WorldWideScience

Sample records for dsp-based vibration measurement

  1. Customized DSP-based vibration measurement for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    LaWhite, N.E.; Cohn, K.E. [Second Wind Inc., Somerville, MA (United States)

    1996-12-31

    As part of its Advanced Distributed Monitoring System (ADMS) project funded by NREL, Second Wind Inc. is developing a new vibration measurement system for use with wind turbines. The system uses low-cost accelerometers originally designed for automobile airbag crash-detection coupled with new software executed on a Digital Signal Processor (DSP) device. The system is envisioned as a means to monitor the mechanical {open_quotes}health{close_quotes} of the wind turbine over its lifetime. In addition the system holds promise as a customized emergency vibration detector. The two goals are very different and it is expected that different software programs will be executed for each function. While a fast Fourier transform (FFT) signature under given operating conditions can yield much information regarding turbine condition, the sampling period and processing requirements make it inappropriate for emergency condition monitoring. This paper briefly reviews the development of prototype DSP and accelerometer hardware. More importantly, it reviews our work to design prototype vibration alarm filters. Two-axis accelerometer test data from the experimental FloWind vertical axis wind turbine is analyzed and used as a development guide. Two levels of signal processing are considered. The first uses narrow band pre-processing filters at key fundamental frequencies such as the 1P, 2P and 3P. The total vibration energy in each frequency band is calculated and evaluated as a possible alarm trigger. In the second level of signal processing, the total vibration energy in each frequency band is further decomposed using the two-axis directional information. Directional statistics are calculated to differentiate between linear translations and circular translations. After analyzing the acceleration statistics for normal and unusual operating conditions, the acceleration processing system described could be used in automatic early detection of fault conditions. 9 figs.

  2. The research of period measuring instruments on zero power assembly based on DSP

    International Nuclear Information System (INIS)

    Bai Zhongxiong

    2007-12-01

    In order to improving measure precision and anti-interference capacity, and respond to the digital trend, a new technique to measure reactor period is promoted, which is based on the DSP technique, calculate period with least-squares-fitting method. The systematic design is promoted, in which TMS320F2812 chip is chosen as the Central Processing/Controlling unit and software design is based on DSP/BIOS embedded operating system. Testing of both a simulation of the lab environment and an experiment shows that, as expected, the new TMS320F2812 based reactor period inspection equipment has excellent anti-interference capacity, high precision and fast response time, all of which prove that it has good prospective. (authors)

  3. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  4. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    International Nuclear Information System (INIS)

    Santos, José; Ramos, Pedro M; Janeiro, Fernando M

    2015-01-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed. (paper)

  5. A VXI-GPIB protocol converter based on DSP

    International Nuclear Information System (INIS)

    Hu Yuanfeng; Yu Xiaoqi; Lu Jingping

    2006-01-01

    A VXI-GPIB protocol converter based on DSP is introduced. The word-serial protocol with the message-based interface is implemented by EPLD and DSP. The GPIB functions are implemented by programming to the GPIB control chip. The transfer from VXI messages to GPIB functions is implemented by DSP. As an example of application, the control functions for oscilloscopes have been implemented in a VXI-GPIB heterogeneous system using such modules. (authors)

  6. Design and test of 4πβ-γ coincidence measurement device based on DSP technology

    International Nuclear Information System (INIS)

    Zeng Herong; Feng Qijie; Leng Jun; Qian Dazhi; Bai Lixin; Zhang Yiyun

    2012-01-01

    The paper illustrates the hardware and software of the 4πβ-γ coincidence measurement device based on DSP technology in detail. In such device, the single-channel analyzer, gate generator, coincidence circuit and scalar in the traditional coincidence measurement device are replaced by the digital coincidence acquirer which is researched and manufactured by ourselves. Doing so, the measurement efficiency will be respectively improved, and the hardware cost will be lowered. The comparison experiment shows that the design of such device is a success. (authors)

  7. A DSP-based neural network non-uniformity correction algorithm for IRFPA

    Science.gov (United States)

    Liu, Chong-liang; Jin, Wei-qi; Cao, Yang; Liu, Xiu

    2009-07-01

    An effective neural network non-uniformity correction (NUC) algorithm based on DSP is proposed in this paper. The non-uniform response in infrared focal plane array (IRFPA) detectors produces corrupted images with a fixed-pattern noise(FPN).We introduced and analyzed the artificial neural network scene-based non-uniformity correction (SBNUC) algorithm. A design of DSP-based NUC development platform for IRFPA is described. The DSP hardware platform designed is of low power consumption, with 32-bit fixed point DSP TMS320DM643 as the kernel processor. The dependability and expansibility of the software have been improved by DSP/BIOS real-time operating system and Reference Framework 5. In order to realize real-time performance, the calibration parameters update is set at a lower task priority then video input and output in DSP/BIOS. In this way, calibration parameters updating will not affect video streams. The work flow of the system and the strategy of real-time realization are introduced. Experiments on real infrared imaging sequences demonstrate that this algorithm requires only a few frames to obtain high quality corrections. It is computationally efficient and suitable for all kinds of non-uniformity.

  8. A fast DSP-based calorimeter hit scanning system

    International Nuclear Information System (INIS)

    Sekikawa, S.; Arai, I.; Suzuki, A.; Watanabe, A.; Marlow, D.R.; Mindas, C.R.; Wixted, R.L.

    1997-01-01

    A custom made digital signal processor (DSP) based system has been developed to scan calorimeter hits read by a 32-channel FASTBUS waveform recorder board. The scanner system identifies hit calorimeter elements by surveying their discriminated outputs. This information is used to generate a list of addresses, which guides the read-out process. The system is described and measurements of the scan times are given. (orig.)

  9. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  10. Designing on ICT reconstruction software based on DSP techniques

    International Nuclear Information System (INIS)

    Liu Jinhui; Xiang Xincheng

    2006-01-01

    The convolution back project (CBP) algorithm is used to realize the CT image's reconstruction in ICT generally, which is finished by using PC or workstation. In order to add the ability of multi-platform operation of CT reconstruction software, a CT reconstruction method based on modern digital signal processor (DSP) technique is proposed and realized in this paper. The hardware system based on TI's C6701 DSP processor is selected to support the CT software construction. The CT reconstruction software is compiled only using assembly language related to the DSP hardware. The CT software can be run on TI's C6701 EVM board by inputting the CT data, and can get the CT Images that satisfy the real demands. (authors)

  11. Monitoring of electric-cardio signals based on DSP

    Science.gov (United States)

    Yan, Yi-xin; Sun, Hui-nan; Lv, Shuang

    2008-10-01

    Monitoring of electric-cardio signals is the most direct method of discovering heart diseases. This article presents an electric-cardio signal acquisition and processing system based on DSP. According to the features of electric-cardio signals, the proposed system uses the AgCl electrode as electric-cardio signals sensor, and acquires analog signals with AD620 as the prepositional amplifier, and the digital system equipped is with TMS320LF2407A DSP. The design of digital filter and the analysis of heart rate variation are realized by programming in the DSP. Finally the ECG is obtained with P and T waves along with obvious QRS multi-wave characteristics. The system has low power dissipation, low cost and high precision, which meets the requirements for medical instruments.

  12. Method of power self-regulation of CFBR-II reactor based on DSP

    International Nuclear Information System (INIS)

    Bai Zhongxiong; Zhou Wenxiang

    2007-01-01

    To the control system of Power Self-regulation of CFBR-II Reactor, a new digital control scheme based on DSP has been brought forward. The TMS320F2812 DSP chip is adopted as the core controller to realize Power self-regulation of CFBR-II Reactor. In this paper, the successful program of DSP control system is introduced in both hardware and software technology in detail. (authors)

  13. DSP Architecture Design Essentials

    CERN Document Server

    Marković, Dejan

    2012-01-01

    In DSP Architecture Design Essentials, authors Dejan Marković and Robert W. Brodersen cover a key subject for the successful realization of DSP algorithms for communications, multimedia, and healthcare applications. The book addresses the need for DSP architecture design that maps advanced DSP algorithms to hardware in the most power- and area-efficient way. The key feature of this text is a design methodology based on a high-level design model that leads to hardware implementation with minimum power and area. The methodology includes algorithm-level considerations such as automated word-length reduction and intrinsic data properties that can be leveraged to reduce hardware complexity. From a high-level data-flow graph model, an architecture exploration methodology based on linear programming is used to create an array of architectural solutions tailored to the underlying hardware technology. The book is supplemented with online material: bibliography, design examples, CAD tutorials and custom software.

  14. Low Power Systolic Array Based Digital Filter for DSP Applications

    Directory of Open Access Journals (Sweden)

    S. Karthick

    2015-01-01

    Full Text Available Main concepts in DSP include filtering, averaging, modulating, and correlating the signals in digital form to estimate characteristic parameter of a signal into a desirable form. This paper presents a brief concept of low power datapath impact for Digital Signal Processing (DSP based biomedical application. Systolic array based digital filter used in signal processing of electrocardiogram analysis is presented with datapath architectural innovations in low power consumption perspective. Implementation was done with ASIC design methodology using TSMC 65 nm technological library node. The proposed systolic array filter has reduced leakage power up to 8.5% than the existing filter architectures.

  15. Multiformat decoder for a DSP-based IP set-top box

    Science.gov (United States)

    Pescador, F.; Garrido, M. J.; Sanz, C.; Juárez, E.; Samper, D.; Antoniello, R.

    2007-05-01

    Internet Protocol Set-Top Boxes (IP STBs) based on single-processor architectures have been recently introduced in the market. In this paper, the implementation of an MPEG-4 SP/ASP video decoder for a multi-format IP STB based on a TMS320DM641 DSP is presented. An initial decoder for PC platform was fully tested and ported to the DSP. Using this code an optimization process was started achieving a 90% speedup. This process allows real-time MPEG-4 SP/ASP decoding. The MPEG-4 decoder has been integrated in an IP STB and tested in a real environment using DVD movies and TV channels with excellent results.

  16. The study of interferometer spectrometer based on DSP and linear CCD

    Science.gov (United States)

    Kang, Hua; Peng, Yuexiang; Xu, Xinchen; Xing, Xiaoqiao

    2010-11-01

    In this paper, general theory of Fourier-transform spectrometer and polarization interferometer is presented. A new design is proposed for Fourier-transform spectrometer based on polarization interferometer with Wollaston prisms and linear CCD. Firstly, measured light is changed into linear polarization light by polarization plate. And then the light can be split into ordinary and extraordinary lights by going through one Wollaston prism. At last, after going through another Wollaston prism and analyzer, interfering fringes can be formed on linear CCD behind the analyzer. The linear CCD is driven by CPLD to output amplitude of interfering fringes and synchronous signals of frames and pixels respectively. DSP is used to collect interference pattern signals from CCD and the digital data of interfering fringes are processed by using 2048-point-FFT. Finally, optical spectrum of measured light can be display on LCD connected to DSP with RS232. The spectrometer will possess the features of firmness, portability and the ability of real-time analyzing. The work will provide a convenient and significant foundation for application of more high accuracy of Fourier-transform spectrometer.

  17. Design of double DC motor control system based on DSP

    Directory of Open Access Journals (Sweden)

    Suo WANG

    2017-10-01

    Full Text Available Aiming at the problems of speed control, commutation and so on in the multi-motor synchronous control system, based on automatic control technology, a control system with PC as principal computer and DSP as slave computer is designed, which can change dual DC motor speed and steering, as well as select work drive motors. Related hardware and software design of the control system are given. Through serial communication between DSP and PC using PC serial port software, digital control command is sent to the slave computer for controlling dual DC motor to do a series of preset functions. PWM pulse width modulation is used for motor speed regulation, photoelectric encoder is used to measure motor speed by T method, and the motor speed is displayed by the actual waveform. Experimental results show that the system can not only realize the synchronization of dual DC motor speed and steering adjustment, but also select the motor and achieve the dual DC motors synchronization control effect. The control system has certain reliability and effectiveness.

  18. MCNP-DSP users manual

    International Nuclear Information System (INIS)

    Valentine, T.E.

    1997-01-01

    The Monte Carlo code MCNP-DSP was developed from the Los Alamos MCNP4a code to calculate the time and frequency response statistics obtained from the 252 Cf-source-driven frequency analysis measurements. This code can be used to validate calculational methods and cross section data sets from subcritical experiments. This code provides a more general model for interpretation and planning of experiments for nuclear criticality safety, nuclear safeguards, and nuclear weapons identification and replaces the use of point kinetics models for interpreting the measurements. The use of MCNP-DSP extends the usefulness of this measurement method to systems with much lower neutron multiplication factors

  19. A LabVIEW based Remote DSP Laboratory

    Directory of Open Access Journals (Sweden)

    Athanasios Kalantzopoulos

    2008-07-01

    Full Text Available Remote laboratories provide the students with the capability to perform laboratory exercises exploiting the relevant equipment any time of the day without their physical presence. Furthermore, providing the ability to use a single workstation by more than one student, they contribute to the reduction of the laboratory cost. Turning to advantage the above and according to the needs of post graduate modules in the fields of DSP Systems Design and Signal Processing Systems with DSPs, we designed and developed a Remote DSP Laboratory. A student using a Web Browser has the ability via internet to turn to account the R-DSP Lab and perform experiments using DSPs (Digital Signal Processors. For now, there is the opportunity to carry out laboratory exercises such as FIR, IIR digital filters and FFT as well as run any executable file developed by the user. In any case the observation of the results is carried out through the use of specially designed Graphical User Interfaces (GUIs.

  20. Methodology and Implementation on DSP of Heuristic Multiuser DS/CDMA Detectors

    Directory of Open Access Journals (Sweden)

    Alex Miyamoto Mussi

    2010-12-01

    Full Text Available The growing number of users of mobile communications networks and the scarcity of the electromagnetic spectrum make the use of diversity techniques and detection/decoding efficient, such as the use of multiple antennas at the transmitter and/or receiver, multiuser detection (MuD – Multiuser Detection, among others, have an increasingly prominent role in the telecommunications landscape. This paper presents a design methodology based on digital signal processors (DSP – Digital Signal Processor with a view to the implementation of multiuser heuristics detectors in systems DS/CDMA (Direct Sequence Code Division Multiple Access. Heuristics detection techniques result in near-optimal performance in order to approach the performance of maximum-likelihood (ML. In this work, was employed the DSP development platform called the C6713 DSK, which is based in Texas TMS320C6713 processor. The heuristics techniques proposed are based on well established algorithms in the literature. The efficiency of the algorithms implemented in DSP has been evaluated numerically by computing the measure of bit error rate (BER. Finally, the feasibility of implementation in DSP could then be verified by comparing results from multiple Monte-Carlo simulation in Matlab, with those obtained from implementation on DSP. It also demonstrates the effective increase in performance and system capacity of DS/CDMA with the use of heuristic multiuser detection techniques, implemented directly in the DSP.

  1. A DSP controlled data acquisition system for CELSIUS

    International Nuclear Information System (INIS)

    Bengtsson, M.; Lofnes, T.; Ziemann, V.

    2000-01-01

    We describe a data acquisition system based on two 10 MHz A/D-converters, a SHARC Digital Signal Processor (DSP), and a digital synthesizer used for triggering the A/D-converters. The temporal macrostructure of the data acquisition can be determined by external triggers or by timer interrupts from the DSP. In this way up to two million samples can be stored in DSP external memory. The samples are analyzed by directly fast Fourier transforming blocks of samples. In another mode we use software-based downmixing and filtering techniques to increase the resolution and zoom in on a small frequency band. Spectra of up to 5 MHz can be manipulated and displayed as waterfall plots or spectral maps on the host computer directly. Moreover, signals of up to 70 MHz can be analyzed by undersampling techniques. We use this system to analyze Schottky spectra from electron-cooled ion beams in CELSIUS and report drag rate measurements and observations of instabilities

  2. A DSP controlled data acquisition system for CELSIUS

    CERN Document Server

    Bengtsson, M; Ziemann, Volker

    2000-01-01

    We describe a data acquisition system based on two 10 MHz A/D-converters, a SHARC Digital Signal Processor (DSP), and a digital synthesizer used for triggering the A/D-converters. The temporal macrostructure of the data acquisition can be determined by external triggers or by timer interrupts from the DSP. In this way up to two million samples can be stored in DSP external memory. The samples are analyzed by directly fast Fourier transforming blocks of samples. In another mode we use software-based downmixing and filtering techniques to increase the resolution and zoom in on a small frequency band. Spectra of up to 5 MHz can be manipulated and displayed as waterfall plots or spectral maps on the host computer directly. Moreover, signals of up to 70 MHz can be analyzed by undersampling techniques. We use this system to analyze Schottky spectra from electron-cooled ion beams in CELSIUS and report drag rate measurements and observations of instabilities.

  3. DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)

    DEFF Research Database (Denmark)

    Swierczynski, Dariusz; Kazmierkowski, Marian P.; Blaabjerg, Frede

    2002-01-01

    DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)......DSP Based Direct Torque Control of Permanent Magnet Synchronous Motor (PMSM) using Space Vector Modulation (DTC-SVM)...

  4. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  5. Modular uncooled video engines based on a DSP processor

    Science.gov (United States)

    Schapiro, F.; Milstain, Y.; Aharon, A.; Neboshchik, A.; Ben-Simon, Y.; Kogan, I.; Lerman, I.; Mizrahi, U.; Maayani, S.; Amsterdam, A.; Vaserman, I.; Duman, O.; Gazit, R.

    2011-06-01

    The market demand for low SWaP (Size, Weight and Power) uncooled engines keeps growing. Low SWaP is especially critical in battery-operated applications such as goggles and Thermal Weapon Sights. A new approach for the design of the engines was implemented by SCD to optimize size and power consumption at system level. The new approach described in the paper, consists of: 1. A modular hardware design that allows the user to define the exact level of integration needed for his system 2. An "open architecture" based on the OMAPTM530 DSP that allows the integrator to take advantage of unused hardware (FPGA) and software (DSP) resources, for implementation of additional algorithms or functionality. The approach was successfully implemented on the first generation of 25μm pitch BIRD detectors, and more recently on the new, 640 x480, 17 μm pitch detector.

  6. IEEE 802.11-Based Wireless Sensor System for Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Yutaka Uchimura

    2010-01-01

    Full Text Available Network-based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard-based TSF-counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on synchronization accuracy and evaluated the effect by taking beacon collisions into account. The scalability issue by numerical simulations is also studied. This paper also introduces a newly developed wireless sensing system and the hardware and software specifications are introduced. The experiments were conducted in a reinforced concrete building to evaluate synchronization accuracy. The developed system was also applied for a vibration measurement of a 22-story steel structured high rise building. The experimental results showed that the system performed more than sufficiently.

  7. Real-time video compressing under DSP/BIOS

    Science.gov (United States)

    Chen, Qiu-ping; Li, Gui-ju

    2009-10-01

    This paper presents real-time MPEG-4 Simple Profile video compressing based on the DSP processor. The programming framework of video compressing is constructed using TMS320C6416 Microprocessor, TDS510 simulator and PC. It uses embedded real-time operating system DSP/BIOS and the API functions to build periodic function, tasks and interruptions etcs. Realize real-time video compressing. To the questions of data transferring among the system. Based on the architecture of the C64x DSP, utilized double buffer switched and EDMA data transfer controller to transit data from external memory to internal, and realize data transition and processing at the same time; the architecture level optimizations are used to improve software pipeline. The system used DSP/BIOS to realize multi-thread scheduling. The whole system realizes high speed transition of a great deal of data. Experimental results show the encoder can realize real-time encoding of 768*576, 25 frame/s video images.

  8. A DSP Based POD Implementation for High Speed Multimedia Communications

    Directory of Open Access Journals (Sweden)

    Chang Nian Zhang

    2002-09-01

    Full Text Available In the cable network services, the audio/video entertainment contents should be protected from unauthorized copying, intercepting, and tampering. Point-of-deployment (POD security module, proposed by OpenCableTM, allows viewers to receive secure cable services such as premium subscription channels, impulse pay-per-view, video-on-demand as well as other interactive services. In this paper, we present a digital signal processor (DSP (TMS320C6211 based POD implementation for the real-time applications which include elliptic curve digital signature algorithm (ECDSA, elliptic curve Diffie Hellman (ECDH key exchange, elliptic curve key derivation function (ECKDF, cellular automata (CA cryptography, communication processes between POD and Host, and Host authentication. In order to get different security levels and different rates of encryption/decryption, a CA based symmetric key cryptography algorithm is used whose encryption/decryption rate can be up to 75 Mbps. The experiment results indicate that the DSP based POD implementation provides high speed and flexibility, and satisfies the requirements of real-time video data transmission.

  9. Vibrations on pulse tube based Dry Dilution Refrigerators for low noise measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olivieri, E. [CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay (France); Billard, J.; De Jesus, M.; Juillard, A. [Univ Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, F-69622 Villeurbanne (France); Leder, A. [Massachussets Institute of Technology, Laboratory for Nuclear Science, 77 Massachusetts Avenue Cambridge, MA 02139-4307 (United States)

    2017-06-21

    Dry Dilution Refrigerators (DDR) based on pulse tube cryo-coolers have started to replace Wet Dilution Refrigerators (WDR) due to the ease and low cost of operation. However these advantages come at the cost of increased vibrations, induced by the pulse tube. In this work, we present the vibration measurements performed on three different commercial DDRs. We describe in detail the vibration measurement system we assembled, based on commercial accelerometers, conditioner and DAQ, and examined the effects of the various damping solutions utilized on three different DDRs, both in the low and high frequency regions. Finally, we ran low temperature, pseudo-massive (30 and 250 g) germanium bolometers in the best vibration-performing system under study and report on the results.

  10. Design of overload vehicle monitoring and response system based on DSP

    Science.gov (United States)

    Yu, Yan; Liu, Yiheng; Zhao, Xuefeng

    2014-03-01

    The overload vehicles are making much more damage to the road surface than the regular ones. Many roads and bridges are equipped with structural health monitoring system (SHM) to provide early-warning to these damage and evaluate the safety of road and bridge. However, because of the complex nature of SHM system, it's expensive to manufacture, difficult to install and not well-suited for the regular bridges and roads. Based on this application background, this paper designs a compact structural health monitoring system based on DSP, which is highly integrated, low-power, easy to install and inexpensive to manufacture. The designed system is made up of sensor arrays, the charge amplifier module, the DSP processing unit, the alarm system for overload, and the estimate for damage of the road and bridge structure. The signals coming from sensor arrays go through the charge amplifier. DSP processing unit will receive the amplified signals, estimate whether it is an overload signal or not, and convert analog variables into digital ones so that they are compatible with the back-end digital circuit for further processing. The system will also restrict certain vehicles that are overweight, by taking image of the car brand, sending the alarm, and transferring the collected pressure data to remote data center for further monitoring analysis by rain-flow counting method.

  11. Simulation of reactor noise analysis measurement for light-water critical assembly TCA using MCNP-DSP

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Sakurai, Kiyoshi; Tonoike, Kotaro; Miyoshi, Yoshinori

    2001-01-01

    Reactor noise analysis methods using Monte Carlo technique have been proposed and developed in the field of nuclear criticality safety. The Monte Carlo simulation for noise analysis can be made by simulating physical phenomena in the course of neutron transport in a nuclear fuel as practically as possible. MCNP-DSP was developed by T. Valentine of ORNL for this purpose and it is a modified version of MCNP-4A. The authors applied this code to frequency analysis measurements performed in light-water critical assembly TCA. Prompt neutron generation times for critical and subcritical cores were measured by doing the frequency analysis of detector signals. The Monte Carlo simulations for these experiments were carried out using MCNP-DSP, and prompt neutron generation times were calculated. (author)

  12. Research of Data Acquisition and Analysis System for Internal Combustion Engine Based on DSP

    International Nuclear Information System (INIS)

    Gao, Y H; Tian, X L; Cheng, P; Chang, X; Dou, W J

    2006-01-01

    In the paper, the structure, working principle, functions and characteristics of an data acquisition and analysis system for internal combustion engines (I.C. engine) based on DSP is introduced. The DSP can not only acquire and analyze the data alone, also can work with the PC together to form data acquisition and analysis system with high speed and large memory. The system takes advantages of TMS320F2812's plenty of peripherals on chip, becomes small and easy for installation. USB technique is used to translate data between DSP and PC in high speed, so the system's real time processing is proved very much. It is proved that the designed system can acquire and analyze the steady and transient parameters of the I.C. engine very well

  13. Low-Power Embedded DSP Core for Communication Systems

    Science.gov (United States)

    Tsao, Ya-Lan; Chen, Wei-Hao; Tan, Ming Hsuan; Lin, Maw-Ching; Jou, Shyh-Jye

    2003-12-01

    This paper proposes a parameterized digital signal processor (DSP) core for an embedded digital signal processing system designed to achieve demodulation/synchronization with better performance and flexibility. The features of this DSP core include parameterized data path, dual MAC unit, subword MAC, and optional function-specific blocks for accelerating communication system modulation operations. This DSP core also has a low-power structure, which includes the gray-code addressing mode, pipeline sharing, and advanced hardware looping. Users can select the parameters and special functional blocks based on the character of their applications and then generating a DSP core. The DSP core has been implemented via a cell-based design method using a synthesizable Verilog code with TSMC 0.35[InlineEquation not available: see fulltext.]m SPQM and 0.25[InlineEquation not available: see fulltext.]m 1P5M library. The equivalent gate count of the core area without memory is approximately 50 k. Moreover, the maximum operating frequency of a[InlineEquation not available: see fulltext.] version is 100 MHz (0.35[InlineEquation not available: see fulltext.]m) and 140 MHz (0.25[InlineEquation not available: see fulltext.]m).

  14. Design of a system based on DSP and FPGA for video recording and replaying

    Science.gov (United States)

    Kang, Yan; Wang, Heng

    2013-08-01

    This paper brings forward a video recording and replaying system with the architecture of Digital Signal Processor (DSP) and Field Programmable Gate Array (FPGA). The system achieved encoding, recording, decoding and replaying of Video Graphics Array (VGA) signals which are displayed on a monitor during airplanes and ships' navigating. In the architecture, the DSP is a main processor which is used for a large amount of complicated calculation during digital signal processing. The FPGA is a coprocessor for preprocessing video signals and implementing logic control in the system. In the hardware design of the system, Peripheral Device Transfer (PDT) function of the External Memory Interface (EMIF) is utilized to implement seamless interface among the DSP, the synchronous dynamic RAM (SDRAM) and the First-In-First-Out (FIFO) in the system. This transfer mode can avoid the bottle-neck of the data transfer and simplify the circuit between the DSP and its peripheral chips. The DSP's EMIF and two level matching chips are used to implement Advanced Technology Attachment (ATA) protocol on physical layer of the interface of an Integrated Drive Electronics (IDE) Hard Disk (HD), which has a high speed in data access and does not rely on a computer. Main functions of the logic on the FPGA are described and the screenshots of the behavioral simulation are provided in this paper. In the design of program on the DSP, Enhanced Direct Memory Access (EDMA) channels are used to transfer data between the FIFO and the SDRAM to exert the CPU's high performance on computing without intervention by the CPU and save its time spending. JPEG2000 is implemented to obtain high fidelity in video recording and replaying. Ways and means of acquiring high performance for code are briefly present. The ability of data processing of the system is desirable. And smoothness of the replayed video is acceptable. By right of its design flexibility and reliable operation, the system based on DSP and FPGA

  15. Modular version of SIMCON, FPGA based, DSP integrated, LLRF control system for TESLA FEL part II: measurement of SIMCON 3.0 DSP daughterboard

    Science.gov (United States)

    Giergusiewicz, Wojciech; Koprek, Waldemar; Jalmuzna, Wojciech; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.

    2006-02-01

    The paper describes design, construction and initial measurements of an eight channel electronic LLRF device predicted for building of the control system for the W-FEL accelerator at DESY (Hamburg). The device, referred in the paper to as the SIMCON 3.0 (from the SC cavity simulator and controller) consists of a 16 layer, VME size, PCB, a large FPGA chip (VirtexII-4000 by Xilinx), eight fast ADCs and four DACs (by Analog Devices). To our knowledge, the proposed device is the first of this kind for the accelerator technology in which there was achieved (the FPGA based) DSP latency below 200 ns. With the optimized data transmission system, the overall LLRF system latency can be as low as 500 ns. The SIMCON 3.0 sub-system was applied for initial tests with the ACCl module of the VUV FEL accelerator (eight channels) and with the CHECHIA test stand (single channel), both at the DESY. The promising results with the SIMCON 3.0. encouraged us to enter the design of SIMCON 3.1. possessing 10 measurement and control channels and some additional features to be reported in the next technical note. SIMCON 3.0. is a modular solution, while SIMCON 3.1. will be an integrated board of the all-in-one type. Two design approaches - modular and all-in-one - after branching off in this version of the Simcon, will be continued.

  16. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhang; Xueguang Qiao; Manli Hu; Zhongyao Feng; Hong Gao; Yang Yang; Rui Zhou

    2011-01-01

    @@ The intelligent structural health monitoring method,which uses a fiber Bragg grating(FBG)sensor,is a new approach in the field of civil engineering.However,it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements.In this letter,a flextensional FBG-based accelerometer is proposed and demonstrated.The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz,with a high sensitivity of 410.7 pm/g.In addition,it has a broad and flat response over low frequencies ranging from 1 to 10 Hz.The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications.Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer.These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.%The intelligent structural health monitoring method, which uses a fiber Bragg grating {FBG} sensor, ie a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a flextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.

  17. MCNP-DSP, Monte Carlo Neutron-Particle Transport Code with Digital Signal Processing

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: MCNP-DSP is recommended only for experienced MCNP users working with subcritical measurements. It is a modification of the Los Alamos National Laboratory's Monte Carlo code MCNP4a that is used to simulate a variety of subcritical measurements. The DSP version was developed to simulate frequency analysis measurements, correlation (Rossi-) measurements, pulsed neutron measurements, Feynman variance measurements, and multiplicity measurements. CCC-700/MCNP4C is recommended for general purpose calculations. 2 - Methods:MCNP-DSP performs calculations very similarly to MCNP and uses the same generalized geometry capabilities of MCNP. MCNP-DSP can only be used with the continuous-energy cross-section data. A variety of source and detector options are available. However, unlike standard MCNP, the source and detector options are limited to those described in the manual because these options are specified in the MCNP-DSP extra data file. MCNP-DSP is used to obtain the time-dependent response of detectors that are modeled in the simulation geometry. The detectors represent actual detectors used in measurements. These time-dependent detector responses are used to compute a variety of quantities such as frequency analysis signatures, correlation signatures, multiplicity signatures, etc., between detectors or sources and detectors. Energy ranges are 0-60 MeV for neutrons (data generally only available up to 20 MeV) and 1 keV - 1 GeV for photons and electrons. 3 - Restrictions on the complexity of the problem: None noted

  18. Inspector-2000. A DSP-based, portable, multi-purpose MCA

    International Nuclear Information System (INIS)

    Koskelo, M.J.; Sielaff, W.A.; Hall, D.L.; Kastner, M.H.; Jordanov, V.T.

    2001-01-01

    Various in-situ gamma-spectroscopy applications need a versatile, multi-purpose, portable multi-channel analyzer (MCA). Recently, Canberra has introduced the Inspector-2000 for this purpose. It uses digital signal processing (DSP) technology and weighs only about 1.2 kg. It also supports CdTe, NaI and Ge detectors. Due to its use of DSP technology, the Inspector-2000 also provides a longer battery life, a better detector resolution and a better temperature stability than most portable MCAs. A short description of the Inspector-2000 MCA is included and its performance characteristics compared to an analog MCA. (author)

  19. Low-cost vibration sensor based on dual fiber Bragg gratings and light intensity measurement.

    Science.gov (United States)

    Gao, Xueqing; Wang, Yongjiao; Yuan, Bo; Yuan, Yinquan; Dai, Yawen; Xu, Gang

    2013-09-20

    A vibration monitoring system based on light intensity measurement has been constructed, and the designed accelerometer is based on steel cantilever frame and dual fiber Bragg gratings (FBGs). By using numerical simulations for the dual FBGs, the dependence relationship of the area of main lobes on the difference of initial central wavelengths is obtained and the most optimal choice for the initial value and the vibration amplitude of the difference of central wavelengths of two FBGs is suggested. The vibration monitoring experiments are finished, and the measured data are identical to the simulated results.

  20. Research on the adaptive optical control technology based on DSP

    Science.gov (United States)

    Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun

    2018-02-01

    Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.

  1. Study on UPF Harmonic Current Detection Method Based on DSP

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H J [Northwestern Polytechnical University, Xi' an 710072 (China); Pang, Y F [Xi' an University of Technology, Xi' an 710048 (China); Qiu, Z M [Xi' an University of Technology, Xi' an 710048 (China); Chen, M [Northwestern Polytechnical University, Xi' an 710072 (China)

    2006-10-15

    Unity power factor (UPF) harmonic current detection method applied to active power filter (APF) is presented in this paper. The intention of this method is to make nonlinear loads and active power filter in parallel to be an equivalent resistance. So after compensation, source current is sinusoidal, and has the same shape of source voltage. Meanwhile, there is no harmonic in source current, and the power factor becomes one. The mathematic model of proposed method and the optimum project for equivalent low pass filter in measurement are presented. Finally, the proposed detection method applied to a shunt active power filter experimental prototype based on DSP TMS320F2812 is developed. Simulation and experiment results indicate the method is simple and easy to implement, and can obtain the real-time calculation of harmonic current exactly.

  2. Intelligent Shutter Speech Control System Based on DSP

    Directory of Open Access Journals (Sweden)

    Yonghong Deng

    2017-01-01

    Full Text Available Based on TMS320F28035 DSP, this paper designed a smart shutters voice control system, which realized the functions of opening and closing shutters, intelligent switching of lighting mode and solar power supply through voice control. The traditional control mode is converted to voice control at the same time with automatic lighting and solar power supply function. In the convenience of people’s lives at the same time more satisfied with today’s people on the intelligent and environmental protection of the two concepts of the pursuit. The whole system is simple, low cost, safe and reliable.

  3. Car audio using DSP for active sound control. DSP ni yoru active seigyo wo mochiita audio

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Asano, S.; Furukawa, N. (Mitsubishi Motor Corp., Tokyo (Japan))

    1993-06-01

    In the automobile cabin, there are some unique problems which spoil the quality of sound reproduction from audio equipment, such as the narrow space and/or the background noise. The audio signal processing by using DSP (digital signal processor) makes enable a solution to these problems. A car audio with a high amenity has been successfully made by the active sound control using DSP. The DSP consists of an adder, coefficient multiplier, delay unit, and connections. For the actual processing by DSP, are used functions, such as sound field correction, response and processing of noises during driving, surround reproduction, graphic equalizer processing, etc. High effectiveness of the method was confirmed through the actual driving evaluation test. The present paper describes the actual method of sound control technology using DSP. Especially, the dynamic processing of the noise during driving is discussed in detail. 1 ref., 12 figs., 1 tab.

  4. Vibration measurement on composite material with embedded optical fiber based on phase-OTDR

    Science.gov (United States)

    Franciscangelis, C.; Margulis, W.; Floridia, C.; Rosolem, J. B.; Salgado, F. C.; Nyman, T.; Petersson, M.; Hallander, P.; Hällstrom, S.; Söderquist, I.; Fruett, F.

    2017-04-01

    Distributed sensors based on phase-optical time-domain reflectometry (phase-OTDR) are suitable for aircraft health monitoring due to electromagnetic interference immunity, small dimensions, low weight and flexibility. These features allow the fiber embedment into aircraft structures in a nearly non-intrusive way to measure vibrations along its length. The capability of measuring vibrations on avionics structures is of interest for what concerns the study of material fatigue or the occurrence of undesirable phenomena like flutter. In this work, we employed the phase-OTDR technique to measure vibrations ranging from some dozens of Hz to kHz in two layers of composite material board with embedded polyimide coating 0.24 numerical aperture single-mode optical fiber.

  5. Hamming Weight Counters and Comparators based on Embedded DSP Blocks for Implementation in FPGA

    Directory of Open Access Journals (Sweden)

    SKLYAROV, V.

    2014-05-01

    Full Text Available This paper is dedicated to the design, implementation and evaluation of fast FPGA-based circuits that compute Hamming weights for binary vectors and compare the results with fixed thresholds and variable bounds. It is shown that digital signal processing (DSP slices that are widely available in contemporary FPGAs may be used efficiently and they frequently provide the fastest and least resource consuming solutions. A thorough analysis and comparison of these with the best known alternatives both in hardware and in software is presented. The results are supported by numerous experiments in recent prototyping boards. A fully synthesizable hardware description language (VHDL specification for one of the proposed core components is given that is ready to be synthesized, implemented, tested and compared in any FPGA that contains embedded DSP48E1 slices (or alternatively DSP48A1 slices from previous generations. Finally, the results of comparisons are provided that include discussions of designs in an ARM processor combined with reconfigurable logic for very long vectors.

  6. Arithmetic circuits for DSP applications

    CERN Document Server

    Stouraitis, Thanos

    2017-01-01

    Arithmetic Circuits for DSP Applications is a complete resource on arithmetic circuits for digital signal processing (DSP). It covers the key concepts, designs and developments of different types of arithmetic circuits, which can be used for improving the efficiency of implementation of a multitude of DSP applications. Each chapter includes various applications of the respective class of arithmetic circuits along with information on the future scope of research. Written for students, engineers, and researchers in electrical and computer engineering, this comprehensive text offers a clear understanding of different types of arithmetic circuits used for digital signal processing applications. The text includes contributions from noted researchers on a wide range of topics, including a review o circuits used in implementing basic operations like additions and multiplications; distributed arithmetic as a technique for the multiplier-less implementation of inner products for DSP applications; discussions on look ...

  7. Design and implementation of DSP based solar converter for photovoltaic systems

    Energy Technology Data Exchange (ETDEWEB)

    Caliskan, Eser [TUBITAK - MRC, Kocaeli (Turkey). Energy Inst.; Ustun, Ozgur [Istanbul Technical Univ., Maslak (Turkey). Electrical Engineering Dept.

    2012-07-01

    This study discusses the design and implementation of a DSP controlled converter for photovoltaic system that can track the maximum power point, charge and discharge the battery. In the designed system, the boost converter operates the photovoltaic panels at the maximum power point and the bi-directional battery charger charges and discharges the battery bank as demanded. All required switching and control signals for these converters provided by the high performance C2000 series DSP produced by the Texas Instruments. The current, voltage and temperature data are collected by sensors from power stages by using DSP algorithms and the control signals are generated by the embedded software. The load bus is kept at constant voltage by the bi-directional battery charger. The boost converter is controlled by MPPT algorithms and the current sharing or battery charge modes are implemented depending on the radiation value. The designed photovoltaic system performance is verified by simulation and some experiments. (orig.)

  8. The correction of vibration in frequency scanning interferometry based absolute distance measurement system for dynamic measurements

    Science.gov (United States)

    Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Zhuang, Zhitao; Xu, Xinke; Gan, Yu

    2015-10-01

    Absolute distance measurement systems are of significant interest in the field of metrology, which could improve the manufacturing efficiency and accuracy of large assemblies in fields such as aircraft construction, automotive engineering, and the production of modern windmill blades. Frequency scanning interferometry demonstrates noticeable advantages as an absolute distance measurement system which has a high precision and doesn't depend on a cooperative target. In this paper , the influence of inevitable vibration in the frequency scanning interferometry based absolute distance measurement system is analyzed. The distance spectrum is broadened as the existence of Doppler effect caused by vibration, which will bring in a measurement error more than 103 times bigger than the changes of optical path difference. In order to decrease the influence of vibration, the changes of the optical path difference are monitored by a frequency stabilized laser, which runs parallel to the frequency scanning interferometry. The experiment has verified the effectiveness of this method.

  9. Design of dual DC motor control system based on DSP

    Science.gov (United States)

    Shi, Peicheng; Wang, Suo; Xu, Zengwei; Xiao, Ping

    2017-08-01

    Multi-motor control systems are widely used in actual production and life, such as lifting stages, robots, printing systems. This paper through serial communication between PC and DSP, dual DC motor control system consisting of PC as the host computer, DSP as the lower computer with synchronous PWM speed regulation, commutation and selection functions is designed. It sends digital control instructions with host computer serial debugger to lower computer, to instruct the motor to complete corresponding actions. The hardware and software design of the control system are given, and feasibility and validity of the control system are verified by experiments. The expected design goal is achieved.

  10. DSP+FPGA-based real-time histogram equalization system of infrared image

    Science.gov (United States)

    Gu, Dongsheng; Yang, Nansheng; Pi, Defu; Hua, Min; Shen, Xiaoyan; Zhang, Ruolan

    2001-10-01

    Histogram Modification is a simple but effective method to enhance an infrared image. There are several methods to equalize an infrared image's histogram due to the different characteristics of the different infrared images, such as the traditional HE (Histogram Equalization) method, and the improved HP (Histogram Projection) and PE (Plateau Equalization) method and so on. If to realize these methods in a single system, the system must have a mass of memory and extremely fast speed. In our system, we introduce a DSP + FPGA based real-time procession technology to do these things together. FPGA is used to realize the common part of these methods while DSP is to do the different part. The choice of methods and the parameter can be input by a keyboard or a computer. By this means, the function of the system is powerful while it is easy to operate and maintain. In this article, we give out the diagram of the system and the soft flow chart of the methods. And at the end of it, we give out the infrared image and its histogram before and after the process of HE method.

  11. DSP accelerator for the wavelet compression/decompression of high- resolution images

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, M.A.; Gleason, S.S.; Jatko, W.B.

    1993-07-23

    A Texas Instruments (TI) TMS320C30-based S-Bus digital signal processing (DSP) module was used to accelerate a wavelet-based compression and decompression algorithm applied to high-resolution fingerprint images. The law enforcement community, together with the National Institute of Standards and Technology (NISI), is adopting a standard based on the wavelet transform for the compression, transmission, and decompression of scanned fingerprint images. A two-dimensional wavelet transform of the input image is computed. Then spatial/frequency regions are automatically analyzed for information content and quantized for subsequent Huffman encoding. Compression ratios range from 10:1 to 30:1 while maintaining the level of image quality necessary for identification. Several prototype systems were developed using SUN SPARCstation 2 with a 1280 {times} 1024 8-bit display, 64-Mbyte random access memory (RAM), Tiber distributed data interface (FDDI), and Spirit-30 S-Bus DSP-accelerators from Sonitech. The final implementation of the DSP-accelerated algorithm performed the compression or decompression operation in 3.5 s per print. Further increases in system throughput were obtained by adding several DSP accelerators operating in parallel.

  12. The design of multi-core DSP parallel model based on message passing and multi-level pipeline

    Science.gov (United States)

    Niu, Jingyu; Hu, Jian; He, Wenjing; Meng, Fanrong; Li, Chuanrong

    2017-10-01

    Currently, the design of embedded signal processing system is often based on a specific application, but this idea is not conducive to the rapid development of signal processing technology. In this paper, a parallel processing model architecture based on multi-core DSP platform is designed, and it is mainly suitable for the complex algorithms which are composed of different modules. This model combines the ideas of multi-level pipeline parallelism and message passing, and summarizes the advantages of the mainstream model of multi-core DSP (the Master-Slave model and the Data Flow model), so that it has better performance. This paper uses three-dimensional image generation algorithm to validate the efficiency of the proposed model by comparing with the effectiveness of the Master-Slave and the Data Flow model.

  13. Design of DSP-based high-power digital solar array simulator

    Science.gov (United States)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  14. Vibration Measurement with PULSE and DSPACE Equipment

    Directory of Open Access Journals (Sweden)

    Radim KLEČKA

    2009-06-01

    Full Text Available This contribution describes techniques and results of measurement with TIRA vibration generator. A method of experimental modal analysis allows next restore of vibration data. The goal is check validity of head expanders and screw connection. This process is based to using ME’scope environment. Another goal is check possibilities of dSPACE platform to vibration measurement. This task includes design of connection between dSPACE system and power amplifier, creating of graphical user interface and analyzing main configuration parameters to improve quality of drive signal.

  15. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    Science.gov (United States)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  16. A DSP based data acquisition module for colliding beam accelerators

    International Nuclear Information System (INIS)

    Mead, J.A.; Shea, T.J.

    1995-10-01

    In 1999, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory will accelerate and store two beams of gold ions. The ions will then collide head on at a total energy of nearly 40 trillion electron volts. Attaining these conditions necessitates real-time monitoring of beam parameters and for this purpose a flexible data acquisition platform has been developed. By incorporating a floating point digital signal processor (DSP) and standard input/output modules, this system can acquire and process data from a variety of beam diagnostic devices. The DSP performs real time corrections, filtering, and data buffering to greatly reduce control system computation and bandwidth requirements. We will describe the existing hardware and software while emphasizing the compromises required to achieve a flexible yet cost effective system. Applications in several instrumentation systems currently construction will also be presented

  17. Sex determination using the Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) tool in a virtual environment.

    Science.gov (United States)

    Chapman, Tara; Lefevre, Philippe; Semal, Patrick; Moiseev, Fedor; Sholukha, Victor; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge

    2014-01-01

    The hip bone is one of the most reliable indicators of sex in the human body due to the fact it is the most dimorphic bone. Probabilistic Sex Diagnosis (DSP: Diagnose Sexuelle Probabiliste) developed by Murail et al., in 2005, is a sex determination method based on a worldwide hip bone metrical database. Sex is determined by comparing specific measurements taken from each specimen using sliding callipers and computing the probability of specimens being female or male. In forensic science it is sometimes not possible to sex a body due to corpse decay or injury. Skeletalization and dissection of a body is a laborious process and desecrates the body. There were two aims to this study. The first aim was to examine the accuracy of the DSP method in comparison with a current visual sexing method on sex determination. A further aim was to see if it was possible to virtually utilise the DSP method on both the hip bone and the pelvic girdle in order to utilise this method for forensic sciences. For the first part of the study, forty-nine dry hip bones of unknown sex were obtained from the Body Donation Programme of the Université Libre de Bruxelles (ULB). A comparison was made between DSP analysis and visual sexing on dry bone by two researchers. CT scans of bones were then analysed to obtain three-dimensional (3D) virtual models and the method of DSP was analysed virtually by importing the models into a customised software programme called lhpFusionBox which was developed at ULB. The software enables DSP distances to be measured via virtually-palpated bony landmarks. There was found to be 100% agreement of sex between the manual and virtual DSP method. The second part of the study aimed to further validate the method by analysing thirty-nine supplementary pelvic girdles of known sex blind. There was found to be a 100% accuracy rate further demonstrating that the virtual DSP method is robust. Statistically significant differences were found in the identification of sex

  18. Noise and Vibrations Measurements. External noise and vibrations measurements for offshore SODAR application

    International Nuclear Information System (INIS)

    Ormel, F.T.; Eecen, P.J.; Herman, S.A.

    2003-10-01

    measured onshore. Therefore, under offshore conditions a negative effect of the background noise on the SODAR measurements is expected. The vibrations in the metal structure of the offshore island are expected to have an influence on the SODAR performance. The vibration measurements showed that the effects are negligible with regards to the normal SODAR measurement uncertainties. A recommendation is to limit negative effects of background noise offshore by performing noise measurements in advance and by choosing a position for the SODAR equipment based on these measurements. It is recommended to select the best position on an offshore island using instruments and not just by listening

  19. Wind turbine blades condition assessment based on vibration measurements and the level of an empirically decomposed feature

    International Nuclear Information System (INIS)

    Abouhnik, Abdelnasser; Albarbar, Alhussein

    2012-01-01

    Highlights: ► We used finite element method to model wind turbine induced vibration characteristics. ► We developed a technique for eliminating wind turbine’s vibration modulation problems. ► We use empirical mode decomposition to decompose the vibration into its fundamental elements. ► We show the area under shaft speed is a good indicator for assessing wind blades condition. ► We validate the technique under different wind turbine speeds and blade (cracks) conditions. - Abstract: Vibration based monitoring techniques are well understood and widely adopted for monitoring the condition of rotating machinery. However, in the case of wind turbines the measured vibration is complex due to the high number of vibration sources and modulation phenomenon. Therefore, extracting condition related information of a specific element e.g. blade condition is very difficult. In the work presented in this paper wind turbine vibration sources are outlined and then a three bladed wind turbine vibration was simulated by building its model in the ANSYS finite element program. Dynamic analysis was performed and the fundamental vibration characteristics were extracted under two healthy blades and one blade with one of four cracks introduced. The cracks were of length (10 mm, 20 mm, 30 mm and 40 mm), all had a consistent 3 mm width and 2 mm depth. The tests were carried out for three rotation speeds; 150, 250 and 360 r/min. The effects of the seeded faults were revealed by using a novel approach called empirically decomposed feature intensity level (EDFIL). The developed EDFIL algorithm is based on decomposing the measured vibration into its fundamental components and then determines the shaft rotational speed amplitude. A real model of the simulated wind turbine was constructed and the simulation outcomes were compared with real-time vibration measurements. The cracks were seeded sequentially in one of the blades and their presence and severity were determined by decomposing

  20. Time Synchronized Wireless Sensor Network for Vibration Measurement

    Science.gov (United States)

    Uchimura, Yutaka; Nasu, Tadashi; Takahashi, Motoichi

    Network based wireless sensing has become an important area of research and various new applications for remote sensing are expected to emerge. One of the promising applications is structural health monitoring of building or civil engineering structure and it often requires vibration measurement. For the vibration measurement via wireless network, time synchronization is indispensable. In this paper, we introduce a newly developed time synchronized wireless sensor network system. The system employs IEEE 802.11 standard based TSF counter and sends the measured data with the counter value. TSF based synchronization enables consistency on common clock among different wireless nodes. We consider the scale effect on the synchronization accuracy and the effect is evaluated by stochastic analysis and simulation studies. A new wireless sensing system is developed and the hardware and software specifications are shown. The experiments are conducted in a reinforced concrete building and results show good performance enough for vibration measurement purpose.

