onto the non-optical side of the mirrors. In fact, thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. This however offers the possibility to actively correct the residual deformation. Even if other groups are alre...

  9. Active shape correction of a thin glass/plastic x-ray mirror

    Science.gov (United States)

    Spiga, D.; Barbera, M.; Basso, S.; Civitani, M.; Collura, A.; Dell'Agostino, S.; Lo Cicero, U.; Lullo, G.; Pelliciari, C.; Riva, M.; Salmaso, B.; Sciortino, L.

    2014-09-01

    Optics for future X-ray telescopes will be characterized by very large aperture and focal length, and will be made of lightweight materials like glass or plastic in order to keep the total mass within acceptable limits. Optics based on thin slumped glass foils are currently in use in the NuSTAR telescope and are being developed at various institutes like INAF/OAB, aiming at improving the angular resolution to a few arcsec HEW. Another possibility would be the use of thin plastic foils, being developed at SAO and the Palermo University. Even if relevant progresses in the achieved angular resolution were recently made, a viable possibility to further improve the mirror figure would be the application of piezoelectric actuators onto the non-optical side of the mirrors. In fact, thin mirrors are prone to deform, so they require a careful integration to avoid deformations and even correct forming errors. This however offers the possibility to actively correct the residual deformation. Even if other groups are already at work on this idea, we are pursuing the concept of active integration of thin glass or plastic foils with piezoelectric patches, fed by voltages driven by the feedback provided by X-rays, in intra-focal setup at the XACT facility at INAF/OAPA. In this work, we show the preliminary simulations and the first steps taken in this project.

  10. Implementation of Bluetooth technology in processing aspheric mirrors

    Science.gov (United States)

    Chen, Dong-yun; Li, Xiao-jin

    2010-10-01

    This paper adopts the Bluetooth wireless transmission to replace the conducting rings currently using in the active lap process to overcome the cost and abrasion problems brought by the conducting rings, which has great significance for reducing the costs of processing large aspheric mirrors. Based on the actual application requirements, Article proposes the overall program of using Bluetooth technology as data transmission, including the active lap-side and machine tool-side: In the machine tool-side, the MCU separately connects with Bluetooth module and the sensor via UART0 and UART1 serial port, and when the MCU receives the signals sending from the sensor, the MCU packs and then sends them through the Bluetooth module; while in the active lap side, the CCAL reads-out the position signals of sensor detecting in dual-port memory via one-side ports, and the other side ports connect with the MCU's high ports P4-P7, so the MCU can unpacks and stores the position signals receiving via Bluetooth module. This paper designs and implements the system's hardware circuit, and mainly introduces the ways of serial and parallel. Based upon the realized system, design the test program for the Bluetooth wireless transmission and the experiment results, in the condition of the active lap processing large aspheric mirrors, showed that Bluetooth technology can meet the requirements of practical applications.

  11. Development of low-stress Iridium coatings for astronomical x-ray mirrors

    Science.gov (United States)

    Döhring, Thorsten; Probst, Anne-Catherine; Stollenwerk, Manfred; Wen, Mingwu; Proserpio, Laura

    2016-07-01

    Previously used mirror technologies are not suitable for the challenging needs of future X-ray telescopes. This is why the required high precision mirror manufacturing triggers new technical developments around the world. Some aspects of X-ray mirrors production are studied within the interdisciplinary project INTRAAST, a German acronym for "industry transfer of astronomical mirror technologies". The project is embedded in a cooperation of Aschaffenburg University of Applied Sciences and the Max-Planck-Institute for extraterrestrial Physics. One important task is the development of low-stress Iridium coatings for X-ray mirrors based on slumped thin glass substrates. The surface figure of the glass substrates is measured before and after the coating process by optical methods. Correlating the surface shape deformation to the parameters of coating deposition, here especially to the Argon sputtering pressure, allows for an optimization of the process. The sputtering parameters also have an influence on the coating layer density and on the micro-roughness of the coatings, influencing their X-ray reflection properties. Unfortunately the optimum coating process parameters seem to be contrarious: low Argon pressure resulted in better micro-roughness and higher density, whereas higher pressure leads to lower coating stress. Therefore additional measures like intermediate coating layers and temperature treatment will be considered for further optimization. The technical approach for the low-stress Iridium coating development, the experimental equipment, and the obtained first experimental results are presented within this paper.

  12. An error function minimization approach for the inverse problem of adaptive mirrors tuning

    Science.gov (United States)

    Vannoni, Maurizio; Yang, Fan; Siewert, Frank; Sinn, Harald

    2014-09-01

    Adaptive x-ray optics are more and more used in synchrotron beamlines, and it is probable that they will be considered for the future high-power free-electron laser sources, as the European XFEL now under construction in Hamburg, or similar projects now in discussion. These facilities will deliver a high power x-ray beam, with an expected high heat load delivered on the optics. For this reason, bendable mirrors are required to actively compensate the resulting wavefront distortion. On top of that, the mirror could have also intrinsic surface defects, as polishing errors or mounting stresses. In order to be able to correct the mirror surface with a high precision to maintain its challenging requirements, the mirror surface is usually characterized with a high accuracy metrology to calculate the actuators pulse functions and to assess its initial shape. After that, singular value decomposition (SVD) is used to find the signals to be applied into the actuators, to reach the desired surface deformation or correction. But in some cases this approach could be not robust enough for the needed performance. We present here a comparison between the classical SVD method and an error function minimization based on root-mean-square calculation. Some examples are provided, using a simulation of the European XFEL mirrors design as a case of study, and performances of the algorithms are evaluated in order to reach the ultimate quality in different scenarios. The approach could be easily generalized to other situations as well.

