WorldWideScience

Sample records for dual beam device

  1. Dual beam vidicon digitizer

    International Nuclear Information System (INIS)

    Evans, T.L.

    1976-01-01

    A vidicon waveform digitizer which can simultaneously digitize two independent signals has been developed. Either transient or repetitive waveforms can be digitized with this system. A dual beam oscilloscope is used as the signal input device. The light from the oscilloscope traces is optically coupled to a television camera, where the signals are temporarily stored prior to digitizing

  2. Optical and tribomechanical stability of optically variable interference security devices prepared by dual ion beam sputtering.

    Science.gov (United States)

    Çetinörgü-Goldenberg, Eda; Baloukas, Bill; Zabeida, Oleg; Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2011-07-01

    Optical security devices applied to banknotes and other documents are exposed to different types of harsh environments involving the cycling of temperature, humidity, chemical agents, and tribomechanical intrusion. In the present work, we study the stability of optically variable devices, namely metameric interference filters, prepared by dual ion beam sputtering onto polycarbonate and glass substrates. Specifically, we assess the color difference as well as the changes in the mechanical properties and integrity of all-dielectric and metal-dielectric systems due to exposure to bleach, detergent and acetone agents, and heat and humidity. The results underline a significant role of the substrate material, of the interfaces, and of the nature and microstructure of the deposited films in long term stability under everyday application conditions.

  3. The high-energy dual-beam facility

    International Nuclear Information System (INIS)

    Kaletta, D.

    1984-07-01

    This proposal presents a new experimental facility at the Kernforschungszentrum Karlsruhe (KfK) to study the effects of irradiation on the first wall and blanket materials of a fusion reactor. A special effort is made to demonstrate the advantages of the Dual Beam Technique (DBT) as a future research tool for materials development within the European Fusion Technology Programme. The Dual-Beam-Technique allows the production both of helium and of damage in thick metal and ceramic specimens by simultaneous irradiation with high energy alpha particles and protons produced by the two KfK cyclotrons. The proposal describes the Dual Beam Technique the planned experimental activities and the design features of the Dual Beam Facility presently under construction. (orig.) [de

  4. Dual-beam CRT

    International Nuclear Information System (INIS)

    1975-01-01

    A dual-beam cathode-ray tube having a pair of electron guns and associated deflection means disposed side-by-side on each side of a central axis is described. The electron guns are parallel and the deflection means includes beam centering plates and angled horizontal deflection plates to direct the electron beams toward the central axis, precluding the need for a large-diameter tube neck in which the entire gun structures are angled. Bowing control plates are disposed adjacent to the beam centering plates to minimize trace bowing, and an intergun shield is disposed between the horizontal deflection plates to control and correct display pattern geometry distortion

  5. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  6. Realization of synaptic learning and memory functions in Y2O3 based memristive device fabricated by dual ion beam sputtering

    Science.gov (United States)

    Das, Mangal; Kumar, Amitesh; Singh, Rohit; Than Htay, Myo; Mukherjee, Shaibal

    2018-02-01

    Single synaptic device with inherent learning and memory functions is demonstrated based on a forming-free amorphous Y2O3 (yttria) memristor fabricated by dual ion beam sputtering system. Synaptic functions such as nonlinear transmission characteristics, long-term plasticity, short-term plasticity and ‘learning behavior (LB)’ are achieved using a single synaptic device based on cost-effective metal-insulator-semiconductor (MIS) structure. An ‘LB’ function is demonstrated, for the first time in the literature, for a yttria based memristor, which bears a resemblance to certain memory functions of biological systems. The realization of key synaptic functions in a cost-effective MIS structure would promote much cheaper synapse for artificial neural network.

  7. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    International Nuclear Information System (INIS)

    Kim, Joshua; Zhang, Tiezhi; Lu, Weiguo

    2014-01-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source–dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10–15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source–dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented. (paper)

  8. Simulation and experimental study on transportation of dual-beam guided by confining magnetic-field

    International Nuclear Information System (INIS)

    Bai Xianchen; Zhang Jiande; Yang Jianhua

    2008-01-01

    Using external longitudinal magnetic-field to guide dual-beam out of the dual-shift tubes is a key step for the practicality of synchronizing dual-beam produced by a single accelerator. On the basis of the simulation of the confining magnetic-field for the solid dual-beam, the experiment of magnetic-field guiding annular dual-beam was presented. When the diode voltage was 380 kV, dual-beam currents of 5.10 kA and 4.92 kA were obtained. The experimental results indicate that the designed magnetic-field system could confine the annular dual-beam effectively, and the critical confining magnetic-field is about 0.5 T. (authors)

  9. Dual axis translation apparatus and system for translating an optical beam and related method

    Science.gov (United States)

    Cassidy, Kelly

    1991-01-01

    A dual axis translation device and system in accordance with this invention, for translating an optical beam along both an x-axis and a y-axis which are perpendicular to one another, has a beam directing means acting on said optical beam for directing the beam along a particular path transverse to said x and y axes. An arrangement supporting said beam directing means for movement in the x and y direction within a given plane is provided. The arrangement includes a first means for translating said beam directing means along the x-axis in said given plane in order to translate the beam along said x-axis. The arrangement comprises a second means for translating said beam directing means along the y-axis in said given plane in order to translate the beam along said y-axis.

  10. Beam, multi-beam and broad beam production with COMIC devices

    International Nuclear Information System (INIS)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Peaucelle, C.

    2012-01-01

    The COMIC discharge cavity is a very versatile technology. We will present new results and devices that match new applications like: molecular beams, ultra compact beam line for detectors calibrations, quartz source for on-line application, high voltage platform source, sputtering /assistance broad beams and finally, a quite new use, high energy multi-beam production for surface material modifications. In more details, we will show that the tiny discharge of COMIC can mainly produce molecular ions (H 3+ ). We will present the preliminary operation of the fully quartz ISOLDE COMIC version, in collaboration with IPN Lyon, we will present a first approach for a slit extraction version of a three cavity device, and after discussing about various extraction systems on the multi discharge device (41 cavities) we will show the low energy broad beam (2 KV) and high energy multi-beams (10 beams up to 30 KV) productions. We will specially present the different extraction systems adapted to each application and the beams characteristics which are strongly dependent on the voltage distribution of an accel-accel two electrodes extraction system. The paper is followed by the slides of the presentation. (authors)

  11. [Design of Dual-Beam Spectrometer in Spectrophotometer for Colorimetry].

    Science.gov (United States)

    Liu, Yi-xuan; Yan, Chang-xiang

    2015-07-01

    Spectrophotometers for colorimetry are usually composed of two independent and identical spectrometers. In order to reduce the volume of spectrophotometer for colorimetry, a design method of double-beam spectrometer is put forward. A traditional spectrometer is modified so that a new spectrometer can realize the function of double spectrometers, which is especially suitable for portable instruments. One slit is replaced by the double-slit, than two beams of spectrum can be detected. The working principle and design requirement of double-beam spectrometer are described. A spectrometer of portable spectrophotometer is designed by this method. A toroidal imaging mirror is used for the Czerny-Turner double-beam spectrometer in this paper, which can better correct astigmatism, and prevent the dual-beam spectral crosstalk. The results demonstrate that the double-beam spectrometer designed by this method meets the design specifications, with the spectral resolution less than 10 nm, the spectral length of 9.12 mm, and the volume of 57 mm x 54 mm x 23 mm, and without the dual-beam spectral overlap in the detector either. Comparing with a traditional spectrophotometer, the modified spectrophotometer uses a set of double-beam spectrometer instead of two sets of spectrometers, which can greatly reduce the volume. This design method can be specially applied in portable spectrophotometers, also can be widely applied in other double-beam spectrophotometers, which offers a new idea for the design of dual-beam spectrophotometers.

  12. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  13. Design of parallel dual-energy X-ray beam and its performance for security radiography

    International Nuclear Information System (INIS)

    Kim, Kwang Hyun; Myoung, Sung Min; Chung, Yong Hyun

    2011-01-01

    A new concept of dual-energy X-ray beam generation and acquisition of dual-energy security radiography is proposed. Erbium (Er) and rhodium (Rh) with a copper filter were positioned in front of X-ray tube to generate low- and high-energy X-ray spectra. Low- and high-energy X-rays were guided to separately enter into two parallel detectors. Monte Carlo code of MCNPX was used to derive an optimum thickness of each filter for improved dual X-ray image quality. It was desired to provide separation ability between organic and inorganic matters for the condition of 140 kVp/0.8 mA as used in the security application. Acquired dual-energy X-ray beams were evaluated by the dual-energy Z-map yielding enhanced performance compared with a commercial dual-energy detector. A collimator for the parallel dual-energy X-ray beam was designed to minimize X-ray beam interference between low- and high-energy parallel beams for 500 mm source-to-detector distance.

  14. Dual-beam operation of the Astra Gemini laser facility

    International Nuclear Information System (INIS)

    Bryan Parry; Nicola Booth; Oleg Chekhlov; John Collier; Edwin Divall; Klaus Ertel; Peta Foster; Steve Hawkes; Chris Hooker; Victoria Marshall

    2010-01-01

    Complete text of publication follows. Gemini is a Petawatt class Ti:Sapphire laser system at the Rutherford Appleton Laboratory, UK. It was designed as a dual beam laser, with two independently configurable 800 nm beams delivering 15 J to target in 30 fs pulse duration, giving 0.5 PW peak power per beam. It is capable of reaching intensities over 10 22 W/cm 2 . Gemini can achieve a maximum repetition rate of one shot every 20 seconds, allowing it to deliver hundreds of shots per day; a feature which makes it unique among PW lasers. Already this has proved valuable in experiments involving electron acceleration in gas jets. The first Gemini beamline became operational in 2008. Commissioning of the second beam was deferred to allow earlier access to the facility by experimental scientists, and to develop operational experience. In this mode, Gemini has already produced significant results from a number of advanced plasma physics experiments. The second beam of Gemini is now coming online, with the first dual beam experiment starting in June 2010. The flexibility offered by two short pulse, ultra high intensity beams is another aspect that makes this laser system unique. The dual beams enable versatile configurations and illumination geometries, facilitating a wider range of experiments than is possible with only a single beam. Operationally however, it introduces additional factors which must be monitored and controlled in order to achieve experimental success. The beams must be timed with respect to each other with accuracy less than the pulse duration. The beam foci must also be overlapped spatially, and the stability of both these factors maintained over extended periods. We report on the second beam commissioning process, including the latest results on the characteristics, stability and spatio-temporal overlap of the two beams. We present details of amplifier performance, along with measurements of beam quality, focal spot, pulse duration and contrast, to give a

  15. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  16. Intra-cavity decomposition of a dual-directional laser beam

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-01-01

    Full Text Available A method of decomposing a dual-directional laser beam into a forward propagating field and a backward propagating field for an apertured plano-concave cavity is presented. An intra-cavity aperture is a simple method of laser beam shaping as higher...

  17. Errors in dual x-ray beam differential absorptiometry

    International Nuclear Information System (INIS)

    Bolin, F.; Preuss, L.; Gilbert, K.; Bugenis, C.

    1977-01-01

    Errors pertinent to the dual beam absorptiometry system have been studied and five areas are given in detail: (1) scattering, in which a computer analysis of multiple scattering shows little error due to this effect; (2) geometrical configuration effects, in which the slope of the sample is shown to influence the accuracy of the measurement; (3) Poisson variations, wherein it is shown that a simultaneous reduction can be obtained in both dosage and statistical error; (4) absorption coefficients, in which the effect of variation in absorption coefficient compilations is shown to have a critical effect on the interpretations of experimental data; and (5) filtering, wherein is shown the need for filters on dual beam systems using a characteristic x-ray output. A zero filter system is outlined

  18. Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection

    International Nuclear Information System (INIS)

    Liu, Y.; Sowerby, B.D.; Tickner, J.R.

    2008-01-01

    Dual-beam radiography techniques utilising various combinations of high-energy X-rays and neutrons are attractive for screening bulk cargo for contraband such as narcotics and explosives. Dual-beam radiography is an important enhancement to conventional single-beam X-ray radiography systems in that it provides additional information on the composition of the object being imaged. By comparing the attenuations of transmitted dual high-energy beams, it is possible to build a 2D image, colour coded to indicate material. Only high-energy X-rays, gamma-rays and neutrons have the required penetration to screen cargo containers. This paper reviews recent developments and applications of dual-beam radiography for air cargo inspection. These developments include dual high-energy X-ray techniques as well as fast neutron and gamma-ray (or X-ray) radiography systems. High-energy X-ray systems have the advantage of generally better penetration than neutron systems, depending on the material being interrogated. However, neutron systems have the advantage of much better sensitivity to material composition compared to dual high-energy X-ray techniques. In particular, fast neutron radiography offers the potential to discriminate between various classes of organic material, unlike dual energy X-ray techniques that realistically only offer the ability to discriminate between organic and metal objects

  19. Recovery effects due to the interaction between nuclear and electronic energy losses in SiC irradiated with a dual-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Thomé, Lionel, E-mail: thome@csnsm.in2p3.fr; Debelle, Aurélien; Garrido, Frédérico; Sattonnay, Gaël; Mylonas, Stamatis [Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS-IN2P3-Université Paris-Sud, Bât. 108, F-91405 Orsay (France); Velisa, Gihan [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France); Horia Hulubei National Institute for Physics and Nuclear Engineering, P.O.B. MG-6, 077125 Magurele (Romania); Miro, Sandrine; Trocellier, Patrick; Serruys, Yves [CEA, DEN, Service de Recherches de Métallurgie Physique, Laboratoire JANNUS, F-91191 Gif-sur-Yvette (France)

    2015-03-14

    Single and dual-beam ion irradiations of silicon carbide (SiC) were performed to study possible Synergetic effects between Nuclear (S{sub n}) and Electronic (S{sub e}) Energy Losses. Results obtained combining Rutherford backscattering in channeling conditions, Raman spectroscopy, and transmission electron microscopy techniques show that dual-beam irradiation of SiC induces a dramatic change in the final sample microstructure with a substantial decrease of radiation damage as compared to single-beam irradiation. Actually, a defective layer containing dislocations is formed upon dual-beam irradiation (S{sub n} and S{sub e}), whereas single low-energy irradiation (S{sub n} alone) or even sequential (S{sub n} + S{sub e}) irradiations lead to full amorphization. The healing process is ascribed to the electronic excitation arising from the electronic energy loss of swift ions. These results shed new light on the long-standing puzzling problem of the existence of a possible synergy between S{sub n} and S{sub e} in ion-irradiation experiments. This work is interesting for both fundamental understanding of the ion-solid interactions and technological applications in the nuclear industry where recovery S{sub n}/S{sub e} effects may preserve the integrity of nuclear devices.

  20. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  1. Dual deflectable beam strip engine development.

    Science.gov (United States)

    Dulgeroff, C. R.; Zuccaro, D. E.; Kami, S.; Schnelker, D. E.; Ward, J. W.

    1972-01-01

    This paper describes a dual beam thruster that has been designed, constructed, and tested. The system is suitable for two-axes attitude control and is comprised of two orthogonal strips, each capable of producing 0.30 mlb thrust and beam deflections of more than plus or minus 20 deg. The nominal specific impulse for the thruster is 5000 sec, and the thrust level from each strip can be varied from 0 to 100%. Neutralizer filaments that were developed and life tested over 2000 hours producing more than 40 mA of electron emission per watt of input power are also discussed. The system power required for clean ionizers is approximately 200 W.

  2. Dual beam encoded extended fractional Fourier transform security ...

    Indian Academy of Sciences (India)

    This paper describes a simple method for making dual beam encoded extended fractional Fourier transform (EFRT) security holograms. The hologram possesses different stages of encoding so that security features are concealed and remain invisible to the counterfeiter. These concealed and encoded anticounterfeit ...

  3. Technical Aspects of Delivering Simultaneous Dual and Triple Ion Beams to a Target at the Michigan Ion Beam Laboratory

    Science.gov (United States)

    Toader, O.; Naab, F.; Uberseder, E.; Kubley, T.; Taller, S.; Was, G.

    The Michigan Ion Beam Laboratory (MIBL) at the University of Michigan in Ann Arbor, Michigan, USA, plays a significant role in supporting the mission of the U.S. DOE Office of Nuclear Energy. MIBL is a charter laboratory of the NSUF (National Scientific User Facility - US DoE) and hosts users worldwide. The laboratory has evolved from a single accelerator laboratory to a highly versatile facility with three accelerators (3 MV Tandem, a 400 kV Ion Implanter and a 1.7 MV Tandem), seven beam lines and five target chambers that together, provide unique capabilities to capture the extreme environment experienced by materials in reactor systems. This capability now includes simultaneous multiple (dual, triple) ion irradiations, an irradiation accelerated corrosion cell, and soon, in-situ dual beam irradiation in a transmission electron microscope (TEM) for the study of radiation damage coupled with injection of transmutation elements. The two beam lines that will connect to the 300 kV FEI Tecnai G2 F30 microscope are expected to be operational by the end of 2017. Multiple simultaneous ion beam experiments involving light and heavy ions are already in progress. This paper will outline the current equipment and will focus on the new capability of running dual and triple ion beam experiments.

  4. Dual resolution cone beam breast CT: A feasibility study

    International Nuclear Information System (INIS)

    Chen Lingyun; Shen Youtao; Lai, Chao-Jen; Han Tao; Zhong Yuncheng; Ge Shuaiping; Liu Xinming; Wang Tianpeng; Yang, Wei T.; Whitman, Gary J.; Shaw, Chris C.

    2009-01-01

    Purpose: In this study, the authors investigated the feasibility of a dual resolution volume-of-interest (VOI) cone beam breast CT technique and compared two implementation approaches in terms of dose saving and scatter reduction. Methods: With this technique, a lead VOI mask with an opening is inserted between the x-ray source and the breast to deliver x-ray exposure to the VOI while blocking x rays outside the VOI. A CCD detector is used to collect the high resolution projection data of the VOI. Low resolution cone beam CT (CBCT) images of the entire breast, acquired with a flat panel (FP) detector, were used to calculate the projection data outside the VOI with the ray-tracing reprojection method. The Feldkamp-Davis-Kress filtered backprojection algorithm was used to reconstruct the dual resolution 3D images. Breast phantoms with 180 μm and smaller microcalcifications (MCs) were imaged with both FP and FP-CCD dual resolution CBCT systems, respectively. Two approaches of implementing the dual resolution technique, breast-centered approach and VOI-centered approach, were investigated and evaluated for dose saving and scatter reduction with Monte Carlo simulation using a GEANT4 package. Results: The results showed that the breast-centered approach saved more breast absorbed dose than did VOI-centered approach with similar scatter reduction. The MCs in fatty breast phantom, which were invisible with FP CBCT scan, became visible with the FP-CCD dual resolution CBCT scan. Conclusions: These results indicate potential improvement of the image quality inside the VOI with reduced breast dose both inside and outside the VOI.

  5. Electron beam directed energy device and methods of using same

    Science.gov (United States)

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  6. Polarizing beam-splitter device at a pulsed neutron source

    International Nuclear Information System (INIS)

    Itoh, Shinichi; Takeda, Masayasu.

    1996-01-01

    A polarizing beam-splitter device was designed using Fe/Si supermirrors in order to obtain two polarized neutron beam lines, from one unpolarized neutron beam line, with a practical beam size for investigating the properties of condensed matter. This device was mounted after a guide tube at a pulsed neutron source, and its performance was investigated. (author)

  7. Crosstalk elimination in the detection of dual-beam optical tweezers by spatial filtering

    International Nuclear Information System (INIS)

    Ott, Dino; Oddershede, Lene B.; Reihani, S. Nader S.

    2014-01-01

    In dual-beam optical tweezers, the accuracy of position and force measurements is often compromised by crosstalk between the two detected signals, this crosstalk leading to systematic and significant errors on the measured forces and distances. This is true both for dual-beam optical traps where the splitting of the two traps is done by polarization optics and for dual optical traps constructed by other methods, e.g., holographic tweezers. If the two traps are orthogonally polarized, most often crosstalk is minimized by inserting polarization optics in front of the detector; however, this method is not perfect because of the de-polarization of the trapping beam introduced by the required high numerical aperture optics. Here we present a simple and easy-to-implement method to efficiently eliminate crosstalk. The method is based on spatial filtering by simply inserting a pinhole at the correct position and is highly compatible with standard back focal plane photodiode based detection of position and force. Our spatial filtering method reduces crosstalk up to five times better than polarization filtering alone. The effectiveness is dependent on pinhole size and distance between the traps and is here quantified experimentally and reproduced by theoretical modeling. The method here proposed will improve the accuracy of force-distance measurements, e.g., of single molecules, performed by dual-beam optical traps and hence give much more scientific value for the experimental efforts

  8. Simulating Transient Effects of Pulsed Beams on Beam Intercepting Devices

    CERN Document Server

    Richter, Herta; Noah Messomo, Etam

    2011-01-01

    The development in the physics community towards higher beam power through the possibilities of particle accelerators lead to challenges for the developers of elements which are exposed to effect of particle beams (beam intercepting devices = BIDs). For the design of BIDs, the increasing heat load onto these devices due to energetic and focused beams and - in most cases - their highly pulsed nature has to be taken into account. The physics requirements are sometimes opposed to the current state of the art. As one possibility of many in combining the different aspects for these ambitious demands, two highly developed computer programs, namely FLUKA and ANSYS AUTODYN, were joined for this dissertation. The former is a widely enhanced Monte-Carlo-code which specializes on the interaction of particles with static matter, while the latter is a versatile explicit code for the simulation of highly dynamic processes. Both computer programs were developed intensively over years and are still continuously enhanced in o...

  9. Real-time dual-band haptic music player for mobile devices.

    Science.gov (United States)

    Hwang, Inwook; Lee, Hyeseon; Choi, Seungmoon

    2013-01-01

    We introduce a novel dual-band haptic music player for real-time simultaneous vibrotactile playback with music in mobile devices. Our haptic music player features a new miniature dual-mode actuator that can produce vibrations consisting of two principal frequencies and a real-time vibration generation algorithm that can extract vibration commands from a music file for dual-band playback (bass and treble). The algorithm uses a "haptic equalizer" and provides plausible sound-to-touch modality conversion based on human perceptual data. In addition, we present a user study carried out to evaluate the subjective performance (precision, harmony, fun, and preference) of the haptic music player, in comparison with the current practice of bass-band-only vibrotactile playback via a single-frequency voice-coil actuator. The evaluation results indicated that the new dual-band playback outperforms the bass-only rendering, also providing several insights for further improvements. The developed system and experimental findings have implications for improving the multimedia experience with mobile devices.

  10. Dual-function beam splitter of a subwavelength fused-silica grating.

    Science.gov (United States)

    Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng

    2009-05-10

    We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.

  11. Formation of novel reactive intermediate by electron-laser dual beam irradiation

    International Nuclear Information System (INIS)

    Ishida, Akito; Takamuku, Setsuo

    1992-01-01

    The pulse radiolysis system of the Institute of Scientific and Industrial Research, Osaka University, (ISIR) has been progressed to observe a highly reactive species, which is produced by successive irradiation of electron and laser or of CW-UV-light and electron. The dual beam irradiation system, which consists of the beam synchronization system, the optical alignment, and the measurement system, is described in detail. Dual beam irradiation studies on 2-methylbenzophenone and some compounds with a C=N bond have been carried out by use of this system. Pulse radiolysis of 2-methylbenzophenone in benzene induced formation of an unstable photoenol via the triplet state, which was irradiated by a visible laser pulse to give dihydroanthrone. Pulse radiolysis of syn-benzalaniline and a nitrileylide in 2-methyltetrahydrofuran, which were produced by steady state photoirradiation at low temperature, enabled us to observe their very unstable radical anions. (author)

  12. A monochromatic, aberration-corrected, dual-beam low energy electron microscope.

    Science.gov (United States)

    Mankos, Marian; Shadman, Khashayar

    2013-07-01

    The monochromatic, aberration-corrected, dual-beam low energy electron microscope (MAD-LEEM) is a novel instrument aimed at imaging of nanostructures and surfaces at sub-nanometer resolution that includes a monochromator, aberration corrector and dual beam illumination. The monochromator reduces the energy spread of the illuminating electron beam, which significantly improves spectroscopic and spatial resolution. The aberration corrector utilizes an electron mirror with negative aberrations that can be used to compensate the aberrations of the LEEM objective lens for a range of electron energies. Dual flood illumination eliminates charging generated when a conventional LEEM is used to image insulating specimens. MAD-LEEM is designed for the purpose of imaging biological and insulating specimens, which are difficult to image with conventional LEEM, Low-Voltage SEM, and TEM instruments. The MAD-LEEM instrument can also be used as a general purpose LEEM with significantly improved resolution. The low impact energy of the electrons is critical for avoiding beam damage, as high energy electrons with keV kinetic energies used in SEMs and TEMs cause irreversible change to many specimens, in particular biological materials. A potential application for MAD-LEEM is in DNA sequencing, which demands imaging techniques that enable DNA sequencing at high resolution and speed, and at low cost. The key advantages of the MAD-LEEM approach for this application are the low electron impact energies, the long read lengths, and the absence of heavy-atom DNA labeling. Image contrast simulations of the detectability of individual nucleotides in a DNA strand have been developed in order to refine the optics blur and DNA base contrast requirements for this application. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  14. Measurement of breast tissue composition with dual energy cone-beam computed tomography: A postmortem study

    Energy Technology Data Exchange (ETDEWEB)

    Ding Huanjun; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2013-06-15

    Purpose: To investigate the feasibility of a three-material compositional measurement of water, lipid, and protein content of breast tissue with dual kVp cone-beam computed tomography (CT) for diagnostic purposes. Methods: Simulations were performed on a flat panel-based computed tomography system with a dual kVp technique in order to guide the selection of experimental acquisition parameters. The expected errors induced by using the proposed calibration materials were also estimated by simulation. Twenty pairs of postmortem breast samples were imaged with a flat-panel based dual kVp cone-beam CT system, followed by image-based material decomposition using calibration data obtained from a three-material phantom consisting of water, vegetable oil, and polyoxymethylene plastic. The tissue samples were then chemically decomposed into their respective water, lipid, and protein contents after imaging to allow direct comparison with data from dual energy decomposition. Results: Guided by results from simulation, the beam energies for the dual kVp cone-beam CT system were selected to be 50 and 120 kVp with the mean glandular dose divided equally between each exposure. The simulation also suggested that the use of polyoxymethylene as the calibration material for the measurement of pure protein may introduce an error of -11.0%. However, the tissue decomposition experiments, which employed a calibration phantom made out of water, oil, and polyoxymethylene, exhibited strong correlation with data from the chemical analysis. The average root-mean-square percentage error for water, lipid, and protein contents was 3.58% as compared with chemical analysis. Conclusions: The results of this study suggest that the water, lipid, and protein contents can be accurately measured using dual kVp cone-beam CT. The tissue compositional information may improve the sensitivity and specificity for breast cancer diagnosis.

  15. Selected topics on surface effects in fusion devices: neutral-beam injectors and beam-direct converters

    International Nuclear Information System (INIS)

    Kaminsky, M.

    1978-01-01

    Neutral-beam injectors are being used for the heating and fueling of plasmas in existing devices such as PLT (Princeton), ISX (Oak Ridge) and 2XIIB (Lawrence Livermore Laboratory) and will be used in devices such as TFTR (Princeton), MX (Livermore) and Doublet III (Gulf Atomic). For example, TFTR has been designed to receive a total of 20 MW of 120-keV deuterium atoms in pulses of 0.5-sec duration from 12 neutral beam injectors; for the MX experiment it is planned to inject a total of 750A (equivalent) of deuterium atoms with a mean energy of 56 keV in 0.5-sec pulses. The interaction of energetic deuterium atoms with exposed surfaces of device components such as beam dumps, beam-direct-convertors collectors, beam calorimeters, and armor plates, cause a variety of surface effects which affect deleteriously the operation of such devices. Some of the major effects will be discussed

  16. The positioning device of beam probes for accelerator LUE-200

    International Nuclear Information System (INIS)

    Becher, Yu.; Kalmykov, A.V.; Minashkin, M.F.; Sumbaev, A.P.

    2011-01-01

    The description of a device for the positioning of sliding beam probes which is the part of the beam diagnostic system for the LUE-200 electron linac of IREN installation is presented. The device provides remote control of input-output operation of beam probes of five diagnostic stations established in an accelerating tract and in the beam transportation channel of the accelerator

  17. Beam diagnostics using an emittance measurement device

    International Nuclear Information System (INIS)

    Sarstedt, M.; Becker, R.; Klein, H.; Maaser, A.; Mueller, J.; Thomae, R.; Weber, M.

    1995-01-01

    For beam diagnostics aside from Faraday cups for current measurements and analysing magnets for the determination of beam composition and energy the most important tool is an emittance measurement device. With such a system the distribution of the beam particles in phase-space can be determined. This yields information not only on the position of the particles but also on their angle with respect to the beam axis. There are different kinds of emittance measurement devices using either circular holes or slits for separation of part of the beam. The second method (slit-slit measurement), though important for the determination of the rms-emittance, has the disadvantage of integrating over the y- and y'-coordinate (measurement in xx'-plane assumed). This leads to different emittance diagrams than point-point measurements, since in xx'-plane for each two corresponding points of rr'-plane there exists a connecting line. With regard to beam aberrations this makes xx'-emittances harder to interpret. In this paper the two kinds of emittance diagrams are discussed. Additionally the influence of the slit height on the xx'-emittance is considered. The analytical results are compared to experimental measurements in rr'-, rx'- and xx'-phase-space. (orig.)

  18. Performance Analysis of Dual-Polarized Massive MIMO System with Human-Care IoT Devices for Cellular Networks

    Directory of Open Access Journals (Sweden)

    Jun-Ki Hong

    2018-01-01

    Full Text Available The performance analysis of the dual-polarized massive multiple-input multiple-output (MIMO system with Internet of things (IoT devices is studied when outdoor human-care IoT devices are connected to a cellular network via a dual-polarized massive MIMO system. The research background of the performance analysis of dual-polarized massive MIMO system with IoT devices is that recently the data usage of outdoor human-care IoT devices has increased. Therefore, the outdoor human-care IoT devices are necessary to connect with 5G cellular networks which can expect 1000 times higher performance compared with 4G cellular networks. Moreover, in order to guarantee the safety of the patient for emergency cases, a human-care Iot device must be connected to cellular networks which offer more stable communication for outdoors compared to short-range communication technologies such as Wi-Fi, Zigbee, and Bluetooth. To analyze the performance of the dual-polarized massive MIMO system for human-care IoT devices, a dual-polarized MIMO spatial channel model (SCM is proposed which considers depolarization effect between the dual-polarized transmit-antennas and the receive-antennas. The simulation results show that the performance of the dual-polarized massive MIMO system is improved about 16% to 92% for 20 to 150 IoT devices compared to conventional single-polarized massive MIMO system for identical size of the transmit array.

  19. High Efficiency Large-Angle Pancharatnam Phase Deflector Based on Dual Twist Design

    Science.gov (United States)

    2016-12-16

    construction and characterization of a ±40° beam steering device with 90% diffraction efficiency based on our dual-twist design at 633nm wavelength...N. & Escuti, M. J. Achromatic Wollaston prism beam splitter using polarization gratings. Opt. Lett. 41, 4461–4463 (2016). 13. Slussarenko, S., et...High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design Kun Gao1, Colin McGinty1, Harold Payson2, Shaun Berry2, Joseph

  20. Dual-modality imaging with a ultrasound-gamma device for oncology

    Science.gov (United States)

    Polito, C.; Pellegrini, R.; Cinti, M. N.; De Vincentis, G.; Lo Meo, S.; Fabbri, A.; Bennati, P.; Cencelli, V. Orsolini; Pani, R.

    2018-06-01

    Recently, dual-modality systems have been developed, aimed to correlate anatomical and functional information, improving disease localization and helping oncological or surgical treatments. Moreover, due to the growing interest in handheld detectors for preclinical trials or small animal imaging, in this work a new dual modality integrated device, based on a Ultrasounds probe and a small Field of View Single Photon Emission gamma camera, is proposed.

  1. Dual ion beam irradiation system for in situ observation with electron microscope

    International Nuclear Information System (INIS)

    Tsukamoto, Tetuo; Hojou, Kiiti; Furuno, Sigemi; Otsu, Hitosi; Izui, Kazuhiko.

    1993-01-01

    We have developed a new in situ observation system for dynamic processes under dual ion beam irradiation. The system consists of a modified 400 keV analytical electron microscope (JEOL, JEM-4000FX) and two 40 kV ion beam accelerators. This system allows evaluation of microscopic changes of structure and chemical bonding state of materials in the dynamic processes under two kinds of ion beam irradiations, that is required for the simulation test of the first wall of nuclear fusion reactors onto which He + , H + , and H 2 + ions are irradiated simultaneously. These two ion accelerators were equipped symmetrically both sides of the electron microscope and individually controlled. Each ion beam extracted from a duo-plasmatron ion gun is bent downward by an angle of 30deg with a mass-separating magnet, and introduced into specimen chamber of the electron microscope. Inside the specimen chamber the beam is deflected again by an angle of 30deg with an electrostatic prism so as to be incident on the specimen surface. Finally, two ion beams from both side are incident on the specimen surface at an angle of 60deg. The maximum ion current density of helium is more than 250μA/cm 2 at the specimen at an ion energy of 17 keV. Images of the electron microscope during dual ion beam irradiation are observed through a TV camera and recorded with a VTR. (author)

  2. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    Science.gov (United States)

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-04

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  3. Dual-electrode biasing experiments in KT-5C device

    International Nuclear Information System (INIS)

    Yu Yi; Lu Ronghua; Wang Chen; Pan Geshen; Wen Yizhi; Yu Changxuan; Ma Jinxiu; Wan Shude; Liu Wandong

    2005-01-01

    Based on the single biasing electrode experiments to optimize the confinement of plasma in the device of KT-5C tokamak, dual-biasing electrodes were inserted into the KT5C plasma for the first time to explore the enhancement of the effects of biasing and the mechanisms of the biasing. By means of applying different combinations of biasing voltages to the dual electrodes, the changes in E r , which is the key factor for boosting up the Er x B flow shear, were observed. The time evolution showed the inner electrode played a major role in dual-biasing, for it always drew a larger current than the outer one. The outer electrode made little influence. It turned out that the dual-biasing electrodes were as effective as a single one, in improving plasma confinement, for the mechanism of biasing was essentially an edge effect. (author)

  4. Study of loading by beam of dual-resonator structure of linear electron accelerator

    International Nuclear Information System (INIS)

    Milovanov, O.S.; Smirnov, I.A.

    1988-01-01

    Loading by the beam of the accelerating structure of an Argus dual-resonator linear electron accelerator with a kinetic energy of ∼ 1 MeV and a pulsed beam current of up to 0.5 A is studied experimentally. It is shown that the conditions for stable single-frequency operation of the magnetron are disrupted and the acceleration process is cut off at certain electron-beam currents. Experimental curves of the maximum beam current and maximum electron efficiency of the Argus linear electron accelerator as functions of rf power are given

  5. Characterization of light ion beams generated by a plasma focus device

    International Nuclear Information System (INIS)

    Koo, Bon Cheul

    1999-02-01

    Plasma focus device has been studied as neutron and X-ray sources generated from the high pressure fusion reaction during Z-pinch. Recently, the scope of the device is focused on efficient neutron generation, X-ray lithography, preliminary fusion experiment, and ion/electron beam generation devices. A Hexagonal Beam Generator with six parallel capacitors has been developed and generated ion beams from 30kJ(C=6 μ F, V= 100kV) maximum energy. To find the optimum condition of ion beam generation, the correlation among charging voltage(20∼30kV), operation pressure of chamber(0.1∼5 torr), and length of electrode has been studied. To measure ion beam, a Faraday Cup and 3 Rogowski coils were installed. Energy of ion beam was obtained by adopting time-of -flight method between Rogowski coils

  6. Surface modification of M50 steel by dual-ion-beam dynamic mixing

    International Nuclear Information System (INIS)

    Kuang Yuanzhu; Jan Jun; Qin Ouyang

    1994-01-01

    TaN films have many attractive characteristics, and so have been used for electronic and mechanical applications. There are many methods used for deposition of TaN films. Recently, the ion-beam dynamic mixing method has been used for thin film deposition and materials modification. In order to obtain high performance, stoichiometric composition and good adhesion we have deposited TaN films by a dual-ion-beam dynamic mixing method. This paper introduces the deposition and properties of TaN films on M50 steel by dual-ion-beam dynamic mixing. The microstructure of films was analysed by X-ray diffraction and Auger electron spectroscopy (AES). The microhardness, resistance to wear and erosion of these films were determined. The results showed that (1) the TaN films were successfully deposited on M50 steel by this method, (2) the performance, resistance to wear and erosion of M50 steel were improved by ion-beam-mixing deposition of the TaN thin films, (3) AES showed there was a mixed layer on the film interface, (4) the microhardness of the thin film depends on microstructure and thickness and (5) the microstructure and quality of the films depends on the deposition conditions, so it is important to select the proper operational parameters of ion sources. ((orig.))

  7. Multiquantum well beam-steering device for laser satellite communication

    Science.gov (United States)

    Lahat, Roee; Levy, Itamar; Shlomi, Arnon

    2002-01-01

    With the increasing interest in laser satellite communications, new methods are sought to solve the existing problems of accurate and rapid laser beam deflection. Current solutions in the form of galvanometers or piezo fast steering mirrors with one or two degrees of freedom are bulky, power-consuming and slow. The Multi-Quantum Well (MQW) is a semiconductor device with unique potential to steer laser beams without any moving parts. We have conducted a preliminary evaluation of the potential application of the MQW as a laser beam-steering device for laser satellite communication, examining the performance of critical parameters for this type of communications.

  8. Production of Inorganic Thin Scintillating Films for Ion Beam Monitoring Devices

    CERN Document Server

    Re, Maurizio; Cosentino, Luigi; Cuttone, Giacomo; Finocchiaro, Paolo; Hermanne, Alex; Lojacono, Pietro A; Ma, YingJun; Thienpont, Hugo; Van Erps, Jurgen; Vervaeke, Michael; Volckaerts, Bart; Vynck, Pedro

    2005-01-01

    In this work we present the development of beam monitoring devices consisting of thin CsI(Tl) films deposited on Aluminium support layers. The light emitted by the scintillating layer during the beam irradiation is measured by a CCD-camera. In a first prototype a thin Aluminium support layer of 6 micron allows the ion beam to easily pass through without significant energy loss and scattering effects. Therefore it turns out to be a non-destructive monitoring device to characterize on-line beam shape and beam position without interfering with the rest of the irradiation process. A second device consists of an Aluminium support layer which is thick enough to completely stop the impinging ions allowing to monitor at the same time the beam profile and the beam current intensity. Some samples have been coated by a 100 Å protective layer to prevent the film damage by atmosphere exposition. In this contribution we present our experimental results obtained by irradiating the samples with proton beams at 8.3 and 62 Me...

  9. Dual beam translator for use in Laser Doppler anemometry

    Science.gov (United States)

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  10. Dose characteristics of total-skin electron-beam irradiation with six-dual electron fields

    International Nuclear Information System (INIS)

    Choi, Tae Jin; Kim, Jin Hee; Kim, Ok Bae

    1998-01-01

    To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated. The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of Target-Skin Distance (TSD) and full collimator size (35x35 cm 2 on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cmx105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. The Full Width at Half Maximum(FWHM) of dose profile was 130 cm in large field of 105x105 cm 2 . The width of 100±10% of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose uniformity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80% depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within±10% difference excepts the protruding area of skin which needs a

  11. Beam Steering Devices Reduce Payload Weight

    Science.gov (United States)

    2012-01-01

    Scientists have long been able to shift the direction of a laser beam, steering it toward a target, but often the strength and focus of the light is altered. For precision applications, where the quality of the beam cannot be compromised, scientists have typically turned to mechanical steering methods, redirecting the source of the beam by swinging the entire laser apparatus toward the target. Just as the mechanical methods used for turning cars has evolved into simpler, lighter, power steering methods, so has the means by which researchers can direct lasers. Some of the typical contraptions used to redirect lasers are large and bulky, relying on steering gimbals pivoted, rotating supports to shift the device toward its intended target. These devices, some as large and awkward as a piece of heavy luggage, are subject to the same issues confronted by mechanical parts: Components rub, wear out, and get stuck. The poor reliability and bulk not to mention the power requirements to run one of the machines have made mechanical beam steering components less than ideal for use in applications where weight, bulk, and maneuverability are prime concerns, such as on an unmanned aerial vehicle (UAV) or a microscope. The solution to developing reliable, lighter weight, nonmechanical steering methods to replace the hefty steering boxes was to think outside the box, and a NASA research partner did just that by developing a new beam steering method that bends and redirects the beam, as opposed to shifting the entire apparatus. The benefits include lower power requirements, a smaller footprint, reduced weight, and better control and flexibility in steering capabilities. Such benefits are realized without sacrificing aperture size, efficiency, or scanning range, and can be applied to myriad uses: propulsion systems, structures, radiation protection systems, and landing systems.

  12. Production of polarized negative deuterium ion beam with dual optical pumping in KEK

    Energy Technology Data Exchange (ETDEWEB)

    Kinsho, M.; Ikegami, K.; Takagi, A. [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan); Mori, Y.

    1997-02-01

    To obtain highly nuclear-spin vector polarized negative deuterium ion beam, a dual optically pumped polarized negative deuterium ion source has been developed at KEK. It is possible to select a pure nuclear-spin state with this scheme, and negative deuterium ion beam with 100% nuclear-spin vector polarization can be produced in principle. We have obtained about 70% of nuclear-spin vector polarized negative deuterium ion beam so far. This result may open up a new possibilities for the optically pumped polarized ion source. (author)

  13. Creation of biomaterials using the dual beam IBAD methods

    International Nuclear Information System (INIS)

    Rajchel, B.; Jaworska, L.; Proniewicz, L.M.

    2001-01-01

    The Dual Beam Ion Assisted Deposition technique (IBAD) application for creation of the hard, biocompatible coating layers has been presented and discussed. As substrate the stainless steel, Ti, special titanium alloys, the Al 2 O 3 or other solid materials can be used. Presently, the biocompatible coating layers such as DLC (Diamond Like Coating), β-SiC, TiC, hydroxyapatite and thin coating layer based on Ca, P, O, H have been prepared and investigated

  14. Low-dose dual-energy cone-beam CT using a total-variation minimization algorithm

    International Nuclear Information System (INIS)

    Min, Jong Hwan

    2011-02-01

    Dual-energy cone-beam CT is an important imaging modality in diagnostic applications, and may also find its use in other application such as therapeutic image guidance. Despite of its clinical values, relatively high radiation dose of dual-energy scan may pose a challenge to its wide use. In this work, we investigated a low-dose, pre-reconstruction type of dual-energy cone-beam CT (CBCT) using a total-variation minimization algorithm for image reconstruction. An empirical dual-energy calibration method was used to prepare material-specific projection data. Raw data at high and low tube voltages are converted into a set of basis functions which can be linearly combined to produce material-specific data using the coefficients obtained through the calibration process. From much fewer views than are conventionally used, material specific images are reconstructed by use of the total-variation minimization algorithm. An experimental study was performed to demonstrate the feasibility of the proposed method using a micro-CT system. We have reconstructed images of the phantoms from only 90 projections acquired at tube voltages of 40 kVp and 90 kVp each. Aluminum-only and acryl-only images were successfully decomposed. We evaluated the quality of the reconstructed images by use of contrast-to-noise ratio and detectability. A low-dose dual-energy CBCT can be realized via the proposed method by greatly reducing the number of projections

  15. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Science.gov (United States)

    Matsuda, M.; Asozu, T.; Sataka, M.; Iwase, A.

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, 132Xe11+ and 12C+). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  16. Development of dual-beam system using an electrostatic accelerator for in-situ observation of swift heavy ion irradiation effects on materials

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, M., E-mail: matsuda.makoto@jaea.go.jp [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Asozu, T.; Sataka, M. [Japan Atomic Energy Agency (JAEA-Tokai), Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A. [Department of Materials Science, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531 (Japan)

    2013-11-01

    We have developed the dual beam system which accelerates two kinds of ion beams simultaneously especially for real-time ion beam analysis. We have also developed the alternating beam system which can efficiently change beam species in a short time in order to realize efficient ion beam analysis in a limited beam time. The acceleration of the dual beam is performed by the 20 UR Pelletron™ tandem accelerator in which an ECR ion source is mounted at the high voltage terminal [1,2]. The multi-charged ions of two or more elements can be simultaneously generated from the ECR ion source, so dual-beam irradiation is achieved by accelerating ions with the same charge to mass ratio (for example, {sup 132}Xe{sup 11+} and {sup 12}C{sup +}). It enables us to make a real-time beam analysis such as Rutherford Back Scattering (RBS) method, while a target is irradiated with swift heavy ions. For the quick change of the accelerating ion beam, the program of automatic setting of the optical parameter of the accelerator has been developed. The switchover time for changing the ion beam is about 5 min. These developments have been applied to the study on the ion beam mixing caused by high-density electronic excitation induced by swift heavy ions.

  17. High-efficiency dual-modes vortex beam generator with polarization-dependent transmission and reflection properties.

    Science.gov (United States)

    Tang, Shiwei; Cai, Tong; Wang, Guang-Ming; Liang, Jian-Gang; Li, Xike; Yu, Jiancheng

    2018-04-23

    Vortex beam is believed to be an effective way to extend communication capacity, but available efforts suffer from the issues of complex configurations, fixed operation mode as well as low efficiency. Here, we propose a general strategy to design dual-modes vortex beam generator by using metasurfaces with polarization-dependent transmission and reflection properties. Combining the focusing and vortex functionalities, we design/fabricate a type of compact dual-modes vortex beam generator operating at both reflection/transmission sides of the system. Experimental results demonstrate that the designed metadevice can switch freely and independently between the reflective vortex with topological charge m 1  = 2 and transmissive vortex with m 2  = 1. Moreover, the metadevice exhibits very high efficiencies of 91% and 85% for the reflective and transmissive case respectively. Our findings open a door for multifunctional metadevices with high performances, which indicate wide applications in modern integration-optics and wireless communication systems.

  18. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  19. Dual-beam, second-derivative tunable diode-laser infrared spectroscopy applied to trace-gas measurement

    International Nuclear Information System (INIS)

    Tallant, D.R.; Jungst, R.G.

    1981-04-01

    A dual beam diode laser spectrometer has been constructed using off-axis reflective optics. The spectrometer can be amplitude modulated for direct absorption measurements or frequency modulated to obtain derivative spectra. The spectrometer has high throughput, is easy to operate and align, provides good dual beam compensation, and has no evidence of the interference effects that have been observed in diode laser spectrometers using refractive optics. Unpurged, using second derivative techniques, the instrument has measured 108 parts-per-million CO (10 cm absorption cell, atmospheric pressure-broadened) with good signal/noise. With the replacement of marginal instrumental components, the signal/noise should be substantially increased. This instrument was developed to monitor the evolution of decomposition gases in sealed containers of small volume at atmospheric pressure

  20. A device for automated phase space measurement of ion beams

    International Nuclear Information System (INIS)

    Lukas, J.; Priller, A.; Steier, P.

    2007-01-01

    Equipment for automated phase-space measurements was developed at the VERA Lab. The measurement of the beam's intensity distribution, as well as its relative position with respect to the reference orbit is performed at two locations along the beam line. The device basically consists of moveable slits and a beam profile monitor, which are both coordinated and controlled by an embedded controller. The operating system of the controller is based on Linux with real-time extension. It controls the movement of the slits and records the data synchronized to the movement of the beam profile monitor. The data is sent via TCP/IP to the data acquisition system of VERA where visualization takes place. The duration of one phase space measurement is less than 10 s, which allows for using the device during routine beam tuning

  1. A dual beam study with isotopic X- and gamma-rays for in vivo lymph pool assay

    International Nuclear Information System (INIS)

    Bolin, F.P.; Preuss, L.E.; Jedlenski, D.E.; Beninson, J.

    1986-01-01

    Dual beam absorptiometry utilizes differential absorption of X- and gamma rays of differing energy to determine an absorber's component ratio. This principle has been applied to diverse physical and biological problems. Our method, using the 22 and 88 keV emissions from 109 Cd, resolves the lean and non-lean mammalian tissue fractions. Accuracy of 1%, and reproducibility of 1-2% is attainable in in vitro measurements. Techniques have been developed to apply this system to the more complicated applications involved in human studies. A scanning device capable of measuring limbs has been developed. Mathematical treatment provides an integrated value of lean fraction over the scanned area. Lymphedema is a painful malady in which blockage of lymph flow causes swelling and distension of the extremities. Compressive therapy is the preferred medical treatment. There has been no accurate quantitative index of the efficacy of this therapy. Our research program uses dual beam analysis as a unique quantitative measure of the lymph transport. Lymph pool change is equated to change in the lean. Five measurements are made on subjects undergoing a two week regimen of compressive therapy. These absorptiometric results are analyzed for correlation to other indices of treatment effect. Data shows a progressive decrease in the lean tissue component over the treatment period. Changes seen vary with the individual and the severity of involvement. This study showed that the largest transport rate occurs in the first treatment days. Absorptiometry accurately monitors total adipose mass, total non-adipose mass, extremety cross section, and change in lymph pooling. (orig.)

  2. Wide-beam sensors for controlling dual-delay systems

    Science.gov (United States)

    Edwards, J. B.; Twemlow, J. K.

    1982-09-01

    A class of dual delay feedback systems of open loop transfer function G(s) = k exp(-Xs)/l - exp(-Ws) is shown to be unstable if ratio X/W is noninteger. By means of z-transform techniques it is shown that, by using a feedback transducer that senses over a substantial distance either side of its central axis, closed-loop stability may be restored. Such transducers, termed widebeam sensors, include transmission, backscatter and natural radiation types as well as electromechanical conveyor belt weighers. Designing transducers for very narrow beams may not be desirable from the overall system viewpoint.

  3. Beam acceleration in plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Antanasijevic, R.; Banjanac, R.; Dragic, A.; Maric, Z.; Stanojevic, J.; Udovicic, V. E-mail: udovicic@atom.phy.bg.ac.yu; Vukovic, J

    2001-06-01

    The proton beam emission from the small 8 kJ plasma focus device operated with the H{sub 2} filling was analyzed. Maximum energy and yield were obtained using NTD. The fast protons were registered with the energy up to 500 keV using the polycarbonate absorbers with the different thickness.

  4. Beam acceleration in plasma focus device

    International Nuclear Information System (INIS)

    Antanasijevic, R.; Banjanac, R.; Dragic, A.; Maric, Z.; Stanojevic, J.; Udovicic, V.; Vukovic, J.

    2001-01-01

    The proton beam emission from the small 8 kJ plasma focus device operated with the H 2 filling was analyzed. Maximum energy and yield were obtained using NTD. The fast protons were registered with the energy up to 500 keV using the polycarbonate absorbers with the different thickness

  5. Indium-tin-oxide thin film deposited by a dual ion beam assisted e-beam evaporation system

    International Nuclear Information System (INIS)

    Bae, J.W.; Kim, J.S.; Yeom, G.Y.

    2001-01-01

    Indium-tin-oxide (ITO) thin films were deposited on polycarbonate (PC) substrates at low temperatures (<90 deg. C) by a dual ion beam assisted e-beam evaporation system, where one gun (gun 1) is facing ITO flux and the other gun (gun 2) is facing the substrate. In this experiment, effects of rf power and oxygen flow rate of ion gun 2 on the electrical and optical properties of depositing ITO thin films were investigated. At optimal deposition conditions, ITO thin films deposited on the PC substrates larger than 20 cmx20 cm showed the sheet resistance of less than 40 Ω/sq., the optical transmittance of above 90%, and the uniformity of about 5%

  6. Dual scattering foil design for poly-energetic electron beams

    International Nuclear Information System (INIS)

    Kainz, K K; Antolak, J A; Almond, P R; Bloch, C D; Hogstrom, K R

    2005-01-01

    The laser wakefield acceleration (LWFA) mechanism can accelerate electrons to energies within the 6-20 MeV range desired for therapy application. However, the energy spectrum of LWFA-generated electrons is broad, on the order of tens of MeV. Using existing laser technology, the therapeutic beam might require a significant energy spread to achieve clinically acceptable dose rates. The purpose of this work was to test the assumption that a scattering foil system designed for a mono-energetic beam would be suitable for a poly-energetic beam with a significant energy spread. Dual scattering foil systems were designed for mono-energetic beams using an existing analytical formalism based on Gaussian multiple-Coulomb scattering theory. The design criterion was to create a flat beam that would be suitable for fields up to 25 x 25 cm 2 at 100 cm from the primary scattering foil. Radial planar fluence profiles for poly-energetic beams with energy spreads ranging from 0.5 MeV to 6.5 MeV were calculated using two methods: (a) analytically by summing beam profiles for a range of mono-energetic beams through the scattering foil system, and (b) by Monte Carlo using the EGS/BEAM code. The analytic calculations facilitated fine adjustments to the foil design, and the Monte Carlo calculations enabled us to verify the results of the analytic calculation and to determine the phase-space characteristics of the broadened beam. Results showed that the flatness of the scattered beam is fairly insensitive to the width of the input energy spectrum. Also, results showed that dose calculated by the analytical and Monte Carlo methods agreed very well in the central portion of the beam. Outside the useable field area, the differences between the analytical and Monte Carlo results were small but significant, possibly due to the small angle approximation. However, these did not affect the conclusion that a scattering foil system designed for a mono-energetic beam will be suitable for a poly

  7. Impact of polychromatic x-ray sources on helical, cone-beam computed tomography and dual-energy methods

    International Nuclear Information System (INIS)

    Sidky, Emil Y; Zou Yu; Pan Xiaochuan

    2004-01-01

    Recently, there has been much work devoted to developing accurate and efficient algorithms for image reconstruction in helical, cone-beam computed tomography (CT). Little attention, however, has been directed to the effect of physical factors on helical, cone-beam CT image reconstruction. This work investigates the effect of polychromatic x-rays on image reconstruction in helical, cone-beam computed tomography. A pre-reconstruction dual-energy technique is developed to reduce beam-hardening artefacts and enhance contrast in soft tissue

  8. Development of beam diagnostic devices for characterizing electron guns

    International Nuclear Information System (INIS)

    Bhattacharjee, D.; Tiwari, R.; Jayaprakash, D.; Mishra, R.L.; Sarukte, H.; Waghmare, A.; Thakur, N.; Dixit, K.P.

