Directory of Open Access Journals (Sweden)
E. Majchrzak
2008-12-01
Full Text Available The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the final part of the paper the examples of computations are shown.
Institute of Scientific and Technical Information of China (English)
Long Shuyao; Zhang Qin
2000-01-01
In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation 2 u + u + εu3 = b. Results obtained in an example have a good agreement with those by FEM and show the applicability and simplicity of dual reciprocity method(DRM) in solving nonlinear dif ferential equations.
DUAL RECIPROCITY BOUNDARY ELEMENT METHOD FOR FLEXURAL WAVES IN THIN PLATE WITH CUTOUT
Institute of Scientific and Technical Information of China (English)
GAO Suo-wen; WANG Yue-sheng; ZHANG Zi-mao; MA Xing-rui
2005-01-01
The theoretical analysis and numerical calculation of scattering of elastic waves and dynamic stress concentrations in the thin plate with the cutout was studied using dual reciprocity boundary element method (DRM). Based on the work equivalent law, the dual reciprocity boundary integral equations for flexural waves in the thin plate were established using static fundamental solution. As illustration, numerical results for the dynamic stress concentration factors in the thin plate with a circular hole are given.The results obtained demonstrate good agreement with other reported results and show high accuracy.
Energy Technology Data Exchange (ETDEWEB)
Jo, Jong Chull; Shin, Won Ky [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)
1997-12-31
This paper presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available. 22 refs., 3 figs. (Author)
Institute of Scientific and Technical Information of China (English)
JI Zhen-lin; WANG Xue-ren
2008-01-01
In marine engine exhaust silencing systems,the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers.In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers,a dual reciprocity boundary element method (DRBEM)was developed.The acoustic governing equation in three-dimensional potential flow was derived first,and then the DRBEM numerical procedure is given.Compared to the conventional boundary elementmethod (CBEM),the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation,so it is suitable for the cases with higher Mach number subsonic flow.For complex exhaust silencers,it is difficult to apply the single-domain boundary element method,so a substructure approach based on the dual reciprocity boundary element method is presented.The experiments for measuring transmission loss of silencers are conducted,and the experimental setup and measurements are explained.The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements.The good agreements between predictions and measurements are observed,which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.
DEFF Research Database (Denmark)
Li-Ying, Jason
2016-01-01
The extant literature runs short in understanding openness of innovation regarding and the different pathways along which internal and external knowledge resources can be combined. This study proposes a unique typology for outside-in innovations based on two distinct ways of boundary spanning: wh...
Holographic duals of Boundary CFTs
Chiodaroli, Marco; Gutperle, Michael
2012-01-01
New families of regular half-BPS solutions to 6-dimensional Type 4b supergravity with $m$ tensor multiplets are constructed exactly. Their space-time consists of $AdS_2 \\times S^2$ warped over a Riemann surface with an arbitrary number of boundary components, and arbitrary genus. The solutions have an arbitrary number of asymptotic $AdS_3 \\times S^3$ regions. In addition to strictly single-valued solutions to the supergravity equations whose scalars live in the coset $SO(5,m)/SO(5)\\times SO(m)$, we also construct stringy solutions whose scalar fields are single-valued up to transformations under the $U$-duality group $SO(5,m;\\bZ)$, and live in the coset $SO(5,m;\\bZ)\\backslash SO(5,m)/SO(5)\\times SO(m)$. We argue that these Type 4b solutions are holographically dual to general classes of interface and boundary CFTs arising at the juncture of the end-points of 1+1-dimensional bulk CFTs. We evaluate their corresponding holographic entanglement and boundary entropy, and discuss their brane interpretation. We conj...
Recent advances in boundary element methods
Manolis, GD
2009-01-01
Addresses the needs of the computational mechanics research community in terms of information on boundary integral equation-based methods and techniques applied to a variety of fields. This book collects both original and review articles on contemporary Boundary Element Methods (BEM) as well as on the Mesh Reduction Methods (MRM).
Dual-radial cell thermionic fuel element
Terrell, Charles W.
A dual-radial cell thermionic fuel element (TFE) has been proposed and partially evaluated. The cell has the capacity to produce considerably more power per gram of fuel than does a single-cell TFE, with a total electrical power in a fast reactor system of several hundred kWs, conservatively operated.
Boundary element-free method for elastodynamics
Institute of Scientific and Technical Information of China (English)
CHENG; Yumin; PENG; Miaojuan
2005-01-01
The moving least-square approximation is discussed first. Sometimes the method can form an ill-conditioned equation system, and thus the solution cannot be obtained correctly. A Hilbert space is presented on which an orthogonal function system mixed a weight function is defined. Next the improved moving least-square approximation is discussed in detail. The improved method has higher computational efficiency and precision than the old method, and cannot form an ill-conditioned equation system. A boundary element-free method (BEFM) for elastodynamics problems is presented by combining the boundary integral equation method for elastodynamics and the improved moving least-square approximation. The boundary element-free method is a meshless method of boundary integral equation and is a direct numerical method compared with others, in which the basic unknowns are the real solutions of the nodal variables and the boundary conditions can be applied easily. The boundary element-free method has a higher computational efficiency and precision. In addition, the numerical procedure of the boundary element-free method for elastodynamics problems is presented in this paper. Finally, some numerical examples are given.
A Dual Super-Element Domain Decomposition Approach for Parallel Nonlinear Finite Element Analysis
Jokhio, G. A.; Izzuddin, B. A.
2015-05-01
This article presents a new domain decomposition method for nonlinear finite element analysis introducing the concept of dual partition super-elements. The method extends ideas from the displacement frame method and is ideally suited for parallel nonlinear static/dynamic analysis of structural systems. In the new method, domain decomposition is realized by replacing one or more subdomains in a "parent system," each with a placeholder super-element, where the subdomains are processed separately as "child partitions," each wrapped by a dual super-element along the partition boundary. The analysis of the overall system, including the satisfaction of equilibrium and compatibility at all partition boundaries, is realized through direct communication between all pairs of placeholder and dual super-elements. The proposed method has particular advantages for matrix solution methods based on the frontal scheme, and can be readily implemented for existing finite element analysis programs to achieve parallelization on distributed memory systems with minimal intervention, thus overcoming memory bottlenecks typically faced in the analysis of large-scale problems. Several examples are presented in this article which demonstrate the computational benefits of the proposed parallel domain decomposition approach and its applicability to the nonlinear structural analysis of realistic structural systems.
Using reciprocity in Boundary Element Calculations
DEFF Research Database (Denmark)
Juhl, Peter Møller; Cutanda Henriquez, Vicente
2010-01-01
The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated...... as the reciprocal radiation problem. The present paper concerns the situation of having a point source (which is reciprocal to a point receiver) at or near a discretized boundary element surface. The accuracy of the original and the reciprocal problem is compared in a test case for which an analytical solution...
Introducing the Boundary Element Method with MATLAB
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
Introducing the Boundary Element Method with MATLAB
Ang, Keng-Cheng
2008-01-01
The boundary element method provides an excellent platform for learning and teaching a computational method for solving problems in physical and engineering science. However, it is often left out in many undergraduate courses as its implementation is deemed to be difficult. This is partly due to the perception that coding the method requires…
An inverse problem by boundary element method
Energy Technology Data Exchange (ETDEWEB)
Tran-Cong, T.; Nguyen-Thien, T. [University of Southern Queensland, Toowoomba, QLD (Australia); Graham, A.L. [Los Alamos National Lab., NM (United States)
1996-02-01
Boundary Element Methods (BEM) have been established as useful and powerful tools in a wide range of engineering applications, e.g. Brebbia et al. In this paper, we report a particular three dimensional implementation of a direct boundary integral equation (BIE) formulation and its application to numerical simulations of practical polymer processing operations. In particular, we will focus on the application of the present boundary element technology to simulate an inverse problem in plastics processing.by extrusion. The task is to design profile extrusion dies for plastics. The problem is highly non-linear due to material viscoelastic behaviours as well as unknown free surface conditions. As an example, the technique is shown to be effective in obtaining the die profiles corresponding to a square viscoelastic extrudate under different processing conditions. To further illustrate the capability of the method, examples of other non-trivial extrudate profiles and processing conditions are also given.
Boundary element method for internal axisymmetric flow
Directory of Open Access Journals (Sweden)
Gokhman Alexander
1999-01-01
Full Text Available We present an accurate fast method for the computation of potential internal axisymmetric flow based on the boundary element technique. We prove that the computed velocity field asymptotically satisfies reasonable boundary conditions at infinity for various types of inlet/exit. Computation of internal axisymmetric potential flow is an essential ingredient in the three-dimensional problem of computation of velocity fields in turbomachines. We include the results of a practical application of the method to the computation of flow in turbomachines of Kaplan and Francis types.
BOUNDARY ELEMENT ANALYSIS OF CONTACT PROBLEMS USING ARTIFICIAL BOUNDARY NODE APPROACH
Institute of Scientific and Technical Information of China (English)
Bahattin KANBER; Ibrahim H. GUZELBEY; Ahmet ERKLI
2003-01-01
An improved version of the regular boundary element method, the artificial boundary node approach, is derived. A simple contact algorithm is designed and implemented into the direct boundary element, regular boundary element and artificial boundary node approaches. The exisiting and derived approaches are tested using some case studies. The results of the artificial boundary node approach are compared with those of the existing boundary element program, the regular element approach, ANSYS and analytical solution whenever possible. The results show the effectiveness of the artificial boundary node approach for a wider range of boundary offsets.
9th International Conference on Boundary Elements
Wendland, W; Kuhn, G
1987-01-01
This book contains the edited versions of most of the papers presented at the 9th International Conference on Boundary Elements held at the University of Stuttgart, Germany from August 31st to September 4th, 1987, which was organized in co-operation with the Computational Mechanics Institute and GAMM (Society for Applied Mathematics and Mechanics). This Conference, as the previous ones, aimed to review the latest developments in technique and theory and point out new advanced future trends. The emphasis of the meeting was on the engineering advances versus mathematical formulations, in an effort to consolidate the basis of many new applications. Recently engineers have proposed different techniques to solve non-linear and time dependent problems and many of these formulations needed a better mathematical understanding. Furthermore, new approximate formulations have been proposed for boundary elements which appeared to work in engineering practice, but did not have a proper theoretical background. The Conferen...
The Gravity Dual of Boundary Causality
Engelhardt, Netta
2016-01-01
In gauge/gravity duality, points which are not causally related on the boundary cannot be causally related through the bulk; this is the statement of boundary causality. By the Gao-Wald theorem, the averaged null energy condition in the bulk is sufficient to ensure this property. Here we proceed in the converse direction: we derive a necessary as well as sufficient condition for the preservation of boundary causality under perturbative (quantum or stringy) corrections to the bulk. The condition that we find is a (background-dependent) constraint on the amount by which light cones can "open" over all null bulk geodesics. We show that this constraint is weaker than the averaged null energy condition.
Advanced boundary element methods in aeroacoustics and elastodynamics
Lee, Li
In the first part of this dissertation, advanced boundary element methods (BEM) are developed for acoustic radiation in the presence of subsonic flows. A direct boundary integral formulation is first introduced for acoustic radiation in a uniform flow. This new formulation uses the Green's function derived from the adjoint operator of the governing differential equation. Therefore, it requires no coordinate transformation. This direct BEM formulation is then extended to acoustic radiation in a nonuniform-flow field. All the terms due to the nonuniform-flow effect are taken to the right-hand side and treated as source terms. The source terms result in a domain integral in the standard boundary integral formulation. The dual reciprocity method is then used to convert the domain integral into a number of boundary integrals. The second part of this dissertation is devoted to the development of advanced BEM algorithms to overcome the multi-frequency and nonuniqueness difficulties in steady-state elastodynamics. For the multi-frequency difficulty, two different interpolation schemes, borrowed from recent developments in acoustics, are first extended to elastodynamics to accelerate the process of matrix re-formation. Then, a hybrid scheme that retains only the merits of the two different interpolation schemes is suggested. To overcome the nonuniqueness difficulty, an enhanced CHIEF (Combined Helmholtz Integral Equation Formulation) method using a linear combination of the displacement and the traction boundary integral equations on the surface of a small interior volume is proposed. Numerical examples are given to demonstrate all the advanced BEM formulations.
Boundary element methods for electrical engineers
POLJAK, D
2005-01-01
In the last couple of decades the Boundary Element Method (BEM) has become a well-established technique that is widely used for solving various problems in electrical engineering and electromagnetics. Although there are many excellent research papers published in the relevant literature that describe various BEM applications in electrical engineering and electromagnetics, there has been a lack of suitable textbooks and monographs on the subject. This book presents BEM in a simple fashion in order to help the beginner to understand the very basic principles of the method. It initially derives B
Discontinuous dual-primal mixed finite elements for elliptic problems
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Scaled Boundary Finite Element Analysis of Wave Passing A Submerged Breakwater
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The scaled boundary finite element method (SBFEM) is a novel semi-analytical technique combining the advantage of the finite element method (FEM) and the boundary element method (BEM) with its unique properties. In this paper, the SBFEM is used for computing wave passing submerged breakwaters, and the reflection coefficient and transmission coefficient are given for the case of wave passing by a rectangular submerged breakwater, a rigid submerged barrier breakwater and a trapezium submerged breakwater in a constant water depth. The results are compared with the analytical solution and experimental results. Good agreement is obtained. Through comparison with the results using the dual boundary element method (DBEM), it is found that the SBFEM can obtain higher accuracy with fewer elements. Many submerged breakwaters with different dimensions are computed by the SBFEM, and the changing character of the reflection coefficient and the transmission coefficient are given in the current study.
Forward seismic modeling with the use of boundary element method
Energy Technology Data Exchange (ETDEWEB)
Xuejun, L.
1991-01-01
Boundary element method for wave equation boundary value problem involves three steps: the boundary value problem of wave equations is converted into the boundary value problem of Helmholtz's equations by performing the one-dimensional Fourier transform of time variable, the new boundary value problem is converted into an integral equation by using Green's formula; and the integral equation is solved using boundary element method, and the required numerical solution is obtained by using inverse Fourier transform. This paper analyzes the theoretical formulas and application of the method. This method can be applied to forward and inverse seismic problems. In solving integral equation using boundary element method, the adoption of interval truncation division results in less element knots, less internal storage, faster operation and more accurate computation.
Dual Career Marriages: Elements for Potential Success.
Maples, Mary F.
1981-01-01
Examines the family and work relationships of dual career couples and discusses the advantages and disadvantages of these relationships. Various ingredients including personality traits that contribute to the success of the two-career partnership are listed. (RC)
Periodic Boundary Conditions in the ALEGRA Finite Element Code
Energy Technology Data Exchange (ETDEWEB)
AIDUN,JOHN B.; ROBINSON,ALLEN C.; WEATHERBY,JOE R.
1999-11-01
This document describes the implementation of periodic boundary conditions in the ALEGRA finite element code. ALEGRA is an arbitrary Lagrangian-Eulerian multi-physics code with both explicit and implicit numerical algorithms. The periodic boundary implementation requires a consistent set of boundary input sets which are used to describe virtual periodic regions. The implementation is noninvasive to the majority of the ALEGRA coding and is based on the distributed memory parallel framework in ALEGRA. The technique involves extending the ghost element concept for interprocessor boundary communications in ALEGRA to additionally support on- and off-processor periodic boundary communications. The user interface, algorithmic details and sample computations are given.
The dual role of coherent twin boundaries in hydrogen embrittlement.
Seita, Matteo; Hanson, John P; Gradečak, Silvija; Demkowicz, Michael J
2015-02-05
Hydrogen embrittlement (HE) causes engineering alloys to fracture unexpectedly, often at considerable economic or environmental cost. Inaccurate predictions of component lifetimes arise from inadequate understanding of how alloy microstructure affects HE. Here we investigate hydrogen-assisted fracture of a Ni-base superalloy and identify coherent twin boundaries (CTBs) as the microstructural features most susceptible to crack initiation. This is a surprising result considering the renowned beneficial effect of CTBs on mechanical strength and corrosion resistance of many engineering alloys. Remarkably, we also find that CTBs are resistant to crack propagation, implying that hydrogen-assisted crack initiation and propagation are governed by distinct physical mechanisms in Ni-base alloys. This finding motivates a re-evaluation of current lifetime models in light of the dual role of CTBs. It also indicates new paths to designing materials with HE-resistant microstructures.
The dual role of coherent twin boundaries in hydrogen embrittlement
Seita, Matteo; Hanson, John P.; Gradečak, Silvija; Demkowicz, Michael J.
2015-02-01
Hydrogen embrittlement (HE) causes engineering alloys to fracture unexpectedly, often at considerable economic or environmental cost. Inaccurate predictions of component lifetimes arise from inadequate understanding of how alloy microstructure affects HE. Here we investigate hydrogen-assisted fracture of a Ni-base superalloy and identify coherent twin boundaries (CTBs) as the microstructural features most susceptible to crack initiation. This is a surprising result considering the renowned beneficial effect of CTBs on mechanical strength and corrosion resistance of many engineering alloys. Remarkably, we also find that CTBs are resistant to crack propagation, implying that hydrogen-assisted crack initiation and propagation are governed by distinct physical mechanisms in Ni-base alloys. This finding motivates a re-evaluation of current lifetime models in light of the dual role of CTBs. It also indicates new paths to designing materials with HE-resistant microstructures.
Equivariant preconditioners for boundary element methods
Energy Technology Data Exchange (ETDEWEB)
Tausch, J. [Colorado State Univ., Fort Collins, CO (United States)
1994-12-31
In this paper the author proposes and discusses two preconditioners for boundary integral equations on domains which are nearly symmetric. The preconditioners under consideration are equivariant, that is, they commute with a group of permutation matrices. Numerical experiments demonstrate their efficiency for the GMRES method.
Highly Efficient Boundary Element Analysis of Whispering Gallery Microcavities
Pan, Leyuan
2014-01-01
We demonstrate that the efficiency of the boundary element whispering gallery microcavity analysis can be improved by orders of magnitude with the inclusion of Fresnel approximation. Using this formulation, simulation of a microdisk with wave-number-radius product as large as $kR\\approx8,000$ was demonstrated in contrast to a previous record of $kR\\approx100$. In addition to its high accuracy on computing the modal field distribution and resonance wavelength, this method yields a relative error of $10%$ in calculating the quality factor as high as $10^{11}$ through a direct root searching method where the conventional boundary element method failed to achieve. Finally, quadrupole shaped cavities and double disks as large as $100 {\\mu}m$ in diameter were modeled by employing as few as $512$ boundary elements whilst the simulation of such large cavities using conventional boundary element method were not reported previously.
(Environmental and geophysical modeling, fracture mechanics, and boundary element methods)
Energy Technology Data Exchange (ETDEWEB)
Gray, L.J.
1990-11-09
Technical discussions at the various sites visited centered on application of boundary integral methods for environmental modeling, seismic analysis, and computational fracture mechanics in composite and smart'' materials. The traveler also attended the International Association for Boundary Element Methods Conference at Rome, Italy. While many aspects of boundary element theory and applications were discussed in the papers, the dominant topic was the analysis and application of hypersingular equations. This has been the focus of recent work by the author, and thus the conference was highly relevant to research at ORNL.
Stochastic Boundary Element Analysis of Concrete Gravity Dam
Institute of Scientific and Technical Information of China (English)
张明; 吴清高
2002-01-01
Stochastic boundary integral equations for analyzing large structures are obtained from the partial derivatives of basic random variables. A stochastic boundary element method based on the equations is developed to solve engineering problems of gravity dams using random factors including material parameters of the dam body and the foundation, the water level in the upper reaches, the anti-slide friction coefficient of the dam base, etc. A numerical example shows that the stochastic boundary element method presented in this paper to calculate the reliability index of large construction projects such as a large concrete gravity dam has the advantages of less input data and more precise computational results.
A Kind of Boundary Element Methods for Boundary Value Problem of Helmholtz Equation
Institute of Scientific and Technical Information of China (English)
张然; 姜正义; 马富明
2004-01-01
Problems for electromagnetic scattering are of significant importance in many areas of technology. In this paper we discuss the scattering problem of electromagnetic wave incident by using boundary element method associated with splines. The problem is modelled by a boundary value problem for the Helmholtz eouation
Dual Formulations of Mixed Finite Element Methods with Applications.
Gillette, Andrew; Bajaj, Chandrajit
2011-10-01
Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail.
Novel boundary element method for resolving plate bending problems
Institute of Scientific and Technical Information of China (English)
陈颂英; 王乐勤; 焦磊
2003-01-01
This paper discusses the application of the boundary contour method for resolving plate bending problems. The exploitation of the integrand divergence free property of the plate bending boundary integral equation based on the Kirchhoff hypothesis and a very useful application of Stokes' Theorem are presented to convert surface integrals on boundary elements to the computation of bending potential functions on the discretized boundary points, even for curved surface elements of arbitrary shape. Singularity and treatment of the discontinued corner point are not needed at all. The evaluation of the physics variant at internal points is also shown in this article. Numerical results are presented for some plate bending problems and compared against analytical and previous solutions.
Sound source reconstruction using inverse boundary element calculations
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Hald, Jørgen; Rasmussen, Karsten Bo;
2001-01-01
suited for solution by means of an inverse boundary element method. Since the numerical treatment of the inverse source reconstruction results in a discrete ill-posed problem, regularisation is imposed to avoid unstable solutions dominated by errors. In the present work the emphasis is on Tikhonov......Whereas standard boundary element calculations focus on the forward problem of computing the radiated acoustic field from a vibrating structure, the aim of the present work is to reverse the process, i.e., to determine vibration from acoustic field data. This inverse problem is brought on a form...
Analysis of Dynamic Modeling Method Based on Boundary Element
Directory of Open Access Journals (Sweden)
Xu-Sheng Gan
2013-07-01
Full Text Available The aim of this study was to study an improved dynamic modeling method based on a Boundary Element Method (BEM. The dynamic model was composed of the elements such as the beam element, plate element, joint element, lumped mass and spring element by the BEM. An improved dynamic model of a machine structure was established based on plate-beam element system mainly. As a result, the dynamic characteristics of a machine structure were analyzed and the comparison of computational results and experimental’s showed the modeling method was effective. The analyses indicate that the introduced method inaugurates a good way for analyzing dynamic characteristics of a machine structure efficiently.
Experimental validation of boundary element methods for noise prediction
Seybert, A. F.; Oswald, Fred B.
1992-01-01
Experimental validation of methods to predict radiated noise is presented. A combined finite element and boundary element model was used to predict the vibration and noise of a rectangular box excited by a mechanical shaker. The predicted noise was compared to sound power measured by the acoustic intensity method. Inaccuracies in the finite element model shifted the resonance frequencies by about 5 percent. The predicted and measured sound power levels agree within about 2.5 dB. In a second experiment, measured vibration data was used with a boundary element model to predict noise radiation from the top of an operating gearbox. The predicted and measured sound power for the gearbox agree within about 3 dB.
Boundary control of parabolic systems - Finite-element approximation
Lasiecka, I.
1980-01-01
The finite element approximation of a Dirichlet type boundary control problem for parabolic systems is considered. An approach based on the direct approximation of an input-output semigroup formula is applied. Error estimates are derived for optimal state and optimal control, and it is noted that these estimates are actually optimal with respect to the approximation theoretic properties.
A Geometrical Approach to the Boundary Element Method
Auchmann, B; Rjasanow, S
2008-01-01
We introduce a geometric formulation of the boundary element method (BEM), using concepts of the discrete electromagnetic theory. Geometric BEM is closely related to Galerkin-BEM and to the generalized collocation scheme. It is easy to implement, accurate, and computationally efficient. We validate our approach with 2-D examples and give an outlook to 3-D results.
The use of discrete orthogonal projections in boundary element methods
Brandts, J.
2001-01-01
In recent papers by Sloan and Wendland Grigorie and Sloan and Grigorie Sloan and Brandts a formalismwas developed that serves many important and interesting applications in boundary element methods the commutator property for splines Based on superapproximation results this property is for exam
Boundary element simulation of petroleum reservoirs with hydraulically fractured wells
Pecher, Radek
The boundary element method is applied to solve the linear pressure-diffusion equation of fluid-flow in porous media. The governing parabolic partial differential equation is transformed into the Laplace space to obtain the elliptic modified-Helmholtz equation including the homogeneous initial condition. The free- space Green's functions, satisfying this equation for anisotropic media in two and three dimensions, are combined with the generalized form of the Green's second identity. The resulting boundary integral equation is solved by following the collocation technique and applying the given time-dependent boundary conditions of the Dirichlet or Neumann type. The boundary integrals are approximated by the Gaussian quadrature along each element of the discretized domain boundary. Heterogeneous regions are represented by the sectionally-homogeneous zones of different rock and fluid properties. The final values of the interior pressure and velocity fields and of their time-derivatives are found by numerically inverting the solutions from the Laplace space by using the Stehfest's algorithm. The main extension of the mostly standard BEM-procedure is achieved in the modelling of the production and injection wells represented by internal sources and sinks. They are treated as part of the boundary by means of special single-node and both-sided elements, corresponding to the line and plane sources respectively. The wellbore skin and storage effects are considered for the line and cylindrical sources. Hydraulically fractured wells of infinite conductivity are handled directly according to the specified constraint type, out of the four alternatives. Fractures of finite conductivity are simulated by coupling the finite element model of their 1D-interior with the boundary element model of their 2D- exterior. Variable fracture width, fractures crossing zone boundaries, ``networking'' of fractures, fracture-tip singularity handling, or the 3D-description are additional advanced
Anisotropic Boundary Layer Adaptivity of Multi-Element Wings
Chitale, Kedar C; Sahni, Onkar; Shephard, Mark S; Jansen, Kenneth E
2014-01-01
Multi-element wings are popular in the aerospace community due to their high lift performance. Turbulent flow simulations of these configurations require very fine mesh spacings especially near the walls, thereby making use of a boundary layer mesh necessary. However, it is difficult to accurately determine the required mesh resolution a priori to the simulations. In this paper we use an anisotropic adaptive meshing approach including adaptive control of elements in the boundary layers and study its effectiveness for two multi-element wing configurations. The results are compared with experimental data as well as nested refinements to show the efficiency of adaptivity driven by error indicators, where superior resolution in wakes and near the tip region through adaptivity are highlighted.
Hooper, Russell; Toose, E.M.; Macosko, Christopher W.; Derby, Jeffrey J.
2001-01-01
A modified boundary element method (BEM) and the DEVSS-G finite element method (FEM) are applied to model the deformation of a polymeric drop suspended in another fluid subjected to start-up uniaxial extensional flow. The effects of viscoelasticity, via the Oldroyd-B differential model, are
Institute of Scientific and Technical Information of China (English)
GUZELBEY Ibrahim H.; KANBER Bahattin; AKPOLAT Abdullah
2004-01-01
In this study, the stress based finite element method is coupled with the boundary element method in two different ways. In the first one, the ordinary distribution matrix is used for coupling. In the second one, the stress traction equilibrium is used at the interface line of both regions as a new coupling process. This new coupling procedure is presented without a distribution matrix. Several case studies are solved for the validation of the developed coupling procedure. The results of case studies are compared with the distribution matrix coupling, displacement based finite element method, assumed stress finite element method, boundary element method, ANSYS and analytical results whenever possible. It is shown that the coupling of the stress traction equilibrium with assumed stress finite elements gives as accurate results as those by the distribution matrix coupling.
Analysis of 3-D Frictional Contact Mechanics Problems by a Boundary Element Method
Institute of Scientific and Technical Information of China (English)
KEUM Bangyong; LIU Yijun
2005-01-01
The development of two boundary element algorithms for solving 3-D, frictional, and linear elastostatic contact problems is reported in this paper. The algorithms employ nonconforming discretizations for solving 3-D boundary element models, which provide much needed flexibility in the boundary element modeling for 3-D contact problems. These algorithms are implemented in a new 3-D boundary element code and verified using several examples. For the numerical examples studied, the results using the new boundary element algorithms match very well with the results using a commercial finite element code, and clearly demonstrate the feasibility of the new boundary element approach for 3-D contact analysis.
Finite element method for solving geodetic boundary value problems
Fašková, Zuzana; Čunderlík, Róbert; Mikula, Karol
2010-02-01
The goal of this paper is to present the finite element scheme for solving the Earth potential problems in 3D domains above the Earth surface. To that goal we formulate the boundary-value problem (BVP) consisting of the Laplace equation outside the Earth accompanied by the Neumann as well as the Dirichlet boundary conditions (BC). The 3D computational domain consists of the bottom boundary in the form of a spherical approximation or real triangulation of the Earth’s surface on which surface gravity disturbances are given. We introduce additional upper (spherical) and side (planar and conical) boundaries where the Dirichlet BC is given. Solution of such elliptic BVP is understood in a weak sense, it always exists and is unique and can be efficiently found by the finite element method (FEM). We briefly present derivation of FEM for such type of problems including main discretization ideas. This method leads to a solution of the sparse symmetric linear systems which give the Earth’s potential solution in every discrete node of the 3D computational domain. In this point our method differs from other numerical approaches, e.g. boundary element method (BEM) where the potential is sought on a hypersurface only. We apply and test FEM in various situations. First, we compare the FEM solution with the known exact solution in case of homogeneous sphere. Then, we solve the geodetic BVP in continental scale using the DNSC08 data. We compare the results with the EGM2008 geopotential model. Finally, we study the precision of our solution by the GPS/levelling test in Slovakia where we use terrestrial gravimetric measurements as input data. All tests show qualitative and quantitative agreement with the given solutions.
Green's function and boundary elements of multifield materials
Qin, Qing-Hua
2007-01-01
Green's Function and Boundary Elements of Multifield Materials contains a comprehensive treatment of multifield materials under coupled thermal, magnetic, electric, and mechanical loads. Its easy-to-understand text clarifies some of the most advanced techniques for deriving Green's function and the related boundary element formulation of magnetoelectroelastic materials: Radon transform, potential function approach, Fourier transform. Our hope in preparing this book is to attract interested readers and researchers to a new field that continues to provide fascinating and technologically important challenges. You will benefit from the authors' thorough coverage of general principles for each topic, followed by detailed mathematical derivation and worked examples as well as tables and figures where appropriate. In-depth explanations of the concept of Green's function Coupled thermo-magneto-electro-elastic analysis Detailed mathematical derivation for Green's functions.
Foundations of the complex variable boundary element method
Hromadka, Theodore
2014-01-01
This book explains and examines the theoretical underpinnings of the Complex Variable Boundary Element Method (CVBEM) as applied to higher dimensions, providing the reader with the tools for extending and using the CVBEM in various applications. Relevant mathematics and principles are assembled and the reader is guided through the key topics necessary for an understanding of the development of the CVBEM in both the usual two- as well as three- or higher dimensions. In addition to this, problems are provided that build upon the material presented. The Complex Variable Boundary Element Method (CVBEM) is an approximation method useful for solving problems involving the Laplace equation in two dimensions. It has been shown to be a useful modelling technique for solving two-dimensional problems involving the Laplace or Poisson equations on arbitrary domains. The CVBEM has recently been extended to 3 or higher spatial dimensions, which enables the precision of the CVBEM in solving the Laplace equation to be now ava...
Sound source reconstruction using inverse boundary element calculations
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Hald, Jørgen; Rasmussen, Karsten Bo
2003-01-01
Whereas standard boundary element calculations focus on the forward problem of computing the radiated acoustic field from a vibrating structure, the aim in this work is to reverse the process, i.e., to determine vibration from acoustic field data. This inverse problem is brought on a form suited...... for solution by means of an inverse boundary element method. Since the numerical treatment of the inverse source reconstruction results in a discrete ill-posed problem, regularization is imposed to avoid unstable solutions dominated by errors., In the present work the emphasis is on Tikhonov regularization...... and parameter-choice methods not requiring an error-norm estimate for choosing the right amount of regularization. Several parameter-choice strategies have been presented lately, but it still remains to be seen how well these can handle industrial applications with real measurement data. In the present work...
PROGRAM-PATTERN MULTIPOLE BOUNDARY ELEMENT METHOD FOR FRICTIONAL CONTACT
Institute of Scientific and Technical Information of China (English)
Yu Chunxiao; Shen Guangxian; Liu Deyi
2005-01-01
A mathematical program is proposed for the highly nonlinear problem involving frictional contact. A program-pattern using the fast multipole boundary element method (FMBEM) is given for 3-D elastic contact with friction to replace the Monte Carlo method. A new optimized generalized minimal residual (GMRES) algorithm is presented. Numerical examples demonstrate the validity of the program-pattern optimization model for node-to-surface contact with friction. The GMRES algorithm greatly improves the computational efficiency.
8th International Conference on Boundary Element Methods
Brebbia, C
1986-01-01
The International Conference on Boundary Element Methods in Engineering was started in 1978 with the following objectives: i) To act as a focus for BE research at a time when the technique wasjust emerging as a powerful tool for engineering analysis. ii) To attract new as weIl as established researchers on Boundary Elements, in order to maintain its vitality and originality. iii) To try to relate the Boundary Element Method to other engineering techniques in an effort to help unify the field of engineering analysis, rather than to contribute to its fragmentation. These objectives were achieved during the last 7 conferences and this meeting - the eighth - has continued to be as innovative and dynamic as any ofthe previous conferences. Another important aim ofthe conference is to encourage the participation of researchers from as many different countries as possible and in this regard it is a policy of the organizers to hold the conference in different locations. It is easy to forget when working on scientific ...
Dual Ion Beam Deposition Of Diamond Films On Optical Elements
Deutchman, Arnold H.; Partyka, Robert J.; Lewis, J. C.
1990-01-01
Diamond film deposition processes are of great interest because of their potential use for the formation of both protective as well as anti-reflective coatings on the surfaces of optical elements. Conventional plasma-assisted chemical vapor deposition diamond coating processes are not ideal for use on optical components because of the high processing temperatures required, and difficulties faced in nucleating films on most optical substrate materials. A unique dual ion beam deposition technique has been developed which now makes possible deposition of diamond films on a wide variety of optical elements. The new DIOND process operates at temperatures below 150 aegrees Farenheit, and has been used to nucleate and grow both diamondlike carbon and diamond films on a wide variety of optical :taterials including borosilicate glass, quartz glass, plastic, ZnS, ZnSe, Si, and Ge.
Comparison of boundary element and finite element methods in spur gear root stress analysis
Sun, H.; Mavriplis, D.; Huston, R. L.; Oswald, F. B.
1989-01-01
The boundary element method (BEM) is used to compute fillet stress concentration in spur gear teeth. The results are shown to compare favorably with analogous results obtained using the finite element method (FEM). A partially supported thin rim gear is studied. The loading is applied at the pitch point. A three-dimensional analysis is conducted using both the BEM and FEM (NASTRAN). The results are also compared with those of a two-dimensional finite element model. An advantage of the BEM over the FEM is that fewer elements are needed with the BEM. Indeed, in the current study the BEM used 92 elements and 270 nodes whereas the FEM used 320 elements and 2037 nodes. Moreover, since the BEM is especially useful in problems with high stress gradients it is potentially a very useful tool for fillet stress analyses.
An Ikaros Promoter Element with Dual Epigenetic and Transcriptional Activities.
Perotti, Elizabeth A; Georgopoulos, Katia; Yoshida, Toshimi
2015-01-01
Ikaros DNA binding factor plays critical roles in lymphocyte development. Changes in Ikaros expression levels during lymphopoiesis are controlled by redundant but also unique regulatory elements of its locus that are critical for this developmental process. We have recently shown that Ikaros binds its own locus in thymocytes in vivo. Here, we evaluated the role of an Ikaros binding site within its major lympho-myeloid promoter. We identified an Ikaros/Ets binding site within a promoter sub-region that was highly conserved in mouse and human. Deletion of this binding site increased the percentage of the reporter-expressing mouse lines, indicating that its loss provided a more permissive chromatin environment. However, once transcription was established, the lack of this site decreased transcriptional activity. These findings implicate a dual role for Ikaros/Ets1 binding on Ikzf1 expression that is exerted at least through its promoter.
An Ikaros Promoter Element with Dual Epigenetic and Transcriptional Activities.
Directory of Open Access Journals (Sweden)
Elizabeth A Perotti
Full Text Available Ikaros DNA binding factor plays critical roles in lymphocyte development. Changes in Ikaros expression levels during lymphopoiesis are controlled by redundant but also unique regulatory elements of its locus that are critical for this developmental process. We have recently shown that Ikaros binds its own locus in thymocytes in vivo. Here, we evaluated the role of an Ikaros binding site within its major lympho-myeloid promoter. We identified an Ikaros/Ets binding site within a promoter sub-region that was highly conserved in mouse and human. Deletion of this binding site increased the percentage of the reporter-expressing mouse lines, indicating that its loss provided a more permissive chromatin environment. However, once transcription was established, the lack of this site decreased transcriptional activity. These findings implicate a dual role for Ikaros/Ets1 binding on Ikzf1 expression that is exerted at least through its promoter.
Insulators and Boundaries: Versatile Regulatory Elements in the Eukaryotic Genome
Bell, Adam C.; West, Adam G.; Felsenfeld, Gary
2001-01-01
Insulators mark the boundaries of chromatin domains by limiting the range of action of enhancers and silencers. Although the properties of insulators have been well studied, their role in vivo has largely been a subject of speculation. Recent results make it possible to ascribe specific and essential functions to the insulators of Drosophila, yeast, and vertebrates. In some cases, insulator activity can be modulated by nearby regulatory elements, bound cofactors, or covalent modification of the DNA. Not simply passive barriers, insulators are active participants in eukaryotic gene regulation.
Webb, Christopher J; Zakian, Virginia A
2015-09-08
The stem terminus element (STE), which was discovered 13 y ago in human telomerase RNA, is required for telomerase activity, yet its mode of action is unknown. We report that the Schizosaccharomyces pombe telomerase RNA, TER1 (telomerase RNA 1), also contains a STE, which is essential for telomere maintenance. Cells expressing a partial loss-of-function TER1 STE allele maintained short stable telomeres by a recombination-independent mechanism. Remarkably, the mutant telomere sequence was different from that of wild-type cells. Generation of the altered sequence is explained by reverse transcription into the template boundary element, demonstrating that the STE helps maintain template boundary element function. The altered telomeres bound less Pot1 (protection of telomeres 1) and Taz1 (telomere-associated in Schizosaccharomyces pombe 1) in vivo. Thus, the S. pombe STE, although distant from the template, ensures proper telomere sequence, which in turn promotes proper assembly of the shelterin complex.
A new fast direct solver for the boundary element method
Huang, S.; Liu, Y. J.
2017-04-01
A new fast direct linear equation solver for the boundary element method (BEM) is presented in this paper. The idea of the new fast direct solver stems from the concept of the hierarchical off-diagonal low-rank matrix. The hierarchical off-diagonal low-rank matrix can be decomposed into the multiplication of several diagonal block matrices. The inverse of the hierarchical off-diagonal low-rank matrix can be calculated efficiently with the Sherman-Morrison-Woodbury formula. In this paper, a more general and efficient approach to approximate the coefficient matrix of the BEM with the hierarchical off-diagonal low-rank matrix is proposed. Compared to the current fast direct solver based on the hierarchical off-diagonal low-rank matrix, the proposed method is suitable for solving general 3-D boundary element models. Several numerical examples of 3-D potential problems with the total number of unknowns up to above 200,000 are presented. The results show that the new fast direct solver can be applied to solve large 3-D BEM models accurately and with better efficiency compared with the conventional BEM.
DEFF Research Database (Denmark)
Smith, Thomas Gunst; Vesterdal Larsen, Niels; Vesterager Gothelf, Ulrich
2012-01-01
A concentric dual split-loop element is designed and investigated for reflectarray antenna design in the emerging 20 GHz and 30 GHz Ka-band satellite communication spectrum. The element is capable of providing adjustment of the phase of reflection coefficients for circular plane waves in two...
Active open boundary forcing using dual relaxation time-scales in downscaled ocean models
Herzfeld, M.; Gillibrand, P. A.
2015-05-01
Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.
A Boundary Element Method for Simulation of Deformable Objects
Institute of Scientific and Technical Information of China (English)
徐美和; 唐泽圣
1996-01-01
In this paper,a boundary element method is first applied to real-tim animation of deformable objects and to simplify data preparation.Next,the visibleexternal surface of the object in deforming process is represented by B-spline surface,whose control points are embedded in dynamic equations of BEM.Fi-nally,the above method is applied to anatomical simulation.A pituitary model in human brain,which is reconstructed from a set of anatomical sections, is selected to be the deformable object under action of virtual tool such as scapel or probe.It produces fair graphic realism and high speed performance.The results show that BEM not only has less computational expense than FEM,but also is convenient to combine with the 3D reconstruction and surface modeling as it enables the reduction of the dimensionality of the problem by one.
Inverse boundary element calculations based on structural modes
DEFF Research Database (Denmark)
Juhl, Peter Møller
2007-01-01
The inverse problem of calculating the flexural velocity of a radiating structure of a general shape from measurements in the field is often solved by combining a Boundary Element Method with the Singular Value Decomposition and a regularization technique. In their standard form these methods solve...... for the unknown normal velocities of the structure at the relatively large number of nodes in the numerical model. Efficiently the regularization technique smoothes the solution spatially, since a fast spatial variation is associated with high index singular values, which is filtered out or damped...... in the regularization. Hence, the effective number of degrees of freedom in the model is often much lower than the number of nodes in the model. The present paper deals with an alternative formulation possible for the subset of radiation problems in which a (structural) modal expansion is known for the structure...
Submarine Magnetic Field Extrapolation Based on Boundary Element Method
Institute of Scientific and Technical Information of China (English)
GAO Jun-ji; LIU Da-ming; YAO Qiong-hui; ZHOU Guo-hua; YAN Hui
2007-01-01
In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine, a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method (BEM). An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine. The data in differentheights above the model submarine are obtained by use of tri-axial magnetometers. The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data. Moreover, the model can reflect the submarine magnetic field distribution in the air exactly, and is valuable in practical engineering.
Boundary element modeling of nondissipative and dissipative waves
Energy Technology Data Exchange (ETDEWEB)
Chen, Genmeng [Univ. of Houston, TX (United States). Allied Geophysical Labs.; Zhou, Huawei [Univ. of Houston, TX (United States). Dept. of Geosciences
1994-01-01
A boundary element (BE) algorithm is developed to compute acoustic or SH-waves in models consisting of limited or unlimited volumes and irregular interfaces. The authors solve the BE system in the frequency domain so that anelasticity can be easily represented by different viscoelastic models, such as the Kelvin-Voigt type. Three illustrative computations are shown. The waveform given by the BE method for a circular inclusion model agrees well with that given by the finite-difference (FD) method. Dissipation of waves at high frequency caused by the presence of multi-cracks in an elastic medium resembles the masking effect of anelasticity. The waveforms for nondissipative and dissipative models containing hexagonal inclusions illustrate some interesting characteristics of the composite media.
Three dimensional boundary element solutions for eddy current nondestructive evaluation
Yang, Ming; Song, Jiming; Nakagawa, Norio
2014-02-01
The boundary integral equations (BIE) method is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations. It can be applied in many areas of engineering and science including fluid mechanics, acoustics, electromagnetics, and fracture mechanics. The eddy current problem is formulated by the BIE and discretized into matrix equations by the method of moments (MoM) or the boundary element method (BEM). The three dimensional arbitrarily shaped objects are described by a number of triangular patches. The Stratton-Chu formulation is specialized for the conductive medium. The equivalent electric and magnetic surface currents are expanded in terms of Rao-Wilton-Glisson (RWG) vector basis function while the normal component of magnetic field is expanded in terms of the pulse basis function. Also, a low frequency approximation is applied in the external medium. Additionally, we introduce Auld's impedance formulas to calculate impedance variation. There are very good agreements between numerical results and those from theory and/or experiments for a finite cross-section above a wedge.
Numerical Improvement of The Three-dimensional Boundary Element Method
Ortiz-Aleman, C.; Gil-Zepeda, A.; SÃ¡nchez-Sesma, F. J.; Luzon-Martinez, F.
2001-12-01
Boundary element methods have been applied to calculate the seismic response of various types of geological structures. Dimensionality reduction and a relatively easy fulfillment of radiation conditions at infinity are recognized advantages over domain approaches. Indirect Boundary Element Method (IBEM) formulations give rise to large systems of equations, and the considerable amount of operations required for solving them suggest the possibility of getting some benefit from exploitation of sparsity patterns. In this article, a brief study on the structure of the linear systems derived from the IBEM method is carried out. Applicability of a matrix static condensation algorithm to the inversion of the IBEM coefficient matrix is explored, in order to optimize the numerical burden of such method. Seismic response of a 3-D alluvial valley of irregular shape, as originally proposed by Sánchez-Sesma and Luzon (1995), was computed and comparisons on time consumption and memory allocation are established. An alternative way to deal with those linear systems is the use of threshold criteria for the truncation of the coefficient matrix, which implies the solution of sparse approximations instead of the original full IBEM systems (Ortiz-Aleman et al., 1998). Performance of this optimized approach is evaluated on its application to the case of a three-dimensional alluvial basin with irregular shape. Transfer functions were calculated for the frequency range from 0 to 1.25 Hz. Inversion of linear systems by using this algorithm lead to significant saving on computer time and memory allocation relative to the original IBEM formulation. Results represent an extension in the range of application of the IBEM method.
Johnson, Anthony N; Hromadka, T V
2015-01-01
The Laplace equation that results from specifying either the normal or tangential force equilibrium equation in terms of the warping functions or its conjugate can be modeled as a complex variable boundary element method or CVBEM mixed boundary problem. The CVBEM is a well-known numerical technique that can provide solutions to potential value problems in two or more dimensions by the use of an approximation function that is derived from the Cauchy Integral in complex analysis. This paper highlights three customizations to the technique.•A least squares approach to modeling the complex-valued approximation function will be compared and analyzed to determine if modeling error on the boundary can be reduced without the need to find and evaluated additional linearly independent complex functions.•The nodal point locations will be moved outside the problem domain.•Contour and streamline plots representing the warping function and its complementary conjugate are generated simultaneously from the complex-valued approximating function.
DUAL RECIPROCITY HYBRID BOUNDARY NODE METHOD FOR THREE-DIMENSIONAL ELASTICITY WITH BODY FORCE
Institute of Scientific and Technical Information of China (English)
Fei Yan; Yuanhan Wang; Yu Miao; Fei Tan
2008-01-01
Combining Dual Reciprocity Method (DRM) with Hybrid Bòundary Node Method(HBNM),the Dual Reciprocity Hybrid Boundary Node Method (DRHBNM) is developed for three-dimensional linear elasticity problems with body force.This method can be used to solve the elasticity problems with body force without domain integral,which is inevitable by HBNM.To demonstrate the versatility and the fast convergence of this method,some numerical examples of 3-D elasticity problems with body forces are examined.The computational results show that the present method is effective and can be widely applied in solving practical engineering problems.
On modelling three-dimensional piezoelectric smart structures with boundary spectral element method
Zou, Fangxin; Aliabadi, M. H.
2017-05-01
The computational efficiency of the boundary element method in elastodynamic analysis can be significantly improved by employing high-order spectral elements for boundary discretisation. In this work, for the first time, the so-called boundary spectral element method is utilised to formulate the piezoelectric smart structures that are widely used in structural health monitoring (SHM) applications. The resultant boundary spectral element formulation has been validated by the finite element method (FEM) and physical experiments. The new formulation has demonstrated a lower demand on computational resources and a higher numerical stability than commercial FEM packages. Comparing to the conventional boundary element formulation, a significant reduction in computational expenses has been achieved. In summary, the boundary spectral element formulation presented in this paper provides a highly efficient and stable mathematical tool for the development of SHM applications.
A new simple multidomain fast multipole boundary element method
Huang, S.; Liu, Y. J.
2016-09-01
A simple multidomain fast multipole boundary element method (BEM) for solving potential problems is presented in this paper, which can be applied to solve a true multidomain problem or a large-scale single domain problem using the domain decomposition technique. In this multidomain BEM, the coefficient matrix is formed simply by assembling the coefficient matrices of each subdomain and the interface conditions between subdomains without eliminating any unknown variables on the interfaces. Compared with other conventional multidomain BEM approaches, this new approach is more efficient with the fast multipole method, regardless how the subdomains are connected. Instead of solving the linear system of equations directly, the entire coefficient matrix is partitioned and decomposed using Schur complement in this new approach. Numerical results show that the new multidomain fast multipole BEM uses fewer iterations in most cases with the iterative equation solver and less CPU time than the traditional fast multipole BEM in solving large-scale BEM models. A large-scale fuel cell model with more than 6 million elements was solved successfully on a cluster within 3 h using the new multidomain fast multipole BEM.
Novel TMS coils designed using an inverse boundary element method
Cobos Sánchez, Clemente; María Guerrero Rodriguez, Jose; Quirós Olozábal, Ángel; Blanco-Navarro, David
2017-01-01
In this work, a new method to design TMS coils is presented. It is based on the inclusion of the concept of stream function of a quasi-static electric current into a boundary element method. The proposed TMS coil design approach is a powerful technique to produce stimulators of arbitrary shape, and remarkably versatile as it permits the prototyping of many different performance requirements and constraints. To illustrate the power of this approach, it has been used for the design of TMS coils wound on rectangular flat, spherical and hemispherical surfaces, subjected to different constraints, such as minimum stored magnetic energy or power dissipation. The performances of such coils have been additionally described; and the torque experienced by each stimulator in the presence of a main magnetic static field have theoretically found in order to study the prospect of using them to perform TMS and fMRI concurrently. The obtained results show that described method is an efficient tool for the design of TMS stimulators, which can be applied to a wide range of coil geometries and performance requirements.