  13. Manufacturing an active X-ray mirror prototype in thin glass.

    Science.gov (United States)

    Spiga, D; Barbera, M; Collura, A; Basso, S; Candia, R; Civitani, M; Di Bella, M S; Di Cicca, G; Lo Cicero, U; Lullo, G; Pelliciari, C; Riva, M; Salmaso, B; Sciortino, L; Varisco, S

    2016-01-01

    Adjustable mirrors equipped with piezo actuators are commonly used at synchrotron and free-electron laser (FEL) beamlines, in order to optimize their focusing properties and sometimes to shape the intensity distribution of the focal spot with the desired profile. Unlike them, X-ray mirrors for astronomy are much thinner in order to enable nesting and reduce the areal mass, and the application of piezo actuators acting normally to the surface appears much more difficult. There remains the possibility to correct the deformations using thin patches that exert a tangential strain on the rear side of the mirror: some research groups are already at work on this approach. The technique reported here relies on actively integrating thin glass foils with commercial piezoceramic patches, fed by voltages driven by the feedback provided by X-rays, while the tension signals are carried by electrodes on the back of the mirror, obtained by photolithography. Finally, the shape detection and the consequent voltage signal to be provided to the piezoelectric array will be determined by X-ray illumination in an intra-focal setup at the XACT facility. In this work, the manufacturing steps for obtaining a first active mirror prototype are described.

  14. DP1180双相钢在高应变速率变形条件下应变硬化行为及机制%BEHAVIOUR AND MECHANISM OF STRAIN HARDENING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

    Institute of Scientific and Technical Information of China (English)

    代启锋; 宋仁伯; 范午言; 郭志飞; 关小霞

    2012-01-01

    Strain hardening behaviour and mechanism of a cold-rolled dual phase steel DP1180 under quasi-static tensile condition at a strain rate of 0.001 s-1 by electronic universal testing machine, and dynamic tensile condition at strain rates of 500 and 1750 s-1 by split Hopkinson tensile bar (SHTB) apparatus were systematically studied. According to the modified Swift true strain-stress model, the experimental data was regressed by using nonlinear fitting method, and strain hardening exponent in the modified Swift model was calculated by a modified Crussard-Jaoul method. The results revealed that there are two stage strain hardening characteristics of DP 1180 steel at the strain rate range of 0.001-1750 s-1, the strain hardening ability of the stage Ⅰ was enhanced with increase of strain rate, while the strain hardening ability of the stage Ⅱ was weakened, and the transition strain was decreased. The ferrite near the martensite regions formed cell blocks with dislocation structures, with a size of 90 nm, due to the limit of deformation compatibility, and the existence of geometrically necessary boundary (GNB) made DP1180 steel not instantly damaged under deformation at high strain rates. In addition, the adiabatic temperature rise of △T= 103 ℃ made martensite easy to have plastic deformation at a strain rate of 1750 s-1.%利用电子万能试验机和分离式Hopkinson拉杆装置对DP1180冷轧双相钢分别进行应变速率为0.001 s-1和500,1750 s-1的准静态和动态拉伸实验,根据修正的Swift真应力 应变模型对实验数据进行了非线性拟合,并用修正的Crussard-Jaoul分析法计算出修正的Swift模型的应变硬化指数.结果表明:在准静态和动态拉伸下,都存在两阶段应变硬化特性,第一阶段随应变速率的增加应变硬化能力增强;第二阶段随应变速率的增加应变硬化能力减弱;转折应变随应变速率的增加从3.12%减小到1.28%.在高应变速率下,马氏体附近的铁

  15. Manufacturing Precise, Lightweight Paraboloidal Mirrors

    Science.gov (United States)

    Hermann, Frederick Thomas

    2006-01-01

    A process for fabricating a precise, diffraction- limited, ultra-lightweight, composite- material (matrix/fiber) paraboloidal telescope mirror has been devised. Unlike the traditional process of fabrication of heavier glass-based mirrors, this process involves a minimum of manual steps and subjective judgment. Instead, this process involves objectively controllable, repeatable steps; hence, this process is better suited for mass production. Other processes that have been investigated for fabrication of precise composite-material lightweight mirrors have resulted in print-through of fiber patterns onto reflecting surfaces, and have not provided adequate structural support for maintenance of stable, diffraction-limited surface figures. In contrast, this process does not result in print-through of the fiber pattern onto the reflecting surface and does provide a lightweight, rigid structure capable of maintaining a diffraction-limited surface figure in the face of changing temperature, humidity, and air pressure. The process consists mainly of the following steps: 1. A precise glass mandrel is fabricated by conventional optical grinding and polishing. 2. The mandrel is coated with a release agent and covered with layers of a carbon- fiber composite material. 3. The outer surface of the outer layer of the carbon-fiber composite material is coated with a surfactant chosen to provide for the proper flow of an epoxy resin to be applied subsequently. 4. The mandrel as thus covered is mounted on a temperature-controlled spin table. 5. The table is heated to a suitable temperature and spun at a suitable speed as the epoxy resin is poured onto the coated carbon-fiber composite material. 6. The surface figure of the optic is monitored and adjusted by use of traditional Ronchi, Focault, and interferometric optical measurement techniques while the speed of rotation and the temperature are adjusted to obtain the desired figure. The proper selection of surfactant, speed or rotation

  16. LHCb ring imaging Cherenkov detector mirrors

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    In a large dark room, men in white move around an immense structure some 7 m high, 10 m wide and nearly 2.5 m deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors.