    2015-01-01

    The electron guns for the DC accelerators and RF Linacs are designed and developed at EBC/APPD/BARC, Kharghar. These electron guns need to be characterized for its design and performance. Two test benches were developed for characterizing the electron guns. Various beam diagnostic devices for measuring beam currents and beam sizes were developed. Conical faraday cup, segmented faraday cup, slit scanning bellows movement arrangement, multi-plate beam size measurement setup, multi- wire beam size measurement setup, Aluminum foil puncture assembly etc. were developed and used. The paper presents the in-house development of various beam diagnostics for characterizing electron guns and their use. (author)

  9. Dual-Beam Antenna Design for Autonomous Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Jean-Marie Floc'h

    2012-01-01

    Full Text Available This paper describes our contribution in the ANR project called CAPNET dedicated to the site security (autonomous sensor network. The network is autonomous in term of energy and it is very easy to deploy on the site (the time to deploy each node of the network is around 10 minutes. The first demonstrator was deployed in the fire base station of Brest, France with 10 nodes with a security perimeter around 1.5 km. Our contribution takes place in the field of antennas, with the development of two systems: a single-beam antenna reserved for the supervisor or the last node of the network, and a dual-beam antenna dedicated to the node in linear configuration. For the design and optimization of antennas, we use HFSS CAD software from ANSOFT. The antennas have been designed and successfully measured.

  10. Device for guiding a subthermal neutron beam and focussing device made of micro-neutron guides

    International Nuclear Information System (INIS)

    Marx, D.

    1977-01-01

    The invention concerns a device for guiding, in particular for diverting, a subthermal neutron beam with curved boundary surfaces at least in one level, whose sides towards the neutron beam are covered with at least one coating which reflects the subthermal neutrons completely. (orig./RW) [de

  11. Device for the collimation of a high-energy beam, in particular a X-ray beam

    International Nuclear Information System (INIS)

    Peyser, L.F.

    1976-01-01

    The design of apertures made of radiation-absorbing material intended for limiting an aperture for a radiation beam of high energy, in particular an X-ray beam is claimed. The apertures are shaped as trapezoids, are held movably, and are adjustable by means of a control device. (UWI) [de

  12. The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures

    Directory of Open Access Journals (Sweden)

    Xiaohui Zeng

    2016-03-01

    Full Text Available Dual-chamber air springs are used as a key component for vibration isolation in some industrial applications. The working principle of the dual-chamber air spring device as applied to motion suppression of marine structures is similar to that of the traditional air spring, but they differ in their specific characteristics. The stiffness and damping of the dual-chamber air spring device determine the extent of motion suppression. In this article, we investigate the stiffness and damping characteristics of a dual-chamber air spring device applied to marine structure motion suppression using orthogonal analysis and an experimental method. We measure the effects of volume ratio, orifice ratio, excitation amplitude, and frequency on the stiffness and damping of the dual-chamber vibration absorber. Based on the experimental results, a higher-order non-linear regression method is obtained. We achieve a rapid calculation model for dual-chamber air spring stiffness and damping, which can provide guidance to project design.

  13. PZT Thin-Film Micro Probe Device with Dual Top Electrodes

    Science.gov (United States)

    Luo, Chuan

    Lead zirconate titanate (PZT) thin-film actuators have been studied intensively for years because of their potential applications in many fields. In this dissertation, a PZT thin-film micro probe device is designed, fabricated, studied, and proven to be acceptable as an intracochlear acoustic actuator. The micro probe device takes the form of a cantilever with a PZT thin-film diaphragm at the tip of the probe. The tip portion of the probe will be implanted in cochlea later in animal tests to prove its feasibility in hearing rehabilitation. The contribution of the dissertation is three-fold. First, a dual top electrodes design, consisting of a center electrode and an outer electrode, is developed to improve actuation displacement of the PZT thin-film diaphragm. The improvement by the dual top electrodes design is studied via a finite element model. When the dimensions of the dual electrodes are optimized, the displacement of the PZT thin-film diaphragm increases about 30%. A PZT thin-film diaphragm with dual top electrodes is fabricated to prove the concept, and experimental results confirm the predictions from the finite element analyses. Moreover, the dual electrode design can accommodate presence of significant residual stresses in the PZT thin-film diaphragm by changing the phase difference between the two electrodes. Second, a PZT thin-film micro probe device is fabricated and tested. The fabrication process consists of PZT thin-film deposition and deep reactive ion etching (DRIE). The uniqueness of the fabrication process is an automatic dicing mechanism that allows a large number of probes to be released easily from the wafer. Moreover, the fabrication is very efficient, because the DRIE process will form the PZT thin-film diaphragm and the special dicing mechanism simultaneously. After the probes are fabricated, they are tested with various possible implantation depths (i.e., boundary conditions). Experimental results show that future implantation depths

  14. Dose behind various immobilization and beam-modifying devices

    International Nuclear Information System (INIS)

    Mellenberg, David E.

    1995-01-01

    Purpose: To quantify the degradation of skin sparing associated with using beam modifiers such as compensators, immobilization devices, and custom blocks for high energy photon beams. Methods and Materials: The degradation of skin sparing was quantified by measuring dose build-up curves with an extrapolation chamber for 6 and 15 MV photon beams. Uniform thickness compensators made of gypsum and lead, thermoplastic mask material, immobilization cradle foam, and cerrobend custom blocks were placed in geometries that mimic relevant clinical situations. Results: Compensators, whether made of gypsum or lead, placed in the linear accelerator's wedge slot did not significantly effect the depth dose curve's build-up region. Immobilization devices such as cradle foam or thermoplastic placed in contact with the patient degrade the skin sparing expected from high energy photon beams proportional to their thickness and density. Measurements behind custom blocks show that surface and near surface doses for a blocked field are best described by build-up curves for an equivalent size open field. Conclusions: These results allow explanation and possibly prediction of skin reactions on patients in which compensators, foam immobilization cradles, thermoplastic masks, or custom blocks are used. These results also provide a baseline by which substitute materials can be evaluated

  15. Scaling of heavy ion beam probes for reactor-size devices

    International Nuclear Information System (INIS)

    Hickok, R.L.; Jennings, W.C.; Connor, K.A.; Schoch, P.M.

    1984-01-01

    Heavy ion beam probes for reactor-size plasma devices will require beam energies of approximately 10 MeV. Although accelerator technology appears to be available, beam deflection systems and parallel plate energy analyzers present severe difficulties if existing technology is scaled in a straightforward manner. We propose a different operating mode which will use a fixed beam trajectory and multiple cylindrical energy analyzers. Development effort will still be necessary, but we believe the basic technology is available

  16. Laser welding of galvanized steel: analytical study in view of dual-beam solution

    International Nuclear Information System (INIS)

    Iqbal, S.; Gualini, M.M.S.

    2005-01-01

    In this paper, the solution of a new dual laser beam method to lap weld galvanized steel sheets is being discussed, modeled and analyzed. This method involves a pre-cursor beam and a higher-power actual beam used on the job in tandem, generated independently or otherwise split from the same source. The pre-cursor beam cuts a slot, thus making an exit path for the zinc vapours, while the second beam performs the needed welding. After giving detailed theoretical coverage and diverse mathematical simulations, the paper also presents and discusses some experimental results of the method. Along with this, a comparison is being made with some other methods proposed till today to solve this problem including some quantitative analysis. As presented, general view in industrial perspective supports this method to be easier to implement on the production lines along with yielding desired results. (author)

  17. Dosimetric aspects of the therapeutic photon beams from a dual-energy linear accelerator

    International Nuclear Information System (INIS)

    Al-Ghazi, M.S.A.L.; Arjune, B.; Fiedler, J.A.; Sharma, P.D.

    1988-01-01

    Parameters of the photon beams (6 and 20 MV) from a dual-energy linear accelerator (Mevatron-KD, Siemens Medical Laboratories, CA) are presented. The depth dose characteristics of the photon beams are d/sub max/ of 1.8 and 3.8 cm and percentage depth dose of 68% and 80% at 10-cm depth and 100-cm source--surface distance for a field size of 10 x 10 cm 2 for 6 and 20 MV, respectively. The 6 and 20 MV beams were found to correspond to nominal accelerating potentials of 4.7 and 17 MV, respectively. The stability of output is within +- 1% and flatness and symmetry are within +- 3%. These figures compare favorably with the manufacturer's specifications

  18. Dual-wavelength vortex beam with high stability in a diode-pumped Yb:CaGdAlO4 laser

    Science.gov (United States)

    Shen, Yijie; Meng, Yuan; Fu, Xing; Gong, Mali

    2018-05-01

    We present a stable dual-wavelength vortex beam carrying orbital angular momentum (OAM) with two spectral peaks separated by a few terahertz in a diode-pumped Yb:CaGdAlO4 (CALGO) laser. The dual-wavelength spectrum is controlled by the pump power and off-axis loss in a laser resonator, arising from the broad emission bandwidth of Yb:CALGO. The OAM beam is obtained by a pair of cylindrical lenses serving as a π/2 convertor for high-order Hermite–Gaussian modes. The stability is verified by the fact that a 1\\hbar OAM beam with two spectral peaks at 1046.1 nm and 1057.2 nm (3.01 THz interval) can steadily operate for more than 3 h. It has great potential for scaling the application of OAM beams in terahertz spectroscopy, high-resolution interferometry, and so on.

  19. Multispecimen dual-beam irradiation damage chamber

    International Nuclear Information System (INIS)

    Packan, N.H.; Buhl, R.A.

    1980-06-01

    An irradiation damage chamber that can be used to rapidly simulate fast neutron damage in fission or fusion materials has been designed and constructed. The chamber operates in conjunction with dual Van de Graaff accelerators at ORNL to simulate a wide range of irradiation conditions, including pulsed irradiation. Up to six experiments, each with up to nine 3-mm disk specimens, can be loaded into the ultrahigh vacuum chamber. Specimen holders are heated with individual electron guns, and the temperature of each specimen can be monitored during bombardment by an infrared pyrometer. Three different dose levels may be obtained during any single bombardment, and the heavy-ion flux on each of the nine specimens can be measured independently with only a brief interruption of the beam. The chamber has been in service for nearly three years, during which time approximately 250 bombardments have been successfully carried out. An appendix contains detailed procedures for operating the chamber

  20. Dual-energy contrast-enhanced breast tomosynthesis: optimization of beam quality for dose and image quality

    International Nuclear Information System (INIS)

    Samei, Ehsan; Saunders, Robert S Jr

    2011-01-01

    Dual-energy contrast-enhanced breast tomosynthesis is a promising technique to obtain three-dimensional functional information from the breast with high resolution and speed. To optimize this new method, this study searched for the beam quality that maximized image quality in terms of mass detection performance. A digital tomosynthesis system was modeled using a fast ray-tracing algorithm, which created simulated projection images by tracking photons through a voxelized anatomical breast phantom containing iodinated lesions. The single-energy images were combined into dual-energy images through a weighted log subtraction process. The weighting factor was optimized to minimize anatomical noise, while the dose distribution was chosen to minimize quantum noise. The dual-energy images were analyzed for the signal difference to noise ratio (SdNR) of iodinated masses. The fast ray-tracing explored 523 776 dual-energy combinations to identify which yields optimum mass SdNR. The ray-tracing results were verified using a Monte Carlo model for a breast tomosynthesis system with a selenium-based flat-panel detector. The projection images from our voxelized breast phantom were obtained at a constant total glandular dose. The projections were combined using weighted log subtraction and reconstructed using commercial reconstruction software. The lesion SdNR was measured in the central reconstructed slice. The SdNR performance varied markedly across the kVp and filtration space. Ray-tracing results indicated that the mass SdNR was maximized with a high-energy tungsten beam at 49 kVp with 92.5 μm of copper filtration and a low-energy tungsten beam at 49 kVp with 95 μm of tin filtration. This result was consistent with Monte Carlo findings. This mammographic technique led to a mass SdNR of 0.92 ± 0.03 in the projections and 3.68 ± 0.19 in the reconstructed slices. These values were markedly higher than those for non-optimized techniques. Our findings indicate that dual

  1. Development of an irradiation device for electron beam wastewater treatment

    International Nuclear Information System (INIS)

    Rela, Paulo Roberto

    2003-01-01

    When domestic or industrial effluents with synthetic compounds are disposed without an adequate treatment, they impact negatively the environment with damages to aquatic life and for the human being. Both population and use of goods and services that contribute for the hazardous waste are growing. Hazardous regulations are becoming more restrictive and technologies, which do not destroy these products, are becoming less acceptable. The electron beam radiation process is an advanced oxidation process, that produces highly reactive radicals resulting in mineralization of the contaminant. In this work was developed an irradiation system in order to optimize the interaction of electron beam delivered from the accelerator with the processed effluent. It is composed by an irradiation device where the effluent presents to the electron beam in an up flow stream and a process control unit that uses the calorimetric principle. The developed irradiation device has a different configuration from the devices used by others researchers that are working with this technology. It was studied the technical and economic feasibility, comparing with the literature the results of the irradiation device demonstrated that it has a superior performance, becoming an process for use in disinfection and degradation of hazardous organic compounds of wastewater from domestic and industrial origin, contributing as an alternative technology for Sanitary Engineering. (author)

  2. Measurements of hot spots and electron beams in Z-pinch devices

    International Nuclear Information System (INIS)

    Deeney, C.

    1988-04-01

    Hot spots and Electron Beams have been observed in different types of Z-pinches. There is, however, no conclusive evidence on how either are formed although there has been much theoretical interest in both these phenomena. In this thesis, nanosecond time resolved and time correlated, X-ray and optical diagnostics, are performed on two different types of Z-pinch: a 4 kJ, 30 kV Gas Puff Z-pinch and a 28 kJ, 60 kV Plasma Focus. The aim being to study hot spots and electron beams, as well as characterise the plasma, two different Z-pinch devices. Computer codes are developed to analyse the energy and time resolved data obtained in this work. These codes model both, X-ray emission from a plasma and X-ray emission due to electron beam bombardment of a metal surface. The hot spot and electron beam parameters are measured, from the time correlated X-ray data using these computer codes. The electron beams and the hot spots are also correlated to the plasma behaviour and to each other. The results from both devices are compared with each other and with the theoretical work on hot spot and electron beam formation. A previously unreported 3-5 keV electron temperature plasma is identified, in the gas puff Z-pinch plasma, prior to the formation of the hot spots. it is shown, therefore, that the hot spots are more dense but not hotter than the surrounding plasma. Two distinct periods of electron beam generation are identified in both devices. (author)

  3. SU-F-I-06: Evaluation of Imaging Dose for Modulation Layer Based Dual Energy Cone-Beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Eunbin [Department of Medical Science, Ewha Womans University, Seoul (Korea, Republic of); Ahn, SoHyun; Cho, Samju; Keum, Ki Chang [Department of Radiation Oncology, School of Medicine, Yonsei Univeristy, Seoul (Korea, Republic of); Lee, Rena [Department of Radiation Oncology, School of Medicine, Ewha Womans University, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: Dual energy cone beam CT system is finding a variety of promising applications in diagnostic CT, both in imaging of endogenous materials and exogenous materials across a range of body sites. Dual energy cone beam CT system to suggest in this study acquire image by rotating 360 degree with half of the X-ray window covered using copper modulation layer. In the region that covered by modulation layer absorb the low energy X-ray by modulation layer. Relative high energy X-ray passes through the layer and contributes to image reconstruction. Dose evaluation should be carried out in order to utilize such an imaging acquirement technology for clinical use. Methods: For evaluating imaging dose of modulation layer based dual energy cone beam CT system, Prototype cone beam CT that configured X-ray tube (D054SB, Toshiba, Japan) and detector (PaxScan 2520V, Varian Medical Systems, Palo Alto, CA) is used. A range of 0.5–2.0 mm thickness of modulation layer is implemented in Monte Carlo simulation (MCNPX, ver. 2.6.0, Los Alamos National Laboratory, USA) with half of X-ray window covered. In-house phantom using in this study that has 3 cylindrical phantoms configured water, Teflon air with PMMA covered for verifying the comparability the various material in human body and is implemented in Monte Carlo simulation. The actual dose with 2.0 mm copper covered half of X-ray window is measured using Gafchromic EBT3 film with 5.0 mm bolus for compared with simulative dose. Results: Dose in phantom reduced 33% by copper modulation layer of 2.0 mm. Scattering dose occurred in modulation layer by Compton scattering effect is 0.04% of overall dose. Conclusion: Modulation layer of that based dual energy cone beam CT has not influence on unnecessary scatter dose. This study was supported by the Radiation Safety Research Programs (1305033) through the Nuclear Safety and Security Commission.

  4. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, R.; Leiva, J.; Moncada, R.; Rojas, L.; Santibanez, M.; Valente, M.; Young, H. [Universidad de la Frontera, Centro de Fisica e Ingenieria en Medicina, Av. Francisco Salazar 1145, Casilla 54-D, Temuco (Chile); Velasquez, J. [Universidad de la Frontera, Departamento de Ciencias Fisicas, Av. Francisco Salazar 1145, Casilla 54-D, Temuco (Chile); Zelada, G. [Clinica Alemana de Santiago, Av. Vitacura 5951, 13132 Vitacura, Santiago (Chile); Astudillo, R., E-mail: rodolfo.figueroa@ufrontera.cl [Hospital Base de Valdivia, C. Simpson 850, XIV Region de los Rios, Valdivia (Chile)

    2017-10-15

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing devices components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used for predict megavoltage electron beam control. (Author)

  5. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams

    International Nuclear Information System (INIS)

    Figueroa, R.; Leiva, J.; Moncada, R.; Rojas, L.; Santibanez, M.; Valente, M.; Young, H.; Velasquez, J.; Zelada, G.; Astudillo, R.

    2017-10-01

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing devices components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used for predict megavoltage electron beam control. (Author)

  6. On-site analysis of modified surface using dual beam system

    Energy Technology Data Exchange (ETDEWEB)

    Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Goppelt-Langer, P; Mingle, Gan; Jianer, Zeng; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Recent results obtained using a dual ion beam system at JAERI/Takasaki are reported. In this system, both of ion implantation and ion beam analysis can be made alternatively or simultaneously at low temperatures. In sapphire implanted with {sup 51}V{sup +} ions, the amorphization process is analyzed referring to the <0001> aligned spectra taken at different temperatures. The discussion is made on the defect profiles different from the simple accumulation of standard Gaussian form. The depth showing the maximum damage at the initial stage of implantation is quite shallow compared with those reported before. The thermal annealing behaviors of lattice damage and the implanted V atoms are also different between the samples implanted at low and room temperatures. In the former one fine particles of vanadium oxide are formed coherently with the easy recovery in high dose sample but in the latter the mixed oxide alloy is formed. (author)

  7. A new coaxial high power microwave source based on dual beams

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangmei, E-mail: sunberry1211@hotmail.com; Zhang, Xiaoping; Qi, Zumin; Dang, Fangchao; Qian, Baoliang [College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2014-05-15

    We present a new coaxial high power microwave source based on dual beams, which combines a relativistic backward wave oscillator (RBWO) (noted as the inner sub-source below) and a coaxial transit-time oscillator (TTO) (noted as the outer sub-source). The cathode consists of an inner and an outer annular cathode, which provides the inner and the outer annular electron beam for the sub-sources, respectively. Particle-in-cell (PIC) simulation results demonstrate that power conversion efficiencies of the two sub-sources with an identical frequency of 9.74 GHz are 29% and 25%, respectively. It is furthermore found that phase locking between the inner and the outer sub-sources can be realized, which suggests a feasibility to obtain a higher power output if the two microwave signals are coherently combined.

  8. A new coaxial high power microwave source based on dual beams

    International Nuclear Information System (INIS)

    Li, Yangmei; Zhang, Xiaoping; Qi, Zumin; Dang, Fangchao; Qian, Baoliang

    2014-01-01

    We present a new coaxial high power microwave source based on dual beams, which combines a relativistic backward wave oscillator (RBWO) (noted as the inner sub-source below) and a coaxial transit-time oscillator (TTO) (noted as the outer sub-source). The cathode consists of an inner and an outer annular cathode, which provides the inner and the outer annular electron beam for the sub-sources, respectively. Particle-in-cell (PIC) simulation results demonstrate that power conversion efficiencies of the two sub-sources with an identical frequency of 9.74 GHz are 29% and 25%, respectively. It is furthermore found that phase locking between the inner and the outer sub-sources can be realized, which suggests a feasibility to obtain a higher power output if the two microwave signals are coherently combined

  9. Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS

    Science.gov (United States)

    Decker, Glenn; Rosenbaum, Gerd; Singh, Om

    2006-11-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  10. Energy monitoring device for 1.5-2.4 MeV electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Fuochi, P.G., E-mail: fuochi@isof.cnr.i [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Lavalle, M.; Martelli, A. [CNR-ISOF, Via P. Gobetti 101, I-40129 Bologna (Italy); Kovacs, A. [Institute of Isotopes, HAS, P.O.Box 77, H-1525 Budapest (Hungary); Mehta, K. [Arbeiterstrandbad Strasse 72, Vienna, A-1210 (Austria); Kuntz, F.; Plumeri, S. [Aerial, Parc d' Innovation Rue Laurent Fries F-67400 Illkirch (France)

    2010-03-11

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  11. Energy monitoring device for 1.5-2.4 MeV electron beams

    Science.gov (United States)

    Fuochi, P. G.; Lavalle, M.; Martelli, A.; Kovács, A.; Mehta, K.; Kuntz, F.; Plumeri, S.

    2010-03-01

    An easy-to-use and robust energy monitoring device has been developed for reliable detection of day-to-day small variations in the electron beam energy, a critical parameter for quality control and quality assurance in industrial radiation processing. It has potential for using on-line, thus providing real-time information. Its working principle is based on the measurement of currents, or charges, collected by two aluminium absorbers of specific thicknesses (dependent on the beam energy), insulated from each other and positioned within a faraday cup-style aluminium cage connected to the ground. The device has been extensively tested in the energy range of 4-12 MeV under standard laboratory conditions at Institute of Isotopes and CNR-ISOF using different types of electron accelerators; namely, a TESLA LPR-4 LINAC (3-6 MeV) and a L-band Vickers LINAC (7-12 MeV), respectively. This device has been also tested in high power electron beam radiation processing facilities, one equipped with a 7-MeV LUE-8 linear accelerator used for crosslinking of cables and medical device sterilization, and the other equipped with a 10 MeV Rhodotron TT100 recirculating accelerator used for in-house sterilization of medical devices. In the present work, we have extended the application of this method to still lower energy region, i.e. from 1.5 to 2.4 MeV. Also, we show that such a device is capable of detecting deviation in the beam energy as small as 40 keV.

  12. Insertion device and beam line plans for the Advanced Photon Source: A report and recommendations by the Insertion Device and Beam Line Planning Committee

    International Nuclear Information System (INIS)

    1988-02-01

    In the 7-GeV Advanced Photon Source (APS) Conceptual Design Report (CDR), fifteen complete experimental beam lines were specified in order to establish a representative technical and cost base for the components involved. In order to optimize the composition of the insertion devices and the beam line, these funds are considered a ''Trust Fund.'' The present report evaluates the optimization for the distribution of these funds so that the short- and long-term research programs will be most productive, making the facility more attractive from the user's point of view. It is recommended that part of the ''Trust Fund'' be used for the construction of the insertion devices, the front-end components, and the first-optics, minimizing the cost to potential users of completing a beam line. In addition, the possibility of cost savings resulting from replication and standardization of high multiplicity components (such as IDs, front ends, and first-optics instrumentation) is addressed. 2 refs., 5 tabs

  13. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.

    Science.gov (United States)

    Zhang, Yulong; Wang, Tianyang; Zhang, Ai; Peng, Zhuoteng; Luo, Dan; Chen, Rui; Wang, Fei

    2016-12-01

    In this paper, we present design and test of a broadband electrostatic energy harvester with a dual resonant structure, which consists of two cantilever-mass subsystems each with a mass attached at the free edge of a cantilever. Comparing to traditional devices with single resonant frequency, the proposed device with dual resonant structure can resonate at two frequencies. Furthermore, when one of the cantilever-masses is oscillating at resonance, the vibration amplitude is large enough to make it collide with the other mass, which provides strong mechanical coupling between the two subsystems. Therefore, this device can harvest a decent power output from vibration sources at a broad frequency range. During the measurement, continuous power output up to 6.2-9.8 μW can be achieved under external vibration amplitude of 9.3 m/s 2 at a frequency range from 36.3 Hz to 48.3 Hz, which means the bandwidth of the device is about 30% of the central frequency. The broad bandwidth of the device provides a promising application for energy harvesting from the scenarios with random vibration sources. The experimental results indicate that with the dual resonant structure, the vibration-to-electricity energy conversion efficiency can be improved by 97% when an external random vibration with a low frequency filter is applied.

  14. Dual beam organic depth profiling using large argon cluster ion beams

    Science.gov (United States)

    Holzweber, M; Shard, AG; Jungnickel, H; Luch, A; Unger, WES

    2014-01-01

    Argon cluster sputtering of an organic multilayer reference material consisting of two organic components, 4,4′-bis[N-(1-naphthyl-1-)-N-phenyl- amino]-biphenyl (NPB) and aluminium tris-(8-hydroxyquinolate) (Alq3), materials commonly used in organic light-emitting diodes industry, was carried out using time-of-flight SIMS in dual beam mode. The sample used in this study consists of a ∽400-nm-thick NPB matrix with 3-nm marker layers of Alq3 at depth of ∽50, 100, 200 and 300 nm. Argon cluster sputtering provides a constant sputter yield throughout the depth profiles, and the sputter yield volumes and depth resolution are presented for Ar-cluster sizes of 630, 820, 1000, 1250 and 1660 atoms at a kinetic energy of 2.5 keV. The effect of cluster size in this material and over this range is shown to be negligible. © 2014 The Authors. Surface and Interface Analysis published by John Wiley & Sons Ltd. PMID:25892830

  15. Plasma measurement by feedback-stabilized dual-beam laser interferometer

    International Nuclear Information System (INIS)

    Yasuda, Akio; Kawahata, Kazuo; Kanai, Yasubumi.

    1982-03-01

    The plasma density in a dynamic magneto arcjet is measured by a stabilized dual-beam laser interferometer proposed by the authors. The fringe shift for a 0.63 μm beam of He-Ne laser is used to stabilize the interferometer against the effect of mechanical vibration by means of a feedback controlled speaker coil, while the other beam of 3.39 μm, for which the effect of mechanical vibrations is excluded, is used to measure plasma density. Stability of --1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hertz. Stability for higher frequencies, which determines the accuracy of the present measurement, is limited to --1/30 of one fringe for 0.63 μm, which corresponds to --1/200 of one fringe and a line electron density of --1.5 x 10 14 cm - 2 for 3.39 μm, by acoustic noise picked up by the speaker coil. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. Since the effect of the neutral gas background is practically reduced to zero, the present interferometer is to be applied advantageously to the diagnostics of the plasma produced in high pressure gases. (author)

  16. Continuously tunable devices based on electrical control of dual-frequency liquid crystal filled photonic bandgap fibers

    DEFF Research Database (Denmark)

    Scolari, Lara; Alkeskjold, Thomas Tanggaard; Riishede, Jesper

    2005-01-01

    We present an electrically controlled photonic bandgap fiber device obtained by infiltrating the air holes of a photonic crystal fiber (PCF) with a dual-frequency liquid crystal (LC) with pre-tilted molecules. Compared to previously demonstrated devices of this kind, the main new feature of this ...... in the same device. We investigate the dynamics of this device and demonstrate a birefringence controller based on this principle....

  17. Novel Microstrip Patch Antennas with Frequency Agility, Polarization Reconfigurability, Dual Null Steering Capability and Phased Array Antenna with Beam Steering Performance

    Science.gov (United States)

    Babakhani, Behrouz

    Nowadays the wireless communication technology is playing an important role in our daily life. People use wireless devices not only as a conventional communication device but also as tracking and navigation tool, web browsing tool, data storage and transfer tool and so for many other reasons. Based on the user demand, wireless communication engineers try to accommodate as many as possible wireless systems and applications in a single device and therefore, creates a multifunctional device. Antenna, as an integral part of any wireless communication systems, should also be evolved and adjusted with development of wireless transceiver systems. Therefore multifunctional antennas have been introduced to support and enhance the functionality on modern wireless systems. The main focus and contribution of this thesis is design of novel multifunctional microstrip antennas with frequency agility, polarization reconfigurablity, dual null steering capability and phased array antenna with beam steering performance. In this thesis, first, a wide bandwidth(1.10 GHz to 1.60 GHz) right-handed circularly polarized (RHCP) directional antenna for global positioning system (GPS) satellite receive application has been introduced which covers all the GPS bands starting from L1 to L5. This design consists of two crossed bow-tie dipole antennas fed with sequentially phase rotated feed network backed with an artificial high impedance surface (HIS) structure to generate high gain directional radiation patterns. This design shows good CP gain and axial ratio (AR) and wide beamwidth performance. Although this design has good radiation quality, the size and the weight can be reduced as future study. In the second design, a frequency agile antenna was developed which also covers the L-band (L1 to L5) satellite communication frequencies. This frequency agile antenna was designed and realized by new implementation of varactor diodes in the geometry of a circular patch antenna. Beside wide frequency

  18. Electron cyclotron beam measurement system in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Kamio, S., E-mail: kamio@nifs.ac.jp; Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T. [National Institute for Fusion Science, Toki 509-5292 (Japan)

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  19. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Nobuyuki, E-mail: nkanemat@nirs.go.jp [Department of Accelerator and Medical Physics, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Quantum Science and Energy Engineering, School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan)

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  20. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy.

    Science.gov (United States)

    Kanematsu, Nobuyuki

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  1. High-damage-threshold static laser beam shaping using optically patterned liquid-crystal devices.

    Science.gov (United States)

    Dorrer, C; Wei, S K-H; Leung, P; Vargas, M; Wegman, K; Boulé, J; Zhao, Z; Marshall, K L; Chen, S H

    2011-10-15

    Beam shaping of coherent laser beams is demonstrated using liquid crystal (LC) cells with optically patterned pixels. The twist angle of a nematic LC is locally set to either 0 or 90° by an alignment layer prepared via exposure to polarized UV light. The two distinct pixel types induce either no polarization rotation or a 90° polarization rotation, respectively, on a linearly polarized optical field. An LC device placed between polarizers functions as a binary transmission beam shaper with a highly improved damage threshold compared to metal beam shapers. Using a coumarin-based photoalignment layer, various devices have been fabricated and tested, with a measured single-shot nanosecond damage threshold higher than 30 J/cm2.

  2. The development of MEMS device packaging technology using proton beam

    International Nuclear Information System (INIS)

    Hyeon, J. W.; Kong, Y. J.; Kim, E. H.; Kim, H. S.; No, S. J.

    2006-05-01

    Wafer-bonding techniques are key issues for the commercialization of MEMS(MicroElectroMechanical Systems) devices. The anodic bonding method and the wafer direct-bonding method are well-known major techniques for wafer bonding. Due to the anodic bonding method includes high voltage processes above 1.5 kV, the MEMS devices can be damaged during the bonding process or malfunctioned while long-term operation. On the other hand, since the wafer direct-bonding method includes a high temperature processes above 1000 .deg. C, temperature-sensitive materials and integrated circuits will be damaged or degraded during the bonding processes. Therefore, high-temperature bonding processes are not applicable for fabricating or packaging devices where temperature-sensitive materials exist. During the past few years, much effort has been undertaken to find a reliable bonding process that can be conducted at a low temperature. Unfortunately, these new bonding processes depend highly on the bonding material, surface treatment and surface flatness. In this research, a new packaging method using proton beam irradiation is proposed. While the energy loss caused in an irradiated material by X-rays or electron beams decreases with the surface distance, the energy loss caused by proton beams has a maximum value at the Bragg peak. Thus, the localized energy produced at the Bragg peak of the proton beams can be used to bond pyrex glass on a silicon wafer, so the MEMS damage is expected to be minimized. The localized heating caused by as well as the penetration depth, or the proton beam has been investigated. The energy absorbed in a stack of pyrex glass/silicon wafers due to proton-beam irradiation was numerically calculated for various proton energies by using the SRIM program. The energy loss was shown to be sufficiently localized at the interface between the pyrex glass and the silicon wafer. Proton beam irradiation was performed in the common environment of room temperature and

  3. Optical stretching of giant unilamellar vesicles with an integrated dual-beam optical trap.

    Science.gov (United States)

    Solmaz, Mehmet E; Biswas, Roshni; Sankhagowit, Shalene; Thompson, James R; Mejia, Camilo A; Malmstadt, Noah; Povinelli, Michelle L

    2012-10-01

    We have integrated a dual-beam optical trap into a microfluidic platform and used it to study membrane mechanics in giant unilamellar vesicles (GUVs). We demonstrate the trapping and stretching of GUVs and characterize the membrane response to a step stress. We then measure area strain as a function of applied stress to extract the bending modulus of the lipid bilayer in the low-tension regime.

  4. The role of ion beam etching in magnetic bubble device manufacture

    International Nuclear Information System (INIS)

    Brambley, D.R.; Vanner, K.C.

    1979-01-01

    The most critical stage of fabrication of magnetic bubble memories is the etching of a pattern in a permalloy (80/20 Ni/Fe) film approximately 0.4 microns thick. The permalloy elements so made are used to produce perturbations in an externally applied magnetic bias field, and these perturbations cause the translation of magnetic bubbles within an underlying film. Devices now being produced have memory-cell sizes of less than 16 microns and require the etched features to have minimum dimensions of less than 2 microns. The only practicable way of achieving this with the requisite precision is by the use of sputter or ion beam etching. In addition, ion beam etching is used for defining gold conductor elements which perform the functions of bubble nucleation, replication and transfer. This paper briefly outlines the bubble device fabrication process, with special emphasis on the role of ion beam etching. The wafer temperature, element profile and uniformity obtained during ion beam etching are of considerable significance, and some of the factors affecting these will be discussed. Finally some of the limitations of ion beam etching will be described. (author)

  5. Nanocrystalline magnetite thin films grown by dual ion-beam sputtering

    International Nuclear Information System (INIS)

    Prieto, Pilar; Ruiz, Patricia; Ferrer, Isabel J.; Figuera, Juan de la; Marco, José F.

    2015-01-01

    Highlights: • We have grown tensile and compressive strained nanocrystalline magnetite thin films by dual ion beam sputtering. • The magnetic and thermoelectric properties can be controlled by the deposition conditions. • The magnetic anisotropy depends on the crystalline grain size. • The thermoelectric properties depend on the type of strain induced in the films. • In plane uniaxial magnetic anisotropy develops in magnetite thin films with grain sizes ⩽20 nm. - Abstract: We have explored the influence of an ion-assisted beam in the thermoelectric and magnetic properties of nanocrystalline magnetite thin films grown by ion-beam sputtering. The microstructure has been investigated by XRD. Tensile and compressive strained thin films have been obtained as a function of the parameters of the ion-assisted beam. The evolution of the in-plane magnetic anisotropy was attributed to crystalline grain size. In some films, magneto-optical Kerr effect measurements reveal the existence of uniaxial magnetic anisotropy induced by the deposition process related with a small grain size (⩽20 nm). Isotropic magnetic properties have observed in nanocrystalline magnetite thin film having larger grain sizes. The largest power factor of all the films prepared (0.47 μW/K 2 cm), obtained from a Seebeck coefficient of −80 μV/K and an electrical resistivity of 13 mΩ cm, is obtained in a nanocrystalline magnetite thin film with an expanded out-of-plane lattice and with a grain size ≈30 nm

  6. Effect of pump-beam conditions on dual polarization oscillations in a microchip Nd:GdVO{sub 4} laser

    Energy Technology Data Exchange (ETDEWEB)

    Lin, C-C; Jiang, I-M [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Ko, J-Y; Tsai, K-T; Cheng, Y-T; Ho, M-C, E-mail: jyko@nknucc.nknu.edu.t [Department of Physics, National Kaohsiung Normal University, Kaohsiung 824, Taiwan (China)

    2009-08-28

    This study investigated the input-output characteristics of a laser-diode-end-pumped microchip Nd:GdVO{sub 4} laser under different pump-beam focusing conditions by varying the magnifications of the microscope objective lenses and pump-beam positions on a chip. Dual-polarization oscillations were generated in the entire pump region using pumping conditions associated with different temperature gradients.

  7. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy

    International Nuclear Information System (INIS)

    Burnett, T.L.; Kelley, R.; Winiarski, B.; Contreras, L.; Daly, M.; Gholinia, A.; Burke, M.G.; Withers, P.J.

    2016-01-01

    Ga + Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga + FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe + Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC–Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24 h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga + FIB milling WC–Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60 nA at 30 kV. Xe + PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. - Highlights: • The uptake of dual beam FIBs has been rapid but long milling times have limited imaged volumes to tens of micron dimensions. • Emerging plasma Xe + PFIB-SEM technology offers materials removal rates at least 60× greater than conventional Ga + FIB systems with comparable or less damage. • The

  8. A proposal of a beam injection device for the proton storage ring of JAERI neutron science project

    International Nuclear Information System (INIS)

    Suzuki, Yasuo

    1998-01-01

    A new injection device (a charge-exchange device) with light and magnetic field, is proposed for a proton storage ring of JAERI Neutron Science Project. This injection device is composed of a neutralizer and an ionizer. The neutralizer strips electrons of H 0 beam into H - one with the undulator magnetic field. The ionizer which is composed of undulator magnets and an optical resonator placed along a straight part in the storage ring, can ionize effectively the H 0 beam excited to n=3 level by a laser beam into H + one. Adopting the 2nd harmonics of Nd : YAG laser, the powerful laser on the market can be used, and the required items of the technological development can be minimized. The energy of the particle beam, however, should be accelerated up to 1.587 GeV by 6% increase from 1.5 GeV. In this device, the non-charge-exchange rate and beam-spill can be minimized by decreasing the deflection angle of the beam which occurs at the charge-exchange process. This method can be realized with exiting technologies and there are not any effects on the trajectory of the ring-circulating proton beam due to scatterings by the foil as the usual charge-exchange devices. This device, therefore, will be an optimal and highly effective method of the least beam-spill as the injector of the high power proton storage ring. (author)

  9. 2 MeV, 60 kW dual-beam type electron accelerator irradiation facility

    International Nuclear Information System (INIS)

    Yotsumoto, Keiichi; Kanazawa, Takao; Haruyama, Yasuyuki; Agematsu, Takashi; Mizuhashi, Kiyoshi; Sunaga, Hiromi; Washino, Masamitsu; Tamura, Naoyuki

    1984-02-01

    The specification of new irradiation facility which has been constructed from 1978 through 1981 as the replacement of 1st Accelerator of JAERI, TRCRE are described. The accelerator is the Cockcroft-Walton type and both vertical and horizontal accelerating tubes are arranged on a single high voltage generator. Transferring of the high voltage to the horizontal accelerating tube is performed with the high voltage changing system in the pressure vessel. The output ratings of the accelerator are 2 MV of acceleration voltage and 30 mA of beam current. By providing the dual beam system, two irradiation rooms, one for vertical and the other for horizontal beam, are independently operationable. Persons can enter the horizontal irradiation room for experimental setting even when the vertical irradiation room is in operation. The specification of the buildings, the exhaust air treatment system, the irradiation conveyor and the safety observation system are also described. (author)

  10. Laser damage resistance of hafnia thin films deposited by electron beam deposition, reactive low voltage ion plating, and dual ion beam sputtering

    International Nuclear Information System (INIS)

    Gallais, Laurent; Capoulade, Jeremie; Natoli, Jean-Yves; Commandre, Mireille; Cathelinaud, Michel; Koc, Cian; Lequime, Michel

    2008-01-01

    A comparative study is made of the laser damage resistance of hafnia coatings deposited on fused silica substrates with different technologies: electron beam deposition (from Hf or HfO2 starting material), reactive low voltage ion plating, and dual ion beam sputtering.The laser damage thresholds of these coatings are determined at 1064 and 355 nm using a nanosecond pulsed YAG laser and a one-on-one test procedure. The results are associated with a complete characterization of the samples: refractive index n measured by spectrophotometry, extinction coefficient k measured by photothermal deflection, and roughness measured by atomic force microscopy

  11. Sensor device for X-ray beam to evaluate the radiation focal spot

    International Nuclear Information System (INIS)

    Santos, Lara H.E. dos; Schiabel, Homero; Silva, Aderbal A.B. da; Marques, Paulo M.A.; Campos, Marcelo; Slaets, Annie F.F.

    1996-01-01

    A new electronic device to determine the position of the central ray of the radiation beam is proposed. The device aims to provide a perfect alignment of test objects used for evaluating focal spots with this reference axis

  12. Opto-mechanical devices for the Antares automatic beam alignment system

    International Nuclear Information System (INIS)

    Swann, T.; Combs, C.; Witt, J.

    1981-01-01

    Antares is a 24-beam CO 2 laser system for controlled fusion research, under construction at Los Alamos National Laboratory. Rapid automatic alignment of this system is required prior to each experimental shot. Unique opto-mechanical alignment devices, which have been developed specifically for this automatic alignment system, are discussed. A variable focus alignment telescope views point light sources. A beam expander/spatial filter processes both a visible Krypton Ion and a 10.6 μm CO 2 alignment laser. The periscope/carousel device provides the means by which the alignment telescope can sequentially view each of twelve optical trains in each power amplifier. The polyhedron alignment device projects a point-light source for both centering and pointing alignment at the polyhedron mirror. The rotating wedge alignment device provides a sequencing point-light source and also compensates for dispersion between visible and 10.6 μm radiation. The back reflector flip in remotely positions point-light sources at the back reflector mirrors. A light source box illuminates optic fibers with high intensity white light which is distributed to the various point-light sources in the system

  13. Electron beam gun with kinematic coupling for high power RF vacuum devices

    Science.gov (United States)

    Borchard, Philipp

    2016-11-22

    An electron beam gun for a high power RF vacuum device has components joined by a fixed kinematic coupling to provide both precise alignment and high voltage electrical insulation of the components. The kinematic coupling has high strength ceramic elements directly bonded to one or more non-ductile rigid metal components using a high temperature active metal brazing alloy. The ceramic elements have a convex surface that mates with concave grooves in another one of the components. The kinematic coupling, for example, may join a cathode assembly and/or a beam shaping focus electrode to a gun stem, which is preferably composed of ceramic. The electron beam gun may be part of a high power RF vacuum device such as, for example, a gyrotron, klystron, or magnetron.

  14. Site-selective dopant profiling of p-n junction specimens in the dual-beam FIB/SEM system

    International Nuclear Information System (INIS)

    Chee, K W A; Beanland, R; Midgley, P A; Humphreys, C J

    2010-01-01

    Results from site-specific dopant profiling in a dual-beam FIB/SEM system are reported. Si specimens containing p-n junctions were milled using Ga + ion beam energies ranging from 30 keV to 2 keV, and analysed in situin the vacuum chamber. We compare the dopant contrast observed when milling a cleaved surface to that obtained from a side-wall of a trench cut using 30 kV Ga + ions, and using successively lower ion beam energies. The latter technique is suitable for site-specific dopant profiling. We find that lower energy ion beam milling significantly improves contrast, but only achieves 50 % of that observed on a freshly-cleaved surface. Furthermore, the contrast on a side-wall previously milled using high energy Ga + ions is less than that of a cleaved surface subjected to the same ion beam energy.

  15. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    Science.gov (United States)

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  16. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L; Da Costa, Pedro M. F. J.

    2015-01-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  17. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  18. Charge breeding of stable and radioactive ion beams with EBIS/T devices

    CERN Document Server

    Kester, Oliver; Becker, R

    2004-01-01

    Radioactive ion beams (RIBs) are an important tool for experiments at the foremost frontier of nuclear physics. The quasi-continuous radioactive beams from target ion sources of RIB-facilities have to be accelerated to energies at and beyond the Coulomb barrier. An efficient acceleration requires a suitable A/q of the ions determined by the accelerator design, which can be reached via the stripping method or by using a charge state breeder like the REX-ISOLDE system. In order to get comparable efficiencies for a charge state breeder with the stripping scheme, the breeding efficiency in one charge state has to be optimized by narrowing the charge state distribution. In addition good beam quality and thus small emittances are required to achieve best transmission in the following accelerator, which is mandatory for high intensity RIBs. For EBIS/T devices the maximum intensity of the radioactive ion beam is a critical issue, and high current EBIS/T devices will be necessary to deal with intensities of second gen...

  19. Design and fabrication of a diffractive beam splitter for dual-wavelength and concurrent irradiation of process points.

    Science.gov (United States)

    Amako, Jun; Shinozaki, Yu

    2016-07-11

    We report on a dual-wavelength diffractive beam splitter designed for use in parallel laser processing. This novel optical element generates two beam arrays of different wavelengths and allows their overlap at the process points on a workpiece. To design the deep surface-relief profile of a splitter using a simulated annealing algorithm, we introduce a heuristic but practical scheme to determine the maximum depth and the number of quantization levels. The designed corrugations were fabricated in a photoresist by maskless grayscale exposure using a high-resolution spatial light modulator. We characterized the photoresist splitter, thereby validating the proposed beam-splitting concept.

  20. Pin cushion plasmonic device for polarization beam splitting, focusing, and beam position estimation.

    Science.gov (United States)

    Lerman, Gilad M; Levy, Uriel

    2013-03-13

    Great hopes rest on surface plasmon polaritons' (SPPs) potential to bring new functionalities and applications into various branches of optics. In this paper, we demonstrate a pin cushion structure capable of coupling light from free space into SPPs, split them based on the polarization content of the illuminating beam of light, and focus them into small spots. We also show that for a circularly or randomly polarized light, four focal spots will be generated at the center of each quarter circle comprising the pin cushion device. Furthermore, following the relation between the relative intensity of the obtained four focal spots and the relative position of the illuminating beam with respect to the structure, we propose and demonstrate the potential use of our structure as a miniaturized plasmonic version of the well-known four quadrant detector. Additional potential applications may vary from multichannel microscopy and multioptical traps to real time beam tracking systems.

  1. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  2. High Energy Beam Impacts on Beam Intercepting Devices: Advanced Numerical Methods and Experimental Set-Up

    CERN Document Server

    Bertarelli, A; Carra, F; Cerutti, F; Dallocchio, A; Mariani, N; Timmins, M; Peroni, L; Scapin, M

    2011-01-01

    Beam Intercepting Devices are potentially exposed to severe accidental events triggered by direct impacts of energetic particle beams. State-of-the-art numerical methods are required to simulate the behaviour of affected components. A review of the different dynamic response regimes is presented, along with an indication of the most suited tools to treat each of them. The consequences on LHC tungsten collimators of a number of beam abort scenarios were extensively studied, resorting to a novel category of numerical explicit methods, named Hydrocodes. Full shower simulations were performed providing the energy deposition distribution. Structural dynamics and shock wave propagation analyses were carried out with varying beam parameters, identifying important thresholds for collimator operation, ranging from the onset of permanent damage up to catastrophic failure. Since the main limitation of these tools lies in the limited information available on constitutive material models under extreme conditions, a dedica...

  3. Electron beam irradiating device

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  4. Measurements of urea and glucose in aqueous solutions with dual-beam near-infrared Fourier-transform spectroscopy

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.

    2002-01-01

    of these two modes of operation. The concentrations of aqueous solutions of urea and glucose in the ranges 0-40 mg/dL and 0-250 mg/dL, respectively, were determined by principal component regression using both modes. The dual-beam technique eliminated instrumental variations present in the single...

  5. Room-Temperature Growth of SiC Thin Films by Dual-Ion-Beam Sputtering Deposition

    Directory of Open Access Journals (Sweden)

    C. G. Jin

    2008-01-01

    Full Text Available Silicon carbide (SiC films were prepared by single and dual-ion-beamsputtering deposition at room temperature. An assisted Ar+ ion beam (ion energy Ei = 150 eV was directed to bombard the substrate surface to be helpful for forming SiC films. The microstructure and optical properties of nonirradicated and assisted ion-beam irradicated films have been characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, and Raman spectra. TEM result shows that the films are amorphous. The films exposed to a low-energy assisted ion-beam irradicated during sputtering from a-SiC target have exhibited smoother and compacter surface topography than which deposited with nonirradicated. The ion-beam irradicated improves the adhesion between film and substrate and releases the stress between film and substrate. With assisted ion-beam irradicated, the density of the Si–C bond in the film has increased. At the same time, the excess C atoms or the size of the sp2 bonded clusters reduces, and the a-Si phase decreases. These results indicate that the composition of the film is mainly Si–C bond.

  6. A quality assurance program for ancillary high technology devices on a dual-energy accelerator

    International Nuclear Information System (INIS)

    Klein, Eric E.; Low, Daniel A.; Maag, Derek; Purdy, James A.

    1996-01-01

    Our facility has added high-technology ancillary devices to our dual-energy linear accelerator. After commissioning and acceptance testing of dual asymmetric jaws, dynamic wedge, portal imaging, and multileaf collimation (MLC), quality assurance programs were instituted. The programs were designed to be both periodic and patient specific when required. In addition, when dosimetric aspects were affected by these technologies, additional quality assurance checks were added. Positional accuracy checks (light and radiation) are done for both asymmetric jaws and MLC. Each patient MLC field is checked against the original simulation or digitally reconstructed radiographs. Off-axis factors and output checks are performed for asymmetric fields. Dynamic wedge transmission factors and profiles are checked periodically, and a patient diode check is performed for every new dynamic wedge portal. On-line imaging checks encompass safety checks along with periodic measurement of contrast and spatial resolution. The most important quality assurance activity is the annual review of proper operation and procedures for each device. Our programs have been successful in avoiding patient-related errors or device malfunctions. The programs are a team effort involving physicists, maintenance engineers, and therapists

  7. A NOVEL, REMOVABLE, CERROBEND, BEAM-BLOCKING DEVICE FOR RADIATION THERAPY OF THE CANINE HEAD AND NECK: PILOT STUDY.

    Science.gov (United States)

    Kent, Michael S; Berlato, Davide; Vanhaezebrouck, Isabelle; Gordon, Ira K; Hansen, Katherine S; Theon, Alain P; Holt, Randall W; Trestrail, Earl A

    2017-01-01

    Radiation therapy of the head and neck can result in mucositis and other acute affects in the oral cavity. This prospective pilot study evaluated a novel, intraoral, beam-blocking device for use during imaging and therapeutic procedures. The beam-blocking device was made from a metal alloy inserted into a coated frozen dessert mold (Popsicle® Mold, Cost Plus World Market, Oakland, CA). The device was designed so that it could be inserted into an outer shell, which in turn allowed it to be placed or removed depending on the need due to beam configuration. A Farmer type ionization chamber and virtual water phantom were used to assess effects of field size on transmission. Six large breed cadaver dogs, donated by the owner after death, were recruited for the study. Delivered dose at the dorsal and ventral surfaces of the device, with and without the alloy block in place, were measured using radiochromic film. It was determined that transmission was field size dependent with larger field sizes leading to decreased attenuation of the beam, likely secondary to scatter. The mean and median transmission on the ventral surface without the beam-blocking device was 0.94 [range 0.94-0.96]. The mean and median transmission with the beam-blocking device was 0.52 [range 0.50-0.57]. The mean and median increase in dose due to backscatter on the dorsal surface of the beam-blocking device was 0.04 [range 0.02-0.04]. Findings indicated that this novel device can help attenuate radiation dose ventral to the block in dogs, with minimal backscatter. © 2016 American College of Veterinary Radiology.

  8. Fiscal 2000 survey report on the survey of trends of quantum beam process technologies for development of high-speed large-capacity digital electronic information devices; 2000 nendo kosoku daiyoryo digital denshi joho device kaihatsu no tame no ryoshi beam process technology no doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The effort clarifies the tasks and problems of the next-generation WDM (wavelength division multiplexing) device, the tasks and problems of domestic information digital devices, and the characteristics, and matters wanting further development, of quantum beam technologies that are to contribute to the development of the said devices. In concrete terms, quantum process technologies involving the ultralow energy ion beam, gas cluster ion beam, electron beam, laser beam, radiation, and the like, are to be studied and developed as device processes, and the product of the effort will be utilized for accelerating the currently difficult development of the semiconductor laser diode, high-speed photoelectric conversion diode, optical circuit device, and the next-generation plastic liquid crystal display device. That is to say, process technologies for a high-speed undamaged compound semiconductor device, high-precision optical circuit device, and a totally plastic liquid crystal display device will be established, and verified as valid. Furthermore, novel digital devices will be developed. In this research and development work, manufacturing process technologies will also be established, which as practical technologies will clear the rigorous goals that the industry demand for process stability, process yield, process amount, and the like. (NEDO)

  9. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burnett, T.L. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); FEI Company, Achtseweg Noord 5, Bldg, 5651 GG, Eindhoven (Netherlands); Kelley, R. [FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 (United States); Winiarski, B. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); FEI Company, Achtseweg Noord 5, Bldg, 5651 GG, Eindhoven (Netherlands); Contreras, L. [FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124 (United States); Daly, M.; Gholinia, A.; Burke, M.G. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Withers, P.J., E-mail: P.J.Withers@manchester.ac.uk [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); BP International Centre for Advanced Materials, University of Manchester, Manchester M13 9PL (United Kingdom)

    2016-02-15

    Ga{sup +} Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga{sup +} FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe{sup +} Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC–Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24 h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga{sup +} FIB milling WC–Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60 nA at 30 kV. Xe{sup +} PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. - Highlights: • The uptake of dual beam FIBs has been rapid but long milling times have limited imaged volumes to tens of micron dimensions. • Emerging plasma Xe{sup +} PFIB-SEM technology offers materials removal rates at least 60× greater than conventional Ga{sup +} FIB systems with

  10. Scattering and extinction of ion beams in a dusty plasma device

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2001-01-01

    Collisions of ions with charged dust grains are important for the propagation of low frequency waves such as dust acoustic waves and dust ion-acoustic waves. The collision cross-sectional area of charged dust grains depends on the velocity of an ion beam. The collision cross-sectional area of charged dust grains with beam ions is measured. It is compared with the geometrical cross-sectional area of the grain. The experiment is performed in a dusty double-plasma device with glass beads of 8.9 μm in average diameter. The ion beam current and energy are measured with a directional retarding potential analyzer. It is observed that, when dust density inside the system is increased, the beam current ratio is reduced. From the reduction of the ion beam current, the effective cross-sectional area of the dust particle is estimated as a function of the beam energy

  11. Feasibility study of a dual detector configuration concept for simultaneous megavoltage imaging and dose verification in radiotherapy

    International Nuclear Information System (INIS)

    Deshpande, Shrikant; McNamara, Aimee L.; Holloway, Lois; Metcalfe, Peter; Vial, Philip

    2015-01-01

    Purpose: To test the feasibility of a dual detector concept for comprehensive verification of external beam radiotherapy. Specifically, the authors test the hypothesis that a portal imaging device coupled to a 2D dosimeter provides a system capable of simultaneous imaging and dose verification, and that the presence of each device does not significantly detract from the performance of the other. Methods: The dual detector configuration comprised of a standard radiotherapy electronic portal imaging device (EPID) positioned directly on top of an ionization-chamber array (ICA) with 2 cm solid water buildup material (between EPID and ICA) and 5 cm solid backscatter material. The dose response characteristics of the ICA and the imaging performance of the EPID in the dual detector configuration were compared to the performance in their respective reference clinical configurations. The reference clinical configurations were 6 cm solid water buildup material, an ICA, and 5 cm solid water backscatter material as the reference dosimetry configuration, and an EPID with no additional buildup or solid backscatter material as the reference imaging configuration. The dose response of the ICA was evaluated by measuring the detector’s response with respect to off-axis position, field size, and transit object thickness. Clinical dosimetry performance was evaluated by measuring a range of clinical intensity-modulated radiation therapy (IMRT) beams in transit and nontransit geometries. The imaging performance of the EPID was evaluated quantitatively by measuring the contrast-to-noise ratio (CNR) and spatial resolution. Images of an anthropomorphic phantom were also used for qualitative assessment. Results: The measured off-axis and field size response with the ICA in both transit and nontransit geometries for both dual detector configuration and reference dosimetry configuration agreed to within 1%. Transit dose response as a function of object thickness agreed to within 0.5%. All

  12. Dynamic analysis of trapping and escaping in dual beam optical trap

    Science.gov (United States)

    Li, Wenqiang; Hu, Huizhu; Su, Heming; Li, Zhenggang; Shen, Yu

    2016-10-01

    In this paper, we simulate the dynamic movement of a dielectric sphere in optical trap. This dynamic analysis can be used to calibrate optical forces, increase trapping efficiency and measure viscous coefficient of surrounding medium. Since an accurate dynamic analysis is based on a detailed force calculation, we calculate all forces a sphere receives. We get the forces of dual-beam gradient radiation pressure on a micron-sized dielectric sphere in the ray optics regime and utilize Einstein-Ornstein-Uhlenbeck to deal with its Brownian motion forces. Hydrodynamic viscous force also exists when the sphere moves in liquid. Forces from buoyance and gravity are also taken into consideration. Then we simulate trajectory of a sphere when it is subject to all these forces in a dual optical trap. From our dynamic analysis, the sphere can be trapped at an equilibrium point in static water, although it permanently fluctuates around the equilibrium point due to thermal effects. We go a step further to analyze the effects of misalignment of two optical traps. Trapping and escaping phenomena of the sphere in flowing water are also simulated. In flowing water, the sphere is dragged away from the equilibrium point. This dragging distance increases with the decrease of optical power, which results in escaping of the sphere with optical power below a threshold. In both trapping and escaping process we calculate the forces and position of the sphere. Finally, we analyze a trapping region in dual optical tweezers.