  1. The Chameleon Architecture for Streaming DSP Applications

    NARCIS (Netherlands)

    Bergmann, N.; Smit, Gerardus Johannes Maria; Kokkeler, Andre B.J.; Platzner, M.; Wolkotte, P.T.; Teich, J.; Holzenspies, P.K.F.; van de Burgwal, M.D.; Heysters, P.M.

    2007-01-01

    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a

  2. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  3. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs.

    Science.gov (United States)

    Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu

    2017-10-17

    Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  4. The design and implementation of signal decomposition system of CL multi-wavelet transform based on DSP builder

    Science.gov (United States)

    Huang, Yan; Wang, Zhihui

    2015-12-01

    With the development of FPGA, DSP Builder is widely applied to design system-level algorithms. The algorithm of CL multi-wavelet is more advanced and effective than scalar wavelets in processing signal decomposition. Thus, a system of CL multi-wavelet based on DSP Builder is designed for the first time in this paper. The system mainly contains three parts: a pre-filtering subsystem, a one-level decomposition subsystem and a two-level decomposition subsystem. It can be converted into hardware language VHDL by the Signal Complier block that can be used in Quartus II. After analyzing the energy indicator, it shows that this system outperforms Daubenchies wavelet in signal decomposition. Furthermore, it has proved to be suitable for the implementation of signal fusion based on SoPC hardware, and it will become a solid foundation in this new field.

  5. Damage assessment in a sandwich panel based on full-field vibration measurements

    Science.gov (United States)

    Seguel, F.; Meruane, V.

    2018-03-01

    Different studies have demonstrated that vibration characteristics are sensitive to debonding in composite structures. Nevertheless, one of the main restrictions of vibration measurements is the number of degrees of freedom that can be acquired simultaneously, which restricts the size of the damage that can be identified. Recent studies have shown that it is possible to use high-speed three-dimensional (3-D) digital image correlation (DIC) techniques for full-field vibration measurements. With this technique, it is possible to take measurements at thousands of points on the surface of a structure with a single snapshot. The present article investigates the application of full-field vibration measurements in the debonding assessment of an aluminium honeycomb sandwich panel. Experimental data from an aluminium honeycomb panel containing different damage scenarios is acquired by a high-speed 3-D DIC system; four methodologies to compute damage indices are evaluated: mode shape curvatures, uniform load surface, modal strain energy and gapped smoothing.

  6. DSP Based System for Real time Voice Synthesis Applications Development

    OpenAIRE

    Arsinte, Radu; Ferencz, Attila; Miron, Costin

    2008-01-01

    This paper describes an experimental system designed for development of real time voice synthesis applications. The system is composed from a DSP coprocessor card, equipped with an TMS320C25 or TMS320C50 chip, voice acquisition module (ADDA2),host computer (IBM-PC compatible), software specific tools.

  7. Design And Implementation of Dsp-Based Intelligent Controller For Automobile Braking System

    Directory of Open Access Journals (Sweden)

    S.N. Sidek and M.J.E. Salami

    2012-08-01

    Full Text Available An intelligent braking system has great potential applications especially, in developed countries where research on smart vehicle and intelligent highways are receiving ample attention. The system when integrated with other subsystems like automatic traction control, intelligent throttle, and auto cruise systems, etc will result in smart vehicle maneuver. The driver at the end of the day will become the passenger, safety accorded the highest priority and the journey optimized in term of time duration, cost, efficiency and comfortability. The impact of such design and development will cater for the need of contemporary society that aspires to a quality drive as well as to accommodate the advancement of technology especially in the area of smart sensors and actuators.  The emergence of digital signal processor enhances the capacity and features of universal microcontroller.  This paper introduces the use of TI DSP, TMS320LF2407 as an engine of the system. The overall system is designed so that the value of inter-vehicle distance from infrared laser sensor and speed of follower car from speedometer are fed into the DSP for processing, resulting in the DSP issuing commands to the actuator to function appropriately.Key words:  Smart Vehicle, Digital Signal Processor, Fuzzy Controller, and Infra Red Laser Sensor

  8. Feasibility Study on a Portable Field Pest Classification System Design Based on DSP and 3G Wireless Communication Technology

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2012-03-01

    Full Text Available This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP, which uses a digital signal processor (DSP as a core CPU, and a host control platform (HCP. The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests’ pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture.

  9. Feasibility study on a portable field pest classification system design based on DSP and 3G wireless communication technology.

    Science.gov (United States)

    Han, Ruizhen; He, Yong; Liu, Fei

    2012-01-01

    This paper presents a feasibility study on a real-time in field pest classification system design based on Blackfin DSP and 3G wireless communication technology. This prototype system is composed of remote on-line classification platform (ROCP), which uses a digital signal processor (DSP) as a core CPU, and a host control platform (HCP). The ROCP is in charge of acquiring the pest image, extracting image features and detecting the class of pest using an Artificial Neural Network (ANN) classifier. It sends the image data, which is encoded using JPEG 2000 in DSP, to the HCP through the 3G network at the same time for further identification. The image transmission and communication are accomplished using 3G technology. Our system transmits the data via a commercial base station. The system can work properly based on the effective coverage of base stations, no matter the distance from the ROCP to the HCP. In the HCP, the image data is decoded and the pest image displayed in real-time for further identification. Authentication and performance tests of the prototype system were conducted. The authentication test showed that the image data were transmitted correctly. Based on the performance test results on six classes of pests, the average accuracy is 82%. Considering the different live pests' pose and different field lighting conditions, the result is satisfactory. The proposed technique is well suited for implementation in field pest classification on-line for precision agriculture.

  10. An Application of PSV-S in Fast Development of a Real-Time DSP System

    Directory of Open Access Journals (Sweden)

    Armein Z.R. Langi

    2016-09-01

    Full Text Available Virtual prototyping is natural in developing digital signal processing (DSP systems using a product-service-value system (PSV-S approach. Our DSP virtual prototyping approach consists of four development phases: (1 a generic DSP system, (2 a functional DSP system, (3 an architectural DSP system, and (4 a real-time DSP system. Such an approach results in a more comprehensive approach in the DSP system development. This paper shows an example of prototyping a voice codec on a single-chip DSP processor.

  11. Triangle bipolar pulse shaping and pileup correction based on DSP

    International Nuclear Information System (INIS)

    Esmaeili-sani, Vahid; Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad

    2011-01-01

    Programmable Digital Signal Processing (DSP) microprocessors are capable of doing complex discrete signal processing algorithms with clock rates above 50 MHz. This combined with their low expense, ease of use and selected dedicated hardware make them an ideal option for spectrometer data acquisition systems. For this generation of spectrometers, functions that are typically performed in dedicated circuits, or offline, are being migrated to the field programmable gate array (FPGA). This will not only reduce the electronics, but the features of modern FPGAs can be utilized to add considerable signal processing power to produce higher resolution spectra. In this paper we report on an all-digital triangle bipolar pulse shaping and pileup correction algorithm that is being developed for the DSP. The pileup mitigation algorithm will allow the spectrometers to run at higher count rates or with multiple sources without imposing large data losses due to the overlapping of scintillation signals. This correction technique utilizes a very narrow bipolar triangle digital pulse shaping algorithm to extract energy information for most pileup events.

  12. Triangle bipolar pulse shaping and pileup correction based on DSP

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili-sani, Vahid, E-mail: vaheed_esmaeely80@yahoo.com [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of); Moussavi-zarandi, Ali; Akbar-ashrafi, Nafiseh; Boghrati, Behzad [Department of Nuclear Engineering and Physics, Amirkabir University of Technology, P.O. Box 4155-4494, Tehran (Iran, Islamic Republic of)

    2011-02-11

    Programmable Digital Signal Processing (DSP) microprocessors are capable of doing complex discrete signal processing algorithms with clock rates above 50 MHz. This combined with their low expense, ease of use and selected dedicated hardware make them an ideal option for spectrometer data acquisition systems. For this generation of spectrometers, functions that are typically performed in dedicated circuits, or offline, are being migrated to the field programmable gate array (FPGA). This will not only reduce the electronics, but the features of modern FPGAs can be utilized to add considerable signal processing power to produce higher resolution spectra. In this paper we report on an all-digital triangle bipolar pulse shaping and pileup correction algorithm that is being developed for the DSP. The pileup mitigation algorithm will allow the spectrometers to run at higher count rates or with multiple sources without imposing large data losses due to the overlapping of scintillation signals. This correction technique utilizes a very narrow bipolar triangle digital pulse shaping algorithm to extract energy information for most pileup events.

  13. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    Science.gov (United States)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  14. A Novel Dual Separate Paths (DSP) Algorithm Providing Fault-Tolerant Communication for Wireless Sensor Networks.

    Science.gov (United States)

    Tien, Nguyen Xuan; Kim, Semog; Rhee, Jong Myung; Park, Sang Yoon

    2017-07-25

    Fault tolerance has long been a major concern for sensor communications in fault-tolerant cyber physical systems (CPSs). Network failure problems often occur in wireless sensor networks (WSNs) due to various factors such as the insufficient power of sensor nodes, the dislocation of sensor nodes, the unstable state of wireless links, and unpredictable environmental interference. Fault tolerance is thus one of the key requirements for data communications in WSN applications. This paper proposes a novel path redundancy-based algorithm, called dual separate paths (DSP), that provides fault-tolerant communication with the improvement of the network traffic performance for WSN applications, such as fault-tolerant CPSs. The proposed DSP algorithm establishes two separate paths between a source and a destination in a network based on the network topology information. These paths are node-disjoint paths and have optimal path distances. Unicast frames are delivered from the source to the destination in the network through the dual paths, providing fault-tolerant communication and reducing redundant unicast traffic for the network. The DSP algorithm can be applied to wired and wireless networks, such as WSNs, to provide seamless fault-tolerant communication for mission-critical and life-critical applications such as fault-tolerant CPSs. The analyzed and simulated results show that the DSP-based approach not only provides fault-tolerant communication, but also improves network traffic performance. For the case study in this paper, when the DSP algorithm was applied to high-availability seamless redundancy (HSR) networks, the proposed DSP-based approach reduced the network traffic by 80% to 88% compared with the standard HSR protocol, thus improving network traffic performance.

  15. Vibration measurements of automobile catalyst

    Science.gov (United States)

    Aatola, Seppo

    1994-09-01

    Vibration of catalyst cell, which is inside the casing of the catalyst, is difficult to measure with usual measuring instrumentation. When catalyst is in use, there is hot exhaust gas flow though the catalyst cell and temperature of the cell is approximately +900 degree(s)C. Therefore non-contact Laser- Doppler-Vibrometer was used to measure vibration velocity of the catalyst cell. The laser beam was directed towards the cell through pipe which was put through and welded to the casing of the catalyst. The outer end of the pipe was screw down with a tempered class to prevent exhaust gas flow from the pipe. The inner end of the pipe was open and few millimeters away from the measuring point. Catalyst was attached to the engine with two ways, rigidly close to the engine and flexible under the engine. The engine was running in test bench under controlled conditions. Vibration measurements were carried out during constant running speeds of the engine. Vibration signals were captured and analyzed with FFT-analyzer. Vibration of catalyst cell was strongest at running speed of 5000 rpm, from 10 to 20 g (1 g equals 9.81 ms-2), when catalyst was attached rigidly close to the engine. At running speed of 3000 rpm, vibration of catalyst cell was from 2 to 3 g in most cases, when catalyst was attached either rigidly or flexible to the engine. It is estimated that in real life, i.e. when catalyst is attached to car with same engine, vibration of catalyst cell at running speed of 5000 rpm is somewhere between 1 and 10 g. At running speed of 3000 rpm, which may be more often used when driving car (car speed approximately 100 kmh-1), vibration of catalyst cell is probably few g's.

  16. Analysis of classical guitars' vibrational behavior based on scanning laser vibrometer measurements

    Science.gov (United States)

    Czajkowska, Marzena

    2012-06-01

    One of the main goals in musical acoustics research is to link measurable, physical properties of a musical instrument with subjective assessments of its tone quality. The aim of the research discussed in this paper was to observe the structural vibrations of different class classical guitars in relation to their quality. This work focuses on mid-low-and low-class classical (nylon-stringed) guitars. The main source of guitar body vibrations come from top and back plate vibrations therefore these were the objects of structural mode measurements and analysis. Sixteen classical guitars have been investigated, nine with cedar and seven with spruce top plate. Structural modes of top and back plates have been measured with the aid of a scanning laser vibrometer and the instruments were excited with a chirp signal transferred by bone vibrator. The issues related to excitor selection have been discussed. Correlation and descriptive statistics of top and back plates measurement results have been investigated in relation to guitar quality. The frequency range of 300 Hz to 5 kHz as well as selected narrowed frequency bands have been analyzed for cedar and spruce guitars. Furthermore, the influence of top plate wood type on vibration characteristics have been observed on three pairs of guitars. The instruments were of the same model but different top plate material. Determination and visualization of both guitar plates' modal patterns in relation to frequency are a significant attainment of the research. Scanning laser vibrometer measurements allow particular mode observation and therefore mode identification, as opposed to sound pressure response measurements. When correlating vibration characteristics of top and back plates it appears that Pearson productmoment correlation coefficient is not a parameter that associates with guitar quality. However, for best instruments with cedar top, top-back correlation coefficient has relatively greater value in 1-2 kHz band and lower in

  17. Development of a system based in a digital signal processor (DSP) for a simulator of power regulation in a reactor: first stage

    International Nuclear Information System (INIS)

    Benitez R, J.S.; Perez C, B.

    2002-01-01

    The first stage of the development of a digital system based on a DSP is presented which forms part of an hybrid simulator for the power regulation in am model of the punctual kinetics of a TRIGA reactor type. The DSP performs the regulation, using a Mandami type algorithm of diffuse control. In the algorithm, the universe of the output variable is discretized for performing in an unique stage the aggregation functions and dis-diffusization. (Author)

  18. A method of measuring and correcting tilt of anti - vibration wind turbines based on screening algorithm

    Science.gov (United States)

    Xiao, Zhongxiu

    2018-04-01

    A Method of Measuring and Correcting Tilt of Anti - vibration Wind Turbines Based on Screening Algorithm is proposed in this paper. First of all, we design a device which the core is the acceleration sensor ADXL203, the inclination is measured by installing it on the tower of the wind turbine as well as the engine room. Next using the Kalman filter algorithm to filter effectively by establishing a state space model for signal and noise. Then we use matlab for simulation. Considering the impact of the tower and nacelle vibration on the collected data, the original data and the filtering data are classified and stored by the Screening algorithm, then filter the filtering data to make the output data more accurate. Finally, we eliminate installation errors by using algorithm to achieve the tilt correction. The device based on this method has high precision, low cost and anti-vibration advantages. It has a wide range of application and promotion value.

  19. Dominant de novo DSP mutations cause erythrokeratodermia-cardiomyopathy syndrome.

    Science.gov (United States)

    Boyden, Lynn M; Kam, Chen Y; Hernández-Martín, Angela; Zhou, Jing; Craiglow, Brittany G; Sidbury, Robert; Mathes, Erin F; Maguiness, Sheilagh M; Crumrine, Debra A; Williams, Mary L; Hu, Ronghua; Lifton, Richard P; Elias, Peter M; Green, Kathleen J; Choate, Keith A

    2016-01-15

    Disorders of keratinization (DOK) show marked genotypic and phenotypic heterogeneity. In most cases, disease is primarily cutaneous, and further clinical evaluation is therefore rarely pursued. We have identified subjects with a novel DOK featuring erythrokeratodermia and initially-asymptomatic, progressive, potentially fatal cardiomyopathy, a finding not previously associated with erythrokeratodermia. We show that de novo missense mutations clustered tightly within a single spectrin repeat of DSP cause this novel cardio-cutaneous disorder, which we term erythrokeratodermia-cardiomyopathy (EKC) syndrome. We demonstrate that DSP mutations in our EKC syndrome subjects affect localization of desmosomal proteins and connexin 43 in the skin, and result in desmosome aggregation, widening of intercellular spaces, and lipid secretory defects. DSP encodes desmoplakin, a primary component of desmosomes, intercellular adhesion junctions most abundant in the epidermis and heart. Though mutations in DSP are known to cause other disorders, our cohort features the unique clinical finding of severe whole-body erythrokeratodermia, with distinct effects on localization of desmosomal proteins and connexin 43. These findings add a severe, previously undescribed syndrome featuring erythrokeratodermia and cardiomyopathy to the spectrum of disease caused by mutation in DSP, and identify a specific region of the protein critical to the pathobiology of EKC syndrome and to DSP function in the heart and skin. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Optical network and FPGA/DSP based control system for free electron laser

    International Nuclear Information System (INIS)

    Romaniuk, R.S.; Pozniak, K.T.; Czarski, T.; Czuba, K.; Giergusiewicz, W.; Kasprowicz, G.; Koprek, W.

    2005-01-01

    The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control, diagnostic and telemetric system for a large industrial object. An example of system implementation is the European TESLA-XFEL accelerator. The free electron laser is expected to work in the VUV region now and in the range of X-rays in the future. The design of a system based on the FPGA circuits and multi-gigabit optical network is discussed. The system design approach is fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of DSP/PC enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. The current parameters of the system model, under the design, are presented. The considerations are shown on the background of the system application in the hostile industrial environment. The work is a digest of a few development threads of the hybrid, optoelectronic, telemetric networks (HOTN). In particular, the outline of construction theory of HOTN node was presented as well as the technology of complex, modular, multilayer HOTN system PCBs. The PCBs contain critical sub-systems of the node and the network. The presented exemplary sub-systems are: fast optical data transmission of 2.5 Gbit/s, 3.125 Gbit/s and 10 Gbit/s; fast A/C and C/A multichannel data conversion managed by FPGA chip (40 MHz, 65 MHz, 105 MHz), data and functionality concentration, integration of floating point calculations in the DSP units of FPGA circuit, using now discrete and next integrated PC chip with embedded OS; optical distributed timing system of phase reference; and 1GbEth video interface (over UTP or FX) for CCD telemetry and monitoring. The data and functions concentration in the HOTN node is necessary to

  1. Sound Power Estimation by Laser Doppler Vibration Measurement Techniques

    Directory of Open Access Journals (Sweden)

    G.M. Revel

    1998-01-01

    Full Text Available The aim of this paper is to propose simple and quick methods for the determination of the sound power emitted by a vibrating surface, by using non-contact vibration measurement techniques. In order to calculate the acoustic power by vibration data processing, two different approaches are presented. The first is based on the method proposed in the Standard ISO/TR 7849, while the second is based on the superposition theorem. A laser-Doppler scanning vibrometer has been employed for vibration measurements. Laser techniques open up new possibilities in this field because of their high spatial resolution and their non-intrusivity. The technique has been applied here to estimate the acoustic power emitted by a loudspeaker diaphragm. Results have been compared with those from a commercial Boundary Element Method (BEM software and experimentally validated by acoustic intensity measurements. Predicted and experimental results seem to be in agreement (differences lower than 1 dB thus showing that the proposed techniques can be employed as rapid solutions for many practical and industrial applications. Uncertainty sources are addressed and their effect is discussed.

  2. Measurement of stress strain and vibrational properties of tendons

    Science.gov (United States)

    Revel, Gian Marco; Scalise, Alessandro; Scalise, Lorenzo

    2003-08-01

    The authors present a new non-intrusive experimental procedure based on laser techniques for the measurement of mechanical properties of tendons. The procedure is based on the measurement of the first resonance frequency of the tendon by laser Doppler vibrometry during in vitro tensile experiments, with the final aim of establishing a measurement procedure to perform the mechanical characterization of tendons by extracting parameters such as the resonance frequency, also achievable during in vivo investigation. The experimental procedure is reported, taking into account the need to simulate the physiological conditions of the Achilles tendon, and the measurement technique used for the non-invasive determination of tendon cross-sectional area during tensile vibration tests at different load levels is described. The test procedure is based on a tensile machine, which measures longitudinal tendons undergoing controlled load conditions. Cross-sectional area is measured using a new non-contact procedure for the measurement of tendon perimeter (repeatability of 99% and accuracy of 2%). For each loading condition, vibration resonance frequency and damping, cross-sectional area and tensile force are measured, allowing thus a mechanical characterization of the tendon. Tendon stress-strain curves are reported. Stress-strain curves have been correlated to the first vibration resonance frequency and damping of the tendon measured using a single-point laser Doppler vibrometer. Moreover, experimental results have been compared with a theoretical model of a vibrating cord showing discrepancies. In vitro tests are reported, demonstrating the validity of the method for the comparison of different aged rabbit tendons.

  3. Development of a system based in a digital signal processor (DSP) for a simulator of power regulation in a reactor: first stage; Desarrollo de un sistema basado en un DSP para un simulador de regulacion de potencia en un reactor: 1. etapa

    Energy Technology Data Exchange (ETDEWEB)

    Benitez R, J.S.; Perez C, B. [Instituto Nacional de Investigaciones Nucleares, Km. 36.5 Carretera Mexico-Toluca, Municipio de Ocoyoacac, 52045 Estado de Mexico (Mexico)

    2002-07-01

    The first stage of the development of a digital system based on a DSP is presented which forms part of an hybrid simulator for the power regulation in am model of the punctual kinetics of a TRIGA reactor type. The DSP performs the regulation, using a Mandami type algorithm of diffuse control. In the algorithm, the universe of the output variable is discretized for performing in an unique stage the aggregation functions and dis-diffusization. (Author)

  4. BOREAS Follow-On DSP-05 Process-Modeled Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The BOREAS DSP-5 team generated a NPP image over the BOREAS region from a process-based ecosystem model, the Boreal Ecosystem Productivity Simulator...

  5. Vibration-based Energy Harvesting Systems Characterization Using Automated Electronic Equipment

    Directory of Open Access Journals (Sweden)

    Ioannis KOSMADAKIS

    2015-04-01

    Full Text Available A measurement bench has been developed to fully automate the procedure for the characterization of a vibration-based energy scavenging system. The measurement system is capable of monitoring all important characteristics of a vibration harvesting system (input and output voltage, current, and other parameters, frequency and acceleration values, etc.. It is composed of a PC, typical digital measuring instruments (oscilloscope, waveform generator, etc., certain sensors and actuators, along with a microcontroller based automation module. The automation of the procedure and the manipulation of the acquired data are performed by LabVIEW software. Typical measurements of a system consisting of a vibrating source, a vibration transducer and an active rectifier are presented.

  6. A simple optical method for measuring the vibration amplitude of a speaker

    OpenAIRE

    UEDA, Masahiro; YAMAGUCHI, Toshihiko; KAKIUCHI, Hiroki; SUGA, Hiroshi

    1999-01-01

    A simple optical method has been proposed for measuring the vibration amplitude of a speaker vibrating with a frequency of approximately 10 kHz. The method is based on a multiple reflection between a vibrating speaker plane and a mirror parallel to that speaker plane. The multiple reflection can magnify a dispersion of the laser beam caused by the vibration, and easily make a measurement of the amplitude. The measuring sensitivity ranges between sub-microns and 1 mm. A preliminary experim...

  7. BOREAS Follow-On DSP-05 Process-Modeled Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The BOREAS DSP-5 team generated a NPP image over the BOREAS region from a process-based ecosystem model, the Boreal Ecosystem Productivity Simulator (BEPS). The NPP...

  8. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening

    Science.gov (United States)

    Wang, Weiya; Jia, Mengyu; Gao, Feng; Yang, Lihong; Qu, Pengpeng; Zou, Changping; Liu, Pengxi; Zhao, Huijuan

    2015-02-01

    The cervical cancer screening at a pre-cancer stage is beneficial to reduce the mortality of women. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening is introduced in this paper. In this system, three electrodes alternately discharge to the cervical tissue and three light emitting diodes in different wavelengths alternately irradiate the cervical tissue. Then the relative optical reflectance and electrical voltage attenuation curve are obtained by optical and electrical detection, respectively. The system is based on DSP to attain the portable and cheap instrument. By adopting the relative reflectance and the voltage attenuation constant, the classification algorithm based on Support Vector Machine (SVM) discriminates abnormal cervical tissue from normal. We use particle swarm optimization to optimize the two key parameters of SVM, i.e. nuclear factor and cost factor. The clinical data were collected on 313 patients to build a clinical database of tissue responses under optical and electrical stimulations with the histopathologic examination as the gold standard. The classification result shows that the opto-electronic joint detection has higher total coincidence rate than separate optical detection or separate electrical detection. The sensitivity, specificity, and total coincidence rate increase with the increasing of sample numbers in the training set. The average total coincidence rate of the system can reach 85.1% compared with the histopathologic examination.

  9. IMAGE TYPE WATER METER CHARACTER RECOGNITION BASED ON EMBEDDED DSP

    OpenAIRE

    LIU Ying; HAN Yan-bin; ZHANG Yu-lin

    2015-01-01

    In the paper, we combined DSP processor with image processing algorithm and studied the method of water meter character recognition. We collected water meter image through camera at a fixed angle, and the projection method is used to recognize those digital images. The experiment results show that the method can recognize the meter characters accurately and artificial meter reading is replaced by automatic digital recognition, which improves working efficiency.

  10. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-02-01

    Experimental or operational modal analysis traditionally requires physically-attached wired or wireless sensors for vibration measurement of structures. This instrumentation can result in mass-loading on lightweight structures, and is costly and time-consuming to install and maintain on large civil structures, especially for long-term applications (e.g., structural health monitoring) that require significant maintenance for cabling (wired sensors) or periodic replacement of the energy supply (wireless sensors). Moreover, these sensors are typically placed at a limited number of discrete locations, providing low spatial sensing resolution that is hardly sufficient for modal-based damage localization, or model correlation and updating for larger-scale structures. Non-contact measurement methods such as scanning laser vibrometers provide high-resolution sensing capacity without the mass-loading effect; however, they make sequential measurements that require considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation, optical flow), video camera based measurements have been successfully used for vibration measurements and subsequent modal analysis, based on techniques such as the digital image correlation (DIC) and the point-tracking. However, they typically require speckle pattern or high-contrast markers to be placed on the surface of structures, which poses challenges when the measurement area is large or inaccessible. This work explores advanced computer vision and video processing algorithms to develop a novel video measurement and vision-based operational (output-only) modal analysis method that alleviate the need of structural surface preparation associated with existing vision-based methods and can be implemented in a relatively efficient and autonomous manner with little

  11. The development of special equipment amplitude detection instrument based on DSP

    International Nuclear Information System (INIS)

    Dai Sidan; Chen Ligang; Lan Peng; Wang Huiting; Zhang Liangxu; Wang Lin

    2014-01-01

    Development and industrial application of special equipment plays an important role in the development of nuclear energy process. Equipment development process need to do a lot of tests, amplitude detection is a key test,it can analysis the device's electromechanical and physical properties. In the industrial application, the amplitude detection can effectively reflect the operational status of the current equipment, the equipment can also be a certain degree of fault diagnosis, identify problems in a timely manner. The main development target in this article is amplitude detection of special equipment. This article describes the development of special equipment amplitude detection instrument. The instrument uses a digital signal processor (DSP) as the central processing unit, and uses the DSP + CPLD + high-speed AD technology to build a complete set of high-precision signal acquisition and analysis processing systems, rechargeable lithium battery as the powered device. It can do a online monitoring of special equipment amplitude, speed parameters by acquiring and analysing the tachometer signal in the special equipment, and locally display through the LCD screen. (authors)

  12. RISC & DSP System Application Design using VHDL

    OpenAIRE

    Rachana Solanki; Vinay Gupta

    2014-01-01

    The Reduced Instruction Set Computer (RISC) processor use fewer instructions with simple constructs, therefore they can be executed much faster within the CPU without having to use memory as often. It reduce execution time by simplifying the instruction set of the computer. The DSP processors are perform the operation such as Discrete Cosine transform (DCT), Inverse DCT, Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT) are performed by DSP system. This paper represent the des...

  13. Prototype fiber Bragg Grattings (FBG) sensor based on intensity modulation of the laser diode low frequency vibrations measurement

    Science.gov (United States)

    Setiono, Andi; Ula, Rini Khamimatul; Hanto, Dwi; Widiyatmoko, Bambang; Purnamaningsih, Retno Wigajatri

    2016-02-01

    In general, Fiber Bragg Grating (FBG) sensor works based on observation of spectral response characteristic to detect the desired parameter. In this research, we studied intensity response characteristic of FBG to detect the dynamic strain. Experiment result show that the reflected intensity had linier relationships with dynamic strain. Based on these characteristics, we developed the FBG sensor to detect low frequency vibration. This sensor is designed by attaching the FBG on the bronze cantilever with dimensions of 85×3×0.5 mm. Measurement results showed that the sensor was able to detect vibrations in the frequency range of 7-10 Hz at temperature range of 25-45 ˚C. The measured frequency range is still within the frequency range of digging activity, therefore this vibration sensor can be applied for oil pipelines vandalisation detection system.

  14. PC based vibration monitoring system

    International Nuclear Information System (INIS)

    Jain, Sanjay K.; Roy, D.A.; Pithawa, C.K.; Patil, R.K.

    2004-01-01

    Health of large rotating machinery gets reflected in the vibration signature of the rotor and supporting structures and proper recording of these signals and their analysis can give a clear picture of the health of the machine. Using these data and their trending, it is possible to predict an impending trouble in the machine so that preventive action can be taken in time and catastrophic failure can be avoided. Continuous monitoring and analysis can give quick warning and enable operator to take preventive measures. Reactor Control Division, BARC is developing a PC based Vibration monitoring system for turbo generator machinery. The System can acquire 20 vibration signals at a rate of 5000 samples per second and also 15 process signals at a rate of 100 samples/ sec. The software for vibration monitoring system includes acquisition modules, analysis modules and Graphical User Interface module. The acquisition module involves initialization, setting of required parameters and acquiring the data from PC-based data acquisition cards. The acquired raw vibration data is then stored for analysis using various software packages. The display and analysis of acquired data is done in LabVIEW 7.0 where the data is displayed in time as well as frequency domain along with the RMS value of the signal. (author)

  15. Optimized design of embedded DSP system hardware supporting complex algorithms

    Science.gov (United States)

    Li, Yanhua; Wang, Xiangjun; Zhou, Xinling

    2003-09-01

    The paper presents an optimized design method for a flexible and economical embedded DSP system that can implement complex processing algorithms as biometric recognition, real-time image processing, etc. It consists of a floating-point DSP, 512 Kbytes data RAM, 1 Mbytes FLASH program memory, a CPLD for achieving flexible logic control of input channel and a RS-485 transceiver for local network communication. Because of employing a high performance-price ratio DSP TMS320C6712 and a large FLASH in the design, this system permits loading and performing complex algorithms with little algorithm optimization and code reduction. The CPLD provides flexible logic control for the whole DSP board, especially in input channel, and allows convenient interface between different sensors and DSP system. The transceiver circuit can transfer data between DSP and host computer. In the paper, some key technologies are also introduced which make the whole system work efficiently. Because of the characters referred above, the hardware is a perfect flat for multi-channel data collection, image processing, and other signal processing with high performance and adaptability. The application section of this paper presents how this hardware is adapted for the biometric identification system with high identification precision. The result reveals that this hardware is easy to interface with a CMOS imager and is capable of carrying out complex biometric identification algorithms, which require real-time process.

  16. Real-time co-registered ultrasound and photoacoustic imaging system based on FPGA and DSP architecture

    Science.gov (United States)

    Alqasemi, Umar; Li, Hai; Aguirre, Andres; Zhu, Quing

    2011-03-01

    Co-registering ultrasound (US) and photoacoustic (PA) imaging is a logical extension to conventional ultrasound because both modalities provide complementary information of tumor morphology, tumor vasculature and hypoxia for cancer detection and characterization. In addition, both modalities are capable of providing real-time images for clinical applications. In this paper, a Field Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) module-based real-time US/PA imaging system is presented. The system provides real-time US/PA data acquisition and image display for up to 5 fps* using the currently implemented DSP board. It can be upgraded to 15 fps, which is the maximum pulse repetition rate of the used laser, by implementing an advanced DSP module. Additionally, the photoacoustic RF data for each frame is saved for further off-line processing. The system frontend consists of eight 16-channel modules made of commercial and customized circuits. Each 16-channel module consists of two commercial 8-channel receiving circuitry boards and one FPGA board from Analog Devices. Each receiving board contains an IC† that combines. 8-channel low-noise amplifiers, variable-gain amplifiers, anti-aliasing filters, and ADC's‡ in a single chip with sampling frequency of 40MHz. The FPGA board captures the LVDSξ Double Data Rate (DDR) digital output of the receiving board and performs data conditioning and subbeamforming. A customized 16-channel transmission circuitry is connected to the two receiving boards for US pulseecho (PE) mode data acquisition. A DSP module uses External Memory Interface (EMIF) to interface with the eight 16-channel modules through a customized adaptor board. The DSP transfers either sub-beamformed data (US pulse-echo mode or PAI imaging mode) or raw data from FPGA boards to its DDR-2 memory through the EMIF link, then it performs additional processing, after that, it transfer the data to the PC** for further image processing. The PC code

  17. Vibration measurement-based simple technique for damage detection of truss bridges: A case study

    Directory of Open Access Journals (Sweden)

    Sudath C. Siriwardane

    2015-10-01

    Full Text Available The bridges experience increasing traffic volume and weight, deteriorating of components and large number of stress cycles. Therefore, assessment of the current condition of steel railway bridges becomes necessary. Most of the commonly available approaches for structural health monitoring are based on visual inspection and non-destructive testing methods. The visual inspection is unreliable as those depend on uncertainty behind inspectors and their experience. Also, the non-destructive testing methods are found to be expensive. Therefore, recent researches have noticed that dynamic modal parameters or vibration measurement-based structural health monitoring methods are economical and may also provide more realistic predictions to damage state of civil infrastructure. Therefore this paper proposes a simple technique to locate the damage region of railway truss bridges based on measured modal parameters. The technique is discussed with a case study. Initially paper describes the details of considered railway bridge. Then observations of visual inspection, material testing and in situ load testing are discussed under separate sections. Development of validated finite element model of the considered bridge is comprehensively discussed. Hence, variations of modal parameters versus position of the damage are plotted. These plots are considered as the main reference for locating the damage of the railway bridge in future periodical inspection by comparing the measured corresponding modal parameters. Finally the procedure of periodical vibration measurement and damage locating technique are clearly illustrated.

  18. Uncertainty Quantification for Monitoring of Civil Structures from Vibration Measurements

    Science.gov (United States)

    Döhler, Michael; Mevel, Laurent

    2014-05-01

    Health Monitoring of civil structures can be performed by detecting changes in the modal parameters of a structure, or more directly in the measured vibration signals. For a continuous monitoring the excitation of a structure is usually ambient, thus unknown and assumed to be noise. Hence, all estimates from the vibration measurements are realizations of random variables with inherent uncertainty due to (unknown) process and measurement noise and finite data length. In this talk, a strategy for quantifying the uncertainties of modal parameter estimates from a subspace-based system identification approach is presented and the importance of uncertainty quantification in monitoring approaches is shown. Furthermore, a damage detection method is presented, which is based on the direct comparison of the measured vibration signals without estimating modal parameters, while taking the statistical uncertainty in the signals correctly into account. The usefulness of both strategies is illustrated on data from a progressive damage action on a prestressed concrete bridge. References E. Carden and P. Fanning. Vibration based condition monitoring: a review. Structural Health Monitoring, 3(4):355-377, 2004. M. Döhler and L. Mevel. Efficient multi-order uncertainty computation for stochastic subspace identification. Mechanical Systems and Signal Processing, 38(2):346-366, 2013. M. Döhler, L. Mevel, and F. Hille. Subspace-based damage detection under changes in the ambient excitation statistics. Mechanical Systems and Signal Processing, 45(1):207-224, 2014.

  19. NIF Ambient Vibration Measurements

    International Nuclear Information System (INIS)

    Noble, C.R.; Hoehler, M.S.; S.C. Sommer

    1999-01-01

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B

  20. Research on the nonintrusive measurement of the turbine blade vibration

    Science.gov (United States)

    Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de

    2008-11-01

    It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.

  1. Ground Vibration Attenuation Measurement using Triaxial and Single Axis Accelerometers

    Science.gov (United States)

    Mohammad, A. H.; Yusoff, N. A.; Madun, A.; Tajudin, S. A. A.; Zahari, M. N. H.; Chik, T. N. T.; Rahman, N. A.; Annuar, Y. M. N.

    2018-04-01

    Peak Particle Velocity is one of the important term to show the level of the vibration amplitude especially traveling wave by distance. Vibration measurement using triaxial accelerometer is needed to obtain accurate value of PPV however limited by the size and the available channel of the data acquisition module for detailed measurement. In this paper, an attempt to estimate accurate PPV has been made by using only a triaxial accelerometer together with multiple single axis accelerometer for the ground vibration measurement. A field test was conducted on soft ground using nine single axis accelerometers and a triaxial accelerometer installed at nine receiver location R1 to R9. Based from the obtained result, the method shows convincing similarity between actual PPV with the calculated PPV with error ratio 0.97. With the design method, vibration measurement equipment size can be reduced with fewer channel required.

  2. Vision-based measurement system for structural vibration monitoring using non-projection quasi-interferogram fringe density enhanced by spectrum correction method

    International Nuclear Information System (INIS)

    Zhong, Jianfeng; Zhong, Shuncong; Zhang, Qiukun; Lu, Huancai; Zhuang, Yizhou; Fu, Xinbin

    2017-01-01

    A non-projection fringe vision measurement system suitable for vibration monitoring was proposed by using the concept of a 2D optical coherence vibration tomography (2D-OCVT) technique. An artificial quasi-interferogram fringe pattern (QIFP), similar to the interferogram of the 2D-OCVT system, was pasted onto the surface of a vibrating structure as a sensor. Image sequences of the QIFP were captured by a high-speed CMOS camera that worked as a detector. It was possible to obtain both the in-plane and out-of-plane vibration simultaneously. The in-plane vibration was obtained by tracking the center of the imaged QIFP using an image cross-correlation method, whilst the out-of-plane vibration was obtained from the changes in period density of the imaged QIFP. The influence of the noise sources from the CMOS image sensor, together with the effect of the imaging distance, the period density of the QIFP and also the key parameters of the fringe density enhanced by the spectrum correction method on the accuracy of the displacement measurement, were investigated by numerical simulations and experiments. Compared with the results from a conventional accelerometer-based measurement system, the proposed method was demonstrated to be an effective and accurate technique for measuring structural vibration without introducing any extra mass from the accelerometer. The significant advantages of this method include its simple installation and real-time dynamic response measurement capability, making the measurement system ideal for the low- and high-frequency vibration monitoring of engineering structures. (paper)

  3. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  4. Servo Platform Circuit Design of Pendulous Gyroscope Based on DSP

    Science.gov (United States)

    Tan, Lilong; Wang, Pengcheng; Zhong, Qiyuan; Zhang, Cui; Liu, Yunfei

    2018-03-01

    In order to solve the problem when a certain type of pendulous gyroscope in the initial installation deviation more than 40 degrees, that the servo platform can not be up to the speed of the gyroscope in the rough north seeking phase. This paper takes the digital signal processor TMS320F28027 as the core, uses incremental digital PID algorithm, carries out the circuit design of the servo platform. Firstly, the hardware circuit is divided into three parts: DSP minimum system, motor driving circuit and signal processing circuit, then the mathematical model of incremental digital PID algorithm is established, based on the model, writes the PID control program in CCS3.3, finally, the servo motor tracking control experiment is carried out, it shows that the design can significantly improve the tracking ability of the servo platform, and the design has good engineering practice.

  5. DSP-based CSO cancellation technique for RoF transmission system implemented by using directly modulated laser.

    Science.gov (United States)

    Kim, Byung Gon; Bae, Sung Hyun; Kim, Hoon; Chung, Yun C

    2017-05-29

    We propose and demonstrate a simple composite second-order (CSO) cancellation technique based on the digital signal processing (DSP) for the radio-over-fiber (RoF) transmission system implemented by using directly modulated lasers (DMLs). When the RoF transmission system is implemented by using DMLs, its performance could be limited by the CSO distortions caused by the interplay between the DML's chirp and fiber's chromatic dispersion. We present the theoretical analysis of these nonlinear distortions and show that they can be suppressed at the receiver by using a simple DSP. To verify the effectiveness of the proposed technique, we demonstrate the transmission of twenty-four 100-MHz filtered orthogonal frequency-division multiplexing (f-OFDM) signals in 64 quadrature amplitude modulation (QAM) format over 20 km of the standard single-mode fiber (SSMF). The results show that, by using the proposed technique, we can suppress the CSO distortion components by >10 dB and achieve the error-vector magnitude performance better than 6% even after the 20-km long SSMF transmission.

  6. Measuring the Amount of Mechanical Vibration During Lathe Processing

    Directory of Open Access Journals (Sweden)

    Štefánia SALOKYOVÁ

    2015-06-01

    Full Text Available The article provides basic information regarding the measurement and evaluation of mechanical vibration during the processing of material by lathe work. The lathe processing can be characterized as removing material by precisely defined tools. The results of the experimental part are values of the vibration acceleration amplitude measured by the piezoelectric sensor on the bearing house of the lathe. A set of new knowledge and conclusions is formulated based on the analysis of the created graphical dependencies.

  7. High-speed digital holographic interferometry for vibration measurement

    International Nuclear Information System (INIS)

    Pedrini, Giancarlo; Osten, Wolfgang; Gusev, Mikhail E.

    2006-01-01

    A system based on digital holographic interferometry for the measurement of vibrations is presented. A high-power continuous laser(10 W) and a high-speed CCD camera are used. Hundreds of holograms of an object that has been subjected to dynamic deformation are recorded. The acquisition speed and the time of exposure of the detector are determined by the vibration frequency. Two methods are presented for triggering the camera in order to acquire at a given phase of the vibration. The phase of the wavefront is calculated from the recorded holograms by use of a two-dimensional digital Fourier-transform method. The deformation of the object is obtained from the phase. By combination of the deformations recorded at different times it is possible to reconstruct the vibration of the object

  8. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost

    2010-04-01

    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  9. A Two-Level Task Scheduler on Multiple DSP System for OpenCL

    Directory of Open Access Journals (Sweden)

    Li Tian

    2014-04-01

    Full Text Available This paper addresses the problem that multiple DSP system does not support OpenCL programming. With the compiler, runtime, and the kernel scheduler proposed, an OpenCL application becomes portable not only between multiple CPU and GPU, but also between embedded multiple DSP systems. Firstly, the LLVM compiler was imported for source-to-source translation in which the translated source was supported by CCS. Secondly, two-level schedulers were proposed to support efficient OpenCL kernel execution. The DSP/BIOS is used to schedule system level tasks such as interrupts and drivers; however, the synchronization mechanism resulted in heavy overhead during task switching. So we designed an efficient second level scheduler especially for OpenCL kernel work-item scheduling. The context switch process utilizes the 8 functional units and cross path links which was superior to DSP/BIOS in the aspect of task switching. Finally, dynamic loading and software managed CACHE were redesigned for OpenCL running on multiple DSP system. We evaluated the performance using some common OpenCL kernels from NVIDIA, AMD, NAS, and Parboil benchmarks. Experimental results show that the DSP OpenCL can efficiently exploit the computing resource of multiple cores.

  10. Bevel Gearbox Fault Diagnosis using Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available The use of vibration measurementanalysis has been proven to be effective for gearbox fault diagnosis. However, the complexity of vibration signals observed from a gearbox makes it difficult to accurately detectfaults in the gearbox. This work is based on a comparative studyof several time-frequency signal processing methods that can be used to extract information from transient vibration signals containing useful diagnostic information. Experiments were performed on a bevel gearbox test rig using vibration measurements obtained from accelerometers. Initially, thediscrete wavelet transform was implementedfor vibration signal analysis to extract the frequency content of signal from the relevant frequency region. Several time-frequency signal processing methods werethen incorporated to extract the fault features of vibration signals and their diagnostic performances were compared. It was shown thatthe Short Time Fourier Transform (STFT could not offer a good time resolution to detect the periodicity of the faulty gear tooth due the difficulty in choosing an appropriate window length to capture the impulse signal. The Continuous Wavelet Transform (CWT, on the other hand, was suitable to detection of vibration transients generated by localized fault from a gearbox due to its multi-scale property. However, both methods still require a thorough visual inspection. In contrast, it was shown from the experiments that the diagnostic method using the Cepstrumanalysis could provide a direct indication of the faulty tooth without the need of a thorough visual inspection as required by CWT and STFT.

  11. Development of the method to measure vibrational stress of small-bore piping with contactless displacement sensor. Accuracy confirmation by vibrational experiment using branch pipe

    International Nuclear Information System (INIS)

    Tsuji, Takashi; Maekawa, Akira; Takahashi, Tsuneo

    2013-01-01

    In nuclear power plants, vibrational stress of piping is measured to prevent its fatigue failures. Easier handling and more efficient performance is desirable for the measurement of vibrational stress. The authors have proposed a method to measure vibrational stress using optical contactless displacement sensors, and have developed a device based on the method. In addition, they downsized the device and improved the method to allow its use for measurements even in narrow spaces in the plants. In this study, vibrational experiment using branch pipes and the device was conducted to confirm the measurement accuracy of the improved method. It was found that the improved method have sufficient accuracy for screening to evaluate the vibrational stress. It was also found that this measurement method was thought to be susceptible to the vibration of main pipe. So a technique was proposed to improve the accuracy of the measurement in this paper. (author)

  12. Damage Detection by Laser Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Elena Daniela Birdeanu

    2008-10-01

    Full Text Available The technique based on the vibration analysis by scanning laser Doppler vibrometer is one of the most promising, allowing to extract also small defect and to directly correlate it to local dynamic stiffness and structural integrity. In fact, the measurement capabilities of vibrometers, such as sensitivity, accuracy and reduced intrusively, allow having a very powerful instrument in diagnostic.

  13. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    Directory of Open Access Journals (Sweden)

    A. Haidar

    2005-05-01

    Full Text Available We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a 90° angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  14. Perception SoC Based on an Ultrasonic Array of Sensors: Efficient DSP Core Implementation and Subsequent Experimental Results

    Science.gov (United States)

    Kassem, A.; Sawan, M.; Boukadoum, M.; Haidar, A.

    2005-12-01

    We are concerned with the design, implementation, and validation of a perception SoC based on an ultrasonic array of sensors. The proposed SoC is dedicated to ultrasonic echography applications. A rapid prototyping platform is used to implement and validate the new architecture of the digital signal processing (DSP) core. The proposed DSP core efficiently integrates all of the necessary ultrasonic B-mode processing modules. It includes digital beamforming, quadrature demodulation of RF signals, digital filtering, and envelope detection of the received signals. This system handles 128 scan lines and 6400 samples per scan line with a[InlineEquation not available: see fulltext.] angle of view span. The design uses a minimum size lookup memory to store the initial scan information. Rapid prototyping using an ARM/FPGA combination is used to validate the operation of the described system. This system offers significant advantages of portability and a rapid time to market.

  15. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  16. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zongyu; Xu, Delin; Cui, Miao; Zhang, Qizhong, E-mail: zhangqzdr@126.com

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed by EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.

  17. Advanced Engine Health Management Applications of the SSME Real-Time Vibration Monitoring System

    Science.gov (United States)

    Fiorucci, Tony R.; Lakin, David R., II; Reynolds, Tracy D.; Turner, James E. (Technical Monitor)

    2000-01-01

    The Real Time Vibration Monitoring System (RTVMS) is a 32-channel high speed vibration data acquisition and processing system developed at Marshall Space Flight Center (MSFC). It Delivers sample rates as high as 51,200 samples/second per channel and performs Fast Fourier Transform (FFT) processing via on-board digital signal processing (DSP) chips in a real-time format. Advanced engine health assessment is achieved by utilizing the vibration spectra to provide accurate sensor validation and enhanced engine vibration redlines. Discrete spectral signatures (such as synchronous) that are indicators of imminent failure can be assessed and utilized to mitigate catastrophic engine failures- a first in rocket engine health assessment. This paper is presented in viewgraph form.

  18. Programming a DSP card for generating an ECG signal with possibility of anomalies

    International Nuclear Information System (INIS)

    Hamrouni, Sayma

    2013-01-01

    This project consists of programming a DSP designed to generate an ECG signal with a probability of anomaly. To begin with, we get to know the characteristics of a DSP card and its architecture. As a second step, we programmed the DSP32C using the compiler D3CC associated with Textpad in order to obtain an analog signal in the respective outputs. And then finally, we developed a graphical user interface using the programming software LabVIEW that aims controlling the good operation of DSP. The tests previously made have proved the good operation of the application.