  17. Evolution of the tandem mirror reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, G.A.; Logan, B.G.

    1982-03-09

    We discuss the evolution of the tandem mirror reactor concept from the original conceptual reactor design (1977) through the first application of the thermal barrier concept to a reactor design (1979) to the beginning of the Mirror Advanced Reactor Study (1982).

  18. LED structure with enhanced mirror reflectivity

    Science.gov (United States)

    Bergmann, Michael; Donofrio, Matthew; Heikman, Sten; Schneider, Kevin S; Haberern, Kevin W; Edmond, John A

    2014-04-01

    Embodiments of the present invention are generally related to LED chips having improved overall emission by reducing the light-absorbing effects of barrier layers adjacent mirror contacts. In one embodiment, a LED chip comprises one or more LEDs, with each LED having an active region, a first contact under the active region having a highly reflective mirror, and a barrier layer adjacent the mirror. The barrier layer is smaller than the mirror such that it does not extend beyond the periphery of the mirror. In another possible embodiment, an insulator is further provided, with the insulator adjacent the barrier layer and adjacent portions of the mirror not contacted by the active region or by the barrier layer. In yet another embodiment, a second contact is provided on the active region. In a further embodiment, the barrier layer is smaller than the mirror such that the periphery of the mirror is at least 40% free of the barrier layer, and the second contact is below the first contact and accessible from the bottom of the chip.

  19. Segmented mirror control system hardware for CELT

    Science.gov (United States)

    Mast, Terry S.; Nelson, Jerry E.

    2000-07-01

    The primary mirror of the proposed California Extremely Large Telescope is a 30-meter diameter mosaic of hexagonal segments. The primary mirror active control will be achieved using four systems: sensors, actuators, processor, and alignment camera. We describe here the basic requirements of sensors and actuators, sketch a sensor design, and indicate interesting actuator alternatives.

  20. The Mirror Neuron System and Action Recognition

    Science.gov (United States)

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  1. Where do mirror neurons come from?

    Science.gov (United States)

    Heyes, Cecilia

    2010-03-01

    Debates about the evolution of the 'mirror neuron system' imply that it is an adaptation for action understanding. Alternatively, mirror neurons may be a byproduct of associative learning. Here I argue that the adaptation and associative hypotheses both offer plausible accounts of the origin of mirror neurons, but the associative hypothesis has three advantages. First, it provides a straightforward, testable explanation for the differences between monkeys and humans that have led some researchers to question the existence of a mirror neuron system. Second, it is consistent with emerging evidence that mirror neurons contribute to a range of social cognitive functions, but do not play a dominant, specialised role in action understanding. Finally, the associative hypothesis is supported by recent data showing that, even in adulthood, the mirror neuron system can be transformed by sensorimotor learning. The associative account implies that mirror neurons come from sensorimotor experience, and that much of this experience is obtained through interaction with others. Therefore, if the associative account is correct, the mirror neuron system is a product, as well as a process, of social interaction. (c) 2009 Elsevier Ltd. All rights reserved.

  2. Unbroken Mirror Neurons in Autism Spectrum Disorders

    Science.gov (United States)

    Fan, Yang-Teng; Decety, Jean; Yang, Chia-Yen; Liu, Ji-Lin; Cheng, Yawei

    2010-01-01

    Background: The "broken mirror" theory of autism, which proposes that a dysfunction of the human mirror neuron system (MNS) is responsible for the core social and cognitive deficits in individuals with autism spectrum disorders (ASD), has received considerable attention despite weak empirical evidence. Methods: In this electroencephalographic…

  3. Do mirror neurons subserve action understanding?

    Science.gov (United States)

    Hickok, Gregory

    2013-04-12

    Mirror neurons were once widely believed to support action understanding via motor simulation of the observed actions. Recent evidence regarding the functional properties of mirror neurons in monkeys as well as much neuropsychological evidence in humans has shown that this is not the case. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Mirror matter and primordial black holes

    OpenAIRE

    Bell, Nicole F.; Volkas, Raymond R.

    1998-01-01

    A consequence of the evaporation of primordial black holes in the early universe may be the generation of mirror matter. This would have implications with regard to dark matter, and the number of light particle species in equilibrium at the time of big bang nucleosynthesis. The possibilities for the production of mirror matter by this mechanism are explored.