  13. Simulating tokamak PFC performance using simultaneous dual beam particle loading with pulsed heat loading

    Science.gov (United States)

    Sinclair, Gregory; Gonderman, Sean; Tripathi, Jitendra; Ray, Tyler; Hassanein, Ahmed

    2017-10-01

    The performance of plasma facing components (PFCs) in a fusion device are expected to change due to high flux particle loading during operation. Tungsten (W) is a promising PFC candidate material, due to its high melting point, high thermal conductivity, and low tritium retention. However, ion irradiation of D and He have each shown to diminish the thermal strength of W. This work investigates the synergistic effect between ion species, using dual beam irradiation, on the thermal response of W during ELM-like pulsed heat loading. Experiments studied three different loading conditions: laser, laser + He+, and laser + He+ + D+. 100 eV He+ and D+ exposures used a flux of 3.0-3.5 x 1020 m-2 s-1. ELM-like loading was applied using a pulsed Nd:YAG laser at an energy density of 0.38-1.51 MJ m-2 (3600 1 ms pulses at 1 Hz). SEM imaging revealed that laser + He+ loading at 0.76 MJ m-2 caused surface melting, inhibiting fuzz formation. Increasing the laser fluence decreased grain size and increased surface pore density. Thermally-enhanced migration of trapped gases appear to reflect resultant molten morphology. This work was supported by the National Science Foundation PIRE project.

  14. Dual energy scanning beam laminographic x-radiography

    Science.gov (United States)

    Majewski, S.; Wojcik, R.F.

    1998-04-21

    A multiple x-ray energy level imaging system includes a scanning x-ray beam and two detector design having a first low x-ray energy sensitive detector and a second high x-ray energy sensitive detector. The low x-ray energy detector is placed next to or in front of the high x-ray energy detector. The low energy sensitive detector has small stopping power for x-rays. The lower energy x-rays are absorbed and converted into electrical signals while the majority of the higher energy x-rays pass through undetected. The high energy sensitive detector has a large stopping power for x-rays as well as it having a filter placed between it and the object to absorb the lower energy x-rays. In a second embodiment; a single energy sensitive detector is provided which provides an output signal proportional to the amount of energy in each individual x-ray it absorbed. It can then have an electronic threshold or thresholds set to select two or more energy ranges for the images. By having multiple detectors located at different positions, a dual energy laminography system is possible. 6 figs.

  15. Development of a dual ion beam system with single accelerator for materials studies

    International Nuclear Information System (INIS)

    Suzuki, Kazumichi; Nishimura, Eiichi; Hashimoto, Tsuneyuki

    1986-01-01

    The dual ion beam accelerator system has been developed for simulation studies of neutron radiation damage of structural materials for nuclear fusion and fission reactors. One accelerator is used to accelerate two different kinds of ions, which are generated in the ion source simultaneously. One of these ions is selected alternatively by switching the magnetic field of the analyzing magnet, and is then accelerated to the desired energy value. The system is controlled by a microcomputer. The accelerator used in the system is a conventional 400 kV Cockcroft-Walton accelerator. The performance test by the acceleration of He + and Ar + shows that the system is capable of accelerating two ions alternatively with a switching time of less than 22 s. The beam current obtained with the microcomputer control is more than 98% of the current obtained by manual operation. (orig.)

  16. Effect of argon ion beam voltages on the microstructure of aluminum nitride films prepared at room temperature by a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Chen, H.-Y.; Han Sheng; Cheng, C.-H.; Shih, H.C.

    2004-01-01

    Aluminum nitride (AlN) films were successfully deposited at room temperature onto p-type (1 0 0) silicon wafers by manipulating argon ion beam voltages in a dual ion beam sputtering (DIBS). X-ray diffraction spectra showed that aluminum nitride films could be synthesized above 800 V. The (0 0 2) orientation was dominant at 800 V, above which the orientation was random. The atomic force microscope (AFM) images displayed a relatively smooth surface with the root-mean-square roughness of 2-3 nm, where this roughness decreased with argon ion beam voltage. The Al 2p 3/2 and N 1s spectra indicated that both the aluminum-aluminum bond and aluminum-nitrogen bond appeared at 600 V, above which only the aluminum-nitrogen bond was detected. Moreover, the atomic concentration in aluminum nitride films was concentrated in aluminum-rich phases in all cases. Nevertheless, the aluminum concentration markedly increased with argon ion beam voltages below 1000 V, above which the concentration decreased slightly. The correlation between the microstructure of aluminum nitride films and argon ion beam voltages is also discussed

  17. Protection device for a thermonuclear device

    International Nuclear Information System (INIS)

    Kawashima, Shuichi.

    1986-01-01

    Purpose: To exactly detect the void coefficients of coolants even under high magnetic fields thereby detect the overheat of a thermonuclear device at an early stage. Constitution: The protecting device of this invention comprises a laser beam generation device, a laser beam detection device and an accident detection device. The laser generation device always generates laser beams, which are permeated through coolants and detected by the laser beam detection device, the optical amount of which is transmitted to the accident detection device. The accident detection device judges the excess or insufficiency of the detected optical amount with respect to the optical amount of the laser beams under the stationary state as a reference and issues an accident signal. Since only the optical cables that do not undergo the effect of the magnetic fields are exposed to high magnetic fields in the protection device of this invention, a high reliability can be maintained. (Kamimura, M.)

  18. Dual-band plasmonic resonator based on Jerusalem cross-shaped nanoapertures

    Science.gov (United States)

    Cetin, Arif E.; Kaya, Sabri; Mertiri, Alket; Aslan, Ekin; Erramilli, Shyamsunder; Altug, Hatice; Turkmen, Mustafa

    2015-06-01

    In this paper, we both experimentally and numerically introduce a dual-resonant metamaterial based on subwavelength Jerusalem cross-shaped apertures. We numerically investigate the physical origin of the dual-resonant behavior, originating from the constituting aperture elements, through finite difference time domain calculations. Our numerical calculations show that at the dual-resonances, the aperture system supports large and easily accessible local electromagnetic fields. In order to experimentally realize the aperture system, we utilize a high-precision and lift-off free fabrication method based on electron-beam lithography. We also introduce a fine-tuning mechanism for controlling the dual-resonant spectral response through geometrical device parameters. Finally, we show the aperture system's highly advantageous far- and near-field characteristics through numerical calculations on refractive index sensitivity. The quantitative analyses on the availability of the local fields supported by the aperture system are employed to explain the grounds behind the sensitivity of each spectral feature within the dual-resonant behavior. Possessing dual-resonances with large and accessible electromagnetic fields, Jerusalem cross-shaped apertures can be highly advantageous for wide range of applications demanding multiple spectral features with strong nearfield characteristics.

  19. Theoretical model of an optothermal microactuator directly driven by laser beams

    International Nuclear Information System (INIS)

    Han, Xu; Zhang, Haijun; Xu, Rui; Wang, Shuying; Qin, Chun

    2015-01-01

    This paper proposes a novel method of optothermal microactuation based on single and dual laser beams (spots). The theoretical model of the optothermal temperature distribution of an expansion arm is established and simulated, indicating that the maximum temperature of the arm irradiated by dual laser spots, at the same laser power level, is much lower than that irradiated by one single spot, and thus the risk of burning out and damaging the optothermal microactuator (OTMA) can be effectively avoided. To verify the presented method, a 750 μm long OTMA with a 100 μm wide expansion arm is designed and microfabricated, and single/dual laser beams with a wavelength of 650 nm are adopted to carry out experiments. The experimental results showed that the optothermal deflection of the OTMA under the irradiation of dual laser spots is larger than that under the irradiation of a single spot with the same power, which is in accordance with theoretical prediction. This method of optothermal microactuation may expand the practical applications of microactuators, which serve as critical units in micromechanical devices and micro-opto-electro-mechanical systems (MOEMS). (paper)

  20. Physical characterization of single convergent beam device for teletherapy: theoretical and Monte Carlo approach.

    Science.gov (United States)

    Figueroa, R G; Valente, M

    2015-09-21

    The main purpose of this work is to determine the feasibility and physical characteristics of a new teletherapy device of radiation therapy based on the application of a convergent x-ray beam of energies like those used in radiotherapy providing highly concentrated dose delivery to the target. We have denominated it Convergent Beam Radio Therapy (CBRT). Analytical methods are developed first in order to determine the dosimetry characteristic of an ideal convergent photon beam in a hypothetical water phantom. Then, using the PENELOPE Monte Carlo code, a similar convergent beam that is applied to the water phantom is compared with that of the analytical method. The CBRT device (Converay(®)) is designed to adapt to the head of LINACs. The converging beam photon effect is achieved thanks to the perpendicular impact of LINAC electrons on a large thin spherical cap target where Bremsstrahlung is generated (high-energy x-rays). This way, the electrons impact upon various points of the cap (CBRT condition), aimed at the focal point. With the X radiation (Bremsstrahlung) directed forward, a system of movable collimators emits many beams from the output that make a virtually definitive convergent beam. Other Monte Carlo simulations are performed using realistic conditions. The simulations are performed for a thin target in the shape of a large, thin, spherical cap, with an r radius of around 10-30 cm and a curvature radius of approximately 70 to 100 cm, and a cubed water phantom centered in the focal point of the cap. All the interaction mechanisms of the Bremsstrahlung radiation with the phantom are taken into consideration for different energies and cap thicknesses. Also, the magnitudes of the electric and/or magnetic fields, which are necessary to divert clinical-use electron beams (0.1 to 20 MeV), are determined using electromagnetism equations with relativistic corrections. This way the above-mentioned beam is manipulated and guided for its perpendicular impact

  1. Launch and capture of a single particle in a pulse-laser-assisted dual-beam fiber-optic trap

    Science.gov (United States)

    Fu, Zhenhai; She, Xuan; Li, Nan; Hu, Huizhu

    2018-06-01

    The rapid loading and manipulation of microspheres in optical trap is important for its applications in optomechanics and precision force sensing. We investigate the microsphere behavior under coaction of a dual-beam fiber-optic trap and a pulse laser beam, which reveals a launched microsphere can be effectively captured in a spatial region. A suitable order of pulse duration for launch is derived according to the calculated detachment energy threshold of pulse laser. Furthermore, we illustrate the effect of structural parameters on the launching process, including the spot size of pulse laser, the vertical displacement of beam waist and the initial position of microsphere. Our result will be instructive in the optimal design of the pulse-laser-assisted optical tweezers for controllable loading mechanism of optical trap.

  2. Speech Enhancement of Mobile Devices Based on the Integration of a Dual Microphone Array and a Background Noise Elimination Algorithm.

    Science.gov (United States)

    Chen, Yung-Yue

    2018-05-08

    Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H ₂ estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.

  3. Speech Enhancement of Mobile Devices Based on the Integration of a Dual Microphone Array and a Background Noise Elimination Algorithm

    Directory of Open Access Journals (Sweden)

    Yung-Yue Chen

    2018-05-01

    Full Text Available Mobile devices are often used in our daily lives for the purposes of speech and communication. The speech quality of mobile devices is always degraded due to the environmental noises surrounding mobile device users. Regretfully, an effective background noise reduction solution cannot easily be developed for this speech enhancement problem. Due to these depicted reasons, a methodology is systematically proposed to eliminate the effects of background noises for the speech communication of mobile devices. This methodology integrates a dual microphone array with a background noise elimination algorithm. The proposed background noise elimination algorithm includes a whitening process, a speech modelling method and an H2 estimator. Due to the adoption of the dual microphone array, a low-cost design can be obtained for the speech enhancement of mobile devices. Practical tests have proven that this proposed method is immune to random background noises, and noiseless speech can be obtained after executing this denoise process.

  4. Device for irradiation of a target surface by a variable electron beam, especially electron beam generator, in order to produce semiconductor components

    International Nuclear Information System (INIS)

    Wolfe, J.E.

    1978-01-01

    For the lithographic device there is used a field emission source for thermal ions with a tungsten cathode and a zirconium top as an electron gain. For production of IC chips the electron beam of 1000 A/cm 2 can be focused on a mask template, mounted on a x/Y table, by means of a system of lenses. The electromagnetic focusing device with a small aberration coefficient is designed in such a way that there is obtained a large focal length on the image side as compared to the focal length on the object side. Thereby a small angular deflection of the beam in the focusing device causes a large deflection at the target. The control is performed by a processor. (RW) [de

  5. Beam energy control device for thermonuclear device

    International Nuclear Information System (INIS)

    Arimoto, Kimiko.

    1991-01-01

    The present invention comprises a setting section for the previously allowed penetration ratio, a correlation graph setting section for the penetration ratio, a beam energy and a plasma density, a control clock output section for transmitting clocks for every control period, a plasma density collecting section for collecting a plasma density from a plasma main body and a calculating section for a beam energy based on the plasma density. Since the value of the beam energy is controlled on real time based on the density of the plasma main body and the correlation graph of the penetration rate, the beam energy and the plasma density is used as a calculation parameter to conduct calculation such that the penetrating ratio is constant, there is no worry that beams at a high energy are entered to plasmas of low density, to damage a vacuum vessel. Further, when a state of plasmas is satisfactory, beams at an effective energy value can be entered as much as possible, thereby enabling to improve heating efficiency. (N.H.)

  6. Dual-wavelength external cavity laser device for fluorescence suppression in Raman spectroscopy

    Science.gov (United States)

    Zhang, Xuting; Cai, Zhijian; Wu, Jianhong

    2017-10-01

    Raman spectroscopy has been widely used in the detection of drugs, pesticides, explosives, food additives and environmental pollutants, for its characteristics of fast measurement, easy sample preparation, and molecular structure analyzing capability. However, fluorescence disturbance brings a big trouble to these applications, with strong fluorescence background covering up the weak Raman signals. Recently shifted excitation Raman difference spectroscopy (SERDS) not only can completely remove the fluorescence background, but also can be easily integrated into portable Raman spectrometers. Usually, SERDS uses two lasers with small wavelength gap to excite the sample, then acquires two spectra, and subtracts one to the other to get the difference spectrum, where the fluorescence background will be rejected. So, one key aspects of successfully applying SERDS method is to obtain a dual-wavelength laser source. In this paper, a dual-wavelength laser device design based on the principles of external cavity diode laser (ECDL) is proposed, which is low-cost and compact. In addition, it has good mechanical stability because of no moving parts. These features make it an ideal laser source for SERDS technique. The experiment results showed that the device can emit narrow-spectral-width lasers of two wavelengths, with the gap smaller than 2 nanometers. The laser power corresponding to each wavelength can be up to 100mW.

  7. Doppler-shift spectra of Hα lines from negative-ion-based neutral beams for large helical device neutral beam injection

    International Nuclear Information System (INIS)

    Oka, Y.; Ikeda, K.; Takeiri, Y.; Tsumori, K.; Kaneko, O.; Nagaoka, K.; Osakabe, M.; Asano, E.; Kondo, T.; Sato, M.; Shibuya, M.; Grisham, L.; Umeda, N.; Honda, A.; Ikeda, Y.; Yamamoto, T.

    2006-01-01

    The velocity spectra of the negative-ion-(H - ) based neutral beams are studied in high-performance large-area ion sources during injection into large helical device fusion plasmas. We are conducting systematic observations in standard neutral beam injection to correlate beam spectra with source operating conditions. Almost all of the transmitted beam power was at full acceleration energy (∼170 keV). The small stripping beam component which was produced in the extraction gap was evaluated to be about 9%-22% by amplitude of the measured spectra for the sources in beam lines 1 and 2. H - production uniformity from the spectrum profile was 86%-90% for three sources. For the longest pulse injection during 74 and 128 s, a full energy component tended to decrease with time, while the accelerator gap stripping tail tended to increase slightly with time, which is attributed to beam-induced outgassing in the accelerator. A higher conductance multislot ground grid accelerator appeared to show little growth in the accelerator gap beam stripping during long pulses compared to the conventional multiaperture ground grid. The beam uniformity appeared to vary in part with the Cs uniformity on the plasma grid

  8. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria

    Science.gov (United States)

    2013-01-01

    Background Controlled restriction of cellular movement using microfluidics allows one to study individual cells to gain insight into aspects of their physiology and behaviour. For example, the use of micron-sized growth channels that confine individual Escherichia coli has yielded novel insights into cell growth and death. To extend this approach to other species of bacteria, many of whom have dimensions in the sub-micron range, or to a larger range of growth conditions, a readily-fabricated device containing sub-micron features is required. Results Here we detail the fabrication of a versatile device with growth channels whose widths range from 0.3 μm to 0.8 μm. The device is fabricated using electron beam lithography, which provides excellent control over the shape and size of different growth channels and facilitates the rapid-prototyping of new designs. Features are successfully transferred first into silicon, and subsequently into the polydimethylsiloxane that forms the basis of the working microfluidic device. We demonstrate that the growth of sub-micron scale bacteria such as Lactococcus lactis or Escherichia coli cultured in minimal medium can be followed in such a device over several generations. Conclusions We have presented a detailed protocol based on electron beam fabrication together with specific dry etching procedures for the fabrication of a microfluidic device suited to study submicron-sized bacteria. We have demonstrated that both Gram-positive and Gram-negative bacteria can be successfully loaded and imaged over a number of generations in this device. Similar devices could potentially be used to study other submicron-sized organisms under conditions in which the height and shape of the growth channels are crucial to the experimental design. PMID:23575419

  9. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    International Nuclear Information System (INIS)

    Kobulnicky, K; Pawlak, D; Purwar, A

    2015-01-01

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc

  10. SU-E-T-403: Evaluation of the Beam Performance of a Varian TrueBeam Linear Accelerator Under External Device-Based Gated Delivery Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobulnicky, K; Pawlak, D; Purwar, A [Varian Medical Systems, Inc., Palo Alto, CA (United States)

    2015-06-15

    Purpose: To examine the beam performance of a Varian TrueBeam linear accelerator under external device-based gated delivery conditions. Methods: Six gating cycles were used to evaluate the gating performance of a standard production TrueBeam system that was not specially tuned in any way. The system was equipped with a factory installed external gating interface (EXGI). An in-house EXGI tester box was used to simulate the input gating signals. The gating cycles were selected based on long beam-on and short beam-off times, short beam-on and long beam-off times, or equal beam on and off times to check linac performance. The beam latencies were measured as the time difference between the logic high gating signal and the first or last target pulses with an oscilloscope. Tissue-Phantom Ratio, beam flatness, and dose distributions from 5 different plans were measured using the 6 different gating durations and the un-gated irradiation. A PTW 729 2-D array was used to compare 5 plans versus the un-gated delivery with a 1%/1mm gamma index passing criteria. Results: The beam latencies of the linac were based off of 20 samples for beam-on and beam-off, for each gating cycle. The average beam-on delays were measured to be between 57 and 66msec, with a maximum of 88 msec. The beam off latencies averaged between 19 and 26msec, with a maximum of 48 msec. TPR20,10 measurements showed beam energy stability within 0.5% of the un-gated delivery. Beam flatness was better than 2.5% for all gated cycles. All but two deliveries, the open field with 4 seconds on, 1 second off, and a five field IMRT plan with 0.5 seconds on, 2.5 seconds off, had >90% passing rate. Conclusion: TrueBeam demonstrates excellent beam stability with minimal beam latencies under external device-based gated operations. Dosimetric measurements show minimal variation in beam energy, flatness, and plan delivery. Authors are employees of Varian Medical Systems, Inc.

  11. Basic design of the beam diagnostic device and proposal of a new electrostatic optical element

    Energy Technology Data Exchange (ETDEWEB)

    Hanashima, Susumu [Japan Atomic Energy Research Inst., Tokyo (Japan)

    2001-02-01

    The basic design completed of a beam diagnostic device, which indicates, among others, the phase space regions acceptable by the beams, and density distributions in the phase space as well. The measurement is made using two deflectors and two apertures. (M. Tanaka)

  12. An on-line identification device for coal and gangue based on dual-energy γ-ray transmission and microcontroller

    International Nuclear Information System (INIS)

    Chen Guojie; Zhu Xing

    2004-01-01

    The operating principle, hardware design, software design and stabled-spectrum method of on-line identification device for coal and gangue based on dual-energy γ-ray transmission and microcontroller are introduced. The integrated linear amplifier and integrated single channel pulse height analyzer are analyzed. The on-line identification device has advantages of small size, low cost as well stabilization. (authors)

  13. Effect of dual laser beam on dissimilar welding-brazing of aluminum to galvanized steel

    Science.gov (United States)

    Mohammadpour, Masoud; Yazdian, Nima; Yang, Guang; Wang, Hui-Ping; Carlson, Blair; Kovacevic, Radovan

    2018-01-01

    In this investigation, the joining of two types of galvanized steel and Al6022 aluminum alloy in a coach peel configuration was carried out using a laser welding-brazing process in dual-beam mode. The feasibility of this method to obtain a sound and uniform brazed bead with high surface quality at a high welding speed was investigated by employing AlSi12 as a consumable material. The effects of alloying elements on the thickness of intermetallic compound (IMC) produced at the interface of steel and aluminum, surface roughness, edge straightness and the tensile strength of the resultant joint were studied. The comprehensive study was conducted on the microstructure of joints by means of a scanning electron microscopy and EDS. Results showed that a dual-beam laser shape and high scanning speed could control the thickness of IMC as thin as 3 μm and alter the failure location from the steel-brazed interface toward the Al-brazed interface. The numerical simulation of thermal regime was conducted by the Finite Element Method (FEM), and simulation results were validated through comparative experimental data. FEM thermal modeling evidenced that the peak temperatures at the Al-steel interface were around the critical temperature range of 700-900 °C that is required for the highest growth rate of IMC. However, the time duration that the molten pool was placed inside this temperature range was less than 1 s, and this duration was too short for diffusion-control based IMC growth.

  14. Linear and nonlinear ion beam instabilities in a double plasma device

    International Nuclear Information System (INIS)

    Lee, S.G.; Diebold, D.; Hershkowitz, N.

    1994-01-01

    Ion beam instabilities in the double plasma device DOLI-1 were found to be quite sensitive to the difference between the source and target chamber plasma potentials when those potentials were within an electron temperature T e /e or so of each other. When the target chamber plasma potential of DOLI-1 was ≤ T e /e more positive than the source chamber plasma potential, a global ion beam-ion beam instability was observed. On the other hand, when the maximum target potential was between approximately 0.5 T e /e and 2.0 T e /e below the source potential, an ion-ion beam instability and a soliton associated with it were observed. This soliton is unique in that it is not launched but rather is self generated by the plasma and beam. When the target potential was less than source potential by more than two or so T e /e, the plasma was quite quiescent, which allowed small amplitude wave packet launched by Langmuir probe to be detected

  15. Integrated nanohole array surface plasmon resonance sensing device using a dual-wavelength source

    International Nuclear Information System (INIS)

    Escobedo, C; Vincent, S; Choudhury, A I K; Campbell, J; Gordon, R; Brolo, A G; Sinton, D

    2011-01-01

    In this paper, we demonstrate a compact integrated nanohole array-based surface plasmon resonance sensing device. The unit includes a LED light source, driving circuitry, CCD detector, microfluidic network and computer interface, all assembled from readily available commercial components. A dual-wavelength LED scheme was implemented to increase spectral diversity and isolate intensity variations to be expected in the field. The prototype shows bulk sensitivity of 266 pixel intensity units/RIU and a limit of detection of 6 × 10 −4 RIU. Surface binding tests were performed, demonstrating functionality as a surface-based sensing system. This work is particularly relevant for low-cost point-of-care applications, especially those involving multiple tests and field studies. While nanohole arrays have been applied to many sensing applications, and their suitability to device integration is well established, this is the first demonstration of a fully integrated nanohole array-based sensing device.

  16. Alpha Beam Energy Determination Using a Range Measuring Device for Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jun Yong; Kim, Byeon Gil; Hong, Seung Pyo; Kim, Ran Young; Chun, Kwon Soo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2016-05-15

    The threshold energy of the {sup 209}Bi(α,3n){sup 210} At reaction is at about 30MeV. Our laboratory suggested an energy measurement method to confirm the proton-beam's energy by using a range measurement device. The experiment was performed energy measurement of alpha beam. The alpha beam of energy 29 MeV has been extracted from the cyclotron for the production of {sup 211}At. This device was composed of four parts: an absorber, a drive shaft, and a servo motor and a Faraday cup. The drive shaft was mounted on the absorber and connects with the axis of the servo motor and rotates linearly and circularly by this servo motor. A Faraday cup is for measuring the beam flux. As this drive shaft rotates, the thickness of the absorber varies depending on the rotation angle of the absorber. The energy of the alpha particle accelerated and extracted from MC-50 cyclotron was calculated with the measurement of the particle range in Al foil and using ASTAR, SRIM, MCNPX software. There were a little discrepancy between the expected energy and the calculated energy within the 0.5MeV error range. We have a plan to make an experiment with various alpha particle energies and another methodology, for example, the cross section measurement of the nuclear reaction.

  17. In-situ observation system for dual ion irradiation damage

    International Nuclear Information System (INIS)

    Furuno, Shigemi; Hojou, Kiichi; Otsu, Hitoshi; Sasaki, T.A.; Izui, Kazuhiko; Tukamoto, Tetsuo; Hata, Takao.

    1992-01-01

    We have developed an in-situ observation and analysis system during dual ion beam irradiation in an electron microscope. This system consists of an analytical electron microscope of JEM-4000FX type equipped with a parallel EELS and an EDS attachments and linked with two sets of ion accelerators of 40 kV. Hydrogen and helium dual-ion beam irradiation experiments were performed for SiC crystals. The result of dual-ion beam irradiation was compared with those of helium and hydrogen single ion irradiations. It is clearly seen that the dual-ion irradiation has the effect of suppressing bubble formation and growth in comparison with the case of single helium ion irradiation. (author)

  18. Gain dynamics of quantum dot devices for dual-state operation

    Energy Technology Data Exchange (ETDEWEB)

    Kaptan, Y., E-mail: yuecel.kaptan@physik.tu-berlin.de; Herzog, B.; Kolarczik, M.; Owschimikow, N.; Woggon, U. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Berlin (Germany); Schmeckebier, H.; Arsenijević, D.; Bimberg, D. [Institut für Festkörperphysik, Technische Universität Berlin, Berlin (Germany); Mikhelashvili, V.; Eisenstein, G. [Technion Institute of Technology, Faculty of Electrical Engineering, Haifa (Israel)

    2014-06-30

    Ground state gain dynamics of In(Ga)As-quantum dot excited state lasers are investigated via single-color ultrafast pump-probe spectroscopy below and above lasing threshold. Two-color pump-probe experiments are used to localize lasing and non-lasing quantum dots within the inhomogeneously broadened ground state. Single-color results yield similar gain recovery rates of the ground state for lasing and non-lasing quantum dots decreasing from 6 ps to 2 ps with increasing injection current. We find that ground state gain dynamics are influenced solely by the injection current and unaffected by laser operation of the excited state. This independence is promising for dual-state operation schemes in quantum dot based optoelectronic devices.

  19. White organic light-emitting devices based on blue fluorescent dye combined with dual sub-monolayer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Huishan, E-mail: yanghuishan1697@163.com

    2013-10-15

    White organic light-emitting devices have been realized by using highly blue fluorescent dye 4,4′-Bis(2,2-diphenyl-ethen-1-yl)-4,4′-di-(tert-butyl)phenyl(p-TDPVBi) and [2-methyl-6-[2-(2, 3,6,7-tetrahydro-1H, red fluorescent dye 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile(DCM2), together with well known green fluorescent dye quinacridone (QAD). The fabrication of multilayer WOLEDs did not involve the hard-to-control doping process. The structure of the device is ITO/m-MTDATA (45 nm)/NPB(8 nm)/p-TDPVBi(15 nm)/DCM2(x nm)/Alq{sub 3} (5 nm)/QAD(y nm)/Alq{sub 3}(55 nm)/LiF(1 nm)/Al, where 4,4′,4′′-tris{N,-(3-methylphenyl)-N-phenylamine}triphenylamine (m-MTDATA) acts as a hole injection layer, N,N′-bis-(1-naphthyl)-N, N′-diphenyl-1, 1′-biph-enyl-4, 4′-diamine (NPB) acts as a hole transport layer, p-TDPVBi acts as a blue emitting layer, DCM2 acts as a red emitting layer, QAD acts as a green emitting layer, tris-(8-hydroxyquinoline) aluminum (Alq{sub 3}) acts as an electron transport layer, and WOLEDs of devices A, B, C and D are different in layer thickness of DCM2 and QAD, respectively. To change the thickness of dual sub-monolayer DCM2 and QAD, the WOLEDs were obtained. When x, y=0.05, 0.1, the Commission Internationale de 1’Eclairage (CIE) coordinates of the device change from (0.4458, 0.4589) at 3 V to (0.3137, 0.3455) at 12 V that are well in the white region, and the color temperature and color rendering index were 5348 K and 85 at 8 V, respectively. Its maximum luminance was 35260 cd/m{sup 2} at 12 V, and maximum current efficiency and maximum power efficiency were 13.54 cd/A at 12 V and 6.68 lm/W at 5 V, respectively. Moreover, the current efficiency is largely insensitive to the applied voltage. The electroluminescence intensity of white EL devices varied only little at deferent dual sub-monolayer. Device D exhibited relatively high color rendering index (CRI) in the range of 88–90, which was essentially

  20. The EPICS-based remote control system for muon beam line devices at J-PARC MUSE

    Science.gov (United States)

    Ito, T. U.; Nakahara, K.; Kawase, M.; Fujimori, H.; Kobayashi, Y.; Higemoto, W.; Miyake, Y.

    2010-04-01

    The remote control system for muon beam line devices of J-PARC MUSE has been developed with the Experimental Physics and Industrial Control System (EPICS). The EPICS input/output controller was installed in standard Linux PCs for slow control of the devices. Power supplies for 21 magnetic elements and four slit controllers for the decay-surface muon beam line in the Materials and Life Science Experimental Facility are now accessible via Ethernet from a graphical user interface which has been composed using the Motif Editor and Display Manger.

  1. Technical Note: Insertion of digital lesions in the projection domain for dual-source, dual-energy CT.

    Science.gov (United States)

    Ferrero, Andrea; Chen, Baiyu; Li, Zhoubo; Yu, Lifeng; McCollough, Cynthia

    2017-05-01

    To compare algorithms performing material decomposition and classification in dual-energy CT, it is desirable to know the ground truth of the lesion to be analyzed in real patient data. In this work, we developed and validated a framework to insert digital lesions of arbitrary chemical composition into patient projection data acquired on a dual-source, dual-energy CT system. A model that takes into account beam-hardening effects was developed to predict the CT number of objects with known chemical composition. The model utilizes information about the x-ray energy spectra, the patient/phantom attenuation, and the x-ray detector energy response. The beam-hardening model was validated on samples of iodine (I) and calcium (Ca) for a second-generation dual-source, dual-energy CT scanner for all tube potentials available and a wide range of patient sizes. The seven most prevalent mineral components of renal stones were modeled and digital stones were created with CT numbers computed for each patient/phantom size and x-ray energy spectra using the developed beam-hardening model. Each digital stone was inserted in the dual-energy projection data of a water phantom scanned on a dual-source scanner and reconstructed with the routine algorithms in use in our practice. The geometry of the forward projection for dual-energy data was validated by comparing CT number accuracy and high-contrast resolution of simulated dual-energy CT data of the ACR phantom with experimentally acquired data. The beam-hardening model and forward projection method accurately predicted the CT number of I and Ca over a wide range of tube potentials and phantom sizes. The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner, and the CT number ratios for different kidney stone types were consistent with data in the literature. A sample application of the proposed tool was also demonstrated. A framework was developed and validated

  2. A dose-per-pulse monitor for a dual-mode medical accelerator

    International Nuclear Information System (INIS)

    Galbraith, D.M.; Martell, E.S.; Fueurstake, T.; Norrlinger, B.; Schwendener, H.; Rawlinson, J.A.

    1990-01-01

    On a radiotherapy accelerator, the dose monitoring system is the last level of protection between the patient and the extremely high dose rate which all accelerators are capable of producing. The risk of losing this level of protection is substantially reduced if two or more dose monitoring systems are used which are mechanically and electrically independent in design. This paper describes the installation of an independent radiation monitor in a dual-mode, computer-controlled accelerator with a moveable monitor chamber. The added device is fixed in the beam path, is capable of monitoring each beam pulse, and is capable of terminating irradiation within the pulse repetition period if any measured pulse is unacceptably high

  3. Shot-Noise-Limited Dual-Beam Detector for Atmospheric Trace-Gas Monitoring with Near-Infrared Diode Lasers

    Science.gov (United States)

    Durry, Georges; Pouchet, Ivan; Amarouche, Nadir; Danguy, Théodore; Megie, Gerard

    2000-10-01

    A dual-beam detector is used to measure atmospheric trace species by differential absorption spectroscopy with commercial near-infrared InGaAs laser diodes. It is implemented on the Spectrom tre Diodes Laser Accordables, a balloonborne tunable diode laser spectrometer devoted to the in situ monitoring of CH 4 and H 2 O. The dual-beam detector is made of simple analogical subtractor circuits combined with InGaAs photodiodes. The detection strategy consists in taking the balanced analogical difference between the reference and the sample signals detected at the input and the output of an open optical multipass cell to apply the full dynamic range of the measurements (16 digits) to the weak molecular absorption information. The obtained sensitivity approaches the shot-noise limit. With a 56-m optical cell, the detection limit obtained when the spectra is recorded within 8 ms is 10 4 (expressed in absorbance units). The design and performances of both a simple substractor and an upgraded feedback substractor circuit are discussed with regard to atmospheric in situ CH 4 absorption spectra measured in the 1.653- m region. Mixing ratios are obtained from the absorption spectra by application of a nonlinear least-squares fit to the full molecular line shape in conjunction with in situ P and T measurements.

  4. Dual aerosol detector based on forward light scattering with a single laser beam

    International Nuclear Information System (INIS)

    Kovach, B.J.; Custer, R.A.; Powers, F.L.; Kovach, A.

    1985-01-01

    The in-place leak testing of HEPA filter banks using a single detector can lead to some error in the measurement due to the fluctuation of the aerosol concentration while the single detector is being switched from the upstream to downstream sampling. The time duration of the test also can cause unnecessarily high DOP loading of the HEPA filters and in some cases higher radiation exposure to the testing personnel. The new forward light scattering detector uses one 632.8 nm laser beam for aerosol detection in a dual chamber sampling and detecting aerosol concentration simultaneously both upstream and downstream. This manner of operation eliminates the errors caused by concentration variations between upstream and downstream sample points while the switching takes place. The new detector uses large area silicone photodiodes with a hole in the center, to permit uninterrupted passage of the laser beam through the downstream sample chamber. The nonlinearity due to the aerosol over population of the laser beam volume is calculated to be less than 1% using a Poisson distribution method to determine the average distance of the particles. A simple pneumatic system prevents mixing of the upstream and downstream samples even in wide pressure variations of the duct system

  5. Development and Testing of Atomic Beam-Based Plasma Edge Diagnostics in the CIEMAT Fusion Devices

    International Nuclear Information System (INIS)

    Tafalla, D.; Tabares, F.L.; Ortiz, P.; Herrero, V.J.; Tanarro, I.

    1998-01-01

    In this report the development of plasma edge diagnostic based on atomic beam techniques fir their application in the CIEMAT fusion devices is described. The characterisation of the beams in laboratory experiments at the CSIC, together with first results in the Torsatron TJ-II are reported. Two types of beam diagnostics have been developed: a thermal (effusive) Li and a supersonic, pulsed He beams. This work has been carried out in collaboration between the institutions mentioned above under partial financial support by EURATOM. (Author) 17 refs

  6. Aerial Triangulation Close-range Images with Dual Quaternion

    Directory of Open Access Journals (Sweden)

    SHENG Qinghong

    2015-05-01

    Full Text Available A new method for the aerial triangulation of close-range images based on dual quaternion is presented. Using dual quaternion to represent the spiral screw motion of the beam in the space, the real part of dual quaternion represents the angular elements of all the beams in the close-range area networks, the real part and the dual part of dual quaternion represents the line elements corporately. Finally, an aerial triangulation adjustment model based on dual quaternion is established, and the elements of interior orientation and exterior orientation and the object coordinates of the ground points are calculated. Real images and large attitude angle simulated images are selected to run the experiments of aerial triangulation. The experimental results show that the new method for the aerial triangulation of close-range images based on dual quaternion can obtain higher accuracy.

  7. A Planar, Chip-Based, Dual-Beam Refractometer Using an Integrated Organic Light Emitting Diode (OLED) Light Source and Organic Photovoltaic (OPV) Detectors

    Science.gov (United States)

    Ratcliff, Erin L.; Veneman, P. Alex; Simmonds, Adam; Zacher, Brian; Huebner, Daniel

    2010-01-01

    We present a simple chip-based refractometer with a central organic light emitting diode (OLED) light source and two opposed organic photovoltaic (OPV) detectors on an internal reflection element (IRE) substrate, creating a true dual-beam sensor platform. For first-generation platforms, we demonstrate the use of a single heterojunction OLED based on electroluminescence emission from an Alq3/TPD heterojunction (tris-(8-hydroxyquinoline)aluminum/N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) and light detection with planar heterojunction pentacene/C60 OPVs. The sensor utilizes the considerable fraction of emitted light from conventional thin film OLEDs that is coupled into guided modes in the IRE instead of into the forward (display) direction. A ray-optics description is used to describe light throughput and efficiency-limiting factors for light coupling from the OLED into the substrate modes, light traversing through the IRE substrate, and light coupling into the OPV detectors. The arrangement of the OLED at the center of the chip provides for two sensing regions, a “sample” and “reference” channel, with detection of light by independent OPV detectors. This configuration allows for normalization of the sensor response against fluctuations in OLED light output, stability, and local fluctuations (temperature) which might influence sensor response. The dual beam configuration permits significantly enhanced sensitivity to refractive index changes relative to single-beam protocols, and is easily integrated into a field-portable instrumentation package. Changes in refractive index (ΔR.I.) between 10−2 and 10−3 R.I. units could be detected for single channel operation, with sensitivity increased to ΔR.I. ≈ 10−4 units when the dual beam configuration is employed. PMID:20218580

  8. Measuring a narrow Bessel beam spot by scanning a charge-coupled device (CCD) pixel

    International Nuclear Information System (INIS)

    Tiwari, S K; Ram, S P; Jayabalan, J; Mishra, S R

    2010-01-01

    By scanning a charge-coupled device (CCD) camera transverse to the beam axis and observing the variation in counts on a marked pixel, we demonstrate that we can measure a laser beam spot size smaller than the size of the CCD-pixel. We find this method particularly attractive for measuring the size of central spot of a Bessel beam, for which the established scanning knife-edge method does not work appropriately because of the large contribution of the rings surrounding the central spot to the signal

  9. Dual circularly polarized broadside beam antenna based on metasurfaces

    Science.gov (United States)

    Tellechea, A.; Caminita, F.; Martini, E.; Ederra, I.; Teniente, J.; Iriarte, J. C.; Gonzalo, R.; Maci, S.

    2018-02-01

    Design details of a Ku band metasurface (MTS) antenna with dual circularly polarized (CP) broadside radiation is shown in this work. By means of the surface impedance tensor modulation, synchronized propagation of two transversal magnetic (TM) and transverse electric (TE) surface waves (SWs) is ensured in the structure, which contribute to the radiation in broadside direction by the generation of a CP leaky wave. The structure is implemented by elliptical subwavelength metallic elements with a cross-shaped aperture in the center, printed on top of a thin substrate with high permittivity (AD1000 with a thickness of λ0/17). For the experimental validation, the MTS prototype has been excited employing an orthomode transducer composed by a metallic stepped septum inside an air-filled waveguide. Two orthogonal TE11 modes excited with ±90° phase shift in the feed couple with the TM and TE SWs supported by the MTS and generate RHCP or LHCP broadside beam. Experimental results are compared with the simulation predictions. Finally, conclusions are drawn.

  10. Shock loading characteristics of Zr and Ti metals using dual beam velocimeter

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, A. K., E-mail: a-saxena@barc.gov.in; Kaushik, T. C.; Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-08-21

    The characteristics of titanium and zirconium metal foils under shock loading have been studied up to 16 GPa and 12 GPa pressure, respectively, using portable electric gun setup as projectile launcher. In these experiments, the capabilities of a single Fabry-Perot velocimeter have been enhanced by implementing it in dual beam mode to record the two velocity profiles on a single streak camera. The measured equation of state data for both the metals have been found to be well in agreement with the reported Hugoniot, within experimental accuracies. A phase transition from α to ω phase has been detected near to 11.4 GPa for titanium and 8.2 GPa for zirconium in the rising part of target-glass interface velocity profile.

  11. SNOW: a digital computer program for the simulation of ion beam devices

    International Nuclear Information System (INIS)

    Boers, J.E.

    1980-08-01

    A digital computer program, SNOW, has been developed for the simulation of dense ion beams. The program simulates the plasma expansion cup (but not the plasma source itself), the acceleration region, and a drift space with neutralization if desired. The ion beam is simulated by computing representative trajectories through the device. The potentials are simulated on a large rectangular matrix array which is solved by iterative techniques. Poisson's equation is solved at each point within the configuration using space-charge densities computed from the ion trajectories combined with background electron and/or ion distributions. The simulation methods are described in some detail along with examples of both axially-symmetric and rectangular beams. A detailed description of the input data is presented

  12. Dual wavelength imaging of a scrape-off layer in an advanced beam-driven field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Osin, D.; Schindler, T., E-mail: dosin@trialphaenergy.com [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688-7010 (United States)

    2016-11-15

    A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can be used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.

  13. Inspection of commercial optical devices for data storage using a three Gaussian beam microscope interferometer

    International Nuclear Information System (INIS)

    Flores, J. Mauricio; Cywiak, Moises; Servin, Manuel; Juarez P, Lorenzo

    2008-01-01

    Recently, an interferometric profilometer based on the heterodyning of three Gaussian beams has been reported. This microscope interferometer, called a three Gaussian beam interferometer, has been used to profile high quality optical surfaces that exhibit constant reflectivity with high vertical resolution and lateral resolution near λ. We report the use of this interferometer to measure the profiles of two commercially available optical surfaces for data storage, namely, the compact disk (CD-R) and the digital versatile disk (DVD-R). We include experimental results from a one-dimensional radial scan of these devices without data marks. The measurements are taken by placing the devices with the polycarbonate surface facing the probe beam of the interferometer. This microscope interferometer is unique when compared with other optical measuring instruments because it uses narrowband detection, filters out undesirable noisy signals, and because the amplitude of the output voltage signal is basically proportional to the local vertical height of the surface under test, thus detecting with high sensitivity. We show that the resulting profiles, measured with this interferometer across the polycarbonate layer, provide valuable information about the track profiles, making this interferometer a suitable tool for quality control of surface storage devices

  14. Design of two-DMD based zoom MW and LW dual-band IRSP using pixel fusion

    Science.gov (United States)

    Pan, Yue; Xu, Xiping; Qiao, Yang

    2018-06-01

    In order to test the anti-jamming ability of mid-wave infrared (MWIR) and long-wave infrared (LWIR) dual-band imaging system, a zoom mid-wave (MW) and long-wave (LW) dual-band infrared scene projector (IRSP) based on two-digital micro-mirror device (DMD) was designed by using a projection method of pixel fusion. Two illumination systems, which illuminate the two DMDs directly with Kohler telecentric beam respectively, were combined with projection system by a spatial layout way. The distances of projection entrance pupil and illumination exit pupil were also analyzed separately. MWIR and LWIR virtual scenes were generated respectively by two DMDs and fused by a dichroic beam combiner (DBC), resulting in two radiation distributions in projected image. The optical performance of each component was evaluated by ray tracing simulations. Apparent temperature and image contrast were demonstrated by imaging experiments. On the basis of test and simulation results, the aberrations of optical system were well corrected, and the quality of projected image meets test requirements.

  15. Design of a high-efficiency seven-port beam splitter using a dual duty cycle grating structure.

    Science.gov (United States)

    Wen, Fung Jacky; Chung, Po Sheun

    2011-07-01

    In this paper, we propose a compact seven-port beam splitter which is constructed using only a single-layer high-density grating with a dual duty cycle structure. The properties of this grating are investigated by a simplified modal method. The diffraction efficiency can be achieved around 10% more than conventional Dammann gratings while the uniformity can still be maintained at less than 1%. The effect of deviations from the design parameters on the performance of the grating is also presented.

  16. Intelligent Balanced Device and its Sensing System for Beam Pumping Units

    Directory of Open Access Journals (Sweden)

    Hangxin WEI

    2014-11-01

    Full Text Available In order to save the energy of the beam pumping unit, the intelligent balanced device was developed. The device can adjust the position of the balanced-block automatically by the single chip microcomputer controller, and the fuzzy PD control algorithm was used to control the servo motor of the device. Since some signals should be inputted into the intelligent balanced device to calculate the balanced index of the pumping unit, the signals sensing system were designed. The sensing system includes the electric current sensor and voltage sensor of the main motor, the displacement sensor and the force sensor of the horse head. The sensing network has three layers: slave station, relay station and master station. The data transmission between them is based on ZigBee and GPRS method which can adapt the environment of the oil field. The results of application show that the intelligent balanced device and its sensing system can have the effect of reducing the power consumption, working reliability and communication efficiently.

  17. Dual-Material Electron Beam Selective Melting: Hardware Development and Validation Studies

    Directory of Open Access Journals (Sweden)

    Chao Guo

    2015-03-01

    Full Text Available Electron beam selective melting (EBSM is an additive manufacturing technique that directly fabricates three-dimensional parts in a layerwise fashion by using an electron beam to scan and melt metal powder. In recent years, EBSM has been successfully used in the additive manufacturing of a variety of materials. Previous research focused on the EBSM process of a single material. In this study, a novel EBSM process capable of building a gradient structure with dual metal materials was developed, and a powder-supplying method based on vibration was put forward. Two different powders can be supplied individually and then mixed. Two materials were used in this study: Ti6Al4V powder and Ti47Al2Cr2Nb powder. Ti6Al4V has excellent strength and plasticity at room temperature, while Ti47Al2Cr2Nb has excellent performance at high temperature, but is very brittle. A Ti6Al4V/Ti47Al2Cr2Nb gradient material was successfully fabricated by the developed system. The microstructures and chemical compositions were characterized by optical microscopy, scanning microscopy, and electron microprobe analysis. Results showed that the interface thickness was about 300 μm. The interface was free of cracks, and the chemical compositions exhibited a staircase-like change within the interface.

  18. Low-Profile, Dual-Wavelength, Dual-Polarized Antenna

    Science.gov (United States)

    Carswell, James R.

    2010-01-01

    A single-aperture, low-profile antenna design has been developed that supports dual-polarization and simultaneous operation at two wavelengths. It realizes multiple beams in the elevation plane, and supports radiometric, radar, and conical scanning applications. This antenna consists of multiple azimuth sticks, with each stick being a multilayer, hybrid design. Each stick forms the h-plane pattern of the C and Ku-band vertically and horizontally polarized antenna beams. By combining several azimuth sticks together, the elevation beam is formed. With a separate transceiver for each stick, the transmit phase and amplitude of each stick can be controlled to synthesize a beam at a specific incidence angle and to realize a particular side-lobe pattern. By changing the transmit phase distribution through the transceivers, the transmit antenna beam can be steered to different incidence angles. By controlling the amplitude distribution, different side lobe patterns and efficiencies can be realized. The receive beams are formed using digital beam synthesis techniques, resulting in very little loss in the receive path, thus enabling a very-low loss receive antenna to support passive measurements.

  19. Direct measurement of refracted trajectory of transmitting electron cyclotron beam through plasma on the Large Helical Device

    Directory of Open Access Journals (Sweden)

    Takahashi Hiromi

    2015-01-01

    Full Text Available The electron-cyclotron (EC -beam refraction due to the presence of plasma was investigated in the Large Helical Device. The transmitted-EC-beam measurement system was constructed and the beam pattern on the opposite side of the irradiated surface was measured using an IR camera. Clear dependence of the EC-beam refraction on the electron density was observed and the beam shift in the toroidal direction showed good agreement with the ray-trace calculation of TRAVIS. The influence of the peripheral density profile and the thermal effect on the beam refraction were discussed.

  20. The path to exploring physics in advanced devices with a heavy ion beam probe

    Science.gov (United States)

    Demers, D. R.; Fimognari, P. J.

    2012-10-01

    The scientific progression of alternative or advanced devices must be met with comparable diagnostic technologies. Heavy ion beam probe innovations from ongoing diagnostic development are meeting this challenge. The diagnostic is uniquely capable of measuring the radial electric field, critically important in stellarators, simultaneously with fluctuations of electron density and electric potential. HIBP measurements can also improve the understanding of edge physics in tokamaks and spherical tori. It can target issues associated with the pedestal region, including the mechanisms underlying the L-H transition, the onset and evolution of ELMs, and the evolution of the electron current density. Beam attenuation (and resulting low signal to noise levels), a challenge to operation on devices with large plasma cross-sections and high ne and Te, can be mitigated with greater beam energies and currents. Other application challenges, such as measurements of plasma fluctuations and profile variations with elevated temporal and spatial resolutions, can be achieved with innovative detectors. The scientific studies motivating the implementation of an HIBP on HSX, ASDEX-U, and W7-X will be presented along with preliminary scoping studies.

  1. Effect of hydrogen ion beam treatment on Si nanocrystal/SiO_2 superlattice-based memory devices

    International Nuclear Information System (INIS)

    Fu, Sheng-Wen; Chen, Hui-Ju; Wu, Hsuan-Ta; Chuang, Bing-Ru; Shih, Chuan-Feng

    2016-01-01

    Graphical abstract: - Highlights: • Memory window and retention properties are improved employing HIBAS technique. • The O/Si ratio and radiative recombination are changed by HIBAS. • Memory properties are affected not only by Si NCs and O/Si ratio but also the RDCs. • The mechanism of hydrogen ion beam alters the memory properties is investigated. - Abstract: This study presents a novel route for synthesizing silicon-rich oxide (SRO)/SiO_2 superlattice-based memory devices with an improved memory window and retention properties. The SiO_2 and SRO superlattices are deposited by reactive sputtering. Specifically, the hydrogen ion beam is used to irradiate the SRO layer immediately after its deposition in the vacuum chamber. The use of the hydrogen ion beam was determined to increase oxygen content and the density of the Si nanocrystals. The memory window increased from 16 to 25.6 V, and the leakage current decreased significantly by two orders, to under ±20 V, for the hydrogen ion beam-prepared devices. This study investigates the mechanism into how hydrogen ion beam treatment alters SRO films and influences memory properties.

  2. EBQ code: Transport of space-charge beams in axially symmetric devices

    Science.gov (United States)

    Paul, A. C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  3. EBQ code: transport of space-charge beams in axially symmetric devices

    International Nuclear Information System (INIS)

    Paul, A.C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present

  4. Vibration Suppression of Electronic Box by a Dual Function Piezoelectric Energy Harvester-Tuned Vibration Absorber

    Directory of Open Access Journals (Sweden)

    Sajid Rafique

    2014-04-01

    Full Text Available Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber. It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of 'electromechanical' TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel "electromechanical" TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry

  5. Vibration suppression of electronic box by a dual function piezoelectric energy harvester-tuned vibration absorber

    International Nuclear Information System (INIS)

    Rafique, S.; Shah, S.