Lubrication approximation in completed double layer boundary element method
Nasseri, S.; Phan-Thien, N.; Fan, X.-J.
This paper reports on the results of the numerical simulation of the motion of solid spherical particles in shear Stokes flows. Using the completed double layer boundary element method (CDLBEM) via distributed computing under Parallel Virtual Machine (PVM), the effective viscosity of suspension has been calculated for a finite number of spheres in a cubic array, or in a random configuration. In the simulation presented here, the short range interactions via lubrication forces are also taken into account, via the range completer in the formulation, whenever the gap between two neighbouring particles is closer than a critical gap. The results for particles in a simple cubic array agree with the results of Nunan and Keller (1984) and Stoksian Dynamics of Brady etal. (1988). To evaluate the lubrication forces between particles in a random configuration, a critical gap of 0.2 of particle's radius is suggested and the results are tested against the experimental data of Thomas (1965) and empirical equation of Krieger-Dougherty (Krieger, 1972). Finally, the quasi-steady trajectories are obtained for time-varying configuration of 125 particles.
Institute of Scientific and Technical Information of China (English)
LIANG Xinhua; ZHU Ping; LIN Zhongqin; ZHANG Yan
2007-01-01
A lightweight automotive prototype using alter- native materials and gauge thickness is studied by a numeri- cal method. The noise, vibration, and harshness (NVH) performance is the main target of this study. In the range of 1-150 Hz, the frequency response function (FRF) of the body structure is calculated by a finite element method (FEM) to get the dynamic behavior of the auto-body structure. The pressure response of the interior acoustic domain is solved by a boundary element method (BEM). To find the most contrib- uting panel to the inner sound pressure, the panel acoustic contribution analysis (PACA) is performed. Finally, the most contributing panel is located and the resulting structural optimization is found to be more efficient.
Coupled Finite Element/Boundary Element Analysis of a Vehicle Moving Along a Railway Track
DEFF Research Database (Denmark)
Andersen, Lars; Nielsen, Søren R. K.
2004-01-01
Trains running in build-up areas are a source to ground-borne noise. A careful design of the track structure may be one way of minimizing the vibrations in the surroundings. For example, open or in-filled trenches may be constructed along the track, or the soil underneath the track may be improved....... In this work, analyses are carried out with the aim of investigating the influence of the track design and properties on the level of ground vibration due to a vehicle moving with subsonic speed. A coupled finite element and boundary element model of the track and subsoil is employed, adopting a formulation...... in the moving frame of reference following the vehicle. The computations are carried out in the frequency domain, and various combinations of the vehicle speed and the excitation frequency are analysed. The analyses indicate that open trenches are generally more efficient than in-filled trenches or soil...
Coupled Finite Element/Boundary Element Analysis of a Vehicle Moving Along a Railway Track
DEFF Research Database (Denmark)
Andersen, Lars; Nielsen, Søren R. K.
2004-01-01
Trains running in build-up areas are a source to ground-borne noise. A careful design of the track structure may be one way of minimizing the vibrations in the surroundings. For example, open or in-filled trenches may be constructed along the track, or the soil underneath the track may be improved....... In this work, analyses are carried out with the aim of investigating the influence of the track design and properties on the level of ground vibration due to a vehicle moving with subsonic speed. A coupled finite element and boundary element model of the track and subsoil is employed, adopting a formulation...... stiffening?even at low frequencies. However, for high-speed vehicles rubber chip barriers may be a promising means of vibration screening...
Geodynamic simulations using the fast multipole boundary element method
Drombosky, Tyler W.
Interaction between viscous fluids models two important phenomena in geophysics: (i) the evolution of partially molten rocks, and (ii) the dynamics of Ultralow-Velocity Zones. Previous attempts to numerically model these behaviors have been plagued either by poor resolution at the fluid interfaces or high computational costs. We employ the Fast Multipole Boundary Element Method, which tracks the evolution of the fluid interfaces explicitly and is scalable to large problems, to model these systems. The microstructure of partially molten rocks strongly influences the macroscopic physical properties. The fractional area of intergranular contact, contiguity, is a key parameter that controls the elastic strength of the grain network in the partially molten aggregate. We study the influence of matrix deformation on the contiguity of an aggregate by carrying out pure shear and simple shear deformations of an aggregate. We observe that the differential shortening, the normalized difference between the major and minor axes of grains is inversely related to the ratio between the principal components of the contiguity tensor. From the numerical results, we calculate the seismic anisotropy resulting from melt redistribution during pure and simple shear deformation. During deformation, the melt is expelled from tubules along three grain corners to films along grain edges. The initially isotropic fractional area of intergranular contact, contiguity, becomes anisotropic due to deformation. Consequently, the component of contiguity evaluated on the plane parallel to the axis of maximum compressive stress decreases. We demonstrate that the observed global shear wave anisotropy and shear wave speed reduction of the Lithosphere-Asthenosphere Boundary are best explained by 0.1 vol% partial melt distributed in horizontal films created by deformation. We use our microsimulation in conjunction with a large scale mantle deep Earth simulation to gain insight into the formation of
Directory of Open Access Journals (Sweden)
Sangita A Chakraborty
Full Text Available Chromatin boundary elements serve as cis-acting regulatory DNA signals required to protect genes from the effects of the neighboring heterochromatin. In the yeast genome, boundary elements act by establishing barriers for heterochromatin spreading and are sufficient to protect a reporter gene from transcriptional silencing when inserted between the silencer and the reporter gene. Here we dissected functional topography of silencers and boundary elements within circular minichromosomes in Saccharomyces cerevisiae. We found that both HML-E and HML-I silencers can efficiently repress the URA3 reporter on a multi-copy yeast minichromosome and we further showed that two distinct heterochromatin boundary elements STAR and TEF2-UASrpg are able to limit the heterochromatin spreading in circular minichromosomes. In surprising contrast to what had been observed in the yeast genome, we found that in minichromosomes the heterochromatin boundary elements inhibit silencing of the reporter gene even when just one boundary element is positioned at the distal end of the URA3 reporter or upstream of the silencer elements. Thus the STAR and TEF2-UASrpg boundary elements inhibit chromatin silencing through an antisilencing activity independently of their position or orientation in S. cerevisiae minichromosomes rather than by creating a position-specific barrier as seen in the genome. We propose that the circular DNA topology facilitates interactions between the boundary and silencing elements in the minichromosomes.
Topological structures of boundary value problems in block elements
Babeshko, V. A.; Evdokimova, O. V.; Babeshko, O. M.
2016-10-01
Block structures are considered; a boundary value problem for a system of inhomogeneous partial differential equations with constant coefficients is formulated in each block of a structure. The problem of matching solutions to boundary value problems in blocks with each other by topological study of the properties of solutions in the block structure is examined in the conditions of correct solvability of boundary value problems in blocks of the block structure. Some new properties of solutions to boundary value problems in block structures are found that are important for applications.
A boundary element model for diffraction of water waves on varying water depth
Energy Technology Data Exchange (ETDEWEB)
Poulin, Sanne
1997-12-31
In this thesis a boundary element model for calculating diffraction of water waves on varying water depth is presented. The varying water depth is approximated with a perturbed constant depth in the mild-slope wave equation. By doing this, the domain integral which is a result of the varying depth is no longer a function of the unknown wave potential but only a function of position and the constant depth wave potential. The number of unknowns is the resulting system of equations is thus reduced significantly. The integration procedures in the model are tested very thoroughly and it is found that a combination of analytical integration in the singular region and standard numerical integration outside works very well. The gradient of the wave potential is evaluated successfully using a hypersingular integral equation. Deviations from the analytical solution are only found on the boundary or very close to, but these deviations have no significant influence on the accuracy of the solution. The domain integral is evaluated using the dual reciprocity method. The results are compared with a direct integration of the integral, and the accuracy is quite satisfactory. The problem with irregular frequencies is taken care of by the CBIEM (or CHIEF-method) together with a singular value decomposition technique. This method is simple to implement and works very well. The model is verified using Homma`s island as a test case. The test cases are limited to shallow water since the analytical solution is only valid in this region. Several depth ratios are examined, and it is found that the accuracy of the model increases with increasing wave period and decreasing depth ratio. Short waves, e.g. wind generated waves, can allow depth variations up to approximately 2 before the error exceeds 10%, while long waves can allow larger depth ratios. It is concluded that the perturbation idea is highly usable. A study of (partially) absorbing boundary conditions is also conducted. (EG)
Seybert, A. F.; Wu, T. W.; Wu, X. F.
1994-01-01
This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.
The representation of boundary currents in a finite element shallow water model
Düben, Peter D
2015-01-01
We evaluate the influence of local resolution, eddy viscosity, coastline structure, and boundary conditions on the numerical representation of boundary currents in a finite element shallow-water model. The use of finite element discretization methods offers a higher flexibility compared to finite difference and finite volume methods, that are mainly used in previous publications. This is true for the geometry of the coast lines and for the realization of boundary conditions. For our investigations we simulate steady separation of western boundary currents from idealized and realistic coast lines. The use of grid refinement allows a detailed investigation of boundary separation at reasonable numerical cost.
NUMERICAL SIMULATION OF 2D FIBER-REINFORCED COMPOSITES USING BOUNDARY ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
KONG Fan-zhong; ZHENG Xiao-ping; YAO Zhen-han
2005-01-01
The boundary element method was improved for the 2D elastic composites with randomly distributed inclusions. This problem can be reduced to a boundary integral equation for a multi-connected domain. Further, considering the matrices of the tractions and displacements for each group of the identical inclusion were the same, an effective computational scheme was designed, since the orders of the resulting matrix equations can be greatly reduced. Numerical examples indicate that this boundary element method scheme is more effective than the conventional multi-domain boundary element method for such a problem. The present scheme can be used to investigate the effective mechanical properties of the fiber-reinforced composites.
Elements of dual scaling an introduction to practical data analysis
Nishisato, Shizuhiko
2014-01-01
Quantification methodology of categorical data is a popular topic in many branches of science. Most books, however, are either too advanced for those who need it, or too elementary to gain insight into its potential. This book fills the gap between these extremes, and provides specialists with an easy and comprehensive reference, and others with a complete treatment of dual scaling methodology -- starting with motivating examples, followed by an introductory discussion of necessary quantitative skills, and ending with different perpsectives on dual scaling with examples, advanced topics, and f
Finite element analysis of three dimensional crack growth by the use of a boundary element sub model
DEFF Research Database (Denmark)
Lucht, Tore
2009-01-01
A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...
A practical guide to boundary element methods with the software library BEMLIB
Pozrikidis, C
2002-01-01
LAPLACE'S EQUATION IN ONE DIMENSIONGreen's First and Second Identities and the Reciprocal Relation Green's FunctionsBoundary-Value Representation Boundary-Value EquationLAPLACE'S EQUATION IN TWO DIMENSIONS Green's First and Second Identities and the Reciprocal RelationGreen's Functions Integral Representation Integral Equations Hypersingular Integrals Irrotational FlowGeneralized Single- and Double-Layer Representations BOUNDARY-ELEMENT METHODS FOR LAPLACE'S EQUATION IN TWO DIMENSIONSBoundary Element Discretization .Discretization of
Solving forward and inverse seismic problems by boundary-element method in frequency domain
Energy Technology Data Exchange (ETDEWEB)
Xianxi, J.
1988-01-01
Solving the boundary value problem of wave equation by boundary element method in frequency domain involves these steps: 1. ID Fourier transform of time variable is made to convert the wave equation into Helmholtz equation; 2. this equation is then solved using boundary-element method in frequency domain; 3. the result is returned to time domain by making inverse Fourier transform. Compared with other formulas, the formula in this paper brings higher accuracy but less computation.
NEW BOUNDARY ELEMENT METHOD FOR TORSION PROBLEMS OF CYLINDER WITH CURVILINEAR CRACKS
Institute of Scientific and Technical Information of China (English)
WANG Yin-bang; LU Zi-zi
2005-01-01
The Saint-Venant torsion problems of a cylinder with curvilinear cracks were considered and reduced to solving the boundary integral equations only on cracks. Using the interpolation models for both singular crack tip elements and other crack linear elements, the boundary element formulas of the torsion rigidity and stress intensity factors were given. Some typical torsion problems of a cylinder involving a straight,kinked or curvilinear crack were calculated. The obtained results for the case of straight crack agree well with those given by using the Gauss-Chebyshev integration formulas,which demonstrates the validity and applicability of the present boundary element method.
Hybrid finite-element/boundary-element method to calculate Oersted fields
Energy Technology Data Exchange (ETDEWEB)
Hertel, Riccardo, E-mail: hertel@ipcms.unistra.fr [Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, Strasbourg (France); Kákay, Attila [Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich GmbH, D-52428 Jülich (Germany)
2014-11-15
The article presents a general-purpose hybrid finite-element/boundary-element method (FEM/BEM) to calculate magnetostatic fields generated by stationary electric currents. The efficiency of this code lies in its ability to simulate Oersted fields in complex geometries with non-uniform current density distributions. As a precursor to the calculation of the Oersted field, an FEM algorithm is employed to calculate the electric current density distribution. The accuracy of the code is confirmed by comparison with analytic results. Two examples show how this method provides important numerical data that can be directly plugged into micromagnetic simulations: The current density distribution in a thin magnetic strip with a notch, and the Oersted field in a three-dimensional contact geometry; similar to the type commonly used in spin-torque driven nano-oscillators. It is argued that a precise calculation of both, the Oersted field and the current density distribution, is essential for a reliable simulation of current-driven micromagnetic processes. - Highlights: • We present a numerical method to calculate Oersted fields for arbitrary geometries. • Description of a FEM algorithm to calculate current density distributions. • It is argued that these methods are valuable for micromagnetic STT-simulations. • Several examples are shown, highlighting the methods’ importance and accuracy.
The Boundary Element Method Applied to the Two Dimensional Stefan Moving Boundary Problem
1991-03-15
iterate 12 times to reach :34 BOUNDARY TIME EVOLUION Figure 3.4. Fixed Boundary Time Evolution ’onvergence in the successive approximation. The squares...memory requirements of the code, especially if more intricate geometries are to be considered. If fast conmput.- ing resources are not available, the
Nanomaterial-based biosensors using dual transducing elements for solution phase detection.
Li, Ning; Su, Xiaodi; Lu, Yi
2015-05-07
Biosensors incorporating nanomaterials have demonstrated superior performance compared to their conventional counterparts. Most reported sensors use nanomaterials as a single transducer of signals, while biosensor designs using dual transducing elements have emerged as new approaches to further improve overall sensing performance. This review focuses on recent developments in nanomaterial-based biosensors using dual transducing elements for solution phase detection. The review begins with a brief introduction of the commonly used nanomaterial transducers suitable for designing dual element sensors, including quantum dots, metal nanoparticles, upconversion nanoparticles, graphene, graphene oxide, carbon nanotubes, and carbon nanodots. This is followed by the presentation of the four basic design principles, namely Förster Resonance Energy Transfer (FRET), Amplified Fluorescence Polarization (AFP), Bio-barcode Assay (BCA) and Chemiluminescence (CL), involving either two kinds of nanomaterials, or one nanomaterial and an organic luminescent agent (e.g. organic dyes, luminescent polymers) as dual transducers. Biomolecular and chemical analytes or biological interactions are detected by their control of the assembly and disassembly of the two transducing elements that change the distance between them, the size of the fluorophore-containing composite, or the catalytic properties of the nanomaterial transducers, among other property changes. Comparative discussions on their respective design rules and overall performances are presented afterwards. Compared with the single transducer biosensor design, such a dual-transducer configuration exhibits much enhanced flexibility and design versatility, allowing biosensors to be more specifically devised for various purposes. The review ends by highlighting some of the further development opportunities in this field.
Cutanda-Henríquez, Vicente; Juhl, Peter Møller
2013-11-01
The formulation presented in this paper is based on the boundary element method (BEM) and implements Kirchhoff's decomposition into viscous, thermal, and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses are solved using extended boundary conditions that assume (i) negligible temperature fluctuations at the boundary and (ii) normal and tangential matching of the boundary's particle velocity. The proposed model does not require constructing a special mesh for the viscous and thermal boundary layers as is the case with the existing finite element method (FEM) implementations with losses. The suitability of this approach is demonstrated using an axisymmetrical BEM and two test cases where the numerical results are compared with analytical solutions.
MESHLESS METHOD OF DUAL RECIPROCITY HYBRID RADIAL BOUNDARY NODE METHOD FOR ELASTICITY
Institute of Scientific and Technical Information of China (English)
Fei Yan; Xiating Feng; Hui Zhou
2010-01-01
Combining the radial point interpolation method(RPIM),thedualreciprocitymethod(DRM)and the hybrid boundary node method(HBNM),a dual reciprocity hybrid radial boundary node method(DHRBNM)is proposed for linear elasticity.Compared to DHBNM,RPIM is exploited to replace the moving least square(MLS)in DHRBNM,and it gets rid of the deficiency of MLS approximation,in which shape functions lack the delta function property,the boundary condition can not be applied easily and directly and it's computational expense is high.Besides,different approximate functions are discussed in DRM to get the interpolation property,in which the accuracy and efficiency for different basis functions are compared.Then RPIM is also applied in DRM to replace the conical function interpolation,which can greatly improve the accuracy of the present method.To demonstrate the effectiveness of the present method,DHBNM is applied for comparison,and some numerical examples of 2-D elasticity problems show that the present method is much more effective than DHBNM.
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2013-01-01
The formulation presented in this paper is based on the Boundary Element Method (BEM) and implements Kirchhoff’s decomposition into viscous, thermal and acoustic components, which can be treated independently everywhere in the domain except on the boundaries. The acoustic variables with losses ar...
The interaction between membrane structure and wind based on the discontinuous boundary element
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Small disturbance potential theory is widely used in solving aerodynamic problems with low Mach numbers, and it plays an important role in engineering design. Concerning structure wind engineering, the body of the structure is in a low velocity wind field, with a low viscosity of air and thin boundary layer, therefore, the tiny shear stress caused by the boundary layer can be ignored, only wind pressure being considered. In this paper, based on small disturbance potential theory, the fluid-structure interaction between the wind and membrane structure is analyzed by joint utilization of the boundary element method (BEM) and finite element method (FEM) through a loose-coupling procedure. However, the boundary of flow field to be calculated is not fully smooth, corners and edges still exist, so the discontinuous boundary element is introduced. Furthermore, because a large scale boundary element equation set with a nonsymmetrical coefficient matrix must be solved, this paper imports a preconditioning GMRES (the generalized minimum residual) iterative algorithm, which takes full advantage of the boundary element method. Several calculation examples have verified the correctness and soundness of the treatments mentioned above.
Improved design of special boundary elements for T-shaped reinforced concrete walls
Ji, Xiaodong; Liu, Dan; Qian, Jiaru
2017-01-01
This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.
A Dual Orthogonality Procedure for Nonlinear Finite Element Equations
DEFF Research Database (Denmark)
Krenk, S.; Hededal, O.
In the orthogonal residual procedure for solution of nonlinear finite element equations the load is adjusted in each equilibrium iteration to satisfy an orthogonality condition to the current displacement increment. It is here shown that the quasi-newton formulation of the orthogonal residual...
DEFF Research Database (Denmark)
Yoon, Gil Ho; Park, Y.K.; Kim, Y.Y.
2007-01-01
A new topology optimization scheme, called the element stacking method, is developed to better handle design optimization involving material-dependent boundary conditions and selection of elements of different types. If these problems are solved by existing standard approaches, complicated finite...... element models or topology optimization reformulation may be necessary. The key idea of the proposed method is to stack multiple elements on the same discretization pixel and select a single or no element. In this method, stacked elements on the same pixel have the same coordinates but may have...
Practical application of inverse boundary element method to sound field studies of tyres
DEFF Research Database (Denmark)
Schuhmacher, Andreas
1999-01-01
An approach based on boundary element modelling of sound sources and regularisation techniques was compared with Near-field Acoustical Holography in a study of vibration patterns on a rolling tyre [1]. In the present paper, a further investigation of this Inverse Boundary Element Method (IBEM...... of the reconstruction process is to feed our model of the problem with as much a priori knowledge as possible, e.g. in the sense of known velocity data on some surfaces. In the modelling of the tyre this can be done by imposing a boundary condition to the nodes belonging to the rim structure, where the normal surface...
Institute of Scientific and Technical Information of China (English)
Ding Rui; Jiang Meiqun; Peng Daping
2005-01-01
The boundary element approximation of the parabolic variational inequalities of the second kind is discussed. First, the parabolic variational inequalities of the second kind can be reduced to an elliptic variational inequality by using semidiscretization and implicit method in time; then the existence and uniqueness for the solution of nonlinear non-differentiable mixed variational inequality is discussed. Its corresponding mixed boundary variational inequality and the existence and uniqueness of its solution are yielded. This provides the theoretical basis for using boundary element method to solve the mixed variational inequality.
Kim, H.; Ryue, J.; Thompson, D. J.; Müller, A. D.
2016-09-01
Recently, complex shaped aluminium panels have been adopted in many structures to make them lighter and stronger. The vibro-acoustic behaviour of these complex panels has been of interest for many years but conventional finite element and boundary element methods are not efficient to predict their performance at higher frequencies. Where the cross-sectional properties of the panels are constant in one direction, wavenumber domain numerical analysis can be applied and this becomes more suitable for panels with complex cross-sectional geometries. In this paper, a coupled wavenumber domain finite element and boundary element method is applied to predict the sound radiation from and sound transmission through a double-layered aluminium extruded panel, having a typical shape used in railway carriages. The predicted results are compared with measured ones carried out on a finite length panel and good agreement is found.
Rahmouni, Lyes; Cools, Kristof; Andriulli, Francesco P
2016-01-01
In this paper we present a new discretization strategy for the boundary element formulation of the Electroencephalography (EEG) forward problem. Boundary integral formulations, classically solved with the Boundary Element Method (BEM), are widely used in high resolution EEG imaging because of their recognized advantages in several real case scenarios. Unfortunately however, it is widely reported that the accuracy of standard BEM schemes is limited, especially when the current source density is dipolar and its location approaches one of the brain boundary surfaces. This is a particularly limiting problem given that during an high-resolution EEG imaging procedure, several EEG forward problem solutions are required for which the source currents are near or on top of a boundary surface. This work will first present an analysis of standardly discretized EEG forward problems, reporting on a theoretical issue of some of the formulations that have been used so far in the community. We report on the fact that several ...
An interpolating boundary element-free method (IBEFM) for elasticity problems
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The paper begins by discussing the interpolating moving least-squares (IMLS) method. Then the formulae of the IMLS method obtained by Lancaster are revised. On the basis of the boundary element-free method (BEFM), combining the boundary integral equation method with the IMLS method improved in this paper, the interpolating boundary element-free method (IBEFM) for two-dimensional elasticity problems is presented, and the corresponding formulae of the IBEFM for two-dimensional elasticity problems are obtained. In the IMLS method in this paper, the shape function satisfies the property of Kronecker δ function, and then in the IBEFM the boundary conditions can be applied directly and easily. The IBEFM is a direct meshless boundary integral equation method in which the basic unknown quantity is the real solution to the nodal variables. Thus it gives a greater computational precision. Numerical examples are presented to demonstrate the method.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A harmonic diffractive element (HDE) is first successfully introduced to the athermal system of infrared dual band in this paper. In this system, there are only three lens and two materials, silicon and germanium. When the temperature ranges from -70℃ to 100℃ in the dual band, it can simultaneously accomplish the rectification of the longitudinal aberration in the big field of view, as well as the wave front aberration less than 1/4 wavelength. Modulation transfer function of dual band approaches or attains the diffraction limit. The calculation results show that the spectral properties of the HDE are between refractive and diffractive elements, so we can design a simple dual-band and athermal optical system by selecting the thickness and central wavelength of the HDE exactly. Compared with a conventional refractive optical system, this system not only reduces the demand for high technical levels, but also has a compact structure, few elements, a high transmittance better aberrations performances and athermal character. At the same time, the use of the HDE also offers a new element for the infrared optics design.
A coupled boundary element-finite difference solution of the elliptic modified mild slope equation
DEFF Research Database (Denmark)
Naserizadeh, R.; Bingham, Harry B.; Noorzad, A.
2011-01-01
The modified mild slope equation of [5] is solved using a combination of the boundary element method (BEM) and the finite difference method (FDM). The exterior domain of constant depth and infinite horizontal extent is solved by a BEM using linear or quadratic elements. The interior domain...
Energy Technology Data Exchange (ETDEWEB)
GHARAKHANI,ADRIN; WOLFE,WALTER P.
1999-10-01
The prediction of potential flow about zero thickness membranes by the boundary element method constitutes an integral component of the Lagrangian vortex-boundary element simulation of flow about parachutes. To this end, the vortex loop (or the panel) method has been used, for some time now, in the aerospace industry with relative success [1, 2]. Vortex loops (with constant circulation) are equivalent to boundary elements with piecewise constant variation of the potential jump. In this case, extending the analysis in [3], the near field potential velocity evaluations can be shown to be {Omicron}(1). The accurate evaluation of the potential velocity field very near the parachute surface is particularly critical to the overall accuracy and stability of the vortex-boundary element simulations. As we will demonstrate in Section 3, the boundary integral singularities, which arise due to the application of low order boundary elements, may lead to severely spiked potential velocities at vortex element centers that are near the boundary. The spikes in turn cause the erratic motion of the vortex elements, and the eventual loss of smoothness of the vorticity field and possible numerical blow up. In light of the arguments above, the application of boundary elements with (at least) a linear variation of the potential jump--or, equivalently, piecewise constant vortex sheets--would appear to be more appropriate for vortex-boundary element simulations. For this case, two strategies are possible for obtaining the potential flow field. The first option is to solve the integral equations for the (unknown) strengths of the surface vortex sheets. As we will discuss in Section 2.1, the challenge in this case is to devise a consistent system of equations that imposes the solenoidality of the locally 2-D vortex sheets. The second approach is to solve for the unknown potential jump distribution. In this case, for commonly used C{sup o} shape functions, the boundary integral is singular at
Institute of Scientific and Technical Information of China (English)
Xiushan Sun; Lixin Huang; Yinghua Liu; Zhangzhi Cen; Keren Wang
2005-01-01
Both the orthotropy and the stress concentration are common issues in modern structural engineering. This paper introduces the boundary element method (BEM) into the elastic and elastoplastic analyses for 2D orthotropic media with stress concentration. The discretized boundary element formulations are established, and the stress formulae as well as the fundamental solutions are derived in matrix notations. The numerical procedures are proposed to analyze both elastic and elastoplastic problems of2D orthotropic media with stress concentration. To obtain more precise stress values with fewer elements, the quadratic isoparametric element formulation is adopted in the boundary discretization and numerical procedures. Numerical examples show that there are significant stress concentrations and different elastoplastic behaviors in some orthotropic media, and some of the computational results are compared with other solutions.Good agreements are also observed, which demonstrates the efficiency and reliability of the present BEM in the stress concentration analysis for orthotropic media.
Institute of Scientific and Technical Information of China (English)
马杭
2002-01-01
With the aid of the properties of the hypersingular kernels,a geometric conversion approach was presented in this paper.The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary integrals encountered in a variety of applications with boundary element method.Based on the conversion,the hypersingularity in the boundary integrals could be lowered by one order,resulting in the simplification of the computer code.Moreover,an integral transformation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar coordinate system for the nearly hypersingular case.The approach is simple to use,which can be inserted readily to computer code,thus getting rid of the dull routine deduction of formulae before the numerical implementatins,as the expressions of these kernels are in general complicated.The numerical examples were gien in three-dimensional elasticity,verifying the effectiveness of the proposed approach,which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernels across the boundary.
Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.
2013-01-01
A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508
SOLVING CONTACT PROBLEM WITH FRICTION BY A NEW FAST BOUNDARY ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
1998-01-01
The formulation of boundary element method for handling contact problems with friction and the technique for high-speed contact analysis are presented. This formulation is based on the idea of modifying the length of contact elements without altering the total number of elements. The high precision of solution and high-speed analysis are verified according to the results of conventional method and analysis method.
AN EFFECTIVE BOUNDARY ELEMENT METHOD FOR ANALYSIS OF CRACK PROBLEMS IN A PLANE ELASTIC PLATE
Institute of Scientific and Technical Information of China (English)
YAN Xiang-qiao
2005-01-01
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples ( i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.
Exterior optical cloaking and illusions by using active sources: A boundary element perspective
Zheng, H. H.; Xiao, J. J.; Lai, Y.; Chan, C. T.
2010-05-01
Recently, it was demonstrated that active sources can be used to cloak any objects that lie outside the cloaking devices [F. Guevara Vasquez, G. W. Milton, and D. Onofrei, Phys. Rev. Lett. 103, 073901 (2009)]. Here, we propose that active sources can create illusion effects so that an object outside the cloaking device can be made to look like another object. Invisibility is a special case in which the concealed object is transformed to a volume of air. From a boundary element perspective, we show that active sources can create a nearly “silent” domain which can conceal any objects inside and at the same time make the whole system look like an illusion of our choice outside a virtual boundary. The boundary element method gives the fields and field gradients, which can be related to monopoles and dipoles, on continuous curves which define the boundary of the active devices. Both the cloaking and illusion effects are confirmed by numerical simulations.
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
BOUNDARY ELEMENT ANALYSIS OF INTERACTION BETWEEN AN ELASTIC RECTANGULAR INCLUSION AND A CRACK
Institute of Scientific and Technical Information of China (English)
王银邦
2004-01-01
The interaction between an elastic rectangular inclusion and a kinked crack in an infinite elastic body was considered by using boundary element method. The new complex boundary integral equations were derived. By introducing a complex unknown function H(t)related to the interface displacement density and traction and applying integration by parts,the traction continuous condition was satisfied automatically. Only one complex boundary integral equation was obtained on interface and involves only singularity of order l/ r. To verify the validity and effectiveness of the present boundary element method, some typical examples were calculated. The obtained results show that the crack stress intensity factors decrease as the shear modulus of inclusion increases. Thus, the crack propagation is easier near a softer inclusion and the harder inclusion is helpful for crack arrest.
Li, Yuan; Dang, HuaYang; Xu, GuangTao; Fan, CuiYing; Zhao, MingHao
2016-08-01
The extended displacement discontinuity boundary integral equation (EDDBIE) and boundary element method is developed for the analysis of planar cracks of arbitrary shape in the isotropic plane of three-dimensional (3D) transversely isotropic thermo-magneto-electro-elastic (TMEE) media. The extended displacement discontinuities (EDDs) include conventional displacement discontinuity, electric potential discontinuity, magnetic potential discontinuity, as well as temperature discontinuity across crack faces; correspondingly, the extended stresses represent conventional stress, electric displacement, magnetic induction and heat flux. Employing a Hankel transformation, the fundamental solutions for unit point EDDs in 3D transversely isotropic TMEE media are derived. The EDDBIEs for a planar crack of arbitrary shape in the isotropic plane of a 3D transversely isotropic TMEE medium are then established. Using the boundary integral equation method, the singularities of near-crack border fields are obtained and the extended stress field intensity factors are expressed in terms of the EDDs on crack faces. According to the analogy between the EDDBIEs for an isotropic thermoelastic material and TMEE medium, an analogical solution method for crack problems of a TMEE medium is proposed for coupled multi-field loadings. Employing constant triangular elements, the EDDBIEs are discretized and numerically solved. As an application, the problems of an elliptical crack subjected to combined mechanical-electric-magnetic-thermal loadings are investigated.
Dual doped monolayer and bilayer graphene: The case of 4p and 2p elements
Denis, Pablo A.; Iribarne, Federico
2016-08-01
4p/2p dual-doped monolayer and bilayer graphene were studied via first principle calculations. Generally, dopants prefer to be agglomerated. A second dopant significantly reduces formation energies. Thus, partially reduced graphene oxide would favor substitutional doping by facilitating the introduction of the 4p dopants. Dual-doping can tune the band gap from 0.1 to 0.8 eV. For bilayer graphene, large atomic radii elements (Gallium and Germanium) form interlayer bonds with the undoped sheet. For some dual-doped graphenes, interlayer GaC and GeC bonds were formed, increasing the chemical reactivity of the undoped layer and affecting its electronic structure, with metallic or semiconducting characters observed.
E-coil: an inverse boundary element method for a quasi-static problem
Energy Technology Data Exchange (ETDEWEB)
Sanchez, Clemente Cobos; Garcia, Salvador Gonzalez [Depto. Electromagnetismo y F. de la Materia Facultad de Ciencias University of Granada Avda. Fuentenueva E-18071 (Spain); Power, Henry, E-mail: ccobos@ugr.e [School of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, Nottingham Park, Nottingham NG7 2RD (United Kingdom)
2010-06-07
Boundary element methods represent a valuable approach for designing gradient coils; these methods are based on meshing the current carrying surface into an array of boundary elements. The temporally varying magnetic fields produced by gradient coils induce electric currents in conducting tissues and so the exposure of human subjects to these magnetic fields has become a safety concern, especially with the increase in the strength of the field gradients used in magnetic resonance imaging. Here we present a boundary element method for the design of coils that minimize the electric field induced in prescribed conducting systems. This work also details some numerical examples of the application of this coil design method. The reduction of the electric field induced in a prescribed region inside the coils is also evaluated.
A finite element-boundary integral method for cavities in a circular cylinder
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. However, due to a lack of rigorous mathematical models for conformal antenna arrays, antenna designers resort to measurement and planar antenna concepts for designing non-planar conformal antennas. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We extend this formulation to conformal arrays on large metallic cylinders. In this report, we develop the mathematical formulation. In particular, we discuss the shape functions, the resulting finite elements and the boundary integral equations, and the solution of the conformal finite element-boundary integral system. Some validation results are presented and we further show how this formulation can be applied with minimal computational and memory resources.
BOUNDARY ELEMENT METHOD FOR MOVING AND ROLLING CONTACT OF 2D ELASTIC BODIES WITH DEFECTS
Institute of Scientific and Technical Information of China (English)
姚振汉; 蒲军平; 金哲植
2001-01-01
A scheme of boundary element method for moving contact of two dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.
A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions
Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.
2014-01-01
We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.
Contact position controlling for two-dimensional motion bodies by the boundary element method
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An algorithm is presented for controlling two-dimensional motion contact bodies with conforming discretization. Since a kind of special boundary element is utilized in the algorithm, the displacement compatibility and traction equilibrium conditions at nodes can be satisfied simultaneously in arbitrary locations of the contact interface. In addition, a method is also proposed in which the contact boundary location can be moved flexibly on the possible contact boundary. This method is effective to deal with moving and rolling contact problems on a possible larger moving or rolling contact region. Numerical examples show effectiveness of the presented scheme.
Gwinner, Joachim
2016-12-01
This contribution deals with unilateral contact problems with Tresca friction (given friction model) in hemitropic mi-cropolar elasticity. Based on a boundary integral approach such problems can be reduced to boundary variational inequalities. This suggests the use of boundary element methods for their numerical treatment. With higher order approximation this leads to a nonconforming approximation what can numerically be realized by means of Gauss-Lobatto quadrature. The contribution is based on the recent papers [7, 8] of the author and on joint work [3] with A. Gachechiladze, R. Gachechi-ladze, and D. Natroshvili.
A new conformal absorbing boundary condition for finite element meshes and parallelization of FEMATS
Chatterjee, A.; Volakis, J. L.; Nguyen, J.; Nurnberger, M.; Ross, D.
1993-01-01
Some of the progress toward the development and parallelization of an improved version of the finite element code FEMATS is described. This is a finite element code for computing the scattering by arbitrarily shaped three dimensional surfaces composite scatterers. The following tasks were worked on during the report period: (1) new absorbing boundary conditions (ABC's) for truncating the finite element mesh; (2) mixed mesh termination schemes; (3) hierarchical elements and multigridding; (4) parallelization; and (5) various modeling enhancements (antenna feeds, anisotropy, and higher order GIBC).
THERM3D -- A boundary element computer program for transient heat conduction problems
Energy Technology Data Exchange (ETDEWEB)
Ingber, M.S. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Mechanical Engineering
1994-02-01
The computer code THERM3D implements the direct boundary element method (BEM) to solve transient heat conduction problems in arbitrary three-dimensional domains. This particular implementation of the BEM avoids performing time-consuming domain integrations by approximating a ``generalized forcing function`` in the interior of the domain with the use of radial basis functions. An approximate particular solution is then constructed, and the original problem is transformed into a sequence of Laplace problems. The code is capable of handling a large variety of boundary conditions including isothermal, specified flux, convection, radiation, and combined convection and radiation conditions. The computer code is benchmarked by comparisons with analytic and finite element results.
Institute of Scientific and Technical Information of China (English)
YIN Hong-jun; HE Ying-fu; FU Chun-quan
2005-01-01
The transient flow mathematical model of arbitrary shaped heterogeneous reservoirs with impermeability barrier is proposed in this paper. In order to establish this model, the perturbation method is employed and the solution of model is expanded into a series in powers of perturbation parameter. By using the Boundary Element Method (BEM) and Duhamel principle, wellbore pressure with effects of skins and wellbore storage is obtained. The type curves are plotted and analyzed considering effects of heterogeneity, arbitrary shape and impermeable barriers. Finally, the results obtained by perturbation boundary element method is compared with the analytical solution and is available for the transient pressure analysis of arbitrary shaped reservoirs.
Dynamic Stationary Response of Reinforced Plates by the Boundary Element Method
Directory of Open Access Journals (Sweden)
Luiz Carlos Facundo Sanches
2007-01-01
Full Text Available A direct version of the boundary element method (BEM is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs. Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state (membrane and for the out-of-plane state (bending. These uncoupled systems are joined to form a macro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs. A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM.
Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model
Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.
2015-01-01
Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.
CALCULATION OF MILL RIGIDITY BY THREE DIMENSION CONTACT BOUNDARY ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Vertical rigidity of the space self-adaptive 530 high rigidity mill is calculated by applying the boundary element method (BEM) of three-dimension elastic contact problem,which can update the existed deforming separation calculating theory and corresponding methods of material mechanics,elastic mechanics and finite element method.The method has less hypotheses and stronger synthesis in contact-type calculating model.The advantages of the method are high calculating rate,high calculating accuracy,etc..
Directory of Open Access Journals (Sweden)
Cheng-yong Li
2015-01-01
Full Text Available The bottom-hole pressure response which can reflect the gas flow characteristics is important to study. A mathematical model for description of gas from porous coalbed methane (CBM reservoirs with complex boundary conditions flowing into horizontal wells has been developed. Meanwhile, basic solution of boundary elements has been acquired by combination of Lord Kelvin point source solution, the integral of Bessel function, and Poisson superimpose formula for CBM horizontal wells with complex boundary conditions. Using this model, type curves of dimensionless pressure and pressure derivative are obtained, and flow characteristics of horizontal wells in complex boundary reservoirs and relevant factors are accordingly analyzed.
Partridge, P; Boundary Elements in Fluid Dynamics
1992-01-01
This book Boundary Elements in Fluid Dynamics is the second volume of the two volume proceedings of the International Conference on Computer Modelling of Seas and Coastal Regions and Boundary Elements and Fluid Dynamics, held in Southampton, U.K., in April 1992. The Boundary Element Method (BEM) is now fully established as an ac curate and successful technique for solving engineering problems in a wide range of fields. The success of the method is due to its advantages in data reduction, as only the boundary of the region is modelled. Thus moving boundaries may be more easily handled, which is not the case if domain methods are used. In addition, the method is easily able to model regions to extending to infinity. Fluid mechanics is traditionally one of the most challenging areas of engi neering, the simulation of fluid motion, particularly in three dimensions, is always a serious test for any numerical method, and is an area in which BEM analysis may be used taking full advantage of its special character...
A comparison of inverse boundary element method and near-field acoustical holography
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Hald, Jørgen; Saemann, E.-U.
1999-01-01
An inverse boundary element method (IBEM) is used to estimate the surface velocity of a rolling tyre from measurements of the near-field pressure. Subsequently, the sound pressure is calculated over a finite plane surface next to the tyre from the reconstructed velocity field on the tyre surface...
A MATLAB Code for Three Dimensional Linear Elastostatics using Constant Boundary Elements
P, Kirana Kumara
2013-01-01
Present work presents a code written in the very simple programming language MATLAB, for three dimensional linear elastostatics, using constant boundary elements. The code, in full or in part, is not a translation or a copy of any of the existing codes. Present paper explains how the code is written, and lists all the formulae used. Code is verified by using the code to solve a simple problem which has the well known approximate analytical solution. Of course, present work does not make any contribution to research on boundary elements, in terms of theory. But the work is justified by the fact that, to the best of author's knowledge, as of now, one cannot find an open access MATLAB code for three dimensional linear elastostatics using constant boundary elements. Author hopes this paper to be of help to beginners who wish to understand how a simple but complete boundary element code works, so that they can build upon and modify the present open access code to solve complex engineering problems quickly and easi...
Experimental validation of a boundary element solver for exterior acoustic radiation problems
Visser, Rene; Nilsson, A.; Boden, H.
2003-01-01
The relation between harmonic structural vibrations and the corresponding acoustic radiation is given by the Helmholtz integral equation (HIE). To solve this integral equation a new solver (BEMSYS) based on the boundary element method (BEM) has been implemented. This numerical tool can be used for b
Stress Wave Propagation in Soils Modelled by the Boundary Element Method
DEFF Research Database (Denmark)
Rasmussen, K. M.
This thesis deals with different aspects of the boundary element method (BEM) applied to stress wave propagation problems in soils. Among other things BEM formulations for coupled FEM and BEM, moving loads, direct BEM and indirect BEM are presented. For all the formulations both analytical expres...
OpenBEM - An open source Boundary Element Method software in Acoustics
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2010-01-01
OpenBEM is a collection of open source programs for solving the Helmholtz Equation using the Boundary Element Method. The collection is written in Matlab by the authors and contains codes for dealing with exterior and interior problems in two or three dimensions as well as implementation of axi...
Finite Element - Artificial Transmitting Boundary Method for Acoustical Field on Tapered Waveguide
Institute of Scientific and Technical Information of China (English)
J.; S.; Yang; G; F.; Fan; J.; P.; Zhu; C.K.; Sun; Y.; H.; Zhu
2003-01-01
In earlier approach, the 2-D acoustical field profiles on the substrate region are often calculated with BPM. In this paper, we present a new approach based on the finite element -artificial transmitting boundary method and calculate acoustical field on the substrate region.
Toeplitz Matrices Whose Elements Are the Coefficients of Functions with Bounded Boundary Rotation
Directory of Open Access Journals (Sweden)
V. Radhika
2016-01-01
Full Text Available Let R denote the family of functions f(z=z+∑n=2∞anzn of bounded boundary rotation so that Ref′(z>0 in the open unit disk U={z:z<1}. We obtain sharp bounds for Toeplitz determinants whose elements are the coefficients of functions f∈R.
On the modeling of narrow gaps using the standard boundary element method
DEFF Research Database (Denmark)
Cutanda Henríquez, Vicente; Juhl, Peter Møller; Jacobsen, Finn
2001-01-01
. This paper makes use of a standard axisymmetric Helmholtz integral equation formulation and its boundary element method (BEM) implementation to study the behavior of the method on two test cases: a thin rigid disk of variable thickness and two rigid cylinders separated by a gap of variable width. Both...
A boundary element model for lined circular ducts with uniform flow
DEFF Research Database (Denmark)
Juhl, Peter Møller
1996-01-01
A boundary element method has been developed for predicting the acoustics in a circular duct in which a uniform flow propagates. Such a model may be used to predict the performance of different liner designs for inlets of turbo fan engines, which is important for the aeronautics industry...
Practical application of inverse boundary element method to sound field studies of tyres
DEFF Research Database (Denmark)
Schuhmacher, Andreas
1999-01-01
An approach based on boundary element modelling of sound sources and regularisation techniques was compared with Near-field Acoustical Holography in a study of vibration patterns on a rolling tyre [1]. In the present paper, a further investigation of this Inverse Boundary Element Method (IBEM......) is done. Emphasis is put on the regularisation process and how to choose an appropriate regularisation parameter in conjunction with the Tikhonov regularisation. This choice is of vital importance when solving a discrete ill-posed problem and a useful solution is sought. Another aspect...... of the reconstruction process is to feed our model of the problem with as much a priori knowledge as possible, e.g. in the sense of known velocity data on some surfaces. In the modelling of the tyre this can be done by imposing a boundary condition to the nodes belonging to the rim structure, where the normal surface...
Wet Friction-Elements Boundary Friction Mechanism and Friction Coefficient Prediction
Directory of Open Access Journals (Sweden)
WANG Yanzhong
2012-12-01
Full Text Available The friction mechanism for the boundary friction course of friction elements engagement was explicitly expressed. The boundary friction model was built up by the surface topography. The model contained the effect of boundary film, adhesion, plough and lubrication. Based on the model, a coefficient for weakening plough for the lubrication was proposed. The modified model could fit for the working condition of wet friction elements. The friction coefficient as a function curve of rotating speed could be finally obtained by the data k and s/sm. The method provides a well interpretation of friction condition and friction coefficient prediction and the agreement between theoretical and experimental friction coefficients is reasonably good.
Petrov-Galerkin Spectral Element Method for Mixed Inhomogeneous Boundary Value Problems on Polygons
Institute of Scientific and Technical Information of China (English)
Hongli JIA; Benyu GUO
2010-01-01
The authors investigate Petrov-Galerkin spectral element method.Some results on Legendre irrational quasi-orthogonal approximations are established,which play important roles in Petrov-Galerkin spectral element method for mixed inhomogeneous boundary value problems of partial differential equations defined on polygons.As examples of applications,spectral element methods for two model problems,with the spectral accuracy in certain Jacobi weighted Sobolev spaces,are proposed.The techniques developed in this paper are also applicable to other higher order methods.
A finite element-boundary integral method for conformal antenna arrays on a circular cylinder
Kempel, Leo C.; Volakis, John L.
1992-01-01
Conformal antenna arrays offer many cost and weight advantages over conventional antenna systems. In the past, antenna designers have had to resort to expensive measurements in order to develop a conformal array design. This was due to the lack of rigorous mathematical models for conformal antenna arrays. As a result, the design of conformal arrays was primarily based on planar antenna design concepts. Recently, we have found the finite element-boundary integral method to be very successful in modeling large planar arrays of arbitrary composition in a metallic plane. We are extending this formulation to conformal arrays on large metallic cylinders. In doing so, we will develop a mathematical formulation. In particular, we discuss the finite element equations, the shape elements, and the boundary integral evaluation. It is shown how this formulation can be applied with minimal computation and memory requirements.
Trace and Major Element Chemistry Across the Cretaceous/Tertiary Boundary at Stevns Klint
Graup, G.; Spettel, B.
1992-07-01
INAA measurements of samples obtained by high-resolution stratigraphy on a mm scale reveal considerable variations in element concentrations across the boundary with their respective maxima stratified in distinct sublayers (Graup et al., 1992). These results suggest that measurements of bulk boundary samples a few cm thick may be inappropriate as concentration variations and element ratios would be leveled out pretending a single geochemical signal. Having investigated a sample comprising sublayers B, C, and D (Fig. 1), Alvarez et al.(1980) acknowledge that "no information is available on the chemical variations within the boundary." This kind of information is given below and shown in Fig. 1 (sublayers A and B are drafted in double scale). From the main lithologic characteristics of Maastrichtian to Paleocene sediments (Schmitz, 1988; Graup et al., 1992) it is readily deduced that Eh and pH conditions in the marine environment changed from oxic-mildly alkaline with normal carbonate sedimentation (Q-M) to anoxic-(mildly) acid with deposition of pyrite spherules (A3), organic material, and clay minerals in the Fish Clay (A-D), followed by a restoration of oxic-alkaline conditions depositing the Cerithium limestone (E- I). The element distribution across the boundary obviously mirrors these alternating environmental conditions: compounds soluble under acid and reducing conditions like Ca-carbonate and Mn are strongly depleted in the Fish Clay (Fig. 1A), whereas compounds stable and insoluble under these conditions are highly enriched (Fig. 1B). The opposite holds true for the calcareous sediments. Across the boundary, enhanced element concentrations are not evenly distributed but appear to be stratified with maximum concentrations in three distinct sublayers for the following elements: (1) A1 (hard clay): peak concentrations for REE (La 72 ppm) and U (45.5 ppm) as compared to 13 ppm La and 2 ppm U in sublayer A2 immediately above. (2) A3 (pyrite spherules): peak
Free surface simulation of a two-layer fluid by boundary element method
Directory of Open Access Journals (Sweden)
Weoncheol Koo
2010-09-01
Full Text Available A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT. The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.
Institute of Scientific and Technical Information of China (English)
Habib Ammari; Gang Bao
2008-01-01
Consider a time-harmonic electromagnetic plane wave incident on a biperiodic structure in R3. The periodic structure separates two homogeneous regions. The medium inside the structure is chiral and nonhomogeneous. In this paper, variational formulations coupling finite element methods in the chiral medium with a method of integral equations on the periodic interfaces are studied. The well-posedness of the continuous and discretized problems is established. Uniform convergence for the coupling variational approximations of the model problem is obtained.
Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.
1998-01-01
An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.