  5. Cortical mechanisms of mirror therapy after stroke.

    Science.gov (United States)

    Rossiter, Holly E; Borrelli, Mimi R; Borchert, Robin J; Bradbury, David; Ward, Nick S

    2015-06-01

    Mirror therapy is a new form of stroke rehabilitation that uses the mirror reflection of the unaffected hand in place of the affected hand to augment movement training. The mechanism of mirror therapy is not known but is thought to involve changes in cerebral organization. We used magnetoencephalography (MEG) to measure changes in cortical activity during mirror training after stroke. In particular, we examined movement-related changes in the power of cortical oscillations in the beta (15-30 Hz) frequency range, known to be involved in movement. Ten stroke patients with upper limb paresis and 13 healthy controls were recorded using MEG while performing bimanual hand movements in 2 different conditions. In one, subjects looked directly at their affected hand (or dominant hand in controls), and in the other, they looked at a mirror reflection of their unaffected hand in place of their affected hand. The movement-related beta desynchronization was calculated in both primary motor cortices. Movement-related beta desynchronization was symmetrical during bilateral movement and unaltered by the mirror condition in controls. In the patients, movement-related beta desynchronization was generally smaller than in controls, but greater in contralesional compared to ipsilesional motor cortex. This initial asymmetry in movement-related beta desynchronization between hemispheres was made more symmetrical by the presence of the mirror. Mirror therapy could potentially aid stroke rehabilitation by normalizing an asymmetrical pattern of movement-related beta desynchronization in primary motor cortices during bilateral movement. © The Author(s) 2014.

  6. Unbroken Mirror Neurons in Autism Spectrum Disorders

    Science.gov (United States)

    Fan, Yang-Teng; Decety, Jean; Yang, Chia-Yen; Liu, Ji-Lin; Cheng, Yawei

    2010-01-01

    Background: The "broken mirror" theory of autism, which proposes that a dysfunction of the human mirror neuron system (MNS) is responsible for the core social and cognitive deficits in individuals with autism spectrum disorders (ASD), has received considerable attention despite weak empirical evidence. Methods: In this electroencephalographic…

  7. The Mirror Neuron System and Action Recognition

    Science.gov (United States)

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  8. Affective multimodal mirror: sensing and eliciting laughter

    NARCIS (Netherlands)

    Melder, W.A.; Truong, K.P.; Uyl, M. den; Leeuwen, D.A. van; Neerincx, M.A.; Loos, L.R.; Stock Plum, B.

    2007-01-01

    In this paper, we present a multimodal affective mirror that senses and elicits laughter. Currently, the mirror contains a vocal and a facial affect-sensing module, a component that fuses the output of these two modules to achieve a user-state assessment, a user state transition model, and a compone

  9. T-branes through 3d mirror symmetry

    Science.gov (United States)

    Collinucci, Andrés; Giacomelli, Simone; Savelli, Raffaele; Valandro, Roberto

    2016-07-01

    T-branes are exotic bound states of D-branes, characterized by mutually non-commuting vacuum expectation values for the worldvolume scalars. The M/F-theory geometry lifting D6/D7-brane configurations is blind to the T-brane data. In this paper, we make this data manifest, by probing the geometry with an M2-brane. We find that the effect of a T-brane is to deform the membrane worldvolume superpotential with monopole operators, which partially break the three-dimensional flavor symmetry, and reduce super-symmetry from {N} = 4 to {N} = 2. Our main tool is 3d mirror symmetry. Through this language, a very concrete framework is developed for understanding T-branes in M-theory. This leads us to uncover a new class of {N} = 2 quiver gauge theories, whose Higgs branches mimic those of membranes at ADE singularities, but whose Coulomb branches differ from their {N} = 4 counterparts.

  10. T-branes through 3d mirror symmetry

    CERN Document Server

    Collinucci, Andres; Savelli, Raffaele; Valandro, Roberto

    2016-01-01

    T-branes are exotic bound states of D-branes, characterized by mutually non-commuting vacuum expectation values for the worldvolume scalars. The M/F-theory geometry lifting D6/D7-brane configurations is blind to the T-brane data. In this paper, we make this data manifest, by probing the geometry with an M2-brane. We find that the effect of a T-brane is to deform the membrane worldvolume superpotential with monopole operators, which partially break the three-dimensional flavor symmetry, and reduce supersymmetry from N=4 to N=2. Our main tool is 3d mirror symmetry. Through this language, a very concrete framework is developed for understanding T-branes in M-theory. This leads us to uncover a new class of N=2 quiver gauge theories, whose Higgs branches mimic those of membranes at ADE singularities, but whose Coulomb branches differ from their N=4 counterparts.

  11. Design of 2-m to 6-m Liquid Mirror Containers

    CERN Document Server

    Content, R

    2003-01-01

    A new design is proposed for large (up to 6-m) liquid mirror containers. The design uses Kevlar, foam and aluminum, as in previous designs, but with a different configuration that makes the container lighter, stronger and more rigid. The results of finite element analysis are presented, consisting in the deformations due to temperature changes and to weight, and in the security factor for each material when maximum constraints are applied. Tilt rigidity is also analyzed. They show that the composite material construction technique gives a good performance up to 6 meter diameters. The figures and tables contained in this paper can be used as recipes to build containers having diameters between 2 and 6 meters.