    2014-01-01

    Over the past few years, remarkable developments in piezoelectric materials have motivated many researchers to work in the field of vibration energy harvesting by using piezoelectric beam like smart structures. This paper aimed to present the most recent application of a dual function piezoelectric device which can suppress vibration and harvest vibration energy simultaneously and a brief illustration of conventional mechanical and electrical TVAs (Tuned Vibration Absorber). It is shown that the proposed dual function device combines the benefits of conventional mechanical and electrical TVAs and reduces their relative disadvantages. Conversion of mechanical energy into electrical energy introduces damping and, hence, the optimal damping required by this TVA is generated by the energy harvesting effects. This paper presents the methodology of implementing the theory of electromechanical TVAs to suppress the response of any real world structure. The work also illustrates the prospect of extensive applications of such novel electromechanical TVAs in defence and industry. The results show that the optimum degree of vibration suppression of an electronic box is achieved by this dual function TVA through suitable tuning of the attached electrical circuitry. (author)

  6. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography

    International Nuclear Information System (INIS)

    Xie, Xin; Chen, Xu; Li, Junrui; Yang, Lianxiang; Wang, Yonghong

    2015-01-01

    Full-field in-plane strain measurement under dynamic loading by digital shearography remains a big challenge in practice. A phase measurement for in-plane strain information within one time frame has to be achieved to solve this problem. This paper presents a dual beam spatial phase-shift digital shearography system with the capacity to measure phase distribution corresponding to in-plane strain information within a single time frame. Two laser beams with different wavelengths are symmetrically arranged to illuminate the object under test, and two cameras with corresponding filters, which enable simultaneous recording of two shearograms, are utilized for data acquisition. The phase information from the recorded shearograms, which corresponds to the in-plane strain, is evaluated by the spatial phase-shift method. The spatial phase-shift shearography system realizes a measurement of the in-plane strain through the introduction of the spatial phase-shift technique, using one frame after the loading and one frame before loading. This paper presents the theory of the spatial phase-shift digital shearography for in-plane strain measurement and its derivation, experimental results, and the technique’s potential. (paper)

  7. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All

  8. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    Science.gov (United States)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals

  9. Beam test of a dual layer silicon charge detector (SCD) for the CREAM experiment

    International Nuclear Information System (INIS)

    Park, N.H.; Ahn, H.S.; Ganel, O.; Han, J.H.; Jeon, J.A.; Kim, C.H.; Kim, K.C.; Lutz, L.; Lee, M.H.; Malinin, A.; Nam, S.; Park, I.H.; Park, J.H.; Seo, E.S.; Walpole, P.; Wu, J.; Yang, J.; Yoo, J.H.; Yoon, Y.S.; Zinn, S.Y.

    2007-01-01

    The Cosmic Ray Energetics and Mass (CREAM) balloon-borne experiment is designed for direct measurement of high-energy cosmic rays. The experimental goal is to measure single-element fluxes of all cosmic-ray nuclei from hydrogen to iron with energies up to the 'knee', or spectral index change near 10 15 eV, observed in the all-particle spectrum. The dual layer Silicon Charge Detector (SCD) was designed to provide precise charge measurements. Each SCD layer has an active area of 77.9cmx79.5cm and consists of 156 silicon sensors mounted on 24 ladders. Each sensor contains a 4 x 4 array of single-sided DC type silicon pixels with an active area of 2.1cm 2 . The detector was flown on the second CREAM flight (December 2005-January 2006) and recovered successfully. The SCD was refurbished for the third CREAM flight and tested with high-energy electron and hadron beams at CERN. This paper reports on the performance of the SCD during the beam test

  10. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  11. Recent Developments of Reflectarray Antennas in Dual-Reflector Configurations

    Directory of Open Access Journals (Sweden)

    Carolina Tienda

    2012-01-01

    Full Text Available Recent work on dual-reflector antennas involving reflectarrays is reviewed in this paper. Both dual-reflector antenna with a reflectarray subreflector and dual-reflectarrays antennas with flat or parabolic main reflectarray are considered. First, a general analysis technique for these two configurations is described. Second, results for beam scanning and contoured-beam applications in different frequency bands are shown and discussed. The performance and capabilities of these antennas are shown by describing some practical design cases for radar, satellite communications, and direct broadcast satellite (DBS applications.

  12. Monitoring and guidance of HIFU beams with dual-mode ultrasound arrays.

    Science.gov (United States)

    Ballard, John R; Casper, Andrew J; Ebbini, Emad S

    2009-01-01

    We present experimental results illustrating the unique advantages of dual-mode array (DMUA) systems in monitoring and guidance of high intensity focused ultrasound (HIFU) lesion formation. DMUAs offer a unique paradigm in image-guided surgery; one in which images obtained using the same therapeutic transducer provide feedback for: 1) refocusing the array in the presence of strongly scattering objects, e.g. the ribs, 2) temperature change at the intended location of the HIFU focus, and 3) changes in the echogenicity of the tissue in response to therapeutic HIFU. These forms of feedback have been demonstrated in vitro in preparation for the design and implementation of a real-time system for imaging and therapy with DMUAs. The results clearly demonstrate that DMUA image feedback is spatially accurate and provide sufficient spatial and contrast resolution for identification of high contrast objects like the ribs and significant blood vessels in the path of the HIFU beam.

  13. Dual photon absorptiometer utilizing a HpGe detector and microprocessor controller

    International Nuclear Information System (INIS)

    Ellis, K.J.; Vartsky, D.; Pearlstein, T.B.; Alberi, J.L.; Cohn, S.H.

    1978-01-01

    The analysis of bone mineral content (BMC) using a single energy-photon beam assumes that there are only two materials present, bone mineral and a uniform soft tissue component. Uncertainty in the value of BMC increases with different adipose tissue components in the transmitted beam. These errors, however, are reduced by the dual energy technique. Also, extension to additional energies further identifies the separate constituents of the soft tissue component. A multi-energy bone scanning apparatus with data acquisition and analysis capability sufficient to perform multi-energy analysis of bone mineral content was designed and developed. The present work reports on the development of device operated in the dual energy mode. The high purity germanium (HpGe) detector is an integral component of the scanner. Errors in BMC due to multiple small angle scatters are reduced due to the excellent energy resolution of the detector (530 eV at 60 keV). Also, the need to filter the source or additional collimation on the detector is eliminated. A new dual source holder was designed using 200 mCi 125 I and 100 mCi 241 Am. The active areas of the two source capsules are aligned on a common axis. The congruence of the dual source was verified by measuring the collimator response function. This new holder design insures that the same tissue mass simultaneously attenuates both sources. The controller portion of the microprocessor allows for variation in total scan length, step size, and counting time per step. These options allow for multiple measurements without changes in the detector, source, or collimator. The system has been successfully used to determine the BMC content of different bones

  14. Development and optimization of a beam shaper device for a mobile dedicated IOERT accelerator

    International Nuclear Information System (INIS)

    Soriani, Antonella; Iaccarino, Giuseppe; Felici, Giuseppe; Ciccotelli, Alessia; Pinnarò, Paola; Giordano, Carolina; Benassi, Marcello; D'Andrea, Marco; Bellesi, Luca; Strigari, Lidia

    2012-01-01

    Purpose: The aim of this study was to design and build a prototype beam shaper to be used on a dedicated mobile accelerator that protects organs at risk within the radiation field and conforms the beam to the target geometry during intraoperative electron radiotherapy (IOERT). A dosimetric characterization of the beam shaper device was performed based on Monte Carlo (MC) simulations, as well as experimental data, at different energies, field sizes, and source to skin distances. Methods: A mobile light intraoperative accelerator (LIAC ® , Sordina, Italy) was used. The design of the beam shaper prototype was based on MC simulations (BEAMnrc/OMEGA and DOSXYZnrc code) for a selection of materials and thicknesses, as well as for dosimetric characterization. Percentage depth dose (PDD) and profile measurements were performed using a p-type silicon diode and a commercial water phantom, while output factors were measured using a PinPoint ion chamber in a PMMA phantom. Planar doses in planes of interest were carried out using radiochromic films (Gafchromic TM EBT and EBT2) in PMMA and in a Solid Water ® phantom. Several experimental set-ups were investigated with the beam shaper device fixed on the top of the phantom, varying both the short side of the rectangular field and the air gap between the device and the phantom surface, simulating the clinical situation. The output factors (OFs) were determined using different geometrical set-ups and energies. Results: The beam shaper prototype consists of four blades sliding alongside each other and mounted on a special support at the end of the 10 cm diameter PMMA circular applicator. Each blade is made of an upper layer of 2.6 cm of Teflon ® and a lower layer of 8 mm of stainless steel. All rectangles inscribed in a 5 cm diameter can be achieved in addition to any “squircle-shaped” field. When one side of the rectangular field is held constant and the second side is reduced, both R 50 and R max move towards the phantom

  15. A new method for designing dual foil electron beam forming systems. I. Introduction, concept of the method

    Energy Technology Data Exchange (ETDEWEB)

    Adrich, Przemysław, E-mail: Przemyslaw.Adrich@ncbj.gov.pl

    2016-05-01

    In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.

  16. A new method for designing dual foil electron beam forming systems. I. Introduction, concept of the method

    International Nuclear Information System (INIS)

    Adrich, Przemysław

    2016-01-01

    In Part I of this work existing methods and problems in dual foil electron beam forming system design are presented. On this basis, a new method of designing these systems is introduced. The motivation behind this work is to eliminate the shortcomings of the existing design methods and improve overall efficiency of the dual foil design process. The existing methods are based on approximate analytical models applied in an unrealistically simplified geometry. Designing a dual foil system with these methods is a rather labor intensive task as corrections to account for the effects not included in the analytical models have to be calculated separately and accounted for in an iterative procedure. To eliminate these drawbacks, the new design method is based entirely on Monte Carlo modeling in a realistic geometry and using physics models that include all relevant processes. In our approach, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of the system performance in function of parameters of the foils. The new method, while being computationally intensive, minimizes the involvement of the designer and considerably shortens the overall design time. The results are of high quality as all the relevant physics and geometry details are naturally accounted for. To demonstrate the feasibility of practical implementation of the new method, specialized software tools were developed and applied to solve a real life design problem, as described in Part II of this work.

  17. Performance study of a fan beam collimator designed for a multi-modality small animal imaging device

    International Nuclear Information System (INIS)

    Sabbir Ahmed, ASM; Kramer, Gary H.; Semmler, Wolfrad; Peter, Jorg

    2011-01-01

    This paper describes the methodology to design and conduct the performances of a fan beam collimator. This fan beam collimator was designed to use with a multi-modality small animal imaging device and the performance of the collimator was studied for a 3D geometry. Analytical expressions were formulated to calculate the parameters for the collimator. A Monte Carlo model was developed to analyze the scattering and image noises for a 3D object. The results showed that the performance of the fan beam collimator was strongly dependent on the source distribution and position. The fan beam collimator showed increased counting efficiency in comparison to a parallel hole collimator. Inside attenuating medium, the increased attenuating effect outweighed the fan beam increased counting efficiency.

  18. Super-resolution nanofabrication with metal-ion doped hybrid material through an optical dual-beam approach

    International Nuclear Information System (INIS)

    Cao, Yaoyu; Li, Xiangping; Gu, Min

    2014-01-01

    We apply an optical dual-beam approach to a metal-ion doped hybrid material to achieve nanofeatures beyond the optical diffraction limit. By spatially inhibiting the photoreduction and the photopolymerization, we realize a nano-line, consisting of polymer matrix and in-situ generated gold nanoparticles, with a lateral size of sub 100 nm, corresponding to a factor of 7 improvement compared to the diffraction limit. With the existence of gold nanoparticles, a plasmon enhanced super-resolution fabrication mechanism in the hybrid material is observed, which benefits in a further reduction in size of the fabricated feature. The demonstrated nanofeature in hybrid materials paves the way for realizing functional nanostructures

  19. Denton E-beam Evaporator #1

    Data.gov (United States)

    Federal Laboratory Consortium — Description:CORAL Name: E-Beam Evap 1This is a dual e-beam/thermal evaporator for the deposition of metal and dielectric thin films. Materials available are: Ag, Al,...

  20. Comparison of corneal power, astigmatism, and wavefront aberration measurements obtained by a point-source color light-emitting diode-based topographer, a Placido-disk topographer, and a combined Placido and dual Scheimpflug device.

    Science.gov (United States)

    Ventura, Bruna V; Wang, Li; Ali, Shazia F; Koch, Douglas D; Weikert, Mitchell P

    2015-08-01

    To evaluate and compare the performance of a point-source color light-emitting diode (LED)-based topographer (color-LED) in measuring anterior corneal power and aberrations with that of a Placido-disk topographer and a combined Placido and dual Scheimpflug device. Cullen Eye Institute, Baylor College of Medicine, Houston, Texas USA. Retrospective observational case series. Normal eyes and post-refractive-surgery eyes were consecutively measured using color-LED, Placido, and dual-Scheimpflug devices. The main outcome measures were anterior corneal power, astigmatism, and higher-order aberrations (HOAs) (6.0 mm pupil), which were compared using the t test. There were no statistically significant differences in corneal power measurements in normal and post-refractive surgery eyes and in astigmatism magnitude in post-refractive surgery eyes between the color-LED device and Placido or dual Scheimpflug devices (all P > .05). In normal eyes, there were no statistically significant differences in 3rd-order coma and 4th-order spherical aberration between the color-LED and Placido devices and in HOA root mean square, 3rd-order coma, 3rd-order trefoil, 4th-order spherical aberration, and 4th-order secondary astigmatism between the color-LED and dual Scheimpflug devices (all P > .05). In post-refractive surgery eyes, the color-LED device agreed with the Placido and dual-Scheimpflug devices regarding 3rd-order coma and 4th-order spherical aberration (all P > .05). In normal and post-refractive surgery eyes, all 3 devices were comparable with respect to corneal power. The agreement in corneal aberrations varied. Drs. Wang, Koch, and Weikert are consultants to Ziemer Ophthalmic Systems AG. Dr. Koch is a consultant to Abbott Medical Optics, Inc., Alcon Surgical, Inc., and i-Optics Corp. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    International Nuclear Information System (INIS)

    Schulze, J.; Oehme, M.; Werner, J.

    2012-01-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that – depending on the chosen operating point and device design – the diode serves as a broadband high speed photo detector, Franz–Keldysh effect modulator or light emitting diode.

  2. Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, J., E-mail: schulze@iht.uni-stuttgart.de; Oehme, M.; Werner, J.

    2012-02-01

    A key challenge to obtain a convergence of classical Si-based microelectronics and optoelectronics is the manufacturing of photonic integrated circuits integrable into classical Si-based integrated circuits. This integration would be greatly enhanced if similar facilities and technologies could be used. Therefore one approach is the development of optoelectronic components and devices made from group-IV-based materials such as SiGe, Ge or Ge:Sn. In this paper the optoelectronic performances of a pin diode made from a Ge/Si heterostructure pin layer sequence grown by molecular beam epitaxy are discussed. After a detailed description of the layer sequence growth and the device manufacturing process it will be shown that - depending on the chosen operating point and device design - the diode serves as a broadband high speed photo detector, Franz-Keldysh effect modulator or light emitting diode.

  3. Computer simulation of void formation in residual gas atom free metals by dual beam irradiation experiments

    International Nuclear Information System (INIS)

    Shimomura, Y.; Nishiguchi, R.; La Rubia, T.D. de; Guinan, M.W.

    1992-01-01

    In our recent experiments (1), we found that voids nucleate at vacancy clusters which trap gas atoms such as hydrogen and helium in ion- and neutron-irradiated copper. A molecular dynamics computer simulation, which implements an empirical embedded atom method to calculate forces that act on atoms in metals, suggests that a void nucleation occurs in pure copper at six and seven vacancy clusters. The structure of six and seven vacancy clusters in copper fluctuates between a stacking fault tetrahedron and a void. When a hydrogen is trapped at voids of six and seven vacancy, a void can keep their structure for appreciably long time; that is, the void do not relax to a stacking fault tetrahedron and grows to a large void. In order to explore the detailed atomics of void formation, it is emphasized that dual-beam irradiation experiments that utilize beams of gas atoms and self-ions should be carried out with residual gas atom free metal specimens. (author)

  4. Nanocavity formation and hardness increase by dual ion beam irradiation of oxide dispersion strengthened FeCrAl alloy

    Energy Technology Data Exchange (ETDEWEB)

    Koegler, R., E-mail: r.koegler@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Anwand, W. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Richter, A. [Department of Engineering, Technical University of Applied Sciences Wildau, Bahnhofstrasse 1, 15745 Wildau (Germany); Butterling, M.; Ou, Xin; Wagner, A. [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstrasse 400, 01328 Dresden (Germany); Chen, C.-L. [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2012-08-15

    Open volume defects generated by ion implantation into oxide dispersion strengthened (ODS) alloy and the related hardness were investigated by positron annihilation spectroscopy and nanoindentation measurements, respectively. Synchronized dual beam implantation of Fe and He ions was performed at room temperature and at moderately enhanced temperature of 300 Degree-Sign C. For room temperature implantation a significant hardness increase after irradiation is observed which is more distinctive in heat treated than in as-received ODS alloy. There is also a difference between the simultaneous and sequential implantation mode as the hardening effect for the simultaneously implanted ODS alloy is stronger than for sequential implantation. The comparison of hardness profiles and of the corresponding open volume profiles shows a qualitative agreement between the open volume defects generated on the nanoscopic scale and the macroscopic hardness characteristics. Open volume defects are drastically reduced for performing the simultaneous dual beam irradiation at 300 Degree-Sign C which is a more realistic temperature under application aspects. Few remaining defects are clusters of 3-4 vacancies in connection with Y oxide nanoparticles. These defects completely disappear in a shallow layer at the surface. The results are in agreement with hardness measurements showing little hardness increase after irradiation at 300 Degree-Sign C. Suitable characteristics of ODS alloy for nuclear applications and the close correlation between He-related open volume defects and the hardness characteristics are verified.

  5. Large volume serial section tomography by Xe Plasma FIB dual beam microscopy.

    Science.gov (United States)

    Burnett, T L; Kelley, R; Winiarski, B; Contreras, L; Daly, M; Gholinia, A; Burke, M G; Withers, P J

    2016-02-01

    Ga(+) Focused Ion Beam-Scanning Electron Microscopes (FIB-SEM) have revolutionised the level of microstructural information that can be recovered in 3D by block face serial section tomography (SST), as well as enabling the site-specific removal of smaller regions for subsequent transmission electron microscope (TEM) examination. However, Ga(+) FIB material removal rates limit the volumes and depths that can be probed to dimensions in the tens of microns range. Emerging Xe(+) Plasma Focused Ion Beam-Scanning Electron Microscope (PFIB-SEM) systems promise faster removal rates. Here we examine the potential of the method for large volume serial section tomography as applied to bainitic steel and WC-Co hard metals. Our studies demonstrate that with careful control of milling parameters precise automated serial sectioning can be achieved with low levels of milling artefacts at removal rates some 60× faster. Volumes that are hundreds of microns in dimension have been collected using fully automated SST routines in feasible timescales (<24h) showing good grain orientation contrast and capturing microstructural features at the tens of nanometres to the tens of microns scale. Accompanying electron back scattered diffraction (EBSD) maps show high indexing rates suggesting low levels of surface damage. Further, under high current Ga(+) FIB milling WC-Co is prone to amorphisation of WC surface layers and phase transformation of the Co phase, neither of which have been observed at PFIB currents as high as 60nA at 30kV. Xe(+) PFIB dual beam microscopes promise to radically extend our capability for 3D tomography, 3D EDX, 3D EBSD as well as correlative tomography. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Over-the-air Radiated Testing of Millimeter-Wave Beam-steerable Devices in a Cost-Effective Measurement Setup

    DEFF Research Database (Denmark)

    Fan, Wei; Kyösti, Pekka; Rumney, Moray

    2018-01-01

    antenna selection scheme is proposed. This setup is suitable for evaluation of beam-steerable devices, including both base station (BS) and user equipment (UE) devices. The requirements for the test system design are analyzed, including the measurement range, number of OTA antennas, number of active OTA...... conditions. In this article, radiated testing methods are reviewed, with a focus on their principle and applicability for beam steerable mmWave devices. To explore the spatial sparsity of mmWave channel profiles, a cost-effective simplified 3D sectored multi-probe anechoic chamber (MPAC) system with an OTA......With the severe spectrum congestion of sub-6GHz cellular systems, large-scale antenna systems in the millimeter-wave (mmWave) bands can potentially meet the high data rate envisioned for fifth generation (5G) communications. Performance evaluation of antenna systems is an essential step...

  7. Improved atom number with a dual color magneto—optical trap

    International Nuclear Information System (INIS)

    Cao Qiang; Luo Xin-Yu; Gao Kui-Yi; Wang Xiao-Rui; Wang Ru-Quan; Chen Dong-Min

    2012-01-01

    We demonstrate a novel dual color magneto—optical trap (MOT), which uses two sets of overlapping laser beams to cool and trap 87 Rb atoms. The volume of cold cloud in the dual color MOT is strongly dependent on the frequency difference of the laser beams and can be significantly larger than that in the normal MOT with single frequency MOT beams. Our experiment shows that the dual color MOT has the same loading rate as the normal MOT, but much longer loading time, leading to threefold increase in the number of trapped atoms. This indicates that the larger number is caused by reduced light induced loss. The dual color MOT is very useful in experiments where both high vacuum level and large atom number are required, such as single chamber quantum memory and Bose—Einstein condensation (BEC) experiments. Compared to the popular dark spontaneous-force optical trap (dark SPOT) technique, our approach is technically simpler and more suitable to low power laser systems. (rapid communication)

  8. Reconfigurable dual-band metamaterial antenna based on liquid crystals

    Science.gov (United States)

    Che, Bang-Jun; Meng, Fan-Yi; Lyu, Yue-Long; Wu, Qun

    2018-05-01

    In this paper, a novel reconfigurable dual-band metamaterial antenna with a continuous beam that is electrically steered in backward to forward directions is first proposed by employing a liquid crystal (LC)-loaded tunable extended composite right-/left-handed (E-CRLH) transmission line (TL). The frequency-dependent property of the E-CRLH TL is analyzed and a compact unit cell based on the nematic LC is proposed to realize the tunable dual band characteristics. The phase constant of the proposed unit cell can be dynamically continuously tuned from negative to positive values in two operating bands by changing the bias voltage of the loaded LC material. A resulting dual band fixed-frequency beam steering property has been predicted by numerical simulations and experimentally verified. The measured results show that the fabricated reconfigurable antenna features an electrically controlled continuous beam steering from backward  ‑16° to forward  +13° at 7.2 GHz and backward  ‑9° to forward  +17° at 9.4 GHz, respectively. This electrically controlled beam steering range turns out to be competitive with the previously reported single band reconfigurable antennas. Besides, the measured and simulated results of the proposed reconfigurable dual-band metamaterial antenna are in good agreement.

  9. Using GPU to calculate electron dose for hybrid pencil beam model

    International Nuclear Information System (INIS)

    Guo Chengjun; Li Xia; Hou Qing; Wu Zhangwen

    2011-01-01

    Hybrid pencil beam model (HPBM) offers an efficient approach to calculate the three-dimension dose distribution from a clinical electron beam. Still, clinical radiation treatment activity desires faster treatment plan process. Our work presented the fast implementation of HPBM-based electron dose calculation using graphics processing unit (GPU). The HPBM algorithm was implemented in compute unified device architecture running on the GPU, and C running on the CPU, respectively. Several tests with various sizes of the field, beamlet and voxel were used to evaluate our implementation. On an NVIDIA GeForce GTX470 GPU card, we achieved speedup factors of 2.18- 98.23 with acceptable accuracy, compared with the results from a Pentium E5500 2.80 GHz Dual-core CPU. (authors)

  10. Dual-fission chamber and neutron beam characterization for fission product yield measurements using monoenergetic neutrons

    Science.gov (United States)

    Bhatia, C.; Fallin, B.; Gooden, M. E.; Howell, C. R.; Kelley, J. H.; Tornow, W.; Arnold, C. W.; Bond, E. M.; Bredeweg, T. A.; Fowler, M. M.; Moody, W. A.; Rundberg, R. S.; Rusev, G.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Macri, R.; Ryan, C.; Sheets, S. A.; Stoyer, M. A.; Tonchev, A. P.

    2014-09-01

    A program has been initiated to measure the energy dependence of selected high-yield fission products used in the analysis of nuclear test data. We present out initial work of neutron activation using a dual-fission chamber with quasi-monoenergetic neutrons and gamma-counting method. Quasi-monoenergetic neutrons of energies from 0.5 to 15 MeV using the TUNL 10 MV FM tandem to provide high-precision and self-consistent measurements of fission product yields (FPY). The final FPY results will be coupled with theoretical analysis to provide a more fundamental understanding of the fission process. To accomplish this goal, we have developed and tested a set of dual-fission ionization chambers to provide an accurate determination of the number of fissions occurring in a thick target located in the middle plane of the chamber assembly. Details of the fission chamber and its performance are presented along with neutron beam production and characterization. Also presented are studies on the background issues associated with room-return and off-energy neutron production. We show that the off-energy neutron contribution can be significant, but correctable, while room-return neutron background levels contribute less than <1% to the fission signal.

  11. ORNL positive ion neutral beam program

    International Nuclear Information System (INIS)

    Whealton, J.H.; Haselton, H.H.; Barber, G.C.

    1978-01-01

    The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G. G. Kelley and O. B. Morgan. We describe the ion sources under development at this Laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  12. Use of Silicon Carbide as Beam Intercepting Device Material: Tests, Issues and Numerical Simulations

    CERN Document Server

    Delonca, M; Gil Costa, M; Vacca, A

    2014-01-01

    Silicon Carbide (SiC) stands as one of the most promising ceramic material with respect to its thermal shock resistance and mechanical strengths. It has hence been considered as candidate material for the development of higher performance beam intercepting devices at CERN. Its brazing with a metal counterpart has been tested and characterized by means of microstructural and ultrasound techniques. Despite the positive results, its use has to be evaluated with care, due to the strong evidence in literature of large and permanent volumetric expansion, called swelling, under the effect of neutron and ion irradiation. This may cause premature and sudden failure, and can be mitigated to some extent by operating at high temperature. For this reason limited information is available for irradiation below 100°C, which is the typical temperature of interest for beam intercepting devices like dumps or collimators. This paper describes the brazing campaign carried out at CERN, the results, and the theoretical and numeric...

  13. Multiple double cross-section transmission electron microscope sample preparation of specific sub-10 nm diameter Si nanowire devices.

    Science.gov (United States)

    Gignac, Lynne M; Mittal, Surbhi; Bangsaruntip, Sarunya; Cohen, Guy M; Sleight, Jeffrey W

    2011-12-01

    The ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.

  14. Method and system for dual resolution translation stage

    Science.gov (United States)

    Halpin, John Michael

    2014-04-22

    A dual resolution translation stage includes a stage assembly operable to receive an optical element and a low resolution adjustment device mechanically coupled to the stage assembly. The dual resolution stage also includes an adjustable pivot block mechanically coupled to the stage assembly. The adjustable pivot block includes a pivot shaft. The dual resolution stage further includes a lever arm mechanically coupled to the adjustable pivot block. The lever arm is operable to pivot about the pivot shaft. The dual resolution stage additionally includes a high resolution adjustment device mechanically coupled to the lever arm and the stage assembly.

  15. Method for reducing x-ray background signals from insertion device x-ray beam position monitors

    Directory of Open Access Journals (Sweden)

    Glenn Decker

    1999-11-01

    Full Text Available A method is described that provides a solution to the long-standing problem of stray radiation-induced signals on photoemission-based x-ray beam position monitors (BPMs located on insertion device x-ray beam lines. The method involves the introduction of a chicane into the accelerator lattice that directs unwanted x radiation away from the photosensitive x-ray BPM blades. This technique has been implemented at the Advanced Photon Source, and experimental confirmation of the technique is provided.

  16. Assessment of flatness and symmetry of megavoltage x-ray beam with an electronic portal imaging device

    CERN Document Server

    Liu, G; Bezak, E

    2002-01-01

    The input/output characteristics of the Wellhofer BIS 710 electronic portal imaging device (EPID) have been investigated to establish its efficacy for periodic quality assurance (QA) applications. Calibration curves have been determined for the energy fluence incident on the detector versus the pixel values. The effect of the charge coupled device (CCD) camera sampling time and beam parameters (such as beam field size, dose rate, photon energy) on the calibration have been investigated for a region of interest (ROI) around the central beam axis. The results demonstrate that the pixel output is a linear function of the incident exposure, as expected for a video-based electronic portal imaging system. The field size effects of the BIS 710 are similar to that of an ion chamber for smaller field sizes up to 10 x 10 cm sup 2. However, for larger field sizes the pixel value increases more rapidly. Furthermore, the system is slightly sensitive to dose rate and is also energy dependent. The BIS 710 has been used in t...

  17. Compensation of the Long-Range Beam-Beam Interaction in the LHC

    CERN Document Server

    AUTHOR|(CDS)2256057; De Conto, Jean-Marie

    In the LHC, protons collide in four interaction points in order to deliver luminosity to detectors located there. In the next machine upgrade, the High Luminosity LHC, the objective is to increase this luminosity by a factor five. By sharing the same vacuum pipes, the two counter rotating beams are interacting with a longitudinal offset with respect to the IP: this effect is called Long-Range Beam-Beam interaction. In order to compensate this effect, a device is currently studying in the LHC: the Beam-Beam Compensator Wire. It consists in a DC wire carrying a current and imitating the strong beam, in the weak-strong approximation. This thesis reports a study of this device. First, we show under which hypothesis the strong beam can be equivalent to a wire. Then, we characterise the magnetic field of this wire and its effect on the weak beam before presenting results of experiments we led in order to demonstrate the beneficial effect of this device.

  18. Beam dancer fusion device

    International Nuclear Information System (INIS)

    Maier, H.B.

    1984-01-01

    To accomplish fusion of two or more fusion fuel elements numerous minute spots of energy or laser light are directed to a micro target area, there to be moved or danced about by a precision mechanical controlling apparatus at the source of the laser light or electromagnetic energy beams, so that merging and coinciding patterns of light or energy beams can occur around the area of the fuel atoms or ions. The projecting of these merging patterns may be considered as target searching techniques to locate responsive clusters of fuel elements and to compress such elements into a condition in which fusion may occur. Computerized programming may be used

  19. A new method for designing dual foil electron beam forming systems. II. Feasibility of practical implementation of the method

    International Nuclear Information System (INIS)

    Adrich, Przemysław

    2016-01-01

    In Part I of this work a new method for designing dual foil electron beam forming systems was introduced. In this method, an optimal configuration of the dual foil system is found by means of a systematic, automatized scan of system performance in function of its parameters. At each point of the scan, Monte Carlo method is used to calculate the off-axis dose profile in water taking into account detailed and complete geometry of the system. The new method, while being computationally intensive, minimizes the involvement of the designer. In this Part II paper, feasibility of practical implementation of the new method is demonstrated. For this, a prototype software tools were developed and applied to solve a real life design problem. It is demonstrated that system optimization can be completed within few hours time using rather moderate computing resources. It is also demonstrated that, perhaps for the first time, the designer can gain deep insight into system behavior, such that the construction can be simultaneously optimized in respect to a number of functional characteristics besides the flatness of the off-axis dose profile. In the presented example, the system is optimized in respect to both, flatness of the off-axis dose profile and the beam transmission. A number of practical issues related to application of the new method as well as its possible extensions are discussed.

  20. Second order nonlinear optical properties of zinc oxide films deposited by low temperature dual ion beam sputtering

    International Nuclear Information System (INIS)

    Larciprete, M.C.; Passeri, D.; Michelotti, F.; Paoloni, S.; Sibilia, C.; Bertolotti, M.; Belardini, A.; Sarto, F.; Somma, F.; Lo Mastro, S.

    2005-01-01

    We investigated second order optical nonlinearity of zinc oxide thin films, grown on glass substrates by the dual ion beam sputtering technique under different deposition conditions. Linear optical characterization of the films was carried out by spectrophotometric optical transmittance and reflectance measurements, giving the complex refractive index dispersion. Resistivity of the films was determined using the four-point probe sheet resistance method. Second harmonic generation measurements were performed by means of the Maker fringes technique where the fundamental beam was originated by nanosecond laser at λ=1064 nm. We found a relatively high nonlinear optical response, and evidence of a dependence of the nonlinear coefficient on the deposition parameters for each sample. Moreover, the crystalline properties of the films were investigated by x-ray diffraction measurements and correlation with second order nonlinearity were analyzed. Finally, we investigated the influence of the oxygen flow rate during the deposition process on both the second order nonlinearity and the structural properties of the samples

  1. Experimental Performance of the NRL 8-Beam, 4-Cavity Multiple-Beam Klystron

    Science.gov (United States)

    Abe, D. K.; Pershing, D. E.; Nguyen, K. T.; Wood, F. N.; Myers, R. E.; Eisen, E. L.; Cusick, M.; Levush, B.

    2006-01-01

    Multiple-beam amplifiers (MBAs) represent a device technology with the potential to produce high-power, efficient amplifiers with relatively wide bandwidths that are compact, low-weight, low-noise, and operate at reduced voltages relative to comparable single-beam devices. To better understand the device physics and technical issues involved in the design, fabrication, and operation of these devices, the U.S. Naval Research Laboratory (NRL) has an on-going program to develop high peak power (> 600 kW) multiple-beam klystrons (MBKs) operating in S-band (˜3.3 GHz).

  2. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.

    Science.gov (United States)

    Stevens, Michael C; Wilson, Stephen; Bradley, Andrew; Fraser, John; Timms, Daniel

    2014-09-01

    Dual rotary left ventricular assist devices (LVADs) can provide biventricular mechanical support during heart failure. Coordination of left and right pump speeds is critical not only to avoid ventricular suction and to match cardiac output with demand, but also to ensure balanced systemic and pulmonary circulatory volumes. Physiological control systems for dual LVADs must meet these objectives across a variety of clinical scenarios by automatically adjusting left and right pump speeds to avoid catastrophic physiological consequences. In this study we evaluate a novel master/slave physiological control system for dual LVADs. The master controller is a Starling-like controller, which sets flow rate as a function of end-diastolic ventricular pressure (EDP). The slave controller then maintains a linear relationship between right and left EDPs. Both left/right and right/left master/slave combinations were evaluated by subjecting them to four clinical scenarios (rest, postural change, Valsalva maneuver, and exercise) simulated in a mock circulation loop. The controller's performance was compared to constant-rotational-speed control and two other dual LVAD control systems: dual constant inlet pressure and dual Frank-Starling control. The results showed that the master/slave physiological control system produced fewer suction events than constant-speed control (6 vs. 62 over a 7-min period). Left/right master/slave control had lower risk of pulmonary congestion than the other control systems, as indicated by lower maximum EDPs (15.1 vs. 25.2-28.4 mm Hg). During exercise, master/slave control increased total flow from 5.2 to 10.1 L/min, primarily due to an increase of left and right pump speed. Use of the left pump as the master resulted in fewer suction events and lower EDPs than when the right pump was master. Based on these results, master/slave control using the left pump as the master automatically adjusts pump speed to avoid suction and increases pump flow

  3. SU-F-J-54: Towards Real-Time Volumetric Imaging Using the Treatment Beam and KV Beam

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M; Rozario, T; Liu, A; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Existing real-time imaging uses dual (orthogonal) kV beam fluoroscopies and may result in significant amount of extra radiation to patients, especially for prolonged treatment cases. In addition, kV projections only provide 2D information, which is insufficient for in vivo dose reconstruction. We propose real-time volumetric imaging using prior knowledge of pre-treatment 4D images and real-time 2D transit data of treatment beam and kV beam. Methods: The pre-treatment multi-snapshot volumetric images are used to simulate 2D projections of both the treatment beam and kV beam, respectively, for each treatment field defined by the control point. During radiation delivery, the transit signals acquired by the electronic portal image device (EPID) are processed for every projection and compared with pre-calculation by cross-correlation for phase matching and thus 3D snapshot identification or real-time volumetric imaging. The data processing involves taking logarithmic ratios of EPID signals with respect to the air scan to reduce modeling uncertainties in head scatter fluence and EPID response. Simulated 2D projections are also used to pre-calculate confidence levels in phase matching. Treatment beam projections that have a low confidence level either in pre-calculation or real-time acquisition will trigger kV beams so that complementary information can be exploited. In case both the treatment beam and kV beam return low confidence in phase matching, a predicted phase based on linear regression will be generated. Results: Simulation studies indicated treatment beams provide sufficient confidence in phase matching for most cases. At times of low confidence from treatment beams, kV imaging provides sufficient confidence in phase matching due to its complementary configuration. Conclusion: The proposed real-time volumetric imaging utilizes the treatment beam and triggers kV beams for complementary information when the treatment beam along does not provide sufficient

  4. Turbine blade tip clearance measurement using a skewed dual-beam fiber optic sensor

    Science.gov (United States)

    Ye, De-chao; Duan, Fa-jie; Guo, Hao-tian; Li, Yangzong; Wang, Kai

    2012-08-01

    Optimization and active control of the tip clearance of turbine blades has been identified as a key to improve fuel efficiency, reduce emission, and increase service life of the engine. However, reliable and real-time tip clearance measurement is difficult due to the adverse environmental conditions that are typically found in a turbine. We describe a dual-beam fiber optic measurement system that can measure the tip timing and tip clearance simultaneously. Because the tip timing information is used to calculate the tip clearance, the method is insensitive to the signal intensity variation caused by fluctuations in environmental conditions such as light source instability, contamination, and blade tip imperfection. The system was calibrated and tested using experimental rotors. The test results indicated a high resolution of 4.5 μm and measurement accuracy of ±20 μm over the rotation speed range of 2000 to 10,000 rpm.

  5. Dual color radiometer imagery and test results

    International Nuclear Information System (INIS)

    Silver, A.; Carlen, F.; Link, D.; Zegel, F.

    1989-01-01

    This paper presents a review of the technical characteristics of the Dual Color Radiometer and recent data and test results. The Dual Color Radiometer is a state-of-the-art device that provides simultaneous pixel to pixel registered thermal imagery in both the 3 to 5 and 8 to 12 micron regions. The device is unique in terms of its spatial and temperature resolution of less than 0.10 degrees C temperature and 0.10 milliradian spatial resolution. In addition, the device is tailored for use by the Automatic Target Recognizer (ATR) community

  6. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  7. Precision alignment device

    Science.gov (United States)

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  8. The rf-power dependences of the deposition rate, the hardness and the corrosion-resistance of the chromium nitride film deposited by using a dual ion beam sputtering system

    International Nuclear Information System (INIS)

    Lim, Jongmin; Lee, Chongmu

    2006-01-01

    The hexavalent chromium used in chromium plating is so toxic that it is very hazardous to human body and possibly causes cancer in humans. Therefore, it is indispensable to develop an alternative deposition technique. Dependences of the deposition rate, the phases, the hardness, the surface roughness and the corrosion-resistance of CrN x deposited on the high speed steel substrate by using a dual ion beam sputtering system on the rf-power were investigated to see the feasibility of sputtering as an alternative technique for chromium plating. The dual ion beam sputtering system used in this study was designed in such a way as the primary argon ion beam and the secondary nitrogen ion beam are injected toward the target and the substrate, respectively so that the chromium atoms at the chromium target surface may not nearly react with nitrogen atoms. The hardness and the surface roughness were measured by a micro-Vicker's hardness tester and an atomic force microscope (AFM), respectively. X-ray diffraction analyses were performed to identify phases in the films. The deposition rate of CrN x depends more strongly upon the rf-power for argon ion beam than that for nitrogen ion beam. The hardness of the CrN x film is highest when the volume percent of the Cr 2 N phase in the film is highest. Amorphous films are obtained when the rf-power for nitrogen ion beam is much higher than that for argon ion beam. The CrN x film deposited by using the sputtering technique under the optimal condition provides corrosion-resistance comparable to that of the electroplated chromium

  9. Tunable Tribotronic Dual-Gate Logic Devices Based on 2D MoS2 and Black Phosphorus.

    Science.gov (United States)

    Gao, Guoyun; Wan, Bensong; Liu, Xingqiang; Sun, Qijun; Yang, Xiaonian; Wang, Longfei; Pan, Caofeng; Wang, Zhong Lin

    2018-03-01

    With the Moore's law hitting the bottleneck of scaling-down in size (below 10 nm), personalized and multifunctional electronics with an integration of 2D materials and self-powering technology emerge as a new direction of scientific research. Here, a tunable tribotronic dual-gate logic device based on a MoS 2 field-effect transistor (FET), a black phosphorus FET and a sliding mode triboelectric nanogenerator (TENG) is reported. The triboelectric potential produced from the TENG can efficiently drive the transistors and logic devices without applying gate voltages. High performance tribotronic transistors are achieved with on/off ratio exceeding 106 and cutoff current below 1 pA μm -1 . Tunable electrical behaviors of the logic device are also realized, including tunable gains (improved to ≈13.8) and power consumptions (≈1 nW). This work offers an active, low-power-consuming, and universal approach to modulate semiconductor devices and logic circuits based on 2D materials with TENG, which can be used in microelectromechanical systems, human-machine interfacing, data processing and transmission. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A fast dual wavelength laser beam fluid-less optical CT scanner for radiotherapy 3D gel dosimetry I: design and development

    Science.gov (United States)

    Ramm, Daniel

    2018-02-01

    Three dimensional dosimetry by optical CT readout of radiosensitive gels or solids has previously been indicated as a solution for measurement of radiotherapy 3D dose distributions. The clinical uptake of these dosimetry methods has been limited, partly due to impracticalities of the optical readout such as the expertise and labour required for refractive index fluid matching. In this work a fast laser beam optical CT scanner is described, featuring fluid-less and dual wavelength operation. A second laser with a different wavelength is used to provide an alternative reference scan to the commonly used pre-irradiation scan. Transmission data for both wavelengths is effectively acquired simultaneously, giving a single scan process. Together with the elimination of refractive index fluid matching issues, scanning practicality is substantially improved. Image quality and quantitative accuracy were assessed for both dual and single wavelength methods. The dual wavelength scan technique gave improvements in uniformity of reconstructed optical attenuation coefficients in the sample 3D volume. This was due to a reduction of artefacts caused by scan to scan changes. Optical attenuation measurement accuracy was similar for both dual and single wavelength modes of operation. These results established the basis for further work on dosimetric performance.

  11. Measuring prefrontal cortical activity during dual task walking in patients with Parkinson's disease: feasibility of using a new portable fNIRS device.

    Science.gov (United States)

    Nieuwhof, Freek; Reelick, Miriam F; Maidan, Inbal; Mirelman, Anat; Hausdorff, Jeffrey M; Olde Rikkert, Marcel G M; Bloem, Bastiaan R; Muthalib, Makii; Claassen, Jurgen A H R

    2016-01-01

    Many patients with Parkinson's disease (PD) have difficulties in performing a second task during walking (i.e., dual task walking). Functional near-infrared spectroscopy (fNIRS) is a promising approach to study the presumed contribution of dysfunction within the prefrontal cortex (PFC) to such difficulties. In this pilot study, we examined the feasibility of using a new portable and wireless fNIRS device to measure PFC activity during different dual task walking protocols in PD. Specifically, we tested whether PD patients were able to perform the protocol and whether we were able to measure the typical fNIRS signal of neuronal activity. We included 14 PD patients (age 71.2 ± 5.4 years, Hoehn and Yahr stage II/III). The protocol consisted of five repetitions of three conditions: walking while (i) counting forwards, (ii) serially subtracting, and (iii) reciting digit spans. Ability to complete this protocol, perceived exertion, burden of the fNIRS devices, and concentrations of oxygenated (O 2 Hb) and deoxygenated (HHb) hemoglobin from the left and right PFC were measured. Two participants were unable to complete the protocol due to fatigue and mobility safety concerns. The remaining 12 participants experienced no burden from the two fNIRS devices and completed the protocol with ease. Bilateral PFC O 2 Hb concentrations increased during walking while serially subtracting (left PFC 0.46 μmol/L, 95 % confidence interval (CI) 0.12-0.81, right PFC 0.49 μmol/L, 95 % CI 0.14-0.84) and reciting digit spans (left PFC 0.36 μmol/L, 95 % CI 0.03-0.70, right PFC 0.44 μmol/L, 95 % CI 0.09-0.78) when compared to rest. HHb concentrations did not differ between the walking tasks and rest. These findings suggest that a new wireless fNIRS device is a feasible measure of PFC activity in PD during dual task walking. Future studies should reduce the level of noise and inter-individual variability to enable measuring differences in PFC activity between different dual

  12. Proton therapy device

    International Nuclear Information System (INIS)

    Tronc, D.

    1994-01-01

    The invention concerns a proton therapy device using a proton linear accelerator which produces a proton beam with high energies and intensities. The invention lies in actual fact that the proton beam which is produced by the linear accelerator is deflected from 270 deg in its plan by a deflecting magnetic device towards a patient support including a bed the longitudinal axis of which is parallel to the proton beam leaving the linear accelerator. The patient support and the deflecting device turn together around the proton beam axis while the bed stays in an horizontal position. The invention applies to radiotherapy. 6 refs., 5 figs

  13. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.

    Science.gov (United States)

    Sheikh, Mumtaz; Riza, Nabeel A

    2010-06-01

    To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

  14. ORNL neutral-beam program in 1978

    International Nuclear Information System (INIS)

    Whealton, J.H.

    1982-12-01

    This report was presented at the ion source workshop held at Culham Laboratory, Abingdon, Oxfordshire, in 1978. Because the proceedings of that conference are unavailable, and because the material in this report is still not to be found elsewhere, it is issued as a laboratory report. The neutral beam group at Oak Ridge National Laboratory has constructed neutral beam generators for the ORMAK and PLT devices, is presently constructing neutral beam devices for the ISX and PDX devices, and is contemplating the construction of neutral beam systems for the advanced TNS device. These neutral beam devices stem from the pioneering work on ion sources of G.G. Kelley and O.B. Morgan. We describe the ion sources under development at this laboratory, the beam optics exhibited by these sources, as well as some theoretical considerations, and finally the remainder of the beamline design

  15. Beam limiter for thermonuclear fusion devices

    International Nuclear Information System (INIS)

    Kaminsky, M.S.

    1977-01-01

    The invention pertains to a beam limiter to prevent collisions between a plasma and the inner surface of a hollow body in which the plasma is confined. The patent claims pertain to suitable geometrical shapes of the beam limiter. (GG) [de

  16. A new dual injection system for AMS facility

    International Nuclear Information System (INIS)

    Liu Lin; Zhou Weijian; Cheng Peng; Yu Huagui; Chen Maobai

    2007-01-01

    In order to measure long-lived radioisotopes such as 10 Be with high sensitivity using an HVEE model 4130 AMS system, as well as to guarantee 14 C measurements of high precision, a new dual injection system for the AMS system is proposed. The proposal is to add a Wien filter located between the ion source system and the recombinator of the HVEE model 4130. When a pulsing voltage is optionally applied to the Wien filter, a sequential injection mode is turned on. The isotopes would alternately pass on different trajectories through the recombinator. When the pulsing voltage and magnetic field are turned off, the Wien filter acts as a field-free drift space and the standard simultaneous injection mode is on. Beam optics calculation show that the new dual injection system will increase the number of radio-nuclides which can be analyzed, keep the high precision capability for radiocarbon dating and achieve high sensitivity for 10 Be and 26 Al measurements, together with simplifying the layout as compared to existing dual-injector and dual high-energy beam line systems

  17. Commissioning of a proton gantry equipped with dual x-ray imagers and a robotic patient positioner, and evaluation of the accuracy of single-beam image registration for this system

    International Nuclear Information System (INIS)

    Wang, Ning; Ghebremedhin, Abiel; Patyal, Baldev

    2015-01-01

    Purpose: To check the accuracy of a gantry equipped with dual x-ray imagers and a robotic patient positioner for proton radiotherapy, and to evaluate the accuracy and feasibility of single-beam registration using the robotic positioner. Methods: One of the proton treatment rooms at their institution was upgraded to include a robotic patient positioner (couch) with 6 degrees of freedom and dual orthogonal kilovoltage x-ray imaging panels. The wander of the proton beam central axis, the wander of the beamline, and the orthogonal image panel crosswires from the gantry isocenter were measured for different gantry angles. The couch movement accuracy and couch wander from the gantry isocenter were measured for couch loadings of 50–300 lb with couch rotations from 0° to ±90°. The combined accuracy of the gantry, couch, and imagers was checked using a custom-made 30 × 30 × 30 cm 3 Styrofoam phantom with beekleys embedded in it. A treatment in this room can be set up and registered at a setup field location, then moved precisely to any other treatment location without requiring additional image registration. The accuracy of the single-beam registration strategy was checked for treatments containing multiple beams with different combinations of gantry angles, couch yaws, and beam locations. Results: The proton beam central axis wander from the gantry isocenter was within 0.5 mm with gantry rotations in both clockwise (CW) and counterclockwise (CCW) directions. The maximum wander of the beamline and orthogonal imager crosswire centers from the gantry isocenter were within 0.5 and 0.8 mm, respectively, with the gantry rotations in CW and CCW directions. Vertical and horizontal couch wanders from the gantry isocenter were within 0.4 and 1.3 mm, respectively, for couch yaw from 0° to ±90°. For a treatment with multiple beams with different gantry angles, couch yaws, and beam locations, the measured displacements of treatment beam locations from the one based on the

  18. Automated translating beam profiler for in situ laser beam spot-size and focal position measurements

    Science.gov (United States)

    Keaveney, James

    2018-03-01

    We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.

  19. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    Energy Technology Data Exchange (ETDEWEB)

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Rodt, Sven, E-mail: srodt@physik.tu-berlin.de; Reitzenstein, Stephan [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Strittmatter, André [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg (Germany)

    2015-07-15

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  20. Gigahertz dual-comb modelocked diode-pumped semiconductor and solid-state lasers

    Science.gov (United States)

    Link, S. M.; Mangold, M.; Golling, M.; Klenner, A.; Keller, U.

    2016-03-01

    We present a simple approach to generate simultaneously two gigahertz mode-locked pulse trains from a single gain element. A bi-refringent crystal in the laser cavity splits the one cavity beam into two cross-polarized and spatially separated beams. This polarization-duplexing is successfully demonstrated for both a semiconductor disk laser (i.e. MIXSEL) and a diode-pumped solid-state Nd:YAG laser. The beat between the two beams results in a microwave frequency comb, which represents a direct link between the terahertz optical frequencies and the electronically accessible microwave regime. This dual-output technique enables compact and cost-efficient dual-comb lasers for spectroscopy applications.

  1. Structural and composition investigations at delayered locations of low k integrated circuit device by gas-assisted focused ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dandan, E-mail: dandan.wang@globalfoundries.com; Kee Tan, Pik; Yamin Huang, Maggie; Lam, Jeffrey; Mai, Zhihong [Technology Development Department, GLOBALFOUNDRIES Singapore Pte. Ltd., 60 Woodlands Industrial Park D, Street 2, Singapore 738406 (Singapore)

    2014-05-15

    The authors report a new delayering technique – gas-assisted focused ion beam (FIB) method and its effects on the top layer materials of integrated circuit (IC) device. It demonstrates a highly efficient failure analysis with investigations on the precise location. After removing the dielectric layers under the bombardment of an ion beam, the chemical composition of the top layer was altered with the reduced oxygen content. Further energy-dispersive x-ray spectroscopy and Fourier transform infrared analysis revealed that the oxygen reduction lead to appreciable silicon suboxide formation. Our findings with structural and composition alteration of dielectric layer after FIB delayering open up a new insight avenue for the failure analysis in IC devices.

  2. What Can a Dual beam Really Do?

    International Nuclear Information System (INIS)

    Lawrence, P.

    2005-01-01

    Full Text: Smallstage Dualbeam (SDB) systems, that is a Focussed Ion Beam column coupled with a SEM column, have been around for about five years now. There impact on the Semiconductor industry has been enormous, with virtually every lab having a SDB to produce, characterise and analyse cross sections and TEM samples on the Nano-scale. But what about other industries? What else can SDB system be used for? The SEM column in itself is a very powerful tool for sample characterisation, modification and analysis. An electron beam from a Tungsten or Thermal Field Emission source has enough current to allow sophisticated patterns to be created in photo-resist samples, a process known as lithography. The current is also high enough to allow for a process known as Electron Beam Induced Deposition (EBID), where the beam interacts with an introduced gas and material is deposited in a controlled manner on the sample. With the addition of the Focussed Ion Beam (FIB) direct removal of material from a samples becomes possible. Focussed Ga + ions are scanned in controlled patterns over the specimen and material is removed rapidly and effectively. The FIB also allows deposition in a similar way to EBID, but on a much larger scale. The FIB also has imaging properties not available with a SEM. As ions are large they are channelled in the grains of certain materials and this results in channelling contrast, a feature which can be used to determine crystal orientation. Combing a SEM and FIB column in the form of a SDB results in a very powerful tool which has many applications outside it's original design purpose. As the cost of these tools becomes more attractive, the potential for even greater diversification of applications is apparent. (Author)

  3. A beam radiation monitoring and protection system for AGS secondary beams

    International Nuclear Information System (INIS)

    Levine, G.S.

    1978-01-01

    A commercially available radiation monitor using a scintillation detector was modified for charged particle beam monitoring. The device controls access to secondary beams of the AGS and limits beam intensity

  4. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices

    Science.gov (United States)

    Antonelli, M.; Di Fraia, M.; Carrato, S.; Cautero, G.; Menk, R. H.; Jark, W. H.; Ganbold, T.; Biasiol, G.; Callegari, C.; Coreno, M.; De Sio, A.; Pace, E.

    2013-12-01

    Simultaneous photon-beam position and intensity monitoring is becoming of increasing importance for new-generation synchrotron radiation sources and free-electron lasers (FEL). Thus, novel concepts of beam diagnostics are required in order to keep such beams under control. From this perspective diamond is a promising material for the production of semitransparent in situ photon beam monitors, which can withstand the high dose rates occurring in such radiation facilities. Here, we report on the development of freestanding, single-crystal chemical-vapor-deposited diamond detectors with segmented electrodes. Due to their direct, low-energy band gap, InGaAs quantum well devices operated at room temperature may also be used as fast detectors for photons ranging from visible to X-ray. These features are valuable in low-energy and time-resolved FEL applications. In particular, a novel segmented InGaAs/InAlAs device has been developed and will be discussed. Dedicated measurements carried out on both these devices at the Elettra Synchrotron show their capability to monitor the position and the intensity of the photon beam with bunch-by-bunch temporal performances. Furthermore, preliminary tests have been performed on diamond detectors at the Fermi FEL, extracting quantitative intensity and position information for 100-fs-wide FEL pulses with a photon energy of 28.8 eV.

  5. Dual-Gate p-GaN Gate High Electron Mobility Transistors for Steep Subthreshold Slope.

    Science.gov (United States)

    Bae, Jong-Ho; Lee, Jong-Ho

    2016-05-01

    A steep subthreshold slope characteristic is achieved through p-GaN gate HEMT with dual-gate structure. Obtained subthreshold slope is less than 120 μV/dec. Based on the measured and simulated data obtained from single-gate device, breakdown of parasitic floating-base bipolar transistor and floating gate charged with holes are responsible to increase abruptly in drain current. In the dual-gate device, on-current degrades with high temperature but subthreshold slope is not changed. To observe the switching speed of dual-gate device and transient response of drain current are measured. According to the transient responses of drain current, switching speed of the dual-gate device is about 10(-5) sec.

  6. Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Electrostatic protocol treatment lens. The purpose of this device is to transport Antiprotons from the new ELENA storage beam to all AD experiments. The electrostatic device was successfully tested in ASACUSA two weeks ago.