Yang, Zhiguo; Rong, Zhijian; Wang, Bo; Zhang, Baile
2015-01-01
In this paper, we present an efficient spectral-element method (SEM) for solving general two-dimensional Helmholtz equations in anisotropic media, with particular applications in accurate simulation of polygonal invisibility cloaks, concentrators and circular rotators arisen from the field of transformation electromagnetics (TE). In practice, we adopt a transparent boundary condition (TBC) characterized by the Dirichlet-to-Neumann (DtN) map to reduce wave propagation in an unbounded domain to a bounded domain. We then introduce a semi-analytic technique to integrate the global TBC with local curvilinear elements seamlessly, which is accomplished by using a novel elemental mapping and analytic formulas for evaluating global Fourier coefficients on spectral-element grids exactly. From the perspective of TE, an invisibility cloak is devised by a singular coordinate transformation of Maxwell's equations that leads to anisotropic materials coating the cloaked region to render any object inside invisible to observe...
Stenroos, M; Mäntynen, V; Nenonen, J
2007-12-01
The boundary element method (BEM) is commonly used in the modeling of bioelectromagnetic phenomena. The Matlab language is increasingly popular among students and researchers, but there is no free, easy-to-use Matlab library for boundary element computations. We present a hands-on, freely available Matlab BEM source code for solving bioelectromagnetic volume conduction problems and any (quasi-)static potential problems that obey the Laplace equation. The basic principle of the BEM is presented and discretization of the surface integral equation for electric potential is worked through in detail. Contents and design of the library are described, and results of example computations in spherical volume conductors are validated against analytical solutions. Three application examples are also presented. Further information, source code for application examples, and information on obtaining the library are available in the WWW-page of the library: (http://biomed.tkk.fi/BEM).
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa- tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced sig- nificance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.
International Symposium on Boundary Element Methods : Advances in Solid and Fluid Mechanics
Tseng, Kadin
1990-01-01
The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas sive parallelism. This Symposium was sponsored by United ...
Institute of Scientific and Technical Information of China (English)
Pan Xiaomin; Sheng Xinqing
2008-01-01
A general and efficient parallel approach is proposed for the first time to parallelize the hybrid finite-element-boundary-integral-multi-level fast multipole algorithm (FE-BI-MLFMA). Among many algorithms of FE-BI-MLFMA, the decomposition algorithm (DA) is chosen as a basis for the parallelization of FE-BI-MLFMA because of its distinct numerical characteristics suitable for parallelization. On the basis of the DA, the parallelization of FE-BI-MLFMA is carried out by employing the parallelized multi-frontal method for the matrix from the finite-element method and the parallelized MLFMA for the matrix from the boundary integral method respectively. The programming and numerical experiments of the proposed parallel approach are carried out in the high perfor-mance computing platform CEMS-Liuhui. Numerical experiments demonstrate that FE-BI-MLFMA is efficiently parallelized and its computational capacity is greatly improved without losing accuracy, efficiency, and generality.
Institute of Scientific and Technical Information of China (English)
LIU FuPing; WANG AnLing; WANG AnXuan; CAO YueZu; CHEN Qiang; YANG ChangChun
2009-01-01
According to the electric potential of oblique multi-needle electrodes (OMNE) in biological tissue, the discrete equations based on the indetermination linear current density were established by the boundary element integral equations (BEIE). The non-uniform distribution of the current flowing from multi-needle electrodes to conductive biological tissues was imaged by solving a set of linear equa-tions. Then, the electric field and potential generated by OMNE in biological tissues at any point may be determined through the boundary element method (BEM). The time of program running and stability of computing method are examined by an example. It demonstrates that the algorithm possesses a quick speed and the steady computed results. It means that this method has an important referenced significance for computing the field and the potential generated by OMNE in bio-tissue, which is a fast, effective and accurate computing method.
Institute of Scientific and Technical Information of China (English)
Chang-Jun Zheng; Hai-Bo Chen; Lei-Lei Chen
2013-01-01
This paper presents a novel wideband fast multipole boundary element approach to 3D half-space/planesymmetric acoustic wave problems.The half-space fundamental solution is employed in the boundary integral equations so that the tree structure required in the fast multipole algorithm is constructed for the boundary elements in the real domain only.Moreover,a set of symmetric relations between the multipole expansion coefficients of the real and image domains are derived,and the half-space fundamental solution is modified for the purpose of applying such relations to avoid calculating,translating and saving the multipole/local expansion coefficients of the image domain.The wideband adaptive multilevel fast multipole algorithm associated with the iterative solver GMRES is employed so that the present method is accurate and efficient for both lowand high-frequency acoustic wave problems.As for exterior acoustic problems,the Burton-Miller method is adopted to tackle the fictitious eigenfrequency problem involved in the conventional boundary integral equation method.Details on the implementation of the present method are described,and numerical examples are given to demonstrate its accuracy and efficiency.
DEFF Research Database (Denmark)
Duggen, Lars; Lopes, Natasha; Willatzen, Morten
2011-01-01
The finite-element method (FEM) is used to simulate the photoacoustic signal in a cylindrical resonant photoacoustic cell. Simulations include loss effects near the cell walls that appear in the boundary conditions for the inhomogeneous Helmholtz equation governing the acoustic pressure. Reasonably...... the photoacoustic signal was demonstrated and good agreement with experiments for the actual resonance frequency and the quality factor of the cell was obtained despite its complicated geometry....
FLUID BOUNDARY ELEMENT METHOD AND ORTHOGONAL TRANSFORM OF DOUBLE COMPLEX VARIABLES
Institute of Scientific and Technical Information of China (English)
罗义银
2003-01-01
A concept of orthogonal double function and its complex variables space was putforward. Its corresponding operation rules, the concept of analytic function and conformaltransform are established. And using this concept discussed its foreground for application offluid boundary element method. In results, this concept and special marks may be toenlarge the plane complex into three-dimensional space, and then extensive application maybe obtained in physics and mathematics.
ELECTRO-MECHANICAL COUPLING ANALYSIS OF MEMS STRUCTURES BY BOUNDARY ELEMENT METHOD
Institute of Scientific and Technical Information of China (English)
Zhang Kai; Cui Yunjun; Xiong Chunyang; Wang Congshun; Fang Jing
2004-01-01
In this paper, we present the applications of Boundary Element Method (BEM)to simulate the electro-mechanical coupling responses of Micro-Electro-Mechanical systems (MEMS).The algorithm is programmed in our research group based on BEM modeling for electrostatics and elastostatics. Good agreement is shown while the simulation results of the pull-in voltages are compared with the theoretical/experimental ones for some examples.
Directory of Open Access Journals (Sweden)
Minfu Feng
2010-01-01
Full Text Available We present a numerical technique based on the coupling of boundary and finite element methods for the steady Oseen equations in an unbounded plane domain. The present paper deals with the implementation of the coupled program in the two-dimensional case. Computational results are given for a particular problem which can be seen as a good test case for the accuracy of the method.
Institute of Scientific and Technical Information of China (English)
1998-01-01
The boundary element method in framework is given to evaluate three dimensional frictional contact problems. Elasto-plastic material behavior is taken into account by mean of an initial stress formulation and Von Mises yield criterion. The amount of tangential traction at contact surface is limited by Coulomb's friction law and constant shear rule. From some numerical results of a plate rolling problem, it is demonstrated here that the BEM can be used to efficiently and accurately analyze this class of forming problems.
Experimental validation of a boundary element solver for exterior acoustic radiation problems
Visser, Rene; Nilsson, A; Boden, H.
2003-01-01
The relation between harmonic structural vibrations and the corresponding acoustic radiation is given by the Helmholtz integral equation (HIE). To solve this integral equation a new solver (BEMSYS) based on the boundary element method (BEM) has been implemented. This numerical tool can be used for both sound radiation and nearfield acoustic source localization purposes. After validation of the solver with analytic solutions of simple test problems, a well-defined experimental setup has been d...
Implementation aspects of the Boundary Element Method including viscous and thermal losses
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller
2014-01-01
The implementation of viscous and thermal losses using the Boundary Element Method (BEM) is based on the Kirchhoff’s dispersion relation and has been tested in previous work using analytical test cases and comparison with measurements. Numerical methods that can simulate sound fields in fluids...... with mesh definition, geometrical singularities and treatment of closed cavities. These issues are specific of the BEM with losses. Using examples, some strategies are presented that can alleviate shortcomings and improve performance....
Energy Technology Data Exchange (ETDEWEB)
Lautard, J.J.
1994-05-01
This paper presents new extension for the mixed dual finite element approximation of the diffusion equation in rectangular geometry. The mixed dual formulation has been extended in order to take into account discontinuity conditions. The iterative method is based on an alternating direction method which uses the current as unknown. This method is fully ``parallelizable`` and has very quick convergence properties. Some results for a 3D calculation on the CRAY computer are presented. (author). 6 refs., 8 figs., 4 tabs.
Modeling the 3D Terrain Effect on MT by the Boundary Element Method
Institute of Scientific and Technical Information of China (English)
Ruan Baiyao; Xu Shizhe; Xu Zhifeng
2006-01-01
A numerical method is put forward in this paper, using the boundary element method(BEM) to model 3D terrain effects on magnetotelluric (MT) surveys. Using vector integral theory and electromagnetic field boundary conditions, the boundary problem of two electromagnetic fields in the upper half space (air) and lower half space (earth medium) was transformed into two vector integral equations just related to the topography: one magnetic equation for computing the magnetic field and the other electrical equation for computing the electrical field. The topography integral is decomposed into a series of integrals in a triangle element. For the integral in a triangle element, we suppose that the electromagnetic field in it is the stack of the electromagnetic field in the homogeneous earth and the topography response which is a constant; so the computation becomes simple, convenient and highly accurate. By decomposition and computation, each vector integral equation can be calculated by solving three linear equations that are related to the three Cartesian directions. The matrix of these linear equations is diagonally dominant and can be solved using the Symmetric Successive Over-Relaxation (SSOR) method. The apparent resistivity curve of MT on two 3D terrains calculated by BEM is shown in this paper.
Burtnyk, M.; N'Djin, W. A.; Persaud, L.; Bronskill, M.; Chopra, R.
2012-10-01
High-intensity contact ultrasound therapy can generate precise volumes of thermal damage in deep-seated tissue using interstitial or intracavitary devices. Multi-element, dual-frequency transducers offer increased spatial control of the heating pattern by enabling modulation of ultrasound power and frequency along the device. The performance and acoustic coupling between elements of simple, multi-element, dual-frequency transducers was measured. Transducer arrays were fabricated by cutting halfway through a rectangular plate of PZT, creating individual 4 × 5 mm segments with fundamental frequency (4.1 MHz) and third harmonic (13.3 MHz). Coupling between elements was investigated using a scanning laser vibrometer to measure transducer surface displacements at each frequency and different acoustic powers (0, 10, 20 W/cm2). The measured acoustic power was proportional to the input electrical power with no hysteresis and efficiencies >50% at both frequencies. Maximum transducer surface displacements were observed near element centers, reducing to ˜1/3-maximum near edges. The power and frequency of neighboring transducer segments had little impact on an element's output. In the worst case, an element operating at 4.1 MHz and 20 W/cm2 coupled only 1.5 W/cm2 to its immediate neighboring element. Multi-element, dual-frequency transducers were successfully constructed using a simple dicing method. Coupling between elements was minor, therefore the power and frequency of each transducer element could be considered independent.
Dual Band Parasitic Element Patch Antenna for LTE/WLAN Applications
Directory of Open Access Journals (Sweden)
BAG Biplab
2017-05-01
Full Text Available In this paper, a single layer coaxial fed dual band slotted microstrip antenna is proposed. The proposed antenna consists of two direct couple parasitic elements and L-shape slots on the main resonating element. Two resonant modes are excited and it covers 4G LTE and WLAN middle band. The -10dB impedance bandwidth for resonant frequency of 2.35GHz and 5.28GHz are 140MHz (2.25-2.39GHz and 570MHz (5.18-5.75GHz, respectively. The measured VSWR at 2.35GHz is 1.27 and at 5.28GHz is 1.41. The proposed antenna is simple in design and compact in size. The simulated and measured results are in good agreement.
Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.
Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A
2014-05-15
This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications.
A rigid surface boundary element for soil-structure interaction analysis in the direct time domain
Rizos, D. C.
Many soil-structure interaction problems involve studies of single or multiple rigid bodies of arbitrary shape and soil media. The commonly used boundary element methods implement the equations of the rigid body in a form that depends on the particulars of the geometry and requires partitioning and condensation of the associated algebraic system of equations. The present work employs the direct time domain B-Spline BEM for 3D elastodynamic analysis and presents an efficient implementation of rigid bodies of arbitrary shape in contact with, or embedded in, elastic media. The formulation of a rigid surface boundary element introduced herein is suitable for direct superposition in the BEM system of algebraic equations. Consequently, solutions are computed in a single analysis step, eliminating, thus, the need for partitioning of the system of equations. Computational efficiency is also achieved due to the extremely sparse form of the associated coefficient matrices. The proposed element can be used for the modeling of single or multiple rigid bodies of arbitrary shape within the framework of the BEM method. The efficiency and general nature of the proposed element is demonstrated through applications related to the dynamic analysis of rigid surface and embedded foundations and their interaction with embedded rigid bodies of arbitrary shape.
Trace-element anomalies at the Mississippian/Pennsylvanian boundary in Oklahoma and Texas
Orth, Charles J.; Quintana, Leonard R.; Gilmore, James S.; Grayson, Robert C., Jr.; Westergaard, Edwin H.
1986-12-01
Trace-element abundance anomalies have been found at the Mississippian/Pennsylvania boundary at sites in Oklahoma and Texas where the boundary has been precisely located on the basis of an abrupt change in conodont diversity and species composition. Enriched elements include osmium, indium, platinum, chromium, most chalcophiles, rare earths, and uranium. The anomalies are more intense (e.g., Os = 4 ppb, Ir = 0.38 ppb, Pt = 6 ppb, Cr = 12000 ppm, U = 380 ppm) and peisist through a thicker interval at the south-central Texas locality than in Oklahoma, and in bolh locations the anomalies are associated with an increase in phosphate content of the rocks. There is no tangible evidence of an asteroid or comet impact source for the excess Pt-group elements and fauna! crisis. The cause of the elemental enrichments and the biological disturbance may possibly be related to a change in the ocean chemistry of the Paleozoic seaway, such as increased upwelling, stagnation, or nearby submarine volcanism.
Application of scaled boundary finite element method in static and dynamic fracture problems
Institute of Scientific and Technical Information of China (English)
Zhenjun Yang
2006-01-01
The scaled boundary finite element method (SBFEM) is a recently developed numerical method combining advantages of both finite element methods (FEM)and boundary element methods (BEM) and with its own special features as well. One of the most prominent advantages is its capability of calculating stress intensity factors (SIFs) directly from the stress solutions whose singularities at crack tips are analytically represented. This advantage is taken in this study to model static and dynamic fracture problems. For static problems, a remeshing algorithm as simple as used in the BEM is developed while retaining the generality and flexibility of the FEM. Fully-automatic modelling of the mixed-mode crack propagation is then realised by combining the remeshing algorithm with a propagation criterion.F0r dynamic fracture problems, a newly developed series-increasing solution to the SBFEM governing equations in the frequency domain is applied to calculate dynamic SIFs. Three plane problems are modelled. The numerical results show that the SBFEM can accurately predict static and dynamic SIFs, cracking paths and load-displacement curves, using only a fraction of degrees of freedom generally needed by the traditional finite element methods.
Directory of Open Access Journals (Sweden)
Yichao Gao
2011-01-01
Full Text Available The dam-reservoir system is divided into the near field modeled by the finite element method, and the far field modeled by the excellent high-order doubly asymptotic open boundary (DAOB. Direct and partitioned coupled methods are developed for the analysis of dam-reservoir system. In the direct coupled method, a symmetric monolithic governing equation is formulated by incorporating the DAOB with the finite element equation and solved using the standard time-integration methods. In contrast, the near-field finite element equation and the far-field DAOB condition are separately solved in the partitioned coupled methodm, and coupling is achieved by applying the interaction force on the truncated boundary. To improve its numerical stability and accuracy, an iteration strategy is employed to obtain the solution of each step. Both coupled methods are implemented on the open-source finite element code OpenSees. Numerical examples are employed to demonstrate the performance of these two proposed methods.
Dynamic-stiffness matrix of embedded and pile foundations by indirect boundary-element method
Energy Technology Data Exchange (ETDEWEB)
Wolf, J.P.; Darbre, G.R. (Electrowatt Engineering Services Ltd., Zurich (Switzerland))
1984-08-01
The boundary-integral equation method is well suited for the calculation of the dynamic-stiffness matrix of foundations embedded in a layered visco-elastic halfspace (or a transmitting boundary of arbitrary shape), which represents an unbounded domain. It also allows pile groups to be analyzed, taking pile-soil-pile interaction into account. The discretization of this boundary-element method is restricted to the structure-soil interface. All trial functions satisfy exactly the field equations and the radiation condition at infinity. In the indirect boundary-element method distributed source loads of initially unknown intensities act on a source line located in the excavated part of the soil and are determined such that the prescribed boundary conditions on the structure-soil interface are satisfied in an average sense. In the two-dimensional case the variables are expanded in a Fourier integral in the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number domain, while in three dimensions, Fourier series in the circumferential direction and Bessel functions of the wave number in the radial direction are selected. Accurate results arise with a small number of parameters of the loads acting on a source line which should coincide with the structure-soil interface. In a parametric study the dynamic-stiffness matrices of rectangular foundations of various aspect ratios embedded in a halfplane and in a layer built-in at its base are calculated. For the halfplane, the spring coefficients for the translational directions hardly depend on the embedment, while the corresponding damping coefficients increase for larger embedments, this tendency being more pronounced in the horizontal direction.
Stress analysis of 3D complex geometries using the scaled boundary polyhedral finite elements
Talebi, Hossein; Saputra, Albert; Song, Chongmin
2016-10-01
While dominating the numerical stress analysis of solids, the finite element method requires a mesh to conform to the surface of the geometry. Thus the mesh generation of three dimensional complex structures often require tedious human interventions. In this paper, we present a formulation for arbitrary polyhedral elements based on the scaled boundary finite element method, which reduces the difficulties in automatic mesh generation. We also propose a simple method to generate polyhedral meshes with local refinements. The mesh generation method is based on combining an octree mesh with surfaces defined using signed distance functions. Through several numerical examples, we verify the results, study the convergence behaviour and depict the many advantages and capabilities of the presented method. This contribution is intended to assist us to eventually frame a set of numerical methods and associated tools for the full automation of the engineering analysis where minimal human interaction is needed.
Institute of Scientific and Technical Information of China (English)
LI Ning; XIE Li-li; ZHAI Chang-hai
2007-01-01
The theory of perfectly matched layer (PML) artificial boundary condition (ABC), which is characterized by absorption any wave motions with arbitrary frequency and arbitrarily incident angle, is introduced. The construction process of PML boundary based on elastodynamic partial differential equation (PDE) system is developed.Combining with velocity-stress hybrid finite element formulation, the applicability of PML boundary is investigated and the numerical reflection of PML boundary is estimated. The reflectivity of PML and multi-transmitting formula (MTF) boundary is then compared based on body wave and surface wave simulations. The results show that although PML boundary yields some reflection, its absorption performance is superior to MTF boundary in the numerical simulations of near-fault wave propagation, especially in corner and large angle grazing incidence situations. The PML boundary does not arise any unstable phenomenon and the stability of PML boundary is better than MTF boundary in hybrid finite element method. For a specified problem and analysis tolerance, the computational efficiency of PML boundary is only a little lower than MTF boundary.
Institute of Scientific and Technical Information of China (English)
韩厚德; 郑春雄
2002-01-01
The mixed finite element method is used to solve the exterior Poisson equations with higher-order local artificial boundary conditions in 3-D space. New unknowns are introduced to reduce the order of the derivatives of the unknown to two. The result is an equivalent mixed variational problem which was solved using bilinear finite elements. The primary advantage is that special finite elements are not needed on the adjacent layer of the artificial boundary for the higher-order derivatives. Error estimates are obtained for some local artificial boundary conditions with prescibed orders. A numerical example demonstrates the effectiveness of this method.
Yuan, Dajing; Bakker, Eric
2017-08-01
Finite difference analysis of ion-selective membranes is a valuable tool for understanding a range of time dependent phenomena such as response times, long and medium term potential drifts, determination of selectivity, and (re)conditioning kinetics. It is here shown that an established approach based on the diffusion layer model applied to an ion-exchange membrane fails to use mass transport to account for concentration changes at the membrane side of the phase boundary. Instead, such concentrations are imposed by the ion-exchange equilibrium condition, without taking into account the source of these ions. The limitation is illustrated with a super-Nernstian potential jump, where a membrane initially void of analyte ion is exposed to incremental concentrations of analyte in the sample. To overcome this limitation, the two boundary elements, one at either side of the sample-membrane interface, are treated here as a combined entity and its total concentration change is dictated by diffusional fluxes into and out of the interface. For each time step, the concentration distribution between the two boundary elements is then computed by ion-exchange theory. The resulting finite difference simulation is much more robust than the earlier model and gives a good correlation to experiments.
Interpretation of horizontal well performance in complicated systems by the boundary element method
Energy Technology Data Exchange (ETDEWEB)
Jongkittinarukorn, K.; Tiab, D. [Oklahoma Univ., School of Petroleum and Geological Engineering (United States); Escobar, F. H. [Surcolombiana Univ., Dept. of Petroleum Engineering (Colombia)
1998-12-31
A solution obtained by using the boundary element method to simulate pressure behaviour of horizontal wells in complicated reservoir-wellbore configurations is presented. Three different types of well bore and reservoir models were studied, i.e. a snake-shaped horizontal wellbore intersecting a two-layer reservoir with cross flow, a horizontal well in a three-layer reservoir with cross flow, and a vertical well intersecting a two-layer reservoir without cross flow. In each case, special attention was paid to the influence of wellbore inclination angle, the distance from the wellbore to the different boundaries and the permeability ratio. Performance of each of these types of wells are discussed. 9 refs., 18 figs.
Seismic wave propagation in non-homogeneous elastic media by boundary elements
Manolis, George D; Rangelov, Tsviatko V; Wuttke, Frank
2017-01-01
This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both ...
Isogeometric Boundary Element Analysis with elasto-plastic inclusions. Part 1: Plane problems
Beer, Gernot; Zechner, Jürgen; Dünser, Christian; Fries, Thomas-Peter
2015-01-01
In this work a novel approach is presented for the isogeometric Boundary Element analysis of domains that contain inclusions with different elastic properties than the ones used for computing the fundamental solutions. In addition the inclusion may exhibit inelastic material behavior. In this paper only plane stress/strain problems are considered. In our approach the geometry of the inclusion is described using NURBS basis functions. The advantage over currently used methods is that no discretization into cells is required in order to evaluate the arising volume integrals. The other difference to current approaches is that Kernels of lower singularity are used in the domain term. The implementation is verified on simple finite and infinite domain examples with various boundary conditions. Finally a practical application in geomechanics is presented.
Institute of Scientific and Technical Information of China (English)
袁益让
1996-01-01
The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. This thesis, from actual conditions such as the effects of gravitation, buoyancy and capillary pressure, puts forward for the two class boundary value problem a kind of characteristic mixed finite element scheme by making use of the change of region, time step modified techniques of handling boundary value condition, negative norm estimate and the theory of prior estimates. Optimal order estimates in L2 norm are derived for the error in approximate solutions. Thus the well-known theoretical problem proposed by J. Douglas, Jr has been thoroughly and completely solved.
An iterative Rankine boundary element method for wave diffraction of a ship with forward speed
Institute of Scientific and Technical Information of China (English)
何广华
2014-01-01
A 3-D time-domain seakeeping analysis tool has been newly developed by using a higher-order boundary element method with the Rankine source as the kernel function. An iterative time-marching scheme for updating both kinematic and dynamic free-surface boundary conditions is adopted for achieving numerical accuracy and stability. A rectangular computational domain moving with the mean speed of ship is introduced. A damping beach at the outer portion of the truncated free surface is installed for satisfying the radiation condition. After numerical convergence checked, the diffraction unsteady problem of a Wigley hull traveling with a constant forward speed in waves is studied. Extensive results including wave exciting forces, wave patterns and pressure distributions on the hull are presented to validate the efficiency and accuracy of the proposed 3-D time-domain iterative Rankine BEM approach. Computed results are compared to be in good agreement with the corresponding experimental data and other published numerical solutions.
A direct mixed-body boundary element method for packed silencers.
Wu, T W; Cheng, C Y R; Zhang, P
2002-06-01
Bulk-reacting sound absorbing materials are often used in packed silencers to reduce broadband noise. A bulk-reacting material is characterized by a complex mean density and a complex speed of sound. These two material properties can be measured by the two-cavity method or calculated by empirical formulas. Modeling the entire silencer domain with a bulk-reacting lining will involve two different acoustic media, air and the bulk-reacting material. Traditionally, the interior silencer domain is divided into different zones and a multi-domain boundary element method (BEM) may be applied to solve the problem. However, defining different zones and matching the elements along each interface is tedious, especially when the zones are intricately connected. In this paper, a direct mixed-body boundary element method is used to model a packed silencer without subdividing it into different zones. This is achieved by summing up all the integral equations in different zones and then adding the hypersingular integral equations at interfaces. Several test cases, including a packed expansion chamber with and without an absorbing center bullet, and a parallel baffle silencer, are studied. Numerical results for the prediction of transmission loss (TL) are compared to experimental data.
A simple finite element method for boundary value problems with a Riemann–Liouville derivative
Jin, Bangti
2016-02-01
© 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-^{1} in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and ^{L2}(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The effect of alloying element (Ni, Co, Mn) on P doped Fe 5.3° low angle grain boundary (GB) embrittlement was investigated by the Recursion method. The model of dislocations was used to construct the atomic structure for the P doped GB. The result indicated that the role of impurity and alloying element segregation to GB can be studied with BOI and the difference between their segregation energies at GB and at free surface (FS) (ΔE=Egbseg-Efsseg). The BOI results showed that P leads the “loosening” of the 5.3° low angle GB and decreases the cohesion strength of P doped GB when the alloying element (Ni, Co, or Mn) is added into the P doped 5.3° low angle GB. The ΔE value reveals that the alloying element Ni, Co and Mn have higher energy at P doped 5.3° low angle GB, indicating it serves as a GB embrittler. The BOI results and ΔE calculation were comparable with each other, and they are also consistent with the experimental results, which confirm the embrittling effect of alloying element (Ni, Co, Mn) on P-induced GB embrittlement.
Institute of Scientific and Technical Information of China (English)
Lie-heng Wang
2000-01-01
In this paper, the linear finite element approximation to the elastic contact problem with curved contact boundary is considered. The error bound O(h1-2) is obtained with requirements of two times continuously differentiable for contact boundary and the usual regular triangulation, while I.Hlavacek et. al. obtained the error bound O(h ) with requirements of three times continuously differentiable for contact boundary and extra regularities of triangulation (c.f. [2]).
Nonlinear nonuniform torsional vibrations of bars by the boundary element method
Sapountzakis, E. J.; Tsipiras, V. J.
2010-05-01
In this paper a boundary element method is developed for the nonuniform torsional vibration problem of bars of arbitrary doubly symmetric constant cross-section taking into account the effect of geometrical nonlinearity. The bar is subjected to arbitrarily distributed or concentrated conservative dynamic twisting and warping moments along its length, while its edges are supported by the most general torsional boundary conditions. The transverse displacement components are expressed so as to be valid for large twisting rotations (finite displacement-small strain theory), thus the arising governing differential equations and boundary conditions are in general nonlinear. The resulting coupling effect between twisting and axial displacement components is considered and torsional vibration analysis is performed in both the torsional pre- or post-buckled state. A distributed mass model system is employed, taking into account the warping, rotatory and axial inertia, leading to the formulation of a coupled nonlinear initial boundary value problem with respect to the variable along the bar angle of twist and to an "average" axial displacement of the cross-section of the bar. The numerical solution of the aforementioned initial boundary value problem is performed using the analog equation method, a BEM based method, leading to a system of nonlinear differential-algebraic equations (DAE), which is solved using an efficient time discretization scheme. Additionally, for the free vibrations case, a nonlinear generalized eigenvalue problem is formulated with respect to the fundamental mode shape at the points of reversal of motion after ignoring the axial inertia to verify the accuracy of the proposed method. The problem is solved using the direct iteration technique (DIT), with a geometrically linear fundamental mode shape as a starting vector. The validity of negligible axial inertia assumption is examined for the problem at hand.
Elasto-viscoplastic consistent tangent operator concept-based implicit boundary element methods
Institute of Scientific and Technical Information of China (English)
刘勇; 梁利华; GlaucioH.Paulino
2000-01-01
An elasto-viscoplastic consistent tangent operator (CTO) concept-based implicit algorithm for nonlinear boundary element methods is presented. Both kinematic and isotropic strain hardening are considered. The elasto-viscoplastic radial return algorithm (RRA) and the elasto-viscoplastic CTO and its related scheme are developed. In addition, the limit cases (e.g. elastoplastic problem) of vis-coplastic RRA and CTO are discussed. Finally, numerical examples, which are compared with the latest FEM results of Ibrahimbegovic et al. and ABAQUS results, are provided.
Elasto-viscoplastic consistent tangent operator concept-based implicit boundary element methods
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
An elasto-viscoplastic consistent tangent operator (CTO) concept-based implicit algorithm for nonlinear boundary element methods is presented. Both kinematic and isotropic strain hardening are considered. The elasto-viscoplastic radial return algorithm (RRA) and the elasto-viscoplastic CTO and its related scheme are developed. In addition, the limit cases (e.g. elastoplastic problem) of viscoplastic RRA and CTO are discussed. Finally, numerical examples, which are compared with the latest FEM results of Ibrahimbegovic et al. and ABAQUS results, are provided.
Noise source localization on tyres using an inverse boundary element method
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Saemann, E-U; Hald, J
1998-01-01
A dominating part of tyre noise is radiated from a region close to the tyre/road contact patch, where it is very difficult to measure both the tyre vibration and the acoustic near field. The approach taken in the present paper is to model the tyre and road surfaces with a Boundary Element Model...... (BEM), with unknown node vibration data on the tyre surface. The BEM model is used to calculate a set of transfer functions from the node vibrations to the sound pressure at a set of microphone positions around the tyre. By approximate inversion of the matrix of transfer functions, the surface...
Boundary element analysis of the directional sensitivity of the concentric EMG electrode
DEFF Research Database (Denmark)
Henneberg, Kaj-åge; R., Plonsey
1993-01-01
Assessment of the motor unit architecture based on concentric electrode motor unit potentials requires a thorough understanding of the recording characteristics of the concentric EMG electrode. Previous simulation studies have attempted to include the effect of EMG electrodes on the recorded...... waveforms by uniformly averaging the tissue potential at the coordinates of one- or two-dimensional electrode models. By employing the boundary element method, this paper improves earlier models of the concentric EMG electrode by including an accurate geometric representation of the electrode, as well...
A comparison of inverse boundary element method and near-field acoustical holography
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Hald, Jørgen; Saemann, E.-U.
1999-01-01
An inverse boundary element method (IBEM) is used to estimate the surface velocity of a rolling tyre from measurements of the near-field pressure. Subsequently, the sound pressure is calculated over a finite plane surface next to the tyre from the reconstructed velocity field on the tyre surface........ In order to verify the reconstruction process, part of the measurement data is used together with Near-Field Acoustical Holography (NAH). Estimated distributions of sound pressure and particle velocity over a plane surface obtained from the two methods are compared....
Walston, W. H., Jr.
1986-01-01
The comparative computational efficiencies of the finite element (FEM), boundary element (BEM), and hybrid boundary element-finite element (HVFEM) analysis techniques are evaluated for representative bounded domain interior and unbounded domain exterior problems in elastostatics. Computational efficiency is carefully defined in this study as the computer time required to attain a specified level of solution accuracy. The study found the FEM superior to the BEM for the interior problem, while the reverse was true for the exterior problem. The hybrid analysis technique was found to be comparable or superior to both the FEM and BEM for both the interior and exterior problems.
A Compact Dual Band Implantable Antenna Based on Split-Ring Resonators with Meander Line Elements
Directory of Open Access Journals (Sweden)
Yunus Emre Yamac
2016-12-01
Full Text Available In this paper, a dual band implantable split-ring microstrip antenna which operates at MICS (Medical Implant Services and ISM (Industrial, Scientific, and Medical bands is proposed for biotelemetry applications. A miniaturized size of 9.5 mm × 9.5 mm × 1.27 mm was accomplished by using three split-ring resonators and meander lines elements on these resonators. A shorting pin appropriately placed between the patch and ground plane was used for the antenna miniaturization. In addition, three useful metallic paths between the rings provided fine frequency tuning. The proposed split-ring implantable antenna presents 23.5% and 9.3% bandwidth, -48 dB and -24 dB maximum gains, 407 W/kg and 403 W/kg maximum 1-g averaged SAR values at the respective bands. Return loss performance, radiation patterns and SAR values of the antenna design are presented in the paper.
Pulecio, Javier; Arena, Dario; Warnicke, Peter; Im, Mi-Young; Pollard, Shawn; Fischer, Peter; Zhu, Yimei
2013-03-01
We report on the magnetic evolution of magnetic vortices in nanoscale and multilayer disk structures. The tri-layer structure consists of Co and Permalloy (Py) layers, coupled across a thin (1nm) Cu spacer that provides strong coupling between the Co and Py layers. Element-resolved full-field XMCD microscopy is combined with ultra-high resolution Lorentz transmission electron microscopy, permitting measurement of both layer-resolved domain patterns and the vortex structure averaged across the tri-layer. We examine the evolution of the vortex structure while the nanostructure is cycled through the M-H hysteresis loop. In particular we will discuss the effects of strong interlayer exchanged coupling on a dual vortex core system, including analysis of the layer-resolved coercivity, and the evolution, deformation, annihilation, and nucleation of the vortices.
Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods
Marburg, Steffen
2008-01-01
Among numerical methods applied in acoustics, the Finite Element Method (FEM) is normally favored for interior problems whereas the Boundary Element Method (BEM) is quite popular for exterior ones. That is why this valuable reference provides a complete survey of methods for computational acoustics, namely FEM and BEM. It demonstrates that both methods can be effectively used in the complementary cases. The chapters by well-known authors are evenly balanced: 10 chapters on FEM and 10 on BEM. An initial conceptual chapter describes the derivation of the wave equation and supplies a unified approach to FEM and BEM for the harmonic case. A categorization of the remaining chapters and a personal outlook complete this introduction. In what follows, both FEM and BEM are discussed in the context of very different problems. Firstly, this comprises numerical issues, e.g. convergence, multi-frequency solutions and highly efficient methods; and secondly, solutions techniques for the particular difficulties that arise wi...
Shakedown Analysis of 3-D Structures Using the Boundary Element Method Based on the Static Theorem
Institute of Scientific and Technical Information of China (English)
张晓峰; 刘应华; 岑章志
2003-01-01
The static shakedown theorem was reformulated for the boundary element method (BEM) rather than the finite element method with Melan's theorem, then used to develop a numerical solution procedure for shakedown analysis. The self-equilibrium stress field was constructed by a linear combination of several basis self-equilibrium stress fields with undetermined parameters. These basis self-equilibrium stress fields were expressed as elastic responses of the body to imposed permanent strains obtained using a 3-D BEM elastic-plastic incremental analysis. The lower bound for the shakedown load was obtained from a series of nonlinear mathematical programming problems solved using the Complex method. Numerical examples verified the precision of the present method.
Tian, Wenyi; Yuan, Xiaoming
2016-11-01
Linear inverse problems with total variation regularization can be reformulated as saddle-point problems; the primal and dual variables of such a saddle-point reformulation can be discretized in piecewise affine and constant finite element spaces, respectively. Thus, the well-developed primal-dual approach (a.k.a. the inexact Uzawa method) is conceptually applicable to such a regularized and discretized model. When the primal-dual approach is applied, the resulting subproblems may be highly nontrivial and it is necessary to discuss how to tackle them and thus make the primal-dual approach implementable. In this paper, we suggest linearizing the data-fidelity quadratic term of the hard subproblems so as to obtain easier ones. A linearized primal-dual method is thus proposed. Inspired by the fact that the linearized primal-dual method can be explained as an application of the proximal point algorithm, a relaxed version of the linearized primal-dual method, which can often accelerate the convergence numerically with the same order of computation, is also proposed. The global convergence and worst-case convergence rate measured by the iteration complexity are established for the new algorithms. Their efficiency is verified by some numerical results.
Tailoring wind properties by various passive roughness elements in a boundary-layer wind tunnel
Varshney, Kapil
2012-08-01
Boundary-layer wind tunnel provides a unique platform to reproduce urban, suburban and rural atmospheric boundary layer (ABL) by using roughness devices such as vortex generators, floor roughness, barrier walls, and slots in the extended test-section floor in the contraction cone. Each passive device impacts wind properties in a certain way. In this study, influence of various passive devices on wind properties has been investigated. Experiments using eighteen different configurations of the passive devices have been carried out to simulate urban, sub-urban, and rural climate conditions in a boundary-layer wind tunnel. The effect of each configuration on the wind characteristics is presented. It was found that higher barrier height and more number of roughness elements on the floor, generated higher turbulence and therefore higher model scale factors were obtained. However, increased slot width in the extended test-section floor in the contraction cone of the wind tunnel seemed to have a little effect on wind characteristics.
Directory of Open Access Journals (Sweden)
T. Islam
2012-01-01
Full Text Available This paper presents an efficient model for estimation of soil electric resistivity with depth and layer thickness in a multilayer earth structure. This model is the improvement of conventional two-layer earth model including Wenner resistivity formulations with boundary conditions. Two-layer soil model shows the limitations in specific soil characterizations of different layers with the interrelationships between soil apparent electrical resistivity (ρ and several soil physical or chemical properties. In the multilayer soil model, the soil resistivity and electric potential at any points in multilayer anisotropic soil medium are expressed according to the variation of electric field intensity for geotechnical investigations. For most soils with varying layers, multilayer soil resistivity profile is therefore more suitable to get soil type, bulk density of compacted soil and to detect anomalous materials in soil. A boundary element formulation is implemented to show the multilayer soil model with boundary conditions in soil resistivity estimations. Numerical results of soil resistivity ratio and potential differences for different layers are presented to illustrate the application, accuracy, and efficiency of the proposed model. The nobility of the research is obtaining multilayer soil characterizations through soil electric properties in near surface soil profile.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
The scaled boundary finite element method(SBFEM) is a semi-analytical numerical method,which models an analysis domain by a small number of large-sized subdomains and discretises subdomain boundaries only.In a subdomain,all fields of state variables including displacement,stress,velocity and acceleration are semi-analytical,and the kinetic energy,strain energy and energy error are all integrated semi-analytically.These advantages are taken in this study to develop a posteriori h-hierarchical adaptive SBFEM for transient elastodynamic problems using a mesh refinement procedure which subdivides subdomains.Because only a small number of subdomains are subdivided,mesh refinement is very simple and efficient,and mesh mapping to transfer state variables from an old mesh to a new one is also very simple but accurate.Two 2D examples with stress wave propagation were modelled.The results show that the developed method is capable of capturing propagation of steep stress regions and calculating accurate dynamic responses,using only a fraction of degrees of freedom required by adaptive finite element method.
Acoustic scattering for 3D multi-directional periodic structures using the boundary element method.
Karimi, Mahmoud; Croaker, Paul; Kessissoglou, Nicole
2017-01-01
An efficient boundary element formulation is proposed to solve three-dimensional exterior acoustic scattering problems with multi-directional periodicity. The multi-directional periodic acoustic problem is represented as a multilevel block Toeplitz matrix. By exploiting the Toeplitz structure, the computational time and storage requirements to construct and to solve the linear system of equations arising from the boundary element formulation are significantly reduced. The generalized minimal residual method is implemented to solve the linear system of equations. To efficiently calculate the matrix-vector product in the iterative algorithm, the original matrix is embedded into a multilevel block circulant matrix. A multi-dimensional discrete Fourier transform is then employed to accelerate the matrix-vector product. The proposed approach is applicable to a periodic acoustic problem for any arbitrary shape of the structure in both full space and half space. Two case studies involving sonic crystal barriers are presented. In the first case study, a sonic crystal barrier comprising rigid cylindrical scatterers is modeled. To demonstrate the effectiveness of the proposed technique, periodicity in one, two, or three directions is examined. In the second case study, the acoustic performance of a sonic crystal barrier with locally resonant C-shaped scatterers is studied.
Simmons, Daniel; Cools, Kristof; Sewell, Phillip
2016-11-01
Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.
Analysis of radiation noise from cylinder block by boundary element method
Energy Technology Data Exchange (ETDEWEB)
Miura, Akinori; Sakurai, Yoichi
1987-08-01
As an approach toward low noise in the cylinder blocks of engines for large vehicles, the analysis of emitted noise was attempted. The method of forecasting the sound pressure level emitted from a cylinder block using boundary element method, from the calculated values or the measured values of vibration modes by partial structure synthesis method, was developed. The method of forecasting emitted noise using the result of holography measurement was developed, and by utilizing this method, the experimental optimizing technique for reducing noise was worked up. By applying the combination of the partial structure synthesis method and boundary element method to the cylinder blocks of large and medium sized diesel engines, the investigation of low noise cylinder blocks has become feasible at the stage of desk work. By these methods, from the result of holography, the part which is most effective when its noise level is reduced is determined, and the effect of reduction can be forecast. Besides, low noise structures can be studied on a desk, and the products manufactured for trial can be decreased, and the efficient development can be made. (9 figs, 2 tabs, 15 refs)
Boundary elements method for microfluidic two-phase flows in shallow channels
Nagel, Mathias
2014-01-01
In the following work we apply the boundary element method to two-phase flows in shallow microchannels, where one phase is dispersed and does not wet the channel walls. These kinds of flows are often encountered in microfluidic Lab-on-a-Chip devices and characterized by low Reynolds and low capillary numbers. Assuming that these channels are homogeneous in height and have a large aspect ratio, we use depth-averaged equations to describe these two-phase flows using the Brinkman equation, which constitutes a refinement of Darcy's law. These partial differential equations are discretized and solved numerically using the boundary element method, where a stabilization scheme is applied to the surface tension terms, allowing for a less restrictive time step at low capillary numbers. The convergence of the numerical algorithm is checked against a static analytical solution and on a dynamic test case. Finally the algorithm is applied to the non-linear development of the Saffman-Taylor instability and compared to expe...
Crack propagation analysis of welded thin-walled joints using boundary element method
Mashiri, F. R.; Zhao, Xiao-Ling; Grundy, P.
Tube-to-plate nodal joints under cyclic bending are widely used in the road transport and agricultural industry. The square hollow sections (SHS) used in these constructions are thin-walled and cold formed, and they have thicknesses of less than 4mm. Some fatigue failures have been observed. The weld undercut may affect the fatigue life of welded tubular joints especially for thin-walled sections. The undercut dimensions were measured using the silicon imprint technique. Modelling of thin-walled cruciform joints, as a simplification of welded tubular joints, is described in this paper to determine the effect of weld undercut on fatigue propagation life. The Boundary Element Analysis System Software (BEASY) is used. The results of the effect of weld toe undercut from this analysis are compared with results from previous research to determine the comparative reduction in fatigue life between thin-walled joints (T=3mm) and those made of thicker sections (T=20mm). The loss in fatigue strength of the thin-walled joints is found to be relatively more than that for thicker walled joints. A 3D model of a tube to plate T-joint is also modelled using the boundary element software, BEASY. The nodal joint consists of a square hollow section, 50×50×3 SHS, fillet welded to a 10-mm thick plate, and subjected to cyclic bending stress. Fatigue analyses are carried out and the results are compared with the only available S-N design curve.
Inexact Krylov iterations and relaxation strategies with fast-multipole boundary element method
Layton, Simon K
2015-01-01
Boundary element methods produce dense linear systems that can be accelerated via multipole expansions. Solved with Krylov methods, this implies computing the matrix-vector products within each iteration with some error, at an accuracy controlled by the order of the expansion, $p$. We take advantage of a unique property of Krylov iterations that allow lower accuracy of the matrix-vector products as convergence proceeds, and propose a relaxation strategy based on progressively decreasing $p$. Via extensive numerical tests, we show that the relaxed Krylov iterations converge with speed-ups of between 2x and 4x for Laplace problems and between 3.5x and 4.5x for Stokes problems. We include an application to Stokes flow around red blood cells, computing with up to 64 cells and problem size up to 131k boundary elements and nearly 400k unknowns. The study was done with an in-house multi-threaded C++ code, on a quad-core CPU.
A comparative note on tunneling in AdS and in its boundary matrix dual
Chandrasekhar, B.; Mukherji, Sudipta; Sahay, Anurag; Sarkar, Swarnendu
2012-05-01
For charged black hole, within the grand canonical ensemble, the decay rate from thermal AdS to the black hole at a fixed high temperature increases with the chemical potential. We check that this feature is well captured by a phenomenological matrix model expected to describe its strongly coupled dual. This comparison is made by explicitly constructing the kink and bounce solutions around the de-confinement transition and evaluating the matrix model effective potential on the solutions.
A Comparative Note on Tunneling in AdS and in its Boundary Matrix Dual
Chandrasekhar, B; Sahay, Anurag; Sarkar, Swarnendu
2012-01-01
For charged black hole, within the grand canonical ensemble, the decay rate from thermal AdS to the black hole at a fixed high temperature increases with the chemical potential. We check that this feature is well captured by a phenomenological matrix model expected to describe its strongly coupled dual. This comparison is made by explicitly constructing the kink and bounce solutions around the de-confinement transition and evaluating the matrix model effective potential on the solutions.
Quantifying trace element and isotope fluxes at the ocean–sediment boundary: a review
Berelson, William M.; Severmann, Silke
2016-01-01
Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment–water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment–water boundary on many TEI cycles, and underline the fact that our knowledge of the source–sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment–water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid
Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review
Homoky, William B.; Weber, Thomas; Berelson, William M.; Conway, Tim M.; Henderson, Gideon M.; van Hulten, Marco; Jeandel, Catherine; Severmann, Silke; Tagliabue, Alessandro
2016-11-01
Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment-water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment-water boundary on many TEI cycles, and underline the fact that our knowledge of the source-sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment-water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory
Directory of Open Access Journals (Sweden)
Igumnov Leonid
2015-01-01
Full Text Available The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.
Shear bond strength of three dual-cured resin cements to dentin analyzed by finite element analysis
Jongsma, L.A.; de Jager, N.; Kleverlaan, C.J.; Pallav, P.; Feilzer, A.J.
2012-01-01
Objectives To determine the shear bond strength to bovine dentin of dual-cured resin cements cured in different circumstances, the contraction stress and volumetric shrinkage in both polymerization modes, and to review the failure stress distribution at the cement-tooth interface with finite element
Development of a MEMS dual-axis differential capacitance floating element shear stress sensor
Energy Technology Data Exchange (ETDEWEB)
Barnard, Casey [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Griffin, Benjamin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)
2015-09-01
A single-axis MEMS wall shear stress sensor with differential capacitive transduction method is produced. Using a synchronous modulation and demodulation interface circuit, the system is capable of making real time measurements of both mean and fluctuating wall shear stress. A sensitivity of 3.44 mV/Pa is achieved, with linearity in response demonstrated up to testing limit of 2 Pa. Minimum detectable signals of 340 μPa at 100 Hz and 120 μPa at 1 kHz are indicated, with a resonance of 3.5 kHz. Multiple full scale wind tunnel tests are performed, producing spectral measurements of turbulent boundary layers in wind speeds ranging up to 0.5 Ma (18 Pa of mean wall shear stress). The compact packaging allows for minimally invasive installation, and has proven relatively robust over multiple testing events. Temperature sensitivity, likely due to poor CTE matching of packaged materials, is an ongoing concern being addressed. These successes are being directly leveraged into a development plan for a dual-axis wall shear stress sensor, capable of producing true vector estimates at the wall.
Nilsson, C.-M.; Jones, C. J. C.; Thompson, D. J.; Ryue, J.
2009-04-01
Engineering methods for modelling the generation of railway rolling noise are well established. However, these necessarily involve some simplifying assumptions to calculate the sound powers radiated by the wheel and the track. For the rail, this involves using an average vibration together with a radiation efficiency determined for a two-dimensional (2D) problem. In this paper, the sound radiation from a rail is calculated using a method based on a combination of waveguide finite elements and wavenumber boundary elements. This new method allows a number of the simplifying assumptions in the established methods to be avoided. It takes advantage of the 2D geometry of a rail to provide an efficient numerical approach but nevertheless takes into account the three-dimensional nature of the vibration and sound field and the infinite extent of the rail. The approach is used to study a conventional 'open' rail as well as an embedded tram rail of the type used for street running. In the former case it is shown that the conventional approach gives correct results and the complexity of the new method is mostly not necessary. However, for the embedded rail it is found that it is important to take into account the radiation from several wave types in the rail and embedding material. The damping effect of the embedding material on the rail vibration is directly taken into account and, for the example shown, causes the embedded rail to radiate less sound than the open rail above about 600 Hz. The free surface of the embedding material amplifies the sound radiation at some frequencies, while at other frequencies it moves out of phase with the rail and reduces the radiation efficiency. At low frequencies the radiation from the embedded rail resembles a line monopole source which produces greater power than the 'open' rail which forms a line dipole.