  12. T-branes through 3d mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Collinucci, Andrés; Giacomelli, Simone [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Bruxelles (Belgium); Savelli, Raffaele [Institut de Physique Théorique, CEA Saclay,Orme de Merisiers, F-91191 Gif-sur-Yvette (France); Valandro, Roberto [Dipartimento di Fisica, Università di Trieste,Strada Costiera 11, 34151 Trieste (Italy); INFN, Sezione di Trieste,Via Valerio 2, 34127 Trieste (Italy); Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34151 Trieste (Italy)

    2016-07-19

    T-branes are exotic bound states of D-branes, characterized by mutually non-commuting vacuum expectation values for the worldvolume scalars. The M/F-theory geometry lifting D6/D7-brane configurations is blind to the T-brane data. In this paper, we make this data manifest, by probing the geometry with an M2-brane. We find that the effect of a T-brane is to deform the membrane worldvolume superpotential with monopole operators, which partially break the three-dimensional flavor symmetry, and reduce supersymmetry from N=4 to N=2. Our main tool is 3d mirror symmetry. Through this language, a very concrete framework is developed for understanding T-branes in M-theory. This leads us to uncover a new class of N=2 quiver gauge theories, whose Higgs branches mimic those of membranes at ADE singularities, but whose Coulomb branches differ from their N=4 counterparts.

  13. Mirror neurons through the lens of epigenetics.

    Science.gov (United States)

    Ferrari, Pier F; Tramacere, Antonella; Simpson, Elizabeth A; Iriki, Atsushi

    2013-09-01

    The consensus view in mirror neuron research is that mirror neurons comprise a uniform, stable execution-observation matching system. In this opinion article, we argue that, in light of recent evidence, this is at best an incomplete and oversimplified view of mirror neurons, where activity is actually variable and more plastic than previously theorized. We propose an epigenetic account for understanding developmental changes in sensorimotor systems, including variations in mirror neuron activity. Although associative and genetic accounts fail to consider the complexity of genetic and nongenetic interactions, we propose a new evolutionary developmental biology (evo-devo) perspective, which predicts that environmental differences early in development should produce variations in mirror neuron response patterns, tuning them to the social environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Mirror neurons and their clinical relevance.

    Science.gov (United States)

    Rizzolatti, Giacomo; Fabbri-Destro, Maddalena; Cattaneo, Luigi

    2009-01-01

    One of the most exciting events in neurosciences over the past few years has been the discovery of a mechanism that unifies action perception and action execution. The essence of this 'mirror' mechanism is as follows: whenever individuals observe an action being done by someone else, a set of neurons that code for that action is activated in the observers' motor system. Since the observers are aware of the outcome of their motor acts, they also understand what the other individual is doing without the need for intermediate cognitive mediation. In this Review, after discussing the most pertinent data concerning the mirror mechanism, we examine the clinical relevance of this mechanism. We first discuss the relationship between mirror mechanism impairment and some core symptoms of autism. We then outline the theoretical principles of neurorehabilitation strategies based on the mirror mechanism. We conclude by examining the relationship between the mirror mechanism and some features of the environmental dependency syndromes.

  15. Cryostable lightweight frit bonded silicon mirror

    Science.gov (United States)

    Anthony, F.; McCarter, D.; Tangedahl, M.; Content, D.

    The excellent polishability, low density and relatively high stiffness of silicon make it an attractive candidate for optical applications that require superior performance. Assembly of silicon details by means of glass frit bonding permits significant light weighting thus enhancing the benefit of silicon mirrors. To demonstrate the performance potential, a small lightweight glass frit bonded silicon mirror was fabricated and tested for cryoability. The test mirror was 12.5cm in diameter with a 60cm spherical radius and a maximum thickness, at the perimeter, of 2.5cm. A machined silicon core was used to stiffen the two face sheets of the silicon sandwich. These three elements were assembled, by glass frit bonding, to form the substrate that was polished. The experimental evaluation in a liquid nitrogen cryostat, demonstrated cryostability performance significantly better than required by the mirror specification. Key WordsCryostable, Lightweight, Silicon, Frit Bond, Spherical, Mirror

  16. DAMA annual modulation and mirror Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cerulli, R.; Cappella, F. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Villar, P. [Universidad de Zaragoza, Laboratorio de Fisica Nuclear y Astroparticulas, Saragossa (Spain); Laboratorio Subterraneo de Canfranc, Canfranc Estacion, Huesca (Spain); Bernabei, R.; Belli, P. [Universita di Roma ' ' Tor Vergata' ' , Dipartimento di Fisica, Rome (Italy); INFN ' ' Tor Vergata' ' , Rome (Italy); Incicchitti, A. [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy); Addazi, A.; Berezhiani, Z. [INFN, Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Universita di L' Aquila, Dipartimento di Scienze Fisiche e Chimiche, Coppito, AQ (Italy)

    2017-02-15

    The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities. (orig.)

  17. High reflection mirrors for pulse compression gratings.

    Science.gov (United States)

    Palmier, S; Neauport, J; Baclet, N; Lavastre, E; Dupuy, G

    2009-10-26

    We report an experimental investigation of high reflection mirrors used to fabricate gratings for pulse compression application at the wavelength of 1.053microm. Two kinds of mirrors are studied: the mixed Metal MultiLayer Dielectric (MMLD) mirrors which combine a gold metal layer with some e-beam evaporated dielectric bilayers on the top and the standard e-beam evaporated MultiLayer Dielectric (MLD) mirrors. Various samples were manufactured, damage tested at a pulse duration of 500fs. Damage sites were subsequently observed by means of Nomarski microscopy and white light interferometer microscopy. The comparison of the results evidences that if MMLD design can offer damage performances rather similar to MLD design, it also exhibits lower stresses; being thus an optimal mirror substrate for a pulse compression grating operating under vacuum.