  7. Malfunctions of Implantable Cardiac Devices in Patients Receiving Proton Beam Therapy: Incidence and Predictors

    International Nuclear Information System (INIS)

    Gomez, Daniel R.; Poenisch, Falk; Pinnix, Chelsea C.; Sheu, Tommy; Chang, Joe Y.; Memon, Nada; Mohan, Radhe; Rozner, Marc A.; Dougherty, Anne H.

    2013-01-01

    Purpose: Photon therapy has been reported to induce resets of implanted cardiac devices, but the clinical sequelae of treating patients with such devices with proton beam therapy (PBT) are not well known. We reviewed the incidence of device malfunctions among patients undergoing PBT. Methods and Materials: From March 2009 through July 2012, 42 patients with implanted cardiac implantable electronic devices (CIED; 28 pacemakers and 14 cardioverter-defibrillators) underwent 42 courses of PBT for thoracic (23, 55%), prostate (15, 36%), liver (3, 7%), or base of skull (1, 2%) tumors at a single institution. The median prescribed dose was 74 Gy (relative biological effectiveness; range 46.8-87.5 Gy), and the median distance from the treatment field to the CIED was 10 cm (range 0.8-40 cm). Maximum proton and neutron doses were estimated for each treatment course. All CIEDs were checked before radiation delivery and monitored throughout treatment. Results: Median estimated peak proton and neutron doses to the CIED in all patients were 0.8 Gy (range 0.13-21 Gy) and 346 Sv (range 11-1100 mSv). Six CIED malfunctions occurred in 5 patients (2 pacemakers and 3 defibrillators). Five of these malfunctions were CIED resets, and 1 patient with a defibrillator (in a patient with a liver tumor) had an elective replacement indicator after therapy that was not influenced by radiation. The mean distance from the proton beam to the CIED among devices that reset was 7.0 cm (range 0.9-8 cm), and the mean maximum neutron dose was 655 mSv (range 330-1100 mSv). All resets occurred in patients receiving thoracic PBT and were corrected without clinical incident. The generator for the defibrillator with the elective replacement indicator message was replaced uneventfully after treatment. Conclusions: The incidence of CIED resets was about 20% among patients receiving PBT to the thorax. We recommend that PBT be avoided in pacing-dependent patients and that patients with any type of CIED receiving

  8. Plasma ion sources and ion beam technology in microfabrications

    International Nuclear Information System (INIS)

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 (micro)m-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance

  9. Image quality assessment of three limited field-of-view cone-beam computed tomography devices in endodontics

    International Nuclear Information System (INIS)

    Tran, Michel

    2015-01-01

    Since the beginning of Cone Beam Computed Tomography (CBCT) in dento-maxillo-facial radiology, many CBCT devices with different technical aspects and characteristics were produced. Technical variations between CBCT and acquisition settings could involve image quality differences. In order to compare the performance of three limited field-of-view CBCT devices, an objective and subjective evaluation of image quality was carried out using an ex-vivo phantom, which combines both diagnostic and technical features. A significant difference in image quality was found between the five acquisition protocols of the study. (author) [fr

  10. Focused ion beam patterning to dielectrophoretically assemble single nanowire based devices

    International Nuclear Information System (INIS)

    La Ferrara, V; Massera, E; Francia, G Di; Alfano, B

    2010-01-01

    Direct-write processing is increasingly taking place in nanodevice fabrication. In this work, Focused Ion Beam (FIB), a powerful tool in maskless micromachining, is used for electrode patterning onto a silicon/silicon nitride substrate. Then a single palladium nanowire is assembled between electrodes by means of dielectrophoresis (DEP). The nanowire morphology depends on the electrode pattern when DEP conditions are fixed. FIB/DEP combination overcomes the problem of nanowire electrical contamination due to gallium ion bombardment and the as-grown nanowire retains its basic electrical properties. Single nanowire based devices have been fabricated with this novel approach and have been tested as hydrogen sensors, confirming the reliability of this technology.

  11. Highly scalable 3-D NAND-NOR hybrid-type dual bit per cell flash memory devices with an additional cut-off gate

    International Nuclear Information System (INIS)

    Cho, Seongjae; Shim, Wonbo; Park, Ilhan; Kim, Yoon; Park, Byunggook

    2010-01-01

    In this work, a nonvolatile memory (NVM) device of novel structure in 3 dimensions is introduced, and its operation physics is validated. It is based on a pillar structure in which two identical storage nodes are located for dual-bit operation. The two storage nodes on neighboring pillars are controlled by using one common control gate so that the space between silicon pillars can be further reduced. For compatibility with conventional memory operations, an additional cut-off gate is constructed under the common control gate. This is considered as the ultimate form for a 3-D nonvolatile memory device based on a double-gate structure. The underlying physics is explained, and the operational schemes are validated in various aspects by using a numerical device simulation. Also, critical issues in device design for higher reliability are discussed.

  12. Facilitating Integration of Electron Beam Lithography Devices with Interactive Videodisc, Computer-Based Simulation and Job Aids.

    Science.gov (United States)

    Von Der Linn, Robert Christopher

    A needs assessment of the Grumman E-Beam Systems Group identified the requirement for additional skill mastery for the engineers who assemble, integrate, and maintain devices used to manufacture integrated circuits. Further analysis of the tasks involved led to the decision to develop interactive videodisc, computer-based job aids to enable…

  13. Dual role of boron in improving electrical performance and device stability of low temperature solution processed ZnO thin film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Gandla, Srinivas; Gollu, Sankara Rao; Sharma, Ramakant; Sarangi, Venkateshwarlu; Gupta, Dipti, E-mail: diptig@iitb.ac.in [Plastic Electronics and Energy Laboratory (PEEL), Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2015-10-12

    In this paper, we have demonstrated the dual role of boron doping in enhancing the device performance parameters as well as the device stability in low temperatures (200 °C) sol-gel processed ZnO thin film transistors (TFTs). Our studies suggest that boron is able to act as a carrier generator and oxygen vacancy suppressor simultaneously. Boron-doped ZnO TFTs with 8 mol. % of boron concentration demonstrated field-effect mobility value of 1.2 cm{sup 2} V{sup −1} s{sup −1} and threshold voltage of 6.2 V, respectively. Further, these devices showed lower shift in threshold voltage during the hysteresis and bias stress measurements as compared to undoped ZnO TFTs.

  14. Operational characteristics of dual gain single cavity Nd:YVO laser

    Indian Academy of Sciences (India)

    . This approach also leads to higher ... birefringence effects are less in dual gain systems which leads to better beam quality [2]. ... Since the quality of the pump beam (M2-parameter) is an important parameter to opti- mize the overlap of the ...

  15. Simultaneous 3D-vibration measurement using a single laser beam device

    Science.gov (United States)

    Brecher, Christian; Guralnik, Alexander; Baümler, Stephan

    2012-06-01

    Today's commercial solutions for vibration measurement and modal analysis are 3D-scanning laser doppler vibrometers, mainly used for open surfaces in the automotive and aerospace industries and the classic three-axial accelerometers in civil engineering, for most industrial applications in manufacturing environments, and particularly for partially closed structures. This paper presents a novel measurement approach using a single laser beam device and optical reflectors to simultaneously perform 3D-dynamic measurement as well as geometry measurement of the investigated object. We show the application of this so called laser tracker for modal testing of structures on a mechanical manufacturing shop floor. A holistic measurement method is developed containing manual reflector placement, semi-automated geometric modeling of investigated objects and fully automated vibration measurement up to 1000 Hz and down to few microns amplitude. Additionally the fast set up dynamic measurement of moving objects using a tracking technique is presented that only uses the device's own functionalities and does neither require a predefined moving path of the target nor an electronic synchronization to the moving object.

  16. TUTORIAL: Focused-ion-beam-based rapid prototyping of nanoscale magnetic devices

    Science.gov (United States)

    Khizroev, S.; Litvinov, D.

    2004-03-01

    In this tutorial, focused-ion-beam (FIB)-based fabrication is considered from a very unconventional angle. FIB is considered not as a fabrication tool that can be used for mass production of electronic devices, similar to optical and E-beam—based lithography, but rather as a powerful tool to rapidly fabricate individual nanoscale magnetic devices for prototyping future electronic applications. Among the effects of FIB-based fabrication of magnetic devices, the influence of Ga+-ion implantation on magnetic properties is presented. With help of magnetic force microscopy (MFM), it is shown that there is a critical doze of ions that a magnetic material can be exposed to without experiencing a change in the magnetic properties. Exploiting FIB from such an unconventional perspective is especially favourable today when the future of so many novel technologies depends on the ability to rapidly fabricate prototype nanoscale magnetic devices. As one of the most illustrative examples, the multi-billion-dollar data storage industry is analysed as the technology field that strongly benefited from implementing FIB in the above-described role. The essential role of FIB in the most recent trend of the industry towards perpendicular magnetic recording is presented. Moreover, other emerging and fast-growing technologies are considered as examples of nanoscale technologies whose future could strongly depend on the implementation of FIB in the role of a nanoscale fabrication tool for rapid prototyping. Among the other described technologies are 'ballistic' magnetoresistance, patterned magnetic media, magnetoresistive RAM (MRAM), and magnetic force microscopy.

  17. Dual-Material Gate Approach to Suppression of Random-Dopant-Induced Characteristic Fluctuation in 16 nm Metal-Oxide-Semiconductor Field-Effect-Transistor Devices

    Science.gov (United States)

    Li, Yiming; Lee, Kuo-Fu; Yiu, Chun-Yen; Chiu, Yung-Yueh; Chang, Ru-Wei

    2011-04-01

    In this work, we explore for the first time dual-material gate (DMG) and inverse DMG devices for suppressing the random-dopant (RD)-induced characteristic fluctuation in 16 nm metal-oxide-semiconductor field-effect-transistor (MOSFET) devices. The physical mechanism of suppressing the characteristic fluctuation of DMG devices is observed and discussed. The achieved improvement in suppressing the RD-induced threshold voltage, on-state current, and off-state current fluctuations are 28, 12.3, and 59%, respectively. To further suppress the fluctuations, an approach that combines the DMG method and channel-doping-profile engineering is also advanced and explored. The results of our study show that among the suppression techniques, the use of the DMG device with an inverse lateral asymmetric channel-doping-profile has good immunity to fluctuation.

  18. Beam-beam effects under the influence of external noise

    International Nuclear Information System (INIS)

    Ohmi, K

    2014-01-01

    Fast external noise, which gives fluctuation into the beam orbit, is discussed in connection with beam-beam effects. Phase noise from crab cavities and detection devices (position monitor) and kicker noise from the bunch by bunch feedback system are the sources. Beam-beam collisions with fast orbit fluctuations with turn by turn or multi-turn correlations, cause emittance growth and luminosity degradation. We discuss the tolerance of the noise amplitude for LHC and HL-LHC

  19. Fan-beam intensity modulated proton therapy.

    Science.gov (United States)

    Hill, Patrick; Westerly, David; Mackie, Thomas

    2013-11-01

    This paper presents a concept for a proton therapy system capable of delivering intensity modulated proton therapy using a fan beam of protons. This system would allow present and future gantry-based facilities to deliver state-of-the-art proton therapy with the greater normal tissue sparing made possible by intensity modulation techniques. A method for producing a divergent fan beam of protons using a pair of electromagnetic quadrupoles is described and particle transport through the quadrupole doublet is simulated using a commercially available software package. To manipulate the fan beam of protons, a modulation device is developed. This modulator inserts or retracts acrylic leaves of varying thickness from subsections of the fan beam. Each subsection, or beam channel, creates what effectively becomes a beam spot within the fan area. Each channel is able to provide 0-255 mm of range shift for its associated beam spot, or stop the beam and act as an intensity modulator. Results of particle transport simulations through the quadrupole system are incorporated into the MCNPX Monte Carlo transport code along with a model of the range and intensity modulation device. Several design parameters were investigated and optimized, culminating in the ability to create topotherapy treatment plans using distal-edge tracking on both phantom and patient datasets. Beam transport calculations show that a pair of electromagnetic quadrupoles can be used to create a divergent fan beam of 200 MeV protons over a distance of 2.1 m. The quadrupole lengths were 30 and 48 cm, respectively, with transverse field gradients less than 20 T/m, which is within the range of water-cooled magnets for the quadrupole radii used. MCNPX simulations of topotherapy treatment plans suggest that, when using the distal edge tracking delivery method, many delivery angles are more important than insisting on narrow beam channel widths in order to obtain conformal target coverage. Overall, the sharp distal

  20. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner

  1. Semiconductor devices as track detectors in high energy colliding beam experiments

    International Nuclear Information System (INIS)

    Ludlam, T.

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems

  2. Semiconductor devices as track detectors in high energy colliding beam experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ludlam, T

    1980-01-01

    In considering the design of experiments for high energy colliding beam facilities one quickly sees the need for better detectors. The full exploitation of machines like ISABELLE will call for detector capabilities beyond what can be expected from refinements of the conventional approaches to particle detection in high energy physics experiments. Over the past year or so there has been a general realization that semiconductor device technology offers the possibility of position sensing detectors having resolution elements with dimensions of the order of 10 microns or smaller. Such a detector could offer enormous advantages in the design of experiments, and the purpose of this paper is to discuss some of the possibilities and some of the problems.

  3. Dual-energy chest imaging with the variable compensation technique

    International Nuclear Information System (INIS)

    Dobbins, J.T.; Powell, A.O.

    1988-01-01

    The authors reported on a new imaging algorithm, termed the variable compensation (VC) technique, that combines the signal-to-noise ratio (S/N) advantages of x-ray beam compensation with the ability to adjust retrospectively the amount of displayed image equalization. The VC technique acquires a compensated image of the patient and also an image of the modulated beam profile incident on the patient. A fraction of the beam profile image is then subtracted from the compensated image. A limitation of traditional dual-energy techniques is the significant S/N degradation in poorly penetrated regions. Their new VC technique permits improvement in image S/N before formation of the dual-energy image pair. Specifically, the authors subtract 100% of the beam image from the compensated image for both the high- and low-energy images and produce a pair of images that appear similar to the normal high- and low-energy pair, except for improved S/N in the mediastinum due to the beam compensator. S/N measurements in tissue-canceled chest phantom images show the improved S/N visualization of calcified squares in the mediastinum with our technique

  4. The value of calcaneal bone mass measurement using a dual X-ray laser calscan device in risk screening for osteoporosis

    Directory of Open Access Journals (Sweden)

    Gulseren Kayalar

    2009-01-01

    Full Text Available OBJECTIVE: To evaluate how bone mineral density in the calcaneus measured by a dual energy X-ray laser (DXL correlates with bone mineral density in the spine and hip in Turkish women over 40 years of age and to determine whether calcaneal dual energy X-ray laser variables are associated with clinical risk factors to the same extent as axial bone mineral density measurements obtained using dual energy x-ray absorbtiometry (DXA. MATERIALS AND METHODS: A total of 2,884 Turkish women, aged 40-90 years, living in Ankara were randomly selected. Calcaneal bone mineral density was evaluated using a dual energy X-ray laser Calscan device. Subjects exhibiting a calcaneal dual energy X-ray laser T- score <-2.5 received a referral for DXA of the spine and hip. Besides dual energy X-ray laser measurements, all subjects were questioned about their medical history and the most relevant risk factors for osteoporosis. RESULTS: Using a T-score threshold of -2.5, which is recommended by the World Health Organization (WHO, dual energy X-ray laser calcaneal measurements showed that 13% of the subjects had osteoporosis, while another 56% had osteopenia. The mean calcaneal dual energy X-ray laser T-score of postmenopausal subjects who were smokers with a positive history of fracture, hormone replacement therapy (HRT, covered dressing style, lower educational level, no regular exercise habits, and low tea consumption was significantly lower than that obtained for the other group (p<0.05. A significant correlation was observed between the calcaneal dual energy X-ray laser T-score and age (r=-0.465, p=0.001, body mass index (BMI (r=0.223, p=0.001, number of live births (r=-0.229, p=0.001, breast feeding time (r=-0.064, p=0.001, and age at menarche (r=-0.050, p=0.008. The correlations between calcaneal DXL and DXA T-scores (r=0.340, p=0.001 and calcaneal DXL and DXA Z-scores (r=0.360, p=0.001 at the spine, and calcaneal DXL and DXA T- scores (r=0.28, p=0.001 and calcaneal

  5. GO Shaping of Omnidirectional Dual-Reflector Antennas with Arbitrary Main-Beam Direction in Elevation Plane by Connecting Conic Sections

    Directory of Open Access Journals (Sweden)

    Rafael A. Penchel

    2018-01-01

    Full Text Available This work discusses an alternative geometrical optics (GO technique to synthesize omnidirectional dual-reflector antennas with uniform aperture phase distribution together with an arbitrary main-beam direction for the antenna radiation pattern. Sub- and main reflectors are bodies of revolution generated by shaped curves defined by local conic sections consecutively concatenated. The shaping formulation is derived for configurations like ADC (axis-displaced Cassegrain and ADE (axis-displaced ellipse omnidirectional antennas. As case studies, two configurations fed by a TEM coaxial horn are designed and analyzed by a hybrid technique based on mode matching and method of moments in order to validate the GO shaping procedure.

  6. Intelligent low-level RF system by non-destructive beam monitoring device for cyclotrons

    Science.gov (United States)

    Sharifi Asadi Malafeh, M. S.; Ghergherehchi, M.; Afarideh, H.; Chai, J. S.; Yoon, Sang Kim

    2016-04-01

    The project of a 10 MeV PET cyclotron accelerator for medical diagnosis and treatment was started at Amirkabir University of Technology in 2012. The low-level RF system of the cyclotron accelerator is designed to stabilize acceleration voltage and control the resonance frequency of the cavity. In this work an Intelligent Low Level Radio Frequency Circuit or ILLRF, suitable for most AVF cyclotron accelerators, is designed using a beam monitoring device and narrow band tunable band-pass filter. In this design, the RF phase detection does not need signal processing by a microcontroller.

  7. Effect on the insulation material of a MOSFET device submitted to a standard diagnostic radiation beam

    International Nuclear Information System (INIS)

    De Magalhaes, C M S; Dos Santos, L A P; Souza, D do N; Maia, A F

    2010-01-01

    MOSFET electronic devices have been used for dosimetry in radiology and radiotherapy. Several communications show that due to the radiation exposure defects appear on the semiconductor crystal lattice. Actually, the structure of a MOSFET consists of three materials: a semiconductor, a metal and an insulator between them. The MOSFET is a quadripolar device with a common terminal: gate-source is the input; drain-source is the output. The gate controls the electrical current passing through semiconductor medium by the field effect because the silicon oxide acts as insulating material. The proposal of this work is to show some radiation effects on the insulator of a MOSFET device. A 6430 Keithley sub-femtoamp SourceMeter was used to verify how the insulating material layer in the structure of the device varies with the radiation exposure. We have used the IEC 61267 standard radiation X-ray beams generated from a Pantak industrial unit in the radiation energy range of computed tomography. This range was chosen because we are using the MOSFET device as radiation detector for dosimetry in computed tomography. The results showed that the behaviour of the electrical current of the device is different in the insulator and semiconductor structures.

  8. Ion beam diagnosis

    International Nuclear Information System (INIS)

    Strehl, P.

    1994-04-01

    This report is an introduction to ion beam diagnosis. After a short description of the most important ion beam parameters measurements of the beam current by means of Faraday cups, calorimetry, and beam current transformers and measurements of the beam profile by means of viewing screens, profile grids and scanning devices, and residual gas ionization monitors are described. Finally measurements in the transverse and longitudinal phase space are considered. (HSI)

  9. A Real-Time FPGA based Algorithm for the combination of Beam Loss Acquisition Methods used for Measurement Dynamic Range expansion

    CERN Document Server

    Kwiatkowski, M; Alsdorf, M; Dehning, B; Vigano, W

    2012-01-01

    The aim of the Beam Loss Monitoring Dual Polarity (BLEDP) module under development at the European Organisation for Nuclear Research (CERN) is to measure and digitise with high precision the current produced by several types of beam loss detectors. The BLEDP module consists of eight analogue channels each with a fully differential integrator and an accompanying 16 bit ADC at the output of each analogue integrator. The on-board FPGA device controls the integral periods, instructs the ADC devices to perform measurements at the end of each period and collects the measurements. In the next stage it combines the number of charge and discharge cycles accounted in the last interval together with the cycle fractions observed using the ADC samples to produce a digitised high precision value of the charges collected. This paper describes briefly the principle of the fully differential integrator and focuses on the algorithm employed to process the digital data.

  10. Development of a PIXE (Particle Induced X-ray Emission) analysis device using an extracted proton beam

    International Nuclear Information System (INIS)

    Saidi, A.

    1989-01-01

    The experimental device described allows the extention of the PIXE (Particle Induced X-ray Emission) method to the analysis, by means of proton beams, of solid or liquid samples, which can not be analyzed under vacuum conditions. The homogeneity of the surfaces to be analysed and elements (in the atmosphere) which absorb X-rays must be taken into account. Liquid samples do not need special care. The results show that: at high energies, the extracted beam sensibility is of the same order of magnitude as those obtained under vacuum; at low energies, the performance under vacuum conditions is better. The particles energy losses, at the exit membrane and in the outer atmosphere, decrease the X-rays production efficiency [fr

  11. A dual-stage sodium thermal electrochemical converter (Na-TEC)

    Science.gov (United States)

    Limia, Alexander; Ha, Jong Min; Kottke, Peter; Gunawan, Andrey; Fedorov, Andrei G.; Lee, Seung Woo; Yee, Shannon K.

    2017-12-01

    The sodium thermal electrochemical converter (Na-TEC) is a heat engine that generates electricity through the isothermal expansion of sodium ions. The Na-TEC is a closed system that can theoretically achieve conversion efficiencies above 45% when operating between thermal reservoirs at 1150 K and 550 K. However, thermal designs have confined previous single-stage devices to thermal efficiencies below 20%. To mitigate some of these limitations, we consider dividing the isothermal expansion into two stages; one at the evaporator temperature (1150 K) and another at an intermediate temperature (650 K-1050 K). This dual-stage Na-TEC takes advantage of regeneration and reheating, and could be amenable to better thermal management. Herein, we demonstrate how the dual-stage device can improve the efficiency by up to 8% points over the best performing single-stage device. We also establish an application regime map for the single- and dual-stage Na-TEC in terms of the power density and the total thermal parasitic loss. Generally, a single-stage Na-TEC should be used for applications requiring high power densities, whereas a dual-stage Na-TEC should be used for applications requiring high efficiency.

  12. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device.

    Science.gov (United States)

    Chen, Yue; Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De

    2015-09-20

    Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.

  13. Developments in non-destructive beam diagnostics

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1981-01-01

    With the large average beam currents being achieved in accelerators and storage rings, there is an increasing need for non-destructive beam diagnostic devices. For continuous beams, position monitors of the capacitive pick-up type are replaced by resonant devices that respond to the transverse displacement of the beam centroid. Bunch length monitors of the SLAC type using resonant cavities operating in the TM 010 mode can be used for continuous beams. The more detailed information derivable from beam profile scanners requires development of improved non-destructive devices. Profile monitors which scan the visible light produced by high current beams may be more reliable than ones using the residual ionization if the light intensity from gas molecules following nonionizing collisions with beam particles gives a measure of the beam current density independent of the local electron density. The intense Balmer series lines from neutral hydrogen beams have been used successfully to measure beam profiles. At CRNL and at LASL, beam light profile monitors are being developed for high average current accelerators. Three or more projections will be recorded to allow tomographic reconstruction of the two-dimensional beam current density. Light detection is either by intensified Reticons or ISIT vidicons. The use of three or more beam light monitors on a beam transport line will also permit estimates of the transverse emittance to be made through the reconstruction technique

  14. Evolution of the dual-readout calorimeter

    Indian Academy of Sciences (India)

    ... a calorimeter system of a relatively simple construction and moderate costs, however with excellent properties, built upon experience gained with the extensively beam-tested DREAM (Dual REAdout. Module) prototype. The main idea of multiple readout calorimetry is to indepen- dently measure for each hadronic shower ...

  15. Interactions between pacing and arrhythmia detection algorithms in the dual chamber implantable cardioverter defibrillator.

    Science.gov (United States)

    Dijkman, B; Wellens, H J

    2001-09-01

    Dual chamber implantable cardioverter defibrillator (ICD) combines the possibility to detect and treat ventricular and atrial arrhythmias with the possibility of modern heart stimulation techniques. Advanced pacing algorithms together with extended arrhythmia detection capabilities can give rise to new types of device-device interactions. Some of the possible interactions are illustrated by four cases documented in four models of dual chamber ICDs. Functioning of new features in dual chamber devices is influenced by the fact that the pacemaker is not a separate device but a part of the ICD system and that both are being used in a patient with arrhythmia. Programming measures are suggested to optimize use of new pacing algorithms while maintaining correct arrhythmia detection.

  16. Low-intensity beam diagnostics with particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Rovelli, A.; Ciavola, G.; Cuttone, G.; Finocchiaro, P.; Raia, G. [INFN-LNS, Via S. Sofia 44/A Catania, 95125 (Italy); De Martinis, C.; Giove, D. [INFN-LASA, Via F.lli Cervi 201 Segrate (Midway Islands), 20090 (Italy)

    1997-01-01

    The measure of low intensity beams at low-medium energy is one of the major challenge in beam diagnostics. This subject is of great interest for the design of accelerator-based medical and radioactive beam facilities. In this paper we discuss new developments in image-based devices to measure low-intensity beams. All the investigated devices must guarantee measurement of the total beam current and its transverse distribution. {copyright} {ital 1997 American Institute of Physics.}

  17. Low-intensity beam diagnostics with particle detectors

    International Nuclear Information System (INIS)

    Rovelli, A.; Ciavola, G.; Cuttone, G.; Finocchiaro, P.; Raia, G.; De Martinis, C.; Giove, D.

    1997-01-01

    The measure of low intensity beams at low-medium energy is one of the major challenge in beam diagnostics. This subject is of great interest for the design of accelerator-based medical and radioactive beam facilities. In this paper we discuss new developments in image-based devices to measure low-intensity beams. All the investigated devices must guarantee measurement of the total beam current and its transverse distribution. copyright 1997 American Institute of Physics

  18. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  19. 'Electron compression' of beam-beam footprint in the Tevatron

    International Nuclear Information System (INIS)

    Shiltsev, V.; Finley, D.A.

    1997-08-01

    The beam-beam interaction in the Tevatron collider sets some limits on bunch intensity and luminosity. These limits are caused by a tune spread in each bunch which is mostly due to head-on collisions, but there is also a bunch-to-bunch tune spread due to parasitic collisions in multibunch operation. We describe a counter-traveling electron beam which can be used to eliminate these effects, and present general considerations and physics limitations of such a device which provides 'electron compression' of the beam-beam footprint in the Tevatron

  20. Design of Control System Device for Electron Gun Power Supply of 350 keV/10 mA Electron Beam Machine

    International Nuclear Information System (INIS)

    Eko Priyono; Budi Santosa; Taxwim

    2003-01-01

    The electron gun power supply control system of electron beam machine has been designed. Using this design regulator device for the electron gun power supply will be constructed. This regulator device was designed that it can be operated manually or automatically. Beside that, this was also provided with the safety system which is useful to scram the MBE when something wrong happened. The main components of the device are remote data communication system using infra red and fiber optic module, DC motor driver system, regulated transformer coupled by DC motor and operation panel system. (author)

  1. Effect of laser and/or electron beam irradiation on void swelling in SUS316L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Subing [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Yang, Zhanbing, E-mail: yangzhanbing@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Hui [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Watanabe, Seiichi; Shibayama, Tamaki [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 (Japan)

    2017-05-15

    Large amounts of void swelling still limit the application of austenitic stainless steels in nuclear reactors due to radiation-induced lattice point defects. In this study, laser and/or beam irradiation was conducted in a temperature range of 573–773 K to explore the suppression of void swelling. The results show that during sequential laser-electron beam irradiation, the void nucleation is enhanced because of the vacancy clusters and void nuclei formed under pre-laser irradiation, causing greater void swelling than single electron beam irradiation. However, simultaneous laser-electron dual-beam irradiation exhibits an obvious suppression effect on void swelling due to the enhanced recombination between interstitials and vacancies in the temperature range of 573–773 K; especially at 723 K, the swelling under simultaneous dual-beam irradiation is 0.031% which is only 22% of the swelling under electron beam irradiation (0.137%). These results provide new insight into the suppression of void swelling during irradiation. - Highlights: •The temperature dependence of void swelling under simultaneous laser-electron dual-beam irradiation has been investigated. •Pre-laser irradiation enhances void nucleation at temperatures from 573 K to 773 K. •Simultaneous laser-electron dual-beam irradiation suppresses void swelling in the temperature range of 573–773 K.

  2. A device for real-time live-cell microscopy during dynamic dual-modal mechanostimulation

    Science.gov (United States)

    Lorusso, D.; Nikolov, H. N.; Chmiel, T.; Beach, R. J.; Sims, S. M.; Dixon, S. J.; Holdsworth, D. W.

    2017-03-01

    Mechanotransduction - the process by which cells sense and respond to mechanical stimuli - is essential for several physiological processes including skeletal homeostasis. Mammalian cells are thought to be sensitive to different modes of mechanical stimuli, including vibration and fluid shear. To better understand the mechanisms underlying the early stages of mechanotransduction, we describe the development of devices for mechanostimulation (by vibration and fluid shear) of live cells that can be integrated with real-time optical microscopy. The integrated system can deliver up to 3 Pa of fluid shear simultaneous with high-frequency sinusoidal vibrations up to 1 g. Stimuli can be applied simultaneously or independently to cells during real-time microscopic imaging. A custom microfluidic chamber was prepared from polydimethylsiloxane on a glass-bottom cell culture dish. Fluid flow was applied with a syringe pump to induce shear stress. This device is compatible with a custom-designed motion control vibration system. A voice coil actuates the system that is suspended on linear air bushings. Accelerations produced by the system were monitored with an on-board accelerometer. Displacement was validated optically using particle tracking digital high-speed imaging (1200 frames per second). During operation at nominally 45 Hz and 0.3 g, displacements were observed to be within 3.56% of the expected value. MC3T3-E1 osteoblast like cells were seeded into the microfluidic device and loaded with the calcium sensitive fluorescent probe fura-2, then mounted onto the dual-modal mechanostimulation platform. Cells were then imaged and monitored for fluorescence emission. In summary, we have developed a system to deliver physiologically relevant vibrations and fluid shear to live cells during real-time imaging and photometry. Monitoring the behavior of live cells loaded with appropriate fluorescent probes will enable characterization of the signals activated during the initial

  3. Device Fabrication and Probing of Discrete Carbon Nanostructures

    KAUST Repository

    Batra, Nitin M

    2015-01-01

    Device fabrication on multi walled carbon nanotubes (MWCNTs) using electrical beam lithography (EBL), electron beam induced deposition (EBID), ion beam induced deposition (IBID) methods was carried out, followed by device electrical characterization

  4. Double deflection system for an electron beam device

    International Nuclear Information System (INIS)

    Parker, N.W.; Crewe, A.V.

    1978-01-01

    A double deflection scanning system for electron beam instruments is provided embodying a means of correcting isotropic coma, and anisotropic coma aberrations induced by the magnetic lens of such an instrument. The scanning system deflects the beam prior to entry into the magnetic lens from the normal on-axis intersection of the beam with the lens according to predetermined formulas and thereby reduces the aberrations

  5. Dual energy CT: New horizon in medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo [Dept. of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Goo, Jin Mo [Dept. of Radiology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-08-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  6. Dual-Energy CT: New Horizon in Medical Imaging.

    Science.gov (United States)

    Goo, Hyun Woo; Goo, Jin Mo

    2017-01-01

    Dual-energy CT has remained underutilized over the past decade probably due to a cumbersome workflow issue and current technical limitations. Clinical radiologists should be made aware of the potential clinical benefits of dual-energy CT over single-energy CT. To accomplish this aim, the basic principle, current acquisition methods with advantages and disadvantages, and various material-specific imaging methods as clinical applications of dual-energy CT should be addressed in detail. Current dual-energy CT acquisition methods include dual tubes with or without beam filtration, rapid voltage switching, dual-layer detector, split filter technique, and sequential scanning. Dual-energy material-specific imaging methods include virtual monoenergetic or monochromatic imaging, effective atomic number map, virtual non-contrast or unenhanced imaging, virtual non-calcium imaging, iodine map, inhaled xenon map, uric acid imaging, automatic bone removal, and lung vessels analysis. In this review, we focus on dual-energy CT imaging including related issues of radiation exposure to patients, scanning and post-processing options, and potential clinical benefits mainly to improve the understanding of clinical radiologists and thus, expand the clinical use of dual-energy CT; in addition, we briefly describe the current technical limitations of dual-energy CT and the current developments of photon-counting detector.

  7. Characterization of the Plasma Edge for Technique of Atomic Helium Beam in the CIEMAT Fusion Device

    International Nuclear Information System (INIS)

    Hidalgo, A.

    2003-01-01

    In this report, the measurement of Electron Temperature and Density in the Boundary Plasma of TJ-II with a Supersonic Helium Beam Diagnostic and work devoted to the upgrading of this technique are described. Also, simulations of Laser Induced Fluorescence (LIF) studies of level populations of electronically excited He atoms are shown. This last technique is now being installed in the CIEMAT fusion device. (Author )

  8. Conceptual development of the Laser Beam Manifold (LBM)

    Science.gov (United States)

    Campbell, W.; Owen, R. B.

    1979-01-01

    The laser beam manifold, a device for transforming a single, narrow, collimated beam of light into several beams of desired intensity ratios is described. The device consists of a single optical substrate with a metallic coating on both optical surfaces. By changing the entry point, the number of outgoing beams can be varied.

  9. Dual resonant structure for energy harvesting from random vibration sources at low frequency

    Directory of Open Access Journals (Sweden)

    Shanshan Li

    2016-01-01

    Full Text Available We introduce a design with dual resonant structure which can harvest energy from random vibration sources at low frequency range. The dual resonant structure consists of two spring-mass subsystems with different frequency responses, which exhibit strong coupling and broad bandwidth when the two masses collide with each other. Experiments with piezoelectric elements show that the energy harvesting device with dual resonant structure can generate higher power output than the sum of the two separate devices from random vibration sources.

  10. Beam-plasma discharge in a Kyoto beam-plasma-ion source

    International Nuclear Information System (INIS)

    Ishikawa, J.; Takagi, T.

    1983-01-01

    A beam-plasma type ion source employing an original operating principle has been developed by the present authors. The ion source consists of an ion extraction region with an electron gun, a thin long drift tube as the plasma production chamber, and a primary electron beam collector. An electron beam is effectively utilized for the dual purpose of high density plasma production as a result of beam-plasma discharge, and high current ion beam extraction with ion space-charge compensation. A high density plasma of the order of 10 11 --10 13 cm -3 was produced by virtue of the beam-plasma discharge which was caused by the interaction between a space-charge wave on the electron beam and a high frequency plasma wave. The plasma density then produced was 10 2 --10 3 times the density produced only by collisional ionization by the electron beam. In order to obtain a stable beam-plasma discharge, a secondary electron beam emitted from the electron collector should be utilized. The mechanism of the beam-plasma discharge was analyzed by use of a linear theory in the case of the small thermal energy of the electron beam, and by use of a quasilinear theory in the case of the large thermal energy. High current ion beams of more than 0.1 A were extracted even at a low extraction voltage of 1--5 kV

  11. Commissioning of the advanced light source dual-axis streak camera

    International Nuclear Information System (INIS)

    Hinkson, J.; Keller, R.; Byrd, J.

    1997-05-01

    A dual-axis camera, Hamamatsu model C5680, has been installed on the Advanced Light Source photon-diagnostics beam-line to investigate electron-beam parameters. During its commissioning process, the camera has been used to measure single-bunch length vs. current, relative bunch charge in adjacent RF buckets, and bunchphase stability. In this paper the authors describe the visible-light branch of the diagnostics beam-line, the streak-camera installation, and the timing electronics. They will show graphical results of beam measurements taken during a variety of accelerator conditions

  12. Can machine learning complement traditional medical device surveillance? A case-study of dual-chamber implantable cardioverter–defibrillators

    Directory of Open Access Journals (Sweden)

    Ross JS

    2017-08-01

    Full Text Available Joseph S Ross,1–4 Jonathan Bates,4 Craig S Parzynski,4 Joseph G Akar,4,5 Jeptha P Curtis,4,5 Nihar R Desai,4,5 James V Freeman,4,5 Ginger M Gamble,4 Richard Kuntz,6 Shu-Xia Li,4 Danica Marinac-Dabic,7 Frederick A Masoudi,8 Sharon-Lise T Normand,9,10 Isuru Ranasinghe,11 Richard E Shaw,12 Harlan M Krumholz2–5 1Section of General Medicine, Department of Medicine, 2Robert Wood Johnson Foundation Clinical Scholars Program, Yale School of Medicine, 3Department of Health Policy and Management, Yale School of Public Health, 4Center for Outcomes Research and Evaluation, Yale–New Haven Hospital, 5Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, CT, 6Medtronic Inc, Minneapolis, MN, 7Division of Epidemiology, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 8Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO, 9Department of Health Care Policy, Harvard Medical School, 10Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA; 11Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia; 12Department of Clinical Informatics, California Pacific Medical Center, San Francisco, CA, USA Background: Machine learning methods may complement traditional analytic methods for medical device surveillance.Methods and results: Using data from the National Cardiovascular Data Registry for implantable cardioverter–defibrillators (ICDs linked to Medicare administrative claims for longitudinal follow-up, we applied three statistical approaches to safety-signal detection for commonly used dual-chamber ICDs that used two propensity score (PS models: one specified by subject-matter experts (PS-SME, and the other one by machine learning-based selection (PS-ML. The first approach used PS-SME and cumulative incidence (time-to-event, the second approach used PS-SME and cumulative risk (Data Extraction and

  13. Irradiation device

    International Nuclear Information System (INIS)

    Suzuki, Toshimitsu.

    1989-01-01

    In an irradiation device for irradiating radiation rays such as electron beams to pharmaceuticals, etc., since the distribution of scanned electron rays was not monitored, the electron beam intensity could be determined only indirectly and irradiation reliability was not satisfactory. In view of the above, a plurality of monitor wires emitting secondary electrons are disposed in the scanning direction near a beam take-out window of a scanning duct, signals from the monitor wires are inputted into a display device such as a cathode ray tube, as well as signals from the monitor wires at the central portion are inputted into counting rate meters to measure the radiation dose as well. Since secondary electrons are emitted when electron beams pass through the monitor wires and the intensity thereof is in proportion with the intensity of incident electron beams, the distribution of the radiation dose can be monitored by measuring the intensity of the emitted secondary electrons. Further, uneven irradiation, etc. can also be monitored to make the radiation of irradiation rays reliable. (N.H.)

  14. Novel technique of source and drain engineering for dual-material double-gate (DMDG) SOI MOSFETS

    Science.gov (United States)

    Yadav, Himanshu; Malviya, Abhishek Kumar; Chauhan, R. K.

    2018-04-01

    The dual-metal dual-gate (DMDG) SOI has been used with Dual Sided Source and Drain Engineered 50nm SOI MOSFET with various high-k gate oxide. It has been scrutinized in this work to enhance its electrical performance. The proposed structure is designed by creating Dual Sided Source and Drain Modification and its characteristics are evaluated on ATLAS device simulator. The consequence of this dual sided assorted doping on source and drain side of the DMDG transistor has better leakage current immunity and heightened ION current with higher ION to IOFF Ratio. Which thereby vesting the proposed device appropriate for low power digital applications.

  15. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology

    Science.gov (United States)

    Yin, C.; Glaser, A.K.; Leigh, S. Y.; Chen, Y.; Wei, L.; Pillai, P. C. S.; Rosenberg, M. C.; Abeytunge, S.; Peterson, G.; Glazowski, C.; Sanai, N.; Mandella, M. J.; Rajadhyaksha, M.; Liu, J. T. C.

    2016-01-01

    There is a need for miniature optical-sectioning microscopes to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology. Such devices could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Miniature confocal microscopes have been developed by various researchers and corporations to enable optical sectioning of highly scattering tissues, all of which have necessitated various trade-offs in size, speed, depth selectivity, field of view, resolution, image contrast, and sensitivity. In this study, a miniature line-scanned (LS) dual-axis confocal (DAC) microscope, with a 12-mm diameter distal tip, has been developed for clinical point-of-care pathology. The dual-axis architecture has demonstrated an advantage over the conventional single-axis confocal configuration for reducing background noise from out-of-focus and multiply scattered light. The use of line scanning enables fast frame rates (16 frames/sec is demonstrated here, but faster rates are possible), which mitigates motion artifacts of a hand-held device during clinical use. We have developed a method to actively align the illumination and collection beams in a DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo clinical use, enables our device to achieve an optical-sectioning thickness and lateral resolution of 2.0 and 1.1 microns respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate the clinical potential of this high-speed optical-sectioning microscopy device. PMID:26977337

  16. Diode line scanner for beam diagnostics

    International Nuclear Information System (INIS)

    Gustov, S.A.

    1987-01-01

    The device-scanning diode line is described. It is applied for beam profile measuring with space precision better than ± 0.5 mm and with discreteness of 3 mm along Y-axis and 0.25 mm along X-axis. The device is easy in construction, reliable and has a small time of information acquisition (2-5 min). The working range is from 100 to 10 6 rad/min (10 6 -10 10 part/mm 2 /s for 660 MeV protons). Radioresistance is 10 7 rad. The device can be applied for precise beam line element tuning at beam transporting and emittance measuring. The fixed diode line (a simplified device version) has smaller dimensions and smaller time of data acquisition (2-5 s). It is applied for quick preliminary beamline tuning. The flowsheet and different variants of data representation on beam profile are given

  17. ITO/InP solar cells: A comparison of devices fabricated by ion beam and RF sputtering of the ITO

    Science.gov (United States)

    Coutts, T. J.

    1987-01-01

    This work was performed with the view of elucidating the behavior of indium tin oxide/indium phosphide (ITO/InP) solar cells prepared by RF and ion beam sputtering. It was found that using RF sputter deposition of the ITO always leads to more efficient devices than ion beam sputter deposition. An important aspect of the former technique is the exposure of the single crystal p-InP substrates to a very low plasma power prior to deposition. Substrates treated in this manner have also been used for ion beam deposition of ITO. In this case the cells behave very similarly to the RF deposited cells, thus suggesting that the lower power plasma exposure (LPPE) is the crucial process step.

  18. Optimization of a flat-panel based real time dual-energy system for cardiac imaging

    International Nuclear Information System (INIS)

    Ducote, Justin L.; Xu Tong; Molloi, Sabee

    2006-01-01

    A simulation study was conducted to evaluate the effects of high-energy beam filtration, dual-gain operation and noise reduction on dual-energy images using a digital flat-panel detector. High-energy beam filtration increases image contrast through greater beam separation and tends to reduce total radiation exposure and dose per image pair. It is also possible to reduce dual-energy image noise by acquiring low and high-energy images at two different detector gains. In addition, dual-energy noise reduction algorithms can further reduce image noise. The cumulative effect of these techniques applied in series was investigated in this study. The contrast from a small thickness of calcium was simulated over a step phantom of tissue equivalent material with a CsI phosphor as the image detector. The dual-energy contrast-to-noise ratio was calculated using values of energy absorption and energy variance. A figure-of-merit (FOM) was calculated from dual-energy contrast-to-noise ratio (CNR) and patient effective dose estimated from values of entrance exposure. Filter atomic numbers in the range of 1-100 were considered with thicknesses ranging from 0-2500 mg/cm 2 . The simulation examined combinations of the above techniques which maximized the FOM. The application of a filter increased image contrast by as much as 45%. Near maximal increases were seen for filter atomic numbers in the range of 40-60 and 85-100 with masses above 750 mg/cm 2 . Increasing filter thickness beyond 1000 mg/cm 2 increased tube loading without further significant contrast enhancement. No additional FOM improvements were seen with dual gain before or after the application of any noise reduction algorithm. Narrow beam experiments were carried out to verify predictions. The measured FOM increased by more than a factor of 3.5 for a silver filter thickness of 800 μm, equal energy weighting and application of a noise clipping algorithm. The main limitation of dynamic high-energy filtration is increased

  19. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  20. An optimized nanoparticle separator enabled by electron beam induced deposition

    International Nuclear Information System (INIS)

    Fowlkes, J D; Rack, P D; Doktycz, M J

    2010-01-01

    Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  1. An optimized nanoparticle separator enabled by electron beam induced deposition

    Science.gov (United States)

    Fowlkes, J. D.; Doktycz, M. J.; Rack, P. D.

    2010-04-01

    Size-based separations technologies will inevitably benefit from advances in nanotechnology. Direct-write nanofabrication provides a useful mechanism for depositing/etching nanoscale elements in environments otherwise inaccessible to conventional nanofabrication techniques. Here, electron beam induced deposition was used to deposit an array of nanoscale features in a 3D environment with minimal material proximity effects outside the beam-interaction region. Specifically, the membrane component of a nanoparticle separator was fabricated by depositing a linear array of sharply tipped nanopillars, with a singular pitch, designed for sub-50 nm nanoparticle permeability. The nanopillar membrane was used in a dual capacity to control the flow of nanoparticles in the transaxial direction of the array while facilitating the sealing of the cellular-sized compartment in the paraxial direction. An optimized growth recipe resulted which (1) maximized the growth efficiency of the membrane (which minimizes proximity effects) and (2) preserved the fidelity of the spacing between nanopillars (which maximizes the size-based gating quality of the membrane) while (3) maintaining sharp nanopillar apexes for impaling an optically transparent polymeric lid critical for device sealing.

  2. Cassette-based in-situ TEM sample inspection in the dual-beam FIB

    International Nuclear Information System (INIS)

    Kendrick, A B; Moore, T M; Zaykova-Feldman, L; Amador, G; Hammer, M

    2008-01-01

    A novel method is presented, combining site-specific TEM sample preparation and in-situ STEM analysis in a dual-beam microscope (FIB/SEM) fitted with a chamber mounted nano-manipulator. TEM samples are prepared using a modified in-situ, lift-out method, whereby the samples are thinned and oriented for immediate in-situ STEM analysis using the tilt, translation, and rotation capabilities of a FIB/SEM sample stage, a nano-manipulator, and a novel cassette. This cassette can provide a second tilt axis, orthogonal to the stage tilt axis, so that the STEM image contrast can be optimized to reveal the structural features of the sample (true STEM imaging in the FIB/SEM). The angles necessary for stage rotation and probe shaft rotation are calculated based on the position of the nano-manipulator relative to the stage and door and the stage tilt angle. A FIB/SEM instrument, equipped with a high resolution scanning electron column, can provide sufficiently high image resolution to enable many failure analysis and process control applications to be successfully carried out without requiring the use of a separate dedicated TEM/STEM instrument. The benefits of this novel approach are increased throughput and reduced cost per sample. Comparative analysis of different sample preparation methods is provided, and the STEM images obtained are shown.

  3. Dual-Doppler Feasibility Study

    Science.gov (United States)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  4. On the way to high resolution TEM characterization of dual ion beam irradiated ODS steels

    International Nuclear Information System (INIS)

    Hsiung, L.; Tumey, S.; Fluss, M. J.; King, W.; Marian, J.; Kuntz, J.; Dasher, B. El; Serruys, Y.; Willaime, F.; Kimura, A.

    2009-01-01

    Fission and fusion energy application of ODS steels while appearing promising requires that many key science issues be resolved. Among these issues are our incomplete understanding of the effect of irradiation on low-temperature fracture properties, the role of fusion relevant helium and hydrogen transmutation gases on the deformation and fracture of irradiated material at low and high temperatures, radiation-induced solute segregation and phase stability, mechanisms of swelling suppression in ODS steels, and the effects of radiation damage on localized deformation. While planning to focus on all these issues we are particularly interested in the atomic scale mechanism by which helium is mitigated by the nano scale particles. In order to obtain insight we are performing analytical transmission electron microscopy (AEM), high resolution electron microscopy (HRTEM) to investigate micro-structural and micro-compositional changes and property alterations of Fe-Cr ferritic/martensitic and ODS steels driven by temperature and ion-beam irradiation with Fe, H, and He. As a beginning to a collaboration between LLNL and CEA-Saclay, we have carried out an irradiation of four specimens, Fe, Fe14%Cr, and two ODS steels (14% Cr and 16% Cr) using the dual beam facility at CEA-Saclay (JANNuS). An Fe 8+ beam was implanted at 24 MeV and helium was implanted through a degrader wheel with energies between 1.7 MeV and 1.3 MeV. The nominal radiation parameters were 40 to 25 DPA, 10 to 25 appm He/DPA ratio, and specimen temperatures of ∼425 deg. C. Our goal is to compare the evolved microstructure with respect to the accumulation of helium at or near the particle matrix interface. Preparatory to this first study we have made many hi-resolution analyses of the nano-particles in the two ODS steels which serve as a base line for comparison with the TEM post irradiation examination reported here. These base line studies are reported separately at this conference. (author)

  5. Laterally Driven Resonant Pressure Sensor with Etched Silicon Dual Diaphragms and Combined Beams

    Directory of Open Access Journals (Sweden)

    Xiaohui Du

    2016-01-01

    Full Text Available A novel structure of the resonant pressure sensor is presented in this paper, which tactfully employs intercoupling between dual pressure-sensing diaphragms and a laterally driven resonant strain gauge. After the resonant pressure sensor principle is introduced, the coupling mechanism of the diaphragms and resonator is analyzed and the frequency equation of the resonator based on the triangle geometry theory is developed for this new coupling structure. The finite element (FE simulation results match the theoretical analysis over the full scale of the device. This pressure sensor was first fabricated by dry/wet etching and thermal silicon bonding, followed by vacuum-packaging using anodic bonding technology. The test maximum error of the fabricated sensor is 0.0310%F.S. (full scale in the range of 30 to 190 kPa, its pressure sensitivity is negative and exceeding 8 Hz/kPa, and its Q-factor reaches 20,000 after wafer vacuum-packaging. A novel resonant pressure sensor with high accuracy is presented in this paper.

  6. Experimental investigation of interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J.H.; Berggreen, Christian

    2017-01-01

    A recently proposed face-sheet–core interface crack arresting device is implemented in sandwich beams and tested using the Sandwich Tear Test configuration. Fatigue loading conditions are applied to propagate the crack and determine the effect of the crack stopper on the fatigue growth rate and a...

  7. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  8. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  9. Smart x-ray beam position monitor system using artificial intelligence methods for the advanced photon source insertion-device beamlines

    International Nuclear Information System (INIS)

    Shu, D.; Ding, H.; Barraza, J.; Kuzay, T.M.; Haeffner, D.; Ramanathan, M.

    1997-09-01

    At the Advanced Photon Source (APS), each insertion device (ID) beamline front-end has two XBPMs to monitor the X-ray beam position for both that vertical and horizontal directions. Performance challenges for a conventional photoemission type X-ray beam position monitor (XBPM) during operations are contamination of the signal from the neighboring bending magnet sources and the sensitivity of the XBPM to the insertion device (ID) gap variations. Problems are exacerbated because users change the ID gap during their operations, and hence the percentage level of the contamination in the front end XBPM signals varies. A smart XBPM system with a high speed digital signal processor has been built at the Advanced Photon Source for the ID beamline front ends. The new version of the software, which uses an artificial intelligence method, provides a self learning and self-calibration capability to the smart XBPM system. The structure of and recent test results with the system are presented in this paper

  10. Combining split-beam and dual-frequency identification sonars to estimate abundance of anadromous fishes in the Roanoke River, North Carolina

    Science.gov (United States)

    Hughes, Jacob B.; Hightower, Joseph E.

    2015-01-01

    Riverine hydroacoustic techniques are an effective method for evaluating abundance of upstream migrating anadromous fishes. To use these methods in the Roanoke River, North Carolina, at a wide site with uneven bottom topography, we used a combination of split-beam sonar and dual-frequency identification sonar (DIDSON) deployments. We aimed a split-beam sonar horizontally to monitor midchannel and near-bottom zones continuously over the 3-month spring monitoring periods in 2010 and 2011. The DIDSON was rotated between seven cross-channel locations (using a vertical aim) and nearshore regions (using horizontal aims). Vertical deployment addressed blind spots in split-beam coverage along the bottom and provided reliable information about the cross-channel and vertical distributions of upstream migrants. Using a Bayesian framework, we modeled sonar counts within four cross-channel strata and apportioned counts by species using species proportions from boat electrofishing and gill netting. Modeled estimates (95% credible intervals [CIs]) of total upstream migrants in 2010 and 2011 were 2.5 million (95% CI, 2.4–2.6 million) and 3.6 million (95% CI, 3.4–3.9 million), respectively. Results indicated that upstream migrants are extremely shore- and bottom-oriented, suggesting nearshore DIDSON monitoring improved the accuracy and precision of our estimates. This monitoring protocol and model may be widely applicable to river systems regardless of their cross-sectional width or profile.

  11. Microresonator soliton dual-comb spectroscopy

    Science.gov (United States)

    Suh, Myoung-Gyun; Yang, Qi-Fan; Yang, Ki Youl; Yi, Xu; Vahala, Kerry J.

    2016-11-01

    Measurement of optical and vibrational spectra with high resolution provides a way to identify chemical species in cluttered environments and is of general importance in many fields. Dual-comb spectroscopy has emerged as a powerful approach for acquiring nearly instantaneous Raman and optical spectra with unprecedented resolution. Spectra are generated directly in the electrical domain, without the need for bulky mechanical spectrometers. We demonstrate a miniature soliton-based dual-comb system that can potentially transfer the approach to a chip platform. These devices achieve high-coherence pulsed mode locking. They also feature broad, reproducible spectral envelopes, an essential feature for dual-comb spectroscopy. Our work shows the potential for integrated spectroscopy with high signal-to-noise ratios and fast acquisition rates.

  12. Reproducibility of Dual-Microphone Voice Range Profile Equipment

    DEFF Research Database (Denmark)

    Printz, Trine; Pedersen, Ellen Raben; Juhl, Peter

    2017-01-01

    in an anechoic chamber and an office: (a) comparing sound pressure levels (SPLs) from a dual-microphone VRP device, the Voice Profiler, when given the same input repeatedly (test-retest reliability); (b) comparing SPLs from 3 devices when given the same input repeatedly (intervariation); and (c) assessing...

  13. Mechanical beam isolator

    International Nuclear Information System (INIS)

    Post, R.F.; Vann, C.S.