Evaluation of Wall Boundary Conditions for Impedance Eduction Using a Dual-Source Method
Watson, W. R.; Jones, M. G.
2012-01-01
The accuracy of the Ingard-Myers boundary condition and a recently proposed modified Ingard-Myers boundary condition is evaluated for use in impedance eduction under the assumption of uniform mean flow. The evaluation is performed at three centerline Mach numbers, using data acquired in a grazing flow impedance tube, using both upstream and downstream propagating sound sources, and on a database of test liners for which the expected behavior of the impedance spectra is known. The test liners are a hard-wall insert consisting of 12.6 mm thick aluminum, a linear liner without a facesheet consisting of a number of small diameter but long cylindrical channels embedded in a ceramic material, and two conventional nonlinear liners consisting of a perforated facesheet bonded to a honeycomb core. The study is restricted to a frequency range for which only plane waves are cut on in the hard-wall sections of the flow impedance tube. The metrics used to evaluate each boundary condition are 1) how well it educes the same impedance for upstream and downstream propagating sources, and 2) how well it predicts the expected behavior of the impedance spectra over the Mach number range. The primary conclusions of the study are that the same impedance is educed for upstream and downstream propagating sources except at the highest Mach number, that an effective impedance based on both the upstream and downstream measurements is more accurate than an impedance based on the upstream or downstream data alone, and that the Ingard-Myers boundary condition with an effective impedance produces results similar to that achieved with the modified Ingard-Myers boundary condition.
Dual strain mechanisms in a lead-free morphotropic phase boundary ferroelectric
DEFF Research Database (Denmark)
Walker, Julian; Simons, Hugh; Alikin, Denis O;
2016-01-01
)-based ferroelectric ceramics. In the search for Pb-free alternatives, systems with MPBs between polar and non-polar phases have recently been theorized as having great promise. While such an MPB was identified in rare-earth (RE) modified bismuth ferrite (BFO) thin films, synthesis challenges have prevented its...... realization in ceramics. Overcoming these, we demonstrate a comparable electromechanical response to Pb-based materials at the polar-to-non-polar MPB in Sm modified BFO. This arises from 'dual' strain mechanisms: ferroelectric/ferroelastic switching and a previously unreported electric-field induced...
Energy Technology Data Exchange (ETDEWEB)
T.F. Eibert; J.L. Volakis; Y.E. Erdemli
2002-03-03
Hybrid finite element (FE)--boundary integral (BI) analysis of infinite periodic arrays is extended to include planar multilayered Green's functions. In this manner, a portion of the volumetric dielectric region can be modeled via the finite element method whereas uniform multilayered regions can be modeled using a multilayered Green's function. As such, thick uniform substrates can be modeled without loss of efficiency and accuracy. The multilayered Green's function is analytically computed in the spectral domain and the resulting BI matrix-vector products are evaluated via the fast spectral domain algorithm (FSDA). As a result, the computational cost of the matrix-vector products is kept at O(N). Furthermore, the number of Floquet modes in the expansion are kept very few by placing the BI surfaces within the computational unit cell. Examples of frequency selective surface (FSS) arrays are analyzed with this method to demonstrate the accuracy and capability of the approach. One example involves complicated multilayered substrates above and below an inhomogeneous filter element and the other is an optical ring-slot array on a substrate several hundred wavelengths in thickness. Comparisons with measurements are included.
Boundary element method applied to a gas-fired pin-fin-enhanced heat pipe
Energy Technology Data Exchange (ETDEWEB)
Andraka, C.E.; Knorovsky, G.A.; Drewien, C.A.
1998-02-01
The thermal conduction of a portion of an enhanced surface heat exchanger for a gas fired heat pipe solar receiver was modeled using the boundary element and finite element methods (BEM and FEM) to determine the effect of weld fillet size on performance of a stud welded pin fin. A process that could be utilized by others for designing the surface mesh on an object of interest, performing a conversion from the mesh into the input format utilized by the BEM code, obtaining output on the surface of the object, and displaying visual results was developed. It was determined that the weld fillet on the pin fin significantly enhanced the heat performance, improving the operating margin of the heat exchanger. The performance of the BEM program on the pin fin was measured (as computational time) and used as a performance comparison with the FEM model. Given similar surface element densities, the BEM method took longer to get a solution than the FEM method. The FEM method creates a sparse matrix that scales in storage and computation as the number of nodes (N), whereas the BEM method scales as N{sup 2} in storage and N{sup 3} in computation.
Directory of Open Access Journals (Sweden)
Raju CSK
2016-01-01
Full Text Available In this study we analyzed the momentum and heat transfer characteristics of MHD boundary layer flow over an exponentially stretching surface in porous medium in the presence of radiation, non-uniform heat source/sink, external pressure and suction/injection. Dual solutions are presented for both suction and injection cases. The heat transfer analysis is carried out for both prescribed surface temperature (PST and prescribed heat flux (PHF cases. The governing equations of the flow are transformed into system of nonlinear ordinary differential equations by using similarity transformation and solved numerically using bvp4c Matlab package. The impact of various non-dimensional governing parameters on velocity, temperature profiles for both PST and PHF cases, friction factor and rate of heat transfer is discussed and presented with the help of graphs and tables. Results indicate that dual solutions exist only for certain range of suction or injection parameters. It is also observed that the exponential parameter have tendency to increase the heat transfer rate for both PST and PHF cases.
Energy Technology Data Exchange (ETDEWEB)
Yokoi, T. [Building Research Institute, Tokyo (Japan); Sanchez-Sesma, F. [Universidad National Autonoma de Mexico, (Mexico). Institute de Ingenieria
1997-05-27
Formulation is introduced for discretizing a boundary integral equation into an indirect boundary element method for the solution of 3-dimensional topographic problems. Yokoi and Takenaka propose an analytical solution-capable reference solution (solution for the half space elastic body with flat free surface) to problems of topographic response to seismic motion in a 2-dimensional in-plane field. That is to say, they propose a boundary integral equation capable of effectively suppressing the non-physical waves that emerge in the result of computation in the wake of the truncation of the discretized ground surface making use of the wave field in a semi-infinite elastic body with flat free surface. They apply the proposed boundary integral equation discretized into the indirect boundary element method to solve some examples, and succeed in proving its validity. In this report, the equation is expanded to deal with 3-dimensional topographic problems. A problem of a P-wave vertically landing on a flat and free surface is solved by the conventional boundary integral equation and the proposed boundary integral equation, and the solutions are compared with each other. It is found that the new method, different from the conventional one, can delete non-physical waves from the analytical result. 4 figs.
Sound Radiation from a Loudspeaker Cabinet using the Boundary Element Method
DEFF Research Database (Denmark)
Fernandez Grande, Efren
, in some cases becoming clearly audible. The aim of this study is to provide a tool that can evaluate the contribution from the cabinet to the overall sound radiated by a loudspeaker. The specific case of a B&O Beolab 9 early prototype has been investigated. An influence by the cabinet of this prototype......Ideally, the walls of a loudspeaker cabinet are rigid. However, in reality, the cabinet is excited by the vibration of the loudspeaker units and by the acoustic pressure inside the cabinet. The radiation of sound caused by such vibration can influence the overall performance of the loudspeaker...... had been reported, based on subjective testing. This study aims to detect the reported problem. The radiation from the cabinet is calculated using the Boundary Element Method. The analysis examines both the frequency domain and the time domain characteristics (in other words, the steady state response...
Precision enhancement in boundary element methods with application to electron optics.
Loyd, Jody S; Gregory, Don A
2016-08-01
A hybrid approach is presented for obtaining electric potentials for use in electron optics modeling. An initial solution from the boundary element method (BEM) is used to derive the bounding potential of a cylindrical subdomain subsequently used in a Fourier series solution. The approach combines the inherent precision of this analytic solution with the flexibility of BEM to describe practical, non-idealized systems of electrodes. The resulting lens field in the Fourier series subdomain is of higher precision, thereby allowing smaller errors in subsequent calculations of electron ray paths. The effects of aberrations are thus easier to observe in tracing non-paraxial rays. Example ray-traces through a simple, known einzel lens are given as validation of this approach.
General Boundary Element Method：an Application of Homotopy Analysis Method
Institute of Scientific and Technical Information of China (English)
ShijunLIAO
1998-01-01
In this paper,based on a new kind of analytic method,namely the homotopy analysis method(HAM),we greatly generalize the traditional boundary element method(BEM) and propose a so-called general BEM approach,The general BEM can overcome the limitations and restrictions of the traditional BEM.It is valid even for strongly nonlinear problems whose governing equations don't contain any linear terms.Moreover,by the proposed general BEM,one can solve a nonlinear problem even by means of no iterations! This shakes the governing place of the iterative methodology of the BEM for nonlinear problems.Besides,the proposed general BEM contains the traditional BEM in logic.The general BEM approach greatly increases the application area of the BEM as a numerical tool.
Noise source localization on tyres using an inverse boundary element method
DEFF Research Database (Denmark)
Schuhmacher, Andreas; Saemann, E-U; Hald, J
1998-01-01
A dominating part of tyre noise is radiated from a region close to the tyre/road contact patch, where it is very difficult to measure both the tyre vibration and the acoustic near field. The approach taken in the present paper is to model the tyre and road surfaces with a Boundary Element Model...... (BEM), with unknown node vibration data on the tyre surface. The BEM model is used to calculate a set of transfer functions from the node vibrations to the sound pressure at a set of microphone positions around the tyre. By approximate inversion of the matrix of transfer functions, the surface...... from tyre noise measurements will be presented at the conference....
BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0
1991-01-01
The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.
Accurate computation of Galerkin double surface integrals in the 3-D boundary element method
Adelman, Ross; Duraiswami, Ramani
2015-01-01
Many boundary element integral equation kernels are based on the Green's functions of the Laplace and Helmholtz equations in three dimensions. These include, for example, the Laplace, Helmholtz, elasticity, Stokes, and Maxwell's equations. Integral equation formulations lead to more compact, but dense linear systems. These dense systems are often solved iteratively via Krylov subspace methods, which may be accelerated via the fast multipole method. There are advantages to Galerkin formulations for such integral equations, as they treat problems associated with kernel singularity, and lead to symmetric and better conditioned matrices. However, the Galerkin method requires each entry in the system matrix to be created via the computation of a double surface integral over one or more pairs of triangles. There are a number of semi-analytical methods to treat these integrals, which all have some issues, and are discussed in this paper. We present novel methods to compute all the integrals that arise in Galerkin fo...
Energy Technology Data Exchange (ETDEWEB)
Kryuchkov, S.; Sanger, S.; Barden, R. [Vertex Petroleum Systems, Englewood, CO (United States)
2001-06-01
The mathematical basis of a newly developed reservoir modeling software based on the Boundary Element Method (BEM) was presented. The software includes a fully graphical interface which provides accurate and fast solutions for most engineering problems. The model capabilities include modeling of arbitrary shaped heterogenous oil and gas reservoirs with fractured, radial and horizontal wells. In addition, the software can be used to model water injection and edge water drive. The model is suitable for managing small and midsize oil and gas fields, and is particularly useful for performing case studies at each field in real time. A comparison was also conducted between the BEM model and other well known analytical solutions such as steady state and transient solutions for standard reservoirs. Results showed good agreement between the two modeling methods. for vertical, fractured and horizontal wells. 24 refs., 8 figs.
Tang, Fa-Kuan; Wang, Qian; Hua, Ning; Tang, Xue-Zheng; Lu, Hong; Ma, Ping
2010-12-01
This paper discusses the forward and inverse problem for cardiac magnetic fields and electric potentials. A torso-heart model established by boundary element method (BEM) is used for studying the distributions of cardiac magnetic fields and electric potentials. Because node-to-node and triangle-to-triangle BEM can lead to discrepant field distributions, their properties and influences are compared. Then based on constructed torso-heart model and supposed current source functional model—current dipole array, the magnetic and electric imaging by optimal constrained linear inverse method are applied at the same time. Through figure and reconstructing parameter comparison, though the magnetic current dipole array imaging possesses better reconstructing effect, however node-to-node BEM and triangle-to-triangle BEM make little difference to magnetic and electric imaging.
PARALLEL ALGORITHM FOR THREE-DIMENSIONAL STOKES FLOW SIMULATION USING BOUNDARY ELEMENT METHOD
Directory of Open Access Journals (Sweden)
D. G. Pribytok
2016-01-01
Full Text Available Parallel computing technique for modeling three-dimensional viscous flow (Stokes flow using direct boundary element method is presented. The problem is solved in three phases: sampling and construction of system of linear algebraic equations (SLAE, its decision and finding the velocity of liquid at predetermined points. For construction of the system and finding the velocity, the parallel algorithms using graphics CUDA cards programming technology have been developed and implemented. To solve the system of linear algebraic equations the implemented software libraries are used. A comparison of time consumption for three main algorithms on the example of calculation of viscous fluid motion in three-dimensional cavity is performed.
Scheiber, D.; Pippan, R.; Puschnig, P.; Romaner, L.
2016-12-01
We report high throughput density functional theory (DFT) calculations to simulate segregation of s- and p-elements in Mo and W. First, the preference of solutes for interstitial or substitutional positions in the bulk is evaluated and then the segregation energies for the solutes to interstitial and different substitutional sites at a grain boundary (GB) and a free surface (FS) are computed. We show that several solutes change their site preference from substitutional to interstitial position upon segregation to the GB. With the segregation energies to GB and FS, the changes in cohesion can be calculated and GB cohesion enhancing solutes can be identified. The results show striking similarity for both W and Mo. In addition, we collected the available literature data from experimental and theoretical side, which we consequently compare to our results. From our results and the comparison to literature, we identify B, C and Be as potential alloying additions for an increased GB cohesion in Mo and W.
Mitharwal, Rajendra
2015-01-01
This work presents a Boundary Element Method (BEM) formulation for contactless electromagnetic field assessments. The new scheme is based on a regularized BEM approach that requires the use of electric measurements only. The regularization is obtained by leveraging on an extension of Calderon techniques to rectangular systems leading to well-conditioned problems independent of the discretization density. This enables the use of highly discretized Huygens surfaces that can be consequently placed very near to the radiating source. In addition, the new regularized scheme is hybridized with both surfacic homogeneous and volumetric inhomogeneous forward BEM solvers accelerated with fast matrix-vector multiplication schemes. This allows for rapid and effective dosimetric assessments and permits the use of inhomogeneous and realistic head phantoms. Numerical results corroborate the theory and confirms the practical effectiveness of all newly proposed formulations.
Research on the cyclostationary nearfield acoustic holography based on boundary element method
Institute of Scientific and Technical Information of China (English)
ZHANG Haibin; WAN Quan; JIANG Weikang
2009-01-01
Cyclostationary sound field is a special kind of nonstationary sound field, in which the pressure signal is modulated seriously and sidebands exist in its spectrum. The reconstructed sound field can't figure the cyclostationary features in conventional Nearfield Acoustic Holography (NAH) procedure. On the basis of planar cyclostationary NAH, the cyclostationary NAH based on boundary element method is proposed which can be utilized to analyze radiators with complicated surface. Replacing the Fourier's transform with the second-order cyclic statistics, the Cyclic Spectral Density (CSD) functions is used as the reconstructed physical quantity in the proposed NAH technique, instead of the spectrum or power spectral density of pressure signal. By virtue of the demodulation ability of CSD function, the reconstructed CSD can effectively express the information of modulating and carrier wave respectively. The simulation and experiment illustrate that the validity and accuracy of this cyclostationary NAH technique satisfy the request of engineering.
Prediction of metallic nano-optical trapping forces by finite element-boundary integral method.
Pan, Xiao-Min; Xu, Kai-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing
2015-03-01
The hybrid of finite element and boundary integral (FE-BI) method is employed to predict nano-optical trapping forces of arbitrarily shaped metallic nanostructures. A preconditioning strategy is proposed to improve the convergence of the iterative solution. Skeletonization is employed to speed up the design and optimization where iteration has to be repeated for each beam configuration. The radiation pressure force (RPF) is computed by vector flux of the Maxwell's stress tensor. Numerical simulations are performed to validate the developed method in analyzing the plasmonic effects as well as the optical trapping forces. It is shown that the proposed method is capable of predicting the trapping forces of complex metallic nanostructures accurately and efficiently.
A simulation method of combinding boundary element method with generalized Langevin dynamics
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new simulation approach to incorporate hydration force into generalized Langevin dynamics (GLD) is developed in this note. The hydration force determined by the boundary element method (BEM) is taken into account as the mean force terms of solvent including Coulombic interactions with the induced surface charge and the surface pressure of solvent. The exponential model is taken for the friction kernel. A simulation study has been performed on the cyclic undecapeptide cyclosporin A (CPA). The results obtained from the new method (GLDBEM) have been analyzed and compared with that obtained from the molecular dynamics (MD) simulation and the conventional stochastic dynamics (SD) simulation. We have found that the results obtained from GLDBEM show the obvious improvement over the SD simulation technique in the study of molecular structure and dynamic properties.
Automatic Recognition of Element Classes and Boundaries in the Birdsong with Variable Sequences.
Directory of Open Access Journals (Sweden)
Takuya Koumura
Full Text Available Researches on sequential vocalization often require analysis of vocalizations in long continuous sounds. In such studies as developmental ones or studies across generations in which days or months of vocalizations must be analyzed, methods for automatic recognition would be strongly desired. Although methods for automatic speech recognition for application purposes have been intensively studied, blindly applying them for biological purposes may not be an optimal solution. This is because, unlike human speech recognition, analysis of sequential vocalizations often requires accurate extraction of timing information. In the present study we propose automated systems suitable for recognizing birdsong, one of the most intensively investigated sequential vocalizations, focusing on the three properties of the birdsong. First, a song is a sequence of vocal elements, called notes, which can be grouped into categories. Second, temporal structure of birdsong is precisely controlled, meaning that temporal information is important in song analysis. Finally, notes are produced according to certain probabilistic rules, which may facilitate the accurate song recognition. We divided the procedure of song recognition into three sub-steps: local classification, boundary detection, and global sequencing, each of which corresponds to each of the three properties of birdsong. We compared the performances of several different ways to arrange these three steps. As results, we demonstrated a hybrid model of a deep convolutional neural network and a hidden Markov model was effective. We propose suitable arrangements of methods according to whether accurate boundary detection is needed. Also we designed the new measure to jointly evaluate the accuracy of note classification and boundary detection. Our methods should be applicable, with small modification and tuning, to the songs in other species that hold the three properties of the sequential vocalization.
Automatic Recognition of Element Classes and Boundaries in the Birdsong with Variable Sequences
Okanoya, Kazuo
2016-01-01
Researches on sequential vocalization often require analysis of vocalizations in long continuous sounds. In such studies as developmental ones or studies across generations in which days or months of vocalizations must be analyzed, methods for automatic recognition would be strongly desired. Although methods for automatic speech recognition for application purposes have been intensively studied, blindly applying them for biological purposes may not be an optimal solution. This is because, unlike human speech recognition, analysis of sequential vocalizations often requires accurate extraction of timing information. In the present study we propose automated systems suitable for recognizing birdsong, one of the most intensively investigated sequential vocalizations, focusing on the three properties of the birdsong. First, a song is a sequence of vocal elements, called notes, which can be grouped into categories. Second, temporal structure of birdsong is precisely controlled, meaning that temporal information is important in song analysis. Finally, notes are produced according to certain probabilistic rules, which may facilitate the accurate song recognition. We divided the procedure of song recognition into three sub-steps: local classification, boundary detection, and global sequencing, each of which corresponds to each of the three properties of birdsong. We compared the performances of several different ways to arrange these three steps. As results, we demonstrated a hybrid model of a deep convolutional neural network and a hidden Markov model was effective. We propose suitable arrangements of methods according to whether accurate boundary detection is needed. Also we designed the new measure to jointly evaluate the accuracy of note classification and boundary detection. Our methods should be applicable, with small modification and tuning, to the songs in other species that hold the three properties of the sequential vocalization. PMID:27442240
Goldberg, Robert K.; Hopkins, Dale A.
1994-01-01
The boundary element method is utilized in this study to conduct thermal analysis of functionally graded composites, materials in which the internal microstructure or properties are explicitly tailored in order to obtain an optimal response, on the micromechanical (constituent) scale. A unique feature of the boundary element formulations used here is the use of circular shape functions to convert the two-dimensional integrations of the composite fibers to one dimensional integrations. Using the computer code BEST-CMS, the through the thickness temperature profiles are computed for a representative material with varying numbers of fibers and fiber spacing in the thickness direction. The computed temperature profiles are compared to those obtained using an alternate analytical theory which explicitly couples the heterogeneous microstructure to the global analysis. The boundary element results compared favorably to the analytical calculations, with discrepancies that are explainable based on the boundary element formulation. The results serve both to demonstrate the ability of the boundary element method to analyze these types of materials, and to verify the accuracy of the analytical theory.
High-speed boundary layer transition induced by a discrete roughness element
Iyer, Prahladh; Mahesh, Krishnan
2011-11-01
The effect of a hemispherical bump on a Mach 3.37 laminar boundary layer is studied using DNS for three conditions with k / δ = 2.54, 0.25 and 0.125, where k is the roughness height. The simulation parameters are based on the experiment by Danehy et. al. (AIAA-2009-394). The flow downstream of the roughness is transitional for all the three conditions accompanied by a rise in skin friction and heat transfer. Upon interaction with the roughness element, the boundary layer separates to form a series of spanwise vortices upstream and a shear layer. These vortices wrap around the roughness to yield a system of streamwise vortices downstream. Perturbation of the shear layer due to the vortices results in the formation of hairpin-shaped vortices further downstream of the roughness. While hairpin vortices were observed in both the center plane and off-symmetry planes on either side for the smallest δ case, they were observed only in the center plane for the other cases. This work was supported by NASA under the hypersonics NRA program under grant NNX08AB33A.
Cheng, J Y; Chahine, G L
2001-12-01
The slender body theory, lifting surface theories, and more recently panel methods and Navier-Stokes solvers have been used to study the hydrodynamics of fish swimming. This paper presents progress on swimming hydrodynamics using a boundary integral equation method (or boundary element method) based on potential flow model. The unsteady three-dimensional BEM code 3DynaFS that we developed and used is able to model realistic body geometries, arbitrary movements, and resulting wake evolution. Pressure distribution over the body surface, vorticity in the wake, and the velocity field around the body can be computed. The structure and dynamic behavior of the vortex wakes generated by the swimming body are responsible for the underlying fluid dynamic mechanisms to realize the high-efficiency propulsion and high-agility maneuvering. Three-dimensional vortex wake structures are not well known, although two-dimensional structures termed 'reverse Karman Vortex Street' have been observed and studied. In this paper, simulations about a swimming saithe (Pollachius virens) using our BEM code have demonstrated that undulatory swimming reduces three-dimensional effects due to substantially weakened tail tip vortex, resulting in a reverse Karman Vortex Street as the major flow pattern in the three-dimensional wake of an undulating swimming fish.
Directory of Open Access Journals (Sweden)
Syarizal Fonna
2016-01-01
Full Text Available Many studies have suggested that the corrosion detection of reinforced concrete (RC based on electrical potential on concrete surface was an ill-posed problem, and thus it may present an inaccurate interpretation of corrosion. However, it is difficult to prove the ill-posed problem of the RC corrosion detection by experiment. One promising technique is using a numerical method. The objective of this study is to simulate the ill-posed problem of RC corrosion detection based on electrical potential on a concrete surface using the Boundary Element Method (BEM. BEM simulates electrical potential within a concrete domain. In order to simulate the electrical potential, the domain is assumed to be governed by Laplace’s equation. The boundary conditions for the corrosion area and the noncorrosion area of rebar were selected from its polarization curve. A rectangular reinforced concrete model with a single rebar was chosen to be simulated using BEM. The numerical simulation results using BEM showed that the same electrical potential distribution on the concrete surface could be generated from different combinations of parameters. Corresponding to such a phenomenon, this problem can be categorized as an ill-posed problem since it has many solutions. Therefore, BEM successfully simulates the ill-posed problem of reinforced concrete corrosion detection.
Directory of Open Access Journals (Sweden)
Esteban Flores-Mendez
2012-01-01
Full Text Available This work is focused on studying interface waves for three canonical models, that is, interfaces formed by vacuum-solid, solid-solid, and liquid-solid. These interfaces excited by dynamic loads cause the emergence of Rayleigh's, Stoneley's, and Scholte's waves, respectively. To perform the study, the indirect boundary element method is used, which has proved to be a powerful tool for numerical modeling of problems in elastodynamics. In essence, the method expresses the diffracted wave field of stresses, pressures, and displacements by a boundary integral, also known as single-layer representation, whose shape can be regarded as a Fredholm's integral representation of second kind and zero order. This representation can be considered as an exemplification of Huygens' principle, which is equivalent to Somigliana's representation theorem. Results in frequency domain for the three types of interfaces are presented; then, using the fourier discrete transform, we derive the results in time domain, where the emergence of interface waves is highlighted.
Directory of Open Access Journals (Sweden)
Wen-Jeng Huang
2016-02-01
Full Text Available We develop a folding boundary element model in a medium containing a fault and elastic layers to show that anticlines growing over slipping reverse faults can be significantly amplified by mechanical layering buckling under horizontal shortening. Previous studies suggested that folds over blind reverse faults grow primarily during deformation increments associated with slips on the fault during and immediately after earthquakes. Under this assumption, the potential for earthquakes on blind faults can be determined directly from fold geometry because the amount of slip on the fault can be estimated directly from the fold geometry using the solution for a dislocation in an elastic half-space. Studies that assume folds grown solely by slip on a fault may therefore significantly overestimate fault slip. Our boundary element technique demonstrates that the fold amplitude produced in a medium containing a fault and elastic layers with free slip and subjected to layer-parallel shortening can grow to more than twice the fold amplitude produced in homogeneous media without mechanical layering under the same amount of shortening. In addition, the fold wavelengths produced by the combined fault slip and buckling mechanisms may be narrower than folds produced by fault slip in an elastic half space by a factor of two. We also show that subsurface fold geometry of the Kettleman Hills Anticline in Central California inferred from seismic reflection image is consistent with a model that incorporates layer buckling over a dipping, blind reverse fault and the coseismic uplift pattern produced during a 1985 earthquake centered over the anticline forelimb is predicted by the model.
Dual solution of Casson fluid over a porous medium: Exact solutions with extra boundary condition
Khan, Najeeb Alam; Khan, Sidra
2016-12-01
In this article we calculate the exact solution of the steady flow of non-Newtonian Casson fluid, over a stretching/shrinking sheet. The governing partial differential equations (PDEs) are transformed into ordinary differential equation (ODE) by using similarity transformation and then solved analytically by utilizing the exact solution. The closed form unique solution is obtained in the case of stretching sheet whereas for shrinking sheet unique and dual solutions are obtained. Influences of Casson fluid and suction/injection parameter on dimensionless velocity function are discussed and plotted graphically; also the effects of skin friction coefficient are presented in graphical form. Comparisons of current solutions with previous study are also made for the verification of the present study.
Operational experience and evaluation of a dual-element stretched-membrane heliostat
Strachan, J. W.; Vander, Geest, J.
1994-01-01
A dual-element, stretched-membrane central receiver heliostat was designed and manufactured in 1989 by a private US company engaged in the development of commercial central receiver solar technology. The two-module collector, with a collection area of 97.5 sq m, extends stretched-membrane mirror technology on several fronts with face-down stow capability and a digital controller that integrates tracking and focusing control on a single programmable control board. The solar collector was installed at Sandia's National Solar Thermal Test Facility in Albuquerque, NM, and it was evaluated over a three-and-a-half year period which ended in Sep. 1993. The measured performance and the operational and maintenance characteristics of this commercial prototype are the subject of this report. The results of beam quality measurements, tracking repeatability tests, measurements of beam movement in elevated winds, performance tests of the focusing system, and all-day beam quality and tracking tests are presented, and the authors offer a detailed discussion of the knowledge gained through operation and maintenance and of the improvements made or suggested to the heliostat's design.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jing [Universiyt of Utah; Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deo, Milind
2015-10-01
The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing, arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.
Operational experience and evaluation of a dual-element stretched-membrane heliostat
Energy Technology Data Exchange (ETDEWEB)
Strachan, J.W.; Van Der Geest, J.
1994-01-01
A dual-element, stretched-membrane central receiver heliostat was designed and manufactured in 1989, by a private US company engaged in the development of commercial central receiver solar technology. The two-module collector, with a collection area of 97.5 m{sup 2}, extends stretched-membrane mirror technology on several fronts with face-down stow capability and a digital controller that integrates tracking and focusing control on a single programmable control board. The solar collector was installed at Sandia`s National Solar Thermal Test Facility in Albuquerque, New Mexico and evaluated over a three-and-a-half year period which ended in September 1993. The measured performance and the operational and maintenance characteristics of this commercial prototype are the subject of this report. The results of beam quality measurements, tracking repeatability tests, measurements of beam movement in elevated winds, performance tests of the focusing system, and all-day beam quality and tracking tests are presented, and the authors offer a detailed discussion of the knowledge gained through operation and maintenance and of the improvements made or suggested to the heliostat`s design.
De Corato, M.; Slot, J. J. M.; Hütter, M.; D'Avino, G.; Maffettone, P. L.; Hulsen, M. A.
2016-07-01
In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation-dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.
Energy Technology Data Exchange (ETDEWEB)
De Corato, M., E-mail: marco.decorato@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Slot, J.J.M., E-mail: j.j.m.slot@tue.nl [Department of Mathematics and Computer Science, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); Hütter, M., E-mail: m.huetter@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands); D' Avino, G., E-mail: gadavino@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Maffettone, P.L., E-mail: pierluca.maffettone@unina.it [Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Piazzale Tecchio 80, 80125 Napoli (Italy); Hulsen, M.A., E-mail: m.a.hulsen@tue.nl [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven (Netherlands)
2016-07-01
In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered within the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.
Institute of Scientific and Technical Information of China (English)
FengYangde; WangYuesheng; ZhangZimao; CuiJunzhi
2003-01-01
A 2D time domain boundary element method (BEM) is developed to solve the transient scattering of plane waves by a unilaterally frictionally constrained inclusion. Coulomb friction is assumed along the contact interface. The incident wave is assumed strong enough so that localized slip and separation take place along the interface. The present problem is in effect a nonlinear boundary value problem since the mixed boundary conditions involve unknown intervals (slip, separation and stick regions). In order to determine the unknown intervals, an iterative technique is developed. As an example, we consider the scattering of a circular cylinder embeddedin an infinite solid.
A FINITE ELEMENT MODEL OF IN VIVO MOUSE TIBIAL COMPRESSION LOADING: INFLUENCE OF BOUNDARY CONDITIONS
Directory of Open Access Journals (Sweden)
Hajar Razi
2014-12-01
Full Text Available Though bone is known to adapt to its mechanical challenges, the relationship between the local mechanical stimuli and the adaptive tissue response seems so far unclear. A major challenge appears to be a proper characterization of the local mechanical stimuli of the bones (e.g. strains. The finite element modeling is a powerful tool to characterize these mechanical stimuli not only on the bone surface but across the tissue. However, generating a predictive finite element model of biological tissue strains (e.g., physiological-like loading encounters aspects that are inevitably unclear or vague and thus might significantly influence the predicted findings. We aimed at investigating the influence of variations in bone alignment, joint contact surfaces and displacement constraints on the predicted strains in an in vivo mouse tibial compression experiment. We found that the general strain state within the mouse tibia under compressive loading was not affected by these uncertain factors. However, strain magnitudes at various tibial regions were highly influenced by specific modeling assumptions. The displacement constraints to control the joint contact sites appeared to be the most influential factor on the predicted strains in the mouse tibia. Strains could vary up to 150% by modifying the displacement constraints. To a lesser degree, bone misalignment (from 0 to 20° also resulted in a change of strain (+300 µε = 40%. The definition of joint contact surfaces could lead to up to 6% variation. Our findings demonstrate the relevance of the specific boundary conditions in the in vivo mouse tibia loading experiment for the prediction of local mechanical strain values using finite element modeling.
Institute of Scientific and Technical Information of China (English)
Xianmin Xu; Zhiping Li
2009-01-01
An a posteriori error estimator is obtained for a nonconforming finite element approx-imation of a linear elliptic problem, which is derived from a corresponding unbounded domain problem by applying a nonlocal approximate artificial boundary condition. Our method can be easily extended to obtain a class of a posteriori error estimators for various conforming and nonconforming finite element approximations of problems with different artificial boundary conditions. The reliability and efficiency of our a posteriori error esti-mator are rigorously proved and axe verified by numerical examples.
Institute of Scientific and Technical Information of China (English)
刘贵立; 张国英; 李荣德
2003-01-01
The model of dislocations was used to construct the model of grain boundary (GB) with pure rare earths, and rare earth elements and impurities. The influence of the interaction between rare earth elements and impurities on the cohesive properties of 5.3° low angle GB of Fe was investigated by the recursion method. The calculated results of environment sensitive embeding energy(EESE) show that the preferential segregation of rare earth elements towards GBs exists. Calculations of bond order integrals (BOI) show that rare earth elements increase the cohesive strength of low angle GB, and impurities such as S, P weaken the intergranular cohesion of the GB. So rare earth element of proper quantity added in steel not only cleanses other harmful impurities off the GBs, but also enhances the intergranular cohesion. This elucidates the action mechanism of rare earth elements in steel from electronic level and offers theoretical evidence for applications of rare earth elements in steels.
Institute of Scientific and Technical Information of China (English)
Yanlu Huang; Yongqiang Yang; Guoqiang Wei; Wenqing Shi; Yibin Li
2008-01-01
The coupled numerical simulation on fluid flow, heat transfer, and mass transfer in the process of laser cladding is undertaken on the basis of the continuum model.In the simulation of mass transfer in the laser molten pool, the concentration distribution in the regions on different sides of the interface between cladding layer and substrate is calculated separately and coupled at the co-boundary.The non-equilibrium solute partition coefficient is obtained from equilibrium solute partition coefficient according to the Sobolev model.By using the developed software which is based on the commercial software PHOENICS 1.4, the distribution of Fe in laser molten pool in an experiment of cladding Stellite 6 on 12CrMoV is calculated.The obtained results well coincide with the experimental ones.
1984-04-01
BOUNDARY ELEIENT METHOD AS FOR THE TEST PROBLEM 6. FINAL REMARKS 9 REFERENCES FIGURE APPENDIX: Convergence of Gauss- Seidel Method for Positive...6 7 cx2p a17 c y, cr S2’f 3’ a 4 cy2 Uv 3 cF 2 FIG. 1 DISCRETIZATION OF A REGION f, AND ITS BOUNDARY r APPENDIX Convergence of Gauss- Seidel Method for...Positive Definite Hermitian Matrices To make the memo self-contained, a proof of convergence for the Gauss- Seidel method as applied to a positive
Margolis, S. V.; Doehne, E. F.
1988-01-01
Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.
Contreras Zazueta, M. A.; Perton, M.; Sanchez-Sesma, F. J.; Sánchez-Alvaro, E.
2013-12-01
The seismic hazard assessment of extended developments, such as a dam, a bridge or a pipeline, needs the strong ground motion simulation taking into account the effects of surface geology. In many cases the incoming wave field can be obtained from attenuation relations or simulations for layered media using Discrete Wave Number (DWN). Sometimes there is a need to include in simulations the seismic source as well. A number of methods to solve these problems have been developed. Among them the Finite Element and Finite Difference Methods (FEM and FDM) are generally preferred because of the facility of use. Nevertheless, the analysis of realistic dynamic loading induced by earthquakes requires a thinner mesh of the entire domain to consider high frequencies. Consequently this may imply a high computational cost. The Indirect Boundary Element Method (IBEM) can also be employed. Here it is used to study the response of a site to historical seismic activity. This method is particularly suited to model wave propagation through wide areas as it requires only the meshing of boundaries. Moreover, it is well suited to represent finely the diffraction that can occur on a fault. However, the IBEM has been applied mainly to simple geometrical configurations. In this communication significant refinements of the formulation are presented. Using IBEM we can simulate wave propagation in complex geometrical configurations such as a stratified medium crossed by thin faults or having a complex topography. Two main developments are here described; one integrates the DWN method inside the IBEM in order to represent the Green's functions of stratified media with relatively low computational cost but assuming unbounded parallel flat layers, and the other is the extension of IBEM to deal with multi-regions in contact which allows more versatility with a higher computational cost compared to the first one but still minor to an equivalent FEM formulation. The two approaches are fully
Energy Technology Data Exchange (ETDEWEB)
Dubey, R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical Engineering; Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)
1997-03-01
The work described in this paper focuses on the coordination and control of two manipulators coupled by passive elements operating in a confined space. An example of one such system is the hardware used for the environmental response treatability study funded by the Department of Energy at Oak Ridge National Laboratory (ORNL). The motivation for this project is to establish the methodology necessary to extract large volumes of hazardous waste from underground storage facilities. The hardware used at ORNL consists of two long-reach manipulators. The first robot, the Modified Light Duty Utility Arm (MLDUA), is an 8-degree-of-freedom long-reach manipulator. The second arm, the Hose Management Arm (HMA), has two active degrees-of-freedom and provides hardware to break up and extract materials from the tank. Current strategies call for the MLDUA to grasp a combined sluicing end-effector attached, by a long flexible hose, to the HMA. The MLDUA will then move the combined system through the waste, extracting material. This paper describes many of the issues related to redundancy resolution and the coordinated control of these two robots. First, the authors provide a brief outline of the project and the existing hardware. This is followed by a description of existing redundancy resolution techniques and the impact redundancy has on the success of the project. Finally, preliminary simulation results show the effect cooperative control has on the level of forces generated between the dual-arm systems when coupled by an elastic exhaust hose. These results show a significant reduction in forces when both arms are active and have a combined manipulation strategy.
Kou, Jisheng
2017-06-09
In this paper, a new three-field weak formulation for Stokes problems is developed, and from this, a dual-mixed finite element method is proposed on a rectangular mesh. In the proposed mixed methods, the components of stress tensor are approximated by piecewise constant functions or Q1 functions, while the velocity and pressure are discretized by the lowest-order Raviart-Thomas element and the piecewise constant functions, respectively. Using quadrature rules, we demonstrate that this scheme can be reduced into a finite volume method on staggered grid, which is extensively used in computational fluid mechanics and engineering.
Dumont, Ney Augusto
2008-02-01
The paper briefly outlines the conventional and three variational implementations of the boundary element method, pointing out the conceptual imbrications of their constituent matrices. The nature of fundamental solutions is investigated in terms of the resulting matrix spectral properties, as applied to multiply-connected domains, reentering corners and FGMs.
Institute of Scientific and Technical Information of China (English)
王同科
2002-01-01
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs fromthe high order generalized difference methods. It is proved that the method has optimal order er-ror estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
Institute of Scientific and Technical Information of China (English)
方蜀州; 王泽毅
2002-01-01
The high frequency resistance and inductance of the 3-D complex interconnect structures can be calculated by solving an eddy current electromagnetic problem. In this paper, a model for charactering such a 3-D eddy current problem is proposed, in which the electromagnetic fields in both the conducting and non-conducting regions are described in terms of the magnetic vector potential, and a set of the indirect boundary integral equations (IBIE) is obtained. The IBIEs can be solved by boundary element method, so this method avoids discretizing the domain of the conductors. As an indirect boundary element method, it is of minimum order. It does not restrict the direction of the current in conductors, and hence it can consider the mutual impedance between two perpendicular conductors. The numerical results can well meet the analytical solution of a 2-D problem. The mutual impedance of two perpendicular conductors is also shown under the different gaps between conductors and different frequencies.
Finite element formulation of unilateral boundary conditions for unsaturated flow in porous continua
Abati, A.; Callari, C.
2014-06-01
This paper presents the numerical resolution of unilateral boundary conditions able to effectively model several problems of unsaturated flow, as those involving rainfall infiltration and seepage faces. Besides the penalty technique, we also consider the novel regularization of these conditions by means of the more effective augmented Lagrangian method. The performance of the so-obtained finite element method is carefully investigated in terms of accuracy and ill-conditioning effects, including comparisons with analytical solutions and a complete identification of the analogies with the problem of frictionless contact. In this way, we provide a priori estimates of optimal and admissible ranges for the penalty coefficient as functions of permeability and spatial discretization. The proposed method and the estimated coefficient ranges are validated in further numerical examples, involving the propagation of a wetting front due to rainfall and the partial saturation of an aged concrete dam. These applications show that the proposed regularizations do not induce any detrimental effect on solution accuracy and on convergence rate of the employed Newton-Raphson method. Hence, the present approach should be preferred to the commonly used iterative switching between the imposed-flow and the imposed-pressure conditions, which often leads to spurious oscillations and convergence failures.
Fast multipole boundary element analysis of 2D viscoelastic composites with imperfect interfaces
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A fast multipole boundary element method(FMBEM)is developed for the analysis of 2D linear viscoelastic composites with imperfect viscoelastic interfaces.The transformed fast multipole formulations are established using the time domain method. To simulate the viscoelastic behavior of imperfect interfaces that are frequently encountered in practice,the Kelvin type model is introduced.The FMBEM is further improved by incorporating naturally the interaction among inclusions as well as eliminating the phenomenon of material penetration.Since all the integrals are evaluated analytically,high accuracy and fast convergence of the numerical scheme are obtained.Several numerical examples,including planar viscoelastic composites with a single inclusion or randomly distributed multi-inclusions are presented.The numerical results are compared with the developed analytical solutions,which illustrates that the proposed FMBEM is very efficient in determining the macroscopic viscoelastic behavior of the particle-reinforced composites with the presence of imperfect interfaces.The laboratory measurements of the mixture creep compliance of asphalt concrete are also compared with the prediction by the developed model.
Numerical improvement of the three-dimensional indirect boundary element method
Ortiz-Aleman, C.; Gil-Zepeda, S. A.; Luzon, F.; Sanchez-Sesma, F. J.
2003-04-01
In recent years, several numerical techniques for the estimation of the seismic response in complex geologic configurations have been developed. The flexibility and versatility of these techniques have increased along with the improvement of computational systems, and they altogether have allowed the study of 3D geometries to model several sedimentary basins around the world. In this article we study the structure of the linear systems derived from the Indirect Boundary Element Method (IBEM). We apply a LU-sparse decomposition solver to the inversion of the IBEM coefficient matrix in order to optimise the numerical burden of such method. As pointed out before, special emphasis is given to understanding the main features of ground motion in sedimentary basins. We compute the seismic response of a 3D alluvial valley of irregular shape, as originally proposed by Sánchez-Sesma and Luzón (1995), and we establish comparisons on time consumption and memory allocation. Inversion of linear systems by using this new algorithm lead us to a significant saving on CPU time and memory allocation relative to the original IBEM formulation. Results represent an extension in the range of application of the IBEM method.
Analysis of the role of diffraction in topographic site effects using boundary element techniques
Gomez, Juan; Restrepo, Doriam; Jaramillo, Juan; Valencia, Camilo
2013-10-01
The role played by the diffraction field on the problem of seismic site effects is studied. For that purpose we solve and analyze simple scattering problems under P and SV in-plane wave assumptions, using two well known direct boundary-element-based numerical methods. After establishing the difference between scattered and diffracted motions, and introducing the concept of artificious and physically based incoming fields, we obtain the amplitude of the Fourier spectra for the diffracted part of the response: this is achieved after establishing the connection between the spatial distribution of the transfer function over the studied simple topographies and the diffracted field. From the numerical simulations it is observed that this diffracted part of the response is responsible for the amplification of the surface ground motions due to the geometric effect. Furthermore, it is also found that the diffraction field sets in a fingerprint of the topographic effect in the total ground motions. These conclusions are further supported by observations in the time-domain in terms of snapshots of the propagation patterns over the complete computational model. In this sense the geometric singularities are clearly identified as sources of diffraction and for the considered range of dimensionless frequencies it is evident that larger amplifications are obtained for the geometries containing a larger number of diffraction sources thus resulting in a stronger topographic effect. The need for closed-form solutions of canonical problems to construct a robust analysis method based on the diffraction field is identified.
Computation of Aerodynamic Noise Radiated from Ducted Tail Rotor Using Boundary Element Method
Directory of Open Access Journals (Sweden)
Yunpeng Ma
2017-01-01
Full Text Available A detailed aerodynamic performance of a ducted tail rotor in hover has been numerically studied using CFD technique. The general governing equations of turbulent flow around ducted tail rotor are given and directly solved by using finite volume discretization and Runge-Kutta time integration. The calculations of the lift characteristics of the ducted tail rotor can be obtained. In order to predict the aerodynamic noise, a hybrid method combining computational aeroacoustic with boundary element method (BEM has been proposed. The computational steps include the following: firstly, the unsteady flow around rotor is calculated using the CFD method to get the noise source information; secondly, the radiate sound pressure is calculated using the acoustic analogy Curle equation in the frequency domain; lastly, the scattering effect of the duct wall on the propagation of the sound wave is presented using an acoustic thin-body BEM. The aerodynamic results and the calculated sound pressure levels are compared with the known technique for validation. The sound pressure directivity and scattering effect are shown to demonstrate the validity and applicability of the method.
High-speed laminar-turbulent boundary layer transition induced by a discrete roughness element
Iyer, Prahladh; Mahesh, Krishnan
2013-11-01
Direct numerical simulation (DNS) is used to study laminar to turbulent transition induced by a discrete hemispherical roughness element in a high-speed laminar boundary layer. The simulations are performed under conditions matching the experiments of Danehy et al. (AIAA Paper 2009-394, 2009) for free-stream Mach numbers of 3.37, 5.26 and 8.23. It is observed that the Mach 8.23 flow remains laminar downstream of the roughness, while the lower Mach numbers undergo transition. The Mach 3.37 flow undergoes transition closer to the bump when compared with Mach 5.26, in agreement with experimental observations. Transition is accompanied by an increase in Cf and Ch (Stanton number). Even for the case that did not undergo transition (Mach 8.23), streamwise vortices induced by the roughness cause a significant rise in Cf until 20 D downstream. The mean van Driest transformed velocity and Reynolds stress for Mach 3.37 and 5.26 show good agreement with available data. A local Reynolds number based on the wall properties is seen to correlate with the onset of transition for the cases considered. Partially supported by NASA.
The boundary element method applied to viscous and vortex shedding flows around cylinders
Farrant, Tim
Studies are presented to further extend the use of the boundary element method (BEM) for the solution of viscous flows around bluff bodies, governed by the incompressible Navier-Stokes equations. Two distinct formulations are applied to various flows around cylindrical geometries for Reynolds numbers Tan (1994) and known herein as the global BEM, was coded to execute in parallel on multi-processor computers. Reductions in execution time were achieved and the method was employed to solve an oscillating cylinder problem. In this study, the displacement undergone by the body was very large but the Reynolds number was always Tan et al (1998). A validation for isolated and double circular cylinders in a uniform stream was performed against experimental evidence to demonstrate the method's stability and accuracy for laminar vortex shedding with geometries involving multiply connected domains. Finally, computational results for flows around four equispaced circular cylinders of equal diameter and two cylinders, one circular the other elliptical, are reported. Many of the concepts established for the flow around two cylinders of equal diameter were found to be useful in interpretation of these more complicated arrangements.
Directory of Open Access Journals (Sweden)
Jong Seob Jeong
2014-08-01
Full Text Available In high frequency ultrasound imaging (HFUI, the quality of focusing is deeply related to the length of the depth of field (DOF. In this paper, a phase-inversion technique implemented by a dual-element transducer is proposed to enlarge the DOF. The performance of the proposed method was numerically demonstrated by using the ultrasound simulation program called Field-II. A simulated dual-element transducer was composed of a disc- and an annular-type elements, and its aperture was concavely shaped to have a confocal point at 6 mm. The area of each element was identical in order to provide same intensity at the focal point. The outer diameters of the inner and the outer elements were 2.1 mm and 3 mm, respectively. The center frequency of each element was 40 MHz and the f-number (focal depth/aperture size was two. When two input signals with 0° and 180° phases were applied to inner and outer elements simultaneously, a multi-focal zone was generated in the axial direction. The total −6 dB DOF, i.e., sum of two −6 dB DOFs in the near and far field lobes, was 40% longer than that of the conventional single element transducer. The signal to noise ratio (SNR was increased by about two times, especially in the far field. The point and cyst phantom simulation were conducted and their results were identical to that of the beam pattern simulation. Thus, the proposed scheme may be a potential method to improve the DOF and SNR in HFUI.
Zatorre, R J
1983-10-01
In the first experiment, a continuum of 10 harmonic musical intervals was constructed from a minor to a major third. Four pairs of stimuli with constant physical distances were presented to seven musicians in a two-interval forced-choice discrimination task. Either silence, an interfering tone, or a noise burst was interposed between the two stimuli in a pair. Unbiased discriminability was found to be consistently higher for pairs straddling the boundary between two categories than for the endpoint pairs. The interfering tone lowered overall discrimination but left the shape of the function unchanged, whereas the noise burst had no effect. Experiment 2 used a similar paradigm, but the continuum consisted of the single tone that had cued the minor-major distinction for intervals. Discrimination of this series did not show consistent changes as a function of continuum position. In Experiment 3, triads that varied in either interval or overall pitch were presented to musicians for sorting according to one dimension or another. The result was that there were much longer latencies to sort according to interval when pitch varied irrelevantly than vice versa. These results demonstrate that there are changes in discriminability associated with learned categories and suggest that there may be two hierarchically organized stages. A dual-processing model is discussed in which the listener has available both auditory and categorical information.