  19. SIM-DSP: A DSP-Enhanced CAD Platform for Signal Integrity Macromodeling and Simulation

    Directory of Open Access Journals (Sweden)

    Chi-Un Lei

    2014-12-01

    Full Text Available Macromodeling-Simulation process for signal integrity verifications has become necessary for the high speed circuit system design. This paper aims to introduce a “VLSI Signal Integrity Macromodeling and Simulation via Digital Signal Processing Techniques” framework (known as SIM-DSP framework, which applies digital signal processing techniques to facilitate the SI verification process in the pre-layout design phase. Core identification modules and peripheral (pre-/post-processing modules have been developed and assembled to form a verification flow. In particular, a single-step discrete cosine transform truncation (DCTT module has been developed for modeling-simulation process. In DCTT, the response modeling problem is classified as a signal compression problem, wherein the system response can be represented by a truncated set of non-pole based DCT bases, and error can be analyzed through Parseval’s theorem. Practical examples are given to show the applicability of our proposed framework.

  20. Design of adaptive filter amplifier in UV communication based on DSP

    Science.gov (United States)

    Lv, Zhaoshun; Wu, Hanping; Li, Junyu

    2016-10-01

    According to the problem of the weak signal at receiving end in UV communication, we design a high gain, continuously adjustable adaptive filter amplifier. Based on proposing overall technical indicators and analyzing its working principle of the signal amplifier, we use chip LMH6629MF and two chips of AD797BN to achieve three-level cascade amplification. And apply hardware of DSP TMS320VC5509A to implement digital filtering. Design and verification by Multisim, Protel 99SE and CCS, the results show that: the amplifier can realize continuously adjustable amplification from 1000 to 10000 times without distortion. Magnification error is <=%4@1000 10000. And equivalent input noise voltage of amplification circuit is <=6 nV/ √Hz @30KHz 45KHz, and realizing function of adaptive filtering. The design provides theoretical reference and technical support for the UV weak signal processing.

  1. Optical vibration measurement of mechatronics devices

    Science.gov (United States)

    Yanabe, Shigeo

    1993-09-01

    An optical vibration measuring system which enables to detect both linear and angular displacement of 25 nm and 5 prad was developed. The system is mainly composed of a He-Ne laser, a displacement detecting photo-diode and lenses, and has linear and angular displacement magnification mechanism using two different principles of optical lever. The system was applied to measure vibrational characteristics of magnetic head slider of hard disk drives and to measure stator teeth driving velocities of ultrasonic motor.

  2. Distribution of base rock depth estimated from Rayleigh wave measurement by forced vibration tests

    International Nuclear Information System (INIS)

    Hiroshi Hibino; Toshiro Maeda; Chiaki Yoshimura; Yasuo Uchiyama

    2005-01-01

    This paper shows an application of Rayleigh wave methods to a real site, which was performed to determine spatial distribution of base rock depth from the ground surface. At a certain site in Sagami Plain in Japan, the base rock depth from surface is assumed to be distributed up to 10 m according to boring investigation. Possible accuracy of the base rock depth distribution has been needed for the pile design and construction. In order to measure Rayleigh wave phase velocity, forced vibration tests were conducted with a 500 N vertical shaker and linear arrays of three vertical sensors situated at several points in two zones around the edges of the site. Then, inversion analysis was carried out for soil profile by genetic algorithm, simulating measured Rayleigh wave phase velocity with the computed counterpart. Distribution of the base rock depth inverted from the analysis was consistent with the roughly estimated inclination of the base rock obtained from the boring tests, that is, the base rock is shallow around edge of the site and gradually inclines towards the center of the site. By the inversion analysis, the depth of base rock was determined as from 5 m to 6 m in the edge of the site, 10 m in the center of the site. The determined distribution of the base rock depth by this method showed good agreement on most of the points where boring investigation were performed. As a result, it was confirmed that the forced vibration tests on the ground by Rayleigh wave methods can be useful as the practical technique for estimating surface soil profiles to a depth of up to 10 m. (authors)

  3. Comparison report of open calculations for ATLAS Domestic Standard Problem (DSP 02)

    International Nuclear Information System (INIS)

    Choi, Ki Yong; Kim, Y. S.; Kang, K. H.; Cho, S.; Park, H. S.; Choi, N. H.; Kim, B. D.; Min, K. H.; Park, J. K.; Chun, H. G.; Yu, Xin Guo; Kim, H. T.; Song, C. H.; Sim, S. K.; Jeon, S. S.; Kim, S. Y.; Kang, D. G.; Choi, T. S.; Kim, Y. M.; Lim, S. G.; Kim, H. S.; Kang, D. H.; Lee, G. H.; Jang, M. J.

    2012-09-01

    KAERI (Korea Atomic Energy Research Institute) has been operating an integral effect test facility, the Advanced Thermal Hydraulic Test Loop for Accident Simulation (ATLAS) for transient and accident simulations of advanced pressurized water reactors (PWRs). By using the ATLAS, a high quality integral effect test database has been established for major design basis accidents of the APR1400. A Domestic Standard Problem (DSP) exercise using the ATLAS database was promoted in order to transfer the database to domestic nuclear industries and to contribute to improving safety analysis methodology for PWRs. This 2nd ATLAS DSP exercise was led by KAERI in collaboration with KINS since the successful completion of the 1st ATLAS DSP in 2009. This exercise aims at effective utilization of integral effect database obtained from the ATLAS, establishment of cooperation framework among the domestic nuclear industry, better understanding of thermal hydraulic phenomena, and investigation of the possible limitation of the existing best estimate safety analysis codes. A small break loss of coolant accident of 6 inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating with interests from participants. Twelve domestic organizations joined this DSP 02 exercise. Finally, eleven out of the joined organizations submitted their calculation results, including universities, government, and nuclear industries. This DSP exercise was performed in an open calculation environment where the integral effect test data was open to participants prior to code calculations. This report includes all information of the 2nd ATLAS DSP (DSP 02) exercise as well as comparison results between the calculations and the experimental data

  4. Ontario Hydro's DSP update

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Ontario Hydro's Demand/Supply Plan (DSP), the 25 year plan which was submitted in December 1989, is currently being reviewed by the Environmental Assessment Board (EAB). Since 1989 there have been several changes which have led Ontario Hydro to update the original Demand/Supply Plan. This information sheet gives a quick overview of what has changed and how Ontario Hydro is adapting to that change

  5. The obscure factor analysis on the vibration reliability of the internals of nuclear power plant reactor and anti-vibration measures

    International Nuclear Information System (INIS)

    Fu Geyan; Zhu Qirong

    1998-11-01

    It is pointed out that the main reason making nuclear power plants reactors leak is the vibration of internals of reactors. The factors which lead the vibration all have randomness and obscureness. The obscure reliability theory is introduced to the vibration system of internals of nuclear power reactor. Based on a quantity of designing and moving data, the obscure factors effecting the vibration reliability of the internals of nuclear power plant reactor are analyzed and the anti-vibration reliability criteria and the evaluating model are given. And the anti-vibration reliability measures are advanced from different quarters of the machine design and building, the thermohydraulics design, the control of reactivity, etc.. They may benefit the theory and practice for building and perfecting the vibration obscure reliability model of the reactor internals

  6. GSM Channel Equalization Algorithm - Modern DSP Coprocessor Approach

    Directory of Open Access Journals (Sweden)

    M. Drutarovsky

    1999-12-01

    Full Text Available The paper presents basic equations of efficient GSM Viterbi equalizer algorithm based on approximation of GMSK modulation by linear superposition of amplitude modulated pulses. This approximation allows to use Ungerboeck form of channel equalizer with significantly reduced arithmetic complexity. Proposed algorithm can be effectively implemented on the Viterbi and Filter coprocessors of new Motorola DSP56305 digital signal processor. Short overview of coprocessor features related to the proposed algorithm is included.

  7. A novel vibration-based fault diagnostic algorithm for gearboxes under speed fluctuations without rotational speed measurement

    Science.gov (United States)

    Hong, Liu; Qu, Yongzhi; Dhupia, Jaspreet Singh; Sheng, Shuangwen; Tan, Yuegang; Zhou, Zude

    2017-09-01

    The localized failures of gears introduce cyclic-transient impulses in the measured gearbox vibration signals. These impulses are usually identified from the sidebands around gear-mesh harmonics through the spectral analysis of cyclo-stationary signals. However, in practice, several high-powered applications of gearboxes like wind turbines are intrinsically characterized by nonstationary processes that blur the measured vibration spectra of a gearbox and deteriorate the efficacy of spectral diagnostic methods. Although order-tracking techniques have been proposed to improve the performance of spectral diagnosis for nonstationary signals measured in such applications, the required hardware for the measurement of rotational speed of these machines is often unavailable in industrial settings. Moreover, existing tacho-less order-tracking approaches are usually limited by the high time-frequency resolution requirement, which is a prerequisite for the precise estimation of the instantaneous frequency. To address such issues, a novel fault-signature enhancement algorithm is proposed that can alleviate the spectral smearing without the need of rotational speed measurement. This proposed tacho-less diagnostic technique resamples the measured acceleration signal of the gearbox based on the optimal warping path evaluated from the fast dynamic time-warping algorithm, which aligns a filtered shaft rotational harmonic signal with respect to a reference signal assuming a constant shaft rotational speed estimated from the approximation of operational speed. The effectiveness of this method is validated using both simulated signals from a fixed-axis gear pair under nonstationary conditions and experimental measurements from a 750-kW planetary wind turbine gearbox on a dynamometer test rig. The results demonstrate that the proposed algorithm can identify fault information from typical gearbox vibration measurements carried out in a resource-constrained industrial environment.

  8. Bridge Condition Assessment based on Vibration Responses of Passenger Vehicle

    International Nuclear Information System (INIS)

    Miyamoto, Ayaho; Yabe, Akito

    2011-01-01

    In this paper, we propose a new method of assessing the condition of existing short- and medium-span reinforced/prestressed concrete bridges based on vibration monitoring data obtained from a public bus. This paper not only describes details of a prototype monitoring system that uses information technology and sensors capable of providing more accurate knowledge of bridge performance than conventional ways but also shows a few specific examples of bridge condition assessment based on vehicle vibrations measured by using an in-service public bus equipped with vibration measurement instrumentation. This paper also describes a sensitivity analysis of deteriorating bridges based on simulation of the acceleration response of buses conducted by the 'substructure method' employing a finite element model to verify the above bridge performance results. The main conclusions obtained in this study can be summarized as follows: (1) Because the vibration responses of passenger vehicles, such as buses, have a good linear relationship with the vibration responses of the target bridges, the proposed system can be used as a practical monitoring system for bridge condition assessment. (2) The results of sensitivity analysis performed by the substructure method show that bus vibration responses are useful for evaluating target bridge performance. (3) The proposed method was applied to a network of real bridges in a local area to evaluate its effectiveness. The results indicate that the proposed method can be used to prioritize the repair/strengthening works of existing bridges based on various vibration information in order to help bridge administrators establish rational maintenance strategies.

  9. Second ATLAS Domestic Standard Problem (DSP-02) For A Code Assessment

    International Nuclear Information System (INIS)

    Kim, Yeonsik; Choi, Kiyong; Cho, Seok; Park, Hyunsik; Kang, Kyungho; Song, Chulhwa; Baek, Wonpil

    2013-01-01

    KAERI (Korea Atomic Energy Research Institute) has been operating an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS), for transient and accident simulations of advanced pressurized water reactors (PWRs). Using ATLAS, a high-quality integral effect test database has been established for major design basis accidents of the APR1400 plant. A Domestic Standard Problem (DSP) exercise using the ATLAS database was promoted to transfer the database to domestic nuclear industries and contribute to improving a safety analysis methodology for PWRs. This 2 nd ATLAS DSP (DSP-02) exercise aims at an effective utilization of an integral effect database obtained from ATLAS, the establishment of a cooperation framework among the domestic nuclear industry, a better understanding of the thermal hydraulic phenomena, and an investigation into the possible limitation of the existing best-estimate safety analysis codes. A small break loss of coolant accident with a 6-inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating interests from participants. This DSP exercise was performed in an open calculation environment where the integral effect test data was open to participants prior to the code calculations. This paper includes major information of the DSP-02 exercise as well as comparison results between the calculations and the experimental data

  10. SECOND ATLAS DOMESTIC STANDARD PROBLEM (DSP-02 FOR A CODE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    YEON-SIK KIM

    2013-12-01

    Full Text Available KAERI (Korea Atomic Energy Research Institute has been operating an integral effect test facility, the Advanced Thermal-Hydraulic Test Loop for Accident Simulation (ATLAS, for transient and accident simulations of advanced pressurized water reactors (PWRs. Using ATLAS, a high-quality integral effect test database has been established for major design basis accidents of the APR1400 plant. A Domestic Standard Problem (DSP exercise using the ATLAS database was promoted to transfer the database to domestic nuclear industries and contribute to improving a safety analysis methodology for PWRs. This 2nd ATLAS DSP (DSP-02 exercise aims at an effective utilization of an integral effect database obtained from ATLAS, the establishment of a cooperation framework among the domestic nuclear industry, a better understanding of the thermal hydraulic phenomena, and an investigation into the possible limitation of the existing best-estimate safety analysis codes. A small break loss of coolant accident with a 6-inch break at the cold leg was determined as a target scenario by considering its technical importance and by incorporating interests from participants. This DSP exercise was performed in an open calculation environment where the integral effect test data was open to participants prior to the code calculations. This paper includes major information of the DSP-02 exercise as well as comparison results between the calculations and the experimental data.

  11. Design and Implementation of a FPGA and DSP Based MIMO Radar Imaging System

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-06-01

    Full Text Available The work presented in this paper is aimed at the implementation of a real-time multiple-input multiple-output (MIMO imaging radar used for area surveillance. In this radar, the equivalent virtual array method and time-division technique are applied to make 16 virtual elements synthesized from the MIMO antenna array. The chirp signal generater is based on a combination of direct digital synthesizer (DDS and phase locked loop (PLL. A signal conditioning circuit is used to deal with the coupling effect within the array. The signal processing platform is based on an efficient field programmable gates array (FPGA and digital signal processor (DSP pipeline where a robust beamforming imaging algorithm is running on. The radar system was evaluated through a real field experiment. Imaging capability and real-time performance shown in the results demonstrate the practical feasibility of the implementation.

  12. Calculation of acoustic field based on laser-measured vibration velocities on ultrasonic transducer surface

    Science.gov (United States)

    Hu, Liang; Zhao, Nannan; Gao, Zhijian; Mao, Kai; Chen, Wenyu; Fu, Xin

    2018-05-01

    Determination of the distribution of a generated acoustic field is valuable for studying ultrasonic transducers, including providing the guidance for transducer design and the basis for analyzing their performance, etc. A method calculating the acoustic field based on laser-measured vibration velocities on the ultrasonic transducer surface is proposed in this paper. Without knowing the inner structure of the transducer, the acoustic field outside it can be calculated by solving the governing partial differential equation (PDE) of the field based on the specified boundary conditions (BCs). In our study, the BC on the transducer surface, i.e. the distribution of the vibration velocity on the surface, is accurately determined by laser scanning measurement of discrete points and follows a data fitting computation. In addition, to ensure the calculation accuracy for the whole field even in an inhomogeneous medium, a finite element method is used to solve the governing PDE based on the mixed BCs, including the discretely measured velocity data and other specified BCs. The method is firstly validated on numerical piezoelectric transducer models. The acoustic pressure distributions generated by a transducer operating in an homogeneous and inhomogeneous medium, respectively, are both calculated by the proposed method and compared with the results from other existing methods. Then, the method is further experimentally validated with two actual ultrasonic transducers used for flow measurement in our lab. The amplitude change of the output voltage signal from the receiver transducer due to changing the relative position of the two transducers is calculated by the proposed method and compared with the experimental data. This method can also provide the basis for complex multi-physical coupling computations where the effect of the acoustic field should be taken into account.

  13. A Medical Wireless Measurement System for Hip Prosthesis Loosening Detection Based on Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Sebastian Sauer

    2013-01-01

    Full Text Available Vibration analysis is a promising approach in order to detect early hip prosthesis loosening, with the potential to extend the range of diagnostic tools currently available in clinical routine. Ongoing research efforts and developments in the area of multi-functional implants, which integrate sensors, wireless power supply, communication and signal processing, provide means to obtain valuable in vivo information otherwise not available. In the current work a medical wireless measurement system is presented, which is integrated in the femoral head of a hip prosthesis. The passive miniaturized system includes a 3-axis acceleration sensor and signal pre-processing based on a lock-in amplifier circuit. Bidirectional data communication and power supply is reached through inductive coupling with an operating frequency of 125 kHz in accordance with the ISO 18000-2 protocol standard. The system allows the acquisition of the acceleration frequency response of the femur-prosthesis system between 500 to 2500 Hz. Applied laboratory measurements with system prototypes on artificial bones and integrated prostheses demonstrate the feasibility of the measurement system approach, clearly showing differences in the vibration behavior due to an implant loosening. In addition a possibility to evaluate the non-linear mechanic system behavior is presented.

  14. EVALUATION AND MEASUREMENT OF HAND-TRANSMITTED VIBRATIONS

    Directory of Open Access Journals (Sweden)

    Iveta MARKOVÁ

    2017-12-01

    Full Text Available The goal of this work is the effect of vibrations on selected professionals through questionnaire survey and implementation of experimental vibration measurements on a hand of employee. The observation of vibration effects was chosen in a company, where products are being shaped with pneumatic instruments and there is a risk of an exposure of vibrations on the employees. In experimental part are described and evaluated questionnaire surveys conducted on selected risk factors. The reason is the realization of work with vibrating tools for a longer time, where some parts do wear-out and therefore there is a higher exposure to oscillation.

  15. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  16. Fuel Rod Vibration Measurement Method using a Flap and its Verification

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Joo Young; Park, Nam Gyu; Suh, Jung Min; Jeon, Kyeong Lak [KEPCO NF Co., Daejeon (Korea, Republic of)

    2011-10-15

    Flow-induced vibration is a critical factor for the mechanical integrity of a fuel rod. This vibration can cause leaked fuel through the mechanism, such as grid to rod fretting. To minimize the failures caused by flow-induced vibration, a robust design is needed which takes into account vibrational characteristics. That is, the spacer grid design should be developed to avoid any excessive vibration. On the one hand, if fuel rod vibration can be measured, an estimation of the excitation forces, which are a critical cause of rod failure, should be possible. Therefore, by applying an external force, flow-induced vibration can be roughly estimated when the fuel rod vibration model is used. KEPCO Nuclear Fuel developed the test loop to research flow-induced vibration as shown in Fig.1. The investigation flow-induced vibration (INFINIT) - the test facility - can measure the grid strap vibration and pressure drop of a 5x5 small scale fuel bundle. Basically, using a Laser Doppler Vibrometer (LDV), the vibration of a structure immersed in high speed fluid can be measured. Grid strap vibration is easily measured using an LDV. However, it is quite difficult to measure fuel rod vibration because of the round surface shape of the rods. In addition, measuring current method using the LDV, it was only possible to directly measure fuel rod vibration at the first row of the bundle as the rods behind the first row are obscured. To solve this problem, a thin flap, as shown in Fig. 2(a) can be used as a reflecting target, gaining access to rods within the bundle. The flap is attached to the fuel rod, as in Fig. 2(b). As a result, most of the inner rod vibration can be measured. Before using a flap to measure fuel rod vibration, a verification process was needed to show whether the LDV signal from the flap vibration provided equivalent and reliable signals. Therefore, impact testing was carried out on the fuel rod using a flap. The LDV signals were then compared with accelerometer

  17. Vibrational measurements in 3-ID-B

    International Nuclear Information System (INIS)

    Sutter, J.; Alp, E.; Barraza, J.; Shu, D.

    1998-04-01

    The authors have undertaken a series of vibrational measurements in hutch 3-ID-B. Their motivation was to compare two different methods of mounting an interferometer for effectiveness in vibrational isolation and stability. In addition they were able to compare the stability of the optical table with and without its eight large bolts inserted

  18. Comparative analysis of internal friction and natural frequency measured by free decay and forced vibration

    International Nuclear Information System (INIS)

    Wang, Y. Z.; Ding, X. D.; Xiong, X. M.; Zhang, J. X.

    2007-01-01

    Relations between various values of the internal friction (tgδ, Q -1 , Q -1* , and Λ/π) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay ω FD , displacement-resonant frequency of forced vibration ω d , and velocity-resonant frequency of forced vibration ω 0 are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements

  19. Effects of methylphenidate on attention in Wistar rats treated with the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4).

    Science.gov (United States)

    Hauser, Joachim; Reissmann, Andreas; Sontag, Thomas-A; Tucha, Oliver; Lange, Klaus W

    2017-05-01

    The aim of this study was to assess the effects of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) on attention in rats as measured using the 5-choice-serial-reaction-time task (5CSRTT) and to investigate whether methylphenidate has effects on DSP4-treated rats. Methylphenidate is a noradrenaline and dopamine reuptake inhibitor and commonly used in the pharmacological treatment of individuals with attention deficit/hyperactivity disorder (ADHD). Wistar rats were trained in the 5CSRTT and treated with one of three doses of DSP4 or saline. Following the DSP4 treatment rats were injected with three doses of methylphenidate or saline and again tested in the 5CSRTT. The treatment with DSP4 caused a significant decline of performance in the number of correct responses and a decrease in response accuracy. A reduction in activity could also be observed. Whether or not the cognitive impairments are due to attention deficits or changes in explorative behaviour or activity remains to be investigated. The treatment with methylphenidate had no beneficial effect on the rats' performance regardless of the DSP4 treatment. In the group without DSP4 treatment, methylphenidate led to a reduction in response accuracy and bidirectional effects in regard to parameters related to attention. These findings support the role of noradrenaline in modulating attention and call for further investigations concerning the effects of methylphenidate on attentional processes in rats.

  20. Videometrics-based Detection of Vibration Linearity in MEMS Gyroscope

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2011-05-01

    Full Text Available MEMS gyroscope performs as a sort of sensor to detect angular velocity, with diverse applications in engineering including vehicle and intelligent traffic etc. A balanced vibration of driving module excited by electrostatic driving signal is the base MEMS gyroscope's performance. In order to analyze the linear property of vibration in MEMS Gyroscope, a method of computer vision measuring is applied with the help of high-speed vidicon to obtain video of linear vibration of driving module in gyroscope, under the driving voltage signal of inherent frequency and amplitude linearly increasing. By means of image processing, target identifying, and motion parameter extracting from the obtained video, vibration curve with time variation is acquired. And then, linearity of this vibration system can be analyzed by focusing on the amplitude value of vibration responding to the amplitude variation of driving voltage signal.

  1. A Method for Vibration-Based Structural Interrogation and Health Monitoring Based on Signal Cross-Correlation

    International Nuclear Information System (INIS)

    Trendafilova, I

    2011-01-01

    Vibration-based structural interrogation and health monitoring is a field which is concerned with the estimation of the current state of a structure or a component from its vibration response with regards to its ability to perform its intended function appropriately. One way to approach this problem is through damage features extracted from the measured structural vibration response. This paper suggests to use a new concept for the purposes of vibration-based health monitoring. The correlation between two signals, an input and an output, measured on the structure is used to develop a damage indicator. The paper investigates the applicability of the signal cross-correlation and a nonlinear alternative, the average mutual information between the two signals, for the purposes of structural health monitoring and damage assessment. The suggested methodology is applied and demonstrated for delamination detection in a composite beam.

  2. A fast continuous magnetic field measurement system based on digital signal processors

    International Nuclear Information System (INIS)

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Maroussov, V.; Nehring, R.; Nogiec, J.; Orris, D.; Poukhov, O.; Prakoshyn, F.; Schlabach, P.; Tompkins, J.C.

    2005-01-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements

  3. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  4. Autonomous target recognition using remotely sensed surface vibration measurements

    Science.gov (United States)

    Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.

    1993-09-01

    The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.

  5. Heterodyne Angle Deviation Interferometry in Vibration and Bubble Measurements

    OpenAIRE

    Ming-Hung Chiu; Jia-Ze Shen; Jian-Ming Huang

    2016-01-01

    We proposed heterodyne angle deviation interferometry (HADI) for angle deviation measurements. The phase shift of an angular sensor (which can be a metal film or a surface plasmon resonance (SPR) prism) is proportional to the deviation angle of the test beam. The method has been demonstrated in bubble and speaker’s vibration measurements in this paper. In the speaker’s vibration measurement, the voltage from the phase channel of a lock-in amplifier includes the vibration level and frequency. ...

  6. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  7. Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency

    Science.gov (United States)

    Platt, Michael; Jagodnik, John

    2011-01-01

    A system for turbo machinery blade vibration has been developed that combines time-of-arrival sensors for blade vibration amplitude measurement and radar sensors for vibration frequency and mode identification. The enabling technology for this continuous blade monitoring system is the radar sensor, which provides a continuous time series of blade displacement over a portion of a revolution. This allows the data reduction algorithms to directly calculate the blade vibration frequency and to correctly identify the active modes of vibration. The work in this project represents a significant enhancement in the mode identification and stress calculation accuracy in non-contacting stress measurement system (NSMS) technology when compared to time-of-arrival measurements alone.

  8. Overhead traveling crane vibration research using experimental wireless measuring system

    Directory of Open Access Journals (Sweden)

    Tomasz HANISZEWSKI

    2013-01-01

    Full Text Available The paper contains an operations and constructions description of theexperimental wireless measuring system for measuring accelerations in bridge cranes,based on PHIDGET 1056 sensors. Developed experimental research and measuringmethodology allows the use of the proposed wireless system on other cranesconstructions. The paper also shows examples of the results of vibration measurementsand FFT spectra, obtained on the basis of accelerations measurements.

  9. Standardization of Laser Methods and Techniques for Vibration Measurements and Calibrations

    International Nuclear Information System (INIS)

    Martens, Hans-Juergen von

    2010-01-01

    The realization and dissemination of the SI units of motion quantities (vibration and shock) have been based on laser interferometer methods specified in international documentary standards. New and refined laser methods and techniques developed by national metrology institutes and by leading manufacturers in the past two decades have been swiftly specified as standard methods for inclusion into in the series ISO 16063 of international documentary standards. A survey of ISO Standards for the calibration of vibration and shock transducers demonstrates the extended ranges and improved accuracy (measurement uncertainty) of laser methods and techniques for vibration and shock measurements and calibrations. The first standard for the calibration of laser vibrometers by laser interferometry or by a reference accelerometer calibrated by laser interferometry (ISO 16063-41) is on the stage of a Draft International Standard (DIS) and may be issued by the end of 2010. The standard methods with refined techniques proved to achieve wider measurement ranges and smaller measurement uncertainties than that specified in the ISO Standards. The applicability of different standardized interferometer methods to vibrations at high frequencies was recently demonstrated up to 347 kHz (acceleration amplitudes up to 350 km/s 2 ). The relative deviations between the amplitude measurement results of the different interferometer methods that were applied simultaneously, differed by less than 1% in all cases.

  10. Measurement of rabbit eardrum vibration through stroboscopic digital holography

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of BioMedical Physics, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2014-05-27

    In this work, we present a setup for high-power single shot stroboscopic digital holography and demonstrate it in an application on rabbit eardrum vibration measurement. The setup is able to make full-field time-resolved measurements of vibrating surfaces with a precision in the nanometer range in a broad frequency range. The height displacement of the measured object is visualized over the entire surface as a function of time. Vibration magnitude and phase maps can be extracted from these data, the latter proving to be very useful to reveal phase delays across the surface. Such deviations from modal motion indicate energy losses due to internal damping, in contrast to purely elastic mechanics. This is of great interest in middle ear mechanics and finite element modelling. In our setup, short laser pulses are fired at selected instants within the surface vibration period and are recorded by a CCD camera. The timing of the pulses and the exposure of the camera are synchronized to the vibration phase by a microprocessor. The high-power frequency-doubled Nd:YAG laser produces pulses containing up to 5 mJ of energy, which is amply sufficient to record single-shot holograms. As the laser pulse length is 8 ns and the smallest time step of the trigger electronics is 1 μs, vibration measurements of frequencies up to 250 kHz are achievable through this method, provided that the maximum vibration amplitude exceeds a few nanometers. In our application, middle ear mechanics, measuring frequencies extend from 5 Hz to 20 kHz. The experimental setup will be presented, as well as results of measurements on a stretched circular rubber membrane and a rabbit's eardrum. Two of the challenges when measuring biological tissues, such as the eardrum, are low reflectivity and fast dehydration. To increase reflectivity, a coating is applied and to counteract the undesirable effects of tissue dehydration, the measurement setup and software have been optimized for speed without

  11. FPGA based, DSP board for LLRF 8-Channel SIMCON 3.0 Part I: Hardware

    Science.gov (United States)

    Giergusiewicz, Wojciech; Koprek, Waldemar; Jalmuzna, Wojciech; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.

    2005-09-01

    The paper describes design, construction and initial measurements of an eight channel electronic LLRF device predicted for building of the control system for the VUV-FEL accelerator at DESY (Hamburg). The device, referred in the paper to as the SIMCON 3.0 (from the SC cavity simulator and controller) consists of a 16 layers, VME size, PCB, a large FPGA chip (VirtexII-4000 by Xilinx), eight fast ADCs and four DACs (by Analog Devices). To our knowledge, the proposed device is the first of this kind for the accelerator technology in which there was achieved (the FPGA based) DSP latency below 200 ns. With the optimized data transmission system, the overall LLRF system latency can be as low as 500 ns. The SIMCON 3.0 sub-system was applied for initial tests with the ACC1 module of the VUV FEL accelerator (eight channels) and with the CHECHIA test stand (single channel), both at the DESY. The promising results with the SIMCON 3.0 encouraged us to enter the design of SIMCON 3.1 possessing 10 measurement and control channels and some additional features to be reported in the next technical note. SIMCON 3.0 is a modular solution, while SIMCON 3.1 will be an integrated board of the all-in-one type. Two design approaches - modular and all-in-one, after branching off in this version of the SIMCON, will be continued.

  12. Expression of the dspA/E gene of Erwinia amylovora in non-host plant Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Hasan Murat Aksoy

    2017-01-01

    Full Text Available In the Erwinia amylovora genome, the hrp gene cluster containing the dspA/E/EB/F operon plays a crucial role in mediating the pathogenicity and the hypersensitive response (HR in the host plant. The role of the dspA/E gene derived from E. amylovora was investigated by monitoring the expression of the β-glucuronidase (GUS reporter system in transgenic Arabidopsis thaliana cv. Pri-Gus seedlings. A mutant ΔdspA/E strain of E. amylovora was generated to contain a deletion of the dspA/E gene for the purpose of this study. Two-week-old seedlings of GUS transgenic Arabidopsis were vacuum-infiltrated with the wild-type and the mutant (ΔdspA/E E. amylovora strains. The Arabidopsis seedlings were fixed and stained for GUS activity after 3–5 days following infiltration. The appearance of dense spots with blue staining on the Arabidopsis leaves indicated the typical characteristic of GUS activity. This observation indicated that the wild-type E. amylovora strain had induced a successful and efficient infection on the A. thaliana Pri-Gus leaves. In contrast, there was no visible GUS expression on leaf tissues which were inoculated with the ΔdspA/E mutant E. amylovora strain. These results indicate that the dspA/E gene is required by the bacterial cells to induce HR in non-host plants.

  13. Building Modern Vibration Diagnostics Systems Based on the Frequency-Time Transformations of A Measured Signal

    Directory of Open Access Journals (Sweden)

    Yasoveev Vasikh

    2016-01-01

    Full Text Available Basic methods of analysis of vibration transducers signals were reviewed. Continuous wavelet transform, being a time-frequency transform, was found to be an advanced mathematical tool for analysis of vibration signals. Experimental studies revealed obvious changes in the continuous wavelet transform spectrum depending on the existing defects. A method for detection and identification of technological violations based on the analysis of CWT spectrum components and normalized correlation coefficient was suggested. In accordance with the suggested method software for vibration diagnostics was developed.

  14. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  15. A fast continuous magnetic field measurement system based on digital signal processors

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; /Fermilab; Maroussov, V.; /Purdue U.; Nehring, R.; Nogiec, J.; Orris, D.; /Fermilab; Poukhov,; Prakoshyn, F.; /Dubna, JINR; Schlabach, P.; Tompkins, J.C.; /Fermilab

    2005-09-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements.

  16. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration

    Science.gov (United States)

    Li, Lu-Ke; Zhang, Shen-Feng

    2018-03-01

    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  17. Efficacy of DSP30-IL2/TPA for detection of cytogenetic abnormalities in chronic lymphocytic leukaemia/small lymphocytic lymphoma.

    Science.gov (United States)

    Holmes, P J; Peiper, S C; Uppal, G K; Gong, J Z; Wang, Z-X; Bajaj, R

    2016-10-01

    Chronic lymphocytic leukaemia (CLL) is the most prevalent leukaemia in the Western Hemisphere. Cytogenetic abnormalities in CLL are used for diagnosis, prognosis and treatment. However, detecting these is difficult because mature B cells do not readily divide in culture. Here, we present data on two mitogen cocktails: CpG-oligonucleotide DSP30/Interleukin-2 (IL-2) and DSP30/IL-2 in combination with 12-O-tetradecanoylphorbol-13-acetate (TPA). We analysed 165 cases of CLL with FISH and cytogenetics from January 2011 to June 2013. In 2011, three cultures were set-up: unstimulated, DSP30/IL-2-stimulated and TPA-stimulated. In 2012-2013, two cultures were set-up: unstimulated and stimulated with TPA/DSP30/IL-2. In 2011, FISH had a detection rate of 91% and cytogenetics using DSP30/IL2 had a detection rate of 91% (n = 22). In 2012-2013, FISH had a detection rate of 79% and cytogenetics using TPA/DSP30/IL-2 had a detection rate of 98% (n = 40). The percentage of cases with normal FISH but abnormal cytogenetics increased from 9% in 2011 to 21% in 2012-2013. The TPA/DSP30/IL-2 cultures in 2012-2013 detected more novel abnormalities (n = 5) as compared to DSP30/IL-2 alone (n = 3). TPA/DSP30/IL2 was as good as or better than DSP30/IL2 alone. TPA/DSP30/IL-2 offers a high detection rate for CLL abnormalities with a single stimulated culture and may increase detection of clinically significant abnormalities. © 2016 John Wiley & Sons Ltd.

  18. Criteria for the use of digital signal processors in the control technique of the COSY particle accelerator using the example of the MOTOROLA DSP56000

    International Nuclear Information System (INIS)

    Rath, U.

    1989-11-01

    On the Cooler Synchrotron project (COSY), the beam measurement data and their processing are collected digitally. From the requirements for quick computing time (real time operation) and exact results, the use of digital signal processors is intended. The digital signal processor DSP 56000 from MOTOROLA was selected as the test object. The DSP 56000 has a development environment which makes it possible to test it on an IBM-PC AT. Tests are carried out which show that the simulation program corresponds to the functions and processes of the DSP 56000. The above-mentioned applications program calculates a 'fast Fourier transform' (FFT). This program is used to judge the speed of calculation and the accuracy of calculation of the signal processor. The algorithm used by the FFT program is explained. In order to judge the results of the DSP 56000, a comparison is made with the equivalent FORTRAN FFT. The results which the DSP gives on the ADM and the Fortran program are compared and assessed. The speed of calculation of the DSP 56000 is determined and is judged in comparison with the manufacturer's data for other digital signal processors. (orig./HP) [de

  19. Measurements of ground motion and SSC dipole vibrations

    International Nuclear Information System (INIS)

    Parkhomchuk, V.V.; Shiltsev, V.D.; Weaver, H.J.

    1993-06-01

    The results of seismic ground measurements at the Superconducting Super Collider (SSC) site and investigations of vibrational properties of superconducting dipoles for the SSC are presented. Spectral analysis of the data obtained in the large frequency band from 0.05 Hz to 2000 Hz is done. Resonant behavior and the dipole-to-ground transform ratio are investigated. The influence of measured vibrations on SSC operations is considered

  20. Active vibration control based on piezoelectric smart composite

    International Nuclear Information System (INIS)

    Gao, Le; Lu, Qingqing; Fei, Fan; Leng, Jinsong; Liu, Liwu; Liu, Yanju

    2013-01-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology. (paper)

  1. Vibration measurement with nonlinear converter in the presence of noise

    Science.gov (United States)

    Mozuras, Almantas

    2017-10-01

    Conventional vibration measurement methods use the linear properties of physical converters. These methods are strongly influenced by nonlinear distortions, because ideal linear converters are not available. Practically, any converter can be considered as a linear one, when an output signal is very small. However, the influence of noise increases significantly and signal-to-noise ratio decreases at lower signals. When the output signal is increasing, the nonlinear distortions are also augmenting. If the wide spectrum vibration is measured, conventional methods face a harmonic distortion as well as intermodulation effects. Purpose of this research is to develop a measurement method of wide spectrum vibration by using a converter described by a nonlinear function of type f(x), where x =x(t) denotes the dependence of coordinate x on time t due to the vibration. Parameter x(t) describing the vibration is expressed as Fourier series. The spectral components of the converter output f(x(t)) are determined by using Fourier transform. The obtained system of nonlinear equations is solved using the least squares technique that permits to find x(t) in the presence of noise. This method allows one to carry out the absolute or relative vibration measurements. High resistance to noise is typical for the absolute vibration measurement, but it is necessary to know the Taylor expansion coefficients of the function f(x). If the Taylor expansion is not known, the relative measurement of vibration parameters is also possible, but with lower resistance to noise. This method allows one to eliminate the influence of nonlinear distortions to the measurement results, and consequently to eliminate harmonic distortion and intermodulation effects. The use of nonlinear properties of the converter for measurement gives some advantages related to an increased frequency range of the output signal (consequently increasing the number of equations) that allows one to decrease the noise influence on

  2. A High-Precision Counter Using the DSP Technique

    National Research Council Canada - National Science Library

    Chen, Shang-Shian

    2004-01-01

    .... We use an analog-to-digital converter (ADC) to sample the device under test (DUT). Once the signal is digitized, the DSP will be used to run the phase correlation and obtain the necessary information...

  3. Vibration measurement of accelerator tube table in ATF

    International Nuclear Information System (INIS)

    Nakayama, Y.; Sugahara, R.; Yamaoka, H.; Masuzawa, M.; Yamashita, S.

    2004-01-01

    Acceleration tube fixed to the table should not be a structure to amplify the vibration. Stability of ground is preferable for accelerator beam operation, and the beam control by extremely high resolution is especially demanded in GLC. Then, we have measured ground motion and table vibration in ATF at KEK. In this paper, some of analyzed results are shown, and we show the characteristics of vibration about the accelerator tube table in ATF. (author)

  4. Design of A Vibration and Stress Measurement System for an Advanced Power Reactor 1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program

    International Nuclear Information System (INIS)

    Ko, Doyoung; Kim, Kyuhyung

    2013-01-01

    In accordance with the US Nuclear Regulatory Commission (US NRC), Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP) has been developed for an Advanced Power Reactor 1400 (APR1400). The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment). Thoughtful preparation is essential to the measurement program, because data acquisition must be performed only once. The optimized design of a vibration and stress measurement system for the RVI CVAP is essential to verify the integrity of the APR1400 RVI. We successfully designed a vibration and stress measurement system for the APR1400 RVI CVAP based on the design materials, the hydraulic and structural analysis results, and performance tests of transducers in an extreme environment. The measurement system designed in this paper will be utilized for the APR1400 RVI CVAP as part of the first construction project in Korea

  5. DESIGN OF A VIBRATION AND STRESS MEASUREMENT SYSTEM FOR AN ADVANCED POWER REACTOR 1400 REACTOR VESSEL INTERNALS COMPREHENSIVE VIBRATION ASSESSMENT PROGRAM

    Directory of Open Access Journals (Sweden)

    DO-YOUNG KO

    2013-04-01

    Full Text Available In accordance with the US Nuclear Regulatory Commission (US NRC, Regulatory Guide 1.20, the reactor vessel internals comprehensive vibration assessment program (RVI CVAP has been developed for an Advanced Power Reactor 1400 (APR1400. The purpose of the RVI CVAP is to verify the structural integrity of the reactor internals to flow-induced loads prior to commercial operation. The APR1400 RVI CVAP consists of four programs (analysis, measurement, inspection, and assessment. Thoughtful preparation is essential to the measurement program, because data acquisition must be performed only once. The optimized design of a vibration and stress measurement system for the RVI CVAP is essential to verify the integrity of the APR1400 RVI. We successfully designed a vibration and stress measurement system for the APR1400 RVI CVAP based on the design materials, the hydraulic and structural analysis results, and performance tests of transducers in an extreme environment. The measurement system designed in this paper will be utilized for the APR1400 RVI CVAP as part of the first construction project in Korea.

  6. Types for DSP Assembler Programs

    DEFF Research Database (Denmark)

    Larsen, Ken

    2006-01-01

    for reuse, and a procedure that computes point-wise vector multiplication. The latter uses a common idiom of prefetching memory resulting in out-of-bounds reading from memory. I present two extensions to the baseline type system: The first extension is a simple modification of some type rules to allow out......-ofbounds reading from memory. The second extension is based on two major modifications of the baseline type system: • Abandoning the type-invariance principle of memory locations and using a variation of alias types instead. • Introducing aggregate types, making it possible to have different views of a block...... of memory, thus enabling type checking of programs that directly manage and reuse memory. I show that both the baseline type system and the extended type system can be used to give type annotations to handwritten DSP assembler code, and that these annotations precisely and succinctly describe...

  7. Enhancing vibration measurements by Mössbauer effect

    Science.gov (United States)

    Pasquevich, G. A.; Veiga, A.; Zélis, P. Mendoza; Martínez, N.; van Raap, M. Fernández; Sánchez, F. H.

    2014-01-01

    The measurement of the Mössbauer effect in a system excited with a periodic perturbation can provide information about it. For that purpose, the Mössbauer absorption of a source-absorber set which hyperfine parameters are well known, is measured at a constant relative velocity (i.e. at a defined spectral energy). The resulting Mössbauer absorption periodic signal provides information of the sample ac perturbation response. This approach has been used time ago to measure small tympanic vibrations (mechanical perturbations). In this work we present an extension of the vibration experiments, by measuring them at various absorber-source relative velocities within a constant-velocity strategy. As a demonstration test, the frequency response of a piezoelectric diaphragm in the 100 Hz-5 kHz range is obtained with a custom electronic counter. The experiments are performed using a 57Co( Rh) source and a 25-m-thick stainless-steel absorber fixed to a piezoelectric diaphragm. Phase shifts and amplitude vibrations with velocities in the range from 1.5 m/s to 20 mm/s are well characterized, extending the linearity limit well beyond the earlier suggested one of 1 mm/s.

  8. Study on viscosity measurement using fiber Bragg grating micro-vibration

    International Nuclear Information System (INIS)

    Song, Le; Fang, Fengzhou; Zhao, Jibo

    2013-01-01

    It is now ascertained that traditional electric sensors are vulnerable to electromagnetic interference when measuring viscosity. Here, we propose a new viscosity-sensitive structure based on the fiber Bragg grating (FBG) sensing principle and a micro-vibration measurement method. The symmetric micro-vibration motivation method is also described, and a mathematical model for compensational voltage and fluid viscosity is established. The probe amplitude, which is produced by reciprocating stimulation, is accessible by means of an FBG sensor mounted on an equal-strength beam. Viscosity can be therefore calculated using a demodulation technique based on linear edge filtering with long period grating. After performing a group of verifying tests, the sensor has been subsequently calibrated with a series of standard fluids to determine uncertain parameters in the mathematical model. The results of the experiment show that the relative measurement error was less than 2% when the viscosity ranged from 200 to 500 mPa s. The proposed architecture utilizes the characteristics of anti-interference, fast response speed, high resolution and compact structure of FBG, thereby offering a novel modality to achieve an online viscosity measurement. (paper)

  9. Probabilistic structural damage identification based on vibration data

    International Nuclear Information System (INIS)

    Hao, H.; Xia, Y.

    2001-01-01

    Vibration-based methods are being rapidly developed and applied to detect structural damage in civil, mechanical and aerospace engineering communities in the last two decades. But uncertainties existing in the structural model and measured vibration data might lead to unreliable results. This paper will present some recent research results to tackle the above mentioned uncertainty problems. By assuming each of the FE model parameters and measured vibration data as a normally distributed random variable, a probabilistic damage detection procedure is developed based on perturbation method and validated by Monte Carlo simulation technique. With this technique, the damage probability of each structural element can be determined. The method developed has been verified by applying it to identify the damages of laboratory tested structures. It was proven that, as compared to the deterministic damage identification method, the present method can not only reduce the possibility of false identification, but also give the identification results in terms of probability. which is deemed more realistic and practical in detecting possible damages in a structure. It has also been found that the modal data included in damage identification analysis have a great influence on the identification results. With a sensitivity study, an optimal measurement set for damage detection is determined. This set includes the optimal measurement locations and the most appropriate modes that should be used in the damage identification analysis. Numerical results indicated that if the optimal set determined in a pre-analysis is used in the damage detection better results will be achieved. (author)

  10. A nanogenerator as a self-powered sensor for measuring the vibration spectrum of a drum membrane

    Science.gov (United States)

    Yu, Aifang; Zhao, Yong; Jiang, Peng; Wang, Zhong Lin

    2013-02-01

    A nanogenerator (NG) is a device that converts vibration energy into electricity. Here, a flexible, small size and lightweight NG is successfully demonstrated as an active sensor for detecting the vibration spectrum of a drum membrane without the use of an external power source. The output current/voltage signal of the NG is a direct measure of the strain of the local vibrating drum membrane that contains rich informational content, such as, notably, the vibration frequency, vibration speed and vibration amplitude. In comparison to the laser vibrometer, which is excessively complex and expensive, this kind of small and low cost sensor based on an NG is also capable of detecting the local vibration frequency of a drum membrane accurately. A spatial arrangement of the NGs on the membrane can provide position-dependent vibration information on the surface. The measured frequency spectrum can be understood on the basis of the theoretically calculated vibration modes. This work expands the application of NGs and reveals the potential for developing sound wave detection, environmental/infrastructure monitoring and many more applications.

  11. Multi-DSP and FPGA based Multi-channel Direct IF/RF Digital receiver for atmospheric radar

    Science.gov (United States)

    Yasodha, Polisetti; Jayaraman, Achuthan; Kamaraj, Pandian; Durga rao, Meka; Thriveni, A.

    2016-07-01

    to DDC block, which down converts the data to base-band. The DDC block has NCO, mixer and two chains of Bessel filters (fifth order cascaded integration comb filter, two FIR filters, two half band filters and programmable FIR filters) for in-phase (I) and Quadrature phase (Q) channels. The NCO has 32 bits and is set to match the output frequency of ADC. Further, DDC down samples (decimation) the data and reduces the data rate to 16 MSPS. This data is further decimated and the data rate is reduced down to 4/2/1/0.5/0.25/0.125/0.0625 MSPS for baud lengths 0.25/0.5/1/2/4/8/16 μs respectively. The down sampled data is then fed to decoding block, which performs cross correlation to achieve pulse compression of the binary-phase coded data to obtain better range resolution with maximum possible height coverage. This step improves the signal power by a factor equal to the length of the code. Coherent integration block integrates the decoded data coherently for successive pulses, which improves the signal to noise ratio and reduces the data volume. DDC, decoding and coherent integration blocks are implemented in Xilinx vertex5 FPGA. Till this point, function of all six channels is same for DBS mode and multi-receiver modes. Data from vertex5 FPGA is transferred to PC via GbE-1 interface for multi-modes or to two Analog devices make ADSP-TS201 DSP chips (A and B), via link port for DBS mode. ADSP-TS201 chips perform the normalization, DC removal, windowing, FFT computation and spectral averaging on the data, which is transferred to storage/display PC via GbE-2 interface for real-time data display and data storing. Physical layer of GbE interface is implemented in an external chip (Marvel 88E1111) and MAC layer is implemented internal to vertex5 FPGA. The MCDRx has total 4 GB of DDR2 memory for data storage. Spartan6 FPGA is used for generating timing signals, required for basic operation of the radar and testing of the MCDRx.

  12. Vehicle recognition by using acoustic signature and classic DSP techniques

    Directory of Open Access Journals (Sweden)

    María Fernanda Díaz Velásquez

    2016-06-01

    Full Text Available This paper shows the application of the classic technique of digital signal processing (DSP, the cross-correlation, used for the detection of acoustic signatures of road traffic in Cali city, Colombia. Future goal is to build a detection software that through real time measures allows us estimate the levels of acoustic pollution in the city by using simulation models of road traffic, in the framework of environmentally-friendly smart cities. Final results of the experimental tests showed an accuracy of 71.43% for specific vehicle detection.

  13. A Study on the Vibration Measurement and Analysis of Rotating Machine Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Kyu Sik; Suh, Young Pyo; Cho, Chul Hwan; Kim, Sung Taeg; Lee, Myung Kyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    To search for the cause of vibration problem of rotating machine in the power plant, first the rotating machine is classified according to their type and each vibration characteristic is reviewed. The criteria for the evaluation of mechanical vibration effect on the structure and human being during the design of machine foundation is described below. The foundation of rotating machine is classified according to its shape and some factors are described which should be considered during dynamic modeling analysis for its correct result. Also the methods of incorporating foundation vibration into mechanical vibration analysis are reviewed. Type of vibration measurement and analysis which is used to find out the dynamic characteristic of structure is described in accordance with its signal processing and measuring method. Measurement of vibration and its analysis when there occurs real vibration troubles in power plant are compared with the results of numerical modeling as case studies. (author). 16 refs., 23 figs.