    1996-10-01

    Back-reflections from a target, lenses, etc. can gain energy passing backwards through a laser just like the main beam gains energy passing forwards. Unless something blocks these back-reflections early in their path, they can seriously damage the laser. A Mechanical Beam Isolator is a device that blocks back-reflections early, relatively inexpensively, and without introducing aberrations to the laser beam

  14. Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO2 for non-volatile memory device

    International Nuclear Information System (INIS)

    Stepina, N.P.; Dvurechenskii, A.V.; Armbrister, V.A.; Kirienko, V.V.; Novikov, P.L.; Kesler, V.G.; Gutakovskii, A.K.; Smagina, Z.V.; Spesivtzev, E.V.

    2008-01-01

    A floating gate memory structure, utilizing Ge nanocrystals (NCs) deposited on tunnel SiO 2 , have been fabricated using pulsed low energy ion-beam induced molecular-beam deposition (MBD) in ultra-high vacuum. The ion-beam action is shown to stimulate the nucleation of Ge NCs when being applied after thin Ge layer deposition. Growth conditions for independent change of NCs size and array density were established allowing to optimize the structure parameters required for memory device. Activation energy E = 0.25 eV was determined from the temperature dependence of NCs array density. Monte Carlo simulation has shown that the process, determining NCs array density, is the surface diffusion. Embedding of the crystalline Ge dots into silicon oxide was carried out by selective oxidation of Si(100)/SiO 2 /Ge(NCs)/poly-Si structure. MOS-capacitor obtained after oxidation showed a hysteresis in its C-V curves attributed to charge retention in the Ge dots

  15. Use of Multibeam and Dual-Beam Sonar Systems to Observe Cavitating Flow Produced by Ferryboats: In a Marine Renewable Energy Perspective

    Directory of Open Access Journals (Sweden)

    Francisco Francisco

    2017-07-01

    Full Text Available With the prospect to deploy hydrokinetic energy converters in areas with heavy boat traffic, a study was conducted to observe and assess the depth range of cavitating flow produced by ferryboats in narrow channels. This study was conducted in the vicinity of Finnhamn Island in Stockholm Archipelago. The objectives of the survey were to assess whether the sonar systems were able to observe and measure the depth of what can be cavitating flow (in a form of convected cloud cavitation produced by one specific type of ferryboats frequently operating in that route, as well as investigate if the cavitating flow within the wake would propagate deep enough to disturb the water column underneath the surface. A multibeam and a dual-beam sonar systems were used as measurement instruments. The hypothesis was that strong and deep wake can disturb the optimal operation of a hydrokinetic energy converter, therefore causing damages to its rotors and hydrofoils. The results showed that both sonar system could detect cavitating flows including its strength, part of the geometrical shape and propagation depth. Moreover, the boat with a propeller thruster produced cavitating flow with an intense core reaching 4 m of depth while lasting approximately 90 s. The ferry with waterjet thruster produced a less intense cavitating flow; the core reached depths of approximately 6 m, and lasted about 90 s. From this study, it was concluded that multibeam and dual-beam sonar systems with operating frequencies higher than 200 kHz were able to detect cavitating flows in real conditions, as long as they are properly deployed and the data properly analyzed.

  16. Performance Enhancements Under Dual-task Conditions

    Science.gov (United States)

    Kramer, A. F.; Wickens, C. D.; Donchin, E.

    1984-01-01

    Research on dual-task performance has been concerned with delineating the antecedent conditions which lead to dual-task decrements. Capacity models of attention, which propose that a hypothetical resource structure underlies performance, have been employed as predictive devices. These models predict that tasks which require different processing resources can be more successfully time shared than tasks which require common resources. The conditions under which such dual-task integrality can be fostered were assessed in a study in which three factors likely to influence the integrality between tasks were manipulated: inter-task redundancy, the physical proximity of tasks and the task relevant objects. Twelve subjects participated in three experimental sessions in which they performed both single and dual-tasks. The primary task was a pursuit step tracking task. The secondary tasks required the discrimination between different intensities or different spatial positions of a stimulus. The results are discussed in terms of a model of dual-task integrality.

  17. Self-amplified spontaneous emission free electron laser devices and nonideal electron beam transport

    Directory of Open Access Journals (Sweden)

    L. L. Lazzarino

    2014-11-01

    Full Text Available We have developed, at the SPARC test facility, a procedure for a real time self-amplified spontaneous emission free electron laser (FEL device performance control. We describe an actual FEL, including electron and optical beam transport, through a set of analytical formulas, allowing a fast and reliable on-line “simulation” of the experiment. The system is designed in such a way that the characteristics of the transport elements and the laser intensity are measured and adjusted, via a real time computation, during the experimental run, to obtain an on-line feedback of the laser performances. The detail of the procedure and the relevant experimental results are discussed.

  18. Effect of high-energy electron beam irradiation on the device characteristics of IGZO-based transparent thin film transistors

    International Nuclear Information System (INIS)

    Moon, Hye Ji; Oh, Hye Ran; Bae, Byung Seong; Yun, Eui Jung; Ryu, Min Ki; Cho, Kyoung Ik

    2012-01-01

    In this study, we investigated the effects of high-energy electron beam irradiation (HEEBI) on the device properties of indium-gallium-zinc-oxide (IGZO)-based transparent thin film transistors (TTFTs). The developed TTFTs had a top gate structure, which used IGZO and Al 2 O 3 films for the active layer and the gate dielectric, respectively. The developed TTFTs were treated with HEEBI in air at RT at an electron beam energy of 0.8 MeV and a dose of 1 x 10 14 electrons/cm 2 . Without the HEEBI treatment, the devices operated in depletion mode with a threshold voltage (V th ) of -11.25 V, a field-effect mobility (μ FE ) of 8.71 cm 2 /Vs, an on-off ratio (I on/off ) of 1.3 x 10 8 and a sub-threshold slope (SS) of 0.3 V/decade. A huge positive-shifted V th of -1 V, a very high μ FE of 420 cm 2 /Vs, a high I on/off of 6.1 x 10 8 , and a lower SS of 0.25 V/decade were achieved for the HEEBI-treated devices, suggesting that the device characteristics of the developed TTFTs were significantly improved by the HEEBI treatment. The best device characteristics, which include I on/off of 8.1 x 10 8 , SS of 0.25 V/decade, V th of +1 V, μ FE of 8.8 cm 2 /Vs, and operation in the enhancement mode without aging, were obtained for the samples that had been annealed after HEEBI treatment. On the basis of the experimental results, we believe that HEEBI treatment can be crucial to develop IGZO-based TFTs with high performance and long-term reliability.

  19. Sensitive beam current measurement for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Schwickert, Marcus; Kurian, Febin; Reeg, Hansjoerg [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Seidel, Paul; Neubert, Ralf [Friedrich-Schiller-Universitaet Jena (Germany); Geithner, Rene; Vodel, Wolfgang [Helmholtz-Institut Jena (Germany)

    2012-07-01

    Presently FAIR, the Facility for Antiproton and Ion Research, entered the final planning phase at GSI. The new accelerator facility requires precise devices for beam current measurements due to the large dynamics in beam intensities for the various synchrotrons, transport lines and storage rings. We report on the actual developments of beam diagnostic devices for the measurement of beam intensities ranging from 5 x 10{sup 11} uranium ions down to the detection of less than 10{sup 4} antiprotons. This contribution gives an overview of the planned instruments with a focus on non-intercepting beam current transformers, and summarizes the on-going development of a cryogenic current comparator.

  20. Dual Fine Tracking Control of a Satellite Laser Communication Uplink

    National Research Council Canada - National Science Library

    Noble, Louis A

    2006-01-01

    A dual fine tracking control system (FTCS) is developed for a single aperture optical communication receiver to compensate for high frequency disturbances affecting tracking of two incident laser communication beams...

  1. Thickness dependence of magnetic properties and giant magneto-impedance effect in amorphous Co{sub 73}Si{sub 12}B{sub 15} thin films prepared by Dual-Ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Wang, San-sheng, E-mail: wangssh@buaa.edu.cn [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China); Hu, Teng [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); He, Tong-fu [School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Chen, Zi-yu [School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191 (China); Yi, Zhong; Meng, Li-Fei [Science and Technology on Reliability and Environmental Engineering Laboratory, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094 (China); BISSE/BUAA-SPNEE joint Laboratory Magnetism and Sperconducting technology on Spacecraft, Beihang University, Beijing 100191 (China)

    2017-03-15

    Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co{sub 73}Si{sub 12}B{sub 15} thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co{sub 73}Si{sub 12}B{sub 15} thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co{sub 73}Si{sub 12}B{sub 15} thin films. - Highlights: • The relationship between film thickness and ΔZ/Z, ΔR/R, ΔX/X ratio of CoSiB film exhibits a complex behavior as the film thickness increases from 1.33 to 7.34 µm. The maximum value of GMI ratio is observed when the film thickness was 1.56, 2.48, 3.81 or 7.34 µm. • With the increase of film thickness, the peak frequency shifts to lower frequency, but does not decrease following the t-power law. • The above thickness phenomenon is due to the different magnetic properties of thin films. • The Dual-Ion Beam Assisted Deposition is introduced to prepare the GMI materials.

  2. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    Science.gov (United States)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  3. Dual-nozzle microfluidic droplet generator

    Science.gov (United States)

    Choi, Ji Wook; Lee, Jong Min; Kim, Tae Hyun; Ha, Jang Ho; Ahrberg, Christian D.; Chung, Bong Geun

    2018-05-01

    The droplet-generating microfluidics has become an important technique for a variety of applications ranging from single cell analysis to nanoparticle synthesis. Although there are a large number of methods for generating and experimenting with droplets on microfluidic devices, the dispensing of droplets from these microfluidic devices is a challenge due to aggregation and merging of droplets at the interface of microfluidic devices. Here, we present a microfluidic dual-nozzle device for the generation and dispensing of uniform-sized droplets. The first nozzle of the microfluidic device is used for the generation of the droplets, while the second nozzle can accelerate the droplets and increase the spacing between them, allowing for facile dispensing of droplets. Computational fluid dynamic simulations were conducted to optimize the design parameters of the microfluidic device.

  4. Beam limiter for thermonuclear fusion devices

    International Nuclear Information System (INIS)

    Kaminsky, M.S.

    1976-01-01

    A beam limiter circumscribes the interior surface of a vacuum vessel to inhibit collisions of contained plasma and the vessel walls. The cross section of the material making up the limiter has a flatsided or slightly concave portion of increased width towards the plasma and portions of decreased width towards the interior surface of the vessel. This configuration is designed to prevent a major fraction of the material sputtered, vaporized and blistered from the limiter from reaching the plasma. It also allows adequate heat transfer from the wider to the narrower portions. The preferred materials for the beam limiter are solids of sintered, particulate materials of low atomic number with low vapor pressure and low sputtering and blistering yields. 7 claims, 3 figures

  5. A Superconducting Dual-Channel Photonic Switch.

    Science.gov (United States)

    Srivastava, Yogesh Kumar; Manjappa, Manukumara; Cong, Longqing; Krishnamoorthy, Harish N S; Savinov, Vassili; Pitchappa, Prakash; Singh, Ranjan

    2018-06-05

    The mechanism of Cooper pair formation and its underlying physics has long occupied the investigation into high temperature (high-T c ) cuprate superconductors. One of the ways to unravel this is to observe the ultrafast response present in the charge carrier dynamics of a photoexcited specimen. This results in an interesting approach to exploit the dissipation-less dynamic features of superconductors to be utilized for designing high-performance active subwavelength photonic devices with extremely low-loss operation. Here, dual-channel, ultrafast, all-optical switching and modulation between the resistive and the superconducting quantum mechanical phase is experimentally demonstrated. The ultrafast phase switching is demonstrated via modulation of sharp Fano resonance of a high-T c yttrium barium copper oxide (YBCO) superconducting metamaterial device. Upon photoexcitation by femtosecond light pulses, the ultrasensitive cuprate superconductor undergoes dual dissociation-relaxation dynamics, with restoration of superconductivity within a cycle, and thereby establishes the existence of dual switching windows within a timescale of 80 ps. Pathways are explored to engineer the secondary dissociation channel which provides unprecedented control over the switching speed. Most importantly, the results envision new ways to accomplish low-loss, ultrafast, and ultrasensitive dual-channel switching applications that are inaccessible through conventional metallic and dielectric based metamaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Implementation of dual energy CT scanning

    International Nuclear Information System (INIS)

    Marshall, W.; Hall, E.; Doost-Hoseini, A.; Alvarez, R.; Macovski, A.; Cassel, D.

    1984-01-01

    A prereconstruction method for dual energy (PREDECT) analysis of CT scans is described. In theory, this method can (a) eliminate beam hardening and produce an accuracy comparable with monoenergetic scans and (b) provide the effective atomic number and electron density of any voxel scanned. The implementation proves these statements and eliminates some of the objectionable noise. A phantom was constructed with a cylindrical sleeve-like compartment containing known amounts of high atomic number material simulating a removable skull. Conventional scans, with and without this beam hardener, were done of a water bath containing tubes of high electron and high atomic number material. Dual energy scans were then done for PREDECT. To increase the effective separation of the low and high energy beams by using more appropriate tube filtration, a beam filter changer was fabricated containing erbium, tungsten, aluminum, and steel. Erbium, tungsten, and steel were used at high energy and aluminum, steel, and erbium at low energy for data acquisition. The reconstructions were compared visually and numerically for noise levels with the original steel only filtration. A decrease was found in noise down to approximately one-half the prior level when erbium/aluminum or tungsten/aluminum replaced the steel/steel filter. Erbium and tungsten were equally effective. Steel/erbium and steel/aluminum also significantly reduced image noise. The noise in the photoelectric (P) and Compton (C) images is negatively correlated. At any pixel, if the noise is positive in the P image, it is most probably negative in the C. Using this fact, the noise was reduced by postreconstruction processing

  7. Design of the digitizing beam position limit detector

    International Nuclear Information System (INIS)

    Merl, R.

    1998-01-01

    The Digitizing Beam Position Limit Detector (DBPLD) is designed to identify and react to beam missteering conditions in the Advanced Photon Source (APS) storage ring. The high power of the insertion devices requires these missteering conditions to result in a beam abort in less than 2 milliseconds. Commercially available beam position monitors provide a voltage proportional to beam position immediately upstream and downstream of insertion devices. The DBPLD is a custom VME board that digitizes these voltages and interrupts the heartbeat of the APS machine protection system when the beam position exceeds its trip limits

  8. Improved Light Extraction Efficiency by Photonic Crystal Arrays on Transparent Contact Layer Using Focused Ion Beams

    International Nuclear Information System (INIS)

    Wu, G.M.; Tsai, B.H.; Kung, S.F.; Wu, C.F.

    2011-01-01

    Nitride-based thin-film materials have become increasingly important for the high brightness light-emitting diode applications. The improvements in light extraction and lower power consumption are highly desired. Although the internal quantum efficiency of GaN-based LED has been relatively high, only a small fraction of light can be extracted. In this study, a new design of two-dimensional photonic crystal array has been prepared on the top transparent contact layer of indium-tin oxide film to improve the light extraction efficiency using focused ion beam. The acceleration voltage of the Ga dual-beam nanotechnology system SMI 3050 was 30 kV and the ion beam current was 100 pA. The cylindrical air holes had the diameter of 150 nm and depth of 100 nm. The micro photoluminescence analysis results showed that the light output intensity could be 1.5 times of that of the non-patterned control sample. In addition, the structural damage from the focused ion beam drilling of GaN step could be eliminated. The excellent I-V characteristics have been maintained, and the external light extraction efficiency would be still improved for the LED devices. (author)

  9. An extended dual input dual output three level Z source inverter with improved switch loss reduction technique

    Directory of Open Access Journals (Sweden)

    N.B. Deshmukh

    2016-12-01

    Full Text Available Multilevel inverter (MLI is a proven technology used for industrial applications due to low output total harmonic distortion (THD, high power handling capability and low active device rating. Dual output inverter is a recent trend associated with inverter topologies for specialized applications. This paper deals with three phase three level dual input dual output inverter topology with minimum active device count. Reduction in switch count leads to reduction in losses and improves reliability. Both the input sources share power equally as neutral point current ripple is maintained low. For further reduction in switching losses at higher switching frequencies, the concept of “no switching zone” or discontinuous pulse width modulation (DPWM has been put forth recently. This paper proposes modification in the placement of “no switching zone” in order to optimize switching losses and output THD (output filtering requirements for low power factor load. This study also proposes novel graphical approach to analyze the loss reduction along with its effect on output THD. The sinusoidal PWM (SPWM is used which gives satisfactory switching loss reduction without complex calculations. Moreover, the proposed topology is generalized to provide dual output at higher voltage levels. It is seen that the components reduction phenomenon becomes more pronounced as number of levels goes on increasing. The proposed converter is simulated in MATLAB software environment and results are obtained.

  10. Multiple view fan beam polarimetry on Tokamak devices

    International Nuclear Information System (INIS)

    Geck, W.R.; Domier, C.W.; Luhmann, N.C.

    1997-01-01

    A polarimeter diagnostic is under development which utilizes several fan beams to accumulate line integrated Faraday rotation data in a Tokamak plasma. The utilization of a fan beam configuration over that of conventional vertical view polarimeter systems significantly reduces access requirements. The high angular separation inherent in a fan beam implementation increases plasma coverage and eliminates the necessity of assumed plasma symmetries to generate high quality current density profiles. Codes have been developed to generate these high-resolution two-dimensional images of the plasma current profile from data collected at arbitrary positions and viewing angles. copyright 1997 American Institute of Physics

  11. Empirical dual energy calibration (EDEC) for cone-beam computed tomography

    International Nuclear Information System (INIS)

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-01-01

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p 1 and p 2 are obtained as functions of the measured attenuation data q 1 and q 2 (one DECT scan=two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical μ values and density values. Since EDEC is an empirical technique it inherently compensates for scatter

  12. SU-E-T-781: Using An Electronic Portal Imaging Device (EPID) for Correlating Linac Photon Beam Energies

    Energy Technology Data Exchange (ETDEWEB)

    Yaddanapudi, S; Cai, B; Sun, B; Noel, C; Goddu, S; Mutic, S [Washington University School of Medicine, Saint Louis, MO (United States)

    2015-06-15

    Purpose: Electronic portal imaging devices (EPIDs) have proven to be useful for measuring several parameters of interest in linear accelerator (linac) quality assurance (QA). The purpose of this project was to evaluate the feasibility of using EPIDs for determining linac photon beam energies. Methods: Two non-clinical Varian TrueBeam linacs (Varian Medical Systems, Palo Alto, CA) with 6MV and 10MV photon beams were used to perform the measurements. The linacs were equipped with an amorphous silicon based EPIDs (aSi1000) that were used for the measurements. We compared the use of flatness versus percent depth dose (PDD) for predicting changes in linac photon beam energy. PDD was measured in 1D water tank (Sun Nuclear Corporation, Melbourne FL) and the profiles were measured using 2D ion-chamber array (IC-Profiler, Sun Nuclear) and the EPID. Energy changes were accomplished by varying the bending magnet current (BMC). The evaluated energies conformed with the AAPM TG142 tolerance of ±1% change in PDD. Results: BMC changes correlating with a ±1% change in PDD corresponded with a change in flatness of ∼1% to 2% from baseline values on the EPID. IC Profiler flatness values had the same correlation. We observed a similar trend for the 10MV beam energy changes. Our measurements indicated a strong correlation between changes in linac photon beam energy and changes in flatness. For all machines and energies, beam energy changes produced change in the uniformity (AAPM TG-142), varying from ∼1% to 2.5%. Conclusions: EPID image analysis of beam profiles can be used to determine linac photon beam energy changes. Flatness-based metrics or uniformity as defined by AAPM TG-142 were found to be more sensitive to linac photon beam energy changes than PDD. Research funding provided by Varian Medical Systems. Dr. Sasa Mutic receives compensation for providing patient safety training services from Varian Medical Systems, the sponsor of this study.

  13. RFQ1 diagnostic devices

    International Nuclear Information System (INIS)

    Chidley, B.G.; Arbique, G.M.; de Jong, M.S.; McMichael, G.E.; Michel, W.L.; Smith, B.H.

    1991-01-01

    The diagnostic devices in use on RFQ1 will be described. They consist of a double-slit emittance-measuring unit, a 45 degree deflection energy-analysis magnet, parametric current transformers, optical beam sensors, beam-stop current monitors, and an x-ray end-point analyzer. All of these devices are able to operate up to the full output current of RFQ1 (75 mA cw at 0.6 MeV)

  14. Designing analysis of the polarization beam splitter in two communication bands based on a gold-filled dual-core photonic crystal fiber

    International Nuclear Information System (INIS)

    Fan Zhen-Kai; Li Shu-Guang; Fan Yu-Qiu; Zhang Wan; An Guo-Wen; Bao Ya-Jie

    2014-01-01

    We design a novel kind of polarization beam splitter based on a gold-filled dual-core photonic crystal fiber (DC-PCF). Owing to filling with two gold wires in this DC-PCF, its coupling characteristics can be changed greatly by the second-order surface plasmon polariton (SPP) and the resonant coupling between the surface plasmon modes and the fiber-core guided modes can enhance the directional power transfer in the two fiber-cores. Numerical results by using the finite element method show the extinction ratio at the wavethlengths of 1.327 μm and 1.55 μm can reach −58 dB and −60 dB and the bandwidths as the extinction ratio better than −12 dB are about 54 nm and 47 nm, respectively. Compared with the gold-unfilled DC-PCF, a 1.746-mm-long gold-filled DC-PCF is better applied to the polarization beam splitter in the two communication bands of λ = 1.327 μm and 1.55 μm. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Optical microscope using an interferometric source of two-color, two-beam entangled photons

    Science.gov (United States)

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-07-13

    Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.

  16. Beam electron microprobe

    CERN Document Server

    Stoller, D; Muterspaugh, M W; Pollock, R E

    1999-01-01

    A beam profile monitor based on the deflection of a probe electron beam by the electric field of a stored, electron-cooled proton beam is described and first results are presented. Electrons were transported parallel to the proton beam by a uniform longitudinal magnetic field. The probe beam may be slowly scanned across the stored beam to determine its intensity, position, and size. Alternatively, it may be scanned rapidly over a narrow range within the interior of the stored beam for continuous observation of the changing central density during cooling. Examples of a two dimensional charge density profile obtained from a raster scan and of a cooling alignment study illustrate the scope of measurements made possible by this device.

  17. An expandable prosthesis with dual cage-and-plate function in a single device for vertebral body replacement: the clinical experience on 14 consecutive cases with vertebral tumors.

    Science.gov (United States)

    Ramírez, J J; Ramírez, J J; Chiquete, E; Gómez-Limón, E

    2011-09-01

    The aim of this paper was to test the hypothesis that an expandable prosthesis with dual cage-and-plate function can provide immediate and durable spine stabilization after corpectomy. We designed an expandable vertebral body prosthesis with dual cage-and-plate function in a single device (JR-prosthesis). Anatomical studies were performed to design a titanium-made prosthesis. Cadaver assays were done with a stainless steal device to test fixation and adequacy to the human spine anatomy. Then, 14 patients with vertebral tumors (8 metastatic) underwent corpectomy and vertebral body replacement with the JR-prosthesis. All patients had neurological deficit, severe pain and spine instability (mean follow-up: 25.4 months). Mean pain score before surgery in a visual analog scale improved from 7.6 to 3.0 points after operation (P=0.002). All patients achieved at least one grade of improvement in the Frankel score (P=0.003), excepting the 3 patients with Frankel grade A presurgery. Two patients with renal cell carcinoma died during the following 4 days after surgery (renal failure and massive bleeding), the rest attained a painless and stable spine immediately and maintained for long periods. No significant infections or implant failures were registered. A non-fatal case of inferior vena cava surgical injury was observed (repaired during surgery without further complications). The JR-prosthesis stabilizes the spine immediately after surgery and for the rest of the patients' life. To our knowledge, this is the first report on the clinical experience of any expandable vertebral body prosthesis with dual cage-and-plate function in a single device. These observations await confirmation in different scenarios.

  18. Device Fabrication and Probing of Discrete Carbon Nanostructures

    KAUST Repository

    Batra, Nitin M

    2015-05-06

    Device fabrication on multi walled carbon nanotubes (MWCNTs) using electrical beam lithography (EBL), electron beam induced deposition (EBID), ion beam induced deposition (IBID) methods was carried out, followed by device electrical characterization using a conventional probe station. A four-probe configuration was utilized to measure accurately the electrical resistivity of MWCNTs with similar results obtained from devices fabricated by different methods. In order to reduce the contact resistance of the beam deposited platinum electrodes, single step vacuum thermal annealing was performed. Microscopy and spectroscopy were carried out on the beam deposited electrodes to follow the structural and chemical changes occurring during the vacuum thermal annealing. For the first time, a core-shell type structure was identified on EBID Pt and IBID Pt annealed electrodes and analogous free standing nanorods previously exposed to high temperature. We believe this observation has important implications for transport properties studies of carbon materials. Apart from that, contamination of carbon nanostructure, originating from the device fabrication methods, was also studied. Finally, based on the observations of faster processing time together with higher yield and flexibility for device preparation, we investigated EBID to fabricate devices for other discrete carbon nanostructures.

  19. A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kwok, Y.C.; Eijkel, J.C.T.

    2003-01-01

    A microfabricated capillary electrophoresis device for velocity measurements of flowing particles is presented. It consists of a 1 x 128 planar waveguide beam splitter monolithically integrated with an electrically insulated fluidic channel network for fluorescence excitation at multiple points...... optics. The integrated planar waveguide beam splitter was, furthermore, permanently connected to the light source by a glued-on optical fiber, to achieve a robust and alignment-free operation of the system. The velocity was measured using a Fourier transformation with a Shah function, since the response...... of the fight array was designed to approximate a square profile. Deviations from this response were observed as a result of the multimode nature of the integrated waveguides....

  20. UWB dual burst transmit driver

    Science.gov (United States)

    Dallum, Gregory E [Livermore, CA; Pratt, Garth C [Discovery Bay, CA; Haugen, Peter C [Livermore, CA; Zumstein, James M [Livermore, CA; Vigars, Mark L [Livermore, CA; Romero, Carlos E [Livermore, CA

    2012-04-17

    A dual burst transmitter for ultra-wideband (UWB) communication systems generates a pair of precisely spaced RF bursts from a single trigger event. An input trigger pulse produces two oscillator trigger pulses, an initial pulse and a delayed pulse, in a dual trigger generator. The two oscillator trigger pulses drive a gated RF burst (power output) oscillator. A bias driver circuit gates the RF output oscillator on and off and sets the RF burst packet width. The bias driver also level shifts the drive signal to the level that is required for the RF output device.

  1. Electron beam producing system for very high acceleration voltages and beam powers

    International Nuclear Information System (INIS)

    Andelfinger, C.; Dommaschk, W.; Ott, W.; Ulrich, M.; Weber, G.

    1975-01-01

    An electron beam producing system for acceleration voltages on the order of megavolts and beam powers on the order of gigawatts is described. A tubular housing of insulating material is used, and adjacent to its one closed end, a field emission cathode with a large surface area is arranged, while at its other end, from which the electron beam emerges, an annular anode is arranged. The device for collimating the electron beam consists of annular electrodes. (auth)

  2. Wavelength-independent laser beam shaping

    CSIR Research Space (South Africa)

    Degama, MP

    2010-07-01

    Full Text Available This paper presents a beam shaping device namely, a Diffractive Optical Element (DOE), which is used to change a beam having a Gaussian intensity profile into a beam with a uniform intensity profile. The DOE used in this work was fabricated from Zn...

  3. Pulsed ion-beam assisted deposition of Ge nanocrystals on SiO{sub 2} for non-volatile memory device

    Energy Technology Data Exchange (ETDEWEB)

    Stepina, N.P. [Institute of Semiconductor Physics, Lavrenteva 13, 630090 Novosibirsk (Russian Federation)], E-mail: nstepina@mail.ru; Dvurechenskii, A.V.; Armbrister, V.A.; Kirienko, V.V.; Novikov, P.L.; Kesler, V.G.; Gutakovskii, A.K.; Smagina, Z.V.; Spesivtzev, E.V. [Institute of Semiconductor Physics, Lavrenteva 13, 630090 Novosibirsk (Russian Federation)

    2008-11-03

    A floating gate memory structure, utilizing Ge nanocrystals (NCs) deposited on tunnel SiO{sub 2}, have been fabricated using pulsed low energy ion-beam induced molecular-beam deposition (MBD) in ultra-high vacuum. The ion-beam action is shown to stimulate the nucleation of Ge NCs when being applied after thin Ge layer deposition. Growth conditions for independent change of NCs size and array density were established allowing to optimize the structure parameters required for memory device. Activation energy E = 0.25 eV was determined from the temperature dependence of NCs array density. Monte Carlo simulation has shown that the process, determining NCs array density, is the surface diffusion. Embedding of the crystalline Ge dots into silicon oxide was carried out by selective oxidation of Si(100)/SiO{sub 2} /Ge(NCs)/poly-Si structure. MOS-capacitor obtained after oxidation showed a hysteresis in its C-V curves attributed to charge retention in the Ge dots.

  4. The dual cycle bridge detection of piezoresistive triaxial accelerometer based on MEMS technology

    International Nuclear Information System (INIS)

    Zhang Juanting; He Changde; Zhang Hui; Li Yuping; Du Chunhui; Zhang Wendong; Zhang Yongping

    2014-01-01

    A cycle bridge detection method, which uses a piezoresistive triaxial accelerometer, has been described innovatively. This method just uses eight resistors to form a cycle detection bridge, which can detect the signal of the three directions for real time. It breaks the law of the ordinary independent Wheatstone bridge detection method, which uses at least 12 resistors and each four resistors connected as a Wheatstone bridge to detect the output signal from a specific direction. In order to verify the feasibility of this method, the modeling and simulating of the sensor structure have been conducted by ANSYS, then the dual cycle bridge detection method and independent Wheatstone bridge detection method are compared, the result shows that the former method can improve the sensitivity of the sensor effectively. The sensitivity of the x, y-axis used in the former method is two times that of the sensor used in the latter method, and the sensitivity of the z-axis is four times. At the same time, it can also reduce the cross-axis coupling degree of the sensor used in the dual cycle bridge detection method. In addition, a signal amplifier circuit and adder circuit have been provided. Finally, the test result of the “eight-beams/mass” triaxial accelerometer, which is based on the dual cycle bridge detection method and the related circuits, have been provided. The results of the test and the theoretical analysis are consistent, on the whole. (semiconductor devices)

  5. Looking into the crystal ball: future device learning using hybrid e-beam and optical lithography (Keynote Paper)

    Science.gov (United States)

    Steen, S. E.; McNab, S. J.; Sekaric, L.; Babich, I.; Patel, J.; Bucchignano, J.; Rooks, M.; Fried, D. M.; Topol, A. W.; Brancaccio, J. R.; Yu, R.; Hergenrother, J. M.; Doyle, J. P.; Nunes, R.; Viswanathan, R. G.; Purushothaman, S.; Rothwell, M. B.

    2005-05-01

    Semiconductor process development teams are faced with increasing process and integration complexity while the time between lithographic capability and volume production has remained more or less constant over the last decade. Lithography tools have often gated the volume checkpoint of a new device node on the ITRS roadmap. The processes have to be redeveloped after the tooling capability for the new groundrule is obtained since straight scaling is no longer sufficient. In certain cases the time window that the process development teams have is actually decreasing. In the extreme, some forecasts are showing that by the time the 45nm technology node is scheduled for volume production, the tooling vendors will just begin shipping the tools required for this technology node. To address this time pressure, IBM has implemented a hybrid-lithography strategy that marries the advantages of optical lithography (high throughput) with electron beam direct write lithography (high resolution and alignment capability). This hybrid-lithography scheme allows for the timely development of semiconductor processes for the 32nm node, and beyond. In this paper we will describe how hybrid lithography has enabled early process integration and device learning and how IBM applied e-beam & optical hybrid lithography to create the world's smallest working SRAM cell.

  6. LANSCE Beam Current Limiter (XL)

    International Nuclear Information System (INIS)

    Gallegos, F.R.; Hall, M.J.

    1997-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) is an engineered safety system that provides personnel protection from prompt radiation due to accelerated proton beams. The Beam Current Limiter (XL), as an active component of the RSS, limits the maximum average current in a beamline, thus the current available for a beam spill accident. Exceeding the pre-set limit initiates action by the RSS to mitigate the hazard (insertion of beam stoppers in the low energy beam transport). The beam limiter is an electrically isolated, toroidal transformer and associated electronics. The device was designed to continuously monitor beamline currents independent of any external timing. Fail-safe operation was a prime consideration in its development. Fail-safe operation is defined as functioning as intended (due to redundant circuitry), functioning with a more sensitive fault threshold, or generating a fault condition. This report describes the design philosophy, hardware, implementation, operation, and limitations of the device

  7. Accelerators in industrial electron beam processing

    International Nuclear Information System (INIS)

    Becker, R.C.

    1984-01-01

    High power electron beam accelerators are being used for a variety of industrial processes. Such machines can process a wide range of products at very high thruput rates and at very low unit processing costs. These industrial accelerators are now capable of producing up to 200 kW of electron beam power at 4.0 MV and 100 kW at 5.0 MV. At this writing, even larger units are contemplated. The reliability of these high power devices also makes it feasible to consider bremsstrahlung (x-ray) processing as well. In addition to the advance of accelerator technology, microprocessor control systems now provide the capability to coordinate all the operations of the irradiation facility, including the accelerator, the material handling system, the personnel safety system and various auxiliary services. Facility designs can be adapted to many different industrial processes, including use of the dual purpose electron/x-ray accelerator, to ensure satisfactory product treatment with good dose uniformity, high energy efficiency and operational safety and simplicity. In addition, equipment manufacturers like RDI are looking beyond their conventional DC accelerator technology; looking at high power 10-12 MeV linear accelerators with power levels up to 25 kW or more. These high power linear accelerators could be the ideal processing tool for many sterilization and food irradiation applications. (author)

  8. Dual-chamber/dual-anode proportional counter incorporating an intervening thin-foil solid neutron converter

    International Nuclear Information System (INIS)

    Boatner, Lynn A.; Neal, John S.; Blackston, Matthew A.; Kolopus, James A.; Ramey, Joanne O.

    2012-01-01

    A dual-chamber/dual-anode gas proportional counter utilizing thin solid 6 LiF or 10 B neutron converters coated on a 2-micon-thick Mylar film that is positioned between the two counter chambers and anodes has been designed, fabricated, and tested using a variety of fill gases—including naturally abundant helium. In this device, neutron conversion products emitted from both sides of the coated converter foil are detected—rather than having half of the products absorbed in the wall of a conventional tube-type counter where the solid neutron converter is deposited on the tube wall. Geant4-based radiation transport calculations were used to determine the optimum neutron converter coating thickness for both isotopes. Solution methods for applying these optimized-thickness coatings on a Mylar film were developed that were carried out at room temperature without any specialized equipment and that can be adapted to standard coating methods such as silk screen or ink jet printing. The performance characteristics of the dual-chamber/dual-anode neutron detector were determined for both types of isotopically enriched converters. The experimental performance of the 6 LiF-converter-based detector was described well by modeling results from Geant4. Additional modeling studies of multiple-foil/multiple-chamber/anode configurations addressed the basic issue of the relatively longer absorption range of neutrons versus the shorter range of the conversion products for 6 LiF and 10 B. Combined with the experimental results, these simulations indicate that a high-performance neutron detector can be realized in a single device through the application of these multiple-foil/solid converter, multiple-chamber detector concepts.

  9. Neutral beam program

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The structure of the beam injection program for the Doublet-3 device is discussed. The design considerations for the beam line and design parameters for the Doublet-3 ion souce are given. Major components of the neutral beam injector system are discussed in detail. These include the neutralizer, magnetic shielding, reflecting magnets, vacuum system, calorimeter and beam dumps, and drift duct. The planned location of the two-injector system for Doublet-3 is illustrated and site preparation is considered. The status of beamline units 1 and 2 and the future program schedule are discussed

  10. Dual-harmonic auto voltage control for the rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2008-07-01

    Full Text Available The dual-harmonic operation, in which the accelerating cavities are driven by the superposition of the fundamental and the second harmonic rf voltage, is useful for acceleration of the ultrahigh intensity proton beam in the rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC. However, the precise and fast voltage control of the harmonics is necessary to realize the dual-harmonic acceleration. We developed the dual-harmonic auto voltage control system for the J-PARC RCS. We describe details of the design and the implementation. Various tests of the system are performed with the RCS rf system. Also, a preliminary beam test has been done. We report the test results.

  11. Adjustable mounting device for high-volume production of beam-shaping systems for high-power diode lasers

    Science.gov (United States)

    Haag, Sebastian; Bernhardt, Henning; Rübenach, Olaf; Haverkamp, Tobias; Müller, Tobias; Zontar, Daniel; Brecher, Christian

    2015-02-01

    In many applications for high-power diode lasers, the production of beam-shaping and homogenizing optical systems experience rising volumes and dynamical market demands. The automation of assembly processes on flexible and reconfigurable machines can contribute to a more responsive and scalable production. The paper presents a flexible mounting device designed for the challenging assembly of side-tab based optical systems. It provides design elements for precisely referencing and fixating two optical elements in a well-defined geometric relation. Side tabs are presented to the machine allowing the application of glue and a rotating mechanism allows the attachment to the optical elements. The device can be adjusted to fit different form factors and it can be used in high-volume assembly machines. The paper shows the utilization of the device for a collimation module consisting of a fast-axis and a slow-axis collimation lens. Results regarding the repeatability and process capability of bonding side tab assemblies as well as estimates from 3D simulation for overall performance indicators achieved such as cycle time and throughput will be discussed.

  12. SU-F-T-283: A Novel Device to Enable Portal Dosimetry for Flattening Filter Free Beams

    Energy Technology Data Exchange (ETDEWEB)

    Faught, A; Wu, Q; Adamson, J [Duke University Medical Center, Durham, NC (United States)

    2016-06-15

    Purpose: Varian’s electronic portal imaging device (EPID) based portal dosimetry tool is a popular and effective means of performing IMRT QA. EPIDs for older models of the TrueBeam accelerator utilize a 40cmx30cm Image Detection Unit (IDU) that saturates at the center for standard source to imager distances with high dose rate flattening filter free (FFF) beams. This makes portal dosimetry not possible and an alternative means of IMRT QA necessary. We developed a filter that would attenuate the beam to a dose rate measureable by the IDU for portal dosimetry IMRT QA. Methods: Multipurpose 304 stainless steel plates were placed on an accessory tray to attenuate the beam. Profiles of an open field measured on the IDU were acquired with varying number of plates to assess the thickness needed to reduce the maximum dose rates of 6XFFF and 10XFFF beams to measurable levels. A new portal dose image prediction (PDIP) model was commissioned based on open field measurements with plates in position, and a modified beam profile was input to portal dosimetry calibration at the console to empirically correct for attenuation and scatter. The portal dosimetry tool was used to assess agreement between predicted and measured doses for open 25×25cm{sup 2} fields and intensity modulated fields using 6XFFF and 10XFFF beams. Results: Thicknesses of 2.5cm and 3.8cm of steel were required to reduce the highest dose rates to a measureable level for 6XFFF and 10XFFF, respectively. Gamma analysis using a 3%/3mm relative criterion with the filter in place and using the new PDIP model resulted in 98.2% and 93.6% of pixels passing while intensity modulated fields showed passing rates of 98.2% and 99.0%. Conclusion: Use of the filter allows for portal dosimetry to be used for IMRT QA of FFF plans in place of purchasing a second option for IMRT QA.

  13. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    International Nuclear Information System (INIS)

    Taschereau, R; Silverman, R W; Chatziioannou, A F

    2010-01-01

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a μ-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  14. Dual-energy attenuation coefficient decomposition with differential filtration and application to a microCT scanner

    Energy Technology Data Exchange (ETDEWEB)

    Taschereau, R; Silverman, R W; Chatziioannou, A F [Crump Institute for Molecular Imaging, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States)], E-mail: rtaschereau@mednet.ucla.edu

    2010-02-21

    Dual-energy x-ray computed tomography (DECT) has the capability to decompose attenuation coefficients using two basis functions and has proved its potential in reducing beam-hardening artifacts from reconstructed images. The method typically involves two successive scans with different x-ray tube voltage settings. This work proposes an approach to dual-energy imaging through x-ray beam filtration that requires only one scan and a single tube voltage setting. It has been implemented in a preclinical microCT tomograph with minor modifications. Retrofitting of the microCT scanner involved the addition of an automated filter wheel and modifications to the acquisition and reconstruction software. Results show that beam-hardening artifacts are reduced to noise level. Acquisition of a {mu}-Compton image is well suited for attenuation-correction of PET images while dynamic energy selection (4D viewing) offers flexibility in image viewing by adjusting contrast and noise levels to suit the task at hand. All dual-energy and single energy reference scans were acquired at the same soft tissue dose level of 50 mGy.

  15. Reading device of a radiation image contained in a radioluminescent screen and tomography device containing it

    International Nuclear Information System (INIS)

    Allemand, R.; Cuzin, M.; Parot, P.

    1984-01-01

    The present invention is aimed at improving the random access time to a stimulable radioluminescent screen point (and consequently the reading time of the screen image); it is noticeably useful for longitudinal tomography. The reading device contains a source emitting a stimulation radiation beam towards the stimulable radioluminescent screen, a control mean of the stimulation radiation beam and a deflection mean which allows the beam to scan the screen surface. The device is characterized by the use of a very fast acousto-optical type deflection mean [fr

  16. Dual beam encoded extended fractional Fourier transform security ...

    Indian Academy of Sciences (India)

    reference beams holography [10] can play an important role in enhancing the anti- .... output power, 632.8 nm wavelength) was used to record key hologram, the ... To calculate the parameter for reconstruction, knowledge of the concealed.

  17. Dual-frequency ring-magnet power supply with flat bottom

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1983-01-01

    A power supply is described that furnishes an essentially flat-bottom injection field, followed by a dual-frequency cosine field. This results in efficient beam capture during injection and reduces significantly the peak rf power required during acceleration in a rapid-cycling synchrotron

  18. Insertion devices at the advanced photon source

    International Nuclear Information System (INIS)

    Moog, E.R.

    1996-01-01

    The insertion devices being installed at the Advanced Photon Source cause the stored particle beam to wiggle, emitting x-rays with each wiggle. These x-rays combine to make an intense beam of radiation. Both wiggler and undulator types of insertion devices are being installed; the characteristics of the radiation produced by these two types of insertion devices are discussed, along with the reasons for those characteristics

  19. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  20. Dual-energy imaging method to improve the image quality and the accuracy of dose calculation for cone-beam computed tomography.

    Science.gov (United States)

    Men, Kuo; Dai, Jianrong; Chen, Xinyuan; Li, Minghui; Zhang, Ke; Huang, Peng

    2017-04-01

    To improve the image quality and accuracy of dose calculation for cone-beam computed tomography (CT) images through implementation of a dual-energy cone-beam computed tomography method (DE-CBCT), and evaluate the improvement quantitatively. Two sets of CBCT projections were acquired using the X-ray volumetric imaging (XVI) system on a Synergy (Elekta, Stockholm, Sweden) system with 120kV (high) and 70kV (low) X-rays, respectively. Then, the electron density relative to water (relative electron density (RED)) of each voxel was calculated using a projection-based dual-energy decomposition method. As a comparison, single-energy cone-beam computed tomography (SE-CBCT) was used to calculate RED with the Hounsfield unit-RED calibration curve generated by a CIRS phantom scan with identical imaging parameters. The imaging dose was measured with a dosimetry phantom. The image quality was evaluated quantitatively using a Catphan 503 phantom with the evaluation indices of the reproducibility of the RED values, high-contrast resolution (MTF 50% ), uniformity, and signal-to-noise ratio (SNR). Dose calculation of two simulated volumetric-modulated arc therapy plans using an Eclipse treatment-planning system (Varian Medical Systems, Palo Alto, CA, USA) was performed on an Alderson Rando Head and Neck (H&N) phantom and a Pelvis phantom. Fan-beam planning CT images for the H&N and Pelvis phantom were set as the reference. A global three-dimensional gamma analysis was used to compare dose distributions with the reference. The average gamma values for targets and OAR were analyzed with paired t-tests between DE-CBCT and SE-CBCT. In two scans (H&N scan and body scan), the imaging dose of DE-CBCT increased by 1.0% and decreased by 1.3%. It had a better reproducibility of the RED values (mean bias: 0.03 and 0.07) compared with SE-CBCT (mean bias: 0.13 and 0.16). It also improved the image uniformity (57.5% and 30.1%) and SNR (9.7% and 2.3%), but did not affect the MTF 50% . Gamma

  1. Electron beam and mechanical lithographies as enabling factors for organic-based device fabrication

    International Nuclear Information System (INIS)

    Visconti, P.; Pisignano, D.; Della Torre, A.; Persano, L.; Maruccio, G.; Biasco, A.; Cingolani, R.; Rinaldi, R.

    2005-01-01

    Organic-based photonics and molecular electronics are attracting an increasing interest in modern science. The realization of high-resolution master structures by electron beam lithography (EBL) and their transfer to different organic functional materials by mechanical lithographies allow to fully exploit the wide flexibility of molecular systems for opto- and nanoelectronic devices. Planar nanojunctions, consisting of two metallic electrodes separated by an insulating medium, permit to test the molecular conduction properties. Since the typical size of a biomolecule is of the order of a few nanometer, hybrid molecular electronic (HME) devices need metallic electrodes separated by a nanometer-scale channel. Conversely, photonic applications often require 100 nm to 1 μm features on large areas. In this work, we report on the fabrication of both large-area periodic master structures with resolution down to 200 nm, and planar metallic electrodes with sub-10 nm separation obtained by EBL followed by metal electroplating deposition. The fabricated 3-terminal bio-nanodevices show a transistor-like behaviour with a maximum voltage gain of 0.76. Moreover, we developed a number of mechanical patterning methods, including soft hot embossing, rapid prototyping, sub-micrometer fluidics, high- and room-temperature nanoimprinting, to fabricate planar nanostructures on both biomolecular and organic materials. These allowed us a high-fidelity pattern transfer up to 100-nm scale resolution, without reducing the emission yields of light-emitting organics, thus opening the way to the one-step realization of organic-based confined optoelectronic devices

  2. Technology, Applications, and Process Challenges of Dual Chamber Systems.

    Science.gov (United States)

    Werk, Tobias; Ludwig, Imke S; Luemkemann, Joerg; Mahler, Hanns-Christian; Huwyler, Joerg; Hafner, Mathias

    2016-01-01

    Dual-chamber systems provide an option as a drug and device combination product, when home care and emergency lyophilized products are intended. Nevertheless, until today, there are only a few products on the market, due to the challenges and limitations in manufacturability, product formulation, and product stability in a dual-chamber configuration, as well as economic considerations. This review serves to describe currently available dual-chamber systems and to discuss factors to be considered for appropriate selection and establishing fill-finish processes. Copyright © 2016. Published by Elsevier Inc.

  3. SU-F-T-260: Using Portal Image Device for Pre-Treatment QA in Volumetric Modulated Arc Plans with Flattening Filter Free (FFF) Beams

    Energy Technology Data Exchange (ETDEWEB)

    Qu, H; Qi, P; Yu, N; Xia, P [The Cleveland Clinic Foundation, Cleveland, OH (United States)

    2016-06-15

    Purpose: To implement and validate a method of using electronic portal image device (EPID) for pre-treatment quality assurance (QA) of volumetric modulated arc therapy (VMAT) plans using flattering filter free (FFF) beams for stereotactic body radiotherapy (SBRT). Methods: On Varian Edge with 6MV FFF beam, open field (from 2×2 cm to 20×20 cm) EPID images were acquired with 200 monitor unit (MU) at the image device to radiation source distance of 150cm. With 10×10 open field and calibration unit (CU) provided by vendor to EPID image pixel, a dose conversion factor was determined by dividing the center dose calculated from the treatment planning system (TPS) to the corresponding CU readout on the image. Water phantom measured beam profile and the output factors for various field sizes were further correlated to those of EPID images. The dose conversion factor and correction factors were then used for converting the portal images to the planner dose distributions of clinical fields. A total of 28 VMAT fields of 14 SBRT plans (8 lung, 2 prostate, 2 liver and 2 spine) were measured. With 10% low threshold cutoff, the delivered dose distributions were compared to the reference doses calculated in water phantom from the TPS. A gamma index analysis was performed for the comparison in percentage dose difference/distance-to-agreement specifications. Results: The EPID device has a linear response to the open fields with increasing MU. For the clinical fields, the gamma indices between the converted EPID dose distributions and the TPS calculated 2D dose distributions were 98.7%±1.1%, 94.0%±3.4% and 70.3%±7.7% for the criteria of 3%/3mm, 2%/2mm and 1%/1mm, respectively. Conclusion: Using a portal image device, a high resolution and high accuracy portal dosimerty was achieved for pre-treatment QA verification for SBRT VMAT plans with FFF beams.

  4. LANSCE beam current limiter

    International Nuclear Information System (INIS)

    Gallegos, F.R.

    1996-01-01

    The Radiation Security System (RSS) at the Los Alamos Neutron Science Center (LANSCE) provides personnel protection from prompt radiation due to accelerated beam. Active instrumentation, such as the Beam Current Limiter, is a component of the RSS. The current limiter is designed to limit the average current in a beam line below a specific level, thus minimizing the maximum current available for a beam spill accident. The beam current limiter is a self-contained, electrically isolated toroidal beam transformer which continuously monitors beam current. It is designed as fail-safe instrumentation. The design philosophy, hardware design, operation, and limitations of the device are described

  5. MPS beam control software architecture

    International Nuclear Information System (INIS)

    Krauter, K.; Crane, M.

    1993-01-01

    The new Machine Protection System (MPS) now being tested at SLAC has a beam control subsystem resident in processors located close to the beam monitoring devices within the machine. There are two types of beam control micros: Algorithm Processors (AP's) which collect and evaluate data from monitoring devices, and a Supervisor (SUPE) which collects and evaluates data from all the AP's. The SUPE also receives the global machine beamcode indicating beam presence, and passes it on to the AP's. The SUPE receives the beamcode pattern from the Master Pattern Generator (MPG) via a shared-memory communication link. MIL-1553 serial communication is used between the SUPE and the AP's, and between the AP's and the monitoring devices. Multitasking software is used to allow high priority handling of data evaluation and low priority handling of host/user interfacing and event reporting. Pipelining of data between acquisition and evaluation and reporting is used to accommodate the processing capacity, while still supporting full processing at the 36OHz broadcast rate of the beamcode pattern

  6. MPS beam control software architecture

    International Nuclear Information System (INIS)

    Krauter, K.; Crane, M.

    1993-04-01

    The new Machine Protection System (MPS) now being tested at SLAC has a beam control subsystem resident in processors located close to the beam monitoring devices within the machine. There are two types of beam control micros: Algorithm Processors (AP's) which collect and evaluate data from monitoring devices, and a Supervisor (SUPE) which collects and evaluates data from all the AP's. The SUPE also receives the global machine beamcode indicating beam presence, and passes it on to the AP's. The SUPE receives the beamcode pattern from the Master Pattern Generator (MPG) via a shared-memory communication link. MIL-1553 serial communication is used between the SUPE and the AP's, and between the AP's and the monitoring devices. Multitasking software is used to allow high priority handling of data evaluation and low priority handling of host/user interfacing and event reporting. Pipelining of data between acquisition and evaluation and reporting is used to accomodate the processing capacity, while still supporting full processing at the 360Hz broadcast rate of the beamcode pattern

  7. Development of neutral beam source using electron beam excited plasma

    International Nuclear Information System (INIS)

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Hara, Tamio

    2011-01-01

    A low-energy neutral beam (NB) source, which consists of an electron-beam-excited plasma (EBEP) source and two carbon electrodes, has been developed for damageless etching of ultra-large-scale integrated (ULSI) devices. It has been confirmed that the Ar ion beam energy was controlled by the acceleration voltage and the beam profile had good uniformity over the diameter of 80 mm. Dry etching of a Si wafer at the floating potential has been carried out by Ar NB. Si sputtering yield by an Ar NB clearly depends on the acceleration voltage. This result shows that the NB has been generated through the charge exchange reaction from the ion beam in the process chamber. (author)

  8. Ion beam processing of bio-ceramics

    International Nuclear Information System (INIS)

    Ektessabi, A.M.

    1995-01-01

    Thin films of bio-inert (TiO 2+α , Al 2 O 3+α ) and bio-active (compounds of calcium and phosphorus oxides, hydroxy-apatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate. (orig.)

  9. Ion beam processing of bio-ceramics

    Science.gov (United States)

    Ektessabi, A. M.

    1995-05-01

    Thin films of bio-inert (TiO 2+α, Al 2O 3+α) and bio-active (compounds of calcium and phosphorus oxides, hydroxyapatite) were deposited on the most commonly used implant materials such as titanium and stainless steel, using a dual-ion-beam deposition system. Rutherford backscattering spectroscopy was carried out for quantitative measurement of the interfacial atomic mixing and the composition of the elements. The experimental results show that by controlling the ion beam energy and current, thin films with very good mechanical properties are obtained as a result of the ion beam mixing within the film and at the interface of the film and substrate.

  10. Dual-layer ultrathin film optics: I. Theory and analysis

    International Nuclear Information System (INIS)

    Wang, Qian; Lim, Kim Peng

    2015-01-01

    This paper revisits dual-layer ultrathin film optics, which can be used for functional graded refractive index thin film stack. We present the detailed derivation including s-polarized and p-polarized light under arbitrary incidence angle showing the equivalence between the dual-layer ultrathin films and a negative birefringent thin film and also the approximations made during the derivation. Analysis of the approximations shows the influence of thickness of dual-layer thin films, the incidence angle and desired refractive index of the birefringent film. Numerical comparison between the titanium dioxide/aluminum oxide based dual-layer ultrathin film stack and the equivalent birefringent film verifies the theoretical analysis. The detailed theoretical study and numerical comparison provide a physical insight and design guidelines for dual-layer ultrathin film based optical devices. (paper)

  11. The design of a lead-bismuth target system with a dual injection tube

    International Nuclear Information System (INIS)

    Cho, C.H.; Kim, Y.; Song, T.Y.; Park, W.S.

    2005-01-01

    A spallation target system is a key component to be developed for an accelerator driven system (ADS). It is known that a 15 ∼ 25 MW spallation target is required for a practical 1000 MWth ADS. The design of a 20 MW spallation target is very challenging because more than 60% of the beam power is deposited as heat in a small volume of the target system. In the present work, a numerical design study was performed to obtain the optimal design parameters for a 20 MW spallation target for a 1000 MW ADS. A dual injection tube was proposed for the reduction of the LBE flow rate at the target channel. The results of the present study show that a 30 cm wide proton beam with a uniform beam distribution should be adopted for the spallation target of a 20 MW power. When the dual LBE injection tube is employed, the LBE flow rate could be reduced by a factor of 4 without reducing the maximum allowable beam current. (authors)

  12. Design of a 'two-ion-source' charge breeder with a dual frequency ECR ion source

    International Nuclear Information System (INIS)

    Naik, D.; Naik, V.; Chakrabarti, A.; Dechoudhury, S.; Nayak, S.K.; Pandey, H.K.; Nakagawa, T.