Wright, Louise; Robinson, Stephen P; Humphrey, Victor F
2009-03-01
This paper presents a computational technique using the boundary element method for prediction of radiated acoustic waves from axisymmetric surfaces with nonaxisymmetric boundary conditions. The aim is to predict the far-field behavior of underwater acoustic transducers based on their measured behavior in the near-field. The technique is valid for all wavenumbers and uses a volume integral method to calculate the singular integrals required by the boundary element formulation. The technique has been implemented on a distributed computing system to take advantage of its parallel nature, which has led to significant reductions in the time required to generate results. Measurement data generated by a pair of free-flooding underwater acoustic transducers encapsulated in a polyurethane polymer have been used to validate the technique against experiment. The dimensions of the outer surface of the transducers (including the polymer coating) were an outer diameter of 98 mm with an 18 mm wall thickness and a length of 92 mm. The transducers were mounted coaxially, giving an overall length of 185 mm. The cylinders had resonance frequencies at 13.9 and 27.5 kHz, and the data were gathered at these frequencies.
Energy Technology Data Exchange (ETDEWEB)
Pingenot, J; Jandhyala, V
2007-03-01
This report summarizes the work performed for Lawrence Livermore National Laboratory (LLNL) at the University of Washington between September 2004 and May 2006. This project studied fast solvers and stability for time domain integral equations (TDIE), especially as applied to radiating boundary for a massively parallel FEM solver.
Bajaj, Chandrajit; Chen, Shun-Chuan; Rand, Alexander
2011-01-01
In order to compute polarization energy of biomolecules, we describe a boundary element approach to solving the linearized Poisson-Boltzmann equation. Our approach combines several important features including the derivative boundary formulation of the problem and a smooth approximation of the molecular surface based on the algebraic spline molecular surface. State of the art software for numerical linear algebra and the kernel independent fast multipole method is used for both simplicity and efficiency of our implementation. We perform a variety of computational experiments, testing our method on a number of actual proteins involved in molecular docking and demonstrating the effectiveness of our solver for computing molecular polarization energy. PMID:21660123
Gong, Jian; Volakis, John L.; Nurnberger, Michael W.
1995-01-01
This semi-annual report describes progress up to mid-January 1995. The report contains five sections all dealing with the modeling of spiral and patch antennas recessed in metallic platforms. Of significance is the development of decomposition schemes which separate the different regions of the antenna volume. Substantial effort was devoted to improving the feed model in the context of the finite element method (FEM). Finally, an innovative scheme for truncating finite element meshes is presented.
Bishnu P. Lamichhane
2013-01-01
We consider a mixed finite element method for approximating the solution of nearly incompressible elasticity and Stokes equations. The finite element method is based on quadrilateral and hexahedral triangulation using primal and dual meshes. We use the standard bilinear and trilinear finite element space enriched with element-wise defined bubble functions with respect to the primal mesh for the displacement or velocity, whereas the pressure space is discretised by using a piecewise constant f...
Energy Technology Data Exchange (ETDEWEB)
White, D; Fasenfest, B; Rieben, R; Stowell, M
2006-09-08
We are concerned with the solution of time-dependent electromagnetic eddy current problems using a finite element formulation on three-dimensional unstructured meshes. We allow for multiple conducting regions, and our goal is to develop an efficient computational method that does not require a computational mesh of the air/vacuum regions. This requires a sophisticated global boundary condition specifying the total fields on the conductor boundaries. We propose a Biot-Savart law based volume-to-surface boundary condition to meet this requirement. This Biot-Savart approach is demonstrated to be very accurate. In addition, this approach can be accelerated via a low-rank QR approximation of the discretized Biot-Savart law.
Stenroos, Matti
2016-01-01
Boundary element methods (BEM) are used for forward computation of bioelectromagnetic fields in multi-compartment volume conductor models. Most BEM approaches assume that each compartment is in contact with at most one external compartment. In this work, I present a general surface integral equation and BEM discretization that remove this limitation and allow BEM modeling of general piecewise-homogeneous medium. The new integral equation allows positioning of field points at junctioned boundary of more than two compartments, enabling the use of linear collocation BEM in such a complex geometry. A modular BEM implementation is presented for linear collocation and Galerkin approaches, starting from standard formulation. The approach and resulting solver are verified in three ways, including comparison to finite element method (FEM). In a two-compartment split-sphere model with two spaced monopoles, the results obtained with high-resolution FEM and the BEMs were almost identical (relative difference < 0.003).
Stenroos, Matti
2016-11-01
Boundary element methods (BEM) are used for forward computation of bioelectromagnetic fields in multi-compartment volume conductor models. Most BEM approaches assume that each compartment is in contact with at most one external compartment. In this work, I present a general surface integral equation and BEM discretization that remove this limitation and allow BEM modeling of general piecewise-homogeneous medium. The new integral equation allows positioning of field points at junctioned boundary of more than two compartments, enabling the use of linear collocation BEM in such a complex geometry. A modular BEM implementation is presented for linear collocation and Galerkin approaches, starting from the standard formulation. The approach and resulting solver are verified in four ways, including comparisons of volume and surface potentials to those obtained using the finite element method (FEM), and the effect of a hole in skull on electroencephalographic scalp potentials is demonstrated.
Xie, Wenhao; Deng, Yong; Lian, Lichao; Yan, Dongmei; Yang, Xiaoquan; Luo, Qingming
2016-01-01
The functional information, the absorption and diffusion coefficients, as well as the structural information of biological tissues can be provided by the DOT(Diffuse Optical Tomograph)/MicroCT. In this paper, we use boundary element method to calculate the forward problem of DOT based on the structure prior given by the MicroCT, and then we reconstruct the absorption and diffusion coefficients of different biological tissues by the Levenberg-Marquardt algorithm. The method only needs surface meshing, reducing the complexity of calculation; in addition, it reconstructs a single value within an organ, which reduces the ill-posedness of the inverse problem to make reconstruction results have good noise stability. This indicates that the boundary element method-based reconstruction can serve as an new scheme for getting absorption and diffusion coefficients in DOT/MicroCT multimodality imaging.
Vdovichenko, I. I.; Yakovlev, M. Ya; Vershinin, A. V.; Levin, V. A.
2016-11-01
One of the key problems of mechanics of composite materials is an estimation of effective properties of composite materials. This article describes the algorithms for numerical evaluation of the effective thermal conductivity and thermal expansion of composites. An algorithm of effective thermal conductivity evaluation is based on sequential solution of boundary problems of thermal conductivity with different boundary conditions (in the form of the temperature on the boundary) on representative volume element (RVE) of composite with subsequent averaging of the resulting vector field of heat flux. An algorithm of effective thermal expansion evaluation is based on the solution of the boundary problem of elasticity (considering the thermal expansion) on a RVE of composite material with subsequent averaging of a resulting strain tensor field. Numerical calculations were performed with the help of Fidesys Composite software module of CAE Fidesys using the finite element method. The article presents the results of numerical calculations of the effective coefficients of thermal conductivity and thermoelasticity for two types of composites (single-layer fiber and particulate materials) in comparison with the analytical estimates. The comparison leads to the conclusion about the correctness of algorithms and program developed.
Barucq, H.; Bendali, A.; Fares, M.; Mattesi, V.; Tordeux, S.
2017-02-01
A general symmetric Trefftz Discontinuous Galerkin method is built for solving the Helmholtz equation with piecewise constant coefficients. The construction of the corresponding local solutions to the Helmholtz equation is based on a boundary element method. A series of numerical experiments displays an excellent stability of the method relatively to the penalty parameters, and more importantly its outstanding ability to reduce the instabilities known as the "pollution effect" in the literature on numerical simulations of long-range wave propagation.
Energy Technology Data Exchange (ETDEWEB)
Pereira, Luis Carlos Martins
1998-06-15
New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)
DEFF Research Database (Denmark)
Cutanda Henríquez, Vicente; Juhl, Peter Møller
2008-01-01
of the integrand or the whole method. On the other hand, it is also possible to refine or improve the numerical integration, and maintain the standard BEM formulation. In this paper a numerical technique based on element subdivision, previously proposed by the authors, is made more general to cover most cases...
George, Jacob
The present study deals with the effects of sparsely distributed three-dimensional elements on two-dimensional (2-D) and three-dimensional (3-D) turbulent boundary layers (TBL) such as those that occur on submarines, ship hulls, etc. This study was achieved in three parts: Part 1 dealt with the cylinders when placed individually in the turbulent boundary layers, thereby considering the effect of a single perturbation on the TBL; Part 2 considered the effects when the same individual elements were placed in a sparse and regular distribution, thus studying the response of the flow to a sequence of perturbations; and in Part 3, the distributions were subjected to 3-D turbulent boundary layers, thus examining the effects of streamwise and spanwise pressure gradients on the same perturbed flows as considered in Part 2. The 3-D turbulent boundary layers were generated by an idealized wing-body junction flow. Detailed 3-velocity-component Laser-Doppler Velocimetry (LDV) and other measurements were carried out to understand and describe the rough-wall flow structure. The measurements include mean velocities, turbulence quantities (Reynolds stresses and triple products), skin friction, surface pressure and oil flow visualizations in 2-D and 3-D rough-wall flows for Reynolds numbers, based on momentum thickness, greater than 7000. Very uniform circular cylindrical roughness elements of 0.38mm, 0.76mm and 1.52mm height (k) were used in square and diagonal patterns, yielding six different roughness geometries of rough-wall surface. For the 2-D rough-wall flows, the roughness Reynolds numbers, k +, based on the element height (k) and the friction velocity (Utau), range from 26 to 131. Results for the 2-D rough-wall flows reveal that the velocity-defect law is similar for both smooth and rough surfaces, and the semi-logarithmic velocity-distribution curve is shifted by an amount DeltaU/U, depending on the height of the roughness element, showing that Delta U/Utau is a function
A Boundary Element Solution to the Problem of Interacting AC Fields in Parallel Conductors
Directory of Open Access Journals (Sweden)
Einar M. Rønquist
1984-04-01
Full Text Available The ac fields in electrically insulated conductors will interact through the surrounding electromagnetic fields. The pertinent field equations reduce to the Helmholtz equation inside each conductor (interior problem, and to the Laplace equation outside the conductors (exterior problem. These equations are transformed to integral equations, with the magnetic vector potential and its normal derivative on the boundaries as unknowns. The integral equations are then approximated by sets of algebraic equations. The interior problem involves only unknowns on the boundary of each conductor, while the exterior problem couples unknowns from several conductors. The interior and the exterior problem are coupled through the field continuity conditions. The full set of equations is solved by standard Gaussian elimination. We also show how the total current and the dissipated power within each conductor can be expressed as boundary integrals. Finally, computational results for a sample problem are compared with a finite difference solution.
Payette, G. S.; Reddy, J. N.
2011-05-01
In this paper we examine the roles of minimization and linearization in the least-squares finite element formulations of nonlinear boundary-values problems. The least-squares principle is based upon the minimization of the least-squares functional constructed via the sum of the squares of appropriate norms of the residuals of the partial differential equations (in the present case we consider L2 norms). Since the least-squares method is independent of the discretization procedure and the solution scheme, the least-squares principle suggests that minimization should be performed prior to linearization, where linearization is employed in the context of either the Picard or Newton iterative solution procedures. However, in the least-squares finite element analysis of nonlinear boundary-value problems, it has become common practice in the literature to exchange the sequence of application of the minimization and linearization operations. The main purpose of this study is to provide a detailed assessment on how the finite element solution is affected when the order of application of these operators is interchanged. The assessment is performed mathematically, through an examination of the variational setting for the least-squares formulation of an abstract nonlinear boundary-value problem, and also computationally, through the numerical simulation of the least-squares finite element solutions of both a nonlinear form of the Poisson equation and also the incompressible Navier-Stokes equations. The assessment suggests that although the least-squares principle indicates that minimization should be performed prior to linearization, such an approach is often impractical and not necessary.
Finite element analysis of non-isothermal warm deep drawing of dual phase steel
Directory of Open Access Journals (Sweden)
Pepelnjak T.
2016-01-01
Full Text Available Improving the formability of the material is an important issue in the deep drawing process. Heating the material above its recrystallization temperature drastically increases formability but in the case of dual phase (DP steels it results in the loss of their mechanical properties. To improve the drawing ratio, only the heating of the flange region in the warm temperature range up to 300°C was studied on DP600 sheet steel by numerical simulation. Thermo-elastic-plastic FEM analysis of deep drawing at several drawing ratios was performed and compared with experimental results.
Boundary Element Method Solution in the Time Domain For a Moving Time-Dependent Force
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Kirkegaard, Poul Henning; Rasmussen, K. M.
2001-01-01
satisfy the radiation conditions exactly. In this paper a model based on the BEM is formulated for the solution of the mentioned problem. A numerical solution is obtained for the 2D plane strain case, and comparison is made with the results obtained from a corresponding FEM solution with an impedance...... absorbing boundary condition....
Benchmarking high order finite element approximations for one-dimensional boundary layer problems
Malagu, M.; Benvenuti, E.; Simone, A.
2013-01-01
In this article we investigate the application of high order approximation techniques to one-dimensional boundary layer problems. In particular, we use second order differential equations and coupled second order differential equations as case studies. The accuracy and convergence rate of numerical
Directory of Open Access Journals (Sweden)
Tongchun Li
2015-01-01
element is proposed to solve the safety factor of local discontinuous rock mass. Slope system is divided into several continuous bodies and local discontinuous interface boundaries. Each block is treated as a partition of the system and contacted by discontinuous joints. The displacements of blocks are chosen as basic variables and the rigid displacements in the centroid of blocks are chosen as motion variables. The contact forces on interface boundaries and the rigid displacements to the centroid of each body are chosen as mixed variables and solved iteratively using the interface boundary equations. Flexibility matrix is formed through PFE according to the contact states of nodal pairs and spring flexibility is used to reflect the influence of weak structural plane so that nonlinear iteration is only limited to the possible contact region. With cohesion and friction coefficient reduced gradually, the states of all nodal pairs at the open or slip state for the first time are regarded as failure criterion, which can decrease the effect of subjectivity in determining safety factor. Examples are used to verify the validity of the proposed method.
Feischl, Michael; Gantner, Gregor; Praetorius, Dirk
2015-06-01
We consider the Galerkin boundary element method (BEM) for weakly-singular integral equations of the first-kind in 2D. We analyze some residual-type a posteriori error estimator which provides a lower as well as an upper bound for the unknown Galerkin BEM error. The required assumptions are weak and allow for piecewise smooth parametrizations of the boundary, local mesh-refinement, and related standard piecewise polynomials as well as NURBS. In particular, our analysis gives a first contribution to adaptive BEM in the frame of isogeometric analysis (IGABEM), for which we formulate an adaptive algorithm which steers the local mesh-refinement and the multiplicity of the knots. Numerical experiments underline the theoretical findings and show that the proposed adaptive strategy leads to optimal convergence.
Maerten, F.; Maerten, L.; Pollard, D. D.
2014-11-01
Most analytical solutions to engineering or geological problems are limited to simple geometries. For example, analytical solutions have been found to solve for stresses around a circular hole in a plate. To solve more complex problems, mathematicians and engineers have developed powerful computer-aided numerical methods, which can be categorized into two main types: differential methods and integral methods. The finite element method (FEM) is a differential method that was developed in the 1950s and is one of the most commonly used numerical methods today. Since its development, other differential methods, including the boundary element method (BEM), have been developed to solve different types of problems. The purpose of this paper is to describe iBem3D, formally called Poly3D, a C++ and modular 3D boundary element computer program based on the theory of angular dislocations for modeling three-dimensional (3D) discontinuities in an elastic, heterogeneous, isotropic whole- or half-space. After 20 years and more than 150 scientific publications, we present in detail the formulation behind this method, its enhancements over the years as well as some important applications in several domains of the geosciences. The main advantage of using this formulation, for describing geological objects such as faults, resides in the possibility of modeling complex geometries without gaps and overlaps between adjacent triangular dislocation elements, which is a significant shortcoming for models using rectangular dislocation elements. Reliability, speed, simplicity, and accuracy are enhanced in the latest version of the computer code. Industrial applications include subseismic fault modeling, fractured reservoir modeling, interpretation and validation of fault connectivity and reservoir compartmentalization, depleted area and fault reactivation, and pressurized wellbore stability. Academic applications include earthquake and volcano monitoring, hazard mitigation, and slope
ABAQUS动力无限元人工边界研究%Study of ABAQUS dynamic infinite element artificial boundary
Institute of Scientific and Technical Information of China (English)
戚玉亮; 大塚久哲
2014-01-01
Some valuable studies have been done in the aspects of numerical simulation of natural infinite foundation and seismic wave input. The thesis comments the advantages and disadvantages of infinite element, and expatiates on the theory system of ABAQUS infinite element which is improved. The artificial boundary of ABAQUS dynamic infinite element considering the impact of outland fluctuations is proposed. Based on the equivalent boundary force superposition principle, the incident and scattered waves are dealt with separately, and assumed that they are independently to each other. The input ground motion is converted to equivalent stress acting on the interface between the finite element and infinite element to solve the problem of exogenous incident wave. Case study results show that:for the calculation results obtained from inside vibration source and the fixed boundary, the distortion and disturbances appear;the results calculated by the method mentioned above are compared with the results of viscoelastic boundary, which make it certain that the filter function of outgoing scattered wave with the method mentioned above is better than viscoelastic boundary. Therefore, the improved ABAQUS dynamic infinite element boundary method is effective and has certain stability.%针对动力场天然无限地基的数值模拟与地震波输入问题进行了一些有意义的研究，评述了现有动力计算常用无限元的优缺点，详细阐述了ABAQUS无限元理论体系框架，并加以改进，提出一种考虑外域地震动影响的ABAQUS动力无限元人工边界。采用等效边界力的叠加原理，对入射波和散射波分开处理，视入射波和散射波在边界上互不影响，将输入地震动转化为作用于有限元无限元交界面上的等效应力的方法来解决外源波的入射问题。算例验证结果表明：内源振动和固定边界会出现失真和扰动现象，同时该计算结果与黏弹性边界的计算结果对
Bai, Guang-Fu; Hu, Lin; Jiang, Yang; Tian, Jing; Zi, Yue-Jiao; Wu, Ting-Wei; Huang, Feng-Qin
2017-08-01
In this paper, a photonic microwave waveform generator based on a dual-parallel Mach-Zehnder modulator is proposed and experimentally demonstrated. In this reported scheme, only one radio frequency signal is used to drive the dual-parallel Mach-Zehnder modulator. Meanwhile, dispersive elements or filters are not required in the proposed scheme, which make the scheme simpler and more stable. In this way, six variables can be adjusted. Through the different combinations of these variables, basic waveforms with full duty and small duty cycle can be generated. Tunability of the generator can be achieved by adjusting the frequency of the RF signal and the optical carrier. The corresponding theoretical analysis and simulation have been conducted. With guidance of theory and simulation, proof-of-concept experiments are carried out. The basic waveforms, including Gaussian, saw-up, and saw-down waveforms, with full duty and small duty cycle are generated at the repetition rate of 2 GHz. The theoretical and simulation results agree with the experimental results very well.
A simulation of fatigue crack propagation in a welded T-joint using 3D boundary element method
Energy Technology Data Exchange (ETDEWEB)
Xiang Zhihai; Lie, S.T.; Wang Bo; Cen Zhangzhi
2003-02-01
A general procedure to investigate the fatigue propagation process of a 3D surface crack based on multi-region Boundary Element Method is detailed in this paper. The mesh can be automatically regenerated as the crack propagates. A new formula for estimating the effective stress intensity factor is used to calculate the crack extension. The maximum principal stress criterion is then employed to predict the crack growth direction. Comparison between numerical and experimental results of a welded T-joint shows that the proposed procedure is reliable.
Velichko, A.; Wilcox, P. D.
2012-05-01
An efficient technique for predicting the complete scattering behavior for an arbitrarily-shaped scatterer is presented. The spatial size of the modeling domain around the scatterer is as small as possible to minimize computational expense and a minimum number of models are executed. This model uses non-reflecting boundary conditions on the surface surrounding the scatterer which are non-local in space. Example results for 2D and 3D scattering in isotropic material and guided wave scattering are presented.
Structure of 2-D and 3-D Turbulent Boundary Layers with Sparsely Distributed Roughness Elements
2005-06-28
straight orientation. Stations U, 6, mm 6", mm 0, mm Ree k+ k/6 1 25.98 58.565 12.70 7.65 11997 58.5 0.0130 2 25.36 54.56 12.65 7.52 11518 60.4 0.0139 3...a flat plate boundary layer transition. Engineering Turbulence Modeling and Experiments - 4, W. Rodi and D. Laurence (Eds.), Elsevier Science Ltd
Energy Technology Data Exchange (ETDEWEB)
Schmitz, B.; Andersson, P.; Dahl, J.
1988-01-01
Microbial activity and redox-controlled precipitation have been of major importance in the process of metal accumulation in the strongly Ir-enriched Cretaceous-Tertiary (K-T) boundary clay, the Fish Clay, at Stevns Klint in Denmark. Two important findings support this view: (1) Kerogen, recovered by leaching the Fish Clay in HCl and HF, shows an Ir concentration of 1100 ppb; this represents about 50% of the Ir present in the bulk sample Fish clay. Strong organometallic complexes is the most probable carrier phase for this fraction of Ir. Kerogen separated from the K-T boundary clay at Caravaca, Spain, similarly exhibits enhanced Ir concentrations. (2) Sulfur isotope analyses of metal-rich pyrite spherules, which occur in extreme abundance (about 10% by weight) in the basal Fish Clay, give a delta/sup 34/S value of -32 per thousand. This very low value shows that sulfide formation by anaerobic bacteria was intensive in the Fish Clay during early diagenesis. Since the pyrite spherules are major carriers of elements such as Ni, Co, As, Sb and Zn, microbial activity may have played an important role for concentrating these elements. In the Fish Clay large amounts of rare earth elements have precipitated from sea water on fish scales. Analyses reveal that, compared with sea water, the Fish Clay is only about four times less enriched in sea-water derived lanthanides than in Ir. This shows that a sea-water origin is plausible for elements that are strongly enriched in the clay, but whose origin cannot be accounted for by a lithogenic precursor.
A set of mixed-elements patterns for domain boundary approximation in hexahedral meshes.
Lobos, Claudio
2013-01-01
Hexahedral meshes are largely used by the Finite Element Method in a high variety of simulation problems. One of the most common problems of these type of meshes is to achieve an adequate approximation of curved domains; a feature typically found in the shape of organs. This work introduces a set of mixed-elements patterns, which are employed at the surface of target domain, and allow to conserve hexahedra elsewhere. These patterns are meant to be combined with any meshing technique producing a regular or non-regular hexahedral mesh.
Cooper, Christopher D; Barba, L A
2013-01-01
The continuum theory applied to bimolecular electrostatics leads to an implicit-solvent model governed by the Poisson-Boltzmann equation. Solvers relying on a boundary integral representation typically do not consider features like solvent-filled cavities or ion-exclusion (Stern) layers, due to the added difficulty of treating multiple boundary surfaces. This has hindered meaningful comparisons with volume-based methods, and the effects on accuracy of including these features has remained unknown. This work presents a solver called PyGBe that uses a boundary-element formulation and can handle multiple interacting surfaces. It was used to study the effects of solvent-filled cavities and Stern layers on the accuracy of calculating solvation energy and binding energy of proteins, using the well-known APBS finite-difference code for comparison. The results suggest that if required accuracy for an application allows errors larger than about 2%, then the simpler, single-surface model can be used. When calculating b...
Institute of Scientific and Technical Information of China (English)
FENG Bo; ZHENG Yong-hong; YOU Ya-ge; HE Zai-ming
2007-01-01
The two-dimensional problems concerning the interaction of linear water waves with cylinders of arbitrary shape in two-layer deep water are investigated by use of the Boundary Integral Equation Method (BIEM). Simpler new expressions for the Green functions are derived, and verified by comparison of results obtained by BIEM with those by an analytical method. Examined are the radiation and scattering of linear waves by two typical configurations of cylinders in two-layer deep water. Hydrodynamic behaviors including hydrodynamic coefficients, wave forces, reflection and transmission coefficients and energies are analyzed in detail, and some interesting physical phenomena are observed.
Tang, Zhanqi; Jiang, Nan; Zheng, Xiaobo; Wu, Yanhua
2016-05-01
Hot-wire measurements on a turbulent boundary layer flow perturbed by a wall-mounted cylinder roughness element (CRE) are carried out in this study. The cylindrical element protrudes into the logarithmic layer, which is similar to those employed in turbulent boundary layers by Ryan et al. (AIAA J 49:2210-2220, 2011. doi: 10.2514/1.j051012) and Zheng and Longmire (J Fluid Mech 748:368-398, 2014. doi: 10.1017/jfm.2014.185) and in turbulent channel flow by Pathikonda and Christensen (AIAA J 53:1-10, 2014. doi: 10.2514/1.j053407). The similar effects on both the mean velocity and Reynolds stress are observed downstream of the CRE perturbation. The series of hot-wire data are decomposed into large- and small-scale fluctuations, and the characteristics of large- and small-scale bursting process are observed, by comparing the bursting duration, period and frequency between CRE-perturbed case and unperturbed case. It is indicated that the CRE perturbation performs the significant impact on the large- and small-scale structures, but within the different impact scenario. Moreover, the large-scale bursting process imposes a modulation on the bursting events of small-scale fluctuations and the overall trend of modulation is not essentially sensitive to the present CRE perturbation, even the modulation extent is modified. The conditionally averaging fluctuations are also plotted, which further confirms the robustness of the bursting modulation in the present experiments.
Widyatmanti, Wirastuti; Wicaksono, Ikhsan; Dinta Rahma Syam, Prima
2016-06-01
Dense vegetation that covers most landscapes in Indonesia becomes a common limitation in mapping the landforms in tropical region. This paper aims to examine the use of radar interferometry for landform mapping in tropical region; to examine the application of segmentation method to develop landform type boundaries; and to identify the topographic elements composition for each type of landform. Using Idrisi® and “eCognition ®” softwares, toposhape analysis, segmentation and multi-spectral classification were applied to identify the composition of topographic elements i.e. the types of land-cover from Landsat 8, elevation, slope, relief intensity and curvatures from SRTM (DEM). Visual interpretation on DEM and land-cover fusion imagery was conducted to derive basic control maps of landform and land-cover. The result shows that in segmentation method, shape and compactness levels are essential in obtaining land-cover, elevation, and slope class units to determine the most accurate class borders of each element. Despite a complex procedure applied in determining landform classification, the combination of topographic elements segmentation result presents a distinct border of each landform class. The comparison between landform maps derived from segmentation process and visual interpretation method demonstrates slight dissimilarities, meaning that multi-stage segmentation approach can improve and provide more effective digital landform mapping method in tropical region. Topographic elements on each type of landforms show distinctive composition key containing the percentage of each curvature elements per area unit. Supported by GIS programming and modeling in the future, this finding is significant in reducing effort in landform mapping using visual interpretation method for a very large coverage but in detail scale level.
Progress on Determining the alpha-beta Phase Boundary of Elemental Boron
Ogitsu, Tadashi; Schwegler, Eric
2012-02-01
Recently, it was reported that the phase boundary between alpha-boron and beta-boron has been directly determined using high-pressure and temperature experiments down to P˜4GPa and T˜1400K [Scientific Reports 1, 96 (2011)]. Based on linear extrapolation of their results to lower pressure and temperature, these authors proposed that at P=0GPa alpha-boron is the stable form below about T˜933(20)K, in conflict with the recent theoretical works based on DFT total energy calculations [JACS 129, 2458 (2007); PRB 77, 064113 (2008); JACS 131, 1903 (2009) ], where it was concluded that beta-boron is the most stable at all temperature below melting temperature and down to zero Kelvin. At the talk, we show that the theoretical alpha-beta boundary obtained with a few approximations agrees well with the aforementioned experimental results within the error bars except for the lowest P, T point, and in this case, the ground state is still beta-boron [submitted]. We will also discuss on the recent experimental efforts in measuring the specific heat of boron allotropes that lead to a tentative conclusion supporting the aforementioned DFT results.
Finite element analyses of a dual actuated prototype of a smart needle
Konh, Bardia; Podder, Tarun K.
2017-04-01
Brachytherapy is one of the most effective modalities for treating early stage prostate cancer. In this procedure, radioactive seeds are being placed in the prostate to kill the tumorous cells. Inaccurate placement of seeds can underdose the tumor and dangerously overdose the critical structures (urethra, rectum, bladder) and adjacent healthy tissues. It is very difficult, if not impossible, for the surgeons to compensate the needle misplacement errors while using the conventional passive straight needles. The smart needles actuated by shape memory alloy (SMA) wires are being developed to provide more actuation and control for the surgeons to achieve more geometric conformity. In our recent work, a prototype of a smart needle was developed where not only the actuation of SMA wires were incorporated, but also shape memory polymers (SMPs) were included in the design introducing a soft joint element to further assist the flexibility of the active surgical needles. The additional actuation of shape memory polymers provided the capability of reaching much high flexibility that was not achievable before. However, there are some disadvantages using this active SMP component compared to a passive Nylon joint component that are discussed in this work. The utilization of a heated SMP as a soft joint showed about 20% improvement in the final needle tip deflection. This work presents the finite element studies of the developed prototype. A finite element model that could accurately predict the behavior of the smart needle could be very valuable in analyzing and optimizing the future novel designs.
Energy Technology Data Exchange (ETDEWEB)
Tsili, Marina A.; Kladas, Antonios G. [Faculty of Electrical & amp; Computer Engineering, National Technical University of Athens, GR-15780, Athens (Greece); Georgilakis, Pavlos S. [Department of Production Engineering and Management, Technical University of Crete, GR-73100, Chania (Greece); Souflaris, Athanasios T.; Paparigas, Dimitris G. [Schneider Electric AE, Elvim Plant, GR-32011, Inofyta, Viotia (Greece)
2006-06-15
The paper presents an accurate and cost effective three-dimensional finite element model for the analysis and design of wound core, shell type, power transformers, focusing on the short-circuit impedance evaluation. The model efficiency lies on the detailed representation of the transformer geometry along with the adoption of a particular reduced scalar potential formulation enabling three-dimensional magnetostatic problem solution without prior source field calculation. Its accuracy is validated through local field measurements and through comparison of the calculated short-circuit impedance value with the measured one for several commercial wound core, shell type transformers. In such transformers, involving extensive winding parts out of the core window, the detailed representation of the transformer geometry, including the winding cooling ducts, provides accurate results for low densities of the three-dimensional finite element mesh, resulting to reduction of the required calculation time. The model is used in the development of a computational tool, which enables the automated and accurate transformer characteristics prediction, adopted to the manufacturing process. This tool has also been applied in the impedance calculation for different winding connections of dual voltage transformers, thus providing the information needed for the achievement of an accurate design and the enhancement of the manufacturer's ability to reduce design margins. The methodology presented in this paper has been incorporated in the design process of a transformer manufacturing industry. (author)
Turbulent Boundary Layer Flow Through a Gap in a Wall-Mounted Roughness Element,
1980-09-01
smallest gap settings considered here the gap edge separation vortices dominate the gap flow , the centreline flow is brought nearly to separation and much...of the "through gap " flow is diverted up and over the gap, increasing mean flow velocities at distances greater than the element height. The gap edge...lines and hence reliable values of skin friction coefficient could be inferred. Early profiles in the small gap flows did show sinuousity as was
Energy Technology Data Exchange (ETDEWEB)
Loewe, Konrad
2016-10-18
The first part of the thesis investigates the diffusion of rare-earth (RE) elements in commercial sintered Nd-Fe-B based permanent magnets. A strong temperature dependence of the diffusion distance and resulting change in magnetic properties were found. A maximum increase in coercivity of ∼+350 kA/m using a Dy diffusion source occurred at the optimum annealing temperature of 900 C. After annealing for 6 h at this temperature, a Dy diffusion distance of about 4 mm has been observed with a scanning Hall probe. Consequently, the maximum thickness of grain boundary diffusion processed magnets with homogeneous properties is also only a few mm. The microstructural changes in the magnets after diffusion were investigated by electron microscopy coupled with electron probe microanalysis. It was found that the diffusion of Dy into sintered Nd-Fe-B permanent magnets occurs along the grain boundary phases, which is in accordance with previous studies. A partial melting of the Nd-Fe-B grains during the annealing process lead to the formation of so - called (Nd,Dy)-Fe-B shells at the outer part of the grains. These shells are μm thick at the immediate surface of the magnet and become thinner with increasing diffusion distance towards the center of the bulk. With scanning transmission electron microscopy coupled with electron probe analysis a Dy content of about 1 at.% was found in a shell located about 1.5 mm away from the surface of the magnet. The evaluation of diffusion speeds of Dy and other RE (Tb, Ce, Gd) in Nd-Fe-B magnets showed that Tb diffuses significantly faster than Dy, and Ce slightly slower than Dy, which is attributed to differences in the respective phase diagrams. The addition of Gd to the grain boundaries has an adverse effect on coercivity. Exemplary of the heavy rare earth element Tb, the nano - scale elemental distribution around the grain boundaries after the diffusion process was visualized with high resolution scanning transmission electron microscopy
Dual Feed, Single Element Antenna for WiMAX MIMO Application
Directory of Open Access Journals (Sweden)
Frank M. Caimi
2008-01-01
Full Text Available A novel u-shaped single element antenna having two feed ports is compared with two equal length monopoles separated by a distance equivalent to the width. A discussion of relative performance metrics is provided for MIMO applications, and measured data is given for comparison. Good impedance match and isolation of greater than −10 dB are observed over the operating bandwidth from 2.3 to 2.39 GHz. The antenna patterns are highly uncorrelated, as illustrated by computation of the antenna pattern correlation coefficient for the two comparison monopoles.
Dandaroy, Indranil; Vondracek, Joseph; Hund, Ron; Hartley, Dayton
2005-09-01
The objective of this study was to develop a vibro-acoustic computational model of the Raytheon King Air 350 turboprop aircraft with an intent to reduce propfan noise in the cabin. To develop the baseline analysis, an acoustic cavity model of the aircraft interior and a structural dynamics model of the aircraft fuselage were created. The acoustic model was an indirect boundary element method representation using SYSNOISE, while the structural model was a finite-element method normal modes representation in NASTRAN and subsequently imported to SYSNOISE. In the acoustic model, the fan excitation sources were represented employing the Ffowcs Williams-Hawkings equation. The acoustic and the structural models were fully coupled in SYSNOISE and solved to yield the baseline response of acoustic pressure in the aircraft interior and vibration on the aircraft structure due to fan noise. Various vibration absorbers, tuned to fundamental blade passage tone (100 Hz) and its first harmonic (200 Hz), were applied to the structural model to study their effect on cabin noise reduction. Parametric studies were performed to optimize the number and location of these passive devices. Effects of synchrophasing and absorptive noise treatments applied to the aircraft interior were also investigated for noise reduction.
A Nash-Hörmander iteration and boundary elements for the Molodensky problem
DEFF Research Database (Denmark)
Costea, Adrian; Gimperlein, Heiko; Stephan, Ernst P.
2014-01-01
We investigate the numerical approximation of the nonlinear Molodensky problem, which reconstructs the surface of the earth from the gravitational potential and the gravity vector. The method, based on a smoothed Nash–Hörmander iteration, solves a sequence of exterior oblique Robin problems...... evaluation of the Hessian of the gravitational potential on the surface, using a representation in terms of a hypersingular integral.Aboundary element method is used to solve the exterior problem. Numerical results compare the error between the approximation and the exact solution in a model problem....
Chong, M.; Testud, J.
1983-07-01
The choice of the boundary condition when integrating the air mass continuity equation, is a major problem of the 3D wind field analysis from dual (or multiple) Doppler radar data. A zero vertical velocity at ground level seems the most natural boundary condition. Unfortunately, it is known that the integration processes is unstable with respect to this condition: it leads to errors amplifying exponentially with height. In order to overcome this difficulty various solutions have been proposed, the most recent ones using the variational analysis: (i) integrating from storm top level, (ii) integrating from storm top level while constraining the height integrated divergence to be as small as possible (Ziegier, 1978), and (iii) constraining the direct estimates of the 3D wind field to satisfy the continuity equation (Ray et al., 1980). The analysis proposed in this paper is also based upon a variational concept, but it differs in its principle from those previously cited. It consists in adjusting the boundary condition field at ground level in order to optimize the `mathematical regularity' of the vertical velocity field, followed by upward integration of the continuity equation. In such a formulation, the boundary condition at ground level is `floating' (i.e., not specified). However it is possible to require. as a subsidiary condition of the variational problem, that the vertical velocity at ground level fluctuate about zero with a specified variance 02 (thus the condition W0=0 at ground level is statistically verified). The optimum choice of 0 is established from considerations of statistical theory. It should be noted that the horizontal divergence (or coplane divergence) profile is unadjusted and that the equation of continuity is integrated upward from the optimum lower boundary condition to obtain W.An application to simulated or real data helps us to appreciate the improvements brought by the present variational approach with respect to standard methods of
Yoshida, Takashi; Yuasa, Motohiro; Mabuchi, Mamoru; Chino, Yasumasa
2015-07-01
Interactions of { 10 1 ¯ 2 } and { 10 1 ¯ 1 } twin boundaries (TBs), segregated by X (X = Sc, Y, or Nd), with screw partial dislocations were simulated using molecular dynamics (MD). In addition, mechanical tests were carried out on pure Mg and Mg-Y alloy. The MD simulation results suggested that the dislocations passed through the { 10 1 ¯ 2 } TB in all the models and that the shear strains for transmission in the Mg-X models were larger than that in the pure Mg model; in particular, the shear strain in the Mg-Y model was the largest. This corresponded to the experimental result that strain hardening was enhanced by Y addition. For interactions of a { 10 1 ¯ 1 } TB, some segregated atoms induced the emission of dislocations from the TB, whereas other segregated atoms locked the dislocation absorbed in the TB. As a result, the interaction behaviors of the { 10 1 ¯ 1 } TB were divided into five patterns. The interactions of this TB could be explained by the criterion of energy variations, as well as the interactions, of the { 10 1 ¯ 2 } TB, although segregation complicated the interactions of the { 10 1 ¯ 1 } TB.
Institute of Scientific and Technical Information of China (English)
Zhang-Rui Li; Lei Sun; Zhi Zong; Jing Dong
2012-01-01
The basic principle and numerical technique for simulating two three-dimensional bubbles near a free surface are studied in detail by using boundary element method.The singularities of influence coefficient matrix are eliminated using coordinate transformation and so-called 4π rule.The solid angle for the open surface is treated in direct method based on its definition.Several kinds of configurations for the bubbles and free surface have been investigated.The pressure contours during the evolution of bubbles are obtained in our model and can better illuminate the mechanism underlying the motions of bubbles and free surface.The bubble dynamics and their interactions have close relation with the standoff distances,buoyancy parameters and initial sizes of bubbles.Completely different bubble shapes,free surface motions,jetting patterns and pressure distributions under different parameters can be observed in our model,as demonstrated in our calculation results.
DEFF Research Database (Denmark)
Cutanda Henriquez, Vicente; Juhl, Peter Møller; Barrera Figueroa, Salvador
2009-01-01
Secondary calibration of microphones in free field is performed by placing the microphone under calibration in an anechoic chamber with a sound source, and exposing it to a controlled sound field. A calibrated microphone is also measured as a reference. While the two measurements are usually made...... consecutively, a variation of this procedure, where the microphones are measured simultaneously, is considered more advantageous from the metrological point of view. However, it must be guaranteed that the two microphones receive the same excitation from the source, although their positions are some distance...... apart to avoid acoustic interaction. As a part of the project Euromet-792, aiming to investigate and improve methods for secondary free-field calibration of microphones, a sound source suitable for simultaneous secondary free-field calibration has been designed using the Boundary Element Method...
Zhang, Chen; Shou, Guo-Fa; Lu, Hong; Hua, Ning; Tang, Xue-Zheng; Xia, Ling; Ma, Ping; Tang, Fa-Kuan
2013-09-01
A cardiac vector model is presented and verified, and then the forward problem for cardiac magnetic fields and electric potential are discussed based on this model and the realistic human torso volume conductor model, including lungs. A torso—cardiac vector model is used for a 12-lead electrocardiographic (ECG) and magneto-cardiogram (MCG) simulation study by using the boundary element method (BEM). Also, we obtain the MCG wave picture using a compound four-channel HTc·SQUID system in a magnetically shielded room. By comparing the simulated results and experimental results, we verify the cardiac vector model and then do a preliminary study of the forward problem of MCG and ECG. Therefore, the results show that the vector model is reasonable in cardiac electrophysiology.
Kou, Wenjun; Griffith, Boyce E.; Pandolfino, John E.; Kahrilas, Peter J.; Patankar, Neelesh A.
2015-11-01
This work extends a fiber-based immersed boundary (IB) model of esophageal transport by incorporating a continuum model of the deformable esophageal wall. The continuum-based esophagus model adopts finite element approach that is capable of describing more complex and realistic material properties and geometries. The leakage from mismatch between Lagrangian and Eulerian meshes resulting from large deformations of the esophageal wall is avoided by careful choice of interaction points. The esophagus model, which is described as a multi-layered, fiber-reinforced nonlinear elastic material, is coupled to bolus and muscle-activation models using the IB approach to form the esophageal transport model. Cases of esophageal transport with different esophagus models are studied. Results on the transport characteristics, including pressure field and esophageal wall kinematics and stress, are analyzed and compared. Support from NIH grant R01 DK56033 and R01 DK079902 is gratefully acknowledged. BEG is supported by NSF award ACI 1460334.
Directory of Open Access Journals (Sweden)
Mohd Zamri Jusoh
2013-06-01
Full Text Available The Direct Piercing Carved Wood Panel (DPCWP installed in Masjid Abidin, Kuala Terengganu, is one example that carries much aesthetic and artistic value. The use of DPCWP in earlier mosques was envisaged to improve the intelligibility of indoor speech because the perforated panels allow some of the sound energy to pass through. In this paper, the normal incidence sound absorption coefficient of DPCWP with Daun Sireh motif, which is a form of floral pattern, is discussed. The Daun Sireh motif was chosen and investigated for 30%, 35%, 40%, and 45% perforation ratios. The simulations were conducted using BEASY Acoustic Software based on the boundary element method. The simulation results were compared with measurements obtained by using the sound intensity technique. An accompanying discussion on both the numerical and the measurement tendencies of the sound absorption characteristics of the DPCWP is provided. The results show that the DPCWP with Daun Sireh motif can act as a good sound absorber.
Kallemeyn, Nicole A; Grosland, Nicole M; Pedersen, Doug R; Martin, James A; Brown, Thomas D
2006-01-01
Background: We developed a poroelastic finite element (FE) model of cartilage in dynamic triaxial compression to parametrically analyze the effects of loading and boundary conditions on a baseline model. Conventional mechanical tests on articular cartilage such as confined and unconfined compression, indentation, etc., do not fully allow for modulation of compression and shear at physiological levels whereas triaxial compression does. A Triaxial Compression Bioreactor, or TRIAX, has been developed to study chondrocyte responses to multi-axial stress conditions under cyclic loading. In the triaxial setting, however, a cartilage explant's physical testing environment departs from the ideal homogeneous stress state that would occur from strict linear superposition of the applied axial and transverse pressure. Method of Approach: An axisymmetric poroelastic FE model of a cartilage explant (4 mm diameter, 1.5 mm thick) in cyclic triaxial compression was created. Axial and transverse loads (2 MPa at 1 Hz.) were applied via a platen and containment sheath. Parameters of interest included the rise time and magnitude of the applied load, in addition to the containment sheath modulus and the friction coefficient at the cartilage/platen interfaces. Metrics of interest in addition to whole explant axial strain included axial (surface normal) stress, shear stress, pore pressure, and the fluid load carriage fraction within the explant. Results: Strain results were compared to experimental data from explants tested in the TRIAX under conditions similar to the baseline model. Explant biomechanics varied considerably over numbers of load cycles and parameter values. Cyclic loading caused an increase in accumulated strain for the various loading and boundary conditions. Conclusions: Unlike what would be expected from linear superposition of the homogeneous stresses from the applied axial and transverse pressure, we have shown that the stress state within the TRIAX is considerably
Goyal, M.; Bhargava, R.
2014-05-01
This paper deals with the double-diffusive boundary layer flow of non-Newtonian nanofluid over a stretching sheet. In this model, where binary nanofluid is used, the Brownian motion and thermophoresis are classified as the main mechanisms which are responsible for the enhancement of the convection features of the nanofluid. The boundary layer equations governed by the partial differential equations are transformed into a set of ordinary differential equations with the help of group theory transformations. The variational finite element method (FEM) is used to solve these ordinary differential equations. We have examined the effects of different controlling parameters, namely, the Brownian motion parameter, the thermophoresis parameter, modified Dufour number, viscoelastic parameter, Prandtl number, regular Lewis number, Dufour Lewis number, and nanofluid Lewis number on the flow field and heat transfer characteristics. Graphical display of the numerical examine are performed to illustrate the influence of various flow parameters on the velocity, temperature, concentration, reduced Nusselt, reduced Sherwood and reduced nanofluid Sherwood number distributions. The present study has many applications in coating and suspensions, movement of biological fluids, cooling of metallic plate, melt-spinning, heat exchangers technology, and oceanography.
Formation of the Abundance Boundaries of the Heavier Neutron-capture Elements in Metal-poor Stars
Yang, Guochao; Li, Hongjie; Liu, Nian; Zhang, Lu; Cui, Wenyuan; Liang, Yanchun; Niu, Ping; Zhang, Bo
2017-06-01
The abundance scatter of heavier r-process elements (Z≥slant 56) relative to Fe ([r/Fe]) in metal-poor stars preserves excellent information of the star formation history and provides important insights into the various situations of the Galactic chemical enrichment. In this respect, the upper and lower boundaries of [r/Fe] could present useful clues for investigating the extreme situations of the star formation history and the early Galactic chemical evolution. In this paper, we investigate the formation of the upper and lower boundaries of [r/Fe] for the gas clouds. We find that, for a cloud from which metal-poor stars formed, the formation of the upper limits of [r/Fe] is mainly due to the pollution from a single main r-process event. For a cloud from which metal-poor stars formed, the formation of the lower limits of [r/Fe] is mainly due to the pollution from a single SN II event that ejects primary Fe.
Ren, Shangjie; Dong, Feng
2016-06-28
Electrical capacitance tomography (ECT) is a non-destructive detection technique for imaging the permittivity distributions inside an observed domain from the capacitances measurements on its boundary. Owing to its advantages of non-contact, non-radiation, high speed and low cost, ECT is promising in the measurements of many industrial or biological processes. However, in the practical industrial or biological systems, a deposit is normally seen in the inner wall of its pipe or vessel. As the actual region of interest (ROI) of ECT is surrounded by the deposit layer, the capacitance measurements become weakly sensitive to the permittivity perturbation occurring at the ROI. When there is a major permittivity difference between the deposit and the ROI, this kind of shielding effect is significant, and the permittivity reconstruction becomes challenging. To deal with the issue, an interface and permittivity simultaneous reconstruction approach is proposed. Both the permittivity at the ROI and the geometry of the deposit layer are recovered using the block coordinate descent method. The boundary and finite-elements coupling method is employed to improve the computational efficiency. The performance of the proposed method is evaluated with the simulation tests. This article is part of the themed issue 'Supersensing through industrial process tomography'.
Bhardwaj, Rajneesh; Mittal, Rajat
2011-11-01
The modeling of complex biological phenomena such as cardiac mechanics is challenging. It involves complex three dimensional geometries, moving structure boundaries inside the fluid domain and large flow-induced deformations of the structure. We present a fluid-structure interaction solver (FSI) which couples a sharp-interface immersed boundary method for flow simulation with a powerful finite-element based structure dynamics solver. An implicit partitioned (or segregated) approach is implemented to ensure the stability of the solver. We validate the FSI solver with published benchmark for a configuration which involves a thin elastic plate attached to a rigid cylinder. The frequency and amplitude of the oscillations of the plate are in good agreement with published results and non-linear dynamics of the plate and its coupling with the flow field are discussed. The FSI solver is used to understand left-ventricular hemodynamics and flow-induced dynamics of mitral leaflets during early diastolic filling and results from this study are presented.
Implementation of a boundary element method to solve for the near field effects of an array of WECs
Oskamp, J. A.; Ozkan-Haller, H. T.
2010-12-01
When Wave Energy Converters (WECs) are installed, they affect the shoreline wave climate by removing some of the wave energy which would have reached the shore. Before large WEC projects are launched, it is important to understand the potential coastal impacts of these installations. The high cost associated with ocean scale testing invites the use of hydrodynamic models to play a major role in estimating these effects. In this study, a wave structure interaction program (WAMIT) is used to model an array of WECs. The program predicts the wave field throughout the array using a boundary element method to solve the potential flow fluid problem, taking into account the incident waves, the power dissipated, and the way each WEC moves and interacts with the others. This model is appropriate for a small domain near the WEC array in order to resolve the details in the interactions, but not extending to the coastline (where the far-field effects must be assessed). To propagate these effects to the coastline, the waves leaving this small domain will be used as boundary conditions for a larger model domain which will assess the shoreline effects caused by the array. The immediate work is concerned with setting up the WAMIT model for a small array of point absorbers. A 1:33 scale lab test is planned and will provide data to validate the WAMIT model on this small domain before it is nested with the larger domain to estimate shoreline effects.