  14. Noncontact vibration measurements using magnetoresistive sensing elements

    Science.gov (United States)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  15. Design and DSP implementation of star image acquisition and star point fast acquiring and tracking

    Science.gov (United States)

    Zhou, Guohui; Wang, Xiaodong; Hao, Zhihang

    2006-02-01

    Star sensor is a special high accuracy photoelectric sensor. Attitude acquisition time is an important function index of star sensor. In this paper, the design target is to acquire 10 samples per second dynamic performance. On the basis of analyzing CCD signals timing and star image processing, a new design and a special parallel architecture for improving star image processing are presented in this paper. In the design, the operation moving the data in expanded windows including the star to the on-chip memory of DSP is arranged in the invalid period of CCD frame signal. During the CCD saving the star image to memory, DSP processes the data in the on-chip memory. This parallelism greatly improves the efficiency of processing. The scheme proposed here results in enormous savings of memory normally required. In the scheme, DSP HOLD mode and CPLD technology are used to make a shared memory between CCD and DSP. The efficiency of processing is discussed in numerical tests. Only in 3.5ms is acquired the five lightest stars in the star acquisition stage. In 43us, the data in five expanded windows including stars are moved into the internal memory of DSP, and in 1.6ms, five star coordinates are achieved in the star tracking stage.

  16. Chromosomal aberrations in chronic lymphocytic leukemia detected by conventional cytogenetics with DSP30 as a single agent: comparison with FISH.

    Science.gov (United States)

    Kotkowska, Aleksandra; Wawrzyniak, Ewa; Blonski, Jerzy Z; Robak, Tadeusz; Korycka-Wolowiec, Anna

    2011-08-01

    The aim of our study was to estimate the usefulness for conventional cytogenetics (CC) of DSP30 as a single agent (CC-DSP30) for detecting the most important chromosomal aberrations revealed in CLL by FISH and to find other abnormalities possibly existing but undetected by FISH with standard probes. Using CC-DSP30, the metaphases suitable for analysis were obtained in 90% of patients. CC-DSP30 and FISH were similarly efficacious for detecting del(11)(q22) and trisomy 12, whereas FISH was more sensitive for del(13)(q14). Sole del(13)(q14) detected by FISH, in 50% of patients was associated with other aberrations revealed by CC-DSP30. Additionally, the most recurrent anomaly detected by CC-DSP30 were structural aberrations of chromosome 2. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Dynamic tire pressure sensor for measuring ground vibration.

    Science.gov (United States)

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  18. Illustration of decimation in digital signal processing (DSP) systems ...

    African Journals Online (AJOL)

    ... and engineering, especially in the areas of communication and medicine. ... This multirate DSP had been found useful in application like digital audio, video and even GSM technology. The work is implemented using MATLABTM software.

  19. The low frequency 2D vibration sensor based on flat coil element

    Energy Technology Data Exchange (ETDEWEB)

    Djamal, Mitra; Sanjaya, Edi; Islahudin; Ramli [Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics, UIN Syarif Hidayatullah, Jl. Ir.H. Djuanda 95 Ciputat 15412 (Indonesia); MTs NW Nurul Iman Kembang Kerang, Jl. Raya Mataram - Lb.Lombok, NTB (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics,Universitas Negeri Padang, Jl. Prof. Hamka, Padang 25132 (Indonesia)

    2012-06-20

    Vibration like an earthquake is a phenomenon of physics. The characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage caused by earthquakes. In this paper, we introduced a new type of low frequency 2D vibration sensor based on flat coil element that we have developed. Its working principle is based on position change of a seismic mass that put in front of a flat coil element. The flat coil is a part of a LC oscillator; therefore, the change of seismic mass position will change its resonance frequency. The results of measurements of low frequency vibration sensor in the direction of the x axis and y axis gives the frequency range between 0.2 to 1.0 Hz.

  20. Practical considerations for the implantation of a fuzzy control algorithm in a DSP; Consideraciones practicas para la implantacion de un algoritmo de control difuso en un DSP

    Energy Technology Data Exchange (ETDEWEB)

    Perez C, B.; Benitez R, J.S.; Pacheco S, J.O. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The development of a digital system based on a DSP to implant a Mamdani type algorithm of fuzzy control whose objective is to regulate the neutron power in a nuclear research reactor Type TRIGA Mark III is presented. Its are simultaneously carried out the aggregation des fuzzy stages discreeting the universe of the output variable. The format MPF for the handling of the floating point in the arithmetic operations is used. (Author)

  1. Testing of Tools for Measurement Vibration in Car

    Directory of Open Access Journals (Sweden)

    Martin JURÁNEK

    2009-06-01

    Full Text Available This work is specialized on testing of several sensors for measurement vibration, that be applicable for measurement on vehicles also behind running. These sensors are connected to PC and universal mobile measuring system cRIO (National Instruments with analog I/O module for measurement vibration, that is described in diploma work: [JURÁNEK 2008]. This system has upped mechanical and heat imunity, small proportions and is therefore acceptable also measurement behind ride vehicles. It compose from two head parts. First is measuring part, composite from instruments cRIO. First part is controlled and monitored by PDA there is connected of wireless (second part hereof system. To system cRIO is possible connect sensors by four BNC connector or after small software change is possible add sensor to other analog modul cRIO. Here will be test several different types of accelerometers (USB sensor company Phidgets, MEMS sensor company Freescale, piezoresistiv and Delta Tron accelerometers company Brüel&Kjær. These sensors is attach to stiff board, board is attach to vibrator and excite by proper signal. Testing will realized with reference to using for measurement in cars. Results will be compared with professional signal analyser LabShop pulse from company Brüel&Kjær.

  2. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    Energy Technology Data Exchange (ETDEWEB)

    Kristiansen, Paw, E-mail: paw.kristiansen@fmb-oxford.com [FMB Oxford Ltd, Unit 1 Ferry Mills, Oxford OX2 0ES (United Kingdom); Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim [DESY, Deutsches Elektronen-Synchrotron Hamburg, Notkestrasse 85, 22607 Hamburg (Germany)

    2015-05-09

    Vibration measurements of a cryocooled double-crystal monochromator are presented. The origins of the vibrations are identified. The minimum achieved vibration of the relative pitch between the two crystals is 48 nrad RMS and the minimum achieved absolute vibration of the second crystal is 82 nrad RMS. The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged.

  3. Hardware description ADSP-21020 40-bit floating point DSP as designed in a remotely controlled digital CW Doppler radar

    Science.gov (United States)

    Morrison, R. E.; Robinson, S. H.

    A continuous wave Doppler radar system has been designed which is portable, easily deployed, and remotely controlled. The heart of this system is a DSP/control board using Analog Devices ADSP-21020 40-bit floating point digital signal processor (DSP) microprocessor. Two 18-bit audio A/D converters provide digital input to the DSP/controller board for near real time target detection. Program memory for the DSP is dual ported with an Intel 87C51 microcontroller allowing DSP code to be up-loaded or down-loaded from a central controlling computer. The 87C51 provides overall system control for the remote radar and includes a time-of-day/day-of-year real time clock, system identification (ID) switches, and input/output (I/O) expansion by an Intel 82C55 I/O expander.

  4. A new FPGA architecture suitable for DSP applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang Liyun; Lai Jinmei; Tong Jiarong; Tang Pushan; Chen Xing; Duan Xueyan; Chen Liguang; Wang Jian; Wang Yuan, E-mail: 071021037@fudan.edu.cn [ASIC and System State Key Laboratory, Fudan University, Shanghai 201203 (China)

    2011-05-15

    A new FPGA architecture suitable for digital signal processing applications is presented. DSP modules can be inserted into FPGA conveniently with the proposed architecture, which is much faster when used in the field of digital signal processing compared with traditional FPGAs. An advanced 2-level MUX (multiplexer) is also proposed. With the added SLEEP MODE PASS to traditional 2-level MUX, static leakage is reduced. Furthermore, buffers are inserted at early returns of long lines. With this kind of buffer, the delay of the long line is improved by 9.8% while the area increases by 4.37%. The layout of this architecture has been taped out in standard 0.13 {mu}m CMOS technology successfully. The die size is 6.3 x 4.5 mm{sup 2} with the QFP208 package. Test results show that performances of presented classical DSP cases are improved by 28.6%-302% compared with traditional FPGAs. (semiconductor integrated circuits)

  5. A new FPGA architecture suitable for DSP applications

    International Nuclear Information System (INIS)

    Wang Liyun; Lai Jinmei; Tong Jiarong; Tang Pushan; Chen Xing; Duan Xueyan; Chen Liguang; Wang Jian; Wang Yuan

    2011-01-01

    A new FPGA architecture suitable for digital signal processing applications is presented. DSP modules can be inserted into FPGA conveniently with the proposed architecture, which is much faster when used in the field of digital signal processing compared with traditional FPGAs. An advanced 2-level MUX (multiplexer) is also proposed. With the added SLEEP MODE PASS to traditional 2-level MUX, static leakage is reduced. Furthermore, buffers are inserted at early returns of long lines. With this kind of buffer, the delay of the long line is improved by 9.8% while the area increases by 4.37%. The layout of this architecture has been taped out in standard 0.13 μm CMOS technology successfully. The die size is 6.3 x 4.5 mm 2 with the QFP208 package. Test results show that performances of presented classical DSP cases are improved by 28.6%-302% compared with traditional FPGAs. (semiconductor integrated circuits)

  6. Vibration transfers to measure the performance of vibration isolated platforms on site using background noise excitation

    NARCIS (Netherlands)

    Segerink, Franciscus B.; Korterik, Jeroen P.; Offerhaus, Herman L.

    2011-01-01

    This article demonstrates a quick and easy way of quantifying the performance of a vibration-isolated platform. We measure the vibration transfer from floor to table using background noise excitation from the floor. As no excitation device is needed, our setup only requires two identical sensors (in

  7. Noncontact measurement of rotating blade vibrations. Doyoku shindo no hisesshoku keisokuho no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Yukio; Endo, Masanori; Sugiyama, Nanahisa; Koshinuma, Takeshi

    1989-08-01

    The noncontact measurement method of rotating blade vibrations was developed for fans, compressors and turbines, and applied to turbofan engines and industrial gas turbines. The method required no machining of blades and rotor except sensors attached to a casing to detect blade-tips. The method allowed to measure simultaneously the vibration of all blades, by measuring elapsed times of blade-tips rotating from a measuring start point to a detecting point, and detecting the time differences between a vibration and non-vibration condition. The measuring system was composed of the detectors and subsystems for signal processing, control, calculation and display. The vibration wave forms of a few blades and the maximum vibration amplitudes of all the blades were displayed on a realtime basis in an on-line monitoring mode, and an off-line data processing mode was also available for subsequent analyses and reviews. The results of application to existing engines favorably agreed with those of strain gage measurements. 16 refs., 75 figs., 3 tabs.

  8. FPGA based, DSP integrated, 8-channel SIMCON, ver. 3.0. Initial results for 8-channel algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Giergusiewicz, W.; Koprek, W.; Jalmuzna, W.; Pozniak, K.T.; Romaniuk, R.S. [Warsaw Univ. of Technology (Poland). Inst. of Electronic Systems

    2005-07-01

    The paper describes design, construction and initial measurements of an eight channel electronic LLRF device predicted for building of the control system for the VUV-FEL accelerator at DESY (Hamburg). The device, referred in the paper to as the SIMCON 3.0 (from the SC cavity simulator and controller) consists of a 16 layer, VME size, PCB, a large FPGA chip (VirtexII-4000 by Xilinx), eight fast ADCs and four DACs (by Analog Devices). To our knowledge, the proposed device is the first of this kind for the accelerator technology in which there was achieved (the FPGA based) DSP latency below 200 ns. With the optimized data transmission system, the overall LLRF system latency can be as low as 500 ns. The SIMCON 3.0 sub-system was applied for initial tests with the ACC1 module of the VUV FEL accelerator (eight channels) and with the CHECHIA test stand (single channel), both at the DESY. The promising results with the SIMCON 3.0. encouraged us to enter the design of SIMCON 3.1. possessing 10 measurement and control channels and some additional features to be reported in the next technical note. SIMCON 3.0. is a modular solution, while SIMCON 3.1. will be an integrated board of the all-in-one type. Two design approaches - modular and all-in-one, after branching off in this version of the Simcon, will be continued. (orig.)

  9. Measuring the arterial-induced skin vibration by geometrical moiré fringe

    Science.gov (United States)

    Chiu, Shih-Yung; Wang, Chun-Hsiung; Lee, Shu-Sheng; Wu, Wen-Jong; Hsu, Yu-Hsiang; Lee, Chih-Kung

    2018-02-01

    The demand for self-measured blood pressure self-monitoring device has much increased due to cardiovascular diseases have become leading causes of death for aging population. Currently, the primary non-invasive blood pressure monitoring method is cuff-based. It is well developed and accurate. However, the measuring process is not comfortable, and it cannot provide a continuous measurement. To overcome this problem, methods such as tonometry, volume clamp method, photoplethysmography, pulse wave velocity, and pulse transit time are reported. However, the limited accuracy hindered its application for diagnostics. To perform sequential blood pressure measurement with a high accuracy and long-term examination, we apply moiré interferometry to measure wrist skin vibration induced by radial artery. To achieve this goal, we developed a miniaturized device that can perform moiré interferometry around the wrist region. The 0.4-mm-pitched binary grating and tattoo sticker with 0.46 mm-pitched stripe pattern are used to perform geometric moiré. We demonstrated that the sensitivity and accuracy of this integrated system were sufficient to monitor arterialinduced skin vibration non-invasively. Our developed system was validated with ECG signals collected by a commercial system. According to our studies from measurement, the repeatability of wrist pulsation measurement was achieved with an accuracy of 99.1% in heart rate. A good repeatability of wrist pulse measurement was achieved. Simulations and experiments are both conducted in this paper and prove of geometrical moiré method a suitable technique for arterial-induced skin vibration monitoring.

  10. Vibration Based Diagnosis for Planetary Gearboxes Using an Analytical Model

    Directory of Open Access Journals (Sweden)

    Liu Hong

    2016-01-01

    Full Text Available The application of conventional vibration based diagnostic techniques to planetary gearboxes is a challenge because of the complexity of frequency components in the measured spectrum, which is the result of relative motions between the rotary planets and the fixed accelerometer. In practice, since the fault signatures are usually contaminated by noises and vibrations from other mechanical components of gearboxes, the diagnostic efficacy may further deteriorate. Thus, it is essential to develop a novel vibration based scheme to diagnose gear failures for planetary gearboxes. Following a brief literature review, the paper begins with the introduction of an analytical model of planetary gear-sets developed by the authors in previous works, which can predict the distinct behaviors of fault introduced sidebands. This analytical model is easy to implement because the only prerequisite information is the basic geometry of the planetary gear-set. Afterwards, an automated diagnostic scheme is proposed to cope with the challenges associated with the characteristic configuration of planetary gearboxes. The proposed vibration based scheme integrates the analytical model, a denoising algorithm, and frequency domain indicators into one synergistic system for the detection and identification of damaged gear teeth in planetary gearboxes. Its performance is validated with the dynamic simulations and the experimental data from a planetary gearbox test rig.

  11. The Chameleon Architecture for Streaming DSP Applications

    Directory of Open Access Journals (Sweden)

    André B. J. Kokkeler

    2007-02-01

    Full Text Available We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2 in a 130 nm process, is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC via a network interface (NI. Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT and best effort (BE. For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool.

  12. The Chameleon Architecture for Streaming DSP Applications

    Directory of Open Access Journals (Sweden)

    Heysters PaulM

    2007-01-01

    Full Text Available We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2 in a 130 nm process, is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC via a network interface (NI. Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT and best effort (BE. For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool.

  13. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  14. FGF-2 potently induces both proliferation and DSP expression in collagen type I gel cultures of adult incisor immature pulp cells

    International Nuclear Information System (INIS)

    Nakao, Kazuhisa; Itoh, Makoto; Tomita, Yusuke; Tomooka, Yasuhiro; Tsuji, Takashi

    2004-01-01

    We investigated the effects of both cytokines and extracellular matrices on the proliferation and differentiation of immature adult rat incisor dental pulp cells. These immature cells, which have a high-proliferative potency in vitro and do not express mRNAs for dentin non-collagenous proteins such as dentin sialoprotein (DSP), bone sialoprotein (BSP), and osteocalcin, exist in the root regions of adult rat incisors. Fibroblast growth factor-2 (FGF-2) stimulated the proliferation of these immature cells and the subsequent production of mineralized calcium was induced by β-glycerophosphate treatment. Additionally, FGF-2 dramatically induced the expression of DSP and BSP mRNAs, but only in collagen type I gel cultures, whereas neither plate-coated collagen type I nor fibronectin, laminin or collagen type IV cultures could produce this effect and generate sufficient physiological levels of these transcripts. Although bone morphogenetic protein-4 could not induce the proliferation of immature dental pulp cells nor upregulate DSP mRNA expression, it had a synergistic effect upon DSP transcript levels in conjunction with FGF-2. These results suggest that both the presence of FGF-2 and the three-dimensional formation of immature dental pulp cells in collagen type I gel cultures are essential for both DSP expression and odontoblast differentiation. These observations provide valuable information concerning the study of the commitment and differentiation of odontoblast lineages, and also provide a basis for the rational design of cytokine and extracellular matrix based compounds for regenerative therapies in new dental treatments

  15. Space shuttle main engine vibration data base

    Science.gov (United States)

    Lewallen, Pat

    1986-01-01

    The Space Shuttle Main Engine Vibration Data Base is described. Included is a detailed description of the data base components, the data acquisition process, the more sophisticated software routines, and the future data acquisition methods. Several figures and plots are provided to illustrate the various output formats accessible to the user. The numerous vibration data recall and analysis capabilities available through automated data base techniques are revealed.

  16. Digital Signal Processing. A review of DSP formalism, algorithms and networks for the beam instrumentation workshop, Vancouver, Canada, October 4, 1994

    International Nuclear Information System (INIS)

    Linscott, I.

    1995-01-01

    The formalism of Digital Signal Processing (DSP), is reviewed with the objective of providing a framework for understanding the utility of DSP techniques for Beam Instrumentation and developiong criteria for assessing the merits of DSP applications. copyright 1995 American Institute of Physics

  17. Study of V-OTDR stability for dynamic strain measurement in piezoelectric vibration

    Science.gov (United States)

    Ren, Meiqi; Lu, Ping; Chen, Liang; Bao, Xiaoyi

    2016-09-01

    In a phase-sensitive optical-time domain reflectometry (Φ-OTDR) system, the challenge for dynamic strain measurement lies in large intensity fluctuations from trace to trace. The intensity fluctuation caused by stochastic characteristics of Rayleigh backscattering sets detection limit for the minimum strength of vibration measurement and causes the large measurement uncertainty. Thus, a trace-to-trace correlation coefficient is introduced to quantify intensity fluctuation of Φ-OTDR traces and stability of the sensor system theoretically and experimentally. A novel approach of measuring dynamic strain induced by various driving voltages of lead zirconate titanate (PZT) in Φ-OTDR is also demonstrated. Piezoelectric vibration signals are evaluated through analyzing peak values of fast Fourier transform spectra at the fundamental frequency and high-order harmonics based on Bessel functions. High trace-to-trace correlation coefficients varying from 0.824 to 0.967 among 100 measurements are obtained in experimental results, showing the good stability of our sensor system, as well as small uncertainty of measured peak values.

  18. Measurements of ground motion and magnet vibrations at the APS

    International Nuclear Information System (INIS)

    Shiltsev, V.

    1996-01-01

    This article presents results of ground motion and magnet vibrations measurements at the Advanced Photon Source. The experiments were done over a wide, frequency range (0-05-100 Hz) with the use of SM-3KV-type seismic probes from the Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. Also investigated were magnet vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quadrupole vibrations at different sectors of the ring. The influence of personnel activity in the hall and traffic under the ring on the slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators

  19. Corneal Vibrations during Intraocular Pressure Measurement with an Air-Puff Method

    Directory of Open Access Journals (Sweden)

    Robert Koprowski

    2018-01-01

    Full Text Available Introduction. The paper presents a commentary on the method of analysis of corneal vibrations occurring during eye pressure measurements with air-puff tonometers, for example, Corvis. The presented definition and measurement method allow for the analysis of image sequences of eye responses—cornea deformation. In particular, the outer corneal contour and sclera fragments are analysed, and 3D reconstruction is performed. Methods. On this basis, well-known parameters such as eyeball reaction or corneal response are determined. The next steps of analysis allow for automatic and reproducible separation of four different corneal vibrations. These vibrations are associated with (1 the location of the maximum of cornea deformation; (2 the cutoff area measured in relation to the cornea in a steady state; (3 the maximum of peaks occurring between applanations; and (4 the other characteristic points of the corneal contour. Results. The results obtained enable (1 automatic determination of the amplitude of vibrations; (2 determination of the frequency of vibrations; and (3 determination of the correlation between the selected types of vibrations. Conclusions. These are diagnostic features that can be directly applied clinically for new and archived data.

  20. High-speed parallel implementation of a modified PBR algorithm on DSP-based EH topology

    Science.gov (United States)

    Rajan, K.; Patnaik, L. M.; Ramakrishna, J.

    1997-08-01

    Algebraic Reconstruction Technique (ART) is an age-old method used for solving the problem of three-dimensional (3-D) reconstruction from projections in electron microscopy and radiology. In medical applications, direct 3-D reconstruction is at the forefront of investigation. The simultaneous iterative reconstruction technique (SIRT) is an ART-type algorithm with the potential of generating in a few iterations tomographic images of a quality comparable to that of convolution backprojection (CBP) methods. Pixel-based reconstruction (PBR) is similar to SIRT reconstruction, and it has been shown that PBR algorithms give better quality pictures compared to those produced by SIRT algorithms. In this work, we propose a few modifications to the PBR algorithms. The modified algorithms are shown to give better quality pictures compared to PBR algorithms. The PBR algorithm and the modified PBR algorithms are highly compute intensive, Not many attempts have been made to reconstruct objects in the true 3-D sense because of the high computational overhead. In this study, we have developed parallel two-dimensional (2-D) and 3-D reconstruction algorithms based on modified PBR. We attempt to solve the two problems encountered by the PBR and modified PBR algorithms, i.e., the long computational time and the large memory requirements, by parallelizing the algorithm on a multiprocessor system. We investigate the possible task and data partitioning schemes by exploiting the potential parallelism in the PBR algorithm subject to minimizing the memory requirement. We have implemented an extended hypercube (EH) architecture for the high-speed execution of the 3-D reconstruction algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs) and dual-port random access memories (DPR) as channels between the PEs. We discuss and compare the performances of the PBR algorithm on an IBM 6000 RISC workstation, on a Silicon

  1. Blind identification of full-field vibration modes of output-only structures from uniformly-sampled, possibly temporally-aliased (sub-Nyquist), video measurements

    Science.gov (United States)

    Yang, Yongchao; Dorn, Charles; Mancini, Tyler; Talken, Zachary; Nagarajaiah, Satish; Kenyon, Garrett; Farrar, Charles; Mascareñas, David

    2017-03-01

    Enhancing the spatial and temporal resolution of vibration measurements and modal analysis could significantly benefit dynamic modelling, analysis, and health monitoring of structures. For example, spatially high-density mode shapes are critical for accurate vibration-based damage localization. In experimental or operational modal analysis, higher (frequency) modes, which may be outside the frequency range of the measurement, contain local structural features that can improve damage localization as well as the construction and updating of the modal-based dynamic model of the structure. In general, the resolution of vibration measurements can be increased by enhanced hardware. Traditional vibration measurement sensors such as accelerometers have high-frequency sampling capacity; however, they are discrete point-wise sensors only providing sparse, low spatial sensing resolution measurements, while dense deployment to achieve high spatial resolution is expensive and results in the mass-loading effect and modification of structure's surface. Non-contact measurement methods such as scanning laser vibrometers provide high spatial and temporal resolution sensing capacity; however, they make measurements sequentially that requires considerable acquisition time. As an alternative non-contact method, digital video cameras are relatively low-cost, agile, and provide high spatial resolution, simultaneous, measurements. Combined with vision based algorithms (e.g., image correlation or template matching, optical flow, etc.), video camera based measurements have been successfully used for experimental and operational vibration measurement and subsequent modal analysis. However, the sampling frequency of most affordable digital cameras is limited to 30-60 Hz, while high-speed cameras for higher frequency vibration measurements are extremely costly. This work develops a computational algorithm capable of performing vibration measurement at a uniform sampling frequency lower than

  2. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    International Nuclear Information System (INIS)

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H

    2017-01-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  3. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  4. Measurements of ground motion and magnets vibrations at the APS

    International Nuclear Information System (INIS)

    Shil'tsev, V.D.

    1994-01-01

    This article presents results of ground motion and magnets vibrations measurements at the Advanced Photon Source. The experiments were done over wide frequency range 0.05-100 Hz with use of SM-3KV type seismic probes from Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. There were also investigated magnets vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quads vibration at different sectors of the ring. Influence of personnel activity in the hall and traffic under the ring on slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators. 9 refs.; 10 figs.; 1 tab

  5. VIBRATIONS MEASUREMENT IN ORDER TO IDENTIFY THE FAULTS TO THE TABLES AND SUPPORTS ON WHICH THE EMBROIDERY MACHINES ARE PLACED

    Directory of Open Access Journals (Sweden)

    ŞUTEU Marius

    2014-05-01

    Full Text Available The aim of this paper is to accurately and quickly identify the faults of the tables and supports on which the embroidery machines are placed through vibrations measuring method. Vibrations measurements on Happy embroidery machine were performed at S.C. CONFIDEX S.R.L Oradea. A FFT spectrum analyzer Impaq was used, made by Benstone Instruments Inc –SUA. The measurements were performed in order to seek the role and importance of the rigidity of embroidery machine supports for a better and more efficient performance of the machine. Before performing these measurements was determined the optimal operating mode of the embroidery machine. The vibration measurements were performed in each measuring point, by installing a vibration sensor on the three directions of the Cartesian coordinates system: axial (X, horizontal (Y, vertical (Z. In the present paper is shown only the measuring direction Z (sensor mounting direction and advance of the material on x direction (the embroidery direction this is the most relevant direction, as on this part the embroidery is executed. After performing these vibration measurements on the HAPPY embroidery machine, previously mounted on a big table, after that mounted on a smaller table and a less rigid base. The same vibrations measurements were performed and it was noticed that it is mandatory to position the machine on a big table and a stable base because it will influence both the reliability and the working regime of the machine.

  6. Measurement of food texture by an acoustic vibration method

    Science.gov (United States)

    Sakurai, Naoki; Taniwaki, Mitsuru; Iwatani, Shin-ichiro; Akimoto, Hidemi

    2011-09-01

    Food texture was measured by a new acoustic vibration method. A piezoelectric sensor sandwiched between a probe and piston was inserted into a food sample by delivery of silicon oil to a cylinder by a pump. Vibration emitted from the food sample on insertion of the probe was monitored by voltage outputs of the sensor. The voltage signals were passed through 19 half octave bands to calculate texture index for each band. The texture index was defined as vibration energy of the probe caused by the food rupture and/or breakage per unit time.

  7. Predicting footbridge vibrations using a probability-based approach

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2017-01-01

    Vibrations in footbridges may be problematic as excessive vibrations may occur as a result of actions of pedestrians. Design-stage predictions of levels of footbridge vibration to the action of a pedestrian are useful and have been employed for many years based on a deterministic approach to mode...

  8. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    Directory of Open Access Journals (Sweden)

    Gu Wenbin

    2015-01-01

    Full Text Available Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater drilling blasting was measured in a field experiment. It shows that the water bottom vibration monitor could collect vibration signals quite effectively in underwater environments. The followed signal analysis shows that the characteristics of water bottom vibration and land ground vibration induced by the same underwater drilling blasting are quite different due to the different geological environments. The amplitude and frequency band of water bottom vibration both exceed those of land ground vibration. Water bottom vibration is mainly in low-frequency band that induced by blasting impact directly acts on rock. Besides the low-frequency component, land vibration contains another higher frequency band component that induced by followed water hammer wave acts on bank slope.

  9. A MEMS Resonant Sensor to Measure Fluid Density and Viscosity under Flexural and Torsional Vibrating Modes

    Directory of Open Access Journals (Sweden)

    Libo Zhao

    2016-06-01

    Full Text Available Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.

  10. Discrete time interval measurement system: fundamentals, resolution and errors in the measurement of angular vibrations

    International Nuclear Information System (INIS)

    Gómez de León, F C; Meroño Pérez, P A

    2010-01-01

    The traditional method for measuring the velocity and the angular vibration in the shaft of rotating machines using incremental encoders is based on counting the pulses at given time intervals. This method is generically called the time interval measurement system (TIMS). A variant of this method that we have developed in this work consists of measuring the corresponding time of each pulse from the encoder and sampling the signal by means of an A/D converter as if it were an analog signal, that is to say, in discrete time. For this reason, we have denominated this method as the discrete time interval measurement system (DTIMS). This measurement system provides a substantial improvement in the precision and frequency resolution compared with the traditional method of counting pulses. In addition, this method permits modification of the width of some pulses in order to obtain a mark-phase on every lap. This paper explains the theoretical fundamentals of the DTIMS and its application for measuring the angular vibrations of rotating machines. It also displays the required relationship between the sampling rate of the signal, the number of pulses of the encoder and the rotating velocity in order to obtain the required resolution and to delimit the methodological errors in the measurement

  11. Vibration-induced particle formation during yogurt fermentation - Industrial vibration measurements and development of an experimental setup.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Nöbel, Stefan; Schlücker, Eberhard; Hinrichs, Jörg

    2016-07-01

    The aim of the study was to investigate the effects of vibrations during yogurt fermentation. Machinery such as pumps and switching valves generate vibrations that may disturb the gelation by inducing large particles. Oscillation measurements on an industrial yogurt production line showed that oscillations are transferred from pumps right up to the fermentation tanks. An experimental setup (20L) was developed to study the effect of vibrations systematically. The fermenters were decoupled with air springs to enable reference fermentations under idle conditions. A vibration exciter was used to stimulate the fermenters. Frequency sweeps (25-1005Hz, periodic time 10s) for 20min from pH5.4 induced large particles. The number of visible particles was significantly increased from 35±4 (reference) to 89±9 particles per 100g yogurt. Rheological parameters of the stirred yogurt samples were not influenced by vibrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology.

    Science.gov (United States)

    Brůžek, Jaroslav; Santos, Frédéric; Dutailly, Bruno; Murail, Pascal; Cunha, Eugenia

    2017-10-01

    A new tool for skeletal sex estimation based on measurements of the human os coxae is presented using skeletons from a metapopulation of identified adult individuals from twelve independent population samples. For reliable sex estimation, a posterior probability greater than 0.95 was considered to be the classification threshold: below this value, estimates are considered indeterminate. By providing free software, we aim to develop an even more disseminated method for sex estimation. Ten metric variables collected from 2,040 ossa coxa of adult subjects of known sex were recorded between 1986 and 2002 (reference sample). To test both the validity and reliability, a target sample consisting of two series of adult ossa coxa of known sex (n = 623) was used. The DSP2 software (Diagnose Sexuelle Probabiliste v2) is based on Linear Discriminant Analysis, and the posterior probabilities are calculated using an R script. For the reference sample, any combination of four dimensions provides a correct sex estimate in at least 99% of cases. The percentage of individuals for whom sex can be estimated depends on the number of dimensions; for all ten variables it is higher than 90%. Those results are confirmed in the target sample. Our posterior probability threshold of 0.95 for sex estimate corresponds to the traditional sectioning point used in osteological studies. DSP2 software is replacing the former version that should not be used anymore. DSP2 is a robust and reliable technique for sexing adult os coxae, and is also user friendly. © 2017 Wiley Periodicals, Inc.

  13. Influence of mechanical vibrations on the field quality measurements of LHC interaction region quadrupole magnets

    CERN Document Server

    Di Marco, J; Schlabach, P; Sylvester, C D; Tompkins, J C; Krzywinski, J

    2000-01-01

    The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. (3 refs).

  14. Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

    International Nuclear Information System (INIS)

    Ho, Duc Duy; Hong, Dong Soo; Kim, Jeong Tae

    2010-01-01

    This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified

  15. DspA/E contributes to apoplastic accumulation of ROS in nonhost A. thaliana

    Directory of Open Access Journals (Sweden)

    Alban eLaunay

    2016-04-01

    Full Text Available The bacterium Erwinia amylovora is responsible for the fire blight disease of Maleae, which provokes necrotic symptoms on aerial parts. The pathogenicity of this bacterium in hosts relies on its type three-secretion system (T3SS, a molecular syringe that allows the bacterium to inject effectors into the plant cell. E. amylovora-triggered disease in host plants is associated with the T3SS-dependent production of reactive oxygen species (ROS, although ROS are generally associated with resistance in other pathosystems. We showed previously that E. amylovora can multiply transiently in the nonhost plant Arabidopsis thaliana and that a T3SS-dependent production of intracellular ROS occurs during this interaction. In the present work we characterize the localization and source of hydrogen peroxide accumulation following E. amylovora infection. Transmission electron microscope (TEM analysis of infected tissues showed that hydrogen peroxide accumulation occurs in the cytosol, plastids, peroxisomes, and mitochondria as well as in the apoplast. Furthermore, TEM analysis showed that an E. amylovora dspA/E-deficient strain does not induce hydrogen peroxide accumulation in the apoplast. Consistently, a transgenic line expressing DspA/E accumulated ROS in the apoplast. The NADPH oxidase-deficient rbohD mutant showed a very strong reduction in hydrogen peroxide accumulation in response to E. amylovora inoculation. However, we did not find an increase in bacterial titers of E. amylovora in the rbohD mutant and the rbohD mutation did not suppress the toxicity of DspA/E when introgressed into a DspA/E-expressing transgenic line. Co-inoculation of E. amylovora with cycloheximide (CHX, which we found previously to suppress callose deposition and allow strong multiplication of E. amylovora in A. thaliana leaves, led to a strong reduction of apoplastic ROS accumulation but did not affect intracellular ROS. Our data strongly suggest that apoplastic ROS accumulation is

  16. Vibrating wire apparatus for periodic magnetic structure measurement

    International Nuclear Information System (INIS)

    Temnykh, A.B.

    2003-01-01

    Devices with periodic magnetic structures such as wigglers and undulators are often key elements in synchrotron radiation sources. In applications where the coherence of the emitted radiation is important, magnetic field errors distorting the periodicity of the field can significantly reduce the performance of the devices. Thus, the measurement, localization, and correction of the field errors can be a critical issue. This article presents a new method for magnetic field measurements in periodic magnetic structures. The method uses a vibrating taut wire passing through the magnetic structure, and it involves measurements of the amplitudes and phases of the standing waves excited on the wire by the Lorentz force between an AC current in the wire and the surrounding magnetic field. For certain arrangements of the wire, vibrations in the wire will be excited by only non-periodic magnetic field component, i.e., by the error field. By measuring the phase and amplitude of these waves, one can reconstruct the error field distribution and then correct it. The method was tested on a permanent magnet wiggler with 19.8 cm period and a peak field of ∼7000G. It demonstrated ∼0.6G RMS sensitivity, δB rms /B rms ∼1.2x10 -4 and spatial resolution sufficient to identify poles generating the field error. Good agreement was found between field error measurements obtained with the vibrating wire method and with traditional Hall probe field mapping

  17. Measuring vibrations in fuel channels CNE

    International Nuclear Information System (INIS)

    Martín Ghiselli, A.; Fiori, J.; Sacchi, M.; Villabrille, G.

    2013-01-01

    This paper present a description of implementation and execution of vibration measurements made at the request of NUCLEOELECTRICA ARGENTINA S.A. on the ends of the reactor fuel channels of Embalse Nuclear Power Plant to explore possible differences between the dynamic behavior of empty fuel channel and with full charge of fuel elements inside. (author)

  18. Stochastic output error vibration-based damage detection and assessment in structures under earthquake excitation

    Science.gov (United States)

    Sakellariou, J. S.; Fassois, S. D.

    2006-11-01

    A stochastic output error (OE) vibration-based methodology for damage detection and assessment (localization and quantification) in structures under earthquake excitation is introduced. The methodology is intended for assessing the state of a structure following potential damage occurrence by exploiting vibration signal measurements produced by low-level earthquake excitations. It is based upon (a) stochastic OE model identification, (b) statistical hypothesis testing procedures for damage detection, and (c) a geometric method (GM) for damage assessment. The methodology's advantages include the effective use of the non-stationary and limited duration earthquake excitation, the handling of stochastic uncertainties, the tackling of the damage localization and quantification subproblems, the use of "small" size, simple and partial (in both the spatial and frequency bandwidth senses) identified OE-type models, and the use of a minimal number of measured vibration signals. Its feasibility and effectiveness are assessed via Monte Carlo experiments employing a simple simulation model of a 6 storey building. It is demonstrated that damage levels of 5% and 20% reduction in a storey's stiffness characteristics may be properly detected and assessed using noise-corrupted vibration signals.

  19. Practical considerations for the implantation of a fuzzy control algorithm in a DSP

    International Nuclear Information System (INIS)

    Perez C, B.; Benitez R, J.S.; Pacheco S, J.O.

    2003-01-01

    The development of a digital system based on a DSP to implant a Mamdani type algorithm of fuzzy control whose objective is to regulate the neutron power in a nuclear research reactor Type TRIGA Mark III is presented. Its are simultaneously carried out the aggregation des fuzzy stages discreeting the universe of the output variable. The format MPF for the handling of the floating point in the arithmetic operations is used. (Author)

  20. Measuring frequency of one-dimensional vibration with video camera using electronic rolling shutter

    Science.gov (United States)

    Zhao, Yipeng; Liu, Jinyue; Guo, Shijie; Li, Tiejun

    2018-04-01

    Cameras offer a unique capability of collecting high density spatial data from a distant scene of interest. They can be employed as remote monitoring or inspection sensors to measure vibrating objects because of their commonplace availability, simplicity, and potentially low cost. A defect of vibrating measurement with the camera is to process the massive data generated by camera. In order to reduce the data collected from the camera, the camera using electronic rolling shutter (ERS) is applied to measure the frequency of one-dimensional vibration, whose frequency is much higher than the speed of the camera. Every row in the image captured by the ERS camera records the vibrating displacement at different times. Those displacements that form the vibration could be extracted by local analysis with sliding windows. This methodology is demonstrated on vibrating structures, a cantilever beam, and an air compressor to identify the validity of the proposed algorithm. Suggestions for applications of this methodology and challenges in real-world implementation are given at last.

  1. The STAFF-DWP wave instrument on the DSP equatorial spacecraft: description and first results

    Directory of Open Access Journals (Sweden)

    N. Cornilleau-Wehrlin

    2005-11-01

    Full Text Available The STAFF-DWP wave instrument on board the equatorial spacecraft (TC1 of the Double Star Project consists of a combination of 2 instruments which are a heritage of the Cluster mission: the Spatio-Temporal Analysis of Field Fluctuations (STAFF experiment and the Digital Wave-Processing experiment (DWP. On DSP-TC1 STAFF consists of a three-axis search coil magnetometer, used to measure magnetic fluctuations at frequencies up to 4 kHz and a waveform unit, up to 10 Hz, plus snapshots up to 180 Hz. DWP provides several onboard analysis tools: a complex FFT to fully characterise electromagnetic waves in the frequency range 10 Hz-4 kHz, a particle correlator linked to the PEACE electron experiment, and compression of the STAFF waveform data. The complementary Cluster and TC1 orbits, together with the similarity of the instruments, permits new multi-point studies. The first results show the capabilities of the experiment, with examples in the different regions of the magnetosphere-solar wind system that have been encountered by DSP-TC1 at the beginning of its operational phase. An overview of the different kinds of electromagnetic waves observed on the dayside from perigee to apogee is given, including the different whistler mode waves (hiss, chorus, lion roars and broad-band ULF emissions. The polarisation and propagation characteristics of intense waves in the vicinity of a bow shock crossing are analysed using the dedicated PRASSADCO tool, giving results compatible with previous studies: the broad-band ULF waves consist of a superimposition of different wave modes, whereas the magnetosheath lion roars are right-handed and propagate close to the magnetic field. An example of a combined Cluster DSP-TC1 magnetopause crossing is given. This first case study shows that the ULF wave power intensity is higher at low latitude (DSP than at high latitude (Cluster. On the nightside in the tail, a first wave event comparison - in a rather quiet time interval

  2. Implementation of KRoC on Analog Devices' "SHARC" DSP

    NARCIS (Netherlands)

    Otten, G.W.; Schwirtz, M.H.; Schwirtz, Marcellinus H.; Bruis, R.; Bruis, R.; Broenink, Johannes F.; Bakkers, André; O'Neill, Brian C.

    1996-01-01

    This paper summarises the experiences gained at the Control Laboratory of the University of Twente in porting the Kent Retargetable occam Compiler -KroC -to the Analog Devices' ADSP21060 SHARC Digital Signal Processor. The choice of porting the KRoC to the DSP processor was in our view both a

  3. Vibration condition measure instrument of motor using MEMS accelerometer

    Science.gov (United States)

    Chen, Jun

    2018-04-01

    In this work, a novel vibration condition measure instrument of motor using a digital micro accelerometer is proposed. In order to reduce the random noise found in the data, the sensor modeling is established and also the Kalman filter (KMF) is developed. According to these data from KMF, the maximum vibration displacement is calculated by the integration algorithm with the DC bias removed. The high performance micro controller unit (MCU) is used in the implementation of controller. By the IIC digital interface port, the data are transmitted from sensor to controller. The hardware circuits of the sensor and micro controller are designed and tested. With the computational formula of maximum displacement and FFT, the high precession results of displacement and frequency are gotten. Finally, the paper presents various experimental results to prove that this instrument is suitable for application in electrical motor vibration measurement.

  4. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  5. Vibration energy harvesting based monitoring of an operational bridge undergoing forced vibration and train passage

    Science.gov (United States)

    Cahill, Paul; Hazra, Budhaditya; Karoumi, Raid; Mathewson, Alan; Pakrashi, Vikram

    2018-06-01

    The application of energy harvesting technology for monitoring civil infrastructure is a bourgeoning topic of interest. The ability of kinetic energy harvesters to scavenge ambient vibration energy can be useful for large civil infrastructure under operational conditions, particularly for bridge structures. The experimental integration of such harvesters with full scale structures and the subsequent use of the harvested energy directly for the purposes of structural health monitoring shows promise. This paper presents the first experimental deployment of piezoelectric vibration energy harvesting devices for monitoring a full-scale bridge undergoing forced dynamic vibrations under operational conditions using energy harvesting signatures against time. The calibration of the harvesters is presented, along with details of the host bridge structure and the dynamic assessment procedures. The measured responses of the harvesters from the tests are presented and the use the harvesters for the purposes of structural health monitoring (SHM) is investigated using empirical mode decomposition analysis, following a bespoke data cleaning approach. Finally, the use of sequential Karhunen Loeve transforms to detect train passages during the dynamic assessment is presented. This study is expected to further develop interest in energy-harvesting based monitoring of large infrastructure for both research and commercial purposes.

  6. Pin level neutronic - thermal hydraulic two-way-coupling using DYN3D-SP3 and SUBCHANFLOW

    International Nuclear Information System (INIS)

    Torres, Armando Gomez; Espinoza, Victor Sanchez; Imke, Uwe; Juan, Rafael Macian

    2011-01-01

    Nowadays several Reactor Dynamic Codes, (RDC) are able to solve the diffusion equation or even the transport equation (SP3 approximation) considering feedback parameters coming from the thermalhydraulic (TH) core behavior. These kinds of codes (DYN3D, PARCS, among others) usually contain a 1D two phase flow thermalhydraulic model capable to pass them assembly averaged feedback parameters. At fuel assembly base this nodal coupling is completely a two way coupling. The Neutronic part calculates the mean power of the whole assembly and passes it to the TH part in order to actualize the heat source. In turn, the TH model passes the assembly-based feedback parameters to the neutronic code for actualizing the nodal cross sections. The process will be repeated until convergence. At pin level, the current situation is somehow different. Although the neutronic solver can pass the pin power distribution in every sub - node (pin distribution), the 1-D TH model will average the pin power distribution to assembly-based scale and will give back assembly averaged feedbacks to the neutronic part for cross sections up-date (one and a half way coupling), leading to information loss in the calculation. A new coupled program system DYNSUB was developed by coupling DYN3D-SP3 and SUBCHANFLOW at pin level. DYNSUB was used to analyze stationary PWR minicore problems at pin-level. The comparison of the Keff predicted by DYNSUB with the one calculated by DYN3D-SP3 (coarse TH solution) shows small differences of up to 26 pcm. Differences up to 4.5% were found in the radial distribution of the pin power. The local safety parameters such as cladding and fuel temperature predicted with DYNSUB shows larger deviations compared with the ones obtained with DYN3D-SP3. These differences may increase when analyzing transients. (author)

  7. Experimental Study on the Measurement of Water Bottom Vibration Induced by Underwater Drilling Blasting

    OpenAIRE

    Wenbin, Gu; Jianghai, Chen; Zhenxiong, Wang; Zhihua, Wang; Jianqing, Liu; Ming, Lu

    2015-01-01

    Due to the lack of proper instrumentations and the difficulties in underwater measurements, the studies about water bottom vibration induced by underwater drilling blasting are seldom reported. In order to investigate the propagation and attenuation laws of blasting induced water bottom vibration, a water bottom vibration monitor was developed with consideration of the difficulties in underwater measurements. By means of this equipment, the actual water bottom vibration induced by underwater ...

  8. Prevalence of Hand-transmitted Vibration Exposure among Grass-cutting Workers using Objective and Subjective Measures

    Science.gov (United States)

    Azmir, N. A.; Yahya, M. N.

    2017-01-01

    Extended exposure to hand-transmitted vibration from vibrating machine is associated with an increased occurrence of symptoms of occupational disease related to hand disorder. The present case study is to determine the prevalence and correlation of significant subjective as well as objective variables that induce to hand arm vibration syndrome (HAVS) among hand-held grass-cutting workers in Malaysia. Thus, recommendations are made for grass-cutting workers and grass maintenance service management based on findings. A cross sectional study using adopted subjective Hand Arm Vibration Exposure Risk Assessment (HAVERA) questionnaire from Vibration Injury Network on hand disorder signs and symptoms was distributed to a sample of one hundred and sixty eight male workers from grass and turf maintenance industry that use vibrating machine as part of their work. For objective measure, hand-transmitted vibration measurement was collected on site during operation by the following ISO 5349-1, 2001. Two groups were identified in this research comprising of high exposure group and low-moderate exposure group. Workers also gave information about their personal identification, social history, workers’ health, occupational history and machine safety inspection. There was positive HAVS symptoms relationship between the low-moderate exposure group and high exposure group among hand-held grass-cutting workers. The prevalence ratio (PR) was considered high for experiencing white colour change at fingers and fingers go numb which are 3.63 (1.41 to 9.39) and 4.24 (2.18 to 8.27), respectively. The estimated daily vibration exposure, A(8) differs between 2.1 to 20.7 ms-2 for right hand while 2.7 to 29.1 ms-2 for left hand. The subjects claimed that the feel of numbness at left hand is much stronger compared to right hand. The results suggest that HAVS is diagnosed in Malaysia especially in agriculture sector. The A(8) indicates that the exposure value is more than exposure limit value

  9. Integrating Oil Debris and Vibration Measurements for Intelligent Machine Health Monitoring. Degree awarded by Toledo Univ., May 2002

    Science.gov (United States)

    Dempsey, Paula J.

    2003-01-01

    A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they

  10. Development of a distributed polarization-OTDR to measure two vibrations with the same frequency

    Science.gov (United States)

    Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping

    2015-08-01

    A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.

  11. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  12. A New Approach for Reliability Life Prediction of Rail Vehicle Axle by Considering Vibration Measurement

    Directory of Open Access Journals (Sweden)

    Meral Bayraktar

    2014-01-01

    Full Text Available The effect of vibration on the axle has been considered. Vibration measurements at different speeds have been performed on the axle of a running rail vehicle to figure out displacement, acceleration, time, and frequency response. Based on the experimental works, equivalent stress has been used to find out life of the axles for 90% and 10% reliability. Calculated life values of the rail vehicle axle have been compared with the real life data and it is found that the life of a vehicle axle taking into account the vibration effects is in good agreement with the real life of the axle.

  13. Vibration measurements of the Daniel K. Inouye Solar Telescope mount, Coudé rotator, and enclosure assemblies

    Science.gov (United States)

    McBride, William R.; McBride, Daniel R.