    2005-01-01

    A charge breeder, 'two-ion-source' has been designed which consists of a surface ionisation source followed by an ECR ion source working in two-frequency mode. In this system low charge state ion beam (1+)of radioactive atoms are obtained from the first ion source close to the target chamber and landed into the ECR where those are captured and become high charged state after undergoing a multi ionisation process. This beam dynamics design has been done to optimise the maximum possible transfer of 1 + beam from the first ion source into the ECR, its full capture within the ECR zone and design of an efficient dual frequency ECR. The results shows that 1 + beam of 100 nA and 1μA (A=100) are successfully transmitted and it's beam size at the centre of ECR zone are 12 mm and 21 mm respectively, which are very less than 65 mm width ECR zone of dual frequency ECR heating at 14 GHz and 10 GHz. (author)

  13. Initial use of fast switched dual energy CT for coronary artery disease

    Science.gov (United States)

    Pavlicek, William; Panse, Prasad; Hara, Amy; Boltz, Thomas; Paden, Robert; Yamak, Didem; Licato, Paul; Chandra, Naveen; Okerlund, Darin; Dutta, Sandeep; Bhotika, Rahul; Langan, David

    2010-04-01

    Coronary CT Angiography (CTA) is limited in patients with calcified plaque and stents. CTA is unable to confidently differentiate fibrous from lipid plaque. Fast switched dual energy CTA offers certain advantages. Dual energy CTA removes calcium thereby improving visualization of the lumen and potentially providing a more accurate measure of stenosis. Dual energy CTA directly measures calcium burden (calcium hydroxyapatite) thereby eliminating a separate non-contrast series for Agatston Scoring. Using material basis pairs, the differentiation of fibrous and lipid plaques is also possible. Patency of a previously stented coronary artery is difficult to visualize with CTA due to resolution constraints and localized beam hardening artifacts. Monochromatic 70 keV or Iodine images coupled with Virtual Non-stent images lessen beam hardening artifact and blooming. Virtual removal of stainless steel stents improves assessment of in-stent re-stenosis. A beating heart phantom with 'cholesterol' and 'fibrous' phantom coronary plaques were imaged with dual energy CTA. Statistical classification methods (SVM, kNN, and LDA) distinguished 'cholesterol' from 'fibrous' phantom plaque tissue. Applying this classification method to 16 human soft plaques, a lipid 'burden' may be useful for characterizing risk of coronary disease. We also found that dual energy CTA is more sensitive to iodine contrast than conventional CTA which could improve the differentiation of myocardial infarct and ischemia on delayed acquisitions. These phantom and patient acquisitions show advantages with using fast switched dual energy CTA for coronary imaging and potentially extends the use of CT for addressing problem areas of non-invasive evaluation of coronary artery disease.

  14. Technical use of compact micro-onde devices

    International Nuclear Information System (INIS)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J.; Sudraud, P.; Salord, O.; Homri, S.

    2012-01-01

    Due to the very small size of a COMIC (Compact MIcrowave and Coaxial) device [P. Sortais, T. Lamy, J. Medard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B31 (2010)] it is possible to install such plasma or ion source inside very different technical environments. New applications of such a device are presented, mainly for industrial applications. We have now designed ion sources for highly focused ion beam devices, ion beam machining ion guns, or thin film deposition machines. We will mainly present new capabilities opened by the use of a multi-beam system for thin film deposition based on sputtering by medium energy ion beams. With the new concept of multi-beam sputtering (MBS), it is possible to open new possibilities concerning the ion beam sputtering (IBS) technology, especially for large size deposition of high uniformity thin films. By the use of multi-spots of evaporation, each one corresponding to an independent tuning of an individual COMIC ion source, it will be very easy to co-evaporate different components.

  15. Technical use of compact micro-onde devices

    Energy Technology Data Exchange (ETDEWEB)

    Sortais, P.; Lamy, T.; Medard, J.; Angot, J. [Laboratoire de Physique Subatomique et de Cosmologie de Grenoble - UJF-CNRS/IN2P3 - INPG, 53, rue des Martyrs, 38026 Grenoble Cedex (France); Sudraud, P.; Salord, O.; Homri, S. [Orsay Physics S.A., 95 avenue des Monts Aureliens, F-13710 Fuveau (France)

    2012-02-15

    Due to the very small size of a COMIC (Compact MIcrowave and Coaxial) device [P. Sortais, T. Lamy, J. Medard, J. Angot, L. Latrasse, and T. Thuillier, Rev. Sci. Instrum. 81, 02B31 (2010)] it is possible to install such plasma or ion source inside very different technical environments. New applications of such a device are presented, mainly for industrial applications. We have now designed ion sources for highly focused ion beam devices, ion beam machining ion guns, or thin film deposition machines. We will mainly present new capabilities opened by the use of a multi-beam system for thin film deposition based on sputtering by medium energy ion beams. With the new concept of multi-beam sputtering (MBS), it is possible to open new possibilities concerning the ion beam sputtering (IBS) technology, especially for large size deposition of high uniformity thin films. By the use of multi-spots of evaporation, each one corresponding to an independent tuning of an individual COMIC ion source, it will be very easy to co-evaporate different components.

  16. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device

    Science.gov (United States)

    Szplet, R.; Kalisz, J.; Jachna, Z.

    2009-02-01

    We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second.

  17. A 45 ps time digitizer with a two-phase clock and dual-edge two-stage interpolation in a field programmable gate array device

    International Nuclear Information System (INIS)

    Szplet, R; Kalisz, J; Jachna, Z

    2009-01-01

    We present a time digitizer having 45 ps resolution, integrated in a field programmable gate array (FPGA) device. The time interval measurement is based on the two-stage interpolation method. A dual-edge two-phase interpolator is driven by the on-chip synthesized 250 MHz clock with precise phase adjustment. An improved dual-edge double synchronizer was developed to control the main counter. The nonlinearity of the digitizer's transfer characteristic is identified and utilized by the dedicated hardware code processor for the on-the-fly correction of the output data. Application of presented ideas has resulted in the measurement uncertainty of the digitizer below 70 ps RMS over the time interval ranging from 0 to 1 s. The use of the two-stage interpolation and a fast FIFO memory has allowed us to obtain the maximum measurement rate of five million measurements per second

  18. Development of Focused Ion Beam technique for high speed steel 3D-SEM artefact fabrication

    DEFF Research Database (Denmark)

    Carli, Lorenzo; MacDonald, A. Nicole; De Chiffre, Leonardo

    2009-01-01

    The work describes preliminary manufacture by grinding, followed by machining on a Focused Ion Beam (FIB), of a high speed steel step artefact for 3D-SEM calibration. The FIB is coupled with a SEM in the so called dual beam instrument. The milling capabilities of FIB were checked from a qualitative...... point of view, using the dual beam SEM imaging, and quantitatively using a reference stylus instrument, to establish traceability. A triangular section having a depth of about 10 μm was machined, where the 50 μm curvature radius due to grinding was reduced to about 2 μm by FIB milling...

  19. SU-C-19A-02: An Innovative Critical Organ Repositioner Device for Use During Radiotherapy Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Parsai, E; Elahinia, M; Reddy, K; Chen, C [University of Toledo Medical Center, Toledo, OH (United States)

    2014-06-15

    Purpose: In most radiation oncology applications the use of shape memory alloy (SMA) actuation can be extremely beneficial in sparing normal structures by relocating them away from the path of the external beam, or placing distance between the structure and radiation source such as in Brachytherapy. Implementation of this organ repositioner device in conjunction with IMRT could open new possibilities for dose escalation and significant dose reduction to normal tissues. Similarly, in high dose rate brachytherapy applications, the ideal effective dose may not be delivered to the target volume due to toxicity concerns to adjacent critical structures. Here we present a dual functioning device manufactured from SMA materials to: 1) provide a desirable tool to reposition the organ at risk away from the radiation source, and 2) facilitate localization when imaging the area. Methods: A Nitinol based actuator with controlled force and displacement will be incorporated in the design of an organ repositioner (e.g., a rectal marker) with the ability to recall a pre-defined shape at temperature T1 (body temp) and shift back to its original shape at temperature T2 (to facilitate removal). An open distal end permits the marker to function as a part of a barium delivery system. Results: An example of this SMA manufactured in our laboratory for atrial fibrillation radio frequency ablation is the esophagus SMA positioner, designed to position the esophagus away from the ablation area. This device shows the maximum strain in the deflected esophagus to be less than 3%. The prototype positioner deflected the organ at risk by 5 cm away from the site of ablation. Conclusions: The organ repositioner device is feasible for use in clinics, provides patient comfort due to its gradual deflection, and has dual functionality in repositioning the organ at risk as well as serving as a localization device.

  20. SU-C-19A-02: An Innovative Critical Organ Repositioner Device for Use During Radiotherapy Treatments

    International Nuclear Information System (INIS)

    Parsai, E; Elahinia, M; Reddy, K; Chen, C

    2014-01-01

    Purpose: In most radiation oncology applications the use of shape memory alloy (SMA) actuation can be extremely beneficial in sparing normal structures by relocating them away from the path of the external beam, or placing distance between the structure and radiation source such as in Brachytherapy. Implementation of this organ repositioner device in conjunction with IMRT could open new possibilities for dose escalation and significant dose reduction to normal tissues. Similarly, in high dose rate brachytherapy applications, the ideal effective dose may not be delivered to the target volume due to toxicity concerns to adjacent critical structures. Here we present a dual functioning device manufactured from SMA materials to: 1) provide a desirable tool to reposition the organ at risk away from the radiation source, and 2) facilitate localization when imaging the area. Methods: A Nitinol based actuator with controlled force and displacement will be incorporated in the design of an organ repositioner (e.g., a rectal marker) with the ability to recall a pre-defined shape at temperature T1 (body temp) and shift back to its original shape at temperature T2 (to facilitate removal). An open distal end permits the marker to function as a part of a barium delivery system. Results: An example of this SMA manufactured in our laboratory for atrial fibrillation radio frequency ablation is the esophagus SMA positioner, designed to position the esophagus away from the ablation area. This device shows the maximum strain in the deflected esophagus to be less than 3%. The prototype positioner deflected the organ at risk by 5 cm away from the site of ablation. Conclusions: The organ repositioner device is feasible for use in clinics, provides patient comfort due to its gradual deflection, and has dual functionality in repositioning the organ at risk as well as serving as a localization device

  1. Compression of Ultrafast Laser Beams

    Science.gov (United States)

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  2. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  3. A high-power millimeter-wave sheet beam free-electron laser amplifier

    International Nuclear Information System (INIS)

    Cheng, S.; Destler, W.W.; Granatstein, V.L.; Antonsen, T.M.; Levush, B.; Rodgers, J.; Zhang, Z.X.

    1996-01-01

    The results of experiments with a short period (9.6 mm) wiggler sheet electron beam (1.0 mm x 2.0 cm) millimeter-wave free electron laser (FEL) amplifier are presented. This FEL amplifier utilized a strong wiggler field for sheet beam confinement in the narrow beam dimension and an offset-pole side-focusing technique for the wide dimension beam confinement. The beam analysis herein includes finite emittance and space-charge effects. High-current beam propagation was achieved as a result of extensive analytical studies and experimental optimization. A design optimization resulted in a low sensitivity to structure errors and beam velocity spread, as well as a low required beam energy. A maximum gain of 24 dB was achieved with a 1-kW injected signal power at 86 GHz, a 450-kV beam voltage, 17-A beam current, 3.8-kG wiggler magnetic field, and a 74-period wiggler length. The maximum gain with a one-watt injected millimeter-wave power was observed to be over 30 dB. The lower gain at higher injection power level indicates that the device has approached saturation. The device was studied over a broad range of experimental parameters. The experimental results have a good agreement with expectations from a one-dimensional simulation code. The successful operation of this device has proven the feasibility of the original concept and demonstrated the advantages of the sheet beam FEL amplifier. The results of the studies will provide guidelines for the future development of sheet beam FEL's and/or other kinds of sheet beam devices. These devices have fusion application

  4. Fabrication of nanostructured transmissive optical devices on ITO-glass with UV1116 photoresist using high-energy electron beam lithography

    Science.gov (United States)

    Williams, Calum; Bartholomew, Richard; Rughoobur, Girish; Gordon, George S. D.; Flewitt, Andrew J.; Wilkinson, Timothy D.

    2016-12-01

    High-energy electron beam lithography for patterning nanostructures on insulating substrates can be challenging. For high resolution, conventional resists require large exposure doses and for reasonable throughput, using typical beam currents leads to charge dissipation problems. Here, we use UV1116 photoresist (Dow Chemical Company), designed for photolithographic technologies, with a relatively low area dose at a standard operating current (80 kV, 40-50 μC cm-2, 1 nAs-1) to pattern over large areas on commercially coated ITO-glass cover slips. The minimum linewidth fabricated was ˜33 nm with 80 nm spacing; for isolated structures, ˜45 nm structural width with 50 nm separation. Due to the low beam dose, and nA current, throughput is high. This work highlights the use of UV1116 photoresist as an alternative to conventional e-beam resists on insulating substrates. To evaluate suitability, we fabricate a range of transmissive optical devices, that could find application for customized wire-grid polarisers and spectral filters for imaging, which operate based on the excitation of surface plasmon polaritons in nanosized geometries, with arrays encompassing areas ˜0.25 cm2.

  5. A fast neutron and dual-energy gamma-ray absorption method (NEUDEG) for investigating materials using a 252Cf source

    International Nuclear Information System (INIS)

    Bartle, C. Murray

    2014-01-01

    DEXA (dual-energy X-ray absorption) is widely used in airport scanners, industrial scanners and bone densitometers. DEXA determines the properties of materials by measuring the absorption differences of X-rays from a bremsstrahlung tube source with and without filtering. Filtering creates a beam with a higher mean energy, which causes lower material absorption. The absorption difference between measurements (those with a filter subtracted from those without a filter) is a positive number that increases with the effective atomic number of the material. In this paper, the concept of using a filter to create a dual beam and an absorption difference in materials is applied to radiation from a 252 Cf source, called NEUDEG (neutron and dual-energy gamma absorption). NEUDEG includes absorptions for fast neutrons as well as the dual photon beams and thus an incentive for developing the method is that, unlike DEXA, it is inherently sensitive to the hydrogen content of materials. In this paper, a model for the absorption difference and absorption sum in NEUDEG is presented using the combined gamma ray and fast neutron mass attenuation coefficients. Absorption differences can be either positive or negative in NEUDEG, increasing with increases in the effective atomic number and decreasing with increases in the hydrogen content. Sample sets of absorption difference curves are calculated for materials with typical gamma-ray and fast neutron mass attenuation coefficients. The model, which uses tabulated mass attenuated coefficients, agrees with experimental data for porcelain tiles and polyethylene sheets. The effects of “beam hardening” are also investigated. - Highlights: • Creation of a dual neutron/gamma beam from 252 Cf is described. • An absorption model is developed using mass attenuation coefficients. • A graphical method is used to show sample results from the model. • The model is successfully compared with experimental results. • The importance of

  6. Advanced Light Source beam position monitor

    International Nuclear Information System (INIS)

    Hinkson, J.

    1991-01-01

    The Advanced Light Source (ALS) is a synchrotron radiation facility nearing completion at LBL. As a third-generation machine, the ALS is designed to produce intense light from bend magnets, wigglers, and undulators (insertion devices). The facility will include a 50 MeV electron linear accelerator, a 1.5 GeV booster synchrotron, beam transport lines, a 1--2 GeV storage ring, insertion devices, and photon beam lines. Currently, the beam injection systems are being commissioned, and the storage ring is being installed. Electron beam position monitors (BPM) are installed throughout the accelerator and constitute the major part of accelerator beam diagnostics. The design of the BPM instruments is complete, and 50 units have been constructed for use in the injector systems. We are currently fabricating 100 additional instruments for the storage ring. In this paper I discuss engineering fabrication, testing and performance of the beam pickup electrodes and the BPM electronics

  7. A beam scraper using a linear motor

    International Nuclear Information System (INIS)

    Beadle, E.R.; Rodger, E.S.; Thern, R.E.

    1989-01-01

    A beam scraper using a linear motor drive has been developed for use in the AGS at Brookhaven National Laboratory. The device is used to measure beam size by moving a target to a predetermined location and measuring the intercepted beam with nearby loss monitors or by noting the decrease in the circulating beam current. This device has excellent vacuum characteristics, as the motor and sensor coils are outside the vacuum, coupled magnetically to the moving parts which, are inside. There are no bellows or dynamic seals required. The position-time profile is controlled by a closed-loop servo system which uses position feedback. 2 refs., 4 figs

  8. Quantum mechanics of charged particle beam optics

    CERN Document Server

    Khan, Sameen Ahmed

    2018-01-01

    Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.

  9. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    Science.gov (United States)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  10. International Workshop on Ion Beam Modification and Processing of High Tc- Superconductors: Physics and Devices: Program and Abstracts

    Science.gov (United States)

    1989-04-12

    that a train levitated by superconductivity magnets will be used routinely in Japan around the end of the century. All this has been achieved without...study of the effect of irradiation temperature on radiation damage. This study demonstrated that films or devices operating at liquid nitrogen ...April 1989 us Allpy R. i A- Ua NY 5510 1"~l HARWELL UK ATOMIC ENERGY AUTHORITY ION BEAM MODIFICATION AND PROCESSING IN HIGH-T, SUPERCONDUCTORS: PHYSICS

  11. Bremsstrahlung scattering calculations for the beam stops and collimators in the APS insertion-device beamlines

    International Nuclear Information System (INIS)

    Job, P.K.; Haeffner, D.R.; Shu, D.

    1994-12-01

    Bremsstrahlung is produced in the APS storage ring by the interaction of positrons with the residual gas molecules in the vacuum chamber of the storage ring. The bremsstrahlung production causes a serious challenge in shielding the insertion-device beamlines because the entire straight section (15 meters) is in the line of sight of the beamline. The radiation emerges in a narrow cone tangential to the beam path with the characteristic emission angle 1/γ, where γ is E/mc 2 which is the ratio of the kinetic energy to the rest mass for the positrons. This high-energy gamma radiation has an approximate 1/E spectrum with the maximum energy extending up to the particle energy (7 GeV for the APS). Bremsstrahlung, being high-energy photons, produces an electromagnetic shower when it encounters the beamline elements. A beamline element not thick enough to fully contain an electromagnetic shower can cause considerable scatter of the high-energy bremsstrahlung radiation. The low-energy component of the bremsstrahlung can also be scattered and create high dose rates in the first-optical and white-beam enclosures. The fully developed electromagnetic shower will have a photon spectrum almost independent of the material. The electromagnetic showers in the high-Z materials can also produce photoneutrons. This note reports the summary of EGS4 calculations performed on bremsstrahlung scattering from different beamline components in a typical APS insertion-device beamline. The related recommendations for shielding are also given. The shielding criterion adopted is a total dose rate of 2.5μSv/h (0.25 mrem/h) at 30 cm from the shield

  12. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection

    International Nuclear Information System (INIS)

    Defrise, M.; Clack, R.

    1994-01-01

    An exact inversion formula written in the form of shift-variant filtered-backprojection (FBP) is given for reconstruction from cone-beam data taken from any orbit satisfying Tuy's sufficiency conditions. The method is based on a result of Grangeat, involving the derivative of the three-dimensional (3-D) Radon transform, but unlike Grangeat's algorithm, no 3D rebinning step is required. Data redundancy, which occurs when several cone-beam projections supply the same values in the Radon domain, is handled using an elegant weighting function and without discarding data. The algorithm is expressed in a convenient cone-beam detector reference frame, and a specific example for the case of a dual orthogonal circular orbit is presented. When the method is applied to a single circular orbit, it is shown to be equivalent to the well-known algorithm of Feldkamp et al

  13. Transverse Chemotactic Migration of Bacteria from High to Low Permeability Regions in a Dual Permeability Porous Microfluidic Device

    Science.gov (United States)

    Singh, R.; Olson, M. S.

    2011-12-01

    Low permeability regions sandwiched between high permeability regions such as clay lenses are difficult to treat using conventional treatment methods. Trace concentrations of contaminants such as non-aqueous phase liquids (NAPLs) remain trapped in these regions and over the time diffuse out into surrounding water thereby acting as a long term source of groundwater contamination. Bacterial chemotaxis (directed migration toward a contaminant source), may be helpful in enhancing bioremediation of such contaminated sites. This study is focused on simulating a two-dimensional dual-permeability groundwater contamination scenario using microfluidic devices and evaluating transverse chemotactic migration of bacteria from high to low permeability regions. A novel bi-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated using photolithography and soft lithography techniques to simulate contamination of a dual- permeability region due to leakage from an underground storage tank into a low permeability region. This device consists of a porous channel through which a bacterial suspension (Escherchia Coli HCB33) is flown and another channel for injecting contaminant/chemo-attractant (DL-aspertic acid) into the porous channel. The pore arrangement in the porous channel contains a 2-D low permeability region surrounded by high permeability regions on both sides. Experiments were performed under chemotactic and non-chemotactic (replacing attractant with buffer solution in the non porous channel) conditions. Images were captured in transverse pore throats at cross-sections 4.9, 9.8, and 19.6 mm downstream from the attractant injection point and bacteria were enumerated in the middle of each pore throat. Bacterial chemotaxis was quantified in terms of the change in relative bacterial counts in each pore throat at cross-sections 9.8 and 19.6 mm with respect to counts at the cross-section at 4.9 mm. Under non-chemotactic conditions, relative bacterial count was observed

  14. DUAL TIMELIKE NORMAL AND DUAL TIMELIKE SPHERICAL CURVES IN DUAL MINKOWSKI SPACE

    OpenAIRE

    ÖNDER, Mehmet

    2009-01-01

    Abstract: In this paper, we give characterizations of dual timelike normal and dual timelike spherical curves in the dual Minkowski 3-space and we show that every dual timelike normal curve is also a dual timelike spherical curve. Keywords: Normal curves, Dual Minkowski 3-Space, Dual Timelike curves. Mathematics Subject Classifications (2000): 53C50, 53C40. DUAL MINKOWSKI UZAYINDA DUAL TIMELIKE NORMAL VE DUAL TIMELIKE KÜRESEL EĞRİLER Özet: Bu çalışmada, dual Minkowski 3-...

  15. BEAM LINE DESIGN FOR THE CERN HIRADMAT TEST FACILITY

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2009-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×1013 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  16. Beam Line Design for the CERN Hiradmat Test Facility

    CERN Document Server

    Hessler, C; Goddard, B; Meddahi, M; Weterings, W

    2010-01-01

    The LHC phase II collimation project requires beam shock and impact tests of materials used for beam intercepting devices. Similar tests are also of great interest for other accelerator components such as beam entrance/exit windows and protection devices. For this purpose a dedicated High Radiation Material test facility (HiRadMat) is under study. This facility may be installed at CERN at the location of a former beam line. This paper describes the associated beam line which is foreseen to deliver a 450 GeV proton beam from the SPS with an intensity of up to 3×10**13 protons per shot. Different beam line designs will be compared and the choice of the beam steering and diagnostic elements will be discussed, as well as operational issues.

  17. Noise estimation of beam position monitors at RHIC

    International Nuclear Information System (INIS)

    Shen, X.; Bai, M.

    2014-01-01

    Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable optics measurement and beam dynamics analysis based on turn-by-turn data.

  18. Proton irradiation of liquid crystal based adaptive optical devices

    International Nuclear Information System (INIS)

    Buis, E.J.; Berkhout, G.C.G.; Love, G.D.; Kirby, A.K.; Taylor, J.M.; Hannemann, S.; Collon, M.J.

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10 10 p/cm 2 ). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  19. Proton irradiation of liquid crystal based adaptive optical devices

    Energy Technology Data Exchange (ETDEWEB)

    Buis, E.J., E-mail: ernst-jan.buis@tno.nl [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Berkhout, G.C.G. [cosine Science and Computing BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands); Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden (Netherlands); Love, G.D.; Kirby, A.K.; Taylor, J.M. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Hannemann, S.; Collon, M.J. [cosine Research BV, Niels Bohrweg 11, 2333 CA Leiden (Netherlands)

    2012-01-01

    To assess its radiation hardness, a liquid crystal based adaptive optical element has been irradiated using a 60 MeV proton beam. The device with the functionality of an optical beam steerer was characterised before, during and after the irradiation. A systematic set of measurements on the transmission and beam deflection angles was carried out. The measurements showed that the transmission decreased only marginally and that its optical performance degraded only after a very high proton fluence (10{sup 10}p/cm{sup 2}). The device showed complete annealing in the functionality as a beam steerer, which leads to the conclusion that the liquid crystal technology for optical devices is not vulnerable to proton irradiation as expected in space.

  20. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Bruinvis, I.A.D.

    1987-01-01

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  1. Dual-etalon cavity ring-down frequency-comb spectroscopy with broad band light source

    Science.gov (United States)

    Chandler, David W; Strecker, Kevin E

    2014-04-01

    In an embodiment, a dual-etalon cavity-ring-down frequency-comb spectrometer system is described. A broad band light source is split into two beams. One beam travels through a first etalon and a sample under test, while the other beam travels through a second etalon, and the two beams are recombined onto a single detector. If the free spectral ranges ("FSR") of the two etalons are not identical, the interference pattern at the detector will consist of a series of beat frequencies. By monitoring these beat frequencies, optical frequencies where light is absorbed may be determined.

  2. Interfacial crack arrest in sandwich beams subjected to fatigue loading using a novel crack arresting device – Numerical modelling

    DEFF Research Database (Denmark)

    Martakos, G.; Andreasen, J.H.; Berggreen, Christian

    2017-01-01

    A novel crack arresting device is implemented in foam-cored composite sandwich beams and tested using the Sandwich Tear Test (STT) configuration. A finite element model of the setup is developed, and the predictions are correlated with observations and results from a recently conducted experiment...... concept, as well as a design tool that can be used for the implementation of crack arresting devises in engineering applications of sandwich components and structures....

  3. DC Characteristics of AlGaN/GaN HEMTs Using a Dual-Gate Structure.

    Science.gov (United States)

    Hong, Sejun; Rana, Abu ul Hassan Sarwar; Heo, Jun-Woo; Kim, Hyun-Seok

    2015-10-01

    Multiple techniques such as fluoride-based plasma treatment, a p-GaN or p-AlGaN gate contact, and a recessed gate structure have been employed to modulate the threshold voltage of AlGaN/GaN-based high-electron-mobility transistors (HEMTs). In this study, we present dual-gate AlGaN/GaN HEMTs grown on a Si substrate, which effectively shift the threshold voltage in the positive direction. Experimental data show that the threshold voltage is shifted from -4.2 V in a conventional single-gate HEMT to -2.8 V in dual-gate HEMTs. It is evident that a second gate helps improve the threshold voltage by reducing the two-dimensional electron gas density in the channel. Furthermore, the maximum drain current, maximum transconductance, and breakdown voltage values of a single-gate device are not significantly different from those of a dual-gate device. For the fabricated single- and dual-gate devices, the values of the maximum drain current are 430 mA/mm and 428 mA/mm, respectively, whereas the values of the maximum transconductance are 83 mS/mm and 75 mS/mm, respectively.

  4. 3D-FBK Pixel sensors: recent beam tests results with irradiated devices

    CERN Document Server

    Micelli, A; Sandaker, H; Stugu, B; Barbero, M; Hugging, F; Karagounis, M; Kostyukhin, V; Kruger, H; Tsung, J W; Wermes, N; Capua, M; Fazio, S; Mastroberardino, A; Susinno, G; Gallrapp, C; Di Girolamo, B; Dobos, D; La Rosa, A; Pernegger, H; Roe, S; Slavicek, T; Pospisil, S; Jakobs, K; Kohler, M; Parzefall, U; Darbo, G; Gariano, G; Gemme, C; Rovani, A; Ruscino, E; Butter, C; Bates, R; Oshea, V; Parker, S; Cavalli-Sforza, M; Grinstein, S; Korokolov, I; Pradilla, C; Einsweiler, K; Garcia-Sciveres, M; Borri, M; Da Via, C; Freestone, J; Kolya, S; Lai, C H; Nellist, C; Pater, J; Thompson, R; Watts, S J; Hoeferkamp, M; Seidel, S; Bolle, E; Gjersdal, H; Sjobaek, K N; Stapnes, S; Rohne, O; Su, D; Young, C; Hansson, P; Grenier, P; Hasi, J; Kenney, C; Kocian, M; Jackson, P; Silverstein, D; Davetak, H; DeWilde, B; Tsybychev, D; Dalla Betta, G F; Gabos, P; Povoli, M; Cobal, M; Giordani, M P; Selmi, L; Cristofoli, A; Esseni, D; Palestri, P; Fleta, C; Lozano, M; Pellegrini, G; Boscardin, M; Bagolini, A; Piemonte, C; Ronchin, S; Zorzi, N; Hansen, T E; Hansen, T; Kok, A; Lietaer, N; Kalliopuska, J; Oja, A

    2011-01-01

    The Pixel detector is the innermost part of the ATLAS experiment tracking device at the Large Hadron Collider (LHC), and plays a key role in the reconstruction of the primary and secondary vertices of short-lived particles. To cope with the high level of radiation produced during the collider operation, it is planned to add to the present three layers of silicon pixel sensors which constitute the Pixel Detector, an additional layer (Insertable B-Layer, or IBL) of sensors. 3D silicon sensors are one of the technologies which are under study for the IBL. 3D silicon technology is an innovative combination of very-large-scale integration (VLSI) and Micro-Electro-Mechanical-Systems (MEMS) where electrodes are fabricated inside the silicon bulk instead of being implanted on the wafer surfaces. 3D sensors, with electrodes fully or partially penetrating the silicon substrate, are currently fabricated at different processing facilities in Europe and USA. This paper reports on the 2010 June beam test results for irradi...

  5. Electron beam writing on semiconductors

    International Nuclear Information System (INIS)

    Bierhenke, H.; Kutzer, E.; Pascher, A.; Plitzner, H.; Rummel, P.; Siemens A.G., Muenchen; Siemens A.G., Muenchen

    1979-08-01

    Reported are the results of the 3 1/2 year research project 'Electron beam Writing on Semiconductors'. Work has been done in the field of direct wafer exposure techniques, and of mask making. Described are resist technology, setting up of a research device, exploration of alignment procedures, manufacturing of devices and their radiation influence. Furthermore, investigations and measurements of an electron beam machine bought for mask making purposes, the development of LSI-circuits with this machine, the software necessary and important developments of digital subsystems are reported. (orig.) [de

  6. Physical-dosimetric enabling a dual linear accelerator 3D planning systems for radiotherapy

    International Nuclear Information System (INIS)

    Alfonso, Rodolfo; Martinez, William; Arelis, Lores; Morales, Jorge

    2009-01-01

    The process of commissioning clinical linear accelerator requires a dual comprehensive study of the therapeutic beam parameters, both photons Electron. All information gained by measuring physical and dosimetric these beams must be analyzed, processed and refined for further modeling in computer-based treatment planning (RTPS). Of professionalism of this process will depend on the accuracy and precision of the calculations the prescribed doses. This paper aims to demonstrate availability clinical linear accelerator system-RTPS with late radiotherapy treatments shaped beam of photons and electrons. (author)

  7. ICAN: High power neutral beam generation

    International Nuclear Information System (INIS)

    Moustaizis, S.D.; Lalousis, P.; Perrakis, K.; Auvray, P.; Larour, J.; Ducret, J.E.; Balcou, P.

    2015-01-01

    During the last few years there is an increasing interest on the development of alternative high power new negative ion source for Tokamak applications. The proposed new neutral beam device presents a number of advantages with respect to: the density current, the acceleration voltage, the relative compact dimension of the negative ion source, and the coupling of a high power laser beam for photo-neutralization of the negative ion beam. Here we numerically investigate, using a multi- fluid 1-D code, the acceleration and the extraction of high power ion beam from a Magnetically Insulated Diode (MID). The diode configuration will be coupled to a high power device capable of extracting a current up to a few kA with an accelerating voltage up to MeV. An efficiency of up to 92% of the coupling of the laser beam, is required in order to obtain a high power, up to GW, neutral beam. The new high energy, high average power, high efficiency (up to 30%) ICAN fiber laser is proposed for both the plasma generation and the photo-neutralizer configuration. (authors)

  8. The elettra beam line control system

    International Nuclear Information System (INIS)

    Mignacco, M.; Abrami, A.; Dequal, Z.

    1994-01-01

    Elettra is a third generation Synchrotron Light Source located in Trieste (Italy). It consists of a full energy linac injector and a storage ring with beam energies between 1.5 and 2 GeV. The facility is scheduled to be operational by end 1993. For the whole project 22 beam lines from insertion devices are foreseen, each of them is composed of a large number of measurement and controls instruments, most of them embedded in intelligent devices; in addition each beam line can be considered unique compared to the others, having been designed to provide a different kind of synchrotron radiation. This results in a large not homogenous environment where more than 200,000 physical points have to be controlled. A joint team composed of Softeco Sismat and Digital Equipment has developed a fully automated beam line control system able to give full remote controls, with different kind of access rights, to beam line users and beam line specialists as well as a full integration with experiment control systems. ((orig.))

  9. Theoretical aspects of the electronical devices operating due to interaction between annular electron beams and the azimuthal surface waves

    Energy Technology Data Exchange (ETDEWEB)

    Girka, V O; Girka, I O [Kharkiv State Univ. (Ukraine)

    1997-12-31

    The physical basis is discussed of electronic devices whose operation is based on the beam or dissipative instability of the azimuthal surface waves (ASW). The ASW are electromagnetic surface waves with extraordinary polarization (with field components E{sub r}, E{sub {phi}}, H{sub z}), propagating across the axial external steady magnetic field in the cylindrical metal waveguide with cold plasma filling. The ASW fields are described by Maxwell equations. To solve the problem, the authors used the Fourier method and numerical simulation of the equations obtained. The ASW excitation was examined under conditions of beam and dissipative instabilities due to the electron beam motion. The correction to ASW eigenfrequencies caused by the waveguide chamber noncircularity was also studied. ASW delaying leads to a negative frequency correction. The ASW energy can be emitted from the narrow slot in the metallic chamber of the waveguide. The optimum wavenumber range was found where the increment values are much greater than those of the ASW decrement caused by their energy radiation. (author). 2 figs., 3 refs.

  10. Innovative thin silicon detectors for monitoring of therapeutic proton beams: preliminary beam tests

    Science.gov (United States)

    Vignati, A.; Monaco, V.; Attili, A.; Cartiglia, N.; Donetti, M.; Fadavi Mazinani, M.; Fausti, F.; Ferrero, M.; Giordanengo, S.; Hammad Ali, O.; Mandurrino, M.; Manganaro, L.; Mazza, G.; Sacchi, R.; Sola, V.; Staiano, A.; Cirio, R.; Boscardin, M.; Paternoster, G.; Ficorella, F.

    2017-12-01

    To fully exploit the physics potentials of particle therapy in delivering dose with high accuracy and selectivity, charged particle therapy needs further improvement. To this scope, a multidisciplinary project (MoVeIT) of the Italian National Institute for Nuclear Physics (INFN) aims at translating research in charged particle therapy into clinical outcome. New models in the treatment planning system are being developed and validated, using dedicated devices for beam characterization and monitoring in radiobiological and clinical irradiations. Innovative silicon detectors with internal gain layer (LGAD) represent a promising option, overcoming the limits of currently used ionization chambers. Two devices are being developed: one to directly count individual protons at high rates, exploiting the large signal-to-noise ratio and fast collection time in small thicknesses (1 ns in 50 μm) of LGADs, the second to measure the beam energy with time-of-flight techniques, using LGADs optimized for excellent time resolutions (Ultra Fast Silicon Detectors, UFSDs). The preliminary results of first beam tests with therapeutic beam will be presented and discussed.

  11. A Strategic Design of an Opto-Chemical Security Device with Resettable and Reconfigurable Password Based Upon Dual Channel Two-in-One Chemosensor Molecule.

    Science.gov (United States)

    Majumdar, Tapas; Haldar, Basudeb; Mallick, Arabinda

    2017-02-20

    A simple strategy is proposed to design and develop an intelligent device based on dual channel ion responsive spectral properties of a commercially available molecule, harmine (HM). The system can process different sets of opto-chemical inputs generating different patterns as fluorescence outputs at specific wavelengths which can provide an additional level of protection exploiting both password and pattern recognitions. The proposed system could have the potential to come up with highly secured combinatorial locks at the molecular level that could pose valuable real time and on-site applications for user authentication.

  12. Recoil transporter devices

    International Nuclear Information System (INIS)

    Madhavan, N.

    2005-01-01

    The study of sparsely produced nuclear reaction products in the direction of intense primary beam is a challenging task, the pursuit of which has given rise to the advent or several types of selective devices. These range from a simple parallel plate electrostatic deflector to state-of-the-art electromagnetic separators. There is no single device which can satisfy all the requirements of an ideal recoil transporter, simultaneously. An overview of such devices and their building blocks is presented, which may help in the proper choice of the device as per the experimental requirements. (author)

  13. Performance of the EUDET-type beam telescopes

    CERN Document Server

    Jansen, H; Bulgheroni, A.; Claus, G.; Corrin, E.; Cussans, D.G.; Dreyling-Eschweiler, J.; Eckstein, D.; Eichhorn, T.; Goffe, M.; Gregor, I.M.; Haas, D.; Muhl, C.; Perrey, H.; Peschke, R.; Roloff, P.; Rubinskiy, I.; Winter, M.

    2016-01-01

    Test beam measurements at the test beam facilities of DESY have been conducted to characterise the performance of the EUDET-type beam telescopes originally developed within the EUDET project. The beam telescopes are equipped with six sensor planes using MIMOSA26 monolithic active pixel devices. A programmable Trigger Logic Unit provides trigger logic and time stamp information on particle passage. Both data acquisition framework and offline reconstruction software packages are available. User devices are easily integrable into the data acquisition framework via predefined interfaces. The biased residual distribution is studied as a function of the beam energy, plane spacing and sensor threshold. Its width at the two centre pixel planes using all six planes for tracking in a 6 GeV electron/positron-beam is measured to be $(2.88\\,\\pm\\,0.08)\\,\\upmu\\meter$. Iterative track fits using the formalism of General Broken Lines are performed to estimate the intrinsic resolution of the individual pixel planes. The mean i...

  14. Beam position monitor sensitivity for low-β beams

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1993-01-01

    At low velocities, the EM field of a particle in a conducting beam tube is no longer a TEM wave, but has a finite longitudinal extent. The net effect of this is to reduce the coupling of the high-frequency Fourier components of the beam current to BPM (beam position monitor) electrodes, which modifies the BPM sensitivity to beam displacement. This effect is especially pronounced for high-frequency, large-aperture pickups used for low-β beams. Non-interceptive beam position monitors used in conjunction with high frequency RFQ (radio-frequency-quadrupole) and DTL (drift-tube-linac) accelerators fall into this category. When testing a BPM with a thin wire excited with either pulses or high-frequency sinusoidal currents, the EM wave represents the principal (TEM) mode in a coaxial transmission line, which is equivalent to a highly relativistic (β = 1) beam. Thus wire measurements are not suitable for simulating slow particle beams in high bandwidth diagnostic devices that couple to the image currents in the beam tube wall. Attempts to load the tin wire either capacitively or inductively to slow the EM wave down have met with limited success. In general, the equations used to represent the 2-D response of cylindrical-geometry BPMs to charged-particle beams make several assumptions: (1) the BPM electrodes are flush with and grounded to the surface of the conducting beam tube; (2) the beam is a line source (pencil beam); (3) the longitudinal extent of the EM field of a beam particle at the beam tube wall is zero, corresponding to a highly relativistic beam. The purpose of this paper is to make some quantitative estimates of the corrections to the conventional approximations when a BPM is used to measure the position of low velocity (low-β) beams

  15. RIKEN RI Beam Factory and recent research activities

    International Nuclear Information System (INIS)

    Ueno, H.

    2014-01-01

    RIKEN has started the operation of the new facility for the Radioactive-Isotope Beam Factory (RIBF) project since 2006. In this project, intense primary beams are delivered at the energy E/A = 345 MeV over the whole range of the atomic number under the cyclotron-cascade acceleration scheme. The current, stability and sustainability in beam delivery have been increased significantly by recent improvement of the accelerator system. A high-current primary beam is then used to produce radioactive-isotope beams at the world's highest current utilizing the superconducting in-flight RI separator BigRIPS. Following the BigRIPS separator, several large-scale experimental key devices have been / will be installed, in order to fully capitalize the RIBF project. Owing to these progresses, nuclear structure information on far-unstable nuclei, which cannot be obtained by conventional technology, are now capable of being measured. Furthermore, in addition to such BigRIPS-related devices, other original experimental devices have been also newly installed at the lower energy experimental sites. Unique research opportunities are now available at the RIBF facility. (author)

  16. Pre-reconstruction dual-energy, X-ray computerized tomography (CT): theory, implementation, results, and clinical use

    International Nuclear Information System (INIS)

    Oravez, W.T.

    1986-01-01

    For the task of bone mineral measurement, single-energy quantitative CT has demonstrated its worth in terms of precision for most longitudinal clinical studies. However, for cross-sectional clinical studies, known inaccuracy exists due to less than robust beam-hardening corrections, and negatively biased bone mineral measurement, due to the effect of unknown variable concentration of bone marrow fat within the metabolically active trabecular bone space. A dual-energy measurement technique provides a solution to these deficiencies of single-energy measurements. The fundamental theory of dual-energy measurement techniques is based on a Compton-photoelectric approximation and the mixture rule for the total attenuation coefficient. Resolution of atomic composition and electron density components of attenuation should then be possible. To take full advantage of these principles, the raw dual-energy projection values are operated on before reconstruction. This method beam-hardening and composition-selective imaging. Rapid kilovoltage switching between projection measurements, rather than serial measurements, assures the best measurement quality

  17. DEVICE FOR MEASURING OF THERMAL LENS PARAMETERS IN LASER ACTIVE ELEMENTS WITH A PROBE BEAM METHOD

    Directory of Open Access Journals (Sweden)

    A. N. Zakharova

    2015-01-01

    Full Text Available We have developed a device for measuring of parameters of thermal lens (TL in laser active elements under longitudinal diode pumping. The measurements are based on the probe beam method. This device allows one to determine sign and optical power of the lens in the principal meridional planes, its sensitivity factor with respect to the absorbed pump power and astigmatism degree, fractional heat loading which make it possible to estimate integral impact of the photoelastic effect to the formation of TL in the laser element. The measurements are performed in a linearly polarized light at the wavelength of 532 nm. Pumping of the laser element is performed at 960 nm that makes it possible to study laser materials doped with Yb3+ and (Er3+, Yb3+ ions. The precision of measurements: for sensitivity factor of TL – 0,1 m-1/W, for astigmatism degree – 0,2 m-1/W, for fractional heat loading – 5 %, for the impact of the photoelastic effect – 0,5 × 10-6 K-1. This device is used for characterization of thermal lens in the laser active element from an yttrium vanadate crystal, Er3+,Yb3+:YVO .

  18. Applications of neutral beam and rf technologies

    International Nuclear Information System (INIS)

    Haselton, H.H.

    1987-04-01

    This presentation provides an update on the applications of neutral beams and radiofrequency (rf) power in the fusion program; highlights of the ion cyclotron heating (ICH) experiments now in progress, as well as the neutral beam experiments; and heating requirements of future devices and some of the available options. Some remarks on current drive are presented because this area of technology is one that is being considered for future devices

  19. Overview of linac applications at future radioactive beam facilities

    International Nuclear Information System (INIS)

    Nolen, J.A.

    1996-01-01

    There is considerable interest worldwide in the research which could be done at a next generation, advanced radioactive beam facility. To generate high quality, intense beams of accelerated radionuclides via the open-quotes isotope separator on-lineclose quotes (ISOL) method requires two major accelerator components: a high power (100 kW) driver device to produce radionuclides in a production target/ion source complex, and a secondary beam accelerator to produce beams of radioactive ions up to energies on the order of 10 MeV per nucleon over a broad mass range. In reviewing the technological challenges of such a facility, several types of modem linear accelerators appear well suited. This paper reviews the properties of the linacs currently under construction and those proposed for future facilities for use either as the driver device or the radioactive beam post-accelerator. Other choices of accelerators, such as cyclotrons, for either the driver or secondary beam devices of a radioactive beam complex will also be compared. Issues to be addressed for the production accelerator include the choice of ion beam types to be used for cost-effective production of radionuclides. For the post-accelerator the choice of ion source technology is critical and dictates the charge-to-mass requirements at the injection stage

  20. Image quality and absorbed dose comparison of single- and dual-source cone-beam computed tomography.

    Science.gov (United States)

    Miura, Hideharu; Ozawa, Shuichi; Okazue, Toshiya; Kawakubo, Atsushi; Yamada, Kiyoshi; Nagata, Yasushi

    2018-04-17

    Dual-source cone-beam computed tomography (DCBCT) is currently available in the Vero4DRT image-guided radiotherapy system. We evaluated the image quality and absorbed dose for DCBCT and compared the values with those for single-source CBCT (SCBCT). Image uniformity, Hounsfield unit (HU) linearity, image contrast, and spatial resolution were evaluated using a Catphan phantom. The rotation angle for acquiring SCBCT and DCBCT images is 215° and 115°, respectively. The image uniformity was calculated using measurements obtained at the center and four peripheral positions. The HUs of seven materials inserted into the phantom were measured to evaluate HU linearity and image contrast. The Catphan phantom was scanned with a conventional CT scanner to measure the reference HU for each material. The spatial resolution was calculated using high-resolution pattern modules. Image quality was analyzed using ImageJ software ver. 1.49. The absorbed dose was measured using a 0.6-cm 3 ionization chamber with a 16-cm-diameter cylindrical phantom, at the center and four peripheral positions of the phantom, and calculated using weighted cone-beam CT dose index (CBCTDI w ). Compared with that of SCBCT, the image uniformity of DCBCT was slightly reduced. A strong linear correlation existed between the measured HU for DCBCT and the reference HU, although the linear regression slope was different from that of the reference HU. DCBCT had poorer image contrast than did SCBCT, particularly with a high-contrast material. There was no significant difference between the spatial resolutions of SCBCT and DCBCT. The absorbed dose for DCBCT was higher than that for SCBCT, because in DCBCT, the two x-ray projections overlap between 45° and 70°. We found that the image quality was poorer and the absorbed dose was higher for DCBCT than for SCBCT in the Vero4DRT. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of

  1. Design of a multi beam klystron cavity from its single beam parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kant, Deepender, E-mail: dkc@ceeri.ernet.in; Joshi, L. M. [CSIR-Central Electronics Engineering Research Institute, Pilani (India); Janyani, Vijay [Department of ECE, MNIT, Jaipur (India)

    2016-03-09

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  2. Design of a multi beam klystron cavity from its single beam parameters

    International Nuclear Information System (INIS)

    Kant, Deepender; Joshi, L. M.; Janyani, Vijay

    2016-01-01

    The klystron is a well-known microwave amplifier which uses kinetic energy of an electron beam for amplification of the RF signal. There are some limitations of conventional single beam klystron such as high operating voltage, low efficiency and bulky size at higher power levels, which are very effectively handled in Multi Beam Klystron (MBK) that uses multiple low purveyance electron beams for RF interaction. Each beam propagates along its individual transit path through a resonant cavity structure. Multi-Beam klystron cavity design is a critical task due to asymmetric cavity structure and can be simulated by 3D code only. The present paper shall discuss the design of multi beam RF cavities for klystrons operating at 2856 MHz (S-band) and 5 GHz (C-band) respectively. The design approach uses some scaling laws for finding the electron beam parameters of the multi beam device from their single beam counter parts. The scaled beam parameters are then used for finding the design parameters of the multi beam cavities. Design of the desired multi beam cavity can be optimized through iterative simulations in CST Microwave Studio.

  3. LHC Report: Towards stable beams and collisions

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Over the past two weeks, the LHC re-commissioning with beam has continued at a brisk pace. The first collisions of 2011 were produced on 2 March, with stable beams and collisions for physics planned for the coming days. Low intensity beams with just a few bunches of particles were used to test the energy ramp to 3.5 TeV and the squeeze. The results were successful and, as a by-product, the first collisions of 2011 were recorded 2 March. One of the main activities carried out by the operation teams has been the careful set-up of the collimation system, and the injection and beam dump protection devices. The collimation system provides essential beam cleaning, preventing stray particles from impacting other elements of the machine, particularly the superconducting magnets. In addition to the collimation system, also the injection and beam dump protection devices perform a vital machine protection role, as they detect any beam that might be mis-directed during rare, but not totally unavoidable, hardware hiccups...

  4. Neutral-beam-heating applications and development

    International Nuclear Information System (INIS)

    Menon, M.M.

    1981-01-01

    The technique of heating the plasma in magnetically confined fusion devices by the injection of intense beams of neutral atoms is described. The basic principles governing the physics of neutral beam heating and considerations involved in determining the injection energy, power, and pulse length required for a fusion reactor are discussed. The pertinent experimental results from various fusion devices are surveyed to illustrate the efficacy of this technique. The second part of the paper is devoted to the technology of producing the neutral beams. A state-of-the-art account o the development of neutral injectors is presented, and the prospects for utilizing neutral injection to heat the plasma in a fusion reactor are examined

  5. Vortex Airy beams directly generated via liquid crystal q-Airy-plates

    Science.gov (United States)

    Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin

    2018-03-01

    Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.

  6. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, Hanno; Rozendaal, Roel; Camargo, Priscilla; Mans, Anton; Wendling, Markus; Olaciregui-Ruiz, Igor; Sonke, Jan-Jakob; van Herk, Marcel; Mijnheer, Ben

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the

  7. Electron beam application in industrial polymer processing - Review and outlook

    International Nuclear Information System (INIS)

    Gielenz, G.

    2001-01-01

    Full text: The various established industrial electron beam (EB) applications as related to polymers, their corresponding material and process fundamentals are discussed in this paper. The basics of nowadays most common irradiation processes, which are for continuous stranded products: Single Beam, Rotary Technique; Single Beam, Multiple Pass Technique; Dual Beam, Multiple Pass Technique; and Single Beam, Single (Multiple) Pass Technique by means of a conveyor belt or cart system for discontinuous goods are briefly addressed together with some typical examples for illustration. Some comments on the (dis)advantages and the future economic optimization potential which EB processing technologies could provide to the respective polymer processing industries are presented with respect to material, accelerator equipment and related product handling hardware. The future competitiveness of irradiation crosslinking technologies, which offer numerous advantages in comparison to conventional CV curing and silane crosslinking technologies, only can be maintained by increasing their economic attractiveness, which is: high processing speeds, high material throughput at low production costs and comparatively low capital investment of the hardware involved. Other, more sophisticated irradiation process proposals found in the literature and respective patent publications will be briefly presented, although all of which lack more or less practical evidence for industrial economic and reliable application. Finally, the authors vision of a more efficient, economical EB-process design, by combining quasi state of the art EB-equipment components with a novel beam deflection system to practically achieve a 'Dual Beam, Four Side Crossfiring Process' for continuous strand-products, will be presented. (author)

  8. The Explicit Determinations Of Dual Plane Curves And Dual Helices In Terms Of Its Dual Curvature And Dual Torsion

    OpenAIRE

    Lee Jae Won; Choi Jin Ho; Jin Dae Ho

    2014-01-01

    In this paper, we give the explicit determinations of dual plane curves, general dual helices and dual slant helices in terms of its dual curvature and dual torsion as a fundamental theory of dual curves in a dual 3-space

  9. Hybrid dual gate ferroelectric memory for multilevel information storage

    KAUST Repository

    Khan, Yasser; Caraveo-Frescas, Jesus Alfonso; Alshareef, Husam N.

    2015-01-01

    Here, we report hybrid organic/inorganic ferroelectric memory with multilevel information storage using transparent p-type SnO semiconductor and ferroelectric P(VDF-TrFE) polymer. The dual gate devices include a top ferroelectric field

  10. Experimental observations and theoretical models for beam-beam phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10/sup 10/-10/sup 11/ and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented.

  11. Experimental observations and theoretical models for beam-beam phenomena

    International Nuclear Information System (INIS)

    Kheifets, S.

    1981-03-01

    The beam-beam interaction in storage rings exhibits all the characteristics of nonintegrable dynamical systems. Here one finds all kinds of resonances, closed orbits, stable and unstable fixed points, stochastic layers, chaotic behavior, diffusion, etc. The storage ring itself being an expensive device nevertheless while constructed and put into operation presents a good opportunity of experimentally studying the long-time behavior of both conservative (proton machines) and nonconservative (electron machines) dynamical systems - the number of bunch-bunch interactions routinely reaches values of 10 10 -10 11 and could be increased by decreasing the beam current. At the same time the beam-beam interaction puts practical limits for the yield of the storage ring. This phenomenon not only determines the design value of main storage ring parameters (luminosity, space charge parameters, beam current), but also in fact prevents many of the existing storage rings from achieving design parameters. Hence, the problem has great practical importance along with its enormous theoretical interest. A brief overview of the problem is presented

  12. Microwave generation enhancement of X-band CRBWO by use of coaxial dual annular cathodes

    Directory of Open Access Journals (Sweden)

    Yan Teng

    2013-07-01

    Full Text Available This paper presents an approach that greatly enhances both the output power and the conversion efficiency of the coaxial relativistic backward wave oscillator (CRBWO by using coaxial dual annular cathodes, which increases the diode current rather than the diode voltage. The reasons for the maladjustment of CRBWO under a high diode voltage are analyzed theoretically. It is found that by optimization of the diode structure, the shielding effect of the space charge of the outer beams on the inner cathode can be alleviated effectively and dual annular beams with the same kinetic energy can be explosively emitted in parallel. The coaxial reflector can enhance the conversion efficiency by improving the premodulation of the beams. The electron dump on the inner conductor ensures that the electron beams continue to provide kinetic energy to the microwave output until they vanish. Particle-in-cell (PIC simulation results show that generation can be enhanced up to an output power level of 3.63 GW and conversion efficiency of 45% at 8.97 GHz under a diode voltage of 659 kV and current of 12.27 kA. The conversion efficiency remains above 40% and the output frequency variation is less than 100 MHz over a voltage range of more than 150 kV. Also, the application of the coaxial dual annular cathodes means that the diode impedance is matched to that of the transmission line of the accelerators. This impedance matching can effectively eliminate power reflection at the diode, and thus increase the energy efficiency of the entire system.