The Curious Case of Elemental Abundance Differences in the Dual Hot Jupiter Hosts WASP-94AB
Teske, Johanna K; Ramírez, Ivan
2016-01-01
Binary stars provide an ideal laboratory for investigating the potential effects of planet formation on stellar composition. Assuming the stars formed in the same environment/from the same material, any compositional anomalies between binary components might indicate differences in how material was sequestered in planets, or accreted by the star in the process of planet formation. We present here a study of the elemental abundance differences between WASP-94AB, a pair of stars that each host a hot Jupiter exoplanet. The two stars are very similar in spectral type (F8 and F9), and their ~2700 AU separation suggests their protoplanetary disks were likely not influenced by stellar interactions, but WASP-94Ab's orbit -- misaligned with the host star spin axis and likely retrograde -- points towards a dynamically active formation mechanism, perhaps different than that of WASP-94Bb, which is not misaligned and has nearly circular orbit. Based on our high-quality spectra and strictly relative abundance analysis, we ...
Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.
2015-01-01
SUMMARY Wound healing is a process driven by biochemical and mechanical variables in which new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Due to the regularity of this morphology, we approximate the evolution of the wound through its cross-section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem while maintaining allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the non-linear problem we use the Finite Element Method and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds. PMID:24443355
Valero, C; Javierre, E; García-Aznar, J M; Gómez-Benito, M J
2014-06-01
Wound healing is a process driven by biochemical and mechanical variables in which a new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work, we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Because of the regularity of this morphology, we approximate the evolution of the wound through its cross section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem; while allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction, we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the nonlinear problem, we use the finite element method (FEM) and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds. Copyright © 2014 John Wiley & Sons, Ltd.
Zhang, Chao; Cheng, Li; Qiu, Jinhao; Wang, Hongyuan
2016-04-01
Metal-core Piezoelectric Fiber (MPF) was shown to have great potential to be a structurally integrated sensor for structural health monitoring (SHM) applications. Compared with the typical foil strain gauge, MPF is more suitable for high frequency strain measurement and can create direct conversion of mechanical energy into electric energy without the need for complex signal conditioners or gauge bridges. In this paper, a MPF-based smart layer is developed as an embedded network of distributed strain sensors that can be surface-mounted on a thin-walled structure. Each pair of the adjacent MPFs divides the entire structure into several "virtual elements (VEs)". By exciting the structure at the natural frequency of the VE, a "weak" formulation of the previously developed Pseudo-excitation (PE) approach based on sparse virtual element boundary measurement (VEBM) is proposed to detect the damage. To validate the effectiveness of the VEBM based approach, experiments are conducted to locate a small crack in a cantilever beam by using a MPF- based smart layer and a Laser Doppler Vibrometer (LDV). Results demonstrate that the proposed VEBM approach not only inherits the enhanced noise immunity capability of the "weak" formulation of the PE approach, but also allows a significant reduction in the number of measurement points as compared to the original version of the PE approach.
Stenroos, Matti; Haueisen, Jens
2008-09-01
In electrocardiographic imaging, epicardial potentials are reconstructed computationally from electrocardiographic measurements. The reconstruction is typically done with the help of the boundary element method (BEM), using the point collocation weighting and constant or linear basis functions. In this paper, we evaluated the performance of constant and linear point collocation and Galerkin BEMs in the epicardial potential problem. The integral equations and discretizations were formulated in terms of the single- and double-layer operators. All inner element integrals were calculated analytically. The computational methods were validated against analytical solutions in a simplified geometry. On the basis of the validation, no method was optimal in all testing scenarios. In the forward computation of the epicardial potential, the linear Galerkin (LG) method produced the smallest errors. The LG method also produced the smallest discretization error on the epicardial surface. In the inverse computation of epicardial potential, the electrode-specific transfer matrix performed better than the full transfer matrix. The Tikhonov 2 regularization outperformed the Tikhonov 0. In the optimal modeling conditions, the best BEM technique depended on electrode positions and chosen error measure. When large modeling errors such as omission of the lungs were present, the choice of the basis and weighting functions was not significant.
Dual-Use Transducer for Use with a Boundary-Stiffened Panel and Method of Using the Same
Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor)
2011-01-01
A transducer for use with a boundary-stiffened panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are triangular, with one edge or side aligned with a boundary edge of the panel. The transducer generates and transmits an output force to the panel in response to an input voltage signal from a sensor, which can be another transducer as described above or an accelerometer. A controller can generate an output force signal in response to the input voltage signal to help cancel the input voltage signal. A method of using the transducer minimizes vibration in the panel by connecting multiple transducers around a perimeter thereof. Motion is measured at different portions of the panel, and a voltage signal determined from the motion is transmitted to the transducers to generate an output force at least partially cancelling or damping the motion.
Wang, Yu; Xu, Kailai; Jiang, Xiaoming; Hou, Xiandeng; Zheng, Chengbin
2014-05-21
A dual-mode chemical vapor generation integrating hydride generation and photochemical vapor generation was developed for simultaneous multi-element analysis of hydride-forming and non-hydride-forming elements by atomic fluorescence spectrometry. Four elements were selected as model elements of hydride-forming (As, Cd) and non-hydride-forming (Ni, Fe) elements to validate this proposed method. Standard or sample solutions were separately pumped to mix with tetrahydroborate, and concentrated formic acid and ammonia, and then directed to a hydride generator and a photochemical reactor to realize simultaneous hydride generation and photochemical vapor generation, respectively. Optimum conditions for dual-mode chemical vapor generation were carefully investigated. Under the optimized conditions, limits of detection of 0.05, 0.008, 0.8 and 0.1 μg L(-1) were obtained for As, Cd, Fe and Ni, respectively. The precisions were 5.0, 5.5, 4.3 and 4.5% (n = 6, RSDs) for 2 μg L(-1) of As, 1 μg L(-1) of Cd, 50 μg L(-1) of Fe and 10 μg L(-1) of Ni, respectively. This method was validated for accuracy with three certified reference water samples and applied to the simultaneous determination of these elements in a tap water sample with spike recoveries in the range of 95-99%.
Jazebi, Saeed
This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the
Ikuhara, Yuichi
2011-01-01
Grain boundaries and interfaces of crystals have peculiar electronic structures, caused by the disorder in periodicity, providing the functional properties, which cannot be observed in a perfect crystal. In the vicinity of the grain boundaries and interfaces, dopants or impurities are often segregated, and they play a crucial role in deciding the properties of a material. Spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM), allowing the formation of sub-angstrom-sized electron probes, can directly observe grain boundary-segregated dopants. On the other hand, ceramic materials are composed of light elements, and these light elements also play an important role in the properties of ceramic materials. Recently, annular bright-field (ABF)-STEM imaging has been proposed, which is now known to be a very powerful technique in producing images showing both light- and heavy-element columns simultaneously. In this review, the atomic structure determination of ceramic grain boundaries and direct observation of grain boundary-segregated dopants and light elements in ceramics were shown to combine with the theoretical calculations. Examples are demonstrated for well-defined grain boundaries in rare earth-doped Al(2)O(3) and ZnO ceramics, CeO(2) and SrTiO(3) grain boundary, lithium battery materials and metal hydride, which were characterized by Cs-corrected high-angle annular dark-field and ABF-STEM. It is concluded that the combination of STEM characterization and first-principles calculation is very useful in interpreting the structural information and in understanding the origin of the properties in various ceramics.
Calantoni, Joseph; Holland, K Todd; Drake, Thomas G
2004-09-15
Sediment transport in oscillatory boundary layers is a process that drives coastal geomorphological change. Most formulae for bed-load transport in nearshore regions subsume the smallest-scale physics of the phenomena by parametrizing interactions amongst particles. In contrast, we directly simulate granular physics in the wave-bottom boundary layer using a discrete-element model comprised of a three-dimensional particle phase coupled to a one-dimensional fluid phase via Newton's third law through forces of buoyancy, drag and added mass. The particulate sediment phase is modelled using discrete particles formed to approximate natural grains by overlapping two spheres. Both the size of each sphere and the degree of overlap can be varied for these composite particles to generate a range of non-spherical grains. Simulations of particles having a range of shapes showed that the critical angle--the angle at which a grain pile will fail when tilted slowly from rest--increases from approximately 26 degrees for spherical particles to nearly 39 degrees for highly non-spherical composite particles having a dumbbell shape. Simulations of oscillatory sheet flow were conducted using composite particles with an angle of repose of approximately 33 degrees and a Corey shape factor greater than about 0.8, similar to the properties of beach sand. The results from the sheet-flow simulations with composite particles agreed more closely with laboratory measurements than similar simulations conducted using spherical particles. The findings suggest that particle shape may be an important factor for determining bed-load flux, particularly for larger bed slopes.
Uzawa Type Algorithm Based on Dual Mixed Variational Formulation
Institute of Scientific and Technical Information of China (English)
王光辉; 王烈衡
2002-01-01
Based on the dual mixed variational formulation with three variants (stress,displacement, displacement on contact boundary ) and the unilateral beaming problem of finite element discretization, an Uzawa type iterative algorithm is presented. The convergence of this iterative algorithm is proved, and then the efficiency of the algorithm is tested by a numerical example.
Energy Technology Data Exchange (ETDEWEB)
Alleon, G. [EADS-CCR, 31 - Blagnac (France); Carpentieri, B.; Du, I.S.; Giraud, L.; Langou, J.; Martin, E. [Cerfacs, 31 - Toulouse (France)
2003-07-01
The boundary element method has become a popular tool for the solution of Maxwell's equations in electromagnetism. It discretizes only the surface of the radiating object and gives rise to linear systems that are smaller in size compared to those arising from finite element or finite difference discretizations. However, these systems are prohibitively demanding in terms of memory for direct methods and challenging to solve by iterative methods. In this paper we address the iterative solution via preconditioned Krylov methods of electromagnetic scattering problems expressed in an integral formulation, with main focus on the design of the pre-conditioner. We consider an approximate inverse method based on the Frobenius-norm minimization with a pattern prescribed in advance. The pre-conditioner is constructed from a sparse approximation of the dense coefficient matrix, and the patterns both for the pre-conditioner and for the coefficient matrix are computed a priori using geometric information from the mesh. We describe the implementation of the approximate inverse in an out-of-core parallel code that uses multipole techniques for the matrix-vector products, and show results on the numerical scalability of our method on systems of size up to one million unknowns. We propose an embedded iterative scheme based on the GMRES method and combined with multipole techniques, aimed at improving the robustness of the approximate inverse for large problems. We prove by numerical experiments that the proposed scheme enables the solution of very large and difficult problems efficiently at reduced computational and memory cost. Finally we perform a preliminary study on a spectral two-level pre-conditioner to enhance the robustness of our method. This numerical technique exploits spectral information of the preconditioned systems to build a low rank-update of the pre-conditioner. (authors)
Fast multipole boundary element method for Helmholtz equation problems%Helmholtz方程问题的快速多极边界元求解方法
Institute of Scientific and Technical Information of China (English)
于海源; 陈一鸣; 于春肖
2012-01-01
In order to overcome the difficulties of low computational efficiency and high memory requirement in the conventional boundary element method for solving large-scale Helmholtz equation problems, a fast multipole boundary element method for the problems of Helmholtz equation is presented. Two theorems are obtained based on the multipole expansion and the local expansion of the boundary element method fundamental solutions'Kernel function. What's more, the basic formulas and the main steps of the fast multipole boundary element method are described for 2D and 3D Helmholtz equation problems.%为了改善传统边界元在求解大规模Helmholtz方程的实际问题时计算效率低、存储量大的缺点,针对快速多极边界元法求解Helmholtz方程进行了理论分析.通过对二维和三维Helmholtz方程的基本解的核函数进行多极展开和局部展开,得到了相应的展开定理,并基于展开定理分别推导了二维和三维问题Helmholtz方程的快速多极边界元计算公式,给出了快速多极边界元法求解Helmholtz方程的主要计算步骤.
Institute of Scientific and Technical Information of China (English)
卢文强; 范庆梅; 郭文
2001-01-01
论文发展了一个能求解带相变运动界面非定常传热和非线性热物理特性问题的双倒易边界元方法。数值模拟了半透明单晶生长中热过程的一个例子。由于方法是纯边界积分方法，计算量与计算内存都大大减少。获得了单晶生长过程瞬态温度场分布和固液相界面形状时间推进的一些结果。%The dual reciprocity boundary element method (DRBEM) has been developed tosolve unsteady heat transfer problems with phase change moving interface andnon-linear thermophysical properties. An example of numerical simulation ofthe thermal process in semi-transparent crystal growth has been made. Sincethe method is pure boundary integral method, this provides a considerablereduction in the storage and the computational requirements while improvingaccuracy. Some results of transient temperature fields and time marchingsolid-liquid phase-change moving interface in the crystal growth are presentedin this paper.
Directory of Open Access Journals (Sweden)
Wan-You Li
2014-01-01
Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.
Sun, Qiang; Wu, Guo Xiong
2013-03-01
A mathematical model and a numerical solution procedure are developed to simulate flow field through a 3D permeable vessel with multibranches embedded in a solid tumour. The model is based on Poisseuille's law for the description of the flow through the vessels, Darcy's law for the fluid field inside the tumour interstitium, and Starling's law for the flux transmitted across the vascular walls. The solution procedure is based on a coupled method, in which the finite difference method is used for the flow in the vessels and the boundary element method is used for the flow in the tumour. When vessels meet each other at a junction, the pressure continuity and mass conservation are imposed at the junction. Three typical representative structures within the tumour vasculature, symmetrical dichotomous branching, asymmetrical bifurcation with uneven radius of daughter vessels and trifurcation, are investigated in detail as case studies. These results have demonstrated the features of tumour flow environment by the pressure distributions and flow velocity field.
Mostafa, Mostafa E.
2009-04-01
The finite cube elements method (FCEM) is a numerical tool designed for modelling gravity anomalies and estimating structural index (SI) of solid and fractal bodies with defined boundaries, tilted or in normal position and with variable density contrast. In this work, we apply FCEM to modelling magnetic anomalies and estimating SI of bodies with non-uniform magnetization having variable magnitude and direction. In magnetics as in gravity, FCEM allows us to study the spatial distribution of SI of the modelled bodies on contour maps and profiles. We believe that this will impact the forward and inverse modelling of potential field data, especially Euler deconvolution. As far as the author knows, this is the first time that gravity and magnetic anomalies, as well as SI, of self similar fractal bodies such as Menger sponges and Sierpinsky triangles are calculated using FCEM. The SI patterns derived from different order sponges and triangles are perfectly overlapped. This is true for bodies having variable property distributions (susceptibility or density contrast) under different field conditions (in case of magnetics) regardless of their orientation and depth of burial. We therefore propose SI as a new universal fractal-order-invariant measure which can be used in addition to the fractal dimensions for formulating potential field theory of fractal objects.
Reid, M T Homer; White, Jacob K
2013-01-01
We present a generic technique, automated by computer-algebra systems and available as open-source software \\cite{scuff-em}, for efficient numerical evaluation of a large family of singular and nonsingular 4-dimensional integrals over triangle-product domains, such as those arising in the boundary-element method (BEM) of computational electromagnetism. To date, practical implementation of BEM solvers has often required the aggregation of multiple disparate integral-evaluation schemes to treat all of the distinct types of integrals needed for a given BEM formulation; in contrast, our technique allows many different types of integrals to be handled by the \\emph{same} algorithm and the same code implementation. Our method is a significant generalization of the Taylor--Duffy approach \\cite{Taylor2003,Duffy1982}, which was originally presented for just a single type of integrand; in addition to generalizing this technique to a broad class of integrands, we also achieve a significant improvement in its efficiency b...
Zengxi, Ge; Canyun, Wang; Ting, Lei; Xiaofei, Chen
2007-09-01
In this paper, a boundary element formulation in the wave-number space domain for solving the wave equation for a borehole with arbitrary shape in acoustic logging problems is presented. The problem is treated as a two-dimensional medium with the discrete wave-number method in the vertical direction. The method is validated by comparing the results obtained by this method with those obtained by the finite-difference method. The method is used to study the effect on wave propagation in a vertical borehole of a vertical fracture. For a monopole source, the dispersion curves for Stoneley waves yield three branches. For dipole and quadrupole sources, different orientations of the source yield different results. When the dipole source is orthogonal to the fracture, the dispersion curve is similar to that of the open hole, while the curves are quite different when the source is parallel to the fracture. These characteristics enable us to determine the orientation of the vertical fracture.
Energy Technology Data Exchange (ETDEWEB)
Salinas, F S; Lancaster, J L; Fox, P T [Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 (United States)
2009-06-21
Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.
REDUCING DIMENSIONS OF DOMAIN INTEGRATION IN BOUNDARY ELEMENT METHOD%边界元法中区域积分的降维计算方法
Institute of Scientific and Technical Information of China (English)
袁政强; 祝家麟
2002-01-01
The main advantage of Boundary Element Method (BEM) is reducing the dimensions by one in performing calculation.When inhomogeneous term appears in the governing equation of the problem,the domain integral is inevitable excepting some special cases.The common way to perform the domain integral involves subdividing the domain into a series of subdomains over which a numberical integration formula or an analytical quadrature can be applied.This paper presents an alternative way to transform the domain integral over subdomains into equivalent boundary integrals on the boundary of each subdomain,so that all the integrals are performed on the boundary case.It makes the whole calculation of BEM reduced by one dimension really.
Institute of Scientific and Technical Information of China (English)
胡志强; 林皋; 王毅; 刘俊
2011-01-01
The scaled boundary finite element method（SBFEM） is a semi-analytical and semi-numerical solution approach for solving partial differential equation.For problem in elasticity,the governing equations can be obtained by mechanically based formulation,Weighted residual formulation and principle of virtual work based on Scaled-boundary-transformation.These formulations are described in the frame of Lagrange system and the unknowns are displacements.In this paper,the discretization of the SBFEM and the dual system to solve elastic problem proposed by W.X.Zhong are combined to derive the governing equations in the frame of Hamilton system by introducing the dual variables.Then the algebraic Riccati equations of the static boundary stiffness matrix for the bounded and unbounded domain are derived based on the hybrid energy and Hamilton variational principle in the interval.The eigen-vector method and precise integration method can be employed to solve the algebraic Riccati equations for static boundary stiffness matrice.%比例边界有限元方法是求解偏微分方程的一种半解析半数值解法。对于弹性力学问题,可采用基于力学相似性、基于比例坐标相似变换的加权余量法和虚功原理得到以位移为未知量的系统控制方程,属于Lagrange体系。但在求解时,又引入了表面力为未知量,控制方程属于Hamilton体系。因而,本文提出在比例边界有限元离散方法的基础上,利用钟万勰教授提出的弹性力学对偶（辛）体系求解方法,通过引入对偶变量,直接在Hamil-ton体系框架内建立控制方程。再利用区段混合能和对偶方程得到了有限域、无限域边界静力刚度所满足的代数Ri
Jia, Pin; Cheng, Linsong; Huang, Shijun; Xu, Zhongyi; Xue, Yongchao; Cao, Renyi; Ding, Guanyang
2017-08-01
This paper provides a comprehensive model for the flow behavior of a two-zone system with discrete fracture network. The discrete fracture network within the inner zone is represented explicitly by fracture segments. The Laplace-transform finite-difference method is used to numerically model discrete fracture network flow, with sufficient flexibility to consider arbitrary fracture geometries and conductivity distributions. Boundary-element method and line-source functions in the Laplace domain are employed to derive a semi-analytical flow solution for the two-zone system. By imposing the continuity of flux and pressure on discrete fracture surfaces, the semi-analytical two-zone system flow model and the numerical fracture flow model are coupled dynamically. The main advantage of the approach occurring in the Laplace domain is that simulation can be done with nodes only for discrete fractures and elements for boundaries and at predetermined, discrete times. Thus, stability and convergence problems caused by time discretization are avoided and the burden of gridding and computation is decreased without loss of important fracture characteristics. The model is validated by comparison with the results from an analytical solution and a fully numerical solution. Flow regime analysis shows that a two-zone system with discrete fracture network may develop six flow regimes: fracture linear flow, bilinear flow, inner zone linear flow, inner zone pseudosteady-state flow, outer zone pseudoradial flow and outer zone boundary-dominated flow. Especially, local solutions for the inner-zone linear flow have the same form with that of a finite conductivity planar fracture and can be correlated with the total length of discrete fractures and an intercept term. In the inner zone pseudosteady-state flow period, the discrete fractures, along with the boundary of the inner zone, will act as virtual closed boundaries, due to the pressure interference caused by fracture network and the
Mahya, M. J.; Sanny, T. A.
2017-04-01
Lembang and Cimandiri fault are active faults in West Java that thread people near the faults with earthquake and surface deformation risk. To determine the deformation, GPS measurements around Lembang and Cimandiri fault was conducted then the data was processed to get the horizontal velocity at each GPS stations by Graduate Research of Earthquake and Active Tectonics (GREAT) Department of Geodesy and Geomatics Engineering Study Program, ITB. The purpose of this study is to model the displacement distribution as deformation parameter in the area along Lembang and Cimandiri fault using 2-dimensional boundary element method (BEM) using the horizontal velocity that has been corrected by the effect of Sunda plate horizontal movement as the input. The assumptions that used at the modeling stage are the deformation occurs in homogeneous and isotropic medium, and the stresses that acted on faults are in elastostatic condition. The results of modeling show that Lembang fault had left-lateral slip component and divided into two segments. A lineament oriented in southwest-northeast direction is observed near Tangkuban Perahu Mountain separating the eastern and the western segments of Lembang fault. The displacement pattern of Cimandiri fault shows that Cimandiri fault is divided into the eastern segment with right-lateral slip component and the western segment with left-lateral slip component separated by a northwest-southeast oriented lineament at the western part of Gede Pangrango Mountain. The displacement value between Lembang and Cimandiri fault is nearly zero indicating that Lembang and Cimandiri fault are not connected each other and this area is relatively safe for infrastructure development.
Directory of Open Access Journals (Sweden)
Palomo, I.
1994-04-01
Full Text Available The abundant spherules present in the Cretaceous-Tertiary boundary layer at Caravaca are diagenetically transformed to potassium feldspar. Before our study no possible relicts of the precursor material had been reported. but in this paper we describe the presence of cores in these spherules that could represent a relict of the Â«unknown precursorÂ». These cores are made up of C mixed with Si. Mg. AL Cr. Ca among other elements. Laser Ablation System analysis also reveals an enrichment in pe;E could suggest an extraterrestrial origin for this material. PI. Pd and Ir do not show a chondritic ratio: however. asevere modification of their concentration could be expected during the early diagenetic processes.Las esférulas existentes en la lámina de sedimento del tránsito Cretácico-Terciario de la sección de Caravaca han sido transformadas diagenéticamente a feldespato potásico. En este trabajo se describe la existencia de núcleos encontrados en el interior de las esférulas. los cuales' pueden representar relictos del material precursor. Dichos núcleos están constituidos por C. Si. Mg, AL Cr y Ca entre otros elementos. Se pone de relieve, por vez primera, su notable enriquecimiento en elementos del grupo del platino, cuyas relaciones no condríticas pueden ser debidas a la existencia de importantes modificaciones en su concentración inicial causadas por los procesos diagenéticos y por la existencia de materia orgánica.
Energy Technology Data Exchange (ETDEWEB)
Sommer, A., E-mail: a.sommer@lte.uni-saarland.de; Farle, O., E-mail: o.farle@lte.uni-saarland.de; Dyczij-Edlinger, R., E-mail: edlinger@lte.uni-saarland.de
2015-10-15
This paper presents a fast numerical method for computing certified far-field patterns of phased antenna arrays over broad frequency bands as well as wide ranges of steering and look angles. The proposed scheme combines finite-element analysis, dual-corrected model-order reduction, and empirical interpolation. To assure the reliability of the results, improved a posteriori error bounds for the radiated power and directive gain are derived. Both the reduced-order model and the error-bounds algorithm feature offline–online decomposition. A real-world example is provided to demonstrate the efficiency and accuracy of the suggested approach.
Yong, Liu; Qichao, Hong; Lihua, Liang
1999-05-01
This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independent J integrals (extension of the classical J integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independent J integrals. Applications are presented with two numerical examples for viscoplastic crack problems and J integrals.
Institute of Scientific and Technical Information of China (English)
Wen－QingLu
1993-01-01
A boundary element method has been developed for analysing heat transport phenomena in solitary wave on falling thin liquid films at high Reynolds numbers.The divergence theorem is applied to the non-linear convective volume integral of the boundary element formulation with the pressure penalty function.Consequently,velocity and temperature gradients are dliminated.and the complete formulation is written in terms of velocity and temperature,This provides considerable reduction is storage and computational requirements while improving accuracy.The non-linear equation systems of boundary element discretization are solved by the quasi-Nweton iterative scheme with Broyden's update.The streamline maps and the temperature distributions in solitary wave and wavy film flow have been obtained,and the variations of Nusselt numbers along the wall-liquid interface are also given.There are large cross-flow velocities and S-shape temperature distributions in the recirculating region of solitary wave.This special flow and thermal process can be a mechanism to enhance heat transport.
Institute of Scientific and Technical Information of China (English)
彭兵
2000-01-01
A modified boundary element method(BEM) is presented for computation of the fourth non-mixed boundary-value problems，of electrostatic field.The BEM equation is de-rived,and the equation of constraint is presented.By theoretical analyzing and calculating engineering examples,it is proven that the BEM is a more effective approach to computation of the fourth non-mixed boundary-value problems of electrostatic field,it may obtain better calculating results and is applicable to calculating electrostatic field engineering problems of the fourth non-mixed boundary-value problems.%本文提出用边界元法计算介质分区均匀情况下的静电场第四类非混合边值问题，推导出用边界元法计算第四类非混合边值问题的边界元方程组。理论分析和实例计算结果表明：边界元法是计算第四类非混合边值问题的一种有效方法，不仅具有较高的算精度，而且可以很方便地应用于静电场工程问题的设计与计算。
Institute of Scientific and Technical Information of China (English)
林志朋; 刘振祥; 杨栋; 欧阳建明; 杨丽佳
2016-01-01
基于deal．ii编写了电磁轨道炮有限元仿真程序，建立了拉格朗日运动坐标下电磁轨道炮的有限元仿真模型；通过使用有限元边界元耦合方法可以对电磁轨道炮的边界条件进行计算，而无需对轨道炮周边的空气划分网格，是一种处理电磁场边界问题的有效方法；但是，由于边界元方法，使用的是满秩矩阵，在三维情况下计算量大，利用轨道炮的对称性，使用对称边界条件，减少了参与计算的网格数目，从而减少计算量。%This article created finite element program and model for rail launch based on deal.ii in La-grange coordinate frame.By using coupling finite element/boundary element coupling method,we can cal-culate boundary condition without air grid surround rail gun.It is a valid method to handle boundary prob-lems of electromagnetic without the perimeter of the rail gun air mesh.But for boundary element method u-sing full matrix which will cost a lot of calculation in 3D situation,we would better using symmetry condi-tions for rail gun to reduce the grid number and calculation.
Energy Technology Data Exchange (ETDEWEB)
Schneider, D
2001-07-01
The nodal method Minos has been developed to offer a powerful method for the calculation of nuclear reactor cores in rectangular geometry. This method solves the mixed dual form of the diffusion equation and, also of the simplified P{sub N} approximation. The discretization is based on Raviart-Thomas' mixed dual finite elements and the iterative algorithm is an alternating direction method, which uses the current as unknown. The subject of this work is to adapt this method to hexagonal geometry. The guiding idea is to construct and test different methods based on the division of a hexagon into trapeze or rhombi with appropriate mapping of these quadrilaterals onto squares in order to take into advantage what is already available in the Minos solver. The document begins with a review of the neutron diffusion equation. Then we discuss its mixed dual variational formulation from a functional as well as from a numerical point of view. We study conformal and bilinear mappings for the two possible meshing of the hexagon. Thus, four different methods are proposed and are completely described in this work. Because of theoretical and numerical difficulties, a particular treatment has been necessary for methods based on the conformal mapping. Finally, numerical results are presented for a hexagonal benchmark to validate and compare the four methods with respect to pre-defined criteria. (authors)
Institute of Scientific and Technical Information of China (English)
Zhong-xiu FEI; Shui-guang TONG; Chao WEI
2013-01-01
Recently,the finite element method (FEM) has been commonly applied in the engineering analysis of rotor dynamics.Gyroscopic moments,rotary inertia,transverse shear deformation and gravity can be included in computational models of rotor-bearing systems.In this paper,a finite element model and its solution method are presented for the calculation of the dynamics of dual rotor systems.A typical structure with two rotor shafts is discussed and the procedure for obtaining the coupling motion equations of the subsystems is illustrated.A computer program is developed to solve critical speeds and to simulate the transient motion.The influence of gyroscopic moments on co-rotation and counter-rotation is analyzed,and the effect of the speed ratio on critical speed is studied.The dynamic characteristics under different conditions of increasing speed during start-up are demonstrated by comparison with transient nodal displacements.The presented model provides a complete foundation for further investigation of the dynamics of dual rotor systems.
Khayat, Roger E.; Genouvrier, Delphine
2001-05-01
An adaptive (Lagrangian) boundary element approach is proposed for the general three-dimensional simulation of confined free-surface Stokes flow. The method is stable as it includes remeshing capabilities of the deforming free surface and thus can handle large deformations. A simple algorithm is developed for mesh refinement of the deforming free-surface mesh. Smooth transition between large and small elements is achieved without significant degradation of the aspect ratio of the elements in the mesh. Several flow problems are presented to illustrate the utility of the approach, particularly as encountered in polymer processing and rheology. These problems illustrate the transient nature of the flow during the processes of extrusion and thermoforming, the elongation of a fluid sample in an extensional rheometer, and the coating of a sphere. Surface tension effects are also explored. Copyright
Directory of Open Access Journals (Sweden)
Shao Yan-Lin
2014-12-01
Full Text Available This paper presents some of the efforts by the authors towards numerical prediction of springing of ships. A time-domain Higher Order Boundary Element Method (HOBEM based on cubic shape function is first presented to solve a complete second-order problem in terms of wave steepness and ship motions in a consistent manner. In order to avoid high order derivatives on the body surfaces, e.g. mj-terms, a new formulation of the Boundary Value Problem in a body-fixed coordinate system has been proposed instead of traditional formulation in inertial coordinate system. The local steady flow effects on the unsteady waves are taken into account. Double-body flow is used as the basis flow which is an appropriate approximation for ships with moderate forward speed. This numerical model was used to estimate the complete second order wave excitation of springing of a displacement ship at constant forward speeds.
Sirenko, Kostyantyn
2013-01-01
A scheme that discretizes exact absorbing boundary conditions (EACs) to incorporate them into a time-domain discontinuous Galerkin finite element method (TD-DG-FEM) is described. The proposed TD-DG-FEM with EACs is used for accurately characterizing transient electromagnetic wave interactions on two-dimensional waveguides. Numerical results demonstrate the proposed method\\'s superiority over the TD-DG-FEM that employs approximate boundary conditions and perfectly matched layers. Additionally, it is shown that the proposed method can produce the solution with ten-eleven digit accuracy when high-order spatial basis functions are used to discretize the Maxwell equations as well as the EACs. © 1963-2012 IEEE.
Park, Jong M.; Eversman, W.
1992-01-01
2D sound propagation over an arbitrarily-shaped barrier situated on a locally reacting infinite plane in a homogeneous medium is treated utilizing the BEM. The BIE is formulated so that the integral along an infinite homogeneous plane disappears if the half space Green's function is selected to satisfy the boundary condition of this plane. Comparison of the BEM results with test results by Habault and by Kearns shows good agreement of the sound field utilizing the BEM.
Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.
2017-04-01
We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.
Verbus, J R; Malling, D C; Genecov, M; Ghosh, S; Moskowitz, A G; Chan, S; Chapman, J J; de Viveiros, L; Faham, C H; Fiorucci, S; Huang, D Q; Pangilinan, M; Taylor, W C; Gaitskell, R J
2016-01-01
We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an $\\textit{in situ}$ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic 272 keV neutron source. We report results from a time-of-flight based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.
Sethuraman, V.; Hunt, P. M.
1988-06-01
The adaptive multigrid technique in the finite element method of the solution of partial differential equations is examined in the context of model problems in atom-atom and collinear atom-diatom collisions. For the problem leading to scattering along an L-shaped region, the technique yields accurate results for regions of energy far from the threshold for excitation of a new channel without inclusion of virtual states. Close to the threshold, the cusplike structure of the transition probability (vs. energy) and the time delay associated with the onset of a resonance are recovered only by inclusion of the new (closed) channel in the finite element solution. For atom-diatom collinear collisions, use of an orthogonal coordinate system facilitates dicretization and adds no extra labor in the finite element method, compared to the usual mass-weighted system.
Institute of Scientific and Technical Information of China (English)
吴继刚
2014-01-01
The characters with dual pictographic elements and characters with dual phonetic elements in the inscrip-tion on stele in Han Wei and Six Dynasties are the inevitable outcome in the course of development of Chinese char-acter , which include diachronic inherited characters and synchronic coined characters . The comparative study shows that the character with dual pictographic elements is an important type of Chinese pictophonetic character and it is in different historical levels , reflecting the priority of indicating a general category of meaning in Chinese pic-tographic character . The character with dual phonetic elements is the representation of chinese characters indica-ting sound and the outcome of character change . The study contributes to enriching the theory of Chinese character structure , discussing the structure reason of Chinese character form , textual research and explaining ancient char-acters . It has the theoritical significance and practical value to do the textual research and explain the ancient Chi-nese characters and variant form of a Chinese character.%汉魏六朝碑刻双形符字、双声符字既有历时传承字，又有共时新造字，是汉字意音文字发展过程中的必然产物。比较研究表明，双形符字是汉字形声字的一种重要类型，其双形符处于不同的历史层次，是形声字形义优先的反映；双声符字是汉字表音化的体现和文字讹变的结果。研究这两类文字现象对于丰富汉字结构理论，探讨汉字形体结构理据，考释古文字与隶变之后异体字具有重要理论意义和实践价值。
P, Kirana Kumara
2013-01-01
In this work, first a Fortran code is developed for three dimensional linear elastostatics using constant boundary elements; the code is based on a MATLAB code developed by the author earlier. Next, the code is parallelized using BLACS, MPI, and ScaLAPACK. Later, the parallelized code is used to demonstrate the usefulness of the Boundary Element Method (BEM) as applied to the realtime computational simulation of biological organs, while focusing on the speed and accuracy offered by BEM. A computer cluster is used in this part of the work. The commercial software package ANSYS is used to obtain the `exact' solution against which the solution from BEM is compared; analytical solutions, wherever available, are also used to establish the accuracy of BEM. A pig liver is the biological organ considered. Next, instead of the computer cluster, a Graphics Processing Unit (GPU) is used as the parallel hardware. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use ...
Patiño, Iván David; Power, Henry; Nieto-Londoño, César; Flórez, Whady Felipe
2017-02-01
A numerical study of voids formation in dual-scale fibrous reinforcements is presented. Flow fields in channels (Stokes) and tows (Brinkman) are solved via direct Boundary Element Method and Dual Reciprocity Boundary Element Method, respectively. The present approach uses only boundary discretization and Dual Reciprocity domain interpolation, which is advantageous in this type of moving boundary problems and leads to an accurate representation of the moving interfaces. A problem admitting analytical solution, previously solved by domain-meshing techniques, is used to assess the accuracy of the present approach, obtaining satisfactory results. Fillings of Representative Unitary Cells at constant pressure are considered to analyze the influence of capillary ratio, jump stress coefficient and two formulations (Stokes-Brinkman and Stokes-Darcy) on the filling process, void formation and void characterization. Filling times, fluid front shapes, void size and shape, time and space evolution of the saturation, are influenced by these parameters, but voids location is not.
Kashefi, A
2016-01-01
Coarse grid projection (CGP) methodology is a novel multigrid method for systems involving decoupled nonlinear evolution equations and linear elliptic Poisson equations. The nonlinear equations are solved on a fine grid and the linear equations are solved on a corresponding coarsened grid. Mapping operators execute data transfer between the grids. The CGP framework is constructed upon spatial and temporal discretization schemes. This framework has been established for finite volume/difference discretizations as well as explicit time integration methods. In this article we present for the first time a version of CGP for finite element discretizations, which uses a semi-implicit time integration scheme. The mapping functions correspond to the finite-element shape functions. With the novel data structure introduced, the mapping computational cost becomes insignificant. We apply CGP to pressure-correction schemes used for the incompressible Navier-Stokes flow computations. This version is validated on standard te...
Jacques, Kevin; Sabariego, Ruth,; Geuzaine, Christophe; GYSELINCK Johan
2015-01-01
This paper deals with the implementation of an energy-consistent ferromagnetic hysteresis model in 2D finite element computations. This vector hysteresis model relies on a strong thermodynamic foundation and ensures the closure of minor hysteresis loops. The model accuracy can be increased by controlling the number of intrinsic cell components while parameters can be easily fitted on common material measurements. Here, the native h-based material model is inverted using the Newton-Raphson met...
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Sagaert,L.P.,Olson,G.B.,Ellis,D.E.,Chemical embrittlement of Fe grain boundaries P and the P-Mo couple,Philophical Magazine B,1998,77: 871-889.［15］Wu,R.,Freeman,A.J.,Olson,G.B.,Nature of phosphorus embrittlement of the Fe Σ3[110](111) grain boundary,Phys.Rev.B,1994,50: 75-81.［16］Zhong,L.,Wu,R.,Freeman,A.J.et al.,Effect of Mn additions on the P embrittlement of the Fe grain boundary,Phys.Rev.B,1997,55: 11133-11137.［17］Wu,R.,Freeman,A.J.,Olson,G.B.,Effect of carbon on Fe-grain-boundary cohesion: First-principles determination,Phys.Rev.B,1996,53: 7504-7509.［18］Wang,F.,Wang,C.,The effect of zirconium on the electronic structure of grain boundaries in Ni3Al,J.Phys.: Condens.Matter.,1997,9: 4499-4507.［19］Wang,F.,Wang,C.,Yang,J.,The effect of boron on the electronic structure of grain boundaries in Ni3Al,J.Phys.: Condens.Matter.,1996,8: 5527-5534.［20］Wang,F.,Wang,C.,First-principles investigation of hydrogen embrittlement in polycrystalline Ni3Al,Phy.Rev.B,1998,57: 289-295.［21］Wang,F.,Shang,J.X.,Li,J.M.et al.,The effect of boron and hydrogen on the embrittlement in polycrystalline Ni3Al,Intermetallics,2000,8: 589-593.［22］Ellis,D.E.,Painter,G.S.,Discrete variational method for the energy-band problem with general crystal potentials,Phys.Rev.B,1970,2: 2887-2898.［23］Guenzburger,D.,Ellis,D.E.,Magnetism of Fe impurities in alkaline-earth metals and Al,Phys.Rev.B,1992,45: 285-294.［24］Ellis,D.E.,Benesh,G.A.,Byrom,E.,Molecular cluster studies of binary alloys: LiAl,Phys.Rev.B,1977,16: 3308-3313.［25］Delley,B.,Ellis,D.E.,Efficient and accurate expansion methods for molecules in local density models,J.Chem.Phys.,1982,76: 1949-1960.［26］Delley,B.,Ellis,D.E.,Freeman,A.J.et al.,Binding energy and electronic structure of small copper particles,Phys.Rev.B,1983,27: 2132-2144.［27］Barth,U.V.,Hedin,L.,A local exchange-correlation potential for the spin polarized case: I,J.Phys.C,1972,5: 1629-164.［28］Delley,B.,Analytic energy derivatives in the
Schröder, Jörg; Viebahn, Nils; Wriggers, Peter; Auricchio, Ferdinando; Steeger, Karl
2017-05-01
In this work we investigate different mixed finite element formulations for the detection of critical loads for the possible occurrence of bifurcation and limit points. In detail, three- and two-field formulations for incompressible and quasi-incompressible materials are analyzed. In order to apply various penalty functions for the volume dilatation in displacement/pressure mixed elements we propose a new consistent scheme capturing the non linearities of the penalty constraints. It is shown that for all mixed formulations, which can be reduced to a generalized displacement scheme, a straight forward stability analysis is possible. However, problems based on the classical saddle-point structure require a different analyses based on the change of the signature of the underlying matrix system. The basis of these investigations is the work from Auricchio et al. (Comput Methods Appl Mech Eng 194:1075-1092, 2005, Comput Mech 52:1153-1167, 2013).
1983-11-01
element u.-lei is readily applied to such flows. For lully developed flow V = 0, and U and H are functions of y only (i.e., J ■ U(y) and H ■ H(y...included, application of the basic momentum theorem yields T b |£| . / w+ Jb \\ T r ’dx’ I W < s,av where T is the average shear stress
Directory of Open Access Journals (Sweden)
L. Jones Tarcius Doss
2012-01-01
Full Text Available A quadrature-based mixed Petrov-Galerkin finite element method is applied to a fourth-order linear ordinary differential equation. After employing a splitting technique, a cubic spline trial space and a piecewise linear test space are considered in the method. The integrals are then replaced by the Gauss quadrature rule in the formulation itself. Optimal order a priori error estimates are obtained without any restriction on the mesh.
THE CURIOUS CASE OF ELEMENTAL ABUNDANCE DIFFERENCES IN THE DUAL HOT JUPITER HOSTS WASP-94A AND B
Energy Technology Data Exchange (ETDEWEB)
Teske, Johanna K. [Carnegie Department of Terrestrial Magnetism, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Khanal, Sandhya; Ramírez, Ivan, E-mail: jteske@carnegiescience.edu [McDonald Observatory and Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1402, Austin, TX 78712-1205 (United States)
2016-03-01
Binary stars provide an ideal laboratory for investigating the potential effects of planet formation on stellar composition. Assuming that the stars formed in the same environment/from the same material, any compositional anomalies between binary components might indicate differences in how material was sequestered in planets, or accreted by the star in the process of planet formation. We present here a study of the elemental abundance differences between WASP-94A and B, a pair of stars that each host a hot Jupiter exoplanet. The two stars are very similar in spectral type (F8 and F9), and their ∼2700 au separation suggests that their protoplanetary disks were likely not influenced by stellar interactions, but WASP-94Ab’s orbit—misaligned with the host star spin axis and likely retrograde—points toward a dynamically active formation mechanism, perhaps different from that of WASP-94Bb, which is not misaligned and has a nearly circular orbit. Based on our high-quality spectra and strictly relative abundance analysis, we detect a depletion of volatiles (∼−0.02 dex, on average) and enhancement of refractories (∼0.01 dex) in WASP-94A relative to B (standard errors are ∼0.005 dex). This is different from every other published case of binary host star abundances, in which either no significant abundance differences are reported or there is some degree of enhancement in all elements, including volatiles. Several scenarios that may explain the abundance trend are discussed, but none can be definitively accepted or rejected. Additional high-contrast imaging observations to search for companions that may be dynamically affecting the system, as well as a larger sample of binary host star studies, are needed to better understand the curious abundance trends we observe in WASP-94A and B.
Gumerov, Nail A; O'Donovan, Adam E; Duraiswami, Ramani; Zotkin, Dmitry N
2010-01-01
The head-related transfer function (HRTF) is computed using the fast multipole accelerated boundary element method. For efficiency, the HRTF is computed using the reciprocity principle by placing a source at the ear and computing its field. Analysis is presented to modify the boundary value problem accordingly. To compute the HRTF corresponding to different ranges via a single computation, a compact and accurate representation of the HRTF, termed the spherical spectrum, is developed. Computations are reduced to a two stage process, the computation of the spherical spectrum and a subsequent evaluation of the HRTF. This representation allows easy interpolation and range extrapolation of HRTFs. HRTF computations are performed for the range of audible frequencies up to 20 kHz for several models including a sphere, human head models [the Neumann KU-100 ("Fritz") and the Knowles KEMAR ("Kemar") manikins], and head-and-torso model (the Kemar manikin). Comparisons between the different cases are provided. Comparisons with the computational data of other authors and available experimental data are conducted and show satisfactory agreement for the frequencies for which reliable experimental data are available. Results show that, given a good mesh, it is feasible to compute the HRTF over the full audible range on a regular personal computer.
Institute of Scientific and Technical Information of China (English)
PANI P. K.; BHATTACHARYYA S. K.
2009-01-01
The dynamic pressure distribution on a rectangular plate attached to a rigid wall and supporting an infinitely large extent of fluid subjected to a harmonic ground excitation is evaluated in the time domain. Governing equations for the fluid domain are set considering the compressibility of the fluid with negligibly small change in density and a linearized free surface. A far boundary condition for the three-dimensional fluid domain is developed so that the far boundary is truncated at a closer proximity to the structure. The coupled problem is solved independently for the structure and the fluid domain by transferring the acceleration of the plate to the fluid and pressure of the fluid to the plate in sequence. Helmholtz equation for the three-dimensional fluid domain and Mindlin's theory for the two-dimensional plate are used for the solution of the interacting domains. Finite element technique is adopted for the solution of this problem with pressure as nodal variable for the fluid domain and displacement for the plate. The time dependent equations are solved in each of the interacting domain using Newmark-b method. The effectiveness of the technique is demonstrated and the influences of surface wave, exciting frequency and flexibility of the plate on dynamic pressure are investigated.
Directory of Open Access Journals (Sweden)
Faisal Mahmuddin
2014-08-01
Full Text Available In the previous study, the optimal performance of a two-dimensional (2D floating breakwater shape was obtained. The performance of this shape was also confirmed with a model experiment in a towing tank. Moreover, the shape’s performance in three dimensions (3D was investigated in a subsequent study. However, to predict the shape’s performance in a real application more accurately, the shape’s characteristics in oblique waves must also be evaluated. In this study, the performance and characteristics of the model (hydrodynamic forces, body motions, wave elevations, and drift forces are computed using a higher-orderboundary element method (HOBEM. The HOBEM, which is based on the potential flow theory and uses quadratic representation for quadrilateral panels and velocity potentials, can be used to obtain more accurate results with fewer panels compared to the conventional panel method (CPM. The computational accuracy is confirmed by using Haskind-Newman and energy conservation relations. In thisstudy, 3D wave effects were verified, and the body motions were much smaller compared to the 2D case. In addition, although the performance in terms of wave elevations depends on the measurement positions, the optimal performance obtained in the 2D case can be realized for a longer body length.
Energy Technology Data Exchange (ETDEWEB)
Lautard, J.J.; Flumiani, T. [CEA Saclay, Direction de l' Energie Nucleaire (DEN/SERMA), Service d' Etude des Reacteurs et de Modelisations Avancees, 91 - Gif sur Yvette (France)
2003-07-01
The mixed dual finite element method is usually used for the resolution of the SPN transport equations (simplified PN equations) in 3D homogenized geometries (composed by homogenized rectangles or hexagons). This method produces fast results with little memory requirements. We have extended the previous method to the treatment of unstructured geometries composed by quadrilaterals (for the moment limited to 2D), allowing us to treat geometries where fuel pins are exactly represented. The iterative resolution of the resulting matrix system is a generalization of the one already developed for the cartesian and the hexagonal geometries. In order to illustrate and to show the efficiency of this method, results on the NEA-C5G7-MOX benchmark are given. The previous benchmark has been extended for the hexagonal geometry and we provide here some results. This method is a first step towards the treatment of pin by pin core calculations without homogenization. The present solver is a prototype. It shows the efficiency of the method and it has to be extended to 3D calculations as well as to exact transport calculations. We also intend to extend the method to the treatment of unstructured geometries composed by quadrilaterals with curved edges (sectors of a circle).The iterative algorithm has yet to be accelerated using multigrid techniques through a coupling with the present homogenized solver (MINOS). In the future, it will be included in the next generation neutronic toolbox DESCARTES currently under development.
The Chicken β-Globin 5′HS4 Boundary Element Blocks Enhancer-Mediated Suppression of Silencing
Walters, Mark C.; Fiering, Steven; Bouhassira, Eric E.; Scalzo, David; Goeke, Scott; Magis, Wendy; Garrick, David; Whitelaw, Emma; Martin, David I. K.
1999-01-01
A constitutive DNase I-hypersensitive site 5′ of the chicken β-globin locus, termed 5′HS4 or cHS4, has been shown to insulate a promoter from the effect of an upstream enhancer and to reduce position effects on mini-white expression in Drosophila cells; on the basis of these findings, it has been designated a chromatin insulator. We have examined the effect of the cHS4 insulator in a system that assays both the level of gene expression and the rate of transcriptional silencing. Because transgenes flanked by insulator elements are shielded from position effects in Drosophila cells, we tested the ability of cHS4 to protect transgenes from position effects in mammalian cells. Flanking of an expression vector with the cHS4 insulator in a colony assay did not increase the number of G418-resistant colonies. Using lox/cre-based recombinase-mediated cassette exchange to control integration position, we studied the effect of cHS4 on the silencing of an integrated β-geo reporter at three genomic sites in K562 erythroleukemia cells. In this assay, enhancers act to suppress silencing but do not increase expression levels. While cHS4 blocked enhancement at each integration site, the strength of the effect varied from site to site. Furthermore, at some sites, cHS4 inhibited the enhancer effect either when placed between the enhancer and the promoter or when placed upstream of the enhancer. These results suggest that the activity of cHS4 is not dominant in all contexts and is unlikely to prevent silencing at all genomic integration sites. PMID:10207095
The chicken beta-globin 5'HS4 boundary element blocks enhancer-mediated suppression of silencing.