    2016-08-01

    The Daniel K. Inouye Solar Telescope (DKIST) will be the largest solar telescope in the world, with a 4-meter off-axis primary mirror and 16 meter rotating Coudé laboratory within the telescope pier. The off-axis design requires a mount similar to an 8-meter on-axis telescope. Both the telescope mount and the Coudé laboratory utilize a roller bearing technology in place of the more commonly used hydrostatic bearings. The telescope enclosure utilizes a crawler mechanism for the altitude axis. As these mechanisms have not previously been used in a telescope, understanding the vibration characteristics and the potential impact on the telescope image is important. This paper presents the methodology used to perform jitter measurements of the enclosure and the mount bearings and servo system in a high-noise environment utilizing seismic accelerometers and high dynamic-range data acquisition equipment, along with digital signal processing (DSP) techniques. Data acquisition and signal processing were implemented in MATLAB. In the factory acceptance testing of the telescope mount, multiple accelerometers were strategically located to capture the six axes-of-motion of the primary and secondary mirror dummies. The optical sensitivity analysis was used to map these mirror mount displacements and rotations into units of image motion on the focal plane. Similarly, tests were done with the Coudé rotator, treating the entire rotating instrument lab as a rigid body. Testing was performed by recording accelerometer data while the telescope control system performed tracking operations typical of various observing scenarios. The analysis of the accelerometer data utilized noise-averaging fast Fourier transform (FFT) routines, spectrograms, and periodograms. To achieve adequate dynamic range at frequencies as low as 3Hz, the use of special filters and advanced windowing functions were necessary. Numerous identical automated tests were compared to identify and select the data sets

  14. Active vibration isolation platform on base of magnetorheological elastomers

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailov, Valery P., E-mail: mikhailov@bmstu.ru; Bazinenkov, Alexey M.

    2017-06-01

    The article describes the active vibration isolation platform on base of magnetorheological (MR) elastomers. An active damper based on the MR elastomers can be used as an actuator of micro- or nanopositioning for a vibroinsulated object. The MR elastomers give such advantages for active control of vibration as large range of displacements (up to 1 mm), more efficient absorption of the vibration energy, possibility of active control of amplitude-frequency characteristics and positioning with millisecond response speed and nanometer running accuracy. The article presents the results of experimental studies of the most important active damper parameters. Those are starting current, transient time for stepping, transmission coefficient of the vibration displacement amplitude.

  15. Validation of the MCNP-DSP Monte Carlo code for calculating source-driven noise parameters of subcritical systems

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.

    1995-01-01

    This paper describes calculations performed to validate the modified version of the MCNP code, the MCNP-DSP, used for: the neutron and photon spectra of the spontaneous fission of californium 252; the representation of the detection processes for scattering detectors; the timing of the detection process; and the calculation of the frequency analysis parameters for the MCNP-DSP code

  16. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    Science.gov (United States)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  17. The vibration measurements at the photon factory storage ring building

    International Nuclear Information System (INIS)

    Haga, K.; Nakayama, M.; Masuda, K.; Ishizaki, H.; Kura, M.; Meng, L.; Oku, Y.

    1999-01-01

    The Photon Factory is a 2.5 GeV electron storage ring and has been operating since 1982 as a dedicated SR source. At the Photon Factory, we have been pursuing the various sources of the beam instabilities which deteriorated the SR beam quality in the wide frequency range. Some of the sources were the vibrations of magnets and floor of the ring tunnel, temperature change of the cooling water and the elongation of the storage ring building roof due to sunshine that induced the diurnal motion of the SR beam axis. This article presents the results of the vibration measurements that have been performed at the Photon Factory storage ring building. (1) The vibrations of the ring tunnel floor and the experimental hall floor, comparing with the vibration of the ground surrounding the storage ring building, are same order in the 1 ∼ 5 Hz range, and 1/3 ∼ 1/5 in the 5 ∼ 100 Hz range, in the vertical and the horizontal direction. (2) The effects of the vibration arising from the operating eight air-conditioners can be seen in the Fourier spectrum of the vibration of the ring tunnel floor, experimental floor, Q-magnets and BPM vacuum duct. (3) The vibrations of the Q-magnet and girder at frequencies near their fundamental resonant frequencies have been amplified 100 limes in the lateral direction comparing to the floor vibration. (4) Correlation between the vibration of the BPM vacuum duct and the vibration of the electron beam motion is unknown for the lack of the precise data. (authors)

  18. Underground measurements of seismic vibrations at the SSC site

    International Nuclear Information System (INIS)

    Shiltsev, V.D.; Parkhomchuk, V.V.; Weaver, H.J.

    1995-01-01

    The results of underground measurements of seismic vibrations at the tunnel depth of the Superconducting Super Collider (SSC) site are presented. Spectral analysis of the data obtained in the frequency band from 0.05 Hz to 1500 Hz is performed. It is found that amplitudes of ambient ground motion are less than requirements for the Collider, but cultural vibrations are unacceptably large and will cause fast growth of transverse emittance of the SSC beams

  19. Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements.

    Science.gov (United States)

    Girardeau, Vadim; Goloni, Carolina; Jacquin, Olivier; Hugon, Olivier; Inglebert, Mehdi; Lacot, Eric

    2016-12-01

    In this article, we study the nonlinear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we study the nonlinear dynamical coupling between the carrier and the vibration signal. The present work shows how the nonlinear amplification of the vibration spectrum is related to the strength of the carrier and how it must be compensated to obtain accurate (i.e., without bias) vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The main motivation of this study is the understanding of the nonlinear response of a laser optical feedback imaging sensor for quantitative phase measurements of small vibrations in the case of strong optical feedback.

  20. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    International Nuclear Information System (INIS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L. Jr.; Inomata, Hiroshi

    2007-01-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm 3

  1. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    International Nuclear Information System (INIS)

    Yin Jun; Yu Ling-Yao; Liu Xing; Wan Hui; Lin Zi-Yang; Niu Han-Ben

    2011-01-01

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. An electromagnetic inerter-based vibration suppression device

    International Nuclear Information System (INIS)

    Gonzalez-Buelga, A; Clare, L R; Neild, S A; Jiang, J Z; Inman, D J

    2015-01-01

    This paper describes how an inerter-based device for structural vibration suppression can be realized using an electromagnetic transducer such as a linear motor. When the motor shaft moves, a difference of voltage is generated across the transducer coil. The voltage difference is proportional to the relative velocity between its two terminals. The electromagnetic transducer will exert a force proportional to current following the Lorentz principle if the circuit is closed around the transducer coil. If an electronic circuit consisting of a capacitor, an inductance and a resistance with the appropriate configuration is connected, the resulting force reflected back into the mechanical domain is equivalent to that achieved by a mechanical inerter-based device. The proposed configuration is easy to implement and very versatile, provided a high quality conversion system with negligible losses. With the use of electromagnetic devices, a new generation of vibration absorbers can be realized, for example in the electrical domain it would be relatively uncomplicated to synthesize multi-frequency or real time tunable vibration absorbers by adding electrical components in parallel. In addition by using resistance emulators in the electrical circuits, part of the absorbed vibration energy can be converted into usable power. Here an electromagnetic tuned inerter damper (E-TID) is tested experimentally using real time dynamic substructuring. A voltage compensation unit was developed in order to compensate for coil losses. This voltage compensation unit requires power, which is acquired through harvesting from the vibration energy using a resistance emulator. A power balance analysis was developed in order to ensure the device can be self sufficient. Promising experimental results, using this approach, have been obtained and are presented in this paper. The ultimate goal of this research is the development of autonomous electromagnetic vibration absorbers, able to harvest energy

  3. Transducers for Sound and Vibration - FEM Based Design

    DEFF Research Database (Denmark)

    Liu, Bin

    2001-01-01

    Design of transducers for measurement of vibration (piezoelectric accelerometers) and sound (condenser microphones) is a very labour intensive work. The design work is mostly based on experience and on simple analogies to electrical circuit design. Often a time consuming itterative loop is used......: Specification of the transducer, production of a physical prototype, measurements on the prototype, changed specification of the transducer etc. Furthermore are many transducers made based on customer requirements which also increases the amount of required design work. For these reasons there is a need...... for methods that can reduce the design time consumption and the number of itterations. The present work proposes to use finite element based programs for simulating the behaviour of a transducer with a given set of specifications. A simulation program for accelerometers was developed and has been tested...

  4. A High-Speed Target-Free Vision-Based Sensor for Bus Rapid Transit Viaduct Vibration Measurements Using CMT and ORB Algorithms

    Directory of Open Access Journals (Sweden)

    Qijun Hu

    2017-06-01

    Full Text Available Bus Rapid Transit (BRT has become an increasing source of concern for public transportation of modern cities. Traditional contact sensing techniques during the process of health monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would be blocked. Advances in computer vision technology provide a new line of thought for solving this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure the vibration of structures without interrupting traffic. An improved keypoints matching algorithm based on consensus-based matching and tracking (CMT object tracking algorithm is adopted and further developed together with oriented brief (ORB keypoints detection algorithm for practicable and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation methods, more rational approaches to reducing errors are implemented. The performance of the vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different target types, frequencies, amplitudes and motion patterns are conducted. The performance of the method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision sensor is both practicable and reliable.

  5. Real time polarization sensor image processing on an embedded FPGA/multi-core DSP system

    Science.gov (United States)

    Bednara, Marcus; Chuchacz-Kowalczyk, Katarzyna

    2015-05-01

    Most embedded image processing SoCs available on the market are highly optimized for typical consumer applications like video encoding/decoding, motion estimation or several image enhancement processes as used in DSLR or digital video cameras. For non-consumer applications, on the other hand, optimized embedded hardware is rarely available, so often PC based image processing systems are used. We show how a real time capable image processing system for a non-consumer application - namely polarization image data processing - can be efficiently implemented on an FPGA and multi-core DSP based embedded hardware platform.

  6. Vibration Based Sun Gear Damage Detection

    Science.gov (United States)

    Hood, Adrian; LaBerge, Kelsen; Lewicki, David; Pines, Darryll

    2013-01-01

    Seeded fault experiments were conducted on the planetary stage of an OH-58C helicopter transmission. Two vibration based methods are discussed that isolate the dynamics of the sun gear from that of the planet gears, bearings, input spiral bevel stage, and other components in and around the gearbox. Three damaged sun gears: two spalled and one cracked, serve as the focus of this current work. A non-sequential vibration separation algorithm was developed and the resulting signals analyzed. The second method uses only the time synchronously averaged data but takes advantage of the signal/source mapping required for vibration separation. Both algorithms were successful in identifying the spall damage. Sun gear damage was confirmed by the presence of sun mesh groups. The sun tooth crack condition was inconclusive.

  7. Nondestructive assessment of timber bridges using a vibration-based method

    Science.gov (United States)

    Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw

    2005-01-01

    This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...

  8. DSP implementation of a PV system with GA-MLP-NN based MPPT controller supplying BLDC motor drive

    International Nuclear Information System (INIS)

    Akkaya, R.; Kulaksiz, A.A.; Aydogdu, O.

    2007-01-01

    This paper presents a brushless dc motor drive for heating, ventilating and air conditioning fans, which is utilized as the load of a photovoltaic system with a maximum power point tracking (MPPT) controller. The MPPT controller is based on a genetic assisted, multi-layer perceptron neural network (GA-MLP-NN) structure and includes a DC-DC boost converter. Genetic assistance in the neural network is used to optimize the size of the hidden layer. Also, for training the network, a genetic assisted, Levenberg-Marquardt (GA-LM) algorithm is utilized. The off line GA-MLP-NN, trained by this hybrid algorithm, is utilized for online estimation of the voltage and current values in the maximum power point. A brushless dc (BLDC) motor drive system that incorporates a motor controller with proportional integral (PI) speed control loop is successfully implemented to operate the fans. The digital signal processor (DSP) based unit provides rapid achievement of the MPPT and current control of the BLDC motor drive. The performance results of the system are given, and experimental results are presented for a laboratory prototype of 120 W

  9. Vibrational Based Inspection Of A Steel Mast

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Rytter, A.

    1994-01-01

    The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination of accep......The aim of this paper is to present the results from a research project concerning vibrational based inspection of a 20 meter high steel mast containing well defined damages. Introductory analyses dealing with among other things evaluation of potential damage indicators and determination...

  10. Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for

  11. Establishment of one-axis vibration test system for measurement of biodynamic response of human hand-arm system.

    Science.gov (United States)

    Shibata, Nobuyuki; Hosoya, Naoki; Maeda, Setsuo

    2008-12-01

    Prolonged exposure to hand-arm vibration (HAV) due to use of hand-held power tools leads to an increased occurrence of symptoms of disorders in the vascular, neurological, and osteo-articular systems of the upper limbs called hand-arm vibration syndrome (HAVS). Biodynamic responses of the hand-arm system to vibration can be suggestive parameters that give us better assessment of exposure to HAV and fundamental data for design of low-vibration-exposure power tools. Recently, a single axis hand-arm vibration system has been installed in the Japan National Institute of Occupational Safety and Health (NIOSH). The aims of this study were to obtain the fundamental dynamic characteristics of an instrumented handle and to validate the performance and measurement accuracy of the system applied to dynamic response measurement. A pseudo-random vibration signal with a frequency range of 5-1,250 Hz and a power spectrum density of 1.0 (m/s2)2/Hz was used in this study. First the dynamic response of the instrumented handle without any weight was measured. After this measurement, the dynamic response measurement of the handle with weights mounted on the handle was performed. The apparent mass of a weight itself was obtained by using the mass cancellation method. The mass of the measuring cap on the instrumented handle was well compensated by using the mass cancellation method. Based on the 10% error tolerance, this handle can reliably measure the dynamic response represented by an apparent mass with a minimum weight of 2.0 g in a frequency range of 10.0 to 1,000 Hz. A marked increase in the AM magnitude of the weights of 15 g and 20 g in frequency ranges greater than 800 Hz is attributed not to the fundamental resonance frequency of the handle with weights, but to the fixation of the weight to the measuring cap. In this aspect, the peak of the AM magnitude can be reduced and hence should not be an obstacle to the biodynamic response measurement of the human hand-arm system. On the

  12. Measurement of dynamic interaction between a vibrating fuel element and its support

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, N.J.; Tromp, J.H.; Smith, B.A.W. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-01

    Flow-induced vibration of CANDU{reg_sign} fuel can result in fretting damage of the fuel and its support. A WOrk-Rate Measuring Station (WORMS) was developed to measure the relative motion and contact forces between a vibrating fuel element and its support. The fixture consists of a small piece of support structure mounted on a micrometer stage. This arrangement permits position of the support relative to the fuel element to be controlled to within {+-} {micro}m. A piezoelectric triaxial load washer is positioned between the support and micrometer stage to measure contact forces, and a pair of miniature eddy-current displacement probes are mounted on the stage to measure fuel element-to-support relative motion. WORMS has been utilized to measure dynamic contact forces, relative displacements and work-rates between a vibrating fuel element and its support. For these tests, the fuel element was excited with broadband random force excitation to simulate flow-induced vibration due to axial flow. The relationship between fuel element-to-support gap or preload (i.e., interference or negative gap) and dynamic interaction (i.e., relative motion, contact forces and work-rates) was derived. These measurements confirmed numerical simulations of in-reactor interaction predicted earlier using the VIBIC code.

  13. A Method Using Optical Contactless Displacement Sensors to Measure Vibration Stress of Small-Bore Piping.

    Science.gov (United States)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Noda, Michiyasu

    2014-02-01

    In nuclear power plants, vibration stress of piping is frequently evaluated to prevent fatigue failure. A simple and fast measurement method is attractive to evaluate many piping systems efficiently. In this study, a method to measure the vibration stress using optical contactless displacement sensors was proposed, the prototype instrument was developed, and the instrument practicality for the method was verified. In the proposed method, light emitting diodes (LEDs) were used as measurement sensors and the vibration stress was estimated by measuring the deformation geometry of the piping caused by oscillation, which was measured as the piping curvature radius. The method provided fast and simple vibration estimates for small-bore piping. Its verification and practicality were confirmed by vibration tests using a test pipe and mock-up piping. The stress measured by both the proposed method and an accurate conventional method using strain gauges were in agreement, and it was concluded that the proposed method could be used for actual plant piping systems.

  14. Performance evaluation of the QIAGEN EZ1 DSP Virus Kit with Abbott RealTime HIV-1, HBV and HCV assays.

    Science.gov (United States)

    Schneider, George J; Kuper, Kevin G; Abravaya, Klara; Mullen, Carolyn R; Schmidt, Marion; Bunse-Grassmann, Astrid; Sprenger-Haussels, Markus

    2009-04-01

    Automated sample preparation systems must meet the demands of routine diagnostics laboratories with regard to performance characteristics and compatibility with downstream assays. In this study, the performance of QIAGEN EZ1 DSP Virus Kit on the BioRobot EZ1 DSP was evaluated in combination with the Abbott RealTime HIV-1, HCV, and HBV assays, followed by thermalcycling and detection on the Abbott m2000rt platform. The following performance characteristics were evaluated: linear range and precision, sensitivity, cross-contamination, effects of interfering substances and correlation. Linearity was observed within the tested ranges (for HIV-1: 2.0-6.0 log copies/ml, HCV: 1.3-6.9 log IU/ml, HBV: 1.6-7.6 log copies/ml). Excellent precision was obtained (inter-assay standard deviation for HIV-1: 0.06-0.17 log copies/ml (>2.17 log copies/ml), HCV: 0.05-0.11 log IU/ml (>2.09 log IU/ml), HBV: 0.03-0.07 log copies/ml (>2.55 log copies/ml)), with good sensitivity (95% hit rates for HIV-1: 50 copies/ml, HCV: 12.5 IU/ml, HBV: 10 IU/ml). No cross-contamination was observed, as well as no negative impact of elevated levels of various interfering substances. In addition, HCV and HBV viral load measurements after BioRobot EZ1 DSP extraction correlated well with those obtained after Abbott m2000sp extraction. This evaluation demonstrates that the QIAGEN EZ1 DSP Virus Kit provides an attractive solution for fully automated, low throughput sample preparation for use with the Abbott RealTime HIV-1, HCV, and HBV assays.

  15. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    propagate along the blade and are measured by an array of accelerometers. Unsupervised learning is applied to the data: the vibration patterns corresponding to the undamaged blade are used to create a statistical model of the reference state. During the detection stage, the current vibration pattern...

  16. An exploratory study of using external fluid loading on a vibrating tube for measuring suspended sediment concentration in water

    International Nuclear Information System (INIS)

    Hsu, Y-S; Hwang, Y-F; Huang, J H

    2008-01-01

    This paper presents an exploratory study of using external fluid loading on a vibrating tube for measuring the suspended sediment concentration (SSC) in bodies of water such as rivers and reservoirs. This new measuring concept provides an opportunity for an automated on-site monitoring of the conditions in a body of water by taking the fluid sample instantaneously in the area surrounding the vibrating tube. The physical properties of the fluid sample are those of the fluid that naturally flows around the tube, and are more representative of those of the water with SSC to be measured. The theoretical analysis presented in this paper shows that the resonance frequencies of an immersed vibrating tube change significantly with mass density variations that normally occur in bodies of water with suspended sediment. These changes are sensitive enough to have a possible 1% resolution of the measured fluid density. The signal processing issues are discussed, and a schematic of a conceptual measuring setup is proposed. Based on the theoretical analyses and other measurement issues presented in the paper, using the loading by external fluid on a vibrating tube is feasible for measuring the SSC in water bodies

  17. Wireless vibration-based SHM of caisson-type breakwater under foundation damage

    Science.gov (United States)

    Lee, So-Young; Nguyen, Khac-Duy; Kim, Jeong-Tae; Yi, Jin-Hak

    2012-04-01

    This paper presents a vibration-based structural health monitoring (SHM) technique using a high sensitive wireless sensor node for caisson-type breakwater. To achieve the objective, the following approaches are implemented. Firstly, vibration-based SHM method is selected for caisson-type breakwater. The feasibility of the vibration-based SHM method is examined for the caisson structure by FE analysis. Foundation loss damage is considered as the damage of caisson-type breakwater. Secondly, a wireless SHM system with a high sensitive wireless sensor node is designed. The sensor node is built on an imote2 platform. The vibration-based SHM method is embedded on the sensor node. Finally, the performance of the wireless SHM technique is estimated from experimental tests on a lab-scaled caisson. The vibration responses and damage monitoring results are compared with the proposed wireless system and conventional wired system.

  18. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms

    Directory of Open Access Journals (Sweden)

    Dashan Zhang

    2016-04-01

    Full Text Available The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  19. Vibration-based fixation assessment of tibial knee implants: A combined in vitro and in silico feasibility study.

    Science.gov (United States)

    Leuridan, Steven; Goossens, Quentin; Vander Sloten, Tom; De Landsheer, Koen; Delport, Hendrik; Pastrav, Leonard; Denis, Kathleen; Desmet, Wim; Vander Sloten, Jos

    2017-11-01

    The preoperative diagnosis of loosening of cemented tibial knee implants is challenging. This feasibility study explored the basic potential of a vibration-based method as an alternative diagnostic technique to assess the fixation state of a cemented tibia implant and establish the method's sensitivity limits. A combined in vitro and in silico approach was pursued. Several loosening cases were simulated. The largest changes in the vibrational behavior were obtained in the frequency range above 1500 Hz. The vibrational behavior was described with two features; the frequency response function and the power spectral density band power. Using both features, all experimentally simulated loosening cases could clearly be distinguished from the fully cemented cases. By complementing the experimental work with an in silico study, it was shown that loosening of approximately 14% of the implant surface on the lateral and medial side was detectable with a vibration-based method. Proximal lateral and medial locations on the tibia or locations toward the edge of the implant surface measured in the longitudinal direction were the most sensitive measurement and excitation locations to assess implant fixation. These results contribute to the development of vibration-based methods as an alternative follow-up method to detect loosened tibia implants. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Feedback control and beam diagnostic algorithms for a multiprocessor DSP system

    International Nuclear Information System (INIS)

    Teytelman, D.; Claus, R.; Fox, J.; Hindi, H.; Linscott, I.; Prabhakar, S.

    1996-09-01

    The multibunch longitudinal feedback system developed for use by PEP-II, ALS and DAΦNE uses a parallel array of digital signal processors to calculate the feedback signals from measurements of beam motion. The system is designed with general-purpose programmable elements which allow many feedback operating modes as well as system diagnostics, calibrations and accelerator measurements. The overall signal processing architecture of the system is illustrated. The real-time DSP algorithms and off-line postprocessing tools are presented. The problems in managing 320 K samples of data collected in one beam transient measurement are discussed and the solutions are presented. Example software structures are presented showing the beam feedback process, techniques for modal analysis of beam motion(used to quantify growth and damping rates of instabilities) and diagnostic functions (such as timing adjustment of beam pick-up and kicker components). These operating techniques are illustrated with example results obtained from the system installed at the Advanced Light Source at LBL

  1. The novel programmable riometer for in-depth ionospheric and magnetospheric observations (PRIAMOS) using direct sampling DSP techniques

    OpenAIRE

    Dekoulis, G.; Honary, F.

    2005-01-01

    This paper describes the feasibility study and simulation results for the unique multi-frequency, multi-bandwidth, Programmable Riometer for in-depth Ionospheric And Magnetospheric ObservationS (PRIAMOS) based on direct sampling digital signal processing (DSP) techniques. This novel architecture is based on sampling the cosmic noise wavefront at the antenna. It eliminates the usage of any intermediate frequency (IF) mixer stages (-6 dB) and the noise balancing technique (-3 dB), providing a m...

  2. A simple clockless Network-on-Chip for a commercial audio DSP chip

    DEFF Research Database (Denmark)

    Stensgaard, Mikkel Bystrup; Bjerregaard, Tobias; Sparsø, Jens

    2006-01-01

    We design a very small, packet-switched, clockless Network-on-Chip (NoC) as a replacement for the existing crossbar-based communication infrastructure in a commercial audio DSP chip. Both solutions are laid out in a 0.18 um process, and compared in terms of area, power consumption and routing...... to the existing crossbar, it allows all blocks to communicate. The total wire length is decreased by 22% which eases the layout process and makes the design less prone to routing congestion. Not least, the communicating blocks are decoupled by means of the NoC, providing a Globally-Asynchronous, Locally...

  3. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  4. TC9447F, single-chip DSP (digital signal processor) for audio; 1 chip audio yo DSP LSI TC9447F

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    TC9447F is a single-chip DSP for audio which builds in 2-channel AD converter/4-channel DA converter. It can build various application programs such as the sound field control like hall simulation, digital filter like equalizer, and dynamic range control, in the program memory (ROM). Further, it builds in {+-}10dB trim use electronic volume for two channels. It also builds data delay use RAM (64K-bit) in, so no RAM to be separately attached is necessary. (translated by NEDO)

  5. The DVB Channel Coding Application Using the DSP Development Board MDS TM-13 IREF

    Directory of Open Access Journals (Sweden)

    M. Slanina

    2004-12-01

    Full Text Available The paper deals with the implementation of the channel codingaccording to DVB standard on DSP development board MDS TM-13 IREF andPC. The board is based on Philips Nexperia media processor andintegrates hardware video ADC and DAC. The program libraries featuresused for MPEG based video compression are outlined and then thealgorithms of channel decoding (FEC protection against errors arepresented including the flowchart diagrams. The paper presents thepartial hardware implementation of the simulation system that coversselected phenomena of DVB baseband processing and it is used for realtime interactive demonstration of error protection influence ontransmitted digital video in laboratory and education.

  6. 8-channel, FPGA based, DSP integrated cavity simulator and controller for VUV-FEL. SIMCON 3.0 Ver. 3.0. rev. 1, 06.2005 - Hardware manual

    International Nuclear Information System (INIS)

    Pozniak, K.T.; Czarski, T.; Koprek, W.; Giergusiewicz, W.; Romaniuk, R.S.

    2005-01-01

    The note describes integrated, eight channel system of hardware controller and simulator of the resonant superconducting, narrowband niobium cavity, originally considered for the TTF and TESLA in DESY, Hamburg (now tested for the VUV FEL and developed for X-Ray FEL). The controller bases on a programmable circuit Xilinx VirtexII V4000. The solution uses DSP EMBEDDED BOARD module positioned on a Modular LLRF Control Platform. The algorithm and FPGA circuit configuration was done in the VHDL language. The internal hardware multiplication components, present in Virtex II chips, were used, to improve the floating point calculation efficiency. The implementation was achieved of a device working in the real time, according to the demands of the LLRF control system for the TESLA Test Facility (now associated with the VUV FEL machine). The device under consideration will be referred to as superconducting cavity (SCCav) SIMCON throughout this work. The manual describes hardware features of SIMCON, ver. 3.0 in modular solution. The following components are described here in detail: functional layer, parameter programming, foundations of control of particular blocks and monitoring of the real time processes. This note is accompanied by the one describing the multichannel DOOCS interface for the described hardware system. The interface was prepared in DOOCS for Solaris and in Windows. The hardware and software of 8-channel SIMCON was tested in CHECIA and ACC1 module of VUV FEL linac. The measurements results are presented. While giving all necessary technical details required to understand the work of the integrated hardware controller and simulator and to enable its practical copying, this document is a unity with other TESLA technical notes published by the same team on the subject. Thus, some modeling and other subjects were omitted, as they were addressed in detail in the quoted references. Keywords: Super conducting cavity, cavity simulator, CAVITIES CONTROLLER, SIMCON

  7. A Novel Vibration Mode Testing Method for Cylindrical Resonators Based on Microphones

    Directory of Open Access Journals (Sweden)

    Yongmeng Zhang

    2015-01-01

    Full Text Available Non-contact testing is an important method for the study of the vibrating characteristic of cylindrical resonators. For the vibratory cylinder gyroscope excited by piezo-electric electrodes, mode testing of the cylindrical resonator is difficult. In this paper, a novel vibration testing method for cylindrical resonators is proposed. This method uses a MEMS microphone, which has the characteristics of small size and accurate directivity, to measure the vibration of the cylindrical resonator. A testing system was established, then the system was used to measure the vibration mode of the resonator. The experimental results show that the orientation resolution of the node of the vibration mode is better than 0.1°. This method also has the advantages of low cost and easy operation. It can be used in vibration testing and provide accurate results, which is important for the study of the vibration mode and thermal stability of vibratory cylindrical gyroscopes.

  8. On the neutron noise diagnostics of pressurized water reactor control rod vibrations II. Stochastic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1984-01-01

    In an earlier publication, using the theory of neutron fluctuations induced by a vibrating control rod, a complete formal solution of rod vibration diagnostics based on neutron noise measurements was given in terms of Fourier-transformed neutron detector time signals. The suggested procedure was checked in numerical simulation tests where only periodic vibrations could be considered. The procedure and its numerical testing are elaborated for stochastic two-dimensional vibrations. A simple stochastic theory of two-dimensional flow-induced vibrations is given; then the diagnostic method is formulated in the stochastic case, that is, in terms of neutron detector auto- and crosspower spectra. A previously suggested approximate rod localization technique is also formulated in the stochastic case. Applicability of the methods is then investigated in numerical simulation tests, using the proposed model of stochastic two-dimensional vibrations when generating neutron detector spectra that simulate measured data

  9. Experimental measurements of out-of-plane vibrations of a simple blisk design using Blade Tip Timing and Scanning LDV measurement methods

    Science.gov (United States)

    Di Maio, D.; Ewins, D. J.

    2012-04-01

    The study of dynamic properties of rotating structures, such as bladed discs, can be conveniently done using simple bladed discs where the blades do not have staggering angles. Simplified design, although not truly representative of real structures, can be easy and economic to manufacture and, still, very helpful for studying specific dynamic properties. An example of this can be called as mass mistune blisk study. Experimental measurements of vibrations of bladed discs under rotating conditions can be performed using Scanning Laser Doppler Vibrometer (SLDV) systems. However, in the aerospace industry, the vibrations of complex bladed discs must be measured under operating conditions which are more hostile than laboratory simulations. The Blade Tip Timing (BTT) measurement method is a measurement technique, which can be used to measure vibrations of bladed discs of an engine aircraft under operating conditions. However, the BTT technique is ineffective when used with a flat bladed disc whose blade vibrations cannot be measured. This can be detrimental when the use of controlled dynamic parameters, such as those obtained from a simple bladed disc design, can improve the confidence for the validation of post-processing software. This paper presents a work about experimental measurements of a simple bladed disc design whose vibrations were measured synchronously by Scanning LDV and BTT measurement systems. A rotating test rig and its mechanical modifications for the installation of the BTT probes are introduced. Implications of rotating a specimen inconsistently are presented so as solutions to obtained constant revolving speed. The experimental comparisons of forced response vibrations measured synchronously at one blade are presented and explained.

  10. Measurement of Mechatronic Property of Biological Gel with Micro-Vibrating Electrode at Ultrasonic Frequency

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2008-10-01

    Full Text Available A measurement system has been designed with a micro-vibrating electrode at ultrasonic frequency to measure local impedance of biological gel in vitro. The designed system consists of two electrodes, where one of the electrodes vibrates with a piezoelectric actuator. The component of variation at impedance between two electrodes with vibration of one electrode is analyzed at the corresponding spectrum. The manufactured system was applied to measure impedance of a physiological saline solution, a potassium chloride solution, a dextran aqueous solution, and an egg. The experimental results show that the designed system is effective to measure local mechatronic property of biological gel.

  11. DSP30 and interleukin-2 as a mitotic stimulant in B-cell disorders including those with a low disease burden.

    Science.gov (United States)

    Dun, Karen A; Riley, Louise A; Diano, Giuseppe; Adams, Leanne B; Chiu, Eleanor; Sharma, Archna

    2018-05-01

    Chromosome abnormalities detected during cytogenetic investigations for B-cell malignancy offer prognostic information that can have wide ranging clinical impacts on patients. These impacts may include monitoring frequency, treatment type, and disease staging level. The use of the synthetic oligonucleotide DSP30 combined with interleukin 2 (IL2) has been described as an effective mitotic stimulant in B-cell disorders, not only in chronic lymphocytic leukemia (CLL) but also in a range of other B-cell malignancies. Here, we describe the comparison of two B-cell mitogens, lipopolysaccharide (LPS), and DSP30 combined with IL2 as mitogens in a range of common B-cell disorders excluding CLL. The results showed that DSP30/IL2 was an effective mitogen in mature B-cell disorders, revealing abnormal cytogenetic results in a range of B-cell malignancies. The abnormality rate increased when compared to the use of LPS to 64% (DSP30/IL2) from 14% (LPS). In a number of cases the disease burden was proportionally very low, less than 10% of white cells. In 37% of these cases, the DSP30 culture revealed abnormal results. Importantly, we also obtained abnormal conventional cytogenetics results in 3 bone marrow cases in which immunophenotyping showed an absence of an abnormal B-cell clone. In these cases, the cytogenetics results correlated with the provisional diagnosis and altered their staging level. The use of DSP30 and IL2 is recommended for use in many B-cell malignancies as an effective mitogen and their use has been shown to enable successful culture of the malignant clone, even at very low levels of disease. © 2018 Wiley Periodicals, Inc.

  12. Vibration measurements at the main gate valves of WWER-440 nuclear power plants

    International Nuclear Information System (INIS)

    Rybak, M.; Matal, O.; Urbanek, M.

    1990-01-01

    The paper summarizes some results of studies concerned with the vibrations of the main gate valves DN 500 during operation of the Dukovany NPP. A diagnostic system for vibration measurements is described. Special attention is paid to the interpretation of the measuring results. Statistical signal analysis is the starting point of deriving parameters for diagostics of impact effects. (author)

  13. VIBRATION ANALYSIS OF TURBINE BASED ON FLUID-STRUCTURE COUPLING

    Institute of Scientific and Technical Information of China (English)

    LIU Demin; LIU Xiaobing

    2008-01-01

    The vibration of a Francis turbine is analyzed with the additional quality matrix method based on fluid-structure coupling (FSC). Firstly, the vibration frequency and mode of blade and runner in air and water are calculated. Secondly, the influences to runner frequency domain by large flow, small flow and design flow working conditions are compared. Finally the influences to runner modes by centrifugal forces under three rotating speeds of 400 r/min, 500 r/min and 600 r/min are compared. The centrifugal force and small flow working condition have greatly influence on the vibration of small runner. With the increase of centrifugal force, the vibration frequency of the runner is sharply increased. Some order frequencies are even close to the runner natural frequency in the air. Because the low frequency vibration will severely damage the stability of the turbine, low frequency vibration of units should be avoided as soon as possible.

  14. Erwinia amylovora expresses fast and simultaneously hrp/dsp virulence genes during flower infection on apple trees.

    Directory of Open Access Journals (Sweden)

    Doris Pester

    Full Text Available BACKGROUND: Pathogen entry through host blossoms is the predominant infection pathway of the gram-negative bacterium Erwinia amylovora leading to manifestation of the disease fire blight. Like in other economically important plant pathogens, E. amylovora pathogenicity depends on a type III secretion system encoded by hrp genes. However, timing and transcriptional order of hrp gene expression during flower infections are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using quantitative real-time PCR analyses, we addressed the questions of how fast, strong and uniform key hrp virulence genes and the effector dspA/E are expressed when bacteria enter flowers provided with the full defense mechanism of the apple plant. In non-invasive bacterial inoculations of apple flowers still attached to the tree, E. amylovora activated expression of key type III secretion genes in a narrow time window, mounting in a single expression peak of all investigated hrp/dspA/E genes around 24-48 h post inoculation (hpi. This single expression peak coincided with a single depression in the plant PR-1 expression at 24 hpi indicating transient manipulation of the salicylic acid pathway as one target of E. amylovora type III effectors. Expression of hrp/dspA/E genes was highly correlated to expression of the regulator hrpL and relative transcript abundances followed the ratio: hrpA>hrpN>hrpL>dspA/E. Acidic conditions (pH 4 in flower infections led to reduced virulence/effector gene expression without the typical expression peak observed under natural conditions (pH 7. CONCLUSION/SIGNIFICANCE: The simultaneous expression of hrpL, hrpA, hrpN, and the effector dspA/E during early floral infection indicates that speed and immediate effector transmission is important for successful plant invasion. When this delicate balance is disturbed, e.g., by acidic pH during infection, virulence gene expression is reduced, thus partly explaining the efficacy of acidification in fire blight

  15. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    Science.gov (United States)

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused

  16. Effects of atomoxetine on attention in Wistar rats treated with the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)

    NARCIS (Netherlands)

    Hauser, J.; Reissmann, A.; Sontag, T.A.; Tucha, Oliver; Lange, K.W.

    2017-01-01

    The aim of the present study was to assess the effects of the neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4), which allows a depletion of noradrenergic terminals in a dose-dependent manner, on attention in rats as measured using the five-choice serial-reaction time task (5CSRTT). In

  17. Application of focus-variation Technique in Measurements of Ultrasonic Vibrations of Grinding pins

    Directory of Open Access Journals (Sweden)

    Wdowik Roman

    2015-01-01

    Full Text Available The paper presents the application of focus-variation technique in measurements of ultrasonic vibrations of grinding pins. Ultrasonic vibrations of tools are applied in ultrasonic assisted grinding. Their measurements are significant for development of this hybrid machining process. Alumina and zirconia ceramic materials in the final fired state were machined in experiments which are known as scratch tests. Diamond grinding pin was used as a tool to machine scratches. Marks of diamond grains, left on the surface of workpieces after machining process, were investigated using The Infinite Focus Real 3D optical microscope. Focus-variation is the principle of operation of this microscope. Investigations concerned possibilities of measurements of an amplitude of axial and radial vibrations in the case of two ceramic materials. Results of performed measurements are presented and discussed for selected machining parameters.

  18. Development of remote vibration measurement technique through turbulent media

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Sung Hoon; Chung, Chin Man; Kim, Min Suk; Park, Seung Kyu; Chung, Heung Jone

    2002-12-01

    The effect of wavefront distortion of laser beam of a LDV(Laser Doppler Vibrometer) in the turbulence media was investigated for application of adaptive optics to LDV. The high-speed tip/tilt adaptive optics system and closed-loop steering algorithm were developed for real-time correction of the direction fluctuation of the laser beam of LDV. The measuring performance of the LDV was improved when the steering system was applied to LDV at the vibration frequency range of 10 Hz - 30 Hz. The high-speed Shack-Hartmann wavefront sensor(400 Hz) was developed to measure the performance of the LDV due to wavefront distortion. The wavefront distortion due to the turbulence media induced low visibility and degraded the performance of the vibrometer. From the experiments, when the wavefront distortion is above 2 wavelengths in the cross section of the laser beam(dia. 20 mm), the vibration signal from laser vibrometer was severely degraded. When the wavefront distortion is smaller than one wave, the vibration signal was good. From the this research, high-speed closed-loop tip/tilt control technique of the laser beam was developed and applied to the laser metrology area. In the future, the adaptive optics system for wavefront correction will be applied to other research area.

  19. On the neutron noise diagnostics of pressurized water reactor control rod vibrations. 1. periodic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1983-01-01

    Based on the theory of neutron noise arising from the vibration of a localized absorber, the possibility of rod vibration diagnostics is investigated. It is found that noise source characteristics, namely rod position and vibration trajectory and spectra, can be unfolded from measured neutron noise signals. For the localization process, the first and more difficult part of the diagnostics, a procedure is suggested whose novelty is that it is applicable in case of arbitrary vibration trajectories. Applicability of the method is investigated in numerical experiments where effects of background noise are also accounted for

  20. Optimal Search Strategy of Robotic Assembly Based on Neural Vibration Learning

    Directory of Open Access Journals (Sweden)

    Lejla Banjanovic-Mehmedovic

    2011-01-01

    Full Text Available This paper presents implementation of optimal search strategy (OSS in verification of assembly process based on neural vibration learning. The application problem is the complex robot assembly of miniature parts in the example of mating the gears of one multistage planetary speed reducer. Assembly of tube over the planetary gears was noticed as the most difficult problem of overall assembly. The favourable influence of vibration and rotation movement on compensation of tolerance was also observed. With the proposed neural-network-based learning algorithm, it is possible to find extended scope of vibration state parameter. Using optimal search strategy based on minimal distance path between vibration parameter stage sets (amplitude and frequencies of robots gripe vibration and recovery parameter algorithm, we can improve the robot assembly behaviour, that is, allow the fastest possible way of mating. We have verified by using simulation programs that search strategy is suitable for the situation of unexpected events due to uncertainties.

  1. Quantitative assessment of corneal vibrations during intraocular pressure measurement with the air-puff method in patients with keratoconus.

    Science.gov (United States)

    Koprowski, Robert; Ambrósio, Renato

    2015-11-01

    One of the current methods for measuring intraocular pressure is the air-puff method. A tonometer which uses this method is the Corvis device. With the ultra-high-speed (UHS) Scheimpflug camera, it is also possible to observe corneal deformation during measurement. The use of modern image analysis and processing methods allows for analysis of higher harmonics of corneal deflection above 100 Hz. 493 eyes of healthy subjects and 279 eyes of patients with keratoconus were used in the measurements. For each eye, 140 corneal deformation images were recorded during intraocular pressure measurement. Each image was recorded every 230 µs and had a resolution of 200 × 576 pixels. A new, original algorithm for image analysis and processing has been proposed. It enables to separate the eyeball reaction as well as low-frequency and high-frequency corneal deformations from the eye response to an air puff. Furthermore, a method for classification of healthy subjects and patients with keratoconus based on decision trees has been proposed. The obtained results confirm the possibility to distinguish between patients with keratoconus and healthy subjects. The features used in this classification are directly related to corneal vibrations. They are only available in the proposed software and provide specificity of 98%, sensitivity-85%, and accuracy-92%. This confirms the usefulness of the proposed method in this type of classification that uses corneal vibrations during intraocular pressure measurement with the Corvis tonometer. With the new proposed algorithm for image analysis and processing allowing for the separation of individual features from a corneal deformation image, it is possible to: automatically measure corneal vibrations in a few characteristic points of the cornea, obtain fully repeatable measurement of vibrations for the same registered sequence of images and measure vibration parameters for large inter-individual variability in patients. Copyright © 2015 Elsevier

  2. DSP-Enabled Radio Astronomy: Towards IIIZW35 Reconquest

    Directory of Open Access Journals (Sweden)

    Alain Lecacheux

    2005-09-01

    Full Text Available In radio astronomy, the radio spectrum is used to detect weak emission from celestial sources. By spectral averaging, observation noise is reduced and weak sources can be detected. However, more and more observations are polluted by man-made radio frequency interferences (RFI. The impact of these RFIs on power spectral measurement ranges from total saturation to subtle distortions of the data. To some extent, elimination of artefacts can be achieved by blanking polluted channels in real time. With this aim in view, a complete real-time digital system has been implemented on a set of FPGA and DSP. The current functionalities of the digital system have high dynamic range of 70 dB, bandwidth selection facilities ranging from 875 kHz to 14 MHz, high spectral resolution through a polyphase filter bank with up to 8192 channels with 49 152 coefficients and real-time time-frequency blanking with a robust threshold detector. This receiver has been used to reobserve the IIIWZ35 astronomical source which has been scrambled by a strong satellite RFI for several years.

  3. Identification of Bearing Failure Using Signal Vibrations

    Science.gov (United States)

    Yani, Irsyadi; Resti, Yulia; Burlian, Firmansyah

    2018-04-01

    Vibration analysis can be used to identify damage to mechanical systems such as journal bearings. Identification of failure can be done by observing the resulting vibration spectrum by measuring the vibration signal occurring in a mechanical system Bearing is one of the engine elements commonly used in mechanical systems. The main purpose of this research is to monitor the bearing condition and to identify bearing failure on a mechanical system by observing the resulting vibration. Data collection techniques based on recordings of sound caused by the vibration of the mechanical system were used in this study, then created a database system based bearing failure due to vibration signal recording sounds on a mechanical system The next step is to group the bearing damage by type based on the databases obtained. The results show the percentage of success in identifying bearing damage is 98 %.

  4. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, M.; Bassini, R.; Berg, A.M. van den; Ellinghaus, F.; Frekers, D.; Hannen, V.M.; Haeupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Kruesemann, B.; Rakers, S.; Sohlbach, H.; Woertche, H.J. E-mail: wortche@ikp.uni-muenster.de

    1999-11-21

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0 deg. . For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  5. Vibrations measurement at the Embalse nuclear power plant's electrical generator

    International Nuclear Information System (INIS)

    Salomoni, R.C.; Belinco, C.G.; Pastorini, A.J.; Sacchi, M.A.

    1987-01-01

    After the modifications made at the Embalse nuclear power plant's electrical generator to reduce its vibration level produced by electromagnetic phenomena, it was necessary to perform measurements at the new levels, under different areas and power conditions. To this purpose, a work was performed jointly with the 'Vibrations Team' of the ANSALDO Company (the generator constructor) and the Hydrodynamic Assays Division under the coordination and supervision of the plant's electrical maintenance responsible. This paper includes the main results obtained and the instrumentation criteria and analysis performed. (Author)

  6. External vibrations measurement of reactor components

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, S A [Nuclear Electric plc, Barnwood (United Kingdom); Sugden, J [Magnox Electric, Berkeley (United Kingdom)

    1997-12-31

    The paper outlines the use of External Vibration Monitoring for remote vibration assessment of internal reactor components. The main features of the technique are illustrated by a detailed examination of the specific application to the problem of Heysham 2 Fuel Plug Unit monitoring. (author). 6 figs.

  7. Control electronic platform based on floating-point DSP and FPGA for a NPC multilevel back-to-back converter

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Francisco J.; Cobreces, Santiago; Bueno, Emilio J.; Hernandez, Alvaro; Mateos, Raul; Espinosa, Felipe [Department of Electronics, University of Alcala, Alcala de Henares, Madrid (Spain)

    2008-09-15

    Modern energy concepts as Distributed Power Generation are changing the appearance of electric distribution and transmission and challenging power electronics researchers, which try to develop new solutions of electronic controllers. The aim is to enable the implementation of new and more complex control algorithms to verify the last standards related to the grid energy quality for new power converters, and, also, for equipments which nowadays are operating. This paper presents the design, implementation and test of a novel real-time controller for a Neutral Point Clamped (NPC) (three-level) multilevel converter based on a floating-point Digital Signal Processor (DSP) and on a Field-Programmable Gate Array (FPGA), by operating in a cooperative way. Although the proposed system can be readily applied to any power electronic application, in this work, it is focused on the next system: a 150 kVA back-to-back three-level NPC Voltage Source Converter (VSC) for wind power applications. (author)

  8. Measurement and prediction of cutting forces and vibrations on longwall shearers

    Energy Technology Data Exchange (ETDEWEB)

    Bulent Tiryaki [CRCMining (Australia)

    2006-12-15

    CRCMining has developed the Cutting Head Performance Analysis Software (CPAS) to predict cutter motor power, ranging arm reaction forces, and vibrations for different drum designs, coal seams, and shearer operational conditions. This project describes the work on THE DBT EL3000 shearer at Beltana to validate/update CPAS by measuring the cutter motor power, ranging arm vibrations, and reaction forces through an online data acquisition system called Cutting Head Performance Monitoring System (CPMS). This system records the outputs of six strain gauge bridges, six accelerometers, and two pressure transducers on ranging arms during underground coal production. CPAS2 has then been developed in order to eliminate the needs for performing coal cutting tests for the target coal seam. CPAS2 simulations for cutter motor power, vertical reaction force, and vibrations were also close to those measured in the trials. CRCMining will release the CPAS code including fully functioning software code on CD to Australian coal mining industry.

  9. Vibration extraction based on fast NCC algorithm and high-speed camera.

    Science.gov (United States)

    Lei, Xiujun; Jin, Yi; Guo, Jie; Zhu, Chang'an

    2015-09-20

    In this study, a high-speed camera system is developed to complete the vibration measurement in real time and to overcome the mass introduced by conventional contact measurements. The proposed system consists of a notebook computer and a high-speed camera which can capture the images as many as 1000 frames per second. In order to process the captured images in the computer, the normalized cross-correlation (NCC) template tracking algorithm with subpixel accuracy is introduced. Additionally, a modified local search algorithm based on the NCC is proposed to reduce the computation time and to increase efficiency significantly. The modified algorithm can rapidly accomplish one displacement extraction 10 times faster than the traditional template matching without installing any target panel onto the structures. Two experiments were carried out under laboratory and outdoor conditions to validate the accuracy and efficiency of the system performance in practice. The results demonstrated the high accuracy and efficiency of the camera system in extracting vibrating signals.

  10. Low Cost Digital Vibration Meter.

    Science.gov (United States)

    Payne, W Vance; Geist, Jon

    2007-01-01

    This report describes the development of a low cost, digital Micro Electro Mechanical System (MEMS) vibration meter that reports an approximation to the RMS acceleration of the vibration to which the vibration meter is subjected. The major mechanical element of this vibration meter is a cantilever beam, which is on the order of 500 µm in length, with a piezoresistor deposited at its base. Vibration of the device in the plane perpendicular to the cantilever beam causes it to bend, which produces a measurable change in the resistance of a piezoresistor. These changes in resistance along with a unique signal-processing scheme are used to determine an approximation to the RMS acceleration sensed by the device.