  13. Micro/nano analysis of tooth microstructures by Focused Ion Beam (FIB cross-sectioning

    Directory of Open Access Journals (Sweden)

    Meltem Sezen

    2017-04-01

    Full Text Available Since dental structures are hard and fragile, cross-sectioning of these materials using ultramicrotomy and other techniques and following micro and nano analysis cause problems. The use of FIB-SEM dual beam platforms is the most convenient solution for investigating the microstructures, site-specifically and in certain geometries. Dual beam platforms allow for imaging at high magnifications and resolutions and simultaneous elemental analysis. In this study, the micro/nano-structural and chemical differences were revealed in dentin and enamel samples. The investigation of dental tissues having different morphologies and chemical components by ion-cross-sectioning is important for the use of FIB-SEM platforms in dentistry in Turkey.

  14. Coupled PIXE and RBS using a 6MeV 4He2+ external beam: A new experimental device for particle detection and dose monitoring

    International Nuclear Information System (INIS)

    Mathis, F.; Moignard, B.; Pichon, L.; Dubreuil, O.; Salomon, J.

    2005-01-01

    AGLAE (Accelerateur Grand Louvre d'Analyses Elementaire), the IBA facility of the 'Centre de Recherche et de Restauration des Musees de France' (C2RMF) has been equipped for several years with an external micro-beam line, in order to perform ion beam analysis on materials relevant to cultural heritage. This beam line is undergoing constant improvement. Recently, a new extraction nozzle for the external beam of the accelerator has been designed in order to obtain simultaneously from the same spot: - detection of the X-ray emission by two detectors, for low and high energies; - detection of the backscattered particles for a backscattering angle between 170 and 175 deg., thanks to an annular surface barrier detector included in the nozzle; - particle current monitoring by intermittent beam deflection on a reference material included in the system. This technical development has been induced by the study of artificial patinas on archaeological copper-alloy objects and the attempt to characterize them with a 6MeV 4 He 2+ beam, an unusual beam for this type of investigation. A detailed description of the new device and some results on an application of the use of high-energy alpha beam in PIXE and RBS made on a Roman strigil are presented here

  15. Beam catcher/dump

    International Nuclear Information System (INIS)

    Makdisi, Y.; Rodger, E.; Glenn, J.W.; Brown, K.

    1985-01-01

    A simple, low cost aperture limiting device with an absorber block has been developed and installed in the AGS ring at Brookhaven National Laboratory. The device intercepts injection tails, transition losses, and the inward spiraling beam of an aborted acceleration or extraction cycle. The resultant consolidation of losses at one point reduces activation of components around the ring and radiation exposure to personnel. 3 refs., 6 figs

  16. Methods and Devices for Space Optical Communications Using Laser Beams

    Science.gov (United States)

    Goorjian, Peter M. (Inventor)

    2018-01-01

    Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.

  17. Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy

    Science.gov (United States)

    Cooper, N.; Da Ros, E.; Nute, J.; Baldolini, D.; Jouve, P.; Hackermüller, L.; Langer, M.

    2018-03-01

    We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned microtube array the FWHM of the output beam is restricted to  ˜75 milliradians, with an estimated axial brightness of 3.6× 1014 atoms s-1 sr-1 for Li and 7.4× 1015 atoms s-1 sr-1 for Cs. We measure the properties of the output beam using a spatially-resolved fluorescence technique, which allows for the extraction of additional information not accessible without spatial resolution.

  18. Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam milling

    International Nuclear Information System (INIS)

    Lei, Anders; Petersen, Dirch Hjorth; Booth, Timothy John; Homann, Lasse Vinther; Kallesoe, Christian; Sukas, Ozlem Sardan; Molhave, Kristian; Boggild, Peter; Gyrsting, Yvonne

    2010-01-01

    Nano- and microelectromechanical structures for in situ operation in a transmission electron microscope (TEM) were fabricated with a turnaround time of 20 min and a resolution better than 100 nm. The structures are defined by focused ion beam (FIB) milling in 135 nm thin membranes of single crystalline silicon extending over the edge of a pre-fabricated silicon microchip. Four-terminal resistance measurements of FIB-defined nanowires showed at least two orders of magnitude increase in resistivity compared to bulk. We show that the initial high resistance is due to amorphization of silicon, and that current annealing recrystallizes the structure, causing the electrical properties to partly recover to the pristine bulk resistivity. In situ imaging of the annealing process revealed both continuous and abrupt changes in the crystal structure, accompanied by instant changes of the electrical conductivity. The membrane structures provide a simple way to design electron-transparent nanodevices with high local temperature gradients within the field of view of the TEM, allowing detailed studies of surface diffusion processes. We show two examples of heat-induced coarsening of gold on a narrow freestanding bridge, where local temperature gradients are controlled via the electrical current paths. The separation of device processing into a one-time batch-level fabrication of identical, generic membrane templates, and subsequent device-specific customization by FIB milling, provides unparalleled freedom in device layout combined with very short effective fabrication time. This approach significantly speeds up prototyping of nanodevices such as resonators, actuators, sensors and scanning probes with state-of-art resolution.

  19. Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Anders; Petersen, Dirch Hjorth; Booth, Timothy John; Homann, Lasse Vinther; Kallesoe, Christian; Sukas, Ozlem Sardan; Molhave, Kristian; Boggild, Peter [DTU Nanotech, Department of Nano- and Microtechnology, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Gyrsting, Yvonne, E-mail: Anders.Lei@nanotech.dtu.dk [DTU Danchip, National Center for Micro- and Nanofabrication, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2010-10-08

    Nano- and microelectromechanical structures for in situ operation in a transmission electron microscope (TEM) were fabricated with a turnaround time of 20 min and a resolution better than 100 nm. The structures are defined by focused ion beam (FIB) milling in 135 nm thin membranes of single crystalline silicon extending over the edge of a pre-fabricated silicon microchip. Four-terminal resistance measurements of FIB-defined nanowires showed at least two orders of magnitude increase in resistivity compared to bulk. We show that the initial high resistance is due to amorphization of silicon, and that current annealing recrystallizes the structure, causing the electrical properties to partly recover to the pristine bulk resistivity. In situ imaging of the annealing process revealed both continuous and abrupt changes in the crystal structure, accompanied by instant changes of the electrical conductivity. The membrane structures provide a simple way to design electron-transparent nanodevices with high local temperature gradients within the field of view of the TEM, allowing detailed studies of surface diffusion processes. We show two examples of heat-induced coarsening of gold on a narrow freestanding bridge, where local temperature gradients are controlled via the electrical current paths. The separation of device processing into a one-time batch-level fabrication of identical, generic membrane templates, and subsequent device-specific customization by FIB milling, provides unparalleled freedom in device layout combined with very short effective fabrication time. This approach significantly speeds up prototyping of nanodevices such as resonators, actuators, sensors and scanning probes with state-of-art resolution.

  20. Multiphase Venturi Dual Energy Gamma Ray combination performance in NUEX flow loop; Desempenho no flowloop do NUEX da medicao multifasica Venturi Dual Energy Gamma Ray

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, Claudio; Taranto, Cleber; Costa, Alcemir [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Pinguet, Bruno; Heluey, Vitor; Bessa, Fabiano; Loicq, Olivier [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Multiphase Venturi Dual Energy Gamma Ray Combination, Vx* technology, arrived in Brazil in 2000. PETROBRAS, Brazilian Oil Company, has been putting big efforts in its production business and also has demonstrated a large interest in having a multiphase meter approved by ANP for back allocation purposes. The oil industry was looking for ways to improve the back allocation process using an approved on line multiphase flow measurement device, thus replacing punctual test done today by a permanent monitoring device. Considering this scenario, a partnership project between PETROBRAS and Schlumberger was created in Brazil. The main objective of this project, which was held in NUEX flow loop, was to demonstrate to INMETRO (Brazilian Metrology Institute) that the Multiphase Venturi Dual Energy Gamma Ray Combination meter is able to be used for back allocation purpose. PETROBRAS and Schlumberger elaborated a complete methodology in the NUEX flow loop to demonstrate the results and benefits of the Multiphase Venturi Dual Energy Gamma Ray Combination meter. The test was witnessed by INMETRO and had a very good performance at the end. The results were within what was expected by Schlumberger, PETROBRAS and INMETRO. These results has been very useful to PETROBRAS in order to start using the Venturi Dual Energy Gamma Ray technology for well allocation purposes. (author)

  1. A proton beam delivery system for conformal therapy and intensity modulated therapy

    International Nuclear Information System (INIS)

    Yu Qingchang

    2001-01-01

    A scattering proton beam delivery system for conformal therapy and intensity modulated therapy is described. The beam is laterally spread out by a dual-ring double scattering system and collimated by a program-controlled multileaf collimator and patient specific fixed collimators. The proton range is adjusted and modulated by a program controlled binary filter and ridge filters

  2. Simulation of a low energy beam transport line

    International Nuclear Information System (INIS)

    Yang Yao; Liu Zhanwen; Zhang Wenhui; Ma Hongyi; Zhang Xuezhen; Zhao Hongwei; Yao Ze'en

    2012-01-01

    A 2.45 GHz electron cyclotron resonance intense proton source and a low energy beam transport line with dual-Glaser lens were designed and fabricated by Institute of Modern Physics for a compact pulsed hadron source at Tsinghua. The intense proton beams extracted from the ion source are transported through the transport line to match the downstream radio frequency quadrupole accelerator. Particle-in-cell code BEAMPATH was used to carry out the beam transport simulations and optimize the magnetic field structures of the transport line. Emittance growth due to space charge and spherical aberrations of the Glaser lens were studied in both theory and simulation. The results show that narrow beam has smaller aberrations and better beam quality through the transport line. To better match the radio frequency quadrupole accelerator, a shorter transport line is desired with sufficient space charge neutralization. (authors)

  3. A dual-optically-pumped polarized negative deuterium ion source

    International Nuclear Information System (INIS)

    Kinsho, M.; Mori, Y.; Ikegami, K.; Takagi, A.

    1994-01-01

    An optically pumped polarized H - source (OPPIS), which is based on the charge exchange between H + ions and electron-spin-polarized alkali atoms has been developed at KEK. Just by applying this scheme to a deuteron beam, it is difficult to obtain a highly vector polarized deuteron beam. To obtain highly vector polarized D - ions, we have developed a 'dual optical pumping type' of polarized D - source. With this scheme, a 100% vector nuclear-spin polarization for D - ions is possible in principle. In a preliminary experiment, a 60% of vector nuclear-spin polarized D - ions was obtained. (author)

  4. Conical Refraction: new observations and a dual cone model.

    Science.gov (United States)

    Sokolovskii, G S; Carnegie, D J; Kalkandjiev, T K; Rafailov, E U

    2013-05-06

    We propose a paraxial dual-cone model of conical refraction involving the interference of two cones of light behind the exit face of the crystal. The supporting experiment is based on beam selecting elements breaking down the conically refracted beam into two separate hollow cones which are symmetrical with one another. The shape of these cones of light is a product of a 'competition' between the divergence caused by the conical refraction and the convergence due to the focusing by the lens. The developed mathematical description of the conical refraction demonstrates an excellent agreement with experiment.

  5. Specialized beam diagnostic measurements for an ADTT accelerator funnel

    Energy Technology Data Exchange (ETDEWEB)

    Gilpatrick, J.D.

    1995-10-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for accelerator-driven transmutation technologies (ADTT) with beam-current densities greater than 5 mA/mm{sup 2}. The primary beam-diagnostics-instrumentation requirement for these facilities is to provide sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam diagnostics instrumentation must measure beam parameters such as the projected centroids and profiles, total integrated current, and particle loss. Because of the high specific energy loss in materials at beam energies less than 20 MeV, interceptive measurements such as wire scanners or fluors cannot be used to determine beam profiles or centroids. Therefore, noninterceptive techniques must be used for on-line diagnosis of high-intensity CW beam at low energies. The beam funnel area of these proposed accelerator facilities provide a particular interesting beam measurement challenge. In this area of the accelerator, beam measurements must also sense how well the two funnel-input-beams are matched to each other in phase space. This paper will discuss some of the measurement requirements for these proposed accelerator facilities and the various noninterceptive techniques to measure dual-beam funnel operation.

  6. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  7. Application of Beam Diagnostics for Intense Heavy Ion Beams at the GSI UNILAC

    CERN Document Server

    Barth, W; Glatz, J; Groening, L; Richter, S; Yaramishev, S

    2003-01-01

    With the new High Current Injector (HSI) of the GSI UNILAC the beam pulse intensity had been increased by approximately two orders of magnitudes. The HSI was mounted and commissioned in 1999; since this time the UNILAC serves as an injector for the synchrotron SIS, especially for high uranium intensities. Considering the high beam power of up to 1250 kW and the short stopping range for the UNILAC beam energies (≤12 MeV/u), accelerator components could be destroyed, even during a single beam pulse. All diagnostic elements had to be replaced preferably by non-destructive devices. The beam current is mainly measured by beam transformers instead of Faraday cups, beam positions are measured with segmented capacitive pick-ups and secondary beam monitors instead of profile harps. The 24 installed pick-ups are also used to measure intensities, widths and phase of the bunches, as well beam energies by evaluating pick-ups at different positions. The residual gas ionization monitors allow on-line measurements ...

  8. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1986-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500 to 700 keV are needed for this device

  9. Neutral-beam current drive in tokamaks

    International Nuclear Information System (INIS)

    Devoto, R.S.

    1987-01-01

    The theory of neutral-beam current drive in tokamaks is reviewed. Experiments are discussed where neutral beams have been used to drive current directly and also indirectly through neoclassical effects. Application of the theory to an experimental test reactor is described. It is shown that neutral beams formed from negative ions accelerated to 500-700 keV are needed for this device

  10. Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy

    Science.gov (United States)

    Kapsalidis, Filippos; Shahmohammadi, Mehran; Süess, Martin J.; Wolf, Johanna M.; Gini, Emilio; Beck, Mattias; Hundt, Morten; Tuzson, Béla; Emmenegger, Lukas; Faist, Jérôme

    2018-06-01

    We report on the design, fabrication, and performance of dual-wavelength distributed-feedback (DFB) quantum cascade lasers (QCLs) emitting at several wavelengths in the mid-infrared (mid-IR) spectrum. In this work, two new designs are presented: for the first one, called "Neighbour" DFB, two single-mode DFB QCLs are fabricated next to each other, with minimal lateral distance, to allow efficient beam-coupling into multi-pass gas cells. In addition, the minimal distance allows either laser to be used as an integrated heater for the other, allowing to extend the tuning range of its neighbour without any electrical cross-talk. For the second design, the Vernier effect was used to realize a switchable DFB laser, with two target wavelengths which are distant by about 300 cm^{-1}. These devices are promising laser sources for Tunable Diode Laser Absorption Spectroscopy applications targeting simultaneous detection of multiple gasses, with distant spectral features, in compact and mobile setups.

  11. Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration

    Science.gov (United States)

    Xie, Yunhe; Ainsley, Christopher; Yin, Lingshu; Zou, Wei; McDonough, James; Solberg, Timothy D.; Lin, Alexander; Teo, Boon-Keng Kevin

    2018-03-01

    A major source of uncertainty in proton therapy is the conversion of Hounsfield unit (HU) to proton stopping power ratio relative to water (SPR). In this study, we measured and quantified the accuracy of a stoichiometric dual energy CT (DECT) SPR calibration. We applied a stoichiometric DECT calibration method to derive the SPR using CT images acquired sequentially at 80 kVp and 140 kVp . The dual energy index was derived based on the HUs of the paired spectral images and used to calculate the effective atomic number (Z eff), relative electron density ({{ρ }e} ), and SPRs of phantom and biological materials. Two methods were used to verify the derived SPRs. The first method measured the sample’s water equivalent thicknesses to deduce the SPRs using a multi-layer ion chamber (MLIC) device. The second method utilized Gafchromic EBT3 film to directly compare relative ranges between sample and water after proton pencil beam irradiation. Ex vivo validation was performed using five different types of frozen animal tissues with the MLIC and three types of fresh animal tissues using film. In addition, the residual ranges recorded on the film were used to compare with those from the treatment planning system using both DECT and SECT derived SPRs. Bland-Altman analysis indicates that the differences between DECT and SPR measurement of tissue surrogates, frozen and fresh animal tissues has a mean of 0.07% and standard deviation of 0.58% compared to 0.55% and 1.94% respectively for single energy CT (SECT) and SPR measurement. Our ex vivo study indicates that the stoichiometric DECT SPR calibration method has the potential to be more accurate than SECT calibration under ideal conditions although beam hardening effects and other image artifacts may increase this uncertainty.

  12. Overview of the CERN Linac4 beam instrumentation

    CERN Document Server

    Roncarolo, F; Bravin, E; Dehning, B; Duraffourg, M; Gerard, D; Holzer, E B; Lenardon, F; Focker, G; Raich, U; Soby, L; Sordet, M; Tan, J; Tranquille, G; Vuitton, C; Zamantzas, C; Cheymol, B

    2010-01-01

    The CERN LINAC4 will represent the first upgrade of the LHC injection chain, by accelerating H- ions from 45 KeV to 160 MeV for charge-exchange injection into the PS Booster. In order to provide its safe and efficient commissioning and operation, a wide variety of beam diagnostics devices has been designed for installation at convenient locations all over the accelerator length and in the transfer line to the PS Booster. This paper gives an overview of all instrumentation devices, including those to measure beam position, transverse and longitudinal profile, beam current and beam loss. The well advanced status of the system design and the main instrument features are discussed

  13. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Chang

    2017-10-01

    Full Text Available Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the “open loop sensitivity” of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  14. Design, Fabrication, and Modeling of a Novel Dual-Axis Control Input PZT Gyroscope.

    Science.gov (United States)

    Chang, Cheng-Yang; Chen, Tsung-Lin

    2017-10-31

    Conventional gyroscopes are equipped with a single-axis control input, limiting their performance. Although researchers have proposed control algorithms with dual-axis control inputs to improve gyroscope performance, most have verified the control algorithms through numerical simulations because they lacked practical devices with dual-axis control inputs. The aim of this study was to design a piezoelectric gyroscope equipped with a dual-axis control input so that researchers may experimentally verify those control algorithms in future. Designing a piezoelectric gyroscope with a dual-axis control input is more difficult than designing a conventional gyroscope because the control input must be effective over a broad frequency range to compensate for imperfections, and the multiple mode shapes in flexural deformations complicate the relation between flexural deformation and the proof mass position. This study solved these problems by using a lead zirconate titanate (PZT) material, introducing additional electrodes for shielding, developing an optimal electrode pattern, and performing calibrations of undesired couplings. The results indicated that the fabricated device could be operated at 5.5±1 kHz to perform dual-axis actuations and position measurements. The calibration of the fabricated device was completed by system identifications of a new dynamic model including gyroscopic motions, electromechanical coupling, mechanical coupling, electrostatic coupling, and capacitive output impedance. Finally, without the assistance of control algorithms, the "open loop sensitivity" of the fabricated gyroscope was 1.82 μV/deg/s with a nonlinearity of 9.5% full-scale output. This sensitivity is comparable with those of other PZT gyroscopes with single-axis control inputs.

  15. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  16. 3D modeling of dual-gate FinFET.

    Science.gov (United States)

    Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John

    2012-11-13

    The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.

  17. Brain SPECT with short focal-length cone-beam collimation

    International Nuclear Information System (INIS)

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-01-01

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR CRB ) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR CRB , compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR CRB increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR CRB were relatively robust to mismatches

  18. Feedback-stabilized dual-beam laser interferometer for plasma measurements

    International Nuclear Information System (INIS)

    Yasuda, A.; Kanai, Y.; Kusunoki, J.; Kawahata, K.; Takeda, S.

    1980-01-01

    A stabilized laser interferometer is proposed with two beams as the light source. The fringe shift for a 0.63 μm beam of a He--Ne laser is used to stabilize the interferometer against the effect of mechanical vibrations via a feedback controlled speaker coil, while another beam of 3.39 μm, for which consequently the effect of the mechanical vibrations is excluded, is used to measure the plasma density. A stability of approx.1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hz. The stability for higher frequencies is limited to approx.1/30 of one fringe for 0.63 μm, which correspondes to approx.1/200 of one fringe for 3.39 μm, by the acoustic noise picked up by the speaker coil. Furthermore, the total accuracy is limited by the detector noise to approx.1/60 of one fringe for 3.39 μm, which corresponds to a line electron density of approx.5 x 10 14 cm -2 . The detector noise may be reduced by cooling the detector. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. The interferometer is tested with the measurement of a plasma in a dynamic magnetic arcjet. Since the effect of the neutral gas background is reduced in the present interferometer, the application has an advantage for the diagnostics of plasmas produced in high pressure gases

  19. Heavy ion beam probing

    International Nuclear Information System (INIS)

    Hickok, R.L.

    1980-07-01

    This report consists of the notes distributed to the participants at the IEEE Mini-Course on Modern Plasma Diagnostics that was held in Madison, Wisconsin in May 1980. It presents an overview of Heavy Ion Beam Probing that briefly describes the principles and discuss the types of measurements that can be made. The problems associated with implementing beam probes are noted, possible variations are described, estimated costs of present day systems, and the scaling requirements for large plasma devices are presented. The final chapter illustrates typical results that have been obtained on a variety of plasma devices. No detailed calculations are included in the report, but a list of references that will provide more detailed information is included

  20. Toroidal electron beam energy storage for controlled fusion

    International Nuclear Information System (INIS)

    Clark, W.; Korn, P.; Mondelli, A.; Rostoker, N.

    1976-01-01

    In the presence of an external magnetic field stable equilibria exist for an unneutralized electron beam with ν/γ >1. As a result, it is in principle, possible to store very large quantities of energy in relatively small volumes by confining an unneutralized electron beam in a Tokamak-like device. The energy is stored principally in the electrostatic and self-magnetic fields associated with the beam and is available for rapid heating of pellets for controlled fusion. The large electrostatic potential well in such a device would be sufficient to contain energetic alpha particles, thereby reducing reactor wall bombardment. This approach also avoids plasma loss and wall bombardment by charge exchange neutrals. The conceptual design of an electrostatic Tokamak fusion reactor (ETFR) is discussed. A small toroidal device (the STP machine) has been constructed to test the principles involved. Preliminary experiments on this device have produced electron densities approximately 10% of those required in a reactor

  1. Beam Transport Devices for the 10 kW IR Free Electron Laser

    International Nuclear Information System (INIS)

    Lawrence Dillon-Townes; Michael Bevins; David Kashy; Stephanie Slachtouski; Ronald Lassiter; George Neil; Michelle Shinn; Joseph Gubeli; Christopher Behre; David Douglas; David W. Waldman; George Biallas; Lawrence Munk; Christopher Gould

    2005-01-01

    Beam transport components for the 10kW IR Free Electron Laser (FEL) at Thomas Jefferson National Accelerator Facility (Jefferson Lab) were designed to manage (1) electron beam transport and (2) photon beam transport. An overview of the components will be presented in this paper. The electron beam transport components were designed to address RF heating, maintain an accelerator transport vacuum of 1 x 10 -8 torr, deliver photons to the optical cavity, and provide 50 kW of beam absorption during the energy recovery process. The components presented include a novel shielded bellows, a novel zero length beam clipper, a one decade differential pumping station with a 7.62 cm (3.0 inch) aperture, and a 50 kW beam dump. The photon beam transport components were designed to address the management of photons delivered by the accelerator transport. The optical cavity manages the photons and optical transport delivers the 10 kW of laser power to experimental labs. The optical cavity component presented is a unique high reflector vessel and the optical transport component presented is a turning mirror cassette

  2. Wide field-of-view dual-band multispectral muzzle flash detection

    Science.gov (United States)

    Montoya, J.; Melchor, J.; Spiliotis, P.; Taplin, L.

    2013-06-01

    Sensor technologies are undergoing revolutionary advances, as seen in the rapid growth of multispectral methodologies. Increases in spatial, spectral, and temporal resolution, and in breadth of spectral coverage, render feasible sensors that function with unprecedented performance. A system was developed that addresses many of the key hardware requirements for a practical dual-band multispectral acquisition system, including wide field of view and spectral/temporal shift between dual bands. The system was designed using a novel dichroic beam splitter and dual band-pass filter configuration that creates two side-by-side images of a scene on a single sensor. A high-speed CMOS sensor was used to simultaneously capture data from the entire scene in both spectral bands using a short focal-length lens that provided a wide field-of-view. The beam-splitter components were arranged such that the two images were maintained in optical alignment and real-time intra-band processing could be carried out using only simple arithmetic on the image halves. An experiment related to limitations of the system to address multispectral detection requirements was performed. This characterized the system's low spectral variation across its wide field of view. This paper provides lessons learned on the general limitation of key hardware components required for multispectral muzzle flash detection, using the system as a hardware example combined with simulated multispectral muzzle flash and background signatures.

  3. Radioactive heavy ion secondary beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1987-01-01

    The production of secondary radioactive beams at GANIL using the LISE spectrometer is reviewed. The experimental devices, and secondary beam characteristics are summarized. Production of neutron rich secondary beams was studied for the systems Ar40 + Be at 44 MeV/u, and 018 + Be at 45 and 65 MeV/u. Partial results were also obtained for the system Ne22 + Ta at 45 MeV/u. Experiments using secondary beams are classified into two categories: those which correspond to fast transfer of nuclei from the production target to a well shielded observation point; and those in which the radioactive beam interacts with a secondary target

  4. Color-tunable lighting devices and methods of use

    Science.gov (United States)

    Davis, James Lynn

    2017-02-07

    A lighting device (100) includes a housing (104) enclosing a housing interior (108), a light source (132), a light converter (136), and a color tuning device. The light source is configured for emitting a primary light beam of a primary wavelength (140) through the housing interior. The light converter includes a luminescent material (144) facing the housing interior and configured for emitting secondary light (156, 158) of one or more wavelengths different from the primary wavelength, in response to excitation by the primary light beam. The housing includes a light exit (124) for outputting a combination of primary light and secondary light. The color tuning device is configured for adjusting a position of the primary light beam relative to the luminescent material.

  5. Metasurface for multi-channel terahertz beam splitters and polarization rotators

    Science.gov (United States)

    Zang, XiaoFei; Gong, HanHong; Li, Zhen; Xie, JingYa; Cheng, QingQing; Chen, Lin; Shkurinov, Alexander P.; Zhu, YiMing; Zhuang, SongLin

    2018-04-01

    Terahertz beam splitters and polarization rotators are two typical devices with wide applications ranging from terahertz communication to system integration. However, they are faced with severe challenges in manipulating THz waves in multiple channels, which is desirable for system integration and device miniaturization. Here, we propose a method to design ultra-thin multi-channel THz beam splitters and polarization rotators simultaneously. The reflected beams are divided into four beams with nearly the same density under illumination of linear-polarized THz waves, while the polarization of reflected beams in each channel is modulated with a rotation angle or invariable with respect to the incident THz waves, leading to the multi-channel polarization rotator (multiple polarization rotation in the reflective channels) and beam splitter, respectively. Reflective metasurfaces, created by patterning metal-rods with different orientations on a polyimide film, were fabricated and measured to demonstrate these characteristics. The proposed approach provides an efficient way of controlling polarization of THz waves in various channels, which significantly simplifies THz functional devices and the experimental system.

  6. Radiographic measurement of bone mineral: reviewing dual energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Sim, L.H.; van Doorn, T.

    1995-01-01

    Radiographic methods of bone mineral measurement have been reviewed, with particular emphasis on the methods of Dual Energy X-ray Absorptiometry (DEXA). Features of the three major brands of DEXA equipment available in Australasia have been summarised. Radiation hazard is considered to be small, with patient effective doses of the order of a few microSieverts. In vivo measurement precision of the order of 1% is achievable for PA scans of the lumbar spine. Lateral scans can achieve measurement precision of the order of 4%. Recent technological developments using X-ray fan beams and multi element detector arrays on C-arm devices have resulted in faster scan times, higher resolution images, and an ability to perform PA and lateral scanning without the need to reposition the patient. Accuracy of DEXA is dependent upon specific instrumentation and data reduction algorithms, but results generally correlate well with ashed bone measurements. Major sources of inaccuracy include inhomogeneous distributions of fat, and machine specific factors such as edge detection algorithms. Lack of absolute inter unit comparability may cause difficulties in clinical practice. 88 refs., 5 figs

  7. Irradiation damage of SiC semiconductor device (I)

    International Nuclear Information System (INIS)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10 16 N + ions/cm 2 and 3.6 x 10 17 e/cm 2 and 1.08 x 10 18 e/cm 2 , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix

  8. Irradiation damage of SiC semiconductor device (I)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Yeon; Kim, Weon Ju

    2000-09-01

    This report reviewed the irradiation damage of SiC semiconductor devices and examined a irradiation behavior of SiC single crystal as a pre-examination for evaluation of irradiation behavior of SiC semiconductor devices. The SiC single was crystal irradiated by gamma-beam, N+ ion and electron beam. Annealing examinations of the irradiated specimens also were performed at 500 deg C. N-type 6H-SiC dopped with N+ ion was used and irradiation doses of gamma-beam, N+ion and electron beam were up to 200 Mrad, 1x10{sup 16} N{sup +} ions/cm{sup 2} and 3.6 x 10{sup 17} e/cm{sup 2} and 1.08 x 10{sup 18} e/cm{sup 2} , respectively. Irradiation damages were analyzed by the EPR method. Additionally, properties of SiC, information about commercial SiC single crystals and the list of web sites with related to the SiC device were described in the appendix.

  9. Inertial fusion energy target injection, tracking, and beam pointing

    International Nuclear Information System (INIS)

    Petzoldt, R.W.

    1995-01-01

    Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s 2 if the fuel temperature is less than 17 K. A 0.1 μm thick dual membrane will allow nearly 2,000 m/s 2 acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a cam operated poppet valve to control the gas flow. Cutting vents near the muzzle of the gas gun barrel is recommended to improve accuracy and aid gas pumping. If a railgun is used, we recommend an externally applied magnetic field to reduce required current by an order of magnitude. Optical target tracking is recommended. Up/down counters are suggested to predict target arrival time. Target steering is shown to be feasible and would avoid the need to actively point the beams. Calculations show that induced tumble from electrostatically steering the target is not excessive

  10. Laser Beam delivering and shaping device for transfer of organic film

    International Nuclear Information System (INIS)

    Lee, Kangin; Kwon, Jin Hyuk; Yi, Jonghoon

    2008-01-01

    The laser based organic material transfer methods are developed by several groups for OLED (organic light emitting diode)fabrication. Well developed laser based methods are LITI (Laser Induced Thermal Imaging)and LIPS (Laser Induced Pattern wise Sublimation). These methods are proved to be suitable for large OLED panel fabrication. At an early stage of development, TEM"00"mode Nd:YAG laser was used for pattering organic material. The focused focused Nd:YAG laser beam generated heat in the film and the heat caused expansion of organic material coated layer. The organic film on the layer is transferred to the display panel due to pressure exerted on the display panel by the layer. Recently developed system prefers to employ a diode laser with wavelength of 800nm. Diode laser is cheaper and smaller photon source compared with the Nd:YAG laser. In this work, we use Nd doped fiber laser (wavelength=1070nm, power=10W)because the laser has stable output and well defined Gaussian beam profile compared with diode laser. We also employed fiber coupled diode laser (808nm)because it also has well defined beam distribution. In laser methods, spatially shaped beam is required for clean and sharp transfer. There are several methods for the beam shaping such as aspheric lens, diffractive optical elements, and micro lens array etc. We found that Gaussian beam can be shaped to a square hat like beam just by using simple commercial spherical lens set

  11. Molecular beam epitaxy for high-performance Ga-face GaN electron devices

    International Nuclear Information System (INIS)

    Kaun, Stephen W; Speck, James S; Wong, Man Hoi; Mishra, Umesh K

    2013-01-01

    Molecular beam epitaxy (MBE) has emerged as a powerful technique for growing GaN-based high electron mobility transistor (HEMT) epistructures. Over the past decade, HEMT performance steadily improved, mainly through the optimization of device fabrication processes. Soon, HEMT performance will be limited by the crystalline quality of the epistructure. MBE offers heterostructure growth with highly abrupt interfaces, low point defect concentrations, and very low carbon and hydrogen impurity concentrations. Minimizing parasitic leakage pathways and resistances is essential in the growth of HEMTs for high-frequency and high-power applications. Through growth on native substrates with very low threading dislocation density, low-leakage HEMTs with very low on-resistance can be realized. Ga-rich plasma-assisted MBE (PAMBE) has been studied extensively, and it is clear that this technique has inherent limitations, including a high density of leakage pathways and a very small growth parameter space. Relatively new MBE growth techniques—high-temperature N-rich PAMBE and ammonia-based MBE—are being developed to circumvent the shortcomings of Ga-rich PAMBE. (invited review)

  12. Design and implementation of a user-friendly interface for DIII-D neutral beam automated operation

    International Nuclear Information System (INIS)

    Phillips, J.; Colleraine, A.P.; Hong, R.; Kim, J.; Lee, R.L.; Wight, J.J.

    1989-12-01

    The operational interface to the DIII-D neutral beam system, in use for the past 10 years, consisted of several interactive devices that the operator used to sequence neutral beam conditioning and plasma heating shots. Each of four independent MODCOMP Classic control computers (for four DIII-D beamlines) included a touch screen, rotary knobs, an interactive dual port terminal, and a keyboard to selectively address each of five display screens. Most of the hardware had become obsolete and repair was becoming increasingly expensive. It was clear that the hardware could be replaced with current equipment, while improving the ergonomics of control. Combined with an ongoing effort to increase the degree of automated operation and its reliability, a single microcomputer-based interface for each of the four neutral beam MODCOMP Classic control computers was developed, effectively replacing some twenty pieces of hardware. Macintosh II microcomputers were selected, with 1 megabyte of RAM and ''off-the-shelf'' input/output (I/O) consisting of a mouse, serial ports, and two monochrome high-resolution video monitors. The software is written in PASCAL and adopts standard Macintosh ''window'' techniques. From the Macintosh interface to the MODCOMP Classic, the operator can control the power supply setpoints, adjust ion source timing and synchronization, call up waveform displays on the Grinnell color display system, view the sequencing of procedures to ready a neutral beam shot, and add operator comments to an automated shot logging system. 3 refs., 2 figs

  13. SU-G-IeP2-15: Virtual Insertion of Digital Kidney Stones Into Dual-Source, Dual- Energy CT Projection Data

    International Nuclear Information System (INIS)

    Ferrero, A; Chen, B; Huang, A; Montoya, J; Yu, L; McCollough, C

    2016-01-01

    Purpose: In order to investigate novel methods to more accurately estimate the mineral composition of kidney stones using dual energy CT, it is desirable to be able to combine digital stones of known composition with actual phantom and patient scan data. In this work, we developed and validated a method to insert digital kidney stones into projection data acquired on a dual-source, dual-energy CT system. Methods: Attenuation properties of stones of different mineral composition were computed using tabulated mass attenuation coefficients, the chemical formula for each stone type, and the effective beam energy at each evaluated tube potential. A previously developed method to insert lesions into x-ray CT projection data was extended to include simultaneous dual-energy CT projections acquired on a dual-source gantry (Siemens Somatom Flash). Digital stones were forward projected onto both detectors and the resulting projections added to the physically acquired sinogram data. To validate the accuracy of the technique, digital stones were inserted into different locations in the ACR CT accreditation phantom; low and high contrast resolution, CT number accuracy and noise properties were compared before and after stone insertion. The procedure was repeated for two dual-energy tube potential pairs in clinical use on the scanner, 80/Sn140 kV and 100/Sn140 kV, respectively. Results: The images reconstructed after the insertion of digital kidney stones were consistent with the images reconstructed from the scanner. The largest average CT number difference for the 4 insert in the CT number accuracy module of the phantom was 3 HU. Conclusion: A framework was developed and validated for the creation of digital kidney stones of known mineral composition, and their projection-domain insertion into commercial dual-source, dual-energy CT projection data. This will allow a systematic investigation of the impact of scan and reconstruction parameters on stone attenuation and dual

  14. Beam cooling using a gas-filled RFQ ion guide

    CERN Document Server

    Henry, S; De Saint-Simon, M; Jacotin, M; Képinski, J F; Lunney, M D

    1999-01-01

    A radiofrequency quadrupole mass filter is being developed for use as a high-transmission beam cooler by operating it in buffer gas at high pressure. Such a device will increase the sensitivity of on-line experiments that make use of weakly produced radioactive ion beams. We present simulations and some preliminary measurements for a device designed to cool the beam for the MISTRAL RF mass spectrometer on- line at ISOLDE. The work is carried out partly within the frame of the European Community research network: EXOTRAPS. (9 refs).

  15. Caracterizacion y optimizacion electroquimica de dispositivos electrocromicos duales basados en polimeros conductores

    Science.gov (United States)

    Padilla Martinez, Javier

    The aim of this thesis is to emphasize the existing relations between electrochemical processes, or electrochemical magnitudes, and colour changes. The work is focused on two aspects: individual spectroelectrochemical characterization of the constituent materials followed by an electrochemical and optical study of the performance of the dual system constructed with those materials. The objective is the optimization of both electrochemical and optical processes in dual conducting polymer systems, obtaining experimental methodologies able to characterize, predict, and finally design optimal dual electrochromic devices. The first part of the study is focused on the development of the proper methodology to obtain an optical characterization of any electrochromic material as a function of its electrochemical properties. Materials used were poly((3,4-ethylenedioxy)thiophene) (PEDOT) and poly-(3,6-bis(2-(3,4-ethylenedioxy)thienyl)-N-methylcarbazole) (PBEDOT-NMCz). PEDOT films are coloured under reduction, while PBEDOT-NMCz are coloured under oxidation, showing complementary colouration, and so they can be used to construct a dual electrochromic device. Based on the obtained experimental results, a theoretical study was undertaken to establish the optical responses of a system comprising several electrochromic layers. The theoretically obtained relations were experimentally proved. Relations obtained allow the prediction of the maximum contrast configuration for a dual system, as a function of the individual electrochemical properties of each constituent material. The system studied was PEDOT/PBEDOT-NMCz. The third chapter deals with the proposal and development of a new experimental methodology able to register the individual oxidation states of each electrode during operation of a dual device, obtaining then direct information about device performance. This methodology allows the study of the influence of different physical and chemical variables, like ratio of redox

  16. GridPix application to dual phase TPC

    NARCIS (Netherlands)

    Alfonsi, M.; van Bakel, N.; Colijn, A.-P.; Decowski, M.P.; van der Graaf, H.; Schön, R.; Tiseni, A.

    2013-01-01

    GridPix is a gas-filled detector with an aluminium mesh stretched 50 μm above the Timepix CMOS pixel chip. This defines a high electric field where gas amplification occurs. A feasibility study is ongoing at Nikhef for the application of the GridPix technology as a charge sensitive device in a dual

  17. JAERI electrostatic accelerators for multiple ion beam application

    International Nuclear Information System (INIS)

    Ishii, Yasuyuki; Tajima, Satoshi; Takada, Isao

    1993-01-01

    An electrostatic accelerators facility of a 3MV tandem accelerator, a 3MV single-ended accelerator and a 400kV ion implanter was completed mainly for materials science and biotechnology research at JAERI, Takasaki. The accelerators can be operated simultaneously for multiple beam application in triple and dual beam modes. The single-ended machine was designed to satisfy an extremely high voltage stability of ±1x10 -5 to provide a submicron microbeam stably. The measured voltage stability and ripple were within the designed value. (author)

  18. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  19. High-power continuous-wave mid-infrared radiation generated by difference frequency mixing of diode-laser-seeded fiber amplifiers and its application to dual-beam spectroscopy

    Science.gov (United States)

    Lancaster, D. G.; Richter, D.; Curl, R. F.; Tittel, F. K.; Goldberg, L.; Koplow, J.

    1999-01-01

    We report the generation of up to 0.7 mW of narrow-linewidth (radiation at 3.3 micrometers by difference frequency mixing of a Nd:YAG-seeded 1.6-W Yb fiber amplifier and a 1.5-micrometers diode-laser-seeded 0.6-W Er/Yb fiber amplifier in periodically poled LiNbO3. A conversion efficiency of 0.09%/W (0.47 mWW-2 cm-1) was achieved. A room-air CH4 spectrum acquired with a compact 80-m multipass cell and a dual-beam spectroscopic configuration indicates an absorption sensitivity of +/-2.8 x 10(-5) (+/-1 sigma), corresponding to a sub-parts-in-10(9) (ppb) CH4 sensitivity (0.8 ppb).

  20. A dual-mode operation overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic mode output

    Science.gov (United States)

    Bai, Zhen; Zhang, Jun; Zhong, Huihuang

    2016-04-01

    An overmoded coaxial millimeter-wave generator with high power capacity and pure transverse electric and magnetic (TEM) mode output is designed and presented, by using a kind of coaxial slow wave structure (SWS) with large transversal dimension and small distance between inner and outer conductors. The generator works in dual-mode operation mechanism. The electron beam synchronously interacts with 7π/8 mode of quasi-TEM, at the meanwhile exchanges energy with 3π/8 mode of TM01. The existence of TM01 mode, which is traveling wave, not only increases the beam-wave interaction efficiency but also improves the extraction efficiency. The large transversal dimension of coaxial SWS makes its power capacity higher than that of other reported millimeter-wave devices and the small distance between inner and outer conductors allows only two azimuthally symmetric modes to coexist. The converter after the SWS guarantees the mode purity of output power. Particle-in-cell simulation shows that when the diode voltage is 400 kV and beam current is 3.8 kA, the generation of microwave at 32.26 GHz with an output power of 611 MW and a conversion efficiency of 40% is obtained. The power percentage carried by TEM mode reaches 99.7% in the output power.

  1. Colliding beam physics at Fermilab: interaction regions, beam storage, antiproton cooling, production, and colliding

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.K. (ed.)

    1977-01-01

    The purpose of the colliding beams experment department at Fermilab was to bring about collisions of the stored beams in the energy doubler/saver and main ring, and construct experimental areas with appropriate detectors. To explore the feasibility of using the main ring as a storage device, several studies were carried out to investigate beam growth, loss, and the backgrounds in detectors at possible intersection regions. This range of developments constituted the major topics at the 1977 Summer Study reported here. Emphasis in part one is on interaction regions, beam storage, antiproton cooling, production, and colliding. 40 papers from this part are included in the data base. (GHT)

  2. Dual-Readout Calorimetry with Lead Tungstate Crystals

    OpenAIRE

    Akchurin, N.

    2007-01-01

    Results are presented of beam tests in which a small electromagnetic calorimeter consisting of lead tungstate crystals was exposed to 50 GeV electrons and pions. This calorimeter was backed up by the DREAM Dual-Readout calorimeter, which measures the scintillation and \\v{C}erenkov light produced in the shower development, using two different media. The signals from the crystal calorimeter were analyzed in great detail in an attempt to determine the contributions from these two types of light ...

  3. Coherent cavity-enhanced dual-comb spectroscopy.

    Science.gov (United States)

    Fleisher, Adam J; Long, David A; Reed, Zachary D; Hodges, Joseph T; Plusquellic, David F

    2016-05-16

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The dual combs were generated by driving the phase modulators with step-recovery diodes where each comb consisted of > 250 teeth with 203 MHz spacing and spanned > 50 GHz region in the near-infrared. The step-recovery diodes are passive devices that provide low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO2, CO, HDO, and H2O in a single spectral region at a maximum acquisition rate of 150 kHz. Robust, compact, low-cost and widely tunable dual-comb systems could enable a network of distributed multiplexed optical sensors.

  4. Enhancement of photocurrent extraction and electron injection in dual-functional CH3NH3PbBr3 perovskite-based optoelectronic devices via interfacial engineering

    Science.gov (United States)

    Tsai, Chia-Lung; Lu, Yi-Chen; Hsiung Chang, Sheng

    2018-07-01

    Photocurrent extraction and electron injection in CH3NH3PbBr3 (MAPbBr3) perovskite-based optoelectronic devices are both significantly increased by improving the contact at the PCBM/MAPbBr3 interface with an extended solvent annealing (ESA) process. Photoluminescence quenching and x-ray diffraction experiments show that the ESA not only improves the contact at the PCBM/MAPbBr3 interface but also increases the crystallinity of the MAPbBr3 thin films. The optimized dual-functional PCBM-MAPbBr3 heterojunction based optoelectronic device has a high power conversion efficiency of 4.08% and a bright visible luminescence of 1509 cd m‑2. In addition, the modulation speed of the MAPbBr3 based light-emitting diodes is larger than 14 MHz, which indicates that the defect density in the MAPbBr3 thin film can be effectively reduced by using the ESA process.

  5. Dual-energy mammography: simulation studies

    International Nuclear Information System (INIS)

    Bliznakova, K; Kolitsi, Z; Pallikarakis, N

    2006-01-01

    This paper presents a mammography simulator and demonstrates its applicability in feasibility studies in dual-energy (DE) subtraction mammography. This mammography simulator is an evolution of a previously presented x-ray imaging simulation system, which has been extended with new functionalities that are specific for DE simulations. The new features include incident exposure and dose calculations, the implementation of a DE subtraction algorithm as well as amendments to the detector and source modelling. The system was then verified by simulating experiments and comparing their results against published data. The simulator was used to carry out a feasibility study of the applicability of DE techniques in mammography, and more precisely to examine whether this modality could result in better visualization and detection of microcalcifications. Investigations were carried out using a 3D breast software phantom of average thickness, monoenergetic and polyenergetic beam spectra and various detector configurations. Dual-shot techniques were simulated. Results showed the advantage of using monoenergetic in comparison with polyenergetic beams. Optimization studies with monochromatic sources were carried out to obtain the optimal low and high incident energies, based on the assessment of the figure of merit of the simulated microcalcifications in the subtracted images. The results of the simulation study with the optimal energies demonstrated that the use of the DE technique can improve visualization and increase detectability, allowing identification of microcalcifications of sizes as small as 200 μm. The quantitative results are also verified by means of a visual inspection of the synthetic images

  6. NeuroSeek dual-color image processing infrared focal plane array

    Science.gov (United States)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  7. Vacuum-ultraviolet reflectometer

    Science.gov (United States)

    Allen, T. H.; Dillow, C. F.; Linford, R. M. F.

    1977-01-01

    Baffle, three-blade chopper, and split spherical mirror transmit alternating dual beam into integrating sphere. Alternating reference and sample beams are detected by high gain photomultiplier and modified logarithmic ratiometer. Device is useful in fusion research, high power laser work, and spectrometer or monochromator construction.

  8. Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF

    International Nuclear Information System (INIS)

    Yan, C.

    1994-01-01

    Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe (Δx ∼ 10μm), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10 -3 beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 μA to 100 μA

  9. Dual-energy imaging of bone marrow edema on a dedicated multi-source cone-beam CT system for the extremities

    Science.gov (United States)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Thawait, G.; Packard, N.; Yorkston, J.; Demehri, S.; Fritz, J.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. Methods: Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. Results: For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 - 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix

  10. Luminescent beam stop

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Diane; Morton, Simon A.

    2017-10-25

    This disclosure provides systems, methods, and apparatus related to beam stops. In one aspect, a device comprises a luminescent material, a beam stop plate, and an optical fiber. The luminescent material is a parallelepiped having a first side and a second side that are squares and having a third side that is a rectangle or a square. The first side and the second side are perpendicular to the third side. The beam stop plate is attached to the first side of the luminescent material. The optical fiber has a first end and a second end, with the first end of the optical fiber attached to the third side of the luminescent material.

  11. Professor Jesse W. Beams and the first practical magnetic suspension

    Science.gov (United States)

    Allaire, P. E.; Humphris, R. R.; Lewis, D. W.

    1992-01-01

    Dr. Jesse W. Beams developed the first practical magnetic suspension for high speed rotating devices. The devices included high speed rotating mirrors, ultracentrifuges, and high speed centrifugal field rotors. A brief biography of Dr. Beams is presented, and the following topics are discussed: (1) early axial magnetic suspension for ultracentrifuges; and (2) magnetic suspension for high centrifugal fields.

  12. TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam

    International Nuclear Information System (INIS)

    Grabulov, A.; Ziese, U.; Zandbergen, H.W.

    2007-01-01

    The white etching area (WEA) surrounding the cracks formed under high-cycle rolling contact fatigue was investigated by transmission electron microscopy (TEM) and Dual Beam (scanning electron microscopy (SEM)/focused ion beam). SEM revealed the initiation of cracks formed around artificially introduced Al 2 O 3 inclusions in the model steel (composition similar to SAE 52100). TEM investigations showed a microstructural difference between the WEA (formation of nanocrystalline ferrite) and the steel matrix (tempered martensitic structure). A three-dimensional image of the crack reconstructed from ∼400 Dual Beam cross-section images is reported

  13. High Power Microwave Emission of Large and Small Orbit Gyrotron Devices in Rectangular Interaction Structures

    Science.gov (United States)

    Hochman, J. M.; Gilgenbach, R. M.; Jaynes, R. L.; Rintamaki, J. I.; Luginsland, J. W.; Lau, Y. Y.; Spencer, T. A.

    1996-11-01

    Experiments utilize large and small orbit e-beam gyrotron devices in a rectangular-cross-section (RCS) gyrotron. This device is being explored to examine polarization control. Other research issues include pulse shortening, and mode competition. MELBA generates electron beams with parameters of: -800kV, 1-10kA diode current, and 0.5-1.0 μ sec pulselengths. The small orbit gyrotron device is converted to a large orbit experiment by running MELBA's annular electron beam through a magnetic cusp. Initial experiments showed an increase in beam alpha (V_perp/V_par) of a factor of ~ 4 between small and large orbit devices. Experimental results from the RCS gyrotron will be compared for large-orbit and small-orbit electron beams. Beam transport data and frequency measurements will be presented. Computer modeling utilizing the MAGIC and E-gun codes will be shown.

  14. Survey of beam instrumentation used in SLC

    International Nuclear Information System (INIS)

    Ecklund, S.D.

    1991-03-01

    A survey of beam instruments used at SLAC in the SLC machine is presented. The basic utility and operation of each device is briefly described. The various beam instruments used at the Stanford Linear Collider (SLC), can be classified by the function they perform. Beam intensity, position and size are typical of the parameters of beam which are measured. Each type of parameter is important for adjusting or tuning the machine in order to achieve optimum performance. 39 refs

  15. On-chip dual-comb source for spectroscopy.

    Science.gov (United States)

    Dutt, Avik; Joshi, Chaitanya; Ji, Xingchen; Cardenas, Jaime; Okawachi, Yoshitomo; Luke, Kevin; Gaeta, Alexander L; Lipson, Michal

    2018-03-01

    Dual-comb spectroscopy is a powerful technique for real-time, broadband optical sampling of molecular spectra, which requires no moving components. Recent developments with microresonator-based platforms have enabled frequency combs at the chip scale. However, the need to precisely match the resonance wavelengths of distinct high quality-factor microcavities has hindered the development of on-chip dual combs. We report the simultaneous generation of two microresonator combs on the same chip from a single laser, drastically reducing experimental complexity. We demonstrate broadband optical spectra spanning 51 THz and low-noise operation of both combs by deterministically tuning into soliton mode-locked states using integrated microheaters, resulting in narrow (lasers or microwave oscillators. We demonstrate high signal-to-noise ratio absorption spectroscopy spanning 170 nm using the dual-comb source over a 20-μs acquisition time. Our device paves the way for compact and robust spectrometers at nanosecond time scales enabled by large beat-note spacings (>1 GHz).

  16. Dual-anticipating, dual and dual-lag synchronization in modulated time-delayed systems

    International Nuclear Information System (INIS)

    Ghosh, Dibakar; Chowdhury, A. Roy

    2010-01-01

    In this Letter, dual synchronization in modulated time delay system using delay feedback controller is proposed. Based on Lyapunov stability theory, we suggest a general method to achieve the dual-anticipating, dual, dual-lag synchronization of time-delayed chaotic systems and we find both its existing and sufficient stability conditions. Numerically it is shown that the dual synchronization is also possible when driving system contain two completely different systems. Effect of parameter mismatch on dual synchronization is also discussed. As an example, numerical simulations for the Mackey-Glass and Ikeda systems are conducted, which is in good agreement with the theoretical analysis.

  17. Volatile organic compounds discrimination based on dual mode detection

    Science.gov (United States)

    Yu, Yuanyuan; Wu, Enxiu; Chen, Yan; Feng, Zhihong; Zheng, Shijun; Zhang, Hao; Pang, Wei; Liu, Jing; Zhang, Daihua

    2018-06-01

    We report on a volatile organic compound (VOC) sensor that can provide concentration-independent signals toward target gases. The device is based on a dual-mode detection mechanism that can simultaneously record the mechanical (resonant frequency, f r) and electrical (current, I) responses of the same gas adsorption event. The two independent signals form a unique I–f r trace for each target VOC as the concentration varies. The mechanical response (frequency shift, Δf r) resulting from mass load on the device is directly related to the amount of surface adsorptions, while the electrical response (current variation, ΔI) is associated with charge transfer across the sensing interface and changes in carrier mobility. The two responses resulting from independent physical processes reflect intrinsic physical properties of each target gas. The ΔI–Δf r trace combined with the concentration dependent frequency (or current) signals can therefore be used to achieve target both recognition and quantification. The dual-mode device is designed and fabricated using standard complementary metal oxide semiconductor (CMOS) compatible processes. It exhibits consistent and stable performance in our tests with six different VOCs including ethanol, methanol, acetone, formaldehyde, benzene and hexane.

  18. Monolithic dual-band HgCdTe infrared detector structure

    CSIR Research Space (South Africa)

    Parish, G

    1997-07-01

    Full Text Available A monolithic HgCdTe photoconductive device structure is presented that is suitable for dual-band optically registered infrared photodetection in the two atmospheric transmission windows of 3-5 mu m and 8-12 mu m, which correspond to the mid...

  19. Intense ion beam generator

    International Nuclear Information System (INIS)

    Humphries, S. Jr.; Sudan, R.N.

    1977-01-01

    Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation

  20. The effects of magnetic fringe fields on beam dynamics in a beam transport line of a terahertz FEL source

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Han [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Xiong, Yongqian, E-mail: yqxiong@mail.hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Pei, Yuanji [National Synchrotron Radiation laboratory, University of Science and Technology of China, Hefei 230029, Anhui (China)

    2014-11-11

    The transport line used in a terahertz FEL device has to transport electron beam through the entire system efficiently and meet the requirements of the beam parameters at the undulator entrance. Due to space limitations, the size of the magnets (five quadrupoles and two bending magnets) employed in the transport line was limited, and some devices were densely packed. In this paper, analyses of the effect of fringe fields and magnetic interference of magnets are presented. 3D models of these magnets are built and their linear optical properties are compared with those obtained by hard edge models. The results indicated that the effects of these factors are significant and they would cause a mismatch of the beam at the exit of the transport line under the preliminary lattice design. To solve this problem, the beam was re-matched using the particle swarm optimization algorithm.