  18. DAMA annual modulation and mirror Dark Matter

    Science.gov (United States)

    Cerulli, R.; Villar, P.; Cappella, F.; Bernabei, R.; Belli, P.; Incicchitti, A.; Addazi, A.; Berezhiani, Z.

    2017-02-01

    The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities.

  19. Mirror-image-induced magnetic modes.

    Science.gov (United States)

    Xifré-Pérez, Elisabet; Shi, Lei; Tuzer, Umut; Fenollosa, Roberto; Ramiro-Manzano, Fernando; Quidant, Romain; Meseguer, Francisco

    2013-01-22

    Reflection in a mirror changes the handedness of the real world, and right-handed objects turn left-handed and vice versa (M. Gardner, The Ambidextrous Universe, Penguin Books, 1964). Also, we learn from electromagnetism textbooks that a flat metallic mirror transforms an electric charge into a virtual opposite charge. Consequently, the mirror image of a magnet is another parallel virtual magnet as the mirror image changes both the charge sign and the curl handedness. Here we report the dramatic modification in the optical response of a silicon nanocavity induced by the interaction with its image through a flat metallic mirror. The system of real and virtual dipoles can be interpreted as an effective magnetic dipole responsible for a strong enhancement of the cavity scattering cross section.

  20. Cryogenic optical performance of a lightweighted mirror assembly for future space astronomical telescopes: correlating optical test results and thermal optical model

    Science.gov (United States)

    Eng, Ron; Arnold, William R.; Baker, Markus A.; Bevan, Ryan M.; Burdick, Gregory; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Hanson, Craig; Hogue, William D.; Kegley, Jeffrey R.; Kirk, Charlie; Maffett, Steven P.; Matthews, Gary W.; Siler, Richard D.; Smith, W. Scott; Stahl, H. Philip; Tucker, John M.; Wright, Ernest R.

    2013-09-01

    A 43cm diameter stacked core mirror demonstrator was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two CNC pocket milled face sheets. The 93% lightweighted Corning ULE® mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  1. Cryogenic Optical Performance of a Lightweighted Mirror Assembly for Future Space Astronomical Telescopes: Correlating Optical Test Results and Thermal Optical Model

    Science.gov (United States)

    Eng, Ron; Arnold, William R.; Baker, Marcus A.; Bevan, Ryan M.; Burdick, Gregory; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Hanson, Craig; Hogue, William D.; Kegley, Jeffrey R.; Kirk, Charlie; Maffett, Steven P.; Matthews, Gary W.; Siler, Richard D.; Smith, W. Scott; Stahl, H. Philip; Tucker, John M.; Wright, Ernest R.

    2013-01-01

    A 43cm diameter stacked core mirror demonstrator was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two CNC pocket milled face sheets. The 93% lightweighted Corning ULE® mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  2. Cryogenic Optical Performance of a Light-weight Mirror Assembly for Future Space Astronomical Telescopes: Optical Test Results and Thermal Optical Model

    Science.gov (United States)

    Eng, Ron; Arnold, William; Baker, Markus A.; Bevan, Ryan M.; Carpenter, James R.; Effinger, Michael R.; Gaddy, Darrell E.; Goode, Brian K.; Kegley, Jeffrey R.; Hogue, William D.; Siler, Richard D.; Smith, W. Scott; Stahl. H. Philip; Tucker, John M.; Wright, Ernest R.; Kirk, Charles S.; Hanson, Craig; Burdick, Gregory; Maffett, Steven

    2013-01-01

    A 40 cm diameter mirror assembly was interferometrically tested at room temperature down to 250 degrees Kelvin for thermal deformation. The 2.5 m radius of curvature spherical mirror assembly was constructed by low temperature fusing three abrasive waterjet core sections between two face sheets. The 93% lightweighted Corning ULE mirror assembly represents the current state of the art for future UV, optical, near IR space telescopes. During the multiple thermal test cycles, test results of interferometric test, thermal IR images of the front face were recorded in order to validate thermal optical model.

  3. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    Science.gov (United States)

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  4. -Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Ramaswamy Jaganathan; Sudeshna Sinha

    2005-03-01

    Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.

  5. Alar Rim Deformities.

    Science.gov (United States)

    Totonchi, Ali; Guyuron, Bahman

    2016-01-01

    The alar rim plays an important role in nasal harmony. Alar rim flaws are common following the initial rhinoplasty. Classification of the deformities helps with diagnosis and successful surgical correction. Diagnosis of the deformity requires careful observation of the computerized or life-sized photographs. Techniques for treatment of these deformities can easily be learned with attention to detail. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mirror neurons: from origin to function.

    Science.gov (United States)

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  7. Archetypal-Imaging and Mirror-Gazing

    Directory of Open Access Journals (Sweden)

    Giovanni B. Caputo

    2013-12-01

    Full Text Available Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one’s own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject’s unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for “imaging of the unconscious”. Future researches have been proposed.