  11. Correlating the vibrational spectra of structurally related molecules: A spectroscopic measure of similarity.

    Science.gov (United States)

    Tao, Yunwen; Zou, Wenli; Cremer, Dieter; Kraka, Elfi

    2018-03-05

    Using catastrophe theory and the concept of a mutation path, an algorithm is developed that leads to the direct correlation of the normal vibrational modes of two structurally related molecules. The mutation path is defined by weighted incremental changes in mass and geometry of the molecules in question, which are successively applied to mutate a molecule into a structurally related molecule and thus continuously converting their normal vibrational spectra from one into the other. Correlation diagrams are generated that accurately relate the normal vibrational modes to each other by utilizing mode-mode overlap criteria and resolving allowed and avoided crossings of vibrational eigenstates. The limitations of normal mode correlation, however, foster the correlation of local vibrational modes, which offer a novel vibrational measure of similarity. It will be shown how this will open new avenues for chemical studies. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Monitoring of Rotor-Stator Interaction in Pump-Turbine Using Vibrations Measured with On-Board Sensors Rotating with Shaft

    Directory of Open Access Journals (Sweden)

    Cristian G. Rodriguez

    2014-01-01

    Full Text Available Current trends in design of pump-turbines have led into higher rotor-stator interaction (RSI loads over impeller-runner. These dynamic loads are of special interest having produced catastrophic failures in pump-turbines. Determining RSI characteristics facilitates the proposal of actions that will prevent these failures. Pressure measurements all around the perimeter of the impeller-runner are appropriate to monitor and detect RSI characteristics. Unfortunately most installed pump-turbines are not manufactured with in-built pressure sensors in appropriate positions to monitor RSI. For this reason, vibration measurements are the preferred method to monitor RSI in industry. Usually vibrations are measured in two perpendicular radial directions in bearings where valuable information could be lost due to bearing response. In this work, in order to avoid the effect of bearing response on measurement, two vibration sensors are installed rotating with the shaft. The RSI characteristics obtained with pressure measurements were compared to those determined using vibration measurements. The RSI characteristics obtained with pressure measurements were also determined using vibrations measured rotating with shaft. These RSI characteristics were not possible to be determined using the vibrations measured in guide bearing. Finally, it is recommended to measure vibrations rotating with shaft to detect RSI characteristics in installed pump-turbines as a more practical and reliable method to monitor RSI characteristics.

  13. Measurement of Piezoelectric Transformer Vibrations by Digital Holography

    Czech Academy of Sciences Publication Activity Database

    Psota, Pavel; Lédl, Vít; Doleček, Roman; Erhart, J.; Kopecký, V.

    2014-01-01

    Roč. 59, č. 9 (2014), s. 1962-1968 ISSN 0885-3010 R&D Projects: GA MŠk(CZ) ED2.1.00/03.0079 Institutional support: RVO:61389021 Keywords : digital holographic * ime-averaged holographic * small amplitude * vibrations amplitude measurement * piezoelectric transformer s Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.512, year: 2014

  14. Machine Fault Detection Based on Filter Bank Similarity Features Using Acoustic and Vibration Analysis

    Directory of Open Access Journals (Sweden)

    Mauricio Holguín-Londoño

    2016-01-01

    Full Text Available Vibration and acoustic analysis actively support the nondestructive and noninvasive fault diagnostics of rotating machines at early stages. Nonetheless, the acoustic signal is less used because of its vulnerability to external interferences, hindering an efficient and robust analysis for condition monitoring (CM. This paper presents a novel methodology to characterize different failure signatures from rotating machines using either acoustic or vibration signals. Firstly, the signal is decomposed into several narrow-band spectral components applying different filter bank methods such as empirical mode decomposition, wavelet packet transform, and Fourier-based filtering. Secondly, a feature set is built using a proposed similarity measure termed cumulative spectral density index and used to estimate the mutual statistical dependence between each bandwidth-limited component and the raw signal. Finally, a classification scheme is carried out to distinguish the different types of faults. The methodology is tested in two laboratory experiments, including turbine blade degradation and rolling element bearing faults. The robustness of our approach is validated contaminating the signal with several levels of additive white Gaussian noise, obtaining high-performance outcomes that make the usage of vibration, acoustic, and vibroacoustic measurements in different applications comparable. As a result, the proposed fault detection based on filter bank similarity features is a promising methodology to implement in CM of rotating machinery, even using measurements with low signal-to-noise ratio.

  15. Semi-supervised vibration-based classification and condition monitoring of compressors

    Science.gov (United States)

    Potočnik, Primož; Govekar, Edvard

    2017-09-01

    Semi-supervised vibration-based classification and condition monitoring of the reciprocating compressors installed in refrigeration appliances is proposed in this paper. The method addresses the problem of industrial condition monitoring where prior class definitions are often not available or difficult to obtain from local experts. The proposed method combines feature extraction, principal component analysis, and statistical analysis for the extraction of initial class representatives, and compares the capability of various classification methods, including discriminant analysis (DA), neural networks (NN), support vector machines (SVM), and extreme learning machines (ELM). The use of the method is demonstrated on a case study which was based on industrially acquired vibration measurements of reciprocating compressors during the production of refrigeration appliances. The paper presents a comparative qualitative analysis of the applied classifiers, confirming the good performance of several nonlinear classifiers. If the model parameters are properly selected, then very good classification performance can be obtained from NN trained by Bayesian regularization, SVM and ELM classifiers. The method can be effectively applied for the industrial condition monitoring of compressors.

  16. Fabrication of nano piezoelectric based vibration accelerometer for mechanical sensing

    Science.gov (United States)

    Murugan, S.; Prasad, M. V. N.; Jayakumar, K.

    2016-05-01

    An electromechanical sensor unit has been fabricated using nano PZT embedded in PVDF polymer. Such a polymer nano composite has been used as vibration sensor element and sensitivity, detection of mechanical vibration, and linearity measurements have been investigated. It is found from its performance, that this nano composite sensor is suitable for mechanical sensing applications.

  17. Nondestructive assessment of single-span timber bridges using a vibration- based method

    Science.gov (United States)

    Xiping Wang; James P. Wacker; Angus M. Morison; John W. Forsman; John R. Erickson; Robert J. Ross

    2005-01-01

    This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...

  18. Handbook Of Noise And Vibration

    International Nuclear Information System (INIS)

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  19. Control of noise and structural vibration a MATLAB-based approach

    CERN Document Server

    Mao, Qibo

    2013-01-01

    Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double plate structures. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Single and multi-mode positive position feedback (PPF) control systems are also described in the context of loudspeaker–duct model with non-collocated loudspeaker–microp...

  20. Prototype vibration measurement program for reactor internals (177-fuel assembly plant). Supplement 1

    International Nuclear Information System (INIS)

    Simonis, J.C.; Post, R.C.; Thoren, D.E.

    1976-08-01

    The surveillance specimen holder tubes installed in the Babcock and Wilcox 177-fuel assembly plants have been redesigned. The structural adequacy of this design has been verified through extensive analysis. The design adequacy will be further confirmed by measuring the vibrational response of the surveillance specimen holder tube during normal and transient flow operation. This report describes the vibration measurement program that will be conducted at Toledo Edison's Davis Besse 1 site

  1. Vibration-based structural health monitoring of harbor caisson structure

    Science.gov (United States)

    Lee, So-Young; Lee, So-Ra; Kim, Jeong-Tae

    2011-04-01

    This study presents vibration-based structural health monitoring method in foundation-structure interface of harbor caisson structure. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based response analysis method is selected and structural health monitoring (SHM) technique is designed for harbor caisson structure. Secondly, the performance of designed SHM technique for harbor structure is examined by FE analysis. Finally, the applicability of designed SHM technique for harbor structure is evaluated by dynamic tests on a lab-scaled caisson structure.

  2. Monitoring of DSP toxins in small-sized plankton fraction of seawater collected in Mutsu Bay, Japan, by ELISA method: relation with toxin contamination of scallop.

    Science.gov (United States)

    Imai, Ichiro; Sugioka, Hikaru; Nishitani, Goh; Mitsuya, Tadashi; Hamano, Yonekazu

    2003-01-01

    Monitorings were conducted on DSP toxins in mid-gut gland of scallop (mouse assay), cell numbers of toxic dinoflagellate species of Dinophysis, and diarrhetic shellfish poisoning (DSP) toxins in small-sized (0.7-5 microm) plankton fraction of seawater collected from surface (0 m) and 20 m depth at a station in Mutsu Bay, Aomori Prefecture, Japan, in 2000. A specific enzyme-linked immunosorbent assay (ELISA) was employed for the analysis of DSP toxins in small-sized plankton fraction using a mouse monoclonal anti-okadaic acid antibody which recognizes okadaic acid, dinophysistoxin-1, and dinophysistoxin-3. DSP toxins were detected twice in the mid-gut gland of scallops at 1.1-2.3 MU (mouse units) g(-1) on 26 June and at 0.6-1.2 MU g(-1) on 3 July, respectively. Relatively high cell densities of D. fortii were observed on 26 June and 11 September, and may only contribute to the bivalve toxicity during late June to early July. D. acuminata did not appear to be responsible for the toxicity of scallops in Mutsu Bay in 2000. ELISA monitoring of small-sized plankton fraction in seawater could detect DSP toxins two weeks before the detection of the toxin in scallops, and could do so two weeks after the loss of the bivalve toxicity by mouse assay. On 17 July, toxic D. fortii was detected at only small number, <10 cells l(-1), but DSP toxins were detected by the ELISA assay, suggesting a presence of other toxic small-sized plankton in seawater. For the purpose of reducing negative impacts of DSP occurrences, monitorings have been carried out hitherto on DSP toxins of bivalve tissues by mouse assay and on cell densities of "toxic" species of Dinophysis. Here we propose a usefulness of ELISA monitoring of plankton toxicity, especially in small-sized fraction, which are possible foods of mixotrophic Dinophysis, as a practical tool for detecting and predicting DSPs in coastal areas of fisheries grounds of bivalve aquaculture.

  3. Real-time vibration measurement by a spatial phase-shifting technique with a tilted holographic interferogram.

    Science.gov (United States)

    Nakadate, S; Isshiki, M

    1997-01-01

    Real-time vibration measurement by a tilted holographic interferogram is presented that utilizes the real-time digital fringe processor of a video signal. Three intensity data sampled at every one-third of the fringe spacing of the tilted fringes are used to calculate the modulation term of the fringe that is a function of a vibration amplitude. A three-dimensional lookup table performs the calculation in a TV repetition rate to give a new fringe profile that contours the vibration amplitude. Vibration modes at the resonant frequencies of a flat speaker were displayed on a monitor as changing the exciting frequency of vibration.

  4. Detection of Ballast Damage by In-Situ Vibration Measurement of Sleepers

    Science.gov (United States)

    Lam, H. F.; Wong, M. T.; Keefe, R. M.

    2010-05-01

    Ballasted track is one of the most important elements of railway transportation systems worldwide. Owing to its importance in railway safety, many monitoring and evaluation methods have been developed. Current railway track monitoring systems are comprehensive, fast and efficient in testing railway track level and alignment, rail gauge, rail corrugation, etc. However, the monitoring of ballast condition still relies very much on visual inspection and core tests. Although extensive research has been carried out in the development of non-destructive methods for ballast condition evaluation, a commonly accepted and cost-effective method is still in demand. In Hong Kong practice, if abnormal train vibration is reported by the train operator or passengers, permanent way inspectors will locate the problem area by track geometry measurement. It must be pointed out that visual inspection can only identify ballast damage on the track surface, the track geometry deficiencies and rail twists can be detected using a track gauge. Ballast damage under the sleeper loading area and the ballast shoulder, which are the main factors affecting track stability and ride quality, are extremely difficult if not impossible to be detected by visual inspection. Core test is a destructive test, which is expensive, time consuming and may be disruptive to traffic. A fast real-time ballast damage detection method that can be implemented by permanent way inspectors with simple equipment can certainly provide valuable information for engineers in assessing the safety and riding quality of ballasted track systems. The main objective of this paper is to study the feasibility in using the vibration characteristics of sleepers in quantifying the ballast condition under the sleepers, and so as to explore the possibility in developing a handy method for the detection of ballast damage based on the measured vibration of sleepers.

  5. SVM-based multisensor data fusion for phase concentration measurement in biomass-coal co-combustion

    Science.gov (United States)

    Wang, Xiaoxin; Hu, Hongli; Jia, Huiqin; Tang, Kaihao

    2018-05-01

    In this paper, the electrical method combines the electrostatic sensor and capacitance sensor to measure the phase concentration of pulverized coal/biomass/air three-phase flow through data fusion technology. In order to eliminate the effects of flow regimes and improve the accuracy of the phase concentration measurement, the mel frequency cepstrum coefficient features extracted from electrostatic signals are used to train the Continuous Gaussian Mixture Hidden Markov Model (CGHMM) for flow regime identification. Support Vector Machine (SVM) is introduced to establish the concentration information fusion model under identified flow regimes. The CGHMM models and SVM models are transplanted on digital signal processing (DSP) to realize on-line accurate measurement. The DSP flow regime identification time is 1.4 ms, and the concentration predict time is 164 μs, which can fully meet the real-time requirement. The average absolute value of the relative error of the pulverized coal is about 1.5% and that of the biomass is about 2.2%.

  6. Simultaneous 3D-vibration measurement using a single laser beam device

    Science.gov (United States)

    Brecher, Christian; Guralnik, Alexander; Baümler, Stephan

    2012-06-01

    Today's commercial solutions for vibration measurement and modal analysis are 3D-scanning laser doppler vibrometers, mainly used for open surfaces in the automotive and aerospace industries and the classic three-axial accelerometers in civil engineering, for most industrial applications in manufacturing environments, and particularly for partially closed structures. This paper presents a novel measurement approach using a single laser beam device and optical reflectors to simultaneously perform 3D-dynamic measurement as well as geometry measurement of the investigated object. We show the application of this so called laser tracker for modal testing of structures on a mechanical manufacturing shop floor. A holistic measurement method is developed containing manual reflector placement, semi-automated geometric modeling of investigated objects and fully automated vibration measurement up to 1000 Hz and down to few microns amplitude. Additionally the fast set up dynamic measurement of moving objects using a tracking technique is presented that only uses the device's own functionalities and does neither require a predefined moving path of the target nor an electronic synchronization to the moving object.

  7. Knowledge-based on-line vibration monitoring diagnose

    International Nuclear Information System (INIS)

    Johansson, L.G.; Karlsson, A.; Noeremark, A.

    1990-01-01

    ABB STAL developed some years ago a knowledge-based on-line vibration analysis system (working-name KOVA). KOVA is intended to work together with some type of vibration monitoring system, at present it is adapted to TVM 300. KOVA has no controlling function. It will only diagnose the actual situation and give the user explanations and proposals for actions to be taken. During the developing work, great experience has been gained of the features this type of system demands. This paper will present the outlines of the application and also discuss how to make diagnoses based both on general rules as well as on historical vibration cases for that particular unit (or identical units9. Another subject that this paper will outline, is the representation and evaluation of knowledge. KOVA serves as a decision-support system for the operator. Since KOVA will often give the operator more than one possible diagnosis as the cause of a fault, it is of great importance to give the operator comprehensive explanations and as many facts as possible. It is also important to rank the suggested diagnoses in some way. In KOVA these demands are effectively supported. The models and tools used to realize this functionality will be described in this paper

  8. Wind Turbine Bearing Diagnostics Based on Vibration Monitoring

    Science.gov (United States)

    Kadhim, H. T.; Mahmood, F. H.; Resen, A. K.

    2018-05-01

    Reliability maintenance can be considered as an accurate condition monitoring system which increasing beneficial and decreasing the cost production of wind energy. Supporting low friction of wind turbine rotating shaft is the main task of rolling element bearing and it is the main part that suffers from failure. The rolling failures elements have an economic impact and may lead to malfunctions and catastrophic failures. This paper concentrates on the vibration monitoring as a Non-Destructive Technique for assessing and demonstrates the feasibility of vibration monitoring for small wind turbine bearing defects based on LabVIEW software. Many bearings defects were created, such as inner race defect, outer race defect, and ball spin defect. The spectra data were recorded and compared with the theoretical results. The accelerometer with 4331 NI USB DAQ was utilized to acquiring, analyzed, and recorded. The experimental results were showed the vibration technique is suitable for diagnostic the defects that will be occurred in the small wind turbine bearings and developing a fault in the bearing which leads to increasing the vibration amplitude or peaks in the spectrum.

  9. Research of vibration controlling based on programmable logic controller for electrostatic precipitator

    International Nuclear Information System (INIS)

    Zhang, Zisheng; Li, Yanhu; Li, Jiaojiao; Liu, Zhiqiang; Li, Qing

    2013-01-01

    In order to improve the reliability, stability and automation of electrostatic precipitator, circuits of vibration motor for ESP and vibration control ladder diagram program are investigated using Schneider PLC with high performance and programming software of Twidosoft. Operational results show that after adopting PLC, vibration motor can run automatically; compared with traditional control system of vibration based on single-chip microcomputer, it has higher reliability, better stability and higher dust removal rate, when dust emission concentrations ≤ 50 mg m −3 , providing a new method for vibration controlling of ESP.

  10. Risk assessment of exposure to mechanical vibrations: comparison between field measurements and use of databases

    International Nuclear Information System (INIS)

    Monica, L.; Nataletti, P.; Vignali, G.

    2008-01-01

    Despite continuous technological progress with a view to guaranteeing workers' safety and health, there are still many hazardous situations to workers' health when using industrial equipment; exposure to mechanical vibrations may definitely be included among these situations. Many researches have shown that the widespread use of various vibrating tools in the industrial, agricultural and forestry fields, such as vehicles and machinery in the workplace, are a source of vibration disorders or the worsening of pre-existing symptoms.The aim of this paper is to present a comparison between the two types of risk assessment currently provided for by the law: direct field measurements and database support. We will identify the advantages and operational limitations involved in the use of databases through the results of direct field measurements assessing the risk derived from vibrations in a typical engineering company in the mineral waters and beverages industry. As a result, this research can represent a functional reference for risk assessments of vibration exposure in individual companies

  11. Damage diagnostic of localized impact erosion by measuring acoustic vibration

    International Nuclear Information System (INIS)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Ikeda, Yujiro

    2004-01-01

    High power spallation targets for neutron sources are being developed in the world. Mercury target will be installed at the material and life science facility in J-PARC, which will promote innovative science. The mercury target is subject to the pressure wave caused by the proton bombarding mercury. The pressure wave propagation induces the cavitation in mercury that imposes localized impact erosion damage on the target vessel. The impact erosion is a critical issue to decide the lifetime of the target. The electric Magnetic IMpact Testing Machine, MIMTM, was developed to produce the localized impact erosion damage and evaluate the damage formation. Acoustic vibration measurement was carried out to investigate the correlation between the erosion damage and the damage potential derived from acoustic vibration. It was confirmed that the damage potential related with acoustic vibration is useful to predict the damage due to the localized impact erosion and to diagnose the structural integrity. (author)

  12. A Vibration Control Method for the Flexible Arm Based on Energy Migration

    Directory of Open Access Journals (Sweden)

    Yushu Bian

    2015-01-01

    Full Text Available A vibration control method based on energy migration is proposed to decrease vibration response of the flexible arm undergoing rigid motion. A type of vibration absorber is suggested and gives rise to the inertial coupling between the modes of the flexible arm and the absorber. By analyzing 1 : 2 internal resonance, it is proved that the internal resonance can be successfully created and the exchange of vibration energy is existent. Due to the inertial coupling, the damping enhancement effect is revealed. Via the inertial coupling, vibration energy of the flexible arm can be dissipated by not only the damping of the vibration absorber but also its own enhanced damping, thereby effectively decreasing vibration. Through numerical simulations and analyses, it is proven that this method is feasible in controlling nonlinear vibration of the flexible arm undergoing rigid motion.

  13. Laser Doppler velocimetry for measurement of nonlinearity in the vibrations of the middle ear

    Science.gov (United States)

    Peacock, John; Dirckx, Joris

    2014-05-01

    At audible Frequencies and at sound pressure below 96 dB SPL the mammalian middle ear is known to behave as an almost entirely linear system. However, as we go to higher sound pressure levels, smaller nonlinear distortions begin to appear, and increase with increasing pressure level. Some modern hearing aids seek to remedy hearing impairment by amplifying sounds to sound pressure levels as high as 130 or 140 dB SPL. Thus at these levels the small nonlinear distortions can become significant, and understanding their behaviour could help us to improve the design of these hearing aids. In order to measure the tiny vibration amplitudes of the middle ear, and to detect the even smaller nonlinear distortions, a very sensitive measurement and analysis method is needed. The tiny vibration amplitudes of the middle ear can easily be measured with laser vibrometry. Thanks to the highly linear response of LDV, the technique is also able to measure small nonlinearities. To detect the nonlinear distortions we developed a sophisticated measurement and analysis method based on the use of multisine excitation signals. These signals are specially designed to measure nonlinear systems. We will describe our set up and our stimulation and analysis method in detail, we will then go on to present some results of measurements at different points along the ossicular chain.

  14. Development of seismic technology and reliability based on vibration tests

    International Nuclear Information System (INIS)

    Sasaki, Youichi

    1997-01-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  15. Development of seismic technology and reliability based on vibration tests

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Youichi [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-03-01

    This paper deals with some of the vibration tests and investigations on the seismic safety of nuclear power plants (NPPs) in Japan. To ensure the reliability of the seismic safety of nuclear power plants, nuclear power plants in Japan have been designed according to the Technical Guidelines for Aseismic Design of Nuclear Power Plants. This guideline has been developed based on technical date base and findings which were obtained from many vibration tests and investigations. Besides the tests for the guideline, proving tests on seismic reliability of operating nuclear power plants equipment and systems have been carried out. In this paper some vibration tests and their evaluation results are presented. They have crucially contributed to develop the guideline. (J.P.N.)

  16. Measuring body layer vibration of vocal folds by high-frame-rate ultrasound synchronized with a modified electroglottograph.

    Science.gov (United States)

    Tang, Shanshan; Zhang, Yuanyuan; Qin, Xulei; Wang, Supin; Wan, Mingxi

    2013-07-01

    The body-cover concept suggests that the vibration of body layer is an indispensable component of vocal fold vibration. To quantify this vibration, a synchronized system composed of a high-frame-rate ultrasound and a modified electroglottograph (EGG) was employed in this paper to simultaneously image the body layer vibration and record the vocal fold vibration phase information during natural phonations. After data acquisition, the displacements of in vivo body layer vibrations were measured from the ultrasonic radio frequency data, and the temporal reconstruction method was used to enhance the measurement accuracy. Results showed that the modified EGG, the waveform and characteristic points of which were identical to the conventional EGG, resolved the position conflict between the ultrasound transducer and EGG electrodes. The location and range of the vibrating body layer in the estimated displacement image were more clear and discernible than in the ultrasonic B-mode image. Quantitative analysis for vibration features of the body layer demonstrated that the body layer moved as a unit in the superior-inferior direction during the phonation of normal chest registers.

  17. Honeybee Colony Vibrational Measurements to Highlight the Brood Cycle.

    Directory of Open Access Journals (Sweden)

    Martin Bencsik

    Full Text Available Insect pollination is of great importance to crop production worldwide and honey bees are amongst its chief facilitators. Because of the decline of managed colonies, the use of sensor technology is growing in popularity and it is of interest to develop new methods which can more accurately and less invasively assess honey bee colony status. Our approach is to use accelerometers to measure vibrations in order to provide information on colony activity and development. The accelerometers provide amplitude and frequency information which is recorded every three minutes and analysed for night time only. Vibrational data were validated by comparison to visual inspection data, particularly the brood development. We show a strong correlation between vibrational amplitude data and the brood cycle in the vicinity of the sensor. We have further explored the minimum data that is required, when frequency information is also included, to accurately predict the current point in the brood cycle. Such a technique should enable beekeepers to reduce the frequency with which visual inspections are required, reducing the stress this places on the colony and saving the beekeeper time.

  18. MEMS-based thick film PZT vibrational energy harvester

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Thyssen, Anders

    2011-01-01

    We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using a mechan......We present a MEMS-based unimorph silicon/PZT thick film vibrational energy harvester with an integrated proof mass. We have developed a process that allows fabrication of high performance silicon based energy harvesters with a yield higher than 90%. The process comprises a KOH etch using...... a mechanical front side protection of an SOI wafer with screen printed PZT thick film. The fabricated harvester device produces 14.0 μW with an optimal resistive load of 100 kΩ from 1g (g=9.81 m s-2) input acceleration at its resonant frequency of 235 Hz....

  19. Vibration-Based Damage Detection in Beams by Cooperative Coevolutionary Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kittipong Boonlong

    2014-03-01

    Full Text Available Vibration-based damage detection, a nondestructive method, is based on the fact that vibration characteristics such as natural frequencies and mode shapes of structures are changed when the damage happens. This paper presents cooperative coevolutionary genetic algorithm (CCGA, which is capable for an optimization problem with a large number of decision variables, as the optimizer for the vibration-based damage detection in beams. In the CCGA, a minimized objective function is a numerical indicator of differences between vibration characteristics of the actual damage and those of the anticipated damage. The damage detection in a uniform cross-section cantilever beam, a uniform strength cantilever beam, and a uniform cross-section simply supported beam is used as the test problems. Random noise in the vibration characteristics is also considered in the damage detection. In the simulation analysis, the CCGA provides the superior solutions to those that use standard genetic algorithms presented in previous works, although it uses less numbers of the generated solutions in solution search. The simulation results reveal that the CCGA can efficiently identify the occurred damage in beams for all test problems including the damage detection in a beam with a large number of divided elements such as 300 elements.

  20. New methods to get valid signals at high temperature conditions by using DSP tools of the ASSA (Abnormal Signal Simulation Analyzer)

    International Nuclear Information System (INIS)

    Koo, Kil-Mo; Hong, Seong-Wan; Song, Jin-Ho; Baek, Won-Pil; Jung, Myung-Kwan

    2012-01-01

    A new method to get valid signals under high temperature conditions using DSP (Digital Signal Processing) tools of an ASSA (Abnormal Signal Simulation Analyzer) module through a signal analysis of important circuit modeling under severe accident conditions has been suggested. Already exist, such kinds of DSP technique operated by LabVIEW or MatLab code linked with PSpice code, which have convenient tools as a special function of the ASSA module including a signal reconstruction method. If we can obtain a shift data of the transient parameters such as the time constant of the R-L-C circuit affected by high temperature under a severe accident condition, it will be possible to reconstruct an abnormal signal using a trained deconvolution algorithm as a sort of DSP technique. (author)

  1. Terahertz thickness determination with interferometric vibration correction for industrial applications.

    Science.gov (United States)

    Pfeiffer, Tobias; Weber, Stefan; Klier, Jens; Bachtler, Sebastian; Molter, Daniel; Jonuscheit, Joachim; Von Freymann, Georg

    2018-05-14

    In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

  2. Vibration-based monitoring for performance evaluation of flexible civil structures in Japan

    Science.gov (United States)

    FUJINO, Yozo

    2018-01-01

    The vibration-based monitoring of flexible civil structures and performance evaluation from this monitoring are reviewed, with an emphasis on research and practice in Japan and the author’s experiences. Some new findings and unexpected vibrations from the monitoring of real bridges and buildings are reported to emphasize the importance of monitoring. Future developments and applications of vibration-based monitoring to civil infrastructure management are also described. Many examples are taken from the author’s past 30 years’ experience of research on bridge dynamics. PMID:29434082

  3. Electromagnetic Vibration Energy Harvesting for Railway Applications

    Directory of Open Access Journals (Sweden)

    Bradai S.

    2018-01-01

    Full Text Available Safe localization of trains via GPS and wireless sensors is essential for railway traffic supervision. Especially for freight trains and because normally no power source is available on the wagons, special solutions for energy supply have to be developed based on energy harvesting techniques. Since vibration is available in this case, it provides an interesting source of energy. Nevertheless, in order to have an efficient design of the harvesting system, the existing vibration needs to be investigated. In this paper, we focus on the characterization of vibration parameters in railway application. We propose an electromagnetic vibration converter especially developed to this application. Vibration profiles from a train traveling between two German cities were measured using a data acquisition system installed on the train’s wagon. Results show that the measured profiles present multiple frequency signals in the range of 10 to 50 Hz and an acceleration of up to 2 g. A prototype for a vibration converter is designed taking into account the real vibration parameters, robustness and integrability requirements. It is based on a moving coil attached to a mechanical spring. For the experimental emulation of the train vibrations, a shaker is used as an external artificial vibration source controlled by a laser sensor in feedback. A maximum voltage of 1.7 V peak to peak which corresponds to a maximum of 10 mW output power where the applied excitation frequency is close to the resonant frequency of the converter which corresponds to 27 Hz.

  4. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.

    2014-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various excitation mechanisms have been suggested, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... and excitation from the deck and/or towers. Although there have been many observations of large cable vibrations on bridges, there are relatively few cases of direct full-scale cable vibration and wind measurements, and most research has been based on wind tunnel tests and theoretical modelling.This paper...... presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...

  5. Robust, accurate, and non-contacting vibration measurement systems: Summary of comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 1

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits of the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies

  6. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  7. Observer based output-feedback control to eliminate rorsional drill-string vibrations

    NARCIS (Netherlands)

    Vromen, T.G.M.; van de Wouw, N.; Doris, A.; Astrid, P.; Nijmeijer, H.

    2014-01-01

    Torsional stick-slip vibrations decrease the performance and reliability of drilling systems used for the exploration of energy and mineral resources. In this work, we present the design of a nonlinear observer-based outputfeedback control strategy to eliminate these vibrations. We apply the

  8. Vibration energy harvesting system for railroad safety based on running vehicles

    International Nuclear Information System (INIS)

    Tianchen, Yuan; Jian, Yang; Ruigang, Song; Xiaowei, Liu

    2014-01-01

    This research is focused on energy harvesting from track vibration in order to provide power for the wireless sensors which monitor railroad health. Considering that track vibration has vibration energy, a new method is proposed in the paper to harvest energy based on the piezoelectric effect. The piezoelectric generator called drum transducer is the key part for track vibration energy harvesting. The model of drum transducer is established and the simulation results show that it can generate 100 mW in real track situation. In addition, an experiment rig is developed and its vibration model is also established. The simulation and experiment results show that peak open-circuit voltage of piezoelectric generator is about 50–70 V at the full load of the train. The whole track vibration energy harvesting system is analytically modeled, numerically simulated, and experimentally realized to demonstrate the feasibility and the reliability of the theoretical model. This paper is the theoretical basis of harvesting, recovering and recycling of the track vibration energy for track safety. (paper)

  9. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  10. Measurements of Acoustic Properties of Porous and Granular Materials and Application to Vibration Control

    Science.gov (United States)

    Park, Junhong; Palumbo, Daniel L.

    2004-01-01

    For application of porous and granular materials to vibro-acoustic controls, a finite dynamic strength of the solid component (frame) is an important design factor. The primary goal of this study was to investigate structural vibration damping through this frame wave propagation for various poroelastic materials. A measurement method to investigate the vibration characteristics of the frame was proposed. The measured properties were found to follow closely the characteristics of the viscoelastic materials - the dynamic modulus increased with frequency and the degree of the frequency dependence was determined by its loss factor. The dynamic stiffness of hollow cylindrical beams containing porous and granular materials as damping treatment was measured also. The data were used to extract the damping materials characteristics using the Rayleigh-Ritz method. The results suggested that the acoustic structure interaction between the frame and the structure enhances the dissipation of the vibration energy significantly.

  11. Observer-based output-feedback control to eliminate torsional drill-string vibrations

    NARCIS (Netherlands)

    Vromen, T.G.M.; Wouw, van de N.; Doris, A.; Astrid, P.; Nijmeijer, H.

    2014-01-01

    Torsional stick-slip vibrations decrease the performance and reliability of drilling systems used for the exploration of energy and mineral resources. In this work, we present the design of a nonlinear observer-based output-feedback control strategy to eliminate these vibrations. We apply the

  12. Verification of the Microgravity Active Vibration Isolation System based on Parabolic Flight

    Science.gov (United States)

    Zhang, Yong-kang; Dong, Wen-bo; Liu, Wei; Li, Zong-feng; Lv, Shi-meng; Sang, Xiao-ru; Yang, Yang

    2017-12-01

    The Microgravity active vibration isolation system (MAIS) is a device to reduce on-orbit vibration and to provide a lower gravity level for certain scientific experiments. MAIS system is made up of a stator and a floater, the stator is fixed on the spacecraft, and the floater is suspended by electromagnetic force so as to reduce the vibration from the stator. The system has 3 position sensors, 3 accelerometers, 8 Lorentz actuators, signal processing circuits and a central controller embedded in the operating software and control algorithms. For the experiments on parabolic flights, a laptop is added to MAIS for monitoring and operation, and a power module is for electric power converting. The principle of MAIS is as follows: the system samples the vibration acceleration of the floater from accelerometers, measures the displacement between stator and floater from position sensitive detectors, and computes Lorentz force current for each actuator so as to eliminate the vibration of the scientific payload, and meanwhile to avoid crashing between the stator and the floater. This is a motion control technic in 6 degrees of freedom (6-DOF) and its function could only be verified in a microgravity environment. Thanks for DLR and Novespace, we get a chance to take the DLR 27th parabolic flight campaign to make experiments to verify the 6-DOF control technic. The experiment results validate that the 6-DOF motion control technique is effective, and vibration isolation performance perfectly matches what we expected based on theoretical analysis and simulation. The MAIS has been planned on Chinese manned spacecraft for many microgravity scientific experiments, and the verification on parabolic flights is very important for its following mission. Additionally, we also test some additional function by microgravity electromagnetic suspension, such as automatic catching and locking and working in fault mode. The parabolic flight produces much useful data for these experiments.

  13. Feedback on the Surveillance 8 challenge: Vibration-based diagnosis of a Safran aircraft engine

    Science.gov (United States)

    Antoni, Jérôme; Griffaton, Julien; André, Hugo; Avendaño-Valencia, Luis David; Bonnardot, Frédéric; Cardona-Morales, Oscar; Castellanos-Dominguez, German; Daga, Alessandro Paolo; Leclère, Quentin; Vicuña, Cristián Molina; Acuña, David Quezada; Ompusunggu, Agusmian Partogi; Sierra-Alonso, Edgar F.

    2017-12-01

    This paper presents the content and outcomes of the Safran contest organized during the International Conference Surveillance 8, October 20-21, 2015, at the Roanne Institute of Technology, France. The contest dealt with the diagnosis of a civil aircraft engine based on vibration data measured in a transient operating mode and provided by Safran. Based on two independent exercises, the contest offered the possibility to benchmark current diagnostic methods on real data supplemented with several challenges. Outcomes of seven competing teams are reported and discussed. The object of the paper is twofold. It first aims at giving a picture of the current state-of-the-art in vibration-based diagnosis of rolling-element bearings in nonstationary operating conditions. Second, it aims at providing the scientific community with a benchmark and some baseline solutions. In this respect, the data used in the contest are made available as supplementary material.

  14. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  15. Measurement of ground and nearby building vibration and noise induced by trains in a metro depot.

    Science.gov (United States)

    Zou, Chao; Wang, Yimin; Wang, Peng; Guo, Jixing

    2015-12-01

    Metro depots are where subway trains are parked and where maintenance is carried out. They usually occupy the largest ground areas in metro projects. Due to land utilization problems, Chinese cities have begun to develop over-track buildings above metro depots for people's life and work. The frequently moving trains, when going into and out of metro depots, can cause excessive vibration and noise to over-track buildings and adversely affect the living quality of the building occupants. Considering the current need of reliable experimental data for the construction of metro depots, field measurements of vibration and noise on the ground and inside a nearby 3-story building subjected to moving subway trains were conducted in a metro depot at Guangzhou, China. The amplitudes and frequency contents of velocity levels were quantified and compared. The composite A-weighted equivalent sound levels and maximum sound levels were captured. The predicted models for vibration and noise of metro depot were proposed based on existing models and verified. It was found that the vertical vibrations were significantly greater than the horizontal vibrations on the ground and inside the building near the testing line. While at the throat area, the horizontal vibrations near the curved track were remarkably greater than the vertical vibrations. The attenuation of the vibrations with frequencies above 50 Hz was larger than the ones below 50 Hz, and the frequencies of vibration transmitting to adjacent buildings were mainly within 10-50 Hz. The largest equivalent sound level generated in the throat area was smaller than the testing line one, but the instantaneous maximum sound level induced by wheels squeal, contact between wheels and rail joints as well as turnout was close to or even greater than the testing line one. The predicted models gave a first estimation for design and assessment of newly built metro depots. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Characterization and calibration of piezoelectric polymers: In situ measurements of body vibrations

    Science.gov (United States)

    Kappel, Marcel; Abel, Markus; Gerhard, Reimund

    2011-07-01

    Piezoelectric polymers are known for their flexibility in applications, mainly due to their bending ability, robustness, and variable sensor geometry. It is an optimal material for minimal-invasive investigations in vibrational systems, e.g., for wood, where acoustical impedance matches particularly well. Many applications may be imagined, e.g., monitoring of buildings, vehicles, machinery, alarm systems, such that our investigations may have a large impact on technology. Longitudinal piezoelectricity converts mechanical vibrations normal to the polymer-film plane into an electrical signal, and the respective piezoelectric coefficient needs to be carefully determined in dependence on the relevant material parameters. In order to evaluate efficiency and durability for piezopolymers, we use polyvinylidene fluoride and measure the piezoelectric coefficient with respect to static pressure, amplitude of the dynamically applied force, and long-term stability. A known problem is the slow relaxation of the material towards equilibrium, if the external pressure changes; here, we demonstrate how to counter this problem with careful calibration. Since our focus is on acoustical measurements, we determine accurately the frequency response curve - for acoustics probably the most important characteristic. Eventually, we show that our piezopolymer transducers can be used as a calibrated acoustical sensors for body vibration measurements on a wooden musical instrument, where it is important to perform minimal-invasive measurements. A comparison with the simultaneously recorded airborne sound yields important insight of the mechanism of sound radiation in comparison with the sound propagating in the material. This is especially important for transient signals, where not only the long-living eigenmodes contribute to the sound radiation. Our analyses support that piezopolymer sensors can be employed as a general tool for the determination of the internal dynamics of vibrating systems.

  17. Realizing Ternary Logic in FPGAs for SWL DSP Systems

    Directory of Open Access Journals (Sweden)

    Tayeb Din

    2013-07-01

    Full Text Available Recently SWL (Short Word Length DSP (Digital Signal Processing applications has been proposed to overcome multiplier complexity that is evident in most of the digital applications. These SWL applications have been processed through sigma-delta modulation as a key element. For such applications, adder design plays vital role and can impact upon the chip area and its performance. In this paper, a ternary approach for adder tree has been proposed instead of binary that can accommodate more data with less chip-area at the cost of extra pin. The proposed ternary adder tree has been designed and developed in Quartus-II using three different design strategies namely T-gate (Ternary gate, LUT (Look Up Table and algebraic equations. Through rigorous simulation it was found that T-gate technique results in superior performance, an average of 23.5 and 33% improvement compared to the same adder structure based on Boolean Algebraic Equation and LUT, respectively. The proposed adder design would benefit the efficient implementation of SWL applications.

  18. VIBRATIONS DETECTION IN INDUSTRIAL PUMPS BASED ON SPECTRAL ANALYSIS TO INCREASE THEIR EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Belhadef RACHID

    2016-01-01

    Full Text Available Spectral analysis is the key tool for the study of vibration signals in rotating machinery. In this work, the vibration analy-sis applied for conditional preventive maintenance of such machines is proposed, as part of resolved problems related to vibration detection on the organs of these machines. The vibration signal of a centrifugal pump was treated to mount the benefits of the approach proposed. The obtained results present the signal estimation of a pump vibration using Fourier transform technique compared by the spectral analysis methods based on Prony approach.

  19. 1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.

    Science.gov (United States)

    Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi

    2015-04-01

    Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power.

  20. Clinical studies of the vibration syndrome using a cold stress test measuring finger temperature.

    Science.gov (United States)

    Gautherie, M

    1995-01-01

    Since nine years multicentre, transversal and longitudinal clinical studies on hand-arm, vibration-exposed patients are being performed in cooperation with French occupational medicine centers and social security institutions. These studies are based upon current clinical assessment and standardized, temperature-measuring cooling tests. Data acquisition uses a portable, 10-channel, micro-processor-based temperature recorder and miniature thermal sensors. Temperature is monitored at the ten finger tips continuously, before, during and after a cold stress performed in strictly controlled conditions. Data from examinations performed at outlying sites are transferred through the telephonic network to a central processing unit. Data analysis uses a specific, expert-type software procedure based upon previous clinical studies on (i) 238 "normal" subjects, and (ii) 3,046 patients with vascular disturbances of the upper extremities of various etiologies. This procedure includes a staging process which assigns each finger a class representing the degree of severity of the abnormalities of response to cold ("dysthermia") related to vascular disorders. All data processing is fully automatic and results in a printed examination report. To date, over 1,623 vibration-exposed forestry, building and mechanical workers were examined. Sixty-three per cent of patients had received high dose of vibration (daily use of chain saws, air hammers, ballast tampers over many years). Typical white finger attacks or only neurological symptoms were found in 36% and 23% of patients respectively. The rate of sever dysthermia was much higher in patients with white finger attacks (83%) than in patients without (32%). In 90% of the vibration-exposed patients, the severity of dysthermia has differed greatly from one finger to another and between hands, while in non-exposed patients with primary Raynaud syndrome the dysthermia are generally similar for all fingers but the thumbs. Of 208 forestry

  1. Simulation of vibration-induced effect on plasma current measurement using a fiber optic current sensor.

    Science.gov (United States)

    Descamps, Frédéric; Aerssens, Matthieu; Gusarov, Andrei; Mégret, Patrice; Massaut, Vincent; Wuilpart, Marc

    2014-06-16

    An accurate measurement of the plasma current is of paramount importance for controlling the plasma magnetic equilibrium in tokamaks. Fiber optic current sensor (FOCS) technology is expected to be implemented to perform this task in ITER. However, during ITER operation, the vessel and the sensing fiber will be subject to vibrations and thus to time-dependent parasitic birefringence, which may significantly compromise the FOCS performance. In this paper we investigate the effects of vibrations on the plasma current measurement accuracy under ITER-relevant conditions. The simulation results show that in the case of a FOCS reflection scheme including a spun fiber and a Faraday mirror, the error induced by the vibrations is acceptable regarding the ITER current diagnostics requirements.

  2. Construction of a Vibration Monitoring System for HANARO's Rotating Machinery and Analysis of Pump Vibration Signals

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2005-01-01

    HANARO is an open-tank-in-pool type research reactor with a thermal power of 30MW. In order to remove the heat generated by the reactor core and the reflector vessel, primary cooling pumps and reflector cooling pumps circulate coolant. These pumps are installed at the RCI(Reactor Concrete Island) which is covered by heavy concrete hatches. For the prevention of an abnormal operation of these pumps in the RCI, it is necessary to construct a vibration monitoring system that provides an alarm signal to the reactor control room when the rotating speed or the vibration level exceeds the allowable limit. The first objective of this work is to construct a vibration monitoring system for HANARO's rotating machinery. The second objective is to verify the possibility of condition monitoring of the rotating machinery. To construct a vibration monitoring system, as a first step, the standards and references related to the vibration monitoring system were investigated. In addition, to determine the number and the location of sensors that can effectively characterize the overall vibration of a pump, the vibration of the primary cooling pumps and the reflector cooling pumps were measured. Based on these results, detailed construction plans for the vibration monitoring system for HANARO were established. Then, in accordance with the construction plans, the vibration monitoring system for HANARO's rotating machinery was manufactured and installed at HANARO. To achieve the second objective, FFT analysis and bearing fault detection of the measured vibration signals were performed. The analysis results demonstrate that the accelerometers mounted at the bearing locations of the pumps can effectively monitor the pump condition

  3. An expert system for vibration based diagnostics of rotating machines

    International Nuclear Information System (INIS)

    Korteniemi, A.

    1990-01-01

    Very often changes in the mechanical condition of the rotating machinery can be observed as changes in its vibration. This paper presents an expert system for vibration-based diagnosis of rotating machines by describing the architecture of the developed prototype system. The importance of modelling the problem solving knowledge as well as the domain knowledge is emphasized by presenting the knowledge in several levels

  4. Application for vibration monitoring of aspheric surface machining based on wireless sensor networks

    Science.gov (United States)

    Han, Chun Guang; Guo, Yin Biao; Jiang, Chen

    2010-05-01

    Any kinds of tiny vibration of machine tool parts will have a great influence on surface quality of the workpiece at ultra-precise machining process of aspheric surface. At present the major way for decreasing influence of vibration is machining compensation technology. Therefore it is important for machining compensation control to acquire and transmit these vibration signals effectively. This paper presents a vibration monitoring system of aspheric surface machining machine tool based on wireless sensor networks (WSN). Some key issues of wireless sensor networks for vibration monitoring system of aspheric surface machining are discussed. The reliability of data transmission, network communication protocol and synchronization mechanism of wireless sensor networks are studied for the vibration monitoring system. The proposed system achieves multi-sensors vibration monitoring involving the grinding wheel, the workpiece and the workbench spindle. The wireless transmission of vibration signals is achieved by the combination with vibration sensor nodes and wireless network. In this paper, these vibration sensor nodes are developed. An experimental platform is structured which employs wireless sensor networks to the vibration monitoring system in order to test acquisition and wireless transmission of vibration signal. The test results show that the proposed system can achieve vibration data transmission effectively and reliability and meet the monitoring requirements of aspheric surface machining machine tool.

  5. Fiducialization of the small-aperture quadrupoles based on the vibrating wire method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Baichuan, E-mail: wangbaichuan@nint.ac.cn [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Tsinghua University, Beijing 100084 (China); Zheng, Shuxin, E-mail: zhengsx@tsinghua.edu.cn [Tsinghua University, Beijing 100084 (China); Wu, Lin; Du, Changtong; Xing, Qingzi [Tsinghua University, Beijing 100084 (China); Wang, Zhongming; Qiu, Mengtong [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Wang, Xuewu [Tsinghua University, Beijing 100084 (China)

    2016-03-11

    A fiducialization method based on vibrating wire is described dedicated to the problem of locating the magnetic center relative to external fiducials for the small-aperture quadrupoles. The advantage of this method is that the measurement of the wire position, which may be the main error source, is no longer needed. The position of the magnetic center can be directly obtained by measuring the position shift of the magnet fiducials. This method has been validated on small Permanent Magnet Quadrupoles (PMQs). Experiments have confirmed its feasibility of measuring PMQs with good repeatability of about 10 μm, and shown its high sensitivity as well as convenience.

  6. Optimizing optical pre-dispersion using transmit DSP for mitigation of Kerr nonlinearities in dispersion managed cables

    Science.gov (United States)

    Hopkins, James; Gaudette, Jamie; Mehta, Priyanth

    2013-10-01

    With the advent of digital signal processing (DSP) in optical transmitters and receivers, the ability to finely tune the ratio of pre and post dispersion compensation can be exploited to best mitigate the nonlinear penalties caused by the Kerr effect. A portion of the nonlinear penalty in optical communication channels has been explained by an increase in peak to average power ratio (PAPR) inherent in highly dispersed signals. The standard approach for minimizing these impairments applies 50% pre dispersion compensation and 50% post dispersion compensation, thereby decreasing average PAPR along the length of the cable, as compared with either 100% pre or post dispersion compensation. In this paper we demonstrate that simply considering the net accumulated dispersion, and applying 50/50 pre/post dispersion is not necessarily the best way to minimize PAPR and subsequent Kerr nonlinearities. Instead, we consider the cumulative dispersion along the entire length of the cable, and, taking into account this additional information, derive an analytic formula for the minimization of PAPR. Alignment with simulation and experimental measurements is presented using a commercially available 100Gb/s dual-polarization binary phase-shift-keying (DP-BPSK) coherent modem, with transmitter and receiver DSP. Measurements are provided from two different 5000km dispersion managed Submarine test-beds, as well as a 3800km terrestrial test-bed with a mixture of SMF-28 and TWRS optical fiber. This method is shown to deviate significantly from the conventional 50/50 method described above, in dispersion managed communications systems, and more closely aligns with results obtained from simulation and data collected from laboratory test-beds.

  7. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    Directory of Open Access Journals (Sweden)

    Ren G. Dong

    2015-09-01

    Full Text Available The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC system and an anatomically based biodynamic (BD system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

  8. Review and Evaluation of Hand–Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

    Science.gov (United States)

    Dong, Ren G.; Sinsel, Erik W.; Welcome, Daniel E.; Warren, Christopher; Xu, Xueyan S.; McDowell, Thomas W.; Wu, John Z.

    2015-01-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study. PMID:26929824

  9. Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces.

    Science.gov (United States)

    Dong, Ren G; Sinsel, Erik W; Welcome, Daniel E; Warren, Christopher; Xu, Xueyan S; McDowell, Thomas W; Wu, John Z

    2015-09-01

    The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

  10. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  11. Experimental Aspects in the Vibration-Based Condition Monitoring of Large Hydrogenerators

    Directory of Open Access Journals (Sweden)

    Geraldo Carvalho Brito Junior

    2017-01-01

    Full Text Available Based on experimental observations on a set of twenty 700 MW hydrogenerators, compiled from several technical reports issued over the last three decades and collected from the reprocessing of the vibration signals recorded during the last commissioning tests, this paper shows that the accurate determination of the journal bearings operating conditions may be a difficult task. It shows that the outsize bearing brackets of large hydrogenerators are subject to substantial dimensional changes caused by external agents, like the generator electromagnetic field and the bearing cooling water temperature. It also shows that the shaft eccentricity of a journal bearing of a healthy large hydrogenerator, operating in steady-state condition, may experience unpredictable, sudden, and significant changes without apparent reasons. Some of these phenomena are reproduced in ordinary commissioning tests or may be noticed even during normal operation, while others are rarely observed or are only detected through special tests. These phenomena modify journal bearings stiffness and damping, changing the hydrogenerator dynamics, creating discrepancies between theoretical predictions and experimental measurements, and making damage detection and diagnostics difficult. Therefore, these phenomena must be analyzed and considered in the application of vibration-based condition monitoring to these rotating machines.