Walters, M C; Fiering, S; Bouhassira, E E; Scalzo, D; Goeke, S; Magis, W; Garrick, D; Whitelaw, E; Martin, D I
1999-05-01
A constitutive DNase I-hypersensitive site 5' of the chicken beta-globin locus, termed 5'HS4 or cHS4, has been shown to insulate a promoter from the effect of an upstream enhancer and to reduce position effects on mini-white expression in Drosophila cells; on the basis of these findings, it has been designated a chromatin insulator. We have examined the effect of the cHS4 insulator in a system that assays both the level of gene expression and the rate of transcriptional silencing. Because transgenes flanked by insulator elements are shielded from position effects in Drosophila cells, we tested the ability of cHS4 to protect transgenes from position effects in mammalian cells. Flanking of an expression vector with the cHS4 insulator in a colony assay did not increase the number of G418-resistant colonies. Using lox/cre-based recombinase-mediated cassette exchange to control integration position, we studied the effect of cHS4 on the silencing of an integrated beta-geo reporter at three genomic sites in K562 erythroleukemia cells. In this assay, enhancers act to suppress silencing but do not increase expression levels. While cHS4 blocked enhancement at each integration site, the strength of the effect varied from site to site. Furthermore, at some sites, cHS4 inhibited the enhancer effect either when placed between the enhancer and the promoter or when placed upstream of the enhancer. These results suggest that the activity of cHS4 is not dominant in all contexts and is unlikely to prevent silencing at all genomic integration sites.
Iyengar, G V; Rapp, A
2001-12-03
Choice of specimen from human subjects for monitoring pollutants proven to be detrimental to human health depends on the criteria chosen, namely real-time monitoring (RTM) or long-term monitoring (LTM). Specimens such as whole blood, urine, saliva and breast milk are commonly used from living subjects for RTM of toxic metals. However, sampling blood requires an invasive procedure. On the other hand, hair (with some limitations), bone (especially for the assessment of bone seeking elements), adipose tissue (mainly for organic pollutants) and liver (for both organic and inorganic toxicants) are used as specimens for LTM. With the exception of hair, generally these specimens are obtained at post-mortem. In context of health-related biomonitoring, placenta as a specimen has not received as much attention as it deserves. It is a unique sample requiring no invasive procedure, and offers possibilities for RTM, in particular as a dual purpose specimen for evaluating the pollutant burden exerted on the mother as well as on the fetus. Obtaining representative samples of placenta for elemental composition studies is a difficult task, because of heterogeneous mix of placental cells and decidual matter tainted with maternal and fetal blood. Therefore, the present sampling practices for placental tissue, and guidelines to safeguard the validity of the sampled material have been reviewed in part 1 with the following conclusions: medico-legal and ethical matters should be properly addressed before collecting the placenta; it is advisable to collect the entire placenta even if it includes the umbilical cord; further preparatory work is to be carried out in a clean laboratory and depends upon the purpose of the investigation; homogenising the entire sample may prove to be technically challenging but this step is crucial to obtain representative samples, handling the entire sample may be unavoidable; and an alternative method of procuring representative samples would require random
Stanton-Yonge, A.; Griffith, W. A.; Cembrano, J.; St. Julien, R.; Iturrieta, P.
2016-09-01
Obliquely convergent subduction margins develop trench-parallel faults shaping the regional architecture of orogenic belts and partitioning intraplate deformation. However, transverse faults also are common along most orogenic belts and have been largely neglected in slip partitioning analysis. Here we constrain the sense of slip and slip rates of differently oriented faults to assess whether and how transverse faults accommodate plate-margin slip arising from oblique subduction. We implement a forward 3-D boundary element method model of subduction at the Chilean margin evaluating the elastic response of intra-arc faults during different stages of the Andean subduction seismic cycle (SSC). Our model results show that the margin-parallel, NNE striking Liquiñe-Ofqui Fault System accommodates dextral-reverse slip during the interseismic period of the SSC, with oblique slip rates ranging between 1 and 7 mm/yr. NW striking faults exhibit sinistral-reverse slip during the interseismic phase of the SSC, displaying a maximum oblique slip of 1.4 mm/yr. ENE striking faults display dextral strike slip, with a slip rate of 0.85 mm/yr. During the SSC coseismic phase, all modeled faults switch their kinematics: NE striking fault become sinistral, whereas NW striking faults are normal dextral. Because coseismic tensile stress changes on NW faults reach 0.6 MPa at 10-15 km depth, it is likely that they can serve as transient magma pathways during this phase of the SSC. Our model challenges the existing paradigm wherein only margin-parallel faults account for slip partitioning: transverse faults are also capable of accommodating a significant amount of plate-boundary slip arising from oblique convergence.
Backgrounds in Boundary String Field Theory
Baumgartl, M
2009-01-01
We study the role of closed string backgrounds in boundary string field theory. Background independence requires the introduction of dual boundary fields, which are reminiscent of the doubled field formalism. We find a correspondence between closed string backgrounds and collective excitations of open strings described by vertex operators involving dual fields. Renormalization group flow, solutions and stability are discussed in an example.
Cretnik, Stefan; Thoreson, Kristen A; Bernstein, Anat; Ebert, Karin; Buchner, Daniel; Laskov, Christine; Haderlein, Stefan; Shouakar-Stash, Orfan; Kliegman, Sarah; McNeill, Kristopher; Elsner, Martin
2013-07-02
Chloroethenes like trichloroethene (TCE) are prevalent environmental contaminants, which may be degraded through reductive dechlorination. Chemical models such as cobalamine (vitamin B12) and its simplified analogue cobaloxime have served to mimic microbial reductive dechlorination. To test whether in vitro and in vivo mechanisms agree, we combined carbon and chlorine isotope measurements of TCE. Degradation-associated enrichment factors ε(carbon) and ε(chlorine) (i.e., molecular-average isotope effects) were -12.2‰ ± 0.5‰ and -3.6‰ ± 0.1‰ with Geobacter lovleyi strain SZ; -9.1‰ ± 0.6‰ and -2.7‰ ± 0.6‰ with Desulfitobacterium hafniense Y51; -16.1‰ ± 0.9‰ and -4.0‰ ± 0.2‰ with the enzymatic cofactor cobalamin; -21.3‰ ± 0.5‰ and -3.5‰ ± 0.1‰ with cobaloxime. Dual element isotope slopes m = Δδ(13)C/ Δδ(37)Cl ≈ ε(carbon)/ε(chlorine) of TCE showed strong agreement between biotransformations (3.4 to 3.8) and cobalamin (3.9), but differed markedly for cobaloxime (6.1). These results (i) suggest a similar biodegradation mechanism despite different microbial strains, (ii) indicate that transformation with isolated cobalamin resembles in vivo transformation and (iii) suggest a different mechanism with cobaloxime. This model reactant should therefore be used with caution. Our results demonstrate the power of two-dimensional isotope analyses to characterize and distinguish between reaction mechanisms in whole cell experiments and in vitro model systems.
Energy Technology Data Exchange (ETDEWEB)
G.J.Gonzales; P.R. Fresquez; C.D.Hathcock; D.C. Keller
2006-05-15
The Mitigation Action Plan (MAP) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory requires that samples of biotic and abiotic media be collected after operations began to determine if there are any human health or environmental impacts. The DARHT facility is the Laboratory's principal explosive test facility. To this end, samples of soil and sediment, vegetation, bees, and birds were collected around the facility in 2005 and analyzed for concentrations of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, {sup 238}U, Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Bird populations have also been monitored. Contaminant results, which represent up to six sample years since the start of operations, were compared with (1) baseline statistical reference levels (BSRLs) established over a four-year preoperational period before DARHT facility operations, (2) screening levels (SLs), and (3) regulatory standards. Most radionuclides and trace elements were below BSRLs and those few samples that contained radionuclides and trace elements above BSRLs were below SLs. Concentrations of radionuclides and nonradionuclides in biotic and abiotic media around the DARHT facility do not pose a significant human health hazard. The total number of birds captured and number of species represented were similar in 2003 and 2004, but both of these parameters increased substantially in 2005. Periodic interruption of the scope and schedule identified in the MAP generally should have no impact on meeting the intent of the MAP. The risk of not sampling one of the five media in any given year is that if a significant impact to contaminant levels were to occur there would exist a less complete understanding of the extent of the change to the baseline for these media and to the ecosystem as a whole. Since the MAP is a requirement that was established under the regulatory framework of
Institute of Scientific and Technical Information of China (English)
彭丽
2002-01-01
The finite element solution of two points boundary value problem for nonlinear ordinary differential equation is studied by using the collocation-Galerkin method.The Jacobi points are introduced to establish high orders of accuracy for the approximate solution.Numerical results are presented for a sample problem.
Energy Technology Data Exchange (ETDEWEB)
Masuda, S.; Kasahara, Y.; Ashidate, I. [NKK Corp., Tokyo (Japan)
1996-12-31
In a high-speed boat of a type using hydrofoils, lifting force increases in proportion to square of its length, while displacement is proportional to the third power. Therefore, an idea has come up that speed of a large boat may be increased by combining the hydrofoils with a submerged body. In other words, the idea is to levitate a ship by using composite support consisting of buoyancy of the submerged body and lifting force caused by the hydrofoils. Insufficiency of the lifting force may be complemented by the buoyancy of the submerged body which increases in an equivalent rate as that in the displacement. However, combining a submerged body with hydrofoils render a problem that lifting force for hydrofoils decreases because of interactions among the submerged body, hydrofoils, and free surface. Therefore, assuming a model of a submerged body with a length of 85 m cruising at 40 kt, analysis was given on decrease in lifting force for hydrofoils due to interactions between the submerged and lifting body and free surface by using the boundary element method. As a result, it was verified that the lifting force for the hydrofoils decreases as a result of creation of a flow that decreases effective angle of attach of the hydrofoils. It was also made clear that making the submerging depth greater reduces the decrease in the lifting force. 9 refs., 14 figs., 1 tab.
Büchmann, Bjarne
2000-05-01
An analysis is given for the accuracy and stability of some perturbation-based time-domain boundary element models (BEMs) with B-spline basis functions, solving hydrodynamic free-surface problems, including forward speed effects. The spatial convergence rate is found as a function of the order of the B-spline basis. It is shown that for all the models examined the mixed implicit-explicit Euler time integration scheme is correct to second order. Stability diagrams are found for models based on B-splines of orders third through to sixth for two different time integration schemes. The stability analysis can be regarded as an extension of the analysis by Vada and Nakos [Vada T, Nakos DE. Time marching schemes for ship motion simulations. In Proceedings of the 8th International Workshop on Water Waves and Floating Bodies, St. John's, Newfoundland, Canada, 1993; 155-158] to include B-splines of orders higher than three (piecewise quadratic polynomials) and to include finite water depth and a current at an oblique angle to the model grid. Copyright
Institute of Scientific and Technical Information of China (English)
张义波; 张志勇; 周长江; 郑成龙
2012-01-01
针对某型缝纫机,建立了油盘的实体模型和有限元模型,利用HyperWorks-Optistruct进行模态分析,获得结构的固有频率和振型特性参数.在此基础上,利用MSC.Patran/Nastran进行频响分析,并将仿真结果与实验结果对比,验证了模型的有效性.通过拓扑优化和形貌优化对模型进行优化后,提高了油盘前5阶固有频率,避免了共振,且减小表面振动速度,降低了辐射声功率.通过利用SYSNOISE对油盘进行边界元噪声辐射仿真分析,结果表明油盘辐射噪声值降低.最后,经整机振动噪声测试试验,证明减振降噪效果明显.该研究成果能有效提高油盘的结构刚度和降低振动幅度,最终改善缝纫机整机的结构辐射噪声.%For a certain type of sewing machine, a solid model and a finite element model for its oilpan were built. Modal analysis was conducted with finite element method and the structure's natural frequencies and modal shapes were obtained with HyperWorks-Optistruct software. Then, with MSC Patran/Nastran software, frequency response analysis was performed. The results of simulation and test were compared to verify the validity of the model. The oil pan was improved with topology optimization and morphology optimization. After optimal design, the first five natural frequencies of the oil pan increased. Resonances were avoided and surface vibration velocity was reduced, so the radiated sound power was reduced. Using SYSNOISE, the results of noise radiation simulation based on boundary element analysis showed that the radiated noise of the oil pan decreases. Finally, the vibration and noise reductions increased obviously in vibration and noise tests for the improved sewing machine. It was shown that the study can effectively improve its oil pan's structural stiffness and reduce the vibration amplitude, and ultimately reduce the structural radiated noise of the whole sewing machine.
Wang, X.; Zhao, L.; Chen, Z. Q.; Ma, D.; Yan, P.; Guo, F.; Wang, F.; Wan, Q.; Han, X.
2015-12-01
Growing evidence shows that volcanism near the Permian-Triassic boundary (PTB) may have been crucial in triggering the PTB biocrisis. However, whether this trigger is the Siberian traps or arc island volcanisms has long been debating. Meanwhile, multiple claystone beds are prominent near the PTB, South China. The nature and origin of the volcanic ashes therefore provide clue to find out the trigger of the PTB mass extinction. Following previous studies (Gao et al., 2013), 21 PTB ash beds from three additional PTB sections, namely the Shangsi, Jianshi and Meishan, all from South China have been systematically sampled. The U-Pb ages, trace elements, and Hf-isotope compositions of zircon grains from these ash beds were analyzed using LA-ICPMS and LA-MC-ICPMS. Volcanic ash geochemistry shows presence of Rhyolite or Dacite and reveal a collision-tectonic setting. Zircons from these ash layers yield comparatively low Nb/Hf and high Th/Nb ratios, dropping into the range of arc/orogenic-related settings. Zircon Hf-isotope compositions show that ɛHf(t) values vary from -11.7 to 1.8, indicating that at least two kinds of crustal component have been involved: juvenile lower crust and ancient middle-upper crust. The ash beds (Ss27a, Js129, Js130, Ms25, Ms26) near biotic extinction horizon have significant larger variation range of ɛHf(t) and relatively positive averages, implying that more juvenile lower crustal material had contributed to the volcanisms. This means that these volcanisms may have originated deeper depth or the volcanisms erupted so rapidly that there was no enough time for the mixing of different components. The volcanisms associated with biotic extinction should be the most intense and have greatest heat put. Spatial and temporal distributions of ash beds from thirty PTB sections worldwide reveal that the PTB volcanic ashes occurred only in the Paleo-Tethys region, suggesting that the volcanisms may be likely limited to the Paleo-Tethys continental
Gomberg, Joan; Ellis, Michael
1994-01-01
We present results of a series of numerical experiments designed to test hypothetical mechanisms that derive deformation in the New Madrid seismic zone. Experiments are constrained by subtle topography and the distribution of seismicity in the region. We use a new boundary element algorithm that permits calcuation of the three-dimensional deformation field. Surface displacement fields are calculated for the New Madrid zone under both far-field (plate tectonics scale) and locally derived driving strains. Results demonstrate that surface displacement fields cannot distinguish between either a far-field simple or pure shear strain field or one that involves a deep shear zone beneath the upper crustal faults. Thus, neither geomorphic nor geodetic studies alone are expected to reveal the ultimate driving mechanism behind the present-day deformation. We have also tested hypotheses about strain accommodation within the New Madrid contractional step-over by including linking faults, two southwest dipping and one vertical, recently inferred from microearthquake data. Only those models with step-over faults are able to predict the observed topography. Surface displacement fields for long-term, relaxed deformation predict the distribution of uplift and subsidence in the contractional step-over remarkably well. Generation of these displacement fields appear to require slip on both the two northeast trending vertical faults and the two dipping faults in the step-over region, with very minor displacements occurring during the interseismic period when the northeast trending vertical faults are locked. These models suggest that the gently dippling central step-over fault is a reverse fault and that the steeper fault, extending to the southeast of the step-over, acts as a normal fault over the long term.
Huijssen, Jacobus; Fiala, Péter; Hallez, Raphael; Donders, Stijn; Desmet, Wim
2012-04-01
The Fast Multipole Boundary Element Method (FMBEM) is adopted for the numerical evaluation of source-receiver transfer functions for predicting ISO-362 pass-by noise levels of automotive vehicles. The pass-by noise configuration is discussed, as well as the FMBEM approach to evaluate the transfer functions in the frequency domain. An amplitude/phase frequency interpolation scheme with a geometrically based phase unwrapping scheme is presented that enables the long time frame reconstruction of the impulse responses from coarsely sampled frequency response functions. The performance of the interpolation scheme is compared to other schemes for 12 frequency response functions obtained from measurements on a passenger vehicle in a semi-anechoic room, and a sampling and interpolation scheme is proposed that yields a mean error of 0.5 dB in the third octave band SPLs. Several parameters related to the simulation method, the most important of which is the density of the BEM surface mesh, are investigated for their influence on the trade-off between accuracy and evaluation time. Guidelines for selecting these parameters are presented which can be used to predict sound pressure levels and third octave band levels up to the 2 kHz third octave band. Compared to more accurate simulations, these guidelines result in an average approximation error in the transfer functions of 1.3 dB in the third octave band SPLs while considerably reducing the evaluation time. Comparison of the simulated and the measured transfer functions show an average error of 4 dB in the third octave band SPLs.
Gomberg, Joan; Ellis, Michael
1994-01-01
We present results of a series of numerical experiments designed to test hypothetical mechanisms that derive deformation in the New Madrid seismic zone. Experiments are constrained by subtle topography and the distribution of seismicity in the region. We use a new boundary element algorithm that permits calcuation of the three-dimensional deformation field. Surface displacement fields are calculated for the New Madrid zone under both far-field (plate tectonics scale) and locally derived driving strains. Results demonstrate that surface displacement fields cannot distinguish between either a far-field simple or pure shear strain field or one that involves a deep shear zone beneath the upper crustal faults. Thus, neither geomorphic nor geodetic studies alone are expected to reveal the ultimate driving mechanism behind the present-day deformation. We have also tested hypotheses about strain accommodation within the New Madrid contractional step-over by including linking faults, two southwest dipping and one vertical, recently inferred from microearthquake data. Only those models with step-over faults are able to predict the observed topography. Surface displacement fields for long-term, relaxed deformation predict the distribution of uplift and subsidence in the contractional step-over remarkably well. Generation of these displacement fields appear to require slip on both the two northeast trending vertical faults and the two dipping faults in the step-over region, with very minor displacements occurring during the interseismic period when the northeast trending vertical faults are locked. These models suggest that the gently dippling central step-over fault is a reverse fault and that the steeper fault, extending to the southeast of the step-over, acts as a normal fault over the long term.
NATURAL BOUNDARY INTEGRAL METHOD AND ITS NEW DEVELOPMENT
Institute of Scientific and Technical Information of China (English)
De-hao Yu
2004-01-01
In this paper, the natural boundary integral method, and some related methods, including coupling method of the natural boundary elements and finite elements, which is also called DtN method or the method with exact artificial boundary conditions, domain decomposition methods based on the natural boundary reduction, and the adaptive boundary element method with hyper-singular a posteriori error estimates, are discussed.
Institute of Scientific and Technical Information of China (English)
方源; 章桐; 于蓬; 郭荣
2014-01-01
Evaluation of the NVH (noise, vibration and harshness) performance of automotive powertrain has been an integral part of the vehicle development process. Although electric vehicles are generally considerably quieter than their counterparts powered by internal combustion engines, some problems about NVH still exist, which are becoming more challenging in terms of the future of vehicle. Firstly, the sound only from dominant engine but not from tire, wind or auxiliaries disappears, which consequently becomes increasingly audible due to the removal of the masking sound of broadband engine. Moreover, the interior noise is characterized by high-frequency noise components which can be subjectively perceived as annoying and unpleasant. Thirdly, as the electric vehicle develops toward the direction of high speed and large torque, electric vehicle vibration and noise problems highlight gradually. The subject of this paper is the numerical and experimental evaluation of the acoustic behavior of an electric powertrain, which is helpful for the electric vehicle in the design stage. For this purpose, a co-simulation method based on finite element modeling (FEM) and boundary element method (BEM) for the acoustic radiation analysis of an electric powertrain under multi-excitations is presented. The vibration and noise characteristics of electric vehicle are quite different from that of internal combustion engine due to different exciting forces. The calculation of the internal excitations of motor-reducer integrated drive system is the foundation of dynamic analysis. The internal dynamic excitations of a certain electric powertrain in rated revolution are calculated by theoretical analysis and numerical simulation method on the basis of gear dynamics and electromagnetism, including the electromagnetic radial force, electromagnetic tangential force and external circuit in the motor, and the time-varying gear meshing stiffness, meshing error and meshing impact in the gear system
Ginzburg, Irina; Silva, Goncalo; Talon, Laurent
2015-02-01
This work focuses on the numerical solution of the Stokes-Brinkman equation for a voxel-type porous-media grid, resolved by one to eight spacings per permeability contrast of 1 to 10 orders in magnitude. It is first analytically demonstrated that the lattice Boltzmann method (LBM) and the linear-finite-element method (FEM) both suffer from the viscosity correction induced by the linear variation of the resistance with the velocity. This numerical artefact may lead to an apparent negative viscosity in low-permeable blocks, inducing spurious velocity oscillations. The two-relaxation-times (TRT) LBM may control this effect thanks to free-tunable two-rates combination Λ. Moreover, the Brinkman-force-based BF-TRT schemes may maintain the nondimensional Darcy group and produce viscosity-independent permeability provided that the spatial distribution of Λ is fixed independently of the kinematic viscosity. Such a property is lost not only in the BF-BGK scheme but also by "partial bounce-back" TRT gray models, as shown in this work. Further, we propose a consistent and improved IBF-TRT model which vanishes viscosity correction via simple specific adjusting of the viscous-mode relaxation rate to local permeability value. This prevents the model from velocity fluctuations and, in parallel, improves for effective permeability measurements, from porous channel to multidimensions. The framework of our exact analysis employs a symbolic approach developed for both LBM and FEM in single and stratified, unconfined, and bounded channels. It shows that even with similar bulk discretization, BF, IBF, and FEM may manifest quite different velocity profiles on the coarse grids due to their intrinsic contrasts in the setting of interface continuity and no-slip conditions. While FEM enforces them on the grid vertexes, the LBM prescribes them implicitly. We derive effective LBM continuity conditions and show that the heterogeneous viscosity correction impacts them, a property also shared
Institute of Scientific and Technical Information of China (English)
陈梦英; 商德江; 李琪; 刘永伟
2011-01-01
提出了一种可实现任意形状的运动结构噪声源识别的声全息方法.通过结合移动框架技术与边界元声全息技术两种算法的特点,提出利用移动框架技术将存在多普勒效应的时域数据转换成边界元声全息所需的双平面全息数据,然后由边界元法声全息公式重构任意结构表面的声学信息,实现运动结构噪声源定位.该方法既具有移动框架技术处理运动问题的快速简便,又具有边界元方法可处理任意形状问题的特点.最后在半消声水池中,对运动速度为9.96cm/s的带帽圆柱壳体进行了试验验证,结果表明:在低速条件下,该方法能够准确反演得到该结构的表面有功声强以及声压等声场信息,从而实现噪声源定位,由于条件有限,高速验证需进一步验证.%A method for realizing noise source identification of the arbitrary shaped moving structure is present. A theoretical model is established, which is a combination of moving frame acoustic holography (MFAH) and acoustic holography based on boundary element method (BEM-based NAH). MFAH can change time-domain data which existing Doppler effects into the dual plane holographic data which is needed in the BEM-based NAH. The surface acoustic information of an arbitrary structure is reconstructed by BEM-based NAH, which can be used for location of noise source. It not only has the MFAH's fast and easy characteristics for dealing with movement problem, but also has the BEM-based NAH characteristics of dealing with arbitrary shape. Finally, an experiment test was conducted by using a moving hooded cylindrical shell which speed is 9.96 cm/s as research object in the semi-anechoic pool. The results showed that: the method can accurately realize the inversion of the structure of the surface of active sound intensity and sound pressure and other information in sound field, thereby achieving noise source location. Because of the condition limited, high
Green, David G; Abbass, Hussein A
2014-01-01
This book explains how dual phase evolution operates in all these settings and provides a detailed treatment of the subject. The authors discuss the theoretical foundations for the theory, how it relates to other phase transition phenomena and its advantages in evolutionary computation and complex adaptive systems. The book provides methods and techniques to use this concept for problem solving. Dual phase evolution concerns systems that evolve via repeated phase shifts in the connectivity of their elements. It occurs in vast range of settings, including natural systems (species evolution, landscape ecology, geomorphology), socio-economic systems (social networks) and in artificial systems (annealing, evolutionary computing).
Energy Technology Data Exchange (ETDEWEB)
Bauer, Mathieu [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany); Broekaert, Jose A.C. [Institute for Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg (Germany)], E-mail: jose.broekaert@chemie.uni-hamburg.de
2007-02-15
The use of a so-called trihedral and a T-shaped cross-flow pneumatic nebulizer with dual solution loading for inductively coupled plasma optical emission spectrometry has been studied. By these devices analyte clouds from two solutions can be mixed during the aerosol generation step. For both nebulizers the correction of matrix effects using internal standardization and standard addition calibration in an on-line way was investigated and compared to elemental determinations using a conventional cross-flow nebulizer and calibration with synthetic standard solutions without matrix matching. A significant improvement of accuracy, both for calibration with internal standardization and standard addition, was obtained in the case of four synthetic solutions containing each 40 mmol L{sup -1} Na, K, Rb and Ba as matrix elements and 300 {mu}g L{sup -1} Cd, Co, Cr, Cu, Fe, Mn, Ni and Pb as analytes. Calibration by standard addition in the case of dual solution loading has been shown to be very useful in the determination of elements at minor and trace levels in steel and alumina reference materials. The results of analysis for minor concentrations of Cr, Cu and Ni in steel as well as for Ca, Fe, Ga, Li, Mg, Mn, Na, Si and Zn in alumina powder certified reference materials subsequent to sample dissolution were found to be in good agreement with the certificates. Limits of detection were found to be only slightly above those for a conventional cross-flow nebulizer and a precision better than 3% was realized with both novel nebulizers.
Townsend, Alan R.; Porder, Stephen
2011-03-01
can (and ultimately must) learn to capture and re-use P in human and animal wastes. And, as Carpenter and Bennett highlight, inequities in P availability across world regions are not just a problem, they are an opportunity: transfers from P-rich to P-poor regions could simultaneously reduce environmental and food security risks. Above all, Carpenter and Bennett's analyses highlight the need for new management strategies that better target not only P's environmental risks, but also recognize the element's standing as an irreplaceable resource. Human society has been built from the massive alteration of four global biogeochemical cycles (C, N, H2O and P). We can replace carbon-based fuels, plant legumes in lieu of Haber-Bosch-based N fixation, and the rain will still fall. But for P, there is neither substitute nor renewal. Without an almost closed loop between fertilizer application, food consumption, and waste management, society could solve the remainder of the environmental threats Rockström and colleagues identify, and still be facing a bleak future. References Carpenter S R and Bennett E M 2011 Reconsideration of the planetary boundary for phosphorus Environ. Res. Lett. 6 014009 Childers C L, Corman J, Edwards M and Elser J J 2011 Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle BioScience 61 117-24 Cordell D, Drangert J-O and White S 2009 The story of phosphorus: Global food security and food for thought global Environmental Change 19 292-305 Diamond J 2005 Collapse: How Societies Choose to Fail or Succeed (New York: Viking) Engelhardt H T and Caplan A L (ed) 1987 Scientific Controversies: Case Studies in the Resolution and Closure of Disputes in Science and Technology (New York: Cambridge University Press) Filippelli G M 2008 The global phosphorus cycle: Past, present, and future Elements 4 89-95 Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P and Sutton M
Energy Technology Data Exchange (ETDEWEB)
Kramar, Utz [Universitaet Karlsruhe (Thailand), Institut fuer Mineralogie und Geochemie, Kaiserstrasse 12, D-76128 Karlsruhe (Germany)], E-mail: utz.kramar@img.uni-karlsruhe.de; Harting, Markus [Utrecht University, Department of Earthsciences, Budapestlaan 4, 3508 TA Utrecht (Netherlands); Rickers, Karen [Hamburger Synchrotronstrahlungslabor HASYLAB at Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); GeoForschungsZentrum Potsdam, Division 4.1, Telegrafenberg, 14473 Potsdam (Germany); Stueben, Doris [Universitaet Karlsruhe (Thailand), Institut fuer Mineralogie und Geochemie, Kaiserstrasse 12, D-76128 Karlsruhe (Germany)
2007-08-15
Synchrotron radiation, collimated to a {mu}m scale was used for the determination of trace elements in micro-tektites and spherule material for the first time. The experimental set-up of the SXRF microprobe at beamline L at HASYLAB at DESY offers a suitable method for performing non-destructive in situ multi-element analysis focusing on spatial trace element distributions and mineral phases of the melted ejecta material from the Cretaceous/Tertiary boundary. The spatial distribution of trace elements was determined in melt inclusions as well as in phase transitions in selected parts of chlorite-smectite spherules and tektite glass material by using a beam with a diameter of 15 {mu}m collimated with a glass capillary for line- and area scans as well as for single point measurements for elements with Z between 19 and 92. The analyzed spherules show alteration features but also zonation and carbonate inclusions, originating from the Chicxulub impact event. These initial results demonstrate the potential of {mu}-SXRF analysis for the discrimination of alteration and primary signals of the spherules and re-construction of their genetic evolution. It could be shown that the spherules represent a complex mixture of different materials from the subsurface at the Chicxulub impact site.
Institute of Scientific and Technical Information of China (English)
杜宁
2001-01-01
Mixed finite element method is used to treat a kind of second-order nonlinear hyperbolic equations with absorbing boundary conditions. explicit-intime procedures are formulated and analyzed. Optimal L2-in-space error estimates are derived.
Energy Technology Data Exchange (ETDEWEB)
St. John, C.M.; Sanjeevan, K. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)
1991-12-01
The HEFF Code combines a simple boundary-element method of stress analysis with the closed form solutions for constant or exponentially decaying heat sources in an infinite elastic body to obtain an approximate method for analysis of underground excavations in a rock mass with heat generation. This manual describes the theoretical basis for the code, the code structure, model preparation, and step taken to assure that the code correctly performs its intended functions. The material contained within the report addresses the Software Quality Assurance Requirements for the Yucca Mountain Site Characterization Project. 13 refs., 26 figs., 14 tabs.
Institute of Scientific and Technical Information of China (English)
马杭
2002-01-01
With the aid of the properties of the hypersingular kernels, a geometric conversion approach was presented in this paper.The conversion leads to a general approach for the accurate and reliable numerical evaluation of the hypersingular surface boundary in-tegrals encountered in a variety of applications with boundary element method. Based on the conversion, the hypersingularity in theboundary integrals could be lowered by one order, resulting in the simplification of the computer code. Moreover, an integral trans-formation was introduced to damp out the nearly singular behavior of the kernels by the distance function defined in the local polar co-ordinate system for the nearly hypersingular case. The approach is simple to use, which can be inserted readily to computer code, thusgetting rid of the dull routine deduction of formulae before the numerical implementations, as the expressions of these kernels are ingeneral complicated. The numerical examples were given in three-dimensional elasticity, verifying the effectiveness of the proposedapproach, which makes it possible to observe numerically the behavior of the boundary integral values with hypersingular kernelsacross the boundary.
ANALYSIS OF AUGMENTED THREE-FIELD MACRO-HYBRID MIXED FINITE ELEMENT SCHEMES
Institute of Scientific and Technical Information of China (English)
Gonzalo Alduncin
2009-01-01
On the basis of composition duality principles, augmented three-field macro-hybrid mixed variational problems and finite element schemes are analyzed. The compati-bility condition adopted here, for compositional dualization, is the coupling operator surjec-tivity, property that expresses in a general operator sense the Ladysenskaja-Babuska-Brezzi inf-sup condition. Variational macro-hybridization is performed under the assumption of decomposable primal and dual spaces relative to nonoverlapping domain decompositions. Then, through compositional dualization macro-hybrid mixed problems are obtained, with internal boundary dual traces as Lagrange multipliers. Also, "mass" preconditioned aug-mentation of three-field formulations are derived, stabilizing macro-hybrid mixed finite element schemes and rendering possible speed up of rates of convergence. Dual mixed incompressible Darcy flow problems illustrate the theory throughout the paper.
DUAL MIXED FINITE ELEMENT METHOD FOR CONTACT PROBLEM IN ELASTICITY%弹性接触问题的对偶混合有限元分析
Institute of Scientific and Technical Information of China (English)
王烈衡; 王光辉
1999-01-01
In this paper, based on the mixed variational formulation in [9], a dualmixed variational formulation for contact problem in elasticity ispresented. The existence and uniqueness of the solution of the dualvariational problem are discussed, and the error bound O(h3/4) is obtained for Raviart-Thomas (k=1) element approximation.
Energy Technology Data Exchange (ETDEWEB)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
2016-09-30
The objective of this study is to develop a finite element continuum damage model suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system.
A New Fenchel Dual Problem in Vector Optimization
Indian Academy of Sciences (India)
Radu Ioan Boţ; Anca Dumitru; Gert Wanka
2009-04-01
We introduce a new Fenchel dual for vector optimization problems inspired by the form of the Fenchel dual attached to the scalarized primal multiobjective problem. For the vector primal-dual pair we prove weak and strong duality. Furthermore, we recall two other Fenchel-type dual problems introduced in the past in the literature, in the vector case, and make a comparison among all three duals. Moreover, we show that their sets of maximal elements are equal.
Institute of Scientific and Technical Information of China (English)
崔晓兵; 季振林
2011-01-01
To solve the large scale sound field problems with multi-domain and multi-absorbing materials, a substructure fast multipole boundary element approach was developed. In view of the fact that the arrangement order of an unknown column vector and the node number affected the speed of convergence, a principle was proposed to compose the whole matrix equation. Additionally, in light of the accuracy effect of multipole expansion computation caused by the complex acoustic parameters, some studies and corrections were conducted on the fast multipole boundary element method (FMBEM). As an example of application, the transmission loss of a dissipative expansion chamber silencer was calculated by using the substructure FMBEM and the conventional boundary element method (CBEM). The results indicate that the present approach and corrections are valid. Compared to the CBEM, the advantage of substructure FMBEM in computational efficiency was more obvious as the number of boundary nodes increased for a given frequency.%为解决大尺度声场中常见的多区域复合及多吸声材料复合问题,提出了一种子结构快速多极子边界元法.鉴于未知量列向量的构建次序及边界节点编号顺序对迭代收敛速度有重要影响,提出了整体矩阵方程的构建原则.此外,针对复数形式声参数对多极子展开式计算准确性的影响,对快速多极子边界元法进行了研究与修正.以膨胀腔阻性消声器为例,应用子结构快速多极子边界元法与传统边界元法计算其传递损失.结果表明,该方法与修正是有效的,而且在某给定频率下,随着边界未知节点数的增大,其相对于传统边界元法在计算效率方面的优势越来越明显.
DEFF Research Database (Denmark)
Qing, Hai
2013-01-01
Two-dimensional finite element (FE) simulations of the deformation and damage evolution of Silicon–Carbide (SiC) particle reinforced aluminum alloy composite including interphase are carried out for different microstructures and particle volume fractions of the composites. A program is developed...
Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Asfaw, Alemayehu
2009-02-01
Analytical methods have been developed for the simultaneous determination of hydride-forming (As, Sb) and non-hydride-forming (Cr, Mo, V) elements in aqueous samples of a wide pH range (pH 3-13). The methods used dual-mode (DM) sample introduction with ICP-AES and ICP-MS instruments. The effect of selected experimental variables, i.e., sample pH and concentrations of HNO(3), thiourea, and NaBH(4), were studied in a multivariate way using face-centered central composite design (FC-CCD). Compromised optimum values of the experimental parameters were identified using a response optimizer. The statistically found optimum values were verified experimentally. The methods provided improved sensitivities for the hydride-forming elements compared with the respective conventional nebulization (Neb) systems by factors of 67 (As) and 64 (Sb) for ICP-AES and 36 (As) and 54 (Sb) for ICP-MS. Slight sensitivity improvements were also observed for the non-hydride-forming elements. The limits of detection (LOD) of As and Sb were lowered, respectively, to 0.8 and 0.9 microg L(-1) with the DM-ICP-AES system and to 0.01 and 0.02 microg L(-1) with the DM-ICP-MS system. The short-term stabilities of both methods were between 2.1 and 5.4%. The methods were applied for the analysis of leachates of a cement mortar material prepared in the pH range 3-13. The elemental concentration of the leachates determined by the two DM methods were statistically compared with the values obtained from Neb-ICP-MS analysis; the values showed good agreement at the 95% confidence level. Quantitative spike recoveries were obtained for the analytes from most of the leachates using both DM methods.
Zhang, Jing; Wang, Sihan; Yuan, Lin; Yang, Yinxiang; Zhang, Bowen; Liu, Qingbin; Chen, Lin; Yue, Wen; Li, Yanhua; Pei, Xuetao
2012-12-14
Cocaine- and amphetamine-regulated transcript (CART) peptide plays a pivotal role in neuroprotection against stroke-related brain injury. However, the regulatory mechanism on CART transcription, especially the repression mechanism, is not fully understood. Here, we show that the transcriptional repressor neuron-restrictive silencer elements (NRSF, also known as REST) represses CART expression through direct binding to two NRSF-binding elements (NRSEs) in the CART promoter and intron 1 (named pNRSE and iNRSE, respectively). EMSA show that NRSF binds to pNRSE and iNRSE directly in vitro. ChIP assays show that NRSF recruits differential co-repressor complexes including CoREST and HDAC1 to these NRSEs. The presence of both NRSEs is required for efficient repression of CART transcription as indicated by reporter gene assays. NRSF overexpression antagonizes forskolin-mediated up-regulation of CART mRNA and protein. Ischemia insult triggered by oxygen-glucose deprivation (OGD) enhances NRSF mRNA levels and then NRSF antagonizes the CREB signaling on CART activation, leading to augmented cell death. Depletion of NRSF in combination with forskolin treatment increases neuronal survival after ischemic insult. These findings reveal a novel dual NRSE mechanism by which NRSF represses CART expression and suggest that NRSF may serve as a therapeutic target for stroke treatment.
Energy Technology Data Exchange (ETDEWEB)
West, Bradley; Stuckelberger, Michael; Guthrey, Harvey; Chen, Lei; Lai, Barry; Maser, Jorg; Rose, Volker; Dynes, James J.; Shafarman, William; Al-Jassim, Mowafak; Bertoni, Mariana I.
2016-11-21
It is well known that the addition of alkali elements such as Na and K during and after growth of Cu(In, Ga)Se2 (CIGS) has beneficial effects on the electronic properties of bulk material, improving device performance significantly. While the device level effects have been measured and reported, a direct observations of the localization of Na including its chemical nature are missing, and the impact of Na on elemental and phase segregation during CIGS growth is not fully understood. We investigate these aspects to shine light on the role of Na in CIGS solar cells with the ultimate goal of increasing their conversion efficiency. Utilizing a suite of synchrotron based x-ray characterization techniques, we discuss the challenges and advantages of these techniques for investigating segregation of main constituents of CIGS, Na distribution, chemical bonding of Na, and collection efficiency in CIGS as well as their correlations.
Institute of Scientific and Technical Information of China (English)
徐明; 杨利民; 王秋泉
2015-01-01
提出并发展了一种基于电感耦合等离子体质谱( ICP-MS)的双元素标签标记策略来选择性识别和检测硒蛋白/多肽,其中内源元素硒( Se)作为硒蛋白/多肽分子的识别元素,外源元素汞( Hg)作为硒蛋白/多肽和含硒蛋白/多肽分子的区分元素。通过对硒代半胱氨酸(SeCys)和谷胱甘肽过氧化酶1(GPx1)两种模型分子的研究,外源邻羧基苯硫甲基汞( CH3 Hg-THI )动态解离的 CH3 Hg+能够选择性标记硒代半胱氨酸残基( SeCys)中硒醇基(-SeH),但不能标记含硒蛋白/多肽分子的硒代蛋氨酸残基( SeMet)中的—SeCH3,进而依据Se和Hg的ICP-MS信号识别和检测硒蛋白/多肽。本方法应用于富硒酵母水溶性提取液的分析,结果表明,提取液中的硒蛋白/多肽能够被有效识别和检测,验证了Se-Hg双元素标签标记策略的发展是ICP-MS识别和检测硒蛋白/多肽的一种可行且优越的途径。%An endogenous element-label plus exogenous element-tag strategy was proposed for inductively coupled plasma mass spectrometry ( ICP-MS) to screen and discriminate a family of ultratrace but biological important biomolecules. The feasibility of this novel idea has been demonstrated when setting seleno ( SeCys) and Se-containing ( SeMet) proteins ( peptides) as an example. Se-label naturally occurring in the biomole-cules acts an identifier for picking them up out of large amount of various coexisting proteins ( peptides) , and CH3 Hg-tag that can bind to SeCys but not SeMet fulfills the task of discriminating seleno and Se-containing ones based on the Se and Hg signals on ICP-MS. After confirmed using SeCys and GPx1, the Se-Hg dual-element labeling strategy together with ICP-MS was applied to screen and discriminate seleno and Se-contai-ning proteins ( peptides) in the water-soluble extracts of Se-enriched yeast, and seven selenoproteins ( pep-tides) were detected with both 202 Hg and 82 Se signals out of fifteen Se
Puchtel, I. S.; Touboul, M.; Blichert-Toft, J.; Walker, R. J.; Brandon, A. D.; Nicklas, R. W.; Kulikov, V. S.; Samsonov, A. V.
2016-05-01
New Os isotope and highly siderophile element (HSE) abundance data, in combination with lithophile trace element and Sm-Nd, Lu-Hf, and Hf-W isotope data, are reported for komatiitic basalts from the Vetreny Belt and tonalites from the adjacent Vodla Block in the Fennoscandian Shield. Komatiitic basalts define a Re-Os isochron with an age of 2407 ± 6 Ma and an initial γ187Os = +1.7 ± 0.2 (2 SE). The Pt-Os data for chromite separates yield an average initial ε186Os = +0.03 ± 0.02 (2 SE). The 147Sm-143Nd and 176Lu-176Hf data for the komatiitic basalts give isochron ages and initial ratios of, respectively, 2403 ± 32 Ma and ε143Nd = -0.90 ± 0.09, and 2451 ± 79 Ma and ε176Hf = +0.4 ± 0.2 (2 SE). Bulk tonalites are characterized by average initial γ187Os, ε143Nd, and ε176Hf values of +304 ± 64, +1.8 ± 0.6, and +2.5 ± 1.6 (2 SE), respectively, when calculated for the ∼3.21 Ga age of the rocks. The komatiitic basalts and tonalites have μ142Nd values of, respectively, +0.5 ± 2.8 and -0.4 ± 5.2 (2 SD). By contrast, both the komatiitic basalts and tonalites exhibit positive 182W anomalies of +7.1 ± 4.5 and +12.6 ± 4.5 ppm (2 SD), respectively. The komatiitic basalts were derived from a komatiitic parental magma with ∼27 wt.% MgO; it was modified by both assimilation of the tonalites and fractional crystallization en route to the surface. Lithophile trace element data constrain the degree of crustal contamination to be 4.0 ± 0.4%. Highly siderophile element abundance data indicate that crustal contamination must have had a negligible effect on the Os isotopic composition of the komatiitic parental magma. By contrast, the Nd, Hf, and W isotope systematics of the komatiitic parental magma were strongly modified as a result of assimilation of the tonalites. The positive initial ε143Nd and ε176Hf values of the tonalites indicate that they formed via melting of a precursor with time-integrated suprachondritic Sm/Nd and Lu/Hf. This precursor was most
Directory of Open Access Journals (Sweden)
Seyed Ali Hosseini
2017-08-01
Full Text Available The segregation of the elements during solidification and the direct formation of destructive phases such as Laves from the liquid, result in in-homogeneity of the cast structure and degradation of mechanical properties. Homogenization heat treatment is one of the ways to eliminate destructive Laves from the cast structure of superalloys such as 718Plus. The collected data presents the effect of homogenization treatment conditions on the cast structure, hardness, and tensile properties of the alloy 718Plus in the presence of boron and zirconium additives. For this purpose, five alloys with different contents of boron and zirconium were cast by VIM/VAR process and then were homogenized at various conditions. The microstructural investigation by OM and SEM and phase analysis by XRD were done and then hardness and tensile tests were performed on the homogenized alloys.
Hosseini, Seyed Ali; Madar, Karim Zangeneh; Abbasi, Seyed Mehdi
2017-08-01
The segregation of the elements during solidification and the direct formation of destructive phases such as Laves from the liquid, result in in-homogeneity of the cast structure and degradation of mechanical properties. Homogenization heat treatment is one of the ways to eliminate destructive Laves from the cast structure of superalloys such as 718Plus. The collected data presents the effect of homogenization treatment conditions on the cast structure, hardness, and tensile properties of the alloy 718Plus in the presence of boron and zirconium additives. For this purpose, five alloys with different contents of boron and zirconium were cast by VIM/VAR process and then were homogenized at various conditions. The microstructural investigation by OM and SEM and phase analysis by XRD were done and then hardness and tensile tests were performed on the homogenized alloys.
Energy Technology Data Exchange (ETDEWEB)
Schunk, P.R.; Sackinger, P.A.; Rao, R.R. [and others
1996-01-01
GOMA is a two- and three-dimensional finite element program which excels in analyses of manufacturing processes, particularly those involving free or moving interfaces. Specifically, the full-Newton-coupled heat, mass, momentum, and pseudo-solid mesh motion algorithm makes GOMA ideally suited for simulating processes in which the bulk fluid transport is closely coupled to the interfacial physics. Examples include, but are not limited to, coating and polymer processing flows, soldering, crystal growth, and solid-network or solution film drying. The code is based on the premise that any boundary can be (1) moving or free, with an apriori unknown position dictated by the distinguishing physics, (2) fixed, according to a global analytical representation, or (3) moving in time and space under user-prescribed kinematics. The goal is to enable the user to predict boundary position or motion simultaneously with the physics of the problem being analyzed and to pursue geometrical design studies and fluid-structure interaction problems. The moving mesh algorithm treats the entire domain as a computational Lagrangian solid that deforms subject to the physical principles which dictate boundary position. As an added benefit, the same Lagrangian solid mechanics can be exploited to solve multi-field problems for which the solid motion and stresses interact with other transport phenomena, either within the same material phase (e.g. shrinking coating) or in neighboring material phases (e.g. flexible blade coating). Thus, analyses of many fluid-structure interaction problems and deformable porous media problems are accessible. This document serves as a user`s guide and reference for GOMA and provides a brief overview of GOMA`s capabilities, theoretical background, and classes of problems for which it is targeted.
2013-01-01
Dual diagnosis denotes intertwining of intellectual disabilities with mental disorders. With the help of systematic examination of literature, intellectual disabilities are determined (they are characterized by subaverage intellectual activity and difficulties in adaptive skills), along side mental disorders. Their influence is seen in changes of thinking, perception, emotionality, behaviour and cognition. Mental disorders often occur with people with intellectual disabilities (data differs f...
Institute of Scientific and Technical Information of China (English)
刘俊; 林皋; 李建波
2011-01-01
为精确研究超高压输电线路在复杂工况下的工频电场,采用比例边界有限元方法,在建立相应的电场计算模型基础上,利用变分原理并通过比例边界坐标变换,推导出工频电场的比例边界有限元方程、电位求解公式及电场求解公式,分析了超高压输电线路在穿越较复杂地形时的工频电场,探讨了超高压输电线路下存在介质块对工频电场的影响,并将算例计算结果与其他数值方法进行了比较.结果表明,比例边界有限元方法精度高、计算工作量小.%A scaled boundary finite element method (SBFEM) is developed for precise study of power frequency electric field generated by the EHV transmission lines under complex conditions. The electric field model is established, and variational principle technique and coordinate transformation between scaled and Cartesian coordinate is used to derive the scaled boundary finite element equations. The formulation of calculation of electric potential and field is also obtained.The method is also to solve the power-frequency electric field of EHV transmission lines under condition of complex landscape and media block. Numerical experiment is carried out and compared with other numerical methods. The results show that the proposed method yields excellent results, quick convergence and less amount of computation time.
Dual conformal transformations of smooth holographic Wilson loops
Dekel, Amit
2016-01-01
We study dual conformal transformations of minimal area surfaces in $AdS_5 \\times S^5$ corresponding to holographic smooth Wilson loops and some other related observables. To act with dual conformal transformations we map the string solutions to the dual space by means of T-duality, then we apply a conformal transformation and finally T-dualize back to the original space. The transformation maps between string solutions with different boundary contours. The boundary contours of the minimal surfaces are not mapped back to the AdS boundary, and the regularized area of the surface changes.
Malkus, David S.