  8. Archetypal-imaging and mirror-gazing.

    Science.gov (United States)

    Caputo, Giovanni B

    2014-03-01

    Mirrors have been studied by cognitive psychology in order to understand self-recognition, self-identity, and self-consciousness. Moreover, the relevance of mirrors in spirituality, magic and arts may also suggest that mirrors can be symbols of unconscious contents. Carl G. Jung investigated mirrors in relation to the unconscious, particularly in Psychology and Alchemy. However, the relationship between the conscious behavior in front of a mirror and the unconscious meaning of mirrors has not been clarified. Recently, empirical research found that gazing at one's own face in the mirror for a few minutes, at a low illumination level, produces the perception of bodily dysmorphic illusions of strange-faces. Healthy observers usually describe huge distortions of their own faces, monstrous beings, prototypical faces, faces of relatives and deceased, and faces of animals. In the psychiatric population, some schizophrenics show a dramatic increase of strange-face illusions. They can also describe the perception of multiple-others that fill the mirror surface surrounding their strange-face. Schizophrenics are usually convinced that strange-face illusions are truly real and identify themselves with strange-face illusions, diversely from healthy individuals who never identify with them. On the contrary, most patients with major depression do not perceive strange-face illusions, or they perceive very faint changes of their immobile faces in the mirror, like death statues. Strange-face illusions may be the psychodynamic projection of the subject's unconscious archetypal contents into the mirror image. Therefore, strange-face illusions might provide both an ecological setting and an experimental technique for "imaging of the unconscious". Future researches have been proposed.

  9. Toward high-dynamic active mirrors for LGS refocusing systems

    Science.gov (United States)

    Hugot, Emmanuel; Madec, Fabrice; Vives, Sébastien; Ferrari, Marc; Le Mignant, David; Cuby, Jean Gabriel

    2010-07-01

    In the frame of the E-ELT-EAGLE instrument phase A studies, we designed a convex VCM able to compensate for the focus variation on the Laser Guide Star (LGS) wavefront sensor, due to the elevation of the telescope and the fixed sodium layer altitude. We present an original optical design including this active convex mirror, providing a large sag variation on a spherical surface with a 120mm clear aperture, with an optical quality better than lambda/5 RMS up to 820μm of sag and better than lambda/4 RMS up to 1000μm of sag. Finite element analysis (FEA) allowed an optimisation of the mirror's variable thickness distribution to compensate for geometrical and material non linearity. Preliminary study of the pre-stressing has also been performed by FEA, showing that a permanent deformation remains after removal of the loads. Results and comparison with the FEA are presented in the article of F.Madec et al (AS10-7736-119, this conference), with an emphasis on the system approach.

  10. Distributed Sensing and Shape Control of Piezoelectric Bimorph Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, James M.; Barney, Patrick S.; Henson, Tammy D.

    1999-07-28

    As part of a collaborative effort between Sandia National Laboratories and the University of Kentucky to develop a deployable mirror for remote sensing applications, research in shape sensing and control algorithms that leverage the distributed nature of electron gun excitation for piezoelectric bimorph mirrors is summarized. A coarse shape sensing technique is developed that uses reflected light rays from the sample surface to provide discrete slope measurements. Estimates of surface profiles are obtained with a cubic spline curve fitting algorithm. Experiments on a PZT bimorph illustrate appropriate deformation trends as a function of excitation voltage. A parallel effort to effect desired shape changes through electron gun excitation is also summarized. A one dimensional model-based algorithm is developed to correct profile errors in bimorph beams. A more useful two dimensional algorithm is also developed that relies on measured voltage-curvature sensitivities to provide corrective excitation profiles for the top and bottom surfaces of bimorph plates. The two algorithms are illustrated using finite element models of PZT bimorph structures subjected to arbitrary disturbances. Corrective excitation profiles that yield desired parabolic forms are computed, and are shown to provide the necessary corrective action.

  11. Fluctuations as stochastic deformation

    Science.gov (United States)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  12. Deformed discrete symmetries

    Science.gov (United States)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  13. Double arch mirror study. Part 3: Fabrication and test report

    Science.gov (United States)

    Vukobratovich, D.; Hillman, D.

    1983-01-01

    A method of mounting a cryogenically cooled, lightweight, double arch, glass mirror was developed for infrared, astronomical telescopes such as the Space Infrared Telescope Facility (SIRTF). A 50 cm, fused silica mirror which was previously fabricated was modified for use with a new mount configuration. This mount concept was developed. The modification of the mirror, the fabrication of the mirror mount, and the room temperature testing of the mounted mirror are reported. A design for a SIRTF class primary mirror is suggested.

  14. Integrable Hopf twists, marginal deformations and generalised geometry

    CERN Document Server

    Dlamini, Hector

    2016-01-01

    We study the symmetries of an N=1 superconformal marginal deformation of the N=4 SYM theory which depends on a real parameter w. It is a special case of the two-complex-parameter Leigh-Strassler family of superconformal deformations of N=4 SYM, which is one-loop planar-integrable. On the gauge theory side of the AdS/CFT correspondence, we construct the Hopf twist leading to the deformed global symmetry of the theory and use it to define a star product between its three scalar superfields. Turning to the gravity side of the correspondence, we adapt the above star product to deform the pure spinors of six-dimensional flat space in its generalised geometry description. This leads us to a new N=2 NS-NS solution of IIB supergravity. Starting from this precursor solution, adding D3-branes and taking the near-horizon limit leads us to an exact AdS_5x(S^5)_w solution which we conjecture to be the gravity dual of the w-deformed gauge theory. Unlike the dual to the beta-deformed Leigh-Strassler theory, the internal par...