  12. Partitioning and Scheduling DSP Applications with Maximal Memory Access Hiding

    Directory of Open Access Journals (Sweden)

    Sha Edwin Hsing-Mean

    2002-01-01

    Full Text Available This paper presents an iteration space partitioning scheme to reduce the CPU idle time due to the long memory access latency. We take into consideration both the data accesses of intermediate and initial data. An algorithm is proposed to find the largest overlap for initial data to reduce the entire memory traffic. In order to efficiently hide the memory latency, another algorithm is developed to balance the ALU and memory schedules. The experiments on DSP benchmarks show that the algorithms significantly outperform the known existing methods.

  13. Effect of detector size and position on measured vibration spectra of strings and rods

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Por, G.

    1993-04-01

    Weight functions of string and rod vibrations are described by standing and travelling wave models. The effects of detector size and position on the measured vibration spectra was investigated, and the main characteristics of the transfer function were calculated by a simple standing wave model. The theoretical results were compared with data from laboratory rod vibration experiments, and with pressure fluctuation spectra obtained at the Paks Nuclear Power Plant. In addition, some fundamental physical consequences can be made using the theory of superposition of travelling waves and their reflection on clamped rod ends. (R.P.) 5 refs.; 10 figs

  14. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    Science.gov (United States)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  15. Difference frequency generation spectroscopy as a vibrational optical activity measurement tool.

    Science.gov (United States)

    Cheon, Sangheon; Cho, Minhaeng

    2009-03-19

    Vibrational optical activity (VOA) of chiral molecules in condensed phases can be studied by using vibrational circular dichroism and Raman optical activity measurement techniques. Recently, IR-vis sum frequency generation has shown to be an alternative VOA measurement method. Such a three-wave-mixing method employing a polarization modulation technique can be a potentially useful VOA measurement tool. Here, a theoretical description of difference frequency generation (DFG) employing circularly polarized visible radiations is presented. Frequency scanning to obtain a VOA-DFG spectrum is achieved by controlling the difference between the two electronically nonresonant incident radiation frequencies. If the two incident beams are linearly polarized and their polarization directions are perpendicular to each other, one can selectively measure the all-electric-dipole-allowed chiral component of the DFG susceptibility. In addition, by using circularly polarized beams and taking the DFG difference intensity signal, which is defined as the difference between left and right circularly polarized DFG signals, additional chiral susceptibility components originating from the electric quadrupole transition can be measured. The DFG as a novel VOA measurement technique for solution samples containing chiral molecules will therefore be a useful coherent spectroscopic tool for determining absolute configuration of chiral molecules in condensed phases.

  16. Vibrational spectra of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report.

    Energy Technology Data Exchange (ETDEWEB)

    Biedermann, Laura Butler

    2009-09-01

    A few of the many applications for nanowires are high-aspect ratio conductive atomic force microscope (AFM) cantilever tips, force and mass sensors, and high-frequency resonators. Reliable estimates for the elastic modulus of nanowires and the quality factor of their oscillations are of interest to help enable these applications. Furthermore, a real-time, non-destructive technique to measure the vibrational spectra of nanowires will help enable sensor applications based on nanowires and the use of nanowires as AFM cantilevers (rather than as tips for AFM cantilevers). Laser Doppler vibrometry is used to measure the vibration spectra of individual cantilevered nanowires, specifically multiwalled carbon nanotubes (MWNTs) and silver gallium nanoneedles. Since the entire vibration spectrum is measured with high frequency resolution (100 Hz for a 10 MHz frequency scan), the resonant frequencies and quality factors of the nanowires are accurately determined. Using Euler-Bernoulli beam theory, the elastic modulus and spring constant can be calculated from the resonance frequencies of the oscillation spectrum and the dimensions of the nanowires, which are obtained from parallel SEM studies. Because the diameters of the nanowires studied are smaller than the wavelength of the vibrometer's laser, Mie scattering is used to estimate the lower diameter limit for nanowires whose vibration can be measured in this way. The techniques developed in this thesis can be used to measure the vibrational spectra of any suspended nanowire with high frequency resolution Two different nanowires were measured - MWNTs and Ag{sub 2}Ga nanoneedles. Measurements of the thermal vibration spectra of MWNTs under ambient conditions showed that the elastic modulus, E, of plasma-enhanced chemical vapor deposition (PECVD) MWNTs is 37 {+-} 26 GPa, well within the range of E previously reported for CVD-grown MWNTs. Since the Ag{sub 2}Ga nanoneedles have a greater optical scattering efficiency than

  17. Vibration analysis of a hydro generator for different operating regimes

    Science.gov (United States)

    Haţiegan, C.; Pădureanu, I.; Jurcu, M.; Nedeloni, M. D.; Hamat, C. O.; Chioncel, C. P.; Trocaru, S.; Vasile, O.; Bădescu, O.; Micliuc, D.; (Filip Nedeloni, L.; Băra, A.; (Barboni Haţiegan, L.

    2017-01-01

    Based on experimental measurements, this paper presents the vibration analysis of a hydro generator that equips a Kaplan hydraulic turbine of a Hydropower plant in Romania. This analysis means vibrations measurement to different operating regimes of the hydro generator respectively before installing it and into operation, namely putting off load mode (unexcited and excited) respectively putting on load mode. By comparing, through the experimental results obtained before and after the operation of hydro aggregates are observed vibrations improvements.

  18. Piping vibrations measured during FFTF startup

    International Nuclear Information System (INIS)

    Anderson, M.J.

    1981-03-01

    An extensive vibration survey was conducted on the Fast Flux Test Facility piping during the plant acceptance test program. The purpose was to verify that both mechanical and flow induced vibration amplitudes were of sufficiently low level so that pipe and pipe support integrity would not be compromised over the plant design lifetime. Excitation sources included main heat transport sodium pumps, reciprocating auxiliary system pumps, EM pumps, and flow oscillations. Pipe sizes varied from one-inch to twenty-eight-inches in diameter. This paper describes the test plan; the instrumentation and procedures utilized; and the test results

  19. Long-Range Vibrational Dynamics Are Directed by Watson-Crick Base Pairing in Duplex DNA.

    Science.gov (United States)

    Hithell, Gordon; Shaw, Daniel J; Donaldson, Paul M; Greetham, Gregory M; Towrie, Michael; Burley, Glenn A; Parker, Anthony W; Hunt, Neil T

    2016-05-05

    Ultrafast two-dimensional infrared (2D-IR) spectroscopy of a 15-mer A-T DNA duplex in solution has revealed structure-dependent vibrational coupling and energy transfer processes linking bases with the sugar-phosphate backbone. Duplex melting induces significant changes in the positions of off-diagonal peaks linking carbonyl and ring-stretching vibrational modes of the adenine and thymine bases with vibrations of the phosphate group and phosphodiester linkage. These indicate that Watson-Crick hydrogen bonding and helix formation lead to a unique vibrational coupling arrangement of base vibrational modes with those of the phosphate unit. On the basis of observations from time-resolved 2D-IR data, we conclude that rapid energy transfer processes occur between base and backbone, mediated by additional modes located on the deoxyribose moiety within the same nucleotide. These relaxation dynamics are insensitive to duplex melting, showing that efficient intramolecular energy relaxation to the solvent via the phosphate groups is the key to excess energy dissipation in both single- and double-stranded DNA.

  20. Sensor-based vibration signal feature extraction using an improved composite dictionary matching pursuit algorithm.

    Science.gov (United States)

    Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui

    2014-09-09

    This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm

  1. Sensor-Based Vibration Signal Feature Extraction Using an Improved Composite Dictionary Matching Pursuit Algorithm

    Directory of Open Access Journals (Sweden)

    Lingli Cui

    2014-09-01

    Full Text Available This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and

  2. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5

  3. Measurement of Vibrational Non-Equilibrium in a Supersonic Freestream Using Dual-Pump CARS

    Science.gov (United States)

    Cutler, Andrew D.; Magnotti, Gaetano; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Danehy, Paul M.; Burle, Rob; Rockwell, Robert; Goyne, Christopher; McDaniel, James

    2012-01-01

    Measurements have been conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant area duct downstream of a Mach 2 nozzle, where the airflow has first been heated to approximately 1200 K. Dual-pump CARS was used to acquire rotational and vibrational temperatures of N2 and O2 at two planes in the duct at different downstream distances from the nozzle exit. Wall static pressures in the nozzle are also reported. With a flow of clean air, the vibrational temperature of N2 freezes at close to the heater stagnation temperature, while the O2 vibrational temperature is about 1000 K. The results are well predicted by computational fluid mechanics models employing separate "lumped" vibrational and translational/rotational temperatures. Experimental results are also reported for a few percent steam addition to the air and the effect of the steam is to bring the flow to thermal equilibrium.

  4. Vibration features of an 180 kW maglev circulator test rig

    International Nuclear Information System (INIS)

    Su Jiageng; Li Hongwei; Shi Qian; Sha Honglei; Yu Suyuan

    2015-01-01

    The helium circulator is the key equipment to drive the helium gas flowing in the primary loop for energy exchange in HTGR. Active magnetic bearings (AMB) have been considered as an alternative to replace traditional mechanical bearings in the helium circulator. Such contactless bearings do not have frictional wear and can be used to suppress vibration in rotor-dynamic applications. It is necessary to study the vibration characteristics of the maglev helium circulator to guarantee the reactor safety. Therefore, a maglev circulator test rig was built. The power of the circulator is 180 kW and the maximum speed is 17000 rpm. For the time being, the test atmosphere is air. In this paper the test rig was introduced. Vibration test work of the maglev circulator was also carried out. The measuring points were arranged at the seat because the seat vibration level is important to evaluate the machine noise. The measuring points were also arranged at the base of the circulator housing to better study the vibration characteristics. The vibrations were measured by the LC-8024 multichannel machinery diagnoses system. At each measuring point the vibrations were detected in three directions (X, Y and Z) with the vibration acceleration sensors. The test speeds varied from 1000 rpm to 17000 rpm with an increase of 1000 rpm each time. The vibration values of the seat are from 89.5 dB at 1000 rpm to 113.3 dB at 17000 rpm. The test results showed that the maglev circulator exhibits good vibration properties. This work will offer important theoretical base and engineering experience to explore the high-speed helium circulator in HTGR. (author)

  5. Measurements of vibrational excitation of N2, CO, and NO by low energy proton impact

    International Nuclear Information System (INIS)

    Krutein, J.; Linder, F.

    1979-01-01

    Differential scattering experiments are reported for proton impact on N 2 , CO, and NO in the energy range E/sub lab/=30--80 eV. The measurements include the range of very small scattering angles around 0 0 as well as the rainbow region. The vibrationally resolved energy-loss spectra show a relatively low vibrational inelasticity for all three systems. Differential cross sections, transition probabilities, and the mean vibrational energy transfer are presented. Rotational excitation is indicated by the broadening of the energy-loss peaks which is most significant for H + --NO. The small-angle scattering data for vibrational excitation in CO show good agreement with the impact parameter theory using the known long-range interactions for this system

  6. Measurement of unsteady flow forces in inline and staggered tube bundles with fixed and vibrating tubes

    International Nuclear Information System (INIS)

    Michel, A.; Heinecke, E.; Decken, C.B. von der.

    1986-01-01

    Unsteady flow forces arising in heat exchangers with cross-flow may lead to serious vibrations of the tubes. These vibrations can destroy the tubes in the end supports or in the baffles, which would require expensive repairs. The flow forces reach unexpectedly by high values if the vibration of the tube intensifies these forces. To clear up this coupling mechanism the flow forces and the vibration amplitude were measured simultaneously in a staggered and in an inline tube bundle. Considering the tube as a one-mass oscillator excited by the flow force, the main parameters can be derived, i.e. dynamic pressure, reduced mass, eigenfrequency and damping. These parameters form a dimensionless model number describing the coherence of the vibration amplitude and the force coefficient. The validity of this number has been confirmed by varying the test conditions. With the aid of this model number, the expected force coefficient can be calculated and then using a finite-element program information can be obtained about mechanical tensions and the lifetime of the heat exchanger tubes. With this model number the results of other authors, who measured the vibration amplitude only, could be confirmed in good agreement. The experiments were carried out in air with Reynolds numbers 10 4 5 . (orig.) [de

  7. Short- and long-term performance of a tripolar down-sized single lead for implantable cardioverter defibrillator treatment: a randomized prospective European multicenter study. European Endotak DSP Investigator Group.

    Science.gov (United States)

    Sandstedt, B; Kennergren, C; Schaumann, A; Herse, B; Neuzner, J

    1998-11-01

    A new, thinner (10 Fr) and more flexible, single-pass transvenous endocardial ICD lead, Endotak DSP, was compared with a conventional lead, Endotak C, as a control in a prospective randomized multicenter study in combination with a nonactive can ICD. A total of 123 patients were enrolled, 55 of whom received a down-sized DSP lead. Lead-alone configuration was successfully implanted in 95% of the DSP patients vs 88% in the control group. The mean defibrillation threshold (DFT) was determined by means of a step-down protocol, and was identical in the two groups, 10.5 +/- 4.8 J in the DSP group versus 10.5 +/- 4.8 J in the control group. At implantation, the DSP mean pacing threshold was lower, 0.51 +/- 0.18 V versus 0.62 +/- 0.35 V (p < 0.05) in the control group, and the mean pacing impedance higher, 594 +/- 110 omega vs 523 +/- 135 omega (p < 0.05). During the follow-up period, the statistically significant difference in thresholds disappeared, while the difference in impedance remained. Tachyarrhythmia treatment by shock or antitachycardia pacing (ATP) was delivered in 53% and 41%, respectively, of the patients with a 100% success rate. In the DSP group, all 28 episodes of polymorphic ventricular tachycardia or ventricular fibrillation were converted by the first shock as compared to 57 of 69 episodes (83%) in the control group (p < 0.05). Monomorphic ventricular tachycardias were terminated by ATP alone in 96% versus 94%. Lead related problems were minor and observed in 5% and 7%, respectively. In summary, both leads were safe and efficacious in the detection and treatment of ventricular tachyarrhythmias. There were no differences between the DSP and control groups regarding short- or long-term lead related complications.

  8. Vibration-based condition monitoring industrial, aerospace and automotive applications

    CERN Document Server

    Randall, Robert Bond

    2010-01-01

    ""Without doubt the best modern and up-to-date text on the topic, wirtten by one of the world leading experts in the field. Should be on the desk of any practitioner or researcher involved in the field of Machine Condition Monitoring"" Simon Braun, Israel Institute of Technology Explaining complex ideas in an easy to understand way, Vibration-based Condition Monitoring provides a comprehensive survey of the application of vibration analysis to the condition monitoring of machines. Reflecting the natural progression of these systems by presenting the fundamental material

  9. Multi-resonant electromagnetic shunt in base isolation for vibration damping and energy harvesting

    Science.gov (United States)

    Pei, Yalu; Liu, Yilun; Zuo, Lei

    2018-06-01

    This paper investigates multi-resonant electromagnetic shunts applied to base isolation for dual-function vibration damping and energy harvesting. Two multi-mode shunt circuit configurations, namely parallel and series, are proposed and optimized based on the H2 criteria. The root-mean-square (RMS) value of the relative displacement between the base and the primary structure is minimized. Practically, this will improve the safety of base-isolated buildings subjected the broad bandwidth ground acceleration. Case studies of a base-isolated building are conducted in both the frequency and time domains to investigate the effectiveness of multi-resonant electromagnetic shunts under recorded earthquake signals. It shows that both multi-mode shunt circuits outperform traditional single mode shunt circuits by suppressing the first and the second vibration modes simultaneously. Moreover, for the same stiffness ratio, the parallel shunt circuit is more effective at harvesting energy and suppressing vibration, and can more robustly handle parameter mistuning than the series shunt circuit. Furthermore, this paper discusses experimental validation of the effectiveness of multi-resonant electromagnetic shunts for vibration damping and energy harvesting on a scaled-down base isolation system.

  10. Complexity Analysis and DSP Implementation of the Fractional-Order Lorenz Hyperchaotic System

    Directory of Open Access Journals (Sweden)

    Shaobo He

    2015-12-01

    Full Text Available The fractional-order hyperchaotic Lorenz system is solved as a discrete map by applying the Adomian decomposition method (ADM. Lyapunov Characteristic Exponents (LCEs of this system are calculated according to this deduced discrete map. Complexity of this system versus parameters are analyzed by LCEs, bifurcation diagrams, phase portraits, complexity algorithms. Results show that this system has rich dynamical behaviors. Chaos and hyperchaos can be generated by decreasing fractional order q in this system. It also shows that the system is more complex when q takes smaller values. SE and C 0 complexity algorithms provide a parameter choice criteria for practice applications of fractional-order chaotic systems. The fractional-order system is implemented by digital signal processor (DSP, and a pseudo-random bit generator is designed based on the implemented system, which passes the NIST test successfully.

  11. Flow measurement and thrust estimation of a vibrating ionic polymer metal composite

    International Nuclear Information System (INIS)

    Chae, Woojin; Cha, Youngsu; Peterson, Sean D; Porfiri, Maurizio

    2015-01-01

    Ionic polymer metal composites (IPMCs) are an emerging class of soft active materials that are finding growing application as underwater propulsors for miniature biomimetic swimmers. Understanding the hydrodynamics generated by an IPMC vibrating under water is central to the design of such biomimetic swimmers. In this paper, we propose the use of time-resolved particle image velocimetry to detail the fluid kinematics and kinetics in the vicinity of an IPMC vibrating along its fundamental structural mode. The reconstructed pressure field is ultimately used to estimate the thrust produced by the IPMC. The vibration frequency is systematically varied to elucidate the role of the Reynolds number on the flow physics and the thrust production. Experimental results indicate the formation and shedding of vortical structures from the IPMC tip during its vibration. Vorticity shedding is sustained by the pressure gradients along each side of the IPMC, which are most severe in the vicinity of the tip. The mean thrust is found to robustly increase with the Reynolds number, closely following a power law that has been derived from direct three-dimensional numerical simulations. A reduced order distributed model is proposed to describe IPMC underwater vibration and estimate thrust production, offering insight into the physics of underwater propulsion and aiding in the design of IPMC-based propulsors. (paper)

  12. Identification and analysis of OsttaDSP, a phosphoglucan phosphatase from Ostreococcus tauri.

    Directory of Open Access Journals (Sweden)

    Julieta B Carrillo

    Full Text Available Ostreococcus tauri, the smallest free-living (non-symbiotic eukaryote yet described, is a unicellular green alga of the Prasinophyceae family. It has a very simple cellular organization and presents a unique starch granule and chloroplast. However, its starch metabolism exhibits a complexity comparable to higher plants, with multiple enzyme forms for each metabolic reaction. Glucan phosphatases, a family of enzymes functionally conserved in animals and plants, are essential for normal starch or glycogen degradation in plants and mammals, respectively. Despite the importance of O. tauri microalgae in evolution, there is no information available concerning the enzymes involved in reversible phosphorylation of starch. Here, we report the molecular cloning and heterologous expression of the gene coding for a dual specific phosphatase from O. tauri (OsttaDSP, homologous to Arabidopsis thaliana LSF2. The recombinant enzyme was purified to electrophoretic homogeneity to characterize its oligomeric and kinetic properties accurately. OsttaDSP is a homodimer of 54.5 kDa that binds and dephosphorylates amylopectin. Also, we also determined that residue C162 is involved in catalysis and possibly also in structural stability of the enzyme. Our results could contribute to better understand the role of glucan phosphatases in the metabolism of starch in green algae.

  13. Fretting-wear damage of heat exchanger tubes: a proposed damage criterion based on tube vibration response

    International Nuclear Information System (INIS)

    Yetisir, M.; McKerrow, E.; Pettigrew, M.J.

    1997-01-01

    A simple criterion is proposed to estimate fretting-wear damage in heat exchanger tubes with clearance supports. The criterion is based on parameters such as vibration frequency, mid-span vibration amplitude, span length, tube mass and an empirical wear coefficient. It is generally accepted that fretting-wear damage is proportional to a parameter called work-rate. Work-rate is a measure of the dynamic interaction between a vibrating tube and its supports. Due to the complexity of the impact-sliding behavior at the clearance-supports, work-rate calculations for heat exchanger tubes require specialized non-linear finite element codes. These codes include contact models for various clearance-support geometries. Such non-linear finite element analyses are complex, expensive and time consuming. The proposed criterion uses the results of linear vibration analysis (i.e., vibration frequency and mid-span vibration amplitude due to turbulence) and does not require a non-linear analysis. It can be used by non-specialists for a quick evaluation of the expected work-rate, and hence, the fretting-wear damage of heat exchanger tubes. The proposed criterion was obtained from an extensive parametric study that was conducted using a non-linear finite element program. It is shown that, by using the proposed work-rate criteria, work-rate can be estimated within a factor of two. This result, however, requires further testing with more complicated flow patterns. (author)

  14. Vibration-based monitoring and diagnostics using compressive sensing

    Science.gov (United States)

    Ganesan, Vaahini; Das, Tuhin; Rahnavard, Nazanin; Kauffman, Jeffrey L.

    2017-04-01

    Vibration data from mechanical systems carry important information that is useful for characterization and diagnosis. Standard approaches rely on continually streaming data at a fixed sampling frequency. For applications involving continuous monitoring, such as Structural Health Monitoring (SHM), such approaches result in high volume data and rely on sensors being powered for prolonged durations. Furthermore, for spatial resolution, structures are instrumented with a large array of sensors. This paper shows that both volume of data and number of sensors can be reduced significantly by applying Compressive Sensing (CS) in vibration monitoring applications. The reduction is achieved by using random sampling and capitalizing on the sparsity of vibration signals in the frequency domain. Preliminary experimental results validating CS-based frequency recovery are also provided. By exploiting the sparsity of mode shapes, CS can also enable efficient spatial reconstruction using fewer spatially distributed sensors. CS can thereby reduce the cost and power requirement of sensing as well as streamline data storage and processing in monitoring applications. In well-instrumented structures, CS can enable continued monitoring in case of sensor or computational failures.

  15. Neonatal co-lesion by DSP-4 and 5,7-DHT produces adulthood behavioral sensitization to dopamine D(2) receptor agonists.

    Science.gov (United States)

    Nowak, Przemysław; Nitka, Dariusz; Kwieciński, Adam; Jośko, Jadwiga; Drab, Jacek; Pojda-Wilczek, Dorota; Kasperski, Jacek; Kostrzewa, Richard M; Brus, Ryszard

    2009-01-01

    To assess the possible modulatory effects of noradrenergic and serotoninergic neurons on dopaminergic neuronal activity, the noradrenergic and serotoninergic neurotoxins DSP-4 N-(2-chlorethyl)-N-ethyl-2-bromobenzylamine (50.0 mg/kg, sc) and 5,7-dihydroxytryptamine (5,7-DHT) (37.5 microg icv, half in each lateral ventricle), respectively, were administered toWistar rats on the first and third days of postnatal ontogeny, and dopamine (DA) agonist-induced behaviors were assessed in adulthood. At eight weeks, using an HPLC/ED technique, DSP-4 treatment was associated with a reduction in NE content of the corpus striatum (> 60%), hippocampus (95%), and frontal cortex (> 85%), while 5,7-DHT was associated with an 80-90% serotonin reduction in the same brain regions. DA content was unaltered in the striatum and the cortex. In the group lesioned with both DSP-4 and 5,7-DHT, quinpirole-induced (DA D(2) agonist) yawning, 7-hydroxy-DPAT-induced (DA D(3) agonist) yawning, and apomorphine-induced (non-selective DA agonist) stereotypies were enhanced. However, SKF 38393-induced (DA D(1) agonist) oral activity was reduced in the DSP-4 + 5,7-DHT group. These findings demonstrate that DA D(2)- and D(3)-agonist-induced behaviors are enhanced while DA D(1)-agonist-induced behaviors are suppressed in adult rats in which brain noradrenergic and serotoninergic innervation of the brain has largely been destroyed. This study indicates that noradrenergic and serotoninergic neurons have a great impact on the development of DA receptor reactivity (sensitivity).

  16. Monitoring machining conditions by analyzing cutting force vibration

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan [Soongsl University, Seoul (Korea, Republic of)

    2015-09-15

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration.

  17. Monitoring machining conditions by analyzing cutting force vibration

    International Nuclear Information System (INIS)

    Piao, Chun Guang; Kim, Ju Wan; Kim, Jin Oh; Shin, Yoan

    2015-01-01

    This paper deals with an experimental technique for monitoring machining conditions by analyzing cutting-force vibration measured at a milling machine. This technique is based on the relationship of the cutting-force vibrations with the feed rate and cutting depth as reported earlier. The measurement system consists of dynamic force transducers and a signal amplifier. The analysis system includes an oscilloscope and a computer with a LabVIEW program. Experiments were carried out at various feed rates and cutting depths, while the rotating speed was kept constant. The magnitude of the cutting force vibration component corresponding to the number of cutting edges multiplied by the frequency of rotation was linearly correlated with the machining conditions. When one condition of machining is known, another condition can be identified by analyzing the cutting-force vibration

  18. Approach for a smart device for active vibration suppression as an add-on for robot-based systems

    International Nuclear Information System (INIS)

    Perner, Marcus; Krombholz, Christian; Monner, Hans Peter

    2014-01-01

    Robot-based systems are defined by the capabilities of links and joints that form the robot arm, the control including drive engines and the end effector. In particular, articulated robots have a serial structure. They have to carry the drive engine of each ongoing axis, which results in higher susceptibility to vibration. To compensate weak precision the German Aerospace Center (DLR) integrates a quality improving sensor system on the robot platform. A vibration monitoring system detects vibrations that affect the precision during motion tasks. Currently, higher precision is achieved by slowing down the speed in production. Therefore, a compromise is given between speed and precision. To push the limits for these two conflicting process properties, we propose an approach for an additional smart device to decouple the process-sensitive unit from disturbances arising through motion of the kinematic structure. The smart device enables active vibration suppression by use of a piezo-based actuator with a lever mechanism connected to a motion platform. The lever mechanism provides the required force and displacement adaption. The platform provides mounting and steering of the process-sensitive components. First, an insight into the automation task is given within this paper. Secondly, the system design is illustrated. Based on simulation results the characteristic of the proposed mechanism is shown. Besides the mechanical properties like stiffness and lever amplification, dynamical issues like the smallest eigenfrequency are discussed. To verify simulation results initial measurements are presented and discussed. The paper sums up with the discussion of an implementation of a closed-loop control system to achieve vibration-free and fast motion.

  19. Approach for a smart device for active vibration suppression as an add-on for robot-based systems

    Energy Technology Data Exchange (ETDEWEB)

    Perner, Marcus; Krombholz, Christian; Monner, Hans Peter [Institute of Composite Structures and Adaptive Systems, Braunschweig (Germany)

    2014-11-15

    Robot-based systems are defined by the capabilities of links and joints that form the robot arm, the control including drive engines and the end effector. In particular, articulated robots have a serial structure. They have to carry the drive engine of each ongoing axis, which results in higher susceptibility to vibration. To compensate weak precision the German Aerospace Center (DLR) integrates a quality improving sensor system on the robot platform. A vibration monitoring system detects vibrations that affect the precision during motion tasks. Currently, higher precision is achieved by slowing down the speed in production. Therefore, a compromise is given between speed and precision. To push the limits for these two conflicting process properties, we propose an approach for an additional smart device to decouple the process-sensitive unit from disturbances arising through motion of the kinematic structure. The smart device enables active vibration suppression by use of a piezo-based actuator with a lever mechanism connected to a motion platform. The lever mechanism provides the required force and displacement adaption. The platform provides mounting and steering of the process-sensitive components. First, an insight into the automation task is given within this paper. Secondly, the system design is illustrated. Based on simulation results the characteristic of the proposed mechanism is shown. Besides the mechanical properties like stiffness and lever amplification, dynamical issues like the smallest eigenfrequency are discussed. To verify simulation results initial measurements are presented and discussed. The paper sums up with the discussion of an implementation of a closed-loop control system to achieve vibration-free and fast motion.

  20. Robust, accurate, and non-contacting vibration measurement systems: Supplemental appendices presenting comparison measurements of the robust laser interferometer and typical accelerometer systems. Volume 2

    International Nuclear Information System (INIS)

    Goodenow, T.C.; Shipman, R.L.; Holland, H.M.

    1995-06-01

    Epoch Engineering, Incorporated (EEI) has completed a series of vibration measurements comparing their newly-developed Robust Laser Interferometer (RLI) with accelerometer-based instrumentation systems. EEI has successfully demonstrated, on several pieces of commonplace machinery, that non-contact, line-of-sight measurements are practical and yield results equal to or, in some cases, better than customary field implementations of accelerometers. The demonstration included analysis and comparison of such phenomena as nonlinearity, transverse sensitivity, harmonics, and signal-to-noise ratio. Fast Fourier Transformations were performed on the accelerometer and the laser system outputs to provide a comparison basis. The RLI was demonstrated, within the limits o the task, to be a viable, line-of-sight, non-contact alternative to accelerometer systems. Several different kinds of machinery were instrumented and. compared, including a small pump, a gear-driven cement mixer, a rotor kit, and two small fans. Known machinery vibration sources were verified and RLI system output file formats were verified to be compatible with commercial computer programs used for vibration monitoring and trend analysis. The RLI was also observed to be less subject to electromagnetic interference (EMI) and more capable at very low frequencies. This document, Volume 2, provides the appendices to this report

  1. Homogeneity Analysis of a MEMS-based PZT Thick Film Vibration Energy Harvester Manufacturing Process

    DEFF Research Database (Denmark)

    Lei, Anders; Xu, Ruichao; Borregaard, Louise M.

    2012-01-01

    This paper presents a homogeneity analysis of a high yield wafer scale fabrication of MEMS-based unimorph silicon/PZT thick film vibration energy harvesters aimed towards vibration sources with peak vibrations in the range of around 300Hz. A wafer with a yield of 91% (41/45 devices) has been...

  2. Viscoelastic material properties' identification using high speed full field measurements on vibrating plates

    Science.gov (United States)

    Giraudeau, A.; Pierron, F.

    2010-06-01

    The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM). The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  3. CAS - Great success for the DSP course

    CERN Multimedia

    2007-01-01

    The CERN Accelerator School (CAS) and the Uppsala University jointly organized a specialized school on "Digital Signal Processing" in Sigtuna, Sweden from 1-9 June, 2007. This course was a "première" in many ways: firstly the topic had never been addressed by CAS, and secondly the structure of the course differed from the usual specialized courses in the sense that it was composed of 32 hours of theoretical lectures in the mornings and 16 hours "hands-on" courses in the afternoons. The latter, which have been designed by CERN experts, had some logistic implications in transporting computers and circuit boards (DSP and FPGA) to Sweden. The principle of this new approach was extremely well received by the accelerator community and 97 participants representing 23 different nationalities (80% of the participants originating from the CERN Member States) attended the course. As illustrated by the very positive feedback received from th...

  4. A low-frequency vibration energy harvester based on diamagnetic levitation

    Science.gov (United States)

    Kono, Yuta; Masuda, Arata; Yuan, Fuh-Gwo

    2017-04-01

    This article presents 3-degree-of-freedom theoretical modeling and analysis of a low-frequency vibration energy harvester based on diamagnetic levitation. In recent years, although much attention has been placed on vibration energy harvesting technologies, few harvesters still can operate efficiently at extremely low frequencies in spite of large potential demand in the field of structural health monitoring and wearable applications. As one of the earliest works, Liu, Yuan and Palagummi proposed vertical and horizontal diamagnetic levitation systems as vibration energy harvesters with low resonant frequencies. This study aims to pursue further improvement along this direction, in terms of expanding maximum amplitude and enhancing the flexibility of the operation direction for broader application fields by introducing a new topology of the levitation system.

  5. Magnetostrictive patch sensor system for battery-less real-time measurement of torsional vibrations of rotating shafts

    Science.gov (United States)

    Lee, Jun Kyu; Seung, Hong Min; Park, Chung Il; Lee, Joo Kyung; Lim, Do Hyeong; Kim, Yoon Young

    2018-02-01

    Real-time uninterrupted measurement for torsional vibrations of rotating shafts is crucial for permanent health monitoring. So far, strain gauge systems with telemetry units have been used for real-time monitoring. However, they have a critical disadvantage in that shaft operations must be stopped intermittently to replace telemetry unit batteries. To find an alternative method to carry out battery-less real-time measurement for torsional vibrations of rotating shafts, a magnetostrictive patch sensor system was proposed in the present study. Since the proposed sensor does not use any powered telemetry system, no battery is needed and thus there is no need to stop rotating shafts for battery replacement. The proposed sensor consists of magnetostrictive patches and small magnets tightly bonded onto a shaft. A solenoid coil is placed around the shaft to convert magnetostrictive patch deformation by shaft torsional vibration into electric voltage output. For sensor design and characterization, investigations were performed in a laboratory on relatively small-sized stationary solid shaft. A magnetostrictive patch sensor system was then designed and installed on a large rotating propulsion shaft of an LPG carrier ship in operation. Vibration signals were measured using the proposed sensor system and compared to those measured with a telemetry unit-equipped strain gauge system.

  6. Farfield Ion Current Density Measurements before and after the NASA HiVHAc EDU2 Vibration Test

    Science.gov (United States)

    Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    There is an increasing need to characterize the plasma plume of the NASA HiVHAc thruster in order to better understand the plasma physics and to obtain data for spacecraft interaction studies. To address this need, the HiVHAc research team is in the process of developing a number of plume diagnostic systems. This paper presents the initial results of the farfield current density probe diagnostic system. Farfield current density measurements were carried out before and after a vibration test of the HiVHAc engineering development unit 2 that simulate typical launch conditions. The main purposes of the current density measurements were to evaluate the thruster plume divergence and to investigate any changes in the plasma plume that may occur as a result of the vibration test. Radial sweeps, as opposed to the traditional polar sweeps, were performed during these tests. The charged-weighted divergence angles were found to vary from 16 to 28 degrees. Charge density profiles measured pre- and post-vibration-test were found to be in excellent agreement. This result, alongside thrust measurements reported in a companion paper, confirm that the operation of the HiVHAc engineering development unit 2 were not altered by full-level/random vibration testing.

  7. New technologies for acceleration and vibration measurements inside operating nuclear power reactors

    International Nuclear Information System (INIS)

    Runkel, J.; Stegemann, D.; Fiedler, J.; Heidemann, P.; Blaser, R.; Schmid, F.; Trobitz, M.; Hirsch, L.; Thoma, K.

    2000-01-01

    A miniature bi-axial in-core accelerometer has been inserted temporarily inside the travelling in-core probe (TIP) systems of operating 1300 MW el boiling water reactors (BWR) during full power operation. In-core acceleration measurements can be performed in any position of the TIP system. This provides new features of control technologies to preserve the integrity of reactor internals. The radial and axial position where fretting or impacting of instrumentation string tubes or other structures might occur can be localised inside the reactor pressure vessel. The efficiency and long-term performance of subsequent improvements of the mechanical or operating conditions can be controlled with high local resolution and sensitivity. Low frequency vibrations of the instrumentation tubes were measured inside the core. Neutron-mechanical scale factors were determined from neutron noise, measured by the standard in-core neutron instrumentation and from displacements of the TIP tubes, calculated by integration of the measured in-core acceleration signals. The scale factors contribute to qualitative and quantitative monitoring of BWR internals' vibrations only by the use of neutron signals. (authors)

  8. Customized Multiwavelets for Planetary Gearbox Fault Detection Based on Vibration Sensor Signals

    Directory of Open Access Journals (Sweden)

    Lue Chen

    2013-01-01

    Full Text Available Planetary gearboxes exhibit complicated dynamic responses which are more difficult to detect in vibration signals than fixed-axis gear trains because of the special gear transmission structures. Diverse advanced methods have been developed for this challenging task to reduce or avoid unscheduled breakdown and catastrophic accidents. It is feasible to make fault features distinct by using multiwavelet denoising which depends on the feature separation and the threshold denoising. However, standard and fixed multiwavelets are not suitable for accurate fault feature detections because they are usually independent of the measured signals. To overcome this drawback, a method to construct customized multiwavelets based on the redundant symmetric lifting scheme is proposed in this paper. A novel indicator which combines kurtosis and entropy is applied to select the optimal multiwavelets, because kurtosis is sensitive to sharp impulses and entropy is effective for periodic impulses. The improved neighboring coefficients method is introduced into multiwavelet denoising. The vibration signals of a planetary gearbox from a satellite communication antenna on a measurement ship are captured under various motor speeds. The results show the proposed method could accurately detect the incipient pitting faults on two neighboring teeth in the planetary gearbox.

  9. ANALYSIS OF METHODS PROVIDING ACCURACY FOR TOOLS AND TECHNIQUES VIBRATION MEASUREMENT IN THE PROCESS OF MAINTAINING AIRWORTHINESS OF AIRCRAFT

    Directory of Open Access Journals (Sweden)

    Anatoliy Alexandrovich Bogoyavlenskiy

    2017-01-01

    Full Text Available On the basis of system approach the structure of the aviation activity areas on air transport related to monitoring and measurements of vibration parameters is presented.The technology analysis of laboratory tests of the onboard equipment control of vibration parameters is carried out. The issues related to ensuring the unity of measurements of vibration parameters are researched and summarized.While dealing with the works on metrological certification described in the article, the risks arising from aviation activity on air transport are taken into account. The certification methods of measuring channels of vibration parametersused on stands for testing GTE at the repairing of aircraft engines are developed. The methods are implemented when con- ducting initial and periodic certifications of test benches for twelve types of aircraft GTE in repair organizations. The reliability of the results of the conducted research due to the fact that they were carried out with the use of certified measure- ment equipment, included in the State register of measuring instruments. The research is conducted for a sufficiently high statistical confidence level with the boundaries 0.95. The studies have shown that running on air transport measurements of vibration parameters are metrologically se- cured, the unity of measurements and their traceability from the national primary reference to special measuring instru- ments, test equipment, and onboard controls of the aircraft is maintained.

  10. Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility

    Science.gov (United States)

    Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.

    2016-01-01

    The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.

  11. 基于DSP的虚拟仪器设计与实现%Design and Implementation of Virtual Instrument Based on DSP

    Institute of Scientific and Technical Information of China (English)

    智伟敏; 朱德森; 贺新华

    2001-01-01

    主要介绍虚拟示波器的开发.讨论了以数字信号处理器(DSP)为核心的虚拟示波器硬件数据采集板卡的结构及各器件之间的逻辑关系,阐述了软件的组成与功能,提出了在印染机械控制系统中进行故障检测的新方案.

  12. Vibration control for the ARGOS laser launch path

    Science.gov (United States)

    Peter, Diethard; Gässler, Wolfgang; Borelli, Jose; Barl, Lothar; Rabien, S.

    2012-07-01

    Present and future adaptive optics systems aim for the correction of the atmospheric turbulence over a large field of view combined with large sky coverage. To achieve this goal the telescope is equipped with multiple laser beacons. Still, to measure tip-tilt aberrations a natural guide star is used. For some fields such a tilt-star is not available and a correction on the laser beacons alone is applied. For this method to work well the laser beacons must not be affected by telescope vibrations on their up-link path. For the ARGOS system the jitter of the beacons is specified to be below 0.05. To achieve this goal a vibration compensation system is necessary to mitigate the mechanical disturbances. The ARGOS vibration compensation system is an accelerometer based feed forward system. The accelerometer measurements are fed into a real time controller. To achieve high performance the controller of the system is model based. The output is applied to a fast steering mirror. This paper presents the concept of the ARGOS vibration compensation, the hardware, and laboratory results.

  13. Fiber optic vibration sensor using bifurcated plastic optical fiber

    Science.gov (United States)

    Abdullah, M.; Bidin, N.; Yasin, M.

    2016-11-01

    An extrinsic fiber optic vibration sensor is demonstrated for a fiber optic displacement sensor based on a bundled multimode fiber to measure a vibration frequency ranging from 100 until 3000 Hz. The front slope has a sensitivity of 0.1938mV/mm and linearity of 99.7% within a measurement range between 0.15-3.00 mm. By placing the diaphragm of the concave load-speaker within the linear range from the probe, the frequency of the vibration can be measured with error percentage of less than 1.54%. The graph of input against output frequency for low, medium and high frequency range show very high linearity up to 99%. Slope for low, medium, and high frequency range are calculated as 1.0026, 0.9934, and 1.0007 respectively. Simplicity, long term stability, low power consumption, wide dynamic and frequency ranges, noise reduction, ruggedness, linearity and light weight make it promising alternative to other well-establish methods for vibration frequency measurement.

  14. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    International Nuclear Information System (INIS)

    Wang, Hesheng; Chen, Weidong; Xu, Lifei; He, Tao

    2015-01-01

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  15. Vision-based online vibration estimation of the in-vessel inspection flexible robot with short-time Fourier transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Weidong, E-mail: wdchen@sjtu.edu.cn [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China); Xu, Lifei; He, Tao [Key Laboratory of System Control and Information Processing, Ministry of Education of China (China); Department of Automation, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    Highlights: • Vision-based online vibration estimation method for a flexible arm is proposed. • The vibration signal is obtained by image processing in unknown environments. • Vibration parameters are estimated by short-time Fourier transformation. - Abstract: The vibration should be suppressed if it happens during the motion of a flexible robot or under the influence of external disturbance caused by its structural features and material properties, because the vibration may affect the positioning accuracy and image quality. In Tokamak environment, we need to get the real-time vibration information on vibration suppression of robotic arm, however, some sensors are not allowed in the extreme Tokamak environment. This paper proposed a vision-based method for online vibration estimation of a flexible manipulator, which is achieved by utilizing the environment image information from the end-effector camera to estimate its vibration. Short-time Fourier Transformation with adaptive window length method is used to estimate vibration parameters of non-stationary vibration signals. Experiments with one-link flexible manipulator equipped with camera are carried out to validate the feasibility of this method in this paper.

  16. The vibration compensation system for ARGOS

    Science.gov (United States)

    Peter, D.; Gaessler, W.; Borelli, J.; Kulas, M.

    2011-09-01

    For every adaptive optics system telescope vibrations can strongly reduce the performance. This is true for the receiver part of the system i.e. the telescope and wave front sensor part as well as for the transmitter part in the case of a laser guide star system. Especially observations in deep fields observed with a laser guide star system without any tip-tilt star will be greatly spoiled by telescope vibrations. The ARGOS GLAO system actually being built for the LBT aims to implement this kind of mode where wave front correction will rely purely on signals from the laser beacons. To remove the vibrations from the uplink path a vibration compensation system will be installed. This system uses accelerometers to measure the vibrations and corrects their effect with a small fast tip-tilt mirror. The controller of the system is built based on the assumption that the vibrations take place at a few distinct frequencies. Here I present a lab set-up of this system and show first results of the performance.

  17. Shaft Crack Identification Based on Vibration and AE Signals

    Directory of Open Access Journals (Sweden)

    Wenxiu Lu

    2011-01-01

    Full Text Available The shaft crack is one of the main serious malfunctions that often occur in rotating machinery. However, it is difficult to locate the crack and determine the depth of the crack. In this paper, the acoustic emission (AE signal and vibration response are used to diagnose the crack. The wavelet transform is applied to AE signal to decompose into a series of time-domain signals, each of which covers a specific octave frequency band. Then an improved union method based on threshold and cross-correlation method is applied to detect the location of the shaft crack. The finite element method is used to build the model of the cracked rotor, and the crack depth is identified by comparing the vibration response of experiment and simulation. The experimental results show that the AE signal is effective and convenient to locate the shaft crack, and the vibration signal is feasible to determine the depth of shaft crack.

  18. Multi-dimensional Analysis for SLB Transient in ATLAS Facility as Activity of DSP (Domestic Standard Problem)

    International Nuclear Information System (INIS)

    Bae, B. U.; Park, Y. S.; Kim, J. R.; Kang, K. H.; Choi, K. Y.; Sung, H. J.; Hwang, M. J.; Kang, D. H.; Lim, S. G.; Jun, S. S.

    2015-01-01

    Participants of DSP-03 were divided in three groups and each group has focused on the specific subject related to the enhancement of the code analysis. The group A tried to investigate scaling capability of ATLAS test data by comparing to the code analysis for a prototype, and the group C studied to investigate effect of various models in the one-dimensional codes. This paper briefly summarizes the code analysis result from the group B participants in the DSP-03 of the ATLAS test facility. The code analysis by Group B focuses highly on investigating the multi-dimensional thermal hydraulic phenomena in the ATLAS facility during the SLB transient. Even though the one-dimensional system analysis code cannot simulate the whole system of the ATLAS facility with a nodalization of the CFD (Computational Fluid Dynamics) scale, a reactor pressure vessel can be considered with multi-dimensional components to reflect the thermal mixing phenomena inside a downcomer and a core. Also, the CFD could give useful information for understanding complex phenomena in specific components such as the reactor pressure vessel. From the analysis activity of Group B in ATLAS DSP-03, participants adopted a multi-dimensional approach to the code analysis for the SLB transient in the ATLAS test facility. The main purpose of the analysis was to investigate prediction capability of multi-dimensional analysis tools for the SLB experiment result. In particular, the asymmetric cooling and thermal mixing phenomena in the reactor pressure vessel could be significantly focused for modeling the multi-dimensional components

  19. Optimal design of a beam-based dynamic vibration absorber using fixed-points theory

    Science.gov (United States)

    Hua, Yingyu; Wong, Waion; Cheng, Li

    2018-05-01

    The addition of a dynamic vibration absorber (DVA) to a vibrating structure could provide an economic solution for vibration suppressions if the absorber is properly designed and located onto the structure. A common design of the DVA is a sprung mass because of its simple structure and low cost. However, the vibration suppression performance of this kind of DVA is limited by the ratio between the absorber mass and the mass of the primary structure. In this paper, a beam-based DVA (beam DVA) is proposed and optimized for minimizing the resonant vibration of a general structure. The vibration suppression performance of the proposed beam DVA depends on the mass ratio, the flexural rigidity and length of the beam. In comparison with the traditional sprung mass DVA, the proposed beam DVA shows more flexibility in vibration control design because it has more design parameters. With proper design, the beam DVA's vibration suppression capability can outperform that of the traditional DVA under the same mass constraint. The general approach is illustrated using a benchmark cantilever beam as an example. The receptance theory is introduced to model the compound system consisting of the host beam and the attached beam-based DVA. The model is validated through comparisons with the results from Abaqus as well as the Transfer Matrix method (TMM) method. Fixed-points theory is then employed to derive the analytical expressions for the optimum tuning ratio and damping ratio of the proposed beam absorber. A design guideline is then presented to choose the parameters of the beam absorber. Comparisons are finally presented between the beam absorber and the traditional DVA in terms of the vibration suppression effect. It is shown that the proposed beam absorber can outperform the traditional DVA by following this proposed guideline.

  20. METHOD FOR DETERMINATION OF ROTATION CENTER IN VIBRATING OBJECT

    Directory of Open Access Journals (Sweden)

    I. P. Kauryha

    2016-01-01

    Full Text Available Linear piezoelectric gauges, eddy current transducers and other control and measuring devices have been widely applied for vibration diagnostics of objects in industry. Methods based on such gauges and used for measuring angular and linear vibrations do not provide the possibility to assess a rotation center or point angle of an object. Parasitic oscillations may occur during rotor rotation and in some cases the oscillations are caused by dis-balance. The known methods for measuring angular and linear vibrations make it possible to detect the phenomenon and they do not provide information for balancing of the given object. For this very reason the paper describes a method for obtaining instantaneous rotation center in the vibrating object. It allows to improve informational content of the measurements owing to obtaining additional data on position of object rotation center. The obtained data can be used for balancing of a control object. Essence of the given method is shown by an example of piezoelectric gauges of linear vibrations. Two three-axial gauges are fixed to the investigated object. Then gauge output signals are recalculated in angular vibrations of the object (for this purpose it is necessary to know a distance between gauges. Further projection positions of the object rotation center are determined on three orthogonal planes. Instantaneous rotation center is calculated according to the position of one of the gauges. The proposed method permits to obtain data on linear and angular vibrations and rotation center position of the vibrating object using one system of linear gauge. Possibilities of object diagnostics are expanded due to increase in number of determined parameters pertaining to object moving. The method also makes it possible to reduce material and time expenses for measurement of an angular vibration component. 

  1. Control of pipe vibrations; Schwingungsminderung bei Rohrleitungen

    Energy Technology Data Exchange (ETDEWEB)

    Sinambari, G.R. [FH Bingen, Fachrichtung Umweltschutz, und IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany); Thorn, U. [IBS Ingenieurbuero fuer Schall- und Schwingungstechnik GmbH, Frankenthal (Germany)

    2005-06-01

    Following commissioning of a new vacuum system for the refinery of MiRO Mineraloelraffinerie Oberrhein GmbH and Co. KG, vibrations occurred in the furnace exhaust pipes. As these had to be regarded as critical for the fatigue strength of the pipes, the pipes' vibration response in the critical frequency range was investigated immediately by means of a vibration analysis, and appropriate measures for vibration control were elaborated. All investigations, and the installation of the hydraulic vibration dampers, took place with the system operating. The effectiveness of the measures taken was checked by means of measurements following installation. The measures succeeded in attenuating the vibrations to a level at which, empirically, damage need no longer be expected. This paper illustrates the procedure for developing the vibration control measures and the essential results of the investigations. (orig.)