1989-01-01
This project concerned the development of a new fast finite element algorithm to solve flow problems of non-Newtonian fluids such as solutions or melts of polymers. Many constitutive theories for such materials involve single integrals over the deformation history of the particle at the stress evaluation point; examples are the Doi-Edwards and Curtiss-Bird molecular theories and the BKZ family derived from continuum arguments. These theories are believed to be among the most accurate in describing non-Newtonian effects important to polymer process design, effects such as stress relaxation, shear thinning, and normal stress effects. This research developed an optimized version of the algorithm which would run a factor of two faster than the pilot algorithm on scalar machines and would be able to take full advantage of vectorization on machines. Significant progress was made in code vectorization; code enhancement and streamlining; adaptive memory quadrature; model problems for the High Weissenberg Number Problem; exactly incompressible projection; development of multimesh extrapolation procedures; and solution of problems of physical interest. A portable version of the code is in the final stages of benchmarking and testing. It interfaces with the widely used FIDAP fluid dynamics package.
Truncated Dual-Cap Nucleation Site Development
Matson, Douglas M.; Sander, Paul J.
2012-01-01
During heterogeneous nucleation within a metastable mushy-zone, several geometries for nucleation site development must be considered. Traditional spherical dual cap and crevice models are compared to a truncated dual cap to determine the activation energy and critical cluster growth kinetics in ternary Fe-Cr-Ni steel alloys. Results of activation energy results indicate that nucleation is more probable at grain boundaries within the solid than at the solid-liquid interface.
Horton, T. W.; Oze, C.
2012-12-01
Stable isotope-based proxy methods enhance our ability to interpret paleohydrology, paleoelevation, climate change, and biogeochemical cycles. In ancient carbonate lakes, these methods often require that the unmodified isotopic composition of meteoric water, or local carbon reservoirs, or both, are recorded by authigenic minerals. Surprisingly, these critical assumptions have not been tested across wide-ranging environmental contexts. Here, we show that globally distributed Quaternary lake carbonate oxygen isotope compositions are not strongly, nor significantly, correlated with local meteoric-derived water compositions due to the modification of in-flow waters following entry into the lake environment. These modifications are largely caused by surface water evaporation, and can result in dubious reconstructions of ancient hydrological conditions and water source effects such as the strength of prevailing air-mass trajectory, >3km errors in paleoelevation estimates, unrealistic shifts in lake water temperature, and misleading interpretations of local carbon cycle conditions if not accounted for. However, our analysis suggests that positive shifts in surface water δ18O are accompanied by similar magnitude shifts in δ13C-DIC during lake residence. This positive co-variation in δ18O and δ13C may be used to detrend lake carbonate compositions for the effects of surface water evaporation using a parameter we define here as the '13C-excess'. This approach uses the isotopic covariant trend between in-flow waters and lake waters, rather than lacustrine covariation alone, to better constrain ancient meteoric-derived water compositions. To demonstrate the potential strength of the 13C-excess approach over single element methods, we compare the paleoelevation estimates derived from lake carbonate compositions using both approaches. When Tibetan lakes are excluded from the dataset, 13C-excess values are significantly correlated with mean up-slope hypsometric altitude with
DEFF Research Database (Denmark)
Løvschal, Mette
2014-01-01
This article proposes a processual ontology for the emergence of man-made, linear boundaries across northwestern Europe, particularly in the first millennium BC. Over a significant period of time, these boundaries became new ways of organizing the landscape and settlements—a phenomenon that has...... of this phenomenon emerged along equivalent trajectories. At the same time, variation in the regional incorporation of these linear phenomena points toward situation-specific applications and independent development....
DEFF Research Database (Denmark)
Zølner, Mette
The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....
Boundary conditions for General Relativity on AdS3 and the KdV hierarchy
Pérez, Alfredo; Tempo, David; Troncoso, Ricardo
2016-06-01
It is shown that General Relativity with negative cosmological constant in three spacetime dimensions admits a new family of boundary conditions being labeled by a nonnegative integer k. Gravitational excitations are then described by "boundary gravitons" that fulfill the equations of the k-th element of the KdV hierarchy. In particular, k = 0 corresponds to the Brown-Henneaux boundary conditions so that excitations are described by chiral movers. In the case of k = 1, the boundary gravitons fulfill the KdV equation and the asymptotic symmetry algebra turns out to be infinite-dimensional, abelian and devoid of central extensions. The latter feature also holds for the remaining cases that describe the hierarchy ( k > 1). Our boundary conditions then provide a gravitational dual of two noninteracting left and right KdV movers, and hence, boundary gravitons possess anisotropic Lifshitz scaling with dynamical exponent z = 2 k + 1. Remarkably, despite spacetimes solving the field equations are locally AdS, they possess anisotropic scaling being induced by the choice of boundary conditions. As an application, the entropy of a rotating BTZ black hole is precisely recovered from a suitable generalization of the Cardy formula that is compatible with the anisotropic scaling of the chiral KdV movers at the boundary, in which the energy of AdS spacetime with our boundary conditions depends on z and plays the role of the central charge. The extension of our boundary conditions to the case of higher spin gravity and its link with different classes of integrable systems is also briefly addressed.
DEFF Research Database (Denmark)
Sannino, Francesco
2009-01-01
We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...... fixed point. Remarkably this value is identical to the maximum bound predicted in the nonpertubative regime via the all-orders conjectured beta function for nonsupersymmetric gauge theories.......We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...
Aerial Triangulation Close-range Images with Dual Quaternion
Directory of Open Access Journals (Sweden)
SHENG Qinghong
2015-05-01
Full Text Available A new method for the aerial triangulation of close-range images based on dual quaternion is presented. Using dual quaternion to represent the spiral screw motion of the beam in the space, the real part of dual quaternion represents the angular elements of all the beams in the close-range area networks, the real part and the dual part of dual quaternion represents the line elements corporately. Finally, an aerial triangulation adjustment model based on dual quaternion is established, and the elements of interior orientation and exterior orientation and the object coordinates of the ground points are calculated. Real images and large attitude angle simulated images are selected to run the experiments of aerial triangulation. The experimental results show that the new method for the aerial triangulation of close-range images based on dual quaternion can obtain higher accuracy.
Hydrodynamic performance of combined cylinders structure with dual arc-shaped porous outer walls
Lin, Gao; Liu, Jun
2012-11-01
This study examines the hydrodynamic performance of short-crested wave interaction with a new porous cylindrical structure by using the scaled boundary finite element method (SBFEM), which is a semi-analytical technique combining the advantages of the finite element method and the boundary element method and with its own special features as well. The cylindrical structure consists of dual arc-shaped porous outer cylinders circumscribing an impermeable inner cylinder. A central feature of the newly extended method is that two virtual outer cylinders extending the arc-shaped porous outer cylinders with the same centre are introduced and variable porous-effect parameters are also introduced for the two virtual cylinders, so that the final SBFEM equation still can be handled in a closed-form analytical manner in the radial direction and by a finite element approximation in the circumferential direction. The entire computational domain is divided into two bounded and one unbounded domains, and a variational principle formulation is used to derive the SBFEM equation in each sub-domain. The velocity potential in bounded and unbounded domains is formulated using sets of Bessel and Hankel functions respectively, and the unknown coefficients are determined from the matching conditions. The results of numerical verification show that the approach discretises only the outermost virtual cylinder with surface finite-elements and fewer elements are required to obtain very accurate results. Influences of the incident wave parameters and structural configurations on the hydrodynamics are examined.
Boundary conditions for General Relativity on AdS$_{3}$ and the KdV hierarchy
Pérez, Alfredo; Troncoso, Ricardo
2016-01-01
It is shown that General Relativity with negative cosmological constant in three spacetime dimensions admits a new family of boundary conditions being labeled by a nonnegative integer $k$. Gravitational excitations are then described by "boundary gravitons" that fulfill the equations of the $k$-th element of the KdV hierarchy. In particular, $k=0$ corresponds to the Brown-Henneaux boundary conditions so that excitations are described by chiral movers. In the case of $k=1$, the boundary gravitons fulfill the KdV equation and the asymptotic symmetry algebra turns out to be infinite-dimensional, abelian and devoid of central extensions. The latter feature also holds for the remaining cases that describe the hierarchy ($k>1$). Our boundary conditions then provide a gravitational dual of two noninteracting left and right KdV movers, and hence, boundary gravitons possess anisotropic Lifshitz scaling with dynamical exponent $z=2k+1$. Remarkably, despite spacetimes solving the field equations are locally AdS, they po...
THE DUAL MIXED METHOD FOR AN UNILATERAL PROBLEM
Institute of Scientific and Technical Information of China (English)
Lie-heng Wang
2003-01-01
In this paper, the dual mixed method for an unilateral problems which is the simplified modelling of scalar function for the friction-free contact problem, is considered. The dual mixed problem is introduced, the existence and uniqeness of the solution of the problem are presented, and error bounds O(h4/3) and O(h2/3) are obtained for the dual mixed finite element approximations of Raviart-Thomas elements for k = 0 and k = 1 respectively.
DEFF Research Database (Denmark)
Neergaard, Ulla; Nielsen, Ruth
2010-01-01
; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects...... and distributive justice at national level....
DEFF Research Database (Denmark)
Neergaard, Ulla; Nielsen, Ruth
2010-01-01
; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects...... and distributive justice at national level....
First order formalism for the holographic duals of defect CFTs
Energy Technology Data Exchange (ETDEWEB)
Korovin, Yegor [KdV Institute for Mathematics, Institute for Theoretical Physics, Science Park 904, 1090 GL Amsterdam (Netherlands); School of Mathematical Sciences and STAG Research Centre, University of Southampton,Southampton SO17 1BJ (United Kingdom)
2014-04-24
We develop a first order formalism for constructing gravitational duals of conformal defects in a bottom up approach. Similarly as for the flat domain walls a single function specifies the solution completely. Using this formalism we construct several novel families of analytic solutions dual to conformal interfaces and boundaries. As a sample application we study the boundary OPE and entanglement entropy for one of the found defects.
Investigation of olivine and orthopyroxene grain boundaries by atom probe tomography
Krawczynski, M.; Skemer, P. A.; Bachhav, M.; Dong, Y.; Marquis, E. A.
2016-12-01
Accurate chemical analysis at grain boundaries is challenging by traditional microscopic techniques, especially for poor conducting geological samples. Atom probe tomography (APT) is a unique technique that can elucidate chemistry and 3-D distribution of elements within a sample volume at the sub-nanometer length scale. With advances in laser and sample preparation techniques in the last decade, APT is now successfully applied to a wide range of poor conducting materials like metal oxides, ceramics, and biological minerals. In this study, we apply the APT technique to investigate the grain boundary chemistry of orthopyroxene (opx) and olivine. These minerals are the most abundant in the upper mantle and their grain boundaries may be important geochemical reservoirs in Earth. Moreover, physical properties such as grain boundary diffusivity, conductivity, and mobility, are likely influenced by the presence or absence of impurities. Single crystals of opx and olivine grains, separated from a San Carlos xenolith, were deformed at 1 GPa and 1500 K. Plastic deformation promoted dynamic recrystallization, creating new grain boundaries within a chemically homogeneous medium. Needle shaped specimens of opx-opx and olivine-olivine grain boundaries were prepared using standard lift out techniques and a dual beam focused ion beam (FIB). APT analyses were performed in laser mode with laser energy of 50 pJ/pulse, repetition rate of 200 kHz, and detection rate of 1%. A 3-D distribution of elements was reconstructed and 1-D profiles across the grain boundary have been calculated. Fe, Al, and Ca show enrichments at the grain boundaries for both phases, consistent with previous studies that used STEM/EDX or EPMA techniques. Although qualitatively similar, the spatial resolution of the APT method is significantly better than other methods, and our data show that the grain-boundary enrichment of minor elements in both olivine and pyroxene compositions is limited to a region no greater
DEFF Research Database (Denmark)
Neergaard, Ulla; Nielsen, Ruth
2010-01-01
This article builds on the results obtained in the so-called Blurring Boundaries project which was undertaken at the Law Department, Copenhagen Business School, in the period from 2007 to 2009. It looks at the sustainability of the Danish welfare state in an EU law context and on the integration ...
DEFF Research Database (Denmark)
Aarhus, Rikke; Ballegaard, Stinne Aaløkke
2010-01-01
To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work to ...
Adaptive finite element method for shape optimization
Morin, Pedro
2012-01-16
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.
A numerical study on dual-phase-lag model of bio-heat transfer during hyperthermia treatment.
Kumar, P; Kumar, Dinesh; Rai, K N
2015-01-01
The success of hyperthermia in the treatment of cancer depends on the precise prediction and control of temperature. It was absolutely a necessity for hyperthermia treatment planning to understand the temperature distribution within living biological tissues. In this paper, dual-phase-lag model of bio-heat transfer has been studied using Gaussian distribution source term under most generalized boundary condition during hyperthermia treatment. An approximate analytical solution of the present problem has been done by Finite element wavelet Galerkin method which uses Legendre wavelet as a basis function. Multi-resolution analysis of Legendre wavelet in the present case localizes small scale variations of solution and fast switching of functional bases. The whole analysis is presented in dimensionless form. The dual-phase-lag model of bio-heat transfer has compared with Pennes and Thermal wave model of bio-heat transfer and it has been found that large differences in the temperature at the hyperthermia position and time to achieve the hyperthermia temperature exist, when we increase the value of τT. Particular cases when surface subjected to boundary condition of 1st, 2nd and 3rd kind are discussed in detail. The use of dual-phase-lag model of bio-heat transfer and finite element wavelet Galerkin method as a solution method helps in precise prediction of temperature. Gaussian distribution source term helps in control of temperature during hyperthermia treatment. So, it makes this study more useful for clinical applications.
DEFF Research Database (Denmark)
Brodkin, Evelyn; Larsen, Flemming
2013-01-01
In recent decades, workfare-style policies have become part of the institutional architecture of welfare and labor market arrangements around the world. In this article, we offer a comparative, historical view of workfare´s advance. Our analysis recognizes the complexity and diversity of what we...... call the “policies of workfare” and highlights the different paths through which these policies have developed in the U.S. and parts of Europe. We argue that it is necessary to look beyond familiar policy labels and language in order to consider workfare-style policies as part of a broader political...... project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...
Amaritsakul, Yongyut; Chao, Ching-Kong; Lin, Jinn
2014-09-01
Pedicle screws are used for treating several types of spinal injuries. Although several commercial versions are presently available, they are mostly either fully cylindrical or fully conical. In this study, the bending strengths of seven types of commercial pedicle screws and a newly designed double dual core screw were evaluated by finite element analyses and biomechanical tests. All the screws had an outer diameter of 7 mm, and the biomechanical test consisted of a cantilever bending test in which a vertical point load was applied using a level arm of 45 mm. The boundary and loading conditions of the biomechanical tests were applied to the model used for the finite element analyses. The results showed that only the conical screws with fixed outer diameter and the new double dual core screw could withstand 1,000,000 cycles of a 50-500 N cyclic load. The new screw, however, exhibited lower stiffness than the conical screw, indicating that it could afford patients more flexible movements. Moreover, the new screw produced a level of stability comparable to that of the conical screw, and it was also significantly stronger than the other screws. The finite element analysis further revealed that the point of maximum tensile stress in the screw model was comparable to the point at which fracture occurred during the fatigue test. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Boundary conditions for General Relativity on AdS{sub 3} and the KdV hierarchy
Energy Technology Data Exchange (ETDEWEB)
Pérez, Alfredo; Tempo, David; Troncoso, Ricardo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)
2016-06-20
It is shown that General Relativity with negative cosmological constant in three spacetime dimensions admits a new family of boundary conditions being labeled by a nonnegative integer k. Gravitational excitations are then described by “boundary gravitons” that fulfill the equations of the k-th element of the KdV hierarchy. In particular, k=0 corresponds to the Brown-Henneaux boundary conditions so that excitations are described by chiral movers. In the case of k=1, the boundary gravitons fulfill the KdV equation and the asymptotic symmetry algebra turns out to be infinite-dimensional, abelian and devoid of central extensions. The latter feature also holds for the remaining cases that describe the hierarchy (k>1). Our boundary conditions then provide a gravitational dual of two noninteracting left and right KdV movers, and hence, boundary gravitons possess anisotropic Lifshitz scaling with dynamical exponent z=2k+1. Remarkably, despite spacetimes solving the field equations are locally AdS, they possess anisotropic scaling being induced by the choice of boundary conditions. As an application, the entropy of a rotating BTZ black hole is precisely recovered from a suitable generalization of the Cardy formula that is compatible with the anisotropic scaling of the chiral KdV movers at the boundary, in which the energy of AdS spacetime with our boundary conditions depends on z and plays the role of the central charge. The extension of our boundary conditions to the case of higher spin gravity and its link with different classes of integrable systems is also briefly addressed.
Directory of Open Access Journals (Sweden)
Mehmet Camurdan
1998-01-01
are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.
Dual Lattice of ℤ-module Lattice
Directory of Open Access Journals (Sweden)
Futa Yuichi
2017-07-01
Full Text Available In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász base reduction algorithm and cryptographic systems with lattice [20], [10] and [19].
Baran, Anthony J.; Groth, Samuel P.
2017-09-01
The measurement of the shape and size distributions of small atmospheric ice particles (i.e. less than about 100 μm in size) is still an unresolved problem in atmospheric physics. This paper is composed of two parts, each addressing one of these measurements. In the first part, we report on an application of a new open-source electromagnetic boundary element method (BEM) called ;BEM++; to characterise the shape of small ice particles through the simulation of the two-dimensional (2D) light scattering patterns of extreme Chebyshev ice particles. Previous electromagnetic studies of Chebyshev particles have concentrated upon high Chebyshev orders, but with low Chebyshev deformation parameters. Here, we extend such studies by concentrating on the 2D light scattering properties of Chebyshev particles with extreme deformation parameters, up to 0.5, and with Chebyshev orders up to 16, at a size parameter of 15, in a fixed orientation. The results demonstrate the applicability of BEM++ to the study of the electromagnetic scattering properties of extreme particles and the usefulness of measuring the light scattering patterns of particles in 2D to mimic the scattering behaviours of highly irregular particles, such as dendritic atmospheric ice or hazardous biological and/or aerosol particles. In the second part, we demonstrate the potential application of remotely sensed very-high-resolution brightness temperature measurements of optically thin cirrus between wavelengths of about 8.0 and 12.0 μm to resolve the current atmospheric physics issue of determining the number concentration of small ice particles with size less than about 100 μm.
D5-brane boundary reflection factors
Correa, Diego H
2013-01-01
We compute the strong coupling limit of the boundary reflection factor for excitations on open strings attached to various kinds of D5-branes that probe AdS5 x S5. We study the crossing equation, which constrains the boundary reflection factor, and propose that some solutions will give the boundary reflection factors for all values of the coupling. Our proposal passes various checks in the strong coupling limit by comparison with diverse explicit string theory computations. In some of the cases we consider, the D5-branes correspond to 1/2 BPS Wilson loops in the k-th rank antisymmetric representation of the dual field theory. In the other cases they correspond in the dual field theory to the addition of a fundamental hypermultiplet in a defect.
From boundaries to boundary work: middle managers creating inter-organizational change.
Oldenhof, Lieke; Stoopendaal, Annemiek; Putters, Kim
2016-11-21
Purpose In healthcare, organizational boundaries are often viewed as barriers to change. The purpose of this paper is to show how middle managers create inter-organizational change by doing boundary work: the dual act of redrawing boundaries and coordinating work in new ways. Design/methodology/approach Theoretically, the paper draws on the concept of boundary work from Science and Technology Studies. Empirically, the paper is based on an ethnographic investigation of middle managers that participate in a Dutch reform program across health, social care, and housing. Findings The findings show how middle managers create a sense of urgency for inter-organizational change by emphasizing "fragmented" service provision due to professional, sectoral, financial, and geographical boundaries. Rather than eradicating these boundaries, middle managers change the status quo gradually by redrawing composite boundaries. They use boundary objects and a boundary-transcending vocabulary emphasizing the need for societal gains that go beyond production targets of individual organizations. As a result, work is coordinated in new ways in neighborhood teams and professional expertise is being reconfigured. Research limitations/implications Since boundary workers create incremental change, it is necessary to follow their work for a longer period to assess whether boundary work contributes to paradigm change. Practical implications Organizations should pay attention to conditions for boundary work, such as legitimacy of boundary workers and the availability of boundary spaces that function as communities of practice. Originality/value By shifting the focus from boundaries to boundary work, this paper gives valuable insights into "how" boundaries are redrawn and embodied in objects and language.
A note on the convergence of the direct collocation boundary
DEFF Research Database (Denmark)
Juhl, Peter Møller
1998-01-01
An overview of the literature dealing with convergence of boundary element formulations is presented, and an intuitive account of the results is given. The convergence of an axisymmetric boundary element formulation is studied using linear, quadratic or superparametric elements. It is demonstrate...
A note on the convergence of the direct collocation boundary
DEFF Research Database (Denmark)
Juhl, Peter Møller
1998-01-01
An overview of the literature dealing with convergence of boundary element formulations is presented, and an intuitive account of the results is given. The convergence of an axisymmetric boundary element formulation is studied using linear, quadratic or superparametric elements. It is demonstrate...
Boundary Integral Equations and A Posteriori Error Estimates
Institute of Scientific and Technical Information of China (English)
YU Dehao; ZHAO Longhua
2005-01-01
Adaptive methods have been rapidly developed and applied in many fields of scientific and engineering computing. Reliable and efficient a posteriori error estimates play key roles for both adaptive finite element and boundary element methods. The aim of this paper is to develop a posteriori error estimates for boundary element methods. The standard a posteriori error estimates for boundary element methods are obtained from the classical boundary integral equations. This paper presents hyper-singular a posteriori error estimates based on the hyper-singular integral equations. Three kinds of residuals are used as the estimates for boundary element errors. The theoretical analysis and numerical examples show that the hyper-singular residuals are good a posteriori error indicators in many adaptive boundary element computations.
Institute of Scientific and Technical Information of China (English)
施明光; 徐艳杰; 张楚汉; 刘钧玉
2016-01-01
Any structural domain can be discretized automatically with a mesh of arbitrary n-sided (n≥3)polygon scaled boundary finite elements (PSBFE)based on Delaunay triangulation background mesh.Compared with previous literatures based on SBFEM,PSBFE retains the characteristics of SBFEM's accurately representing orders of singularities at crack tips it is more general and flexible in modeling complicated structures and their crack propagation.Here,PSBFE was for the first time applied to simulate the dynamic interactions between a crack and inclusions in composite material. The numerical results of stationary cracks under dynamic load were consistent with available data in literatures.Next,a local remeshing scheme was employed to simulate the dynamic crack propagation.The numerical results demonstrated that stiff and soft inclusions have the restraining and amplification effects on the dynamic stress intensity factor of a structure;the sizes and positions of inclusions also affect the dynamic stress intensity factor,the larger the size and the closer the inclusion,the more the effects.%基于三角形背景网格，任意结构可用 n（n≥3）边多边形比例边界有限元（Polygon Scaled Boundary Finite Elements，PSBFE）自动离散。相对以往基于比例边界有限元（SBFEM）的应用，该多边形单元不但继承 SBFEM半解析求解裂纹尖端奇异性的特性，而且在模拟复杂结构的网格生成和裂纹扩展上具有更高的通用性。首次用该单元模拟了动荷载下复合材料裂纹和夹杂相互作用。动荷载稳定裂纹情况下，PSBFE 计算结果同现有文献吻合良好，在此基础上，结合基于拓扑的局部网格重剖分方法，模拟了动荷载下夹杂和扩展裂纹相互作用。结果表明，硬质夹杂和软质夹杂对结构的动力应力强度因子分别起到抑制和放大的作用。夹杂尺寸，夹杂大小也会在一定范围内影响动力应力强度因子，尺寸越大距
Design of dual-band reflectarray using genetic algorithm
Maruyama, Tamami
2017-07-01
This paper proposes novel design method of dual-band reflectarray using genetic algorithm (GA). Ordinary, each elements of reflectarray are designed to have desired reflection phase. However, when we adopt same polarization in dual frequencies, the element configuration designed to satisfy desired reflection phase in one frequency influences the characteristics in other frequency. Therefore, it is difficult to achieve dual-band reflectarray. To address the issues, we adopt two layer patches for element to increase flexibility of design and optimize the patches configuration using GA. As a result, we achieve novel reflectarray that reflect wave towards the direction of theta equal to 27 deg. and phi equal to 0 deg. in dual frequency simultaneously when incidence wave is coming from the direction of theta equal to 0 deg. and phi equal to 0 deg. in dual frequency.
Institute of Scientific and Technical Information of China (English)
李绪宣; 于更新; 符力耘; 温书亮; 管西竹
2011-01-01
边界元法对随机起伏的复杂海底界面具有良好的适应性.比较了边界元法与有限差分法对复杂断层模型的模拟精度,并验证了边界元法的有效性.利用边界元法对复杂海底模型进行波场模拟,反映起伏海底界面对地震波传播的影响；利用统计参数描述复杂海底地貌特征,将崎岖海底界面划分为快、慢变化和强、弱起伏等4种特征类型.根据不同统计参数的选择建立崎岖海底理论模型,利用边界元法对不同类型的崎岖海底理论模型进行模拟研究,同时与实际海底资料相对比,分析了复杂海底地震散射特征.此项研究成果可为复杂海底地区目标导向地震观测系统设计和采集参数优化提供理论依据.%The boundary-element method ( BEM) has a good adaptability for simulating irregularly rough and complex seabed. The simulation accuracy of BEM for a complex fault model was compared with that of the finite-difference method, and the effectiveness of BEM was confirmed. BEM can be used to conduct wave simulation of rough seabed models, reflecting the impacts of rough seabed on seismic wave propagation. The statistical parameters were used to describe complex seabed topography, and then four types of rough seabed interface can be identified, i. e. fast lateral change, slow lateral change, strong vertical relief and weak vertical relief. The theoretical models of rough seabed can be build by selecting various statistical parameters, and BEM was used to make simulation of different theoretical models of rough seabed. Simultaneously, some actual seabed data was compared and the seismic scattering characteristics of complex seabed were analyzed. These results will provide some theoretical foundations for the seismic acquisition design of complex seabed and the optimization of seismic acquisition parameters.
New proposal for a holographic boundary conformal field theory
Miao, Rong-Xin; Chu, Chong-Sun; Guo, Wu-Zhong
2017-08-01
We propose a new holographic dual of conformal field theory defined on a manifold with boundaries, i.e., boundary conformal field theory (BCFT). Our proposal can apply to general boundaries and agrees with Takayanagi [Phys. Rev. Lett. 107, 101602 (2011), 10.1103/PhysRevLett.107.101602] for the special case of a disk and half-plane. Using the new proposal of AdS /BCFT , we successfully obtain the expected boundary Weyl anomaly, and the obtained boundary central charges naturally satisfy a c-like theorem holographically. We also investigate the holographic entanglement entropy of BCFT and find that the minimal surface must be normal to the bulk spacetime boundaries when they intersect. Interestingly, the entanglement entropy depends on the boundary conditions of BCFT and the distance to the boundary. The entanglement wedge has an interesting phase transition that is important for the self-consistency of AdS /BCFT .
DEFF Research Database (Denmark)
Laursen, Jens; Milman, Nils; Pind, N.;
2014-01-01
contents according to calculated similarities, one clustering elements according to correlation coefficients between the element contents, both using Euclidian distance and Ward Procedure. RESULTS: One dendrogram separated subjects in 7 clusters showing no differences in ethnicity, gender or age....... The analysis discriminated between elements in normal and cirrhotic livers. The other dendrogram clustered elements in four clusters: sulphur and chlorine; copper and bromine; potassium and zinc; iron. There were significant correlations between the elements in normal liver samples: S was associated with Cl, K...
Real-time optical plasma boundary reconstruction for plasma position control at the TCV Tokamak
Hommen, G.; Baar, M. de; Duval, B.P.; Andrebe, Y.; Le, H.B.; Klop, M.A.; Doelman, N.J.; Witvoet, G.; Steinbuch, M.
2014-01-01
A dual, high speed, real-time visible light camera setup was installed on the TCV tokamak to reconstruct optically and in real-time the plasma boundary shape. Localized light emission from the plasma boundary in tangential view, broadband visible images results in clearly resolved boundary edge-feat
Polarization diverse antenna for dual-band WLAN applications
CSIR Research Space (South Africa)
Steyn, JM
2009-10-01
Full Text Available A dual-band dual-polarized (DBDP) configuration is proposed for wireless local area network (WLAN) applications. A four-element array is used to facilitate operation in both the standard WLAN frequency bands (IEEE 802.11b and IEEE 802.11a...
Ali, Elaf Jaafar; Gao, David Yang
2016-10-01
The goal of this paper is to solve the post buckling phenomena of a large deformed elastic beam by a canonical dual mixed finite element method (CD-FEM). The total potential energy of this beam is a nonconvex functional which can be used to model both pre-and post-buckling problems. Different types of dual stress interpolations are used in order to verify the triality theory. Applications are illustrated with different boundary conditions and external loads by using semi-definite programming (SDP) algorithm. The results show that the global minimum of the total potential energy is stable buckled configuration, the local maximum solution leads to the unbuckled state, and both of these two solutions are numerically stable. While the local minimum is unstable buckled configuration and very sensitive to both stress interpolations and the external loads.
Solving Fluid Structure Interaction Problems with an Immersed Boundary Method
Barad, Michael F.; Brehm, Christoph; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equations can be used for moving boundary problems as well as fully coupled fluid-structure interaction is presented. The underlying Cartesian immersed boundary method of the Launch Ascent and Vehicle Aerodynamics (LAVA) framework, based on the locally stabilized immersed boundary method previously presented by the authors, is extended to account for unsteady boundary motion and coupled to linear and geometrically nonlinear structural finite element solvers. The approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems. Keywords: Immersed Boundary Method, Higher-Order Finite Difference Method, Fluid Structure Interaction.
Superconvergence for rectangular serendipity finite elements
Institute of Scientific and Technical Information of China (English)
CHEN; Chuanmiao(陈传淼)
2003-01-01
Based on an orthogonal expansion and orthogonality correction in an element, superconvergenceat symmetric points for any degree rectangular serendipity finite element approximation to second order ellipticproblem is proved, and its behaviour up to the boundary is also discussed.
Miyachi, Hideki
2010-01-01
In this paper, we investigate the structure of the Gardiner-Masur boundary of Teichmuller space. Indeed, we will give a geometric description of boundary comparing to the Duchin-Leininger-Rafi compactification of the space of singular flat structures. We will obtain the coincidence between the Gardiner-Masur boundary and the Thurston boundary at the projective classes of uniquely ergodic measured foliations. We also study the action of the mapping class group on the Gardiner-Masur boundary and characterize the elements by fixed points.
DEFF Research Database (Denmark)
Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina
2003-01-01
This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries.......After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies...... seem a core issue when dealing with technology for boundaries....
A Holographic Dual of the Quantum Inequalities
Levine, Adam R
2016-01-01
In this note, we establish the 2-D Quantum Inequalities - first proved by Flanagan - for all CFTs with a causal holographic dual. Following the treatment of Kelly \\& Wall, we establish that the Boundary Causality Condition in an asymptotic AdS spacetime implies the Quantum Inequalities on the boundary. Our results extend easily to curved spacetime and are stable under deformations of the CFT by relevant operators. We discuss higher dimensional generalizations and possible connections to recent bounds on $a/c$ in 4-D CFTs.
Dual condensates at finite isospin chemical potential
Zhang, Zhao
2015-01-01
The dual observables as order parameters for center symmetry are tested at finite isospin chemical potential $\\mu_I$ in a Polyakov-loop enhanced chiral model of QCD with physical quark masses. As a counterpart of the dressed Polyakov-loop, the first Fourier moment of pion condensate is introduced for $\\mu_I>{m_\\pi}/{2}$ under the temporal twisted boundary conditions for quarks. We demonstrate that this dual condensate exhibits the similar temperature dependence as the conventional Polyakov-loop. We confirm that its rapid increase with $T$ is driven by the evaporating of pion condensation. On the other hand, the dressed Polyakov-loop shows abnormal thermal behavior, which even decreases with $T$ at low temperatures due to the influence of pion condensate. We thus argue that in QCD the critical temperature extracting from a dual observable may have nothing to do with the quark confinement-deconfinement transition if the quark mass is very small.
Method and system for dual resolution translation stage
Halpin, John Michael
2014-04-22
A dual resolution translation stage includes a stage assembly operable to receive an optical element and a low resolution adjustment device mechanically coupled to the stage assembly. The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution stage further includes a lever arm mechanically coupled to the adjustable pivot block. The lever arm is operable to pivot about the pivot shaft. The dual resolution stage additionally includes a high resolution adjustment device mechanically coupled to the lever arm and the stage assembly.
DEFF Research Database (Denmark)
Heiselberg, Per; Nielsen, Peter V.
Air distribution in ventilated rooms is a flow process that can be divided into different elements such as supply air jets, exhaust flows, thermal plumes, boundary layer flows, infiltration and gravity currents. These flow elements are isolated volumes where the air movement is controlled...... by a restricted number of parameters, and the air movement is fairly independent of the general flow in the enclosure. In many practical situations, the most convenient· method is to design the air distribution system using flow element theory....
Finite element mesh generation
Lo, Daniel SH
2014-01-01
Highlights the Progression of Meshing Technologies and Their ApplicationsFinite Element Mesh Generation provides a concise and comprehensive guide to the application of finite element mesh generation over 2D domains, curved surfaces, and 3D space. Organised according to the geometry and dimension of the problem domains, it develops from the basic meshing algorithms to the most advanced schemes to deal with problems with specific requirements such as boundary conformity, adaptive and anisotropic elements, shape qualities, and mesh optimization. It sets out the fundamentals of popular techniques
Yu, Shixing; Li, Long; Shi, Guangming
2016-08-01
A metasurface, which is composed of printed cross-dipole elements with different arm lengths, is designed, fabricated, and experimentally demonstrated to generate orbital angular momentum (OAM) vortex waves of dual polarizations and dual modes in the radio frequency domain simultaneously. The prototype of a practical metasurface is fabricated and measured to validate the results of theoretical analysis and design at 5.8 GHz. Numerical and experimental results verify that vortex waves with dual OAM modes and dual polarizations can be flexibly generated by using a reflective metasurface. The proposed method paves a way to generate diverse OAM vortex waves for radio frequency and microwave wireless communication applications.
The dynamic specification of surfaces and boundaries.
Cunningham, D W; Shipley, T F; Kellman, P J
1998-01-01
Sequential changes in small separated texture elements can produce perception of a moving form with continuous boundaries. This process of spatiotemporal boundary formation may exist to provide a robust means of detecting moving objects that occlude more distant textured surfaces. Whereas most research on spatiotemporal boundary formation has been focused on boundary and shape perception, two experiments are reported here on the perception of surface qualities in spatiotemporal boundary formation. In experiment 1 a free-report procedure was used to investigate whether surface perception can be determined by dynamic information alone, apart from static spatial differences. Results showed that dynamic information was sufficient to determine the appearance of a surface. This dynamic information may play an important role in other aspects of perception. In experiment 2, it was shown that dynamically specifying an extended, opaque surface facilitated edge perception. Implications for the relation of boundary and surface perception and for theories of perceptual transparency are discussed.
Yusop, Nur Syaza Mohd; Mohamed, Nurul Akmal
2017-05-01
Boundary Element Method (BEM) is a numerical way to approximate the solutions of a Boundary Value Problem (BVP). The potential problem which involves the Laplace's equation on the square shape domain will be considered where the boundary is divided into four sets of linear boundary elements. We study the derivation system of equation for mixed BVP with one Dirichlet Boundary Condition (BC) is prescribed on one element of the boundary and Neumann BC on the other three elements. The mixed BVP will be reduced to a Boundary Integral Equation (BIE) by using a direct method which involves Green's second identity representation formula. Then, linear interpolation is used where the boundary will be discretized into some linear elements. As the result, we then obtain the system of linear equations. In conclusion, the specific element in the mixed BVP will have the specific prescribe value depends on the type of boundary condition. For Dirichlet BC, it has only one value at each node but for the Neumann BC, there will be different values at the corner nodes due to outward normal. Therefore, the assembly process for the system of equations related to the mixed BVP may not be as straight forward as Dirichlet BVP and Neumann BVP. For the future research, we will consider the different shape domains for mixed BVP with different prescribed boundary conditions.
S-duality of boundary conditions and the Geometric Langlands program
Gaiotto, Davide
2016-01-01
Maximally supersymmetric gauge theory in four dimensions admits local boundary conditions which preserve half of the bulk supersymmetries. The S-duality of the bulk gauge theory can be extended in a natural fashion to act on such half-BPS boundary conditions. The purpose of this note is to explain the role these boundary conditions can play in the Geometric Langlands program. In particular, we describe how to obtain pairs of Geometric Langland dual objects from S-dual pairs of half-BPS boundary conditions.
DEFF Research Database (Denmark)
Sørensen, Peter Birch
This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part...... of the paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...... tax could be relevant for New Zealand....
DEFF Research Database (Denmark)
Sørensen, Peter Birch
This paper discusses the principles and practices of dual income taxation in the Nordic countries. The first part of the paper explains the rationale and the historical background for the introduction of the dual income tax and describes the current Nordic tax practices. The second part...... of the paper focuses on the problems of taxing income from small businesses and the issue of corporate-personal tax integration under the dual income tax, considering alternative ways of dealing with these challenges. In the third and final part of the paper, I briefly discuss whether introducing a dual income...... tax could be relevant for New Zealand....
Experimental Array for Generating Dual Circularly-Polarized Dual-Mode OAM Radio Beams
Bai, Xu-Dong; Liang, Xian-Ling; Sun, Yun-Tao; Hu, Peng-Cheng; Yao, Yu; Wang, Kun; Geng, Jun-Ping; Jin, Rong-Hong
2017-01-01
Recently, vortex beam carrying orbital angular momentum (OAM) for radio communications has attracted much attention for its potential of transmitting multiple signals simultaneously at the same frequency, which can be used to increase the channel capacity. However, most of the methods for getting multi-mode OAM radio beams are of complicated structure and very high cost. This paper provides an effective solution of generating dual circularly-polarized (CP) dual-mode OAM beams. The antenna consists of four dual-CP elements which are sequentially rotated 90 degrees in the clockwise direction. Different from all previous published research relating to OAM generation by phased arrays, the four elements are fed with the same phase for both left-hand circular polarization (LHCP) and right-hand circular polarization (RHCP). The dual-mode operation for OAM is achieved through the opposite phase differences generated for LHCP and RHCP, when the dual-CP elements are sequentially rotated in the clockwise direction. The measured results coincide well with the simulated ones, which verified the effectiveness of the proposed design.
An offset-fed 20/30 GHz dual-band circularly polarized reflectarray antenna
DEFF Research Database (Denmark)
Smith, Thomas Gunst; Vesterdal, Niels; Gothelf, Ulrich;
2013-01-01
A dual-frequency circularly polarized offset reflectarray antenna for Ka-band satellite communication is presented. The reflectarray is designed using the concentric dual split-loop element which enables full 360° phase adjustment simultaneously in two separate frequency bands. The elements have...
Dual-fuel, dual-throat engine preliminary analysis
Obrien, C. J.
1979-01-01
A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.
1982-09-01
THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 11 - 4 TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY STRUCTURES...19 B THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 37 C TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY...layer structure. 10 SECTION 3 THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE The (111) planes of the fcc structure is stacked as ABCABC... as
Generalized Supersymetric Boundary State
1999-01-01
Following our previous paper (hep-th/9909027), we generalize a supersymmetric boundary state so that arbitrary configuration of the gauge field coupled to the boundary of the worldsheet is incorpolated. This generalized boundary state is BRST invariant and satisfy the non-linear boundary conditions with non-constant gauge field strength. This boundary state contains divergence which is identical with the loop divergence in a superstring sigma model. Hence vanishing of the beta function in the...
Ou, Xiao-Ming; Chen, Kevin; Shih, Jean C
2004-05-14
Monoamine oxidases (MAO) A and B catalyze the oxidative deamination of many biogenic and dietary amines. Abnormal expression of MAO has been implicated in several psychiatric and neurodegenerative disorders. Human MAO B core promoter (-246 to -99 region) consists of CACCC element flanked by two clusters of overlapping Sp1 sites. Here, we show that cotransfection with transforming growth factor (TGF)-beta-inducible early gene (TIEG)2 increased MAO B gene expression at promoter, mRNA, protein, and catalytic activity levels in both SH-SY5Y and HepG2 cells. Mutation of the CACCC element increased the MAO B promoter activity, and cotransfection with TIEG2 further increased the promoter activity, suggesting that CACCC was a repressor element. This increase was reduced when the proximal Sp1 overlapping sites was mutated. Similar interactions were found with Sp3. These results showed that TIEG2 and Sp3 were repressors at the CACCC element but were activators at proximal Sp1 overlapping sites of MAO B. Gel-shift and chromatin immunoprecipitation assays showed that TIEG2 and Sp3 bound directly to CACCC element and the proximal Sp1 sites in both synthetic oligonucleotides and natural MAO B core promoter. TIEG2 had a higher affinity to Sp1 sites than CACCC element, whereas Sp3 had an equal affinity to both elements. Thus, TIEG2 was an activator, but Sp3 had no effect on MAO B gene expression. This study provides new insights into MAO B gene expression and illustrates the complexity of gene regulation.
Experiments and Simulation of Thermal Behaviors of the Dual-drive Servo Feed System
Institute of Scientific and Technical Information of China (English)
YANG Jun; MEI Xuesong; FENG Bin; ZHAO Liang; MA Chi; SHI Hu
2015-01-01
The machine tool equipped with the dual-drive servo feed system could realize high feed speed as well as sharp precision. Currently, there is no report about the thermal behaviors of the dual-drive machine, and the current research of the thermal characteristics of machines mainly focuses on steady simulation. To explore the influence of thermal characterizations on the precision of a jib boring machine assembled dual-drive feed system, the thermal equilibrium tests and the research on thermal-mechanical transient behaviors are carried out. A laser interferometer, infrared thermography and a temperature-displacement acquisition system are applied to measure the temperature distribution and thermal deformation at different feed speeds. Subsequently, the finite element method (FEM) is used to analyze the transient thermal behaviors of the boring machine. The complex boundary conditions, such as heat sources and convective heat transfer coefficient, are calculated. Finally, transient variances in temperatures and deformations are compared with the measured values, and the errors between the measurement and the simulation of the temperature and the thermal error are 2 ℃ and 2.5 μm, respectively. The researching results demonstrate that the FEM model can predict the thermal error and temperature distribution very well under specified operating condition. Moreover, the uneven temperature gradient is due to the asynchronous dual-drive structure that results in thermal deformation. Additionally, the positioning accuracy decreases as the measured point became further away from the motor, and the thermal error and equilibrium period both increase with feed speeds. The research proposes a systematical method to measure and simulate the boring machine transient thermal behaviors.
Energy Technology Data Exchange (ETDEWEB)
Arita, T.; Murakami, K.; Okha, K.
1983-04-28
A cathode with a dual layer active mass is installed in the disk shaped alkaline silver and zinc element. The first layer, which is turned towards the anode, contains 85 parts Ag2O, 5 parts electrolytic MnO2 and 10 parts graphite. The second layer, which contacts the bottom of the element, contains 35 parts Ag2O, 60 parts electrolytic MnO2 and 5 parts graphite. The electrical capacity of the first and second layers is 60 and 40, respectively. The first layer may be discharged with a high current density and the second layer with less current density. The element has high characteristics with comparatively low cost.
Planetary boundaries: Governing emerging risks and opportunities
2016-01-01
The climate, ecosystems and species, ozone layer, acidity of the oceans, the flow of energy and elements through nature, landscape change, freshwater systems, aerosols, and toxins—these constitute the planetary boundaries within which humanity must find a safe way to live and prosper. These are thresholds that, if we cross them, we run the risk of rapid, non-linear, and irreversible changes to the environment, with severe consequences for human wellbeing. The concept of planetary boundaries, ...
Gurtin, Lee
1980-01-01
The dual career couple is forced to make a series of choices and compromises that impact the realms of marriage and career. The dilemmas that confront dual career marriages can be overcome only by compromise, accommodation, and mutual understanding on the part of the individuals involved. A revamping of human resources and recruitment programs is…
Light, Noreen
2016-01-01
In 2015, legislation to improve access to dual-credit programs and to reduce disparities in access and completion--particularly for low income and underrepresented students--was enacted. The new law focused on expanding access to College in the High School but acknowledged issues in other dual-credit programs and reinforced the notion that cost…
DEFF Research Database (Denmark)
Niemann, Hans Henrik
2003-01-01
A different aspect of using the parameterisation of all systems stabilised by a given controller, i.e. the dual Youla parameterisation, is considered. The relation between system change and the dual Youla parameter is derived in explicit form. A number of standard uncertain model descriptions are...
Krasnov, Kirill
2016-01-01
Self-dual gravity is a diffeomorphism invariant theory in four dimensions that describes two propagating polarisations of the graviton and has a negative mass dimension coupling constant. Nevertheless, this theory is not only renormalisable but quantum finite, as we explain. We also collect various facts about self-dual gravity that are scattered across the literature.
Institute of Scientific and Technical Information of China (English)
华建文; 刘立人; 王宁
1997-01-01
A recipe to construct the exact dual self-Fourier-Fresnel-transform functions is shown, where the Dirac comb function and transformable even periodic function are used. The mathematical proof and examples are given Then this kind of self-transform function is extended to the feasible optical dual self-transform functions.
Bergshoeff, Eric A.; Riccioni, Fabio; Alvarez-Gaumé, L.
2011-01-01
We probe doubled geometry with dual fundamental branes. i.e. solitons. Restricting ourselves first to solitonic branes with more than two transverse directions we find that the doubled geometry requires an effective wrapping rule for the solitonic branes which is dual to the wrapping rule for fundam
Institute of Scientific and Technical Information of China (English)
Duan Li; Fucai Qian; Peilin Fu
2005-01-01
This paper summarizes recent progress by the authors in developing two solution frameworks for dual control. The first solution framework considers a class of dual control problems where there exists a parameter uncertainty in the observation equation of the LQG problem. An analytical active dual control law is derived by a variance minimization approach. The issue of how to determine an optimal degree of active learning is then addressed, thus achieving an optimality for this class of dual control problems. The second solution framework considers a general class of discrete-time LQG problems with unknown parameters in both state and observation equations. The best possible (partial) closed-loop feedback control law is derived by exploring the future nominal posterior probabilities, thus taking into account the effect of future learning when constructing the optimal nominal dual control.
Lotz, Mikkel R.; Boll, Mads; Østerberg, Frederik W.; Hansen, Ole; Petersen, Dirch H.
2016-10-01
We have studied the behavior of micro four-point probe (M4PP) measurements on two-dimensional (2D) sheets composed of grains of varying size and grain boundary resistivity by Monte Carlo based finite element (FE) modelling. The 2D sheet of the FE model was constructed using Voronoi tessellation to emulate a polycrystalline sheet, and a square sample was cut from the tessellated surface. Four-point resistances and Hall effect signals were calculated for a probe placed in the center of the square sample as a function of grain density n and grain boundary resistivity ρ GB . We find that the dual configuration sheet resistance as well as the resistance measured between opposing edges of the square sample have a simple unique dependency on the dimension-less parameter √{ n } ρ GB G 0 , where G0 is the sheet conductance of a grain. The value of the ratio R A / R B between resistances measured in A- and B-configurations depends on the dimensionality of the current transport (i.e., one- or two-dimensional). At low grain density or low grain boundary resistivity, two-dimensional transport is observed. In contrast, at moderate grain density and high grain resistivity, one-dimensional transport is seen. Ultimately, this affects how measurements on defective systems should be interpreted in order to extract relevant sample parameters. The Hall effect response in all M4PP configurations was only significant for moderate grain densities and fairly large grain boundary resistivity.
Finite elements and approximation
Zienkiewicz, O C
2006-01-01
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises.Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher o
Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...
Political State Boundary (National)
Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...
State Agency Administrative Boundaries
Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...
US Fish and Wildlife Service, Department of the Interior — This document gives information as to the exact legal boundaries of the Mingo Wilderness area. It also includes a map showing the boundaries visually.
County Political Boundaries (National)
Department of Transportation — County boundaries with political limit - boundaries extending into the ocean (NTAD 2015). The TIGER/Line shapefiles and related database files (.dbf) are an extract...
Allegheny County Municipal Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...
Allegheny County Municipal Boundaries
Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...
Transition elements based on transfinite interpolation
Odabas, Onur R.; Sarigul-Klijn, Nesrin
1993-01-01
In this study the transfinite interpolation methodology, a 'blending-function' method in particular, is utilized for the formulation of transition elements. The method offers a formal way of meeting continuity requirements in a transition element. Element shape functions are derived by blending the continuity requirements of individual boundary segments. The blending directions are naturally orthogonal in rectangular domains therefore interpolation of the boundaries over rectangular 2D and 3D elements can be performed with minimal effort. In triangular domains, however, the choice of blending directions and interpolants is not straightforward. For that reason, two interpolation techniques are proposed for blending of the boundaries of triangular domains. A series of transition elements of various classes compatible with elements of different orders and dimensions is developed and the full potential of the transfinite interpolation, as it applies to element formulation, is explored.
Dual Credit/Dual Enrollment and Data Driven Policy Implementation
Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug
2014-01-01
The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…
Borck, Howard
1977-01-01
In this tongue-in-cheek article, sociological boundaries are on trial in a simulated courtroom. It is argued that sociologists concerned with establishing boundaries are neglecting the significant issues facing social scientists whereas the defense contends that boundaries are essential to the discipline. (Author/JR)