  15. Mirror symmetry and the half-filled Landau level

    Science.gov (United States)

    Mulligan, Michael; Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia

    We study the dynamics of the half-filled zeroth Landau level of Dirac fermions using mirror symmetry, a supersymmetric duality between certain pairs of 2 + 1-dimensional theories. We show that the half-filled zeroth Landau level of a pair of Dirac fermions is dual to a pair of Fermi surfaces of electrically-neutral composite fermions, coupled to an emergent gauge field. Thus, we use supersymmetry to provide a derivation of flux attachment and the emergent Fermi liquid-like state for the lowest Landau level of Dirac fermions. We find that in the dual theory the Coulomb interaction induces a dynamical exponent z = 2 for the emergent gauge field, making the interactions classically marginal. This enables us to map the problem of 2+1-dimensional Dirac fermions in a finite transverse magnetic field, interacting via a strong Coulomb interaction, into a perturbatively controlled model. We analyze the resulting low-energy theory using the renormalization group and determine the nature of the BCS interaction in the emergent composite Fermi liquid.

  16. Research on a middle infrared and long infrared dual-band laser

    Institute of Scientific and Technical Information of China (English)

    Shengfu Yuan; Wei Luo; Baozhu Yan; Qianjin Zou

    2012-01-01

    We propose a continuous-wave (CW) middle infrared (MIR) and long infrared (LIR) dual-band laser for the calibration and effect research of infrared detecting and imaging systems.A total output power of 18 W is achieved by the proposed dual-band laser through one DF gain medium module and one parallel placed CO2 gain medium module using a common stable resonator and output mirror with nominal transmissivities of ~5% in the MIR band and ~10% in the LIR band.Spectra of dual-band laser are acquired.The power extracting efficiency of this dual-band laser can be significantly improved,as validated by a single-band test of optimized parameters.%We propose a continuous-wave (CW) middle infrared (MIR) and long infrared (LIR) dual-band laser for the calibration and effect research of infrared detecting and imaging systems. A total output power of 18 W is achieved by the proposed dual-band laser through one DF gain medium module and one parallel placed CO2 gain medium module using a common stable resonator and output mirror with nominal transmissivities of ~5% in the MIR band and ~10% in the LIR band. Spectra of dual-band laser are acquired. The power extracting efficiency of this dual-band laser can be significantly improved, as validated by a single-band test of optimized parameters.

  17. Effective actions and topological strings. Off-shell mirror symmetry and mock modularity of multiple M5-branes

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Michael

    2011-10-20

    This thesis addresses two different topics within the field of string theory. In the first part it is shown how Hodge-theoretic methods in conjunction with open string mirror symmetry can be used to compute non-perturbative effective superpotential couplings for type II/F-theory compactifications with D-branes and fluxes on compact Calabi-Yau manifolds. This is achieved by studying the at structure of operators which derives from the open/closed {beta}-model geometry. We analyze the variation of mixed Hodge structure of the relative cohomology induced by a family of divisors, which is wrapped by a D7-brane. This leads to a Picard-Fuchs system of differential operators, which can be used to compute the moduli dependence of the superpotential couplings as well as the mirror maps at various points in the open/closed deformation space. These techniques are used to obtain predictions for genuine A-model Ooguri-Vafa invariants of special Lagrangian submanifolds in compact Calabi-Yau geometries and real enumerative invariants of on-shell domain wall tensions. By an open/closed duality the system of differential equations can also be obtained from a gauged linear {sigma}-model, which describes a non-compact Calabi-Yau four-fold compactification without branes. This is used in the examples of multi-parameter models to study the various phases of the combined open/closed deformation space. It is furthermore shown how the brane geometry can be related to a F-theory compactification on a compact Calabi-Yau four-fold, where the Hodge-theoretic techniques can be used to compute the G-flux induced Gukov-Vafa-Witten potential. The dual F-theory picture also allows to conjecture the form of the Kaehler potential on the full open/closed deformation space. In the second part we analyze the background dependence of theories which derive from multiple wrapped M5-branes. Using the Kontsevich-Soibelman wall-crossing formula and the theory of mock modular forms we derive a holomorphic

  18. Reducing the Surface Performance Requirements of a Primary Mirror by Adding a Deformable Mirror in its Optical Path

    Science.gov (United States)

    2015-12-01

    titleString), zlabel(‘Optical Effect (Waves)’) mTextBox = uicontrol (‘style’,’text’); RMSstring = sprintf(‘RMS = %1.3f Waves’,RMS); set(mTextBox,’String... uicontrol (‘style’,’text’); PVstring = sprintf(‘PV = %1.3f Waves’,PV); set(mTextBox2,’String’,PVstring) mTextBoxPosition2 = get(mTextBox2,’Position’); set...set(gca,’YTick’,[]); title(‘Baseline Wavefront Error’) BaselineRMSstring = sprintf(‘RMS = %1.3f Waves’,BaselineRMS); pTextBox = uicontrol

  19. Mirror neurons: functions, mechanisms and models.

    Science.gov (United States)

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Laser cleaning of ITER's diagnostic mirrors

    Science.gov (United States)

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.