  2. Vibro-acoustic model of a piezoelectric-based stethoscope for chest sound measurements

    International Nuclear Information System (INIS)

    Nelson, G; Rajamani, R; Erdman, A

    2015-01-01

    This article focuses on the influence of noise and vibration on chest sound measurements with a piezoelectric stethoscope. Two types of vibrations, namely inputs through the patient chest and disturbances from the physician, influence the acoustic measurement. The goal of this work is to develop a model to understand the propagation of these vibrational noises through the stethoscope and to the piezoelectric sensing element. Using the model, methods to reduce the influence of disturbances acting on the stethoscope from the physician handling the device are explored.A multi-DOF rigid body vibration model consisting of discrete connected components is developed for the piezoelectric stethoscope. Using a two-port lumped parameter model, the mechanical vibrations are related to the resulting electrical signal. The parameterized state space model is experimentally validated and its parameters are identified by using a thorax simulator and vibration shaker. Based on predictions from the model, the introduction of vibration isolation to reduce the influence of physician noise on the transducer is then pursued. It is shown that direct vibration isolation between the transducer and the rest of the stethoscope structure leads to a reduction in coupling with the patient’s chest. However, if isolation is instead introduced between the transducer housing and the rest of the stethoscope, then vibration isolation from the physician is achieved with far less reduction in patient coupling. Experimental results are presented to study the influence of the proposed design changes and confirm the predicted model behavior. (paper)

  3. Vibro-acoustic model of a piezoelectric-based stethoscope for chest sound measurements

    Science.gov (United States)

    Nelson, G.; Rajamani, R.; Erdman, A.

    2015-09-01

    This article focuses on the influence of noise and vibration on chest sound measurements with a piezoelectric stethoscope. Two types of vibrations, namely inputs through the patient chest and disturbances from the physician, influence the acoustic measurement. The goal of this work is to develop a model to understand the propagation of these vibrational noises through the stethoscope and to the piezoelectric sensing element. Using the model, methods to reduce the influence of disturbances acting on the stethoscope from the physician handling the device are explored. A multi-DOF rigid body vibration model consisting of discrete connected components is developed for the piezoelectric stethoscope. Using a two-port lumped parameter model, the mechanical vibrations are related to the resulting electrical signal. The parameterized state space model is experimentally validated and its parameters are identified by using a thorax simulator and vibration shaker. Based on predictions from the model, the introduction of vibration isolation to reduce the influence of physician noise on the transducer is then pursued. It is shown that direct vibration isolation between the transducer and the rest of the stethoscope structure leads to a reduction in coupling with the patient’s chest. However, if isolation is instead introduced between the transducer housing and the rest of the stethoscope, then vibration isolation from the physician is achieved with far less reduction in patient coupling. Experimental results are presented to study the influence of the proposed design changes and confirm the predicted model behavior.

  4. Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements

    Directory of Open Access Journals (Sweden)

    Alberto Martini

    2015-01-01

    Full Text Available The implementation of strategies for controlling water leaks is essential in order to reduce losses affecting distribution networks of drinking water. This paper focuses on leak detection by using vibration monitoring techniques. The long-term goal is the development of a system for automatic early detection of burst leaks in service pipes. An experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks. The first experimental data were used for assessing the leak detection performance of a prototypal algorithm based on the calculation of the standard deviation of acceleration signals. The experimental campaign is here described and discussed. The proposed algorithm, enhanced by means of proper signal filtering techniques, was successfully tested on all monitored leaks, thus proving effective for leak detection purpose.

  5. Vibration transducer calibration techniques

    Science.gov (United States)

    Brinkley, D. J.

    1980-09-01

    Techniques for the calibration of vibration transducers used in the Aeronautical Quality Assurance Directorate of the British Ministry of Defence are presented. Following a review of the types of measurements necessary in the calibration of vibration transducers, the performance requirements of vibration transducers, which can be used to measure acceleration, velocity or vibration amplitude, are discussed, with particular attention given to the piezoelectric accelerometer. Techniques for the accurate measurement of sinusoidal vibration amplitude in reference-grade transducers are then considered, including the use of a position sensitive photocell and the use of a Michelson laser interferometer. Means of comparing the output of working-grade accelerometers with that of previously calibrated reference-grade devices are then outlined, with attention given to a method employing a capacitance bridge technique and a method to be used at temperatures between -50 and 200 C. Automatic calibration procedures developed to speed up the calibration process are outlined, and future possible extensions of system software are indicated.

  6. Amino acid sequences mediating vascular cell adhesion molecule 1 binding to integrin alpha 4: homologous DSP sequence found for JC polyoma VP1 coat protein

    Directory of Open Access Journals (Sweden)

    Michael Andrew Meyer

    2013-07-01

    Full Text Available The JC polyoma viral coat protein VP1 was analyzed for amino acid sequences homologies to the IDSP sequence which mediates binding of VLA-4 (integrin alpha 4 to vascular cell adhesion molecule 1. Although the full sequence was not found, a DSP sequence was located near the critical arginine residue linked to infectivity of the virus and binding to sialic acid containing molecules such as integrins (3. For the JC polyoma virus, a DSP sequence was found at residues 70, 71 and 72 with homology also noted for the mouse polyoma virus and SV40 virus. Three dimensional modeling of the VP1 molecule suggests that the DSP loop has an accessible site for interaction from the external side of the assembled viral capsid pentamer.

  7. Measurements and analysis of vibrations at Virilla Bridge, national route N° 1

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2015-06-01

    The measurements allowed quantifying the vibration magnitudes and deformation in various sections of the bridge, on condition of vehicular traffic service (environmental performance. The experimental results are compared with computational analytical modeling of the structure and also with national and international standards.

  8. Vibrations measurement in fast and PWR reactor study

    International Nuclear Information System (INIS)

    Tigeot, Y.; Epstein, A.; Hareux, F.

    1975-01-01

    In the past severe damages have occured in several nuclear reactors, by structural vibrations induced by the primary cooling flow. To avoid this kind of troubles, the SEMT makes studies for two different types of reactors. For the light pressurized water reactors, some tests have been made on the SAFRAN test loop which is a three loop 1/8 scale internal model of a 900 MWe reactor. This study is actually undertaken jointly with Framatome. Elsewhere, measurements have been made on the Phenix fast breeder sodium reactor, and studies are planned for the Super Phenix reactor [fr

  9. Using Euler buckling springs for vibration isolation

    CERN Document Server

    Winterflood, J; Blair, D G

    2002-01-01

    Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance.

  10. Using Euler buckling springs for vibration isolation

    International Nuclear Information System (INIS)

    Winterflood, J; Barber, T; Blair, D G

    2002-01-01

    Difficulties in obtaining ideal vertical vibration isolation with mechanical springs are identified as being due to the mass of the elastic element which is in turn due to its energy storage requirement. A new technique to minimize this energy is presented - being an Euler column undergoing elastic buckling. The design of a high performance vertical vibration isolation stage based on this technique is presented together with its measured performance

  11. Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding

    2018-03-01

    A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.

  12. Vibration energy harvesting based on integrated piezoelectric components operating in different modes.

    Science.gov (United States)

    Hu, Junhui; Jong, Januar; Zhao, Chunsheng

    2010-01-01

    To increase the vibration energy-harvesting capability of the piezoelectric generator based on a cantilever beam, we have proposed a piezoelectric generator that not only uses the strain change of piezoelectric components bonded on a cantilever beam, but also employs the weights at the tip of the cantilever beam to hit piezoelectric components located on the 2 sides of weights. A prototype of the piezoelectric generator has been fabricated and its characteristics have been measured and analyzed. The experimental results show that the piezoelectric components operating in the hit mode can substantially enhance the energy harvesting of the piezoelectric generator on a cantilever beam. Two methods are used and compared in the management of rectified output voltages from different groups of piezoelectric components. In one of them, the DC voltages from rectifiers are connected in series, and then the total DC voltage is applied to a capacitor. In another connection, the DC voltage from each group is applied to different capacitors. It is found that 22.3% of the harvested energy is wasted due to the series connection. The total output electric energy of our piezoelectric generator at nonresonance could be up to 43 nJ for one vibration excitation applied by spring, with initial vibration amplitude (0-p) of 18 mm and frequency of 18.5 Hz, when the rectified voltages from different groups of piezoelectric components are connected to their individual capacitors. In addition, the motion and impact of the weights at the tip of the cantilever beam are theoretically analyzed, which well explains the experimental phenomena and suggests the measures to improve the generator.

  13. Fluid flow measurements by means of vibration monitoring

    International Nuclear Information System (INIS)

    Campagna, Mauro M; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-01-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology. (paper)

  14. Fluid flow measurements by means of vibration monitoring

    Science.gov (United States)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  15. Theoretical and experimental study of vibration, generated by monorail trains

    Science.gov (United States)

    Rybak, Samuil A.; Makhortykh, Sergey A.; Kostarev, Stanislav A.

    2002-11-01

    Monorail transport as all other city transport vehicles is the source of high noise and vibration levels. It is less widespread than cars or underground transport but its influence in modern cities enhances. Now in Moscow the first monorail road with trains on tires is designed, therefore the problem of vibration and noise assessments and prediction of its impact on the residential region appears. To assess the levels of generated vibration a physical model of interaction in the system wagon-tire-road coating-viaduct-soil has been proposed and then numerically analyzed. The model is based on the known from publications facts of automobile transport vibration and our own practice concerning underground trains vibration generation. To verify computer simulation results and adjust model parameters the series of measurements of noise and vibration near experimental monorail road was carried out. In the report the results of calculations and measurements will be presented and some outcomes of possible acoustical ecologic situation near monorail roads will be proposed.

  16. Real time implementation of a linear predictive coding algorithm on digital signal processor DSP32C

    International Nuclear Information System (INIS)

    Sheikh, N.M.; Usman, S.R.; Fatima, S.

    2002-01-01

    Pulse Code Modulation (PCM) has been widely used in speech coding. However, due to its high bit rate. PCM has severe limitations in application where high spectral efficiency is desired, for example, in mobile communication, CD quality broadcasting system etc. These limitation have motivated research in bit rate reduction techniques. Linear predictive coding (LPC) is one of the most powerful complex techniques for bit rate reduction. With the introduction of powerful digital signal processors (DSP) it is possible to implement the complex LPC algorithm in real time. In this paper we present a real time implementation of the LPC algorithm on AT and T's DSP32C at a sampling frequency of 8192 HZ. Application of the LPC algorithm on two speech signals is discussed. Using this implementation , a bit rate reduction of 1:3 is achieved for better than tool quality speech, while a reduction of 1.16 is possible for speech quality required in military applications. (author)

  17. APPLICATION OF SMART MOBILE PHONES IN VIBRATION MONITORING

    Directory of Open Access Journals (Sweden)

    Ljubomir Vračar

    2015-08-01

    Full Text Available The purpose of the research presented in this paper is the development of the smart mobile phone application for vibration monitoring of pumping aggregate, based on Microchip’s microcontroller (MC. Hardware used is based on Bluetooth connection between smart sensor and smart mobile phone. Software for acquisition and data analysis is optimized for imbedded application in smart sensors. Smart acceleration sensor in conjunction with Bluetooth connection to smart mobile phone creates one touch mobile vibration monitoring system. The authors have performed numerous measurements on a wide range of aggregates for establishing the operating functionality of the newly created system. The possibility of system application I rail vehicle vibration monitoring is also analyzed.

  18. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    Science.gov (United States)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  19. Noise generator for tinnitus treatment based on look-up tables

    Science.gov (United States)

    Uriz, Alejandro J.; Agüero, Pablo; Tulli, Juan C.; Castiñeira Moreira, Jorge; González, Esteban; Hidalgo, Roberto; Casadei, Manuel

    2016-04-01

    Treatment of tinnitus by means of masking sounds allows to obtain a significant improve of the quality of life of the individual that suffer that condition. In view of that, it is possible to develop noise synthesizers based on random number generators in digital signal processors (DSP), which are used in almost any digital hearing aid devices. DSP architecture have limitations to implement a pseudo random number generator, due to it, the noise statistics can be not as good as expectations. In this paper, a technique to generate additive white gaussian noise (AWGN) or other types of filtered noise using coefficients stored in program memory of the DSP is proposed. Also, an implementation of the technique is carried out on a dsPIC from Microchip®. Objective experiments and experimental measurements are performed to analyze the proposed technique.

  20. Measurement and Analysis of Horizontal Vibration Response of Pile Foundations

    Directory of Open Access Journals (Sweden)

    A. Boominathan

    2007-01-01

    Full Text Available Pile foundations are frequently used in very loose and weak deposits, in particular soft marine clays deposits to support various industrial structures, power plants, petrochemical complexes, compressor stations and residential multi-storeyed buildings. Under these circumstances, piles are predominantly subjected to horizontal dynamic loads and the pile response to horizontal vibration is very critical due to its low stiffness. Though many analytical methods have been developed to estimate the horizontal vibration response, but they are not well validated with the experimental studies. This paper presents the results of horizontal vibration tests carried out on model aluminium single piles embedded in a simulated Elastic Half Space filled with clay. The influence of various soil and pile parameters such as pile length, modulus of clay, magnitude of dynamic load and frequency of excitation on the horizontal vibration response of single piles was examined. Measurement of various response quantities, such as the load transferred to the pile, pile head displacement and the strain variation along the pile length were done using a Data Acquisition System. It is found that the pile length, modulus of clay and dynamic load, significantly influences the natural frequency and peak amplitude of the soil-pile system. The maximum bending moment occurs at the fundamental frequency of the soil-pile system. The maximum bending moment of long piles is about 2 to 4 times higher than that of short piles and it increases drastically with the increase in the shear modulus of clay for both short and long piles. The active or effective pile length is found to be increasing under dynamic load and empirical equations are proposed to estimate the active pile length under dynamic loads.

  1. Energy conversion by ‘T-shaped’ cantilever type electromagnetic vibration based micro power generator from low frequency vibration sources

    International Nuclear Information System (INIS)

    Siddique, Abu Raihan Mohammad; Mahmud, Shohel; Van Heyst, Bill

    2017-01-01

    Highlights: • A T-shaped cantilever type electromagnetic vibration based MPG has been described. • The designed EVMPG is useful for low frequency based vibration sources. • Both experimental tests and theoretical analysis have been performed. • The final compact prototype was tested at different conditions of human movements. • The prototype can generate 35.2 mV and 0.22 mW at 7 Hz with 5.6 Ω. - Abstract: The design, development, and analyses of low-frequency vibration based T-shaped cantilever type electromagnetic micro power generators (EVMPGs) are presented in this paper. Four different configurations (Configurations A to D) of EVMPGs were designed and fabricated and subsequently characterized using detailed experimental and limited analytical techniques. Configuration A and B consisted of a single and a double cylindrical moving magnets (NdFeB), respectively, while Configuration C consisted of four rectangular moving magnets with respect to a fixed copper coil. In contrast, Configuration D used a moving coil between four rectangular magnets with a back-iron bar. The open circuit RMS voltage output was observed to be a maximum from Configuration D (98.2 mV at 6.29 Hz) with a base vibration acceleration of 0.8 m s"−"2. Therefore, Configuration D was selected for further experimental investigations, which included changing the back-iron bar thickness, changing the base acceleration level, and changing the air gap separation between the magnets in order to optimize this configuration. The maximum load RMS voltage and power outputs of Configuration D were 105.4 mV and 1.35 mW at 6.29 Hz for load resistance 8.2 Ω and a base acceleration of 0.8 m s"−"2 with a 4.2 mm back-iron bar when the air gap between the magnets was 20 mm. Finally, a small portable EVMPG prototype was developed based on the Configuration D and was tested at different human movement conditions (i.e., walking, quick walking, and running). The developed EVMPG prototype was capable of

  2. Measurement and analysis of vibrational behaviour of an SNR-fuel element in sodium flow

    International Nuclear Information System (INIS)

    Hess, B.F.H.; Ruppert, E.; Schmidt, H.; Vinzens, K.

    1975-01-01

    Within the framework of SNR-300 fuel element development programme a complete full size fuel element dummy has been tested thoroughly for nearly 3000 hours at 650 0 C system temperature in the AKB sodium loop at Interatom, Bensberg. Investigations of the hydraulic characteristics by measurements of specific pressure losses, flow velocities, leakage flow through the piston rings and investigations of its vibrational behaviour were part of this endurance test at elevated temperatures. The pressure drop versus flow and the leakage measurement are mentioned briefly to confirm the correctness of the test hydraulics. The vibrational behaviour of the element and the approach to analysis is the main object of this report. (Auth.)

  3. Vibration mode and vibration shape under excitation of a three phase model transformer core

    Science.gov (United States)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  4. Data interpolation for vibration diagnostics using two-variable correlations

    International Nuclear Information System (INIS)

    Branagan, L.

    1991-01-01

    This paper reports that effective machinery vibration diagnostics require a clear differentiation between normal vibration changes caused by plant process conditions and those caused by degradation. The normal relationship between vibration and a process parameter can be quantified by developing the appropriate correlation. The differences in data acquisition requirements between dynamic signals (vibration spectra) and static signals (pressure, temperature, etc.) result in asynchronous data acquisition; the development of any correlation must then be based on some form of interpolated data. This interpolation can reproduce or distort the original measured quantity depending on the characteristics of the data and the interpolation technique. Relevant data characteristics, such as acquisition times, collection cycle times, compression method, storage rate, and the slew rate of the measured variable, are dependent both on the data handling and on the measured variable. Linear and staircase interpolation, along with the use of clustering and filtering, provide the necessary options to develop accurate correlations. The examples illustrate the appropriate application of these options

  5. The impact of accelerometer mounting methods on the level of vibrations recorded at ground surface

    Directory of Open Access Journals (Sweden)

    Krzysztof Czech

    2014-08-01

    Full Text Available The paper presents the results of field research based on the measurements of accelerations recorded at ground surface. The source of the vibration characterized by high repetition rate of pulse parameters was light falling weight deflectometer ZFG-01. Measurements of vibrations have been carried out using top quality high-precision measuring system produced by Brüel&Kiær. Accelerometers were mounted on a sandy soil surface at the measuring points located radially at 5-m and 10-m distances from the source of vibration. The paper analyses the impact that the method of mounting accelerometers on the ground has on the level of the recorded values of accelerations of vibrations. It has been shown that the method of attaching the sensor to the surface of the ground is crucial for the credibility of the performed measurements.[b]Keywords[/b]: geotechnics, surface vibrations, ground, vibration measurement

  6. Auto-correlation based intelligent technique for complex waveform presentation and measurement

    International Nuclear Information System (INIS)

    Rana, K P S; Singh, R; Sayann, K S

    2009-01-01

    Waveform acquisition and presentation forms the heart of many measurement systems. Particularly, data acquisition and presentation of repeating complex signals like sine sweep and frequency-modulated signals introduces the challenge of waveform time period estimation and live waveform presentation. This paper presents an intelligent technique, for waveform period estimation of both the complex and simple waveforms, based on the normalized auto-correlation method. The proposed technique is demonstrated using LabVIEW based intensive simulations on several simple and complex waveforms. Implementation of the technique is successfully demonstrated using LabVIEW based virtual instrumentation. Sine sweep vibration waveforms are successfully presented and measured for electrodynamic shaker system generated vibrations. The proposed method is also suitable for digital storage oscilloscope (DSO) triggering, for complex signals acquisition and presentation. This intelligence can be embodied into the DSO, making it an intelligent measurement system, catering wide varieties of the waveforms. The proposed technique, simulation results, robustness study and implementation results are presented in this paper.

  7. High-speed ultra-wideband wireless signals over fiber systems: photonic generation and DSP detection

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2009-01-01

    We firstly review the efforts in the literature on ultra-wideband (UWB)-over-fiber systems. Secondly, we present experimental results on photonic generation of high-speed UWB signals by both direct modulation and external optical injecting an uncooled semiconductor laser. Furthermore, we introduce...... the use of digital signal processing (DSP) technology to receive the generated UWB signal at 781.25 Mbit/s. Error-free transmission is achieved....

  8. Constitutive error based parameter estimation technique for plate structures using free vibration signatures

    Science.gov (United States)

    Guchhait, Shyamal; Banerjee, Biswanath

    2018-04-01

    In this paper, a variant of constitutive equation error based material parameter estimation procedure for linear elastic plates is developed from partially measured free vibration sig-natures. It has been reported in many research articles that the mode shape curvatures are much more sensitive compared to mode shape themselves to localize inhomogeneity. Complying with this idea, an identification procedure is framed as an optimization problem where the proposed cost function measures the error in constitutive relation due to incompatible curvature/strain and moment/stress fields. Unlike standard constitutive equation error based procedure wherein a solution of a couple system is unavoidable in each iteration, we generate these incompatible fields via two linear solves. A simple, yet effective, penalty based approach is followed to incorporate measured data. The penalization parameter not only helps in incorporating corrupted measurement data weakly but also acts as a regularizer against the ill-posedness of the inverse problem. Explicit linear update formulas are then developed for anisotropic linear elastic material. Numerical examples are provided to show the applicability of the proposed technique. Finally, an experimental validation is also provided.

  9. Development of vibrational analysis for detection of antisymmetric shells

    International Nuclear Information System (INIS)

    Esmailzadeh Khadem, S.; Mahmoodi, M.; Rezaee, M.

    2002-01-01

    In this paper, vibrational behavior of bodies of revolution with different types of structural faults is studied. Since vibrational characteristics of structures are natural properties of system, the existence of any structural faults causes measurable changes in these properties. Here, this matter is demonstrated. In other words, vibrational behavior of a body of revolution with no structural faults is analyzed by two methods of I) numerical analysis using super sap software, II) Experimental model analysis, and natural frequencies and mode shapes are obtained. Then, different types of cracks are introduced in the structure, and analysis is repeated and the results are compared. Based on this study, one may perform crack detection by measuring the natural frequencies and mode shapes of the samples and comparing with reference information obtained from the vibration analysis of the original structure with no fault

  10. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  11. DSP for Matlab and Labview I fundamentals of discrete signal processing

    CERN Document Server

    Isen, Forester W

    2009-01-01

    This book is Volume I of the series DSP for MATLAB™ and LabVIEW™. The entire series consists of four volumes that collectively cover basic digital signal processing in a practical and accessible manner, but which nonetheless include all essential foundation mathematics. As the series title implies, the scripts (of which there are more than 200) described in the text and supplied in code form here will run on both MATLAB and LabVIEW. Volume I consists of four chapters. The first chapter gives a brief overview of the field of digital signal processing. This is followed by a chapter detailing man

  12. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  13. Microscopic machining mechanism of polishing based on vibrations of liquid

    International Nuclear Information System (INIS)

    Huang, Z G; Guo, Z N; Chen, X; Yu, Z Q; Yu, T M; Lee, W B

    2007-01-01

    A molecular dynamics method has been applied to study the mechanism of polishing based on vibrations of liquid. Movements of polishing particles and formations of impact dents are simulated and discussed. The abrasive effect between particle and machined substrate is evaluated empirically. Polishing qualities, including roughness and fractal character under multiple impacts, are obtained by numerical methods. Results show that the particle will vibrate and roll viscously on the substrate. Press, tear and self-organization effects will be responsible for the formation of impact dents. Simulation results are compared with experimental data to verify the conclusions

  14. observer-based diagnostics and monitoring of vibrations in nuclear reactor core cooling system

    International Nuclear Information System (INIS)

    Siry, S.A K.

    2007-01-01

    analysis and diagnostics of vibration in industrial systems play a significant rule to prevent severe severe damages . drive shaft vibration is a complicated phenomenon composed of two independent forms of vibrations, translational and torsional. translational vibration measurements in case of the reactor core cooling system are introduced. the system under study consists of the three phase induction motor, flywheel, centrifugal pump, and two coupling between motor-flywheel, and flywheel-pump. this system structure is considered to be one where the blades are pegged into the discs fitting into the shafts. a non-linear model to simulate vibration in the reactor core cooling system will be introduced. simulation results of an operating reactor core cooling system using the actual parameters will be presented to validate the accuracy and reliability of the proposed analytical method the accuracy in analyzing the results depends on the system model. the shortcomings of the conventional model will be avoided through the use of that accurate nonlinear model which improve the simulation of the reactor core cooling system

  15. Vibration measurement for evaluating the danger of rock-collapse; Rakuseki kikendo hantei no tame no shindo sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T; Harada, H [The Nippon Road Co. Ltd., Tokyo (Japan); Mitsuzuka, T [Chishitsu-Keisoku Co. Ltd., Tokyo (Japan)

    1997-10-22

    Discussions were given on feasibility of a method for investigating a problem of the danger of rock-collapse by applying vibration measurement. The measurement investigation was carried out at a mouth of a tunnel under construction on a highway where the danger of rock-collapse is being investigated according to a qualitative determination criterion. Sixty-four rocks have been evaluated of their danger, with the degree of the danger having been classified to ranks one to three. Vibration measurement was performed on five floating rocks out of the 64 rocks. Vibroscopes were installed on upper portion of the rocks to be investigated and on exposed rocks nearby. The measurement revealed that the vibration has nearly the same amplitude in both of the floating rocks and the settled rocks before and after an automobile has passed, but the floating rocks shake more strongly than the settled rocks while an automobile is passing. This trend appears more noticeably in rocks regarded unstable in the danger determining investigation, indicating presence of close relationship between wave amplitude excited by the automobile and adhesion of the floating rocks. As a result of the discussions, it was made clear that the maximum amplitude ratio and the spectral ratio among the vibration characteristics of the floating rocks can be used as effective determination criteria. 2 refs., 7 figs., 2 tabs.

  16. Vibrational lifetimes of protein amide modes

    International Nuclear Information System (INIS)

    Peterson, K.A.; Rella, C.A.

    1995-01-01

    Measurement of the lifetimes of vibrational modes in proteins has been achieved with a single frequency infrared pump-probe technique using the Stanford Picosecond Free-electron Laser, These are the first direct measurements of vibrational dynamics in the polyamide structure of proteins. In this study, modes associated with the protein backbone are investigated. Results for the amide I band, which consists mainly of the stretching motion of the carbonyl unit of the amide linkage, show that relaxation from the first vibrational excited level (v=1) to the vibrational ground state (v=0) occurs within 1.5 picoseconds with apparent first order kinetics. Comparison of lifetimes for myoglobin and azurin, which have differing secondary structures, show a small but significant difference. The lifetime for the amide I band of myoglobin is 300 femtoseconds shorter than for azurin. Further measurements are in progress on other backbone vibrational modes and on the temperature dependence of the lifetimes. Comparison of vibrational dynamics for proteins with differing secondary structure and for different vibrational modes within a protein will lead to a greater understanding of energy transfer and dissipation in biological systems. In addition, these results have relevance to tissue ablation studies which have been conducted with pulsed infrared lasers. Vibrational lifetimes are necessary for calculating the rate at which the energy from absorbed infrared photons is converted to equilibrium thermal energy within the irradiated volume. The very fast vibrational lifetimes measured here indicate that mechanisms which involve direct vibrational up-pumping of the amide modes with consecutive laser pulses, leading to bond breakage or weakening, are not valid

  17. The comparison between the acquisition vibration data obtained by different types of transducers for hydraulic turbine head cover

    Science.gov (United States)

    Li, Youping; Lu, Jinsong; Cheng, Jian; Yin, Yongzhen; Wang, Jianlan

    2017-04-01

    Based on the summaries of the rules about the vibration measurement for hydro-generator sets with respect to relevant standards, the key issues of the vibration measurement, such as measurement modes, the transducer selection are illustrated. In addition, the problems existing in vibration measurement are pointed out. The actual acquisition data of head cover vertical vibration respectively obtained by seismic transducer and eddy current transducer in site hydraulic turbine performance tests during the rising of the reservoir upstream level in a certain hydraulic power plant are compared. The difference of the data obtained by the two types of transducers and the potential reasons are presented. The application conditions of seismic transducer and eddy current transducer for hydro-generator set vibration measurement are given based on the analysis. Research subjects that should be focused on about the topic discussed in this paper are suggested.

  18. Distributed Weak Fiber Bragg Grating Vibration Sensing System Based on 3 × 3 Fiber Coupler

    Science.gov (United States)

    Li, Wei; Zhang, Jian

    2018-06-01

    A novel distributed weak fiber Bragg gratings (FBGs) vibration sensing system has been designed to overcome the disadvantages of the conventional methods for optical fiber sensing networking, which are: low signal intensity in the usually adopted time-division multiplexing (TDM) technology, insufficient quantity of multiplexed FBGs in the wavelength-division multiplexing (WDM) technology, and that the mixed WDM/TDM technology measures only the physical parameters of the FBG locations but cannot perform distributed measurement over the whole optical fiber. This novel system determines vibration events in the optical fiber line according to the intensity variation of the interference signals between the adjacent weak FBG reflected signals and locates the vibration points accurately using the TDM technology. It has been proven by tests that this system performs vibration signal detection and demodulation in a way more convenient than the conventional methods for the optical fiber sensing system. It also measures over the whole optical fiber, therefore, distributed measurement is fulfilled, and the system locating accuracy is up to 20 m, capable of detecting any signals of whose drive signals lower limit voltage is 0.2 V while the frequency range is 3 Hz‒1 000 Hz. The system has the great practical significance and application value for perimeter surveillance systems.

  19. Surface vibrational spectroscopy

    International Nuclear Information System (INIS)

    Erskine, J.L.

    1984-01-01

    A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations

  20. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    International Nuclear Information System (INIS)

    GREGORY, DANNY LYNN; CAP, JEROME S.; TOGAMI, THOMAS C.; NUSSER, MICHAEL A.; HOLLINGSHEAD, JAMES RONALD

    1999-01-01

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented

  1. Validation of a Methodology to Predict Micro-Vibrations Based on Finite Element Model Approach

    Science.gov (United States)

    Soula, Laurent; Rathband, Ian; Laduree, Gregory

    2014-06-01

    This paper presents the second part of the ESA R&D study called "METhodology for Analysis of structure- borne MICro-vibrations" (METAMIC). After defining an integrated analysis and test methodology to help predicting micro-vibrations [1], a full-scale validation test campaign has been carried out. It is based on a bread-board representative of typical spacecraft (S/C) platform consisting in a versatile structure made of aluminium sandwich panels equipped with different disturbance sources and a dummy payload made of a silicon carbide (SiC) bench. The bread-board has been instrumented with a large set of sensitive accelerometers and tests have been performed including back-ground noise measurement, modal characterization and micro- vibration tests. The results provided responses to the perturbation coming from a reaction wheel or cryo-cooler compressors, operated independently then simultaneously with different operation modes. Using consistent modelling and associated experimental characterization techniques, a correlation status has been assessed by comparing test results with predictions based on FEM approach. Very good results have been achieved particularly for the case of a wheel in sweeping rate operation with test results over-predicted within a reasonable margin lower than two. Some limitations of the methodology have also been identified for sources operating at a fixed rate or coming with a small number of dominant harmonics and recommendations have been issued in order to deal with model uncertainties and stay conservative.

  2. Optical image hiding based on chaotic vibration of deformable moiré grating

    Science.gov (United States)

    Lu, Guangqing; Saunoriene, Loreta; Aleksiene, Sandra; Ragulskis, Minvydas

    2018-03-01

    Image hiding technique based on chaotic vibration of deformable moiré grating is presented in this paper. The embedded secret digital image is leaked in a form of a pattern of time-averaged moiré fringes when the deformable cover grating vibrates according to a chaotic law of motion with a predefined set of parameters. Computational experiments are used to demonstrate the features and the applicability of the proposed scheme.

  3. Effect of material constants on power output in piezoelectric vibration-based generators.

    Science.gov (United States)

    Takeda, Hiroaki; Mihara, Kensuke; Yoshimura, Tomohiro; Hoshina, Takuya; Tsurumi, Takaaki

    2011-09-01

    A possible power output estimation based on material constants in piezoelectric vibration-based generators is proposed. A modified equivalent circuit model of the generator was built and was validated by the measurement results in the generator fabricated using potassium sodium niobate-based and lead zirconate titanate (PZT) ceramics. Subsequently, generators with the same structure using other PZT-based and bismuth-layered structure ferroelectrics ceramics were fabricated and tested. The power outputs of these generators were expressed as a linear functions of the term composed of electromechanical coupling coefficients k(sys)(2) and mechanical quality factors Q*(m) of the generator. The relationship between device constants (k(sys)(2) and Q*(m)) and material constants (k(31)(2) and Q(m)) was clarified. Estimation of the power output using material constants is demonstrated and the appropriate piezoelectric material for the generator is suggested.

  4. Distributed bearing fault diagnosis based on vibration analysis

    Science.gov (United States)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  5. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  6. Quantitative estimation of the influence of external vibrations on the measurement error of a coriolis mass-flow meter

    NARCIS (Netherlands)

    van de Ridder, Bert; Hakvoort, Wouter; van Dijk, Johannes; Lötters, Joost Conrad; de Boer, Andries; Dimitrovova, Z.; de Almeida, J.R.

    2013-01-01

    In this paper the quantitative influence of external vibrations on the measurement value of a Coriolis Mass-Flow Meter for low flows is investigated, with the eventual goal to reduce the influence of vibrations. Model results are compared with experimental results to improve the knowledge on how

  7. Chaotic Dynamics-Based Analysis of Broadband Piezoelectric Vibration Energy Harvesting Enhanced by Using Nonlinearity

    Directory of Open Access Journals (Sweden)

    Zhongsheng Chen

    2016-01-01

    Full Text Available Nonlinear magnetic forces are always used to enlarge resonant bandwidth of vibration energy harvesting systems with piezoelectric cantilever beams. However, how to determine properly the distance between two magnets is one of the key engineering problems. In this paper, the Melnikov theory is introduced to overcome it. Firstly, the Melnikov state-space model of the nonlinear piezoelectric vibration energy harvesting (PVEH system is built. Based on it, chaotic dynamics mechanisms of achieving broadband PVEH by nonlinearity are exposed by potential function of the unperturbed nonlinear PVEH system. Then the corresponding Melnikov function of the nonlinear PVEH system is defined, based on which two Melnikov necessary conditions of determining the distance are obtained. Finally, numerical simulations are done to testify the theoretic results. The results demonstrate that the distance is closely related to the excitation amplitude and frequency once geometric and material parameters are fixed. Under a single-frequency excitation, the nonlinear PVEH system can generate a periodic vibration around a stable point, a large-amplitude vibration around two stable points, or a chaotic vibration. The proposed method is very valuable for optimally designing and utilizing nonlinear broadband PVEH devices in engineering applications.

  8. A nonlinear multi-mode wideband piezoelectric vibration-based energy harvester using compliant orthoplanar spring

    Energy Technology Data Exchange (ETDEWEB)

    Dhote, Sharvari, E-mail: sharvari.dhote@mail.utoronto.ca; Zu, Jean; Zhu, Yang [Department of Mechanical and Industrial Engineering, University of Toronto, 5 King' s College Road, Toronto, Ontario M5S-3G8 (Canada)

    2015-04-20

    In this paper, a nonlinear wideband multi-mode piezoelectric vibration-based energy harvester (PVEH) is proposed based on a compliant orthoplanar spring (COPS), which has an advantage of providing multiple vibration modes at relatively low frequencies. The PVEH is made of a tri-leg COPS flexible structure, where three fixed-guided beams are capable of generating strong nonlinear oscillations under certain base excitation. A prototype harvester was fabricated and investigated through both finite-element analysis and experiments. The frequency response shows multiple resonance which corresponds to a hardening type of nonlinear resonance. By adding masses at different locations on the COPS structure, the first three vibration modes are brought close to each other, where the three hardening nonlinear resonances provide a wide bandwidth for the PVEH. The proposed PVEH has enhanced performance of the energy harvester in terms of a wide frequency bandwidth and a high-voltage output under base excitations.

  9. The LBT real-time based control software to mitigate and compensate vibrations

    Science.gov (United States)

    Borelli, J.; Trowitzsch, J.; Brix, M.; Kürster, M.; Gässler, W.; Bertram, T.; Briegel, F.

    2010-07-01

    The Large Binocular Telescope (LBT) uses two 8.4 meters active primary mirrors and two adaptive secondary mirrors on the same mounting to take advantage of its interferometric capabilities. Both applications, interferometry and AO, are sensitive to vibrations. Several measurement campaigns have been carried out at the LBT and their results strongly indicate that a vibration monitoring system is required to improve the performance of LINC-NIRVANA, LBTI, and ARGOS, the laser guided ground layer adaptive optic system. Currently, a control software for mitigation and compensation of the vibrations is being designed. A complex set of algorithms collects real-time vibration data, archiving it for further analysis, and in parallel, generating the tip-tilt and optical path difference (OPD) data for the control loop of the instruments. A real-time data acquisition device equipped with embedded real-time Linux is used in our systems. A set of quick-look tools is currently under development in order to verify if the conditions at the telescope are suitable for interferometric/adaptive observations.

  10. Vocal fold contact patterns based on normal modes of vibration.

    Science.gov (United States)

    Smith, Simeon L; Titze, Ingo R

    2018-05-17

    The fluid-structure interaction and energy transfer from respiratory airflow to self-sustained vocal fold oscillation continues to be a topic of interest in vocal fold research. Vocal fold vibration is driven by pressures on the vocal fold surface, which are determined by the shape of the glottis and the contact between vocal folds. Characterization of three-dimensional glottal shapes and contact patterns can lead to increased understanding of normal and abnormal physiology of the voice, as well as to development of improved vocal fold models, but a large inventory of shapes has not been directly studied previously. This study aimed to take an initial step toward characterizing vocal fold contact patterns systematically. Vocal fold motion and contact was modeled based on normal mode vibration, as it has been shown that vocal fold vibration can be almost entirely described by only the few lowest order vibrational modes. Symmetric and asymmetric combinations of the four lowest normal modes of vibration were superimposed on left and right vocal fold medial surfaces, for each of three prephonatory glottal configurations, according to a surface wave approach. Contact patterns were generated from the interaction of modal shapes at 16 normalized phases during the vibratory cycle. Eight major contact patterns were identified and characterized by the shape of the flow channel, with the following descriptors assigned: convergent, divergent, convergent-divergent, uniform, split, merged, island, and multichannel. Each of the contact patterns and its variation are described, and future work and applications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Gearbox tooth cut fault diagnostics using acoustic emission and vibration sensors--a comparative study.

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-14

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  12. Vibrations of Railroad Due to The Passage of The Underground Train

    Science.gov (United States)

    Konowrocki, Robert; Bajer, Czesław

    2010-03-01

    In the paper we present results of vibration measurements in the train and on the base of the railroad in tunnels of Warsaw Underground. Measurements were performed at straight and curved sections of the track. The paper is focused on the influence of the lateral slip in rail/wheel contact zone on the generation of vibrations and a noise. Vibrations were analyzed in terms of accelerations, velocities or displacements as a function of time and frequency. Results ware compared with the experiment of rolling of the wheel with lateral sleep. In both cases we observed double periodic oscillations.

  13. Features of measurement and processing of vibration signals registered on the moving parts of electrical machines

    OpenAIRE

    Gyzhko, Yuri

    2011-01-01

    Measurement and processing of vibration signals registered on the moving parts of the electrical machines using the diagnostic information-measuring system that uses Bluetooth wireless standard for the transmission of the measured data from moving parts of electrical machine is discussed.

  14. Evaluation of Aero Commander sidewall vibration and interior acoustic data: Static operations

    Science.gov (United States)

    Piersol, A. G.; Wilby, E. G.; Wilby, J. F.

    1980-01-01

    Results for the vibration measured at five locations on the fuselage structure during static operations are presented. The analysis was concerned with the magnitude of the vibration and the relative phase between different locations, the frequency response (inertance) functions between the exterior pressure field and the vibration, and the coherent output power functions at interior microphone locations based on sidewall vibration. Fuselage skin panels near the plane of rotation of the propeller accept propeller noise excitation more efficiently than they do exhaust noise.

  15. Characterization and synthesis of random acceleration vibration specifications

    NARCIS (Netherlands)

    Wijker, Jacob J; Ellenbroek, Marcellinus Hermannus Maria; de Boer, Andries; Papadrakakis, M.; Lagaros, N.D.; Plevris, V.

    2013-01-01

    Random acceleration vibration specifications for subsystems, i.e. instruments, equipment, are most times based on measurement during acoustic noise tests on system level, i.e. a spacecraft and measured by accelerometers, placed in the neighborhood of the interface between spacecraft and subsystem.

  16. General vibration monitoring: Experimental hall

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1993-01-01

    The reported vibration data were generated from measurements made on the experimental hall floor on December 2, 1992. At the time of the measurements, the ESRF hydrolevel was set-up in the Early Assembly Area (EAA) of the experimental hall and was being used to measure static displacement (settlement) of the floor. The vibration measurement area was on and adjacent to the EAA, in the vicinity of the ESRF hydrolevel test which was in progress. This report summarizes the objectives, instrumentation, measurement locations, observations, and conclusions, and provides selected results in the form of RMS vs. time plots, and power spectral densities from which frequency information can be derived. Measured response amplitudes were within the vibration criteria established for the APS

  17. Criteria for accepting piping vibrations measured during FFTF plant startup

    International Nuclear Information System (INIS)

    Huang, S.N.

    1981-03-01

    Piping in the Fast Flux Test Facility is subjected to low-amplitude, high cycle vibration over the plant lifetime. Excitation sources include the mechanical vibration induced by main centrifugal pumps, auxiliary reciprocating pumps, EM pumps and possible flow oscillations. Vibration acceptance criteria must be established which will prevent excessive pipe and support fatigue damage when satified. This paper describes the preparation of such criteria against pipe failure used for acceptance testing of the Fast Flux Test Facility main heat transport piping

  18. Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration

    International Nuclear Information System (INIS)

    Spreemann, Dirk; Hoffmann, Daniel; Folkmer, Bernd; Manoli, Yiannos

    2008-01-01

    This paper presents a design and optimization strategy for resonant electromagnetic vibration energy harvesting devices. An analytic expression for the magnetic field of cylindrical permanent magnets is used to build up an electromagnetic subsystem model. This subsystem is used to find the optimal resting position of the oscillating mass and to optimize the geometrical parameters (shape and size) of the magnet and coil. The objective function to be investigated is thereby the maximum voltage output of the transducer. An additional mechanical subsystem model based on well-known equations describing the dynamics of spring–mass–damper systems is established to simulate both nonlinear spring characteristics and the effect of internal limit stops. The mechanical subsystem enables the identification of optimal spring characteristics for realistic operation conditions such as stochastic vibrations. With the overall transducer model, a combination of both subsystems connected to a simple electrical circuit, a virtual operation of the optimized vibration transducer excited by a measured random acceleration profile can be performed. It is shown that the optimization approach results in an appreciable increase of the converter performance

  19. Fast-adaptive fiber-optic sensor for ultra-small vibration and deformation measurement

    International Nuclear Information System (INIS)

    Romashko, R V; Girolamo, S Di; Kulchin, Y N; Launay, J C; Kamshilin, A A

    2007-01-01

    Adaptive fiber-optic interferometer measuring system based on a dynamic hologram recorded in photorefractive CdTe crystal without applying an external electric field is developed. Vectorial mixing of two waves with different polarizations in the anisotropic diffraction geometry allows for the realization of linear regime of phase demodulation at the diffusion hologram. High sensitivity of the interferometer is achieved due to recording of the hologram in reflection geometry at high spatial frequencies in a crystal with sufficient concentration of photorefractive centers. The sensitivity obtained makes possible a broadband detection of ultra-small vibrations with amplitude of less then 0.1 nm. High cut-off frequency of the interferometer achieved using low-power light sources due to fast response of CdTe crystal allows one to eliminate temperature fluctuations and other industrial noises

  20. Vibration-based damage detection in wind turbine blades using Phase-based Motion Estimation and motion magnification

    Science.gov (United States)

    Sarrafi, Aral; Mao, Zhu; Niezrecki, Christopher; Poozesh, Peyman

    2018-05-01

    Vibration-based Structural Health Monitoring (SHM) techniques are among the most common approaches for structural damage identification. The presence of damage in structures may be identified by monitoring the changes in dynamic behavior subject to external loading, and is typically performed by using experimental modal analysis (EMA) or operational modal analysis (OMA). These tools for SHM normally require a limited number of physically attached transducers (e.g. accelerometers) in order to record the response of the structure for further analysis. Signal conditioners, wires, wireless receivers and a data acquisition system (DAQ) are also typical components of traditional sensing systems used in vibration-based SHM. However, instrumentation of lightweight structures with contact sensors such as accelerometers may induce mass-loading effects, and for large-scale structures, the instrumentation is labor intensive and time consuming. Achieving high spatial measurement resolution for a large-scale structure is not always feasible while working with traditional contact sensors, and there is also the potential for a lack of reliability associated with fixed contact sensors in outliving the life-span of the host structure. Among the state-of-the-art non-contact measurements, digital video cameras are able to rapidly collect high-density spatial information from structures remotely. In this paper, the subtle motions from recorded video (i.e. a sequence of images) are extracted by means of Phase-based Motion Estimation (PME) and the extracted information is used to conduct damage identification on a 2.3-m long Skystream® wind turbine blade (WTB). The PME and phased-based motion magnification approach estimates the structural motion from the captured sequence of images for both a baseline and damaged test cases on a wind turbine blade. Operational deflection shapes of the test articles are also quantified and compared for the baseline and damaged states. In addition

  1. Vibrations in orthopedics.

    Science.gov (United States)

    Nokes, L D; Thorne, G C

    1988-01-01

    Measurements of various mechanical properties of skeletal material using vibration techniques have been reported. The purposes of such investigations include the monitoring of pathogenic disorders such as osteoporosis, the rate and extent of fracture healing, and the status of internal fixations. Early investigations pioneered the application of conventional vibration measurement equipment to biological systems. The more recent advent of the microcomputer has made available to research groups more sophisticated techniques for data acquisition and analysis. The economical advantages of such equipment has led to the development of portable research instrumentation which lends itself to use in a clinical environment. This review article reports on the developments and progression of the various vibrational techniques and theories as applied to musculoskeletal systems.

  2. Fast response Antiwindup PI speed controller of Brushless DC motor drive: Modeling, simulation and implementation on DSP

    Directory of Open Access Journals (Sweden)

    Mohd Tariq

    2016-05-01

    Full Text Available Most of the Brushless DC (BLDC motors drive adopts proportional, integral and derivative (PID controller and pulse width modulation (PWM scheme for speed control. Hence, BLDC motor drive has strong saturation characteristics. The saturation results in a typical windup phenomenon. The paper presents an Antiwindup drive for BLDC motor. An Antiwindup controller (AWC has been used in the paper. AWC has been modeled in MATLAB/Simulink and comparison has been done between conventional PI controller and AWC at different starting loads. Dynamic characteristics of the BLDC motor drive have been examined and results are presented and discussed in detail in this paper. Details of DSP based experimental validation of the simulated results are also presented here.

  3. Removing damped sinusoidal vibrations in adaptive optics systems using a DFT-based estimation method

    Science.gov (United States)

    Kania, Dariusz

    2017-06-01

    The problem of a vibrations rejection in adaptive optics systems is still present in publications. These undesirable signals emerge because of shaking the system structure, the tracking process, etc., and they usually are damped sinusoidal signals. There are some mechanical solutions to reduce the signals but they are not very effective. One of software solutions are very popular adaptive methods. An AVC (Adaptive Vibration Cancellation) method has been presented and developed in recent years. The method is based on the estimation of three vibrations parameters and values of frequency, amplitude and phase are essential to produce and adjust a proper signal to reduce or eliminate vibrations signals. This paper presents a fast (below 10 ms) and accurate estimation method of frequency, amplitude and phase of a multifrequency signal that can be used in the AVC method to increase the AO system performance. The method accuracy depends on several parameters: CiR - number of signal periods in a measurement window, N - number of samples in the FFT procedure, H - time window order, SNR, THD, b - number of A/D converter bits in a real time system, γ - the damping ratio of the tested signal, φ - the phase of the tested signal. Systematic errors increase when N, CiR, H decrease and when γ increases. The value of systematic error for γ = 0.1%, CiR = 1.1 and N = 32 is approximately 10^-4 Hz/Hz. This paper focuses on systematic errors of and effect of the signal phase and values of γ on the results.

  4. Atomic vibration amplitudes in fcc and hcp 4He through x-ray diffraction measurements

    International Nuclear Information System (INIS)

    Venkataraman, C.T.; Simmons, R.O.

    2003-01-01

    Atomic vibration amplitudes in dense fcc and hcp 4 He crystals have been measured using synchrotron x rays from the dependence of integrated Bragg intensities up to wave vectors of 91 nm -1 . Observed raw Bragg x-ray integrated intensities cover an extraordinary range, greater than 10 5 , due to the combined effect of the Debye-Waller factor and electronic form factor. From analysis of these intensities mean-square atomic vibration amplitudes Q 2 > and Lindemann ratios are determined. Path-integral Monte Carlo (PIMC) computations of Draeger and Ceperley, extrapolated to the thermodynamic limit, provide excellent agreement with these experimental results. For both present measurements and the PIMC results, one finds both a predominantly Gaussian distribution in Q 2 > and an extraordinarily large Lindemann ratio. In contrast, these directly measured x-ray values are significantly larger than published values inferred from Born-von Karman fitting to phonon dispersion measured by neutron scattering. Mildly anharmonic neon, which is fairly well described by self-consistent phonon theories, is contrasted with present results on fcc 4 He at corresponding densities

  5. Automatic Leak Detection in Buried Plastic Pipes of Water Supply Networks by Means of Vibration Measurements

    OpenAIRE

    Martini, Alberto; Troncossi, Marco; Rivola, Alessandro

    2015-01-01

    The implementation of strategies for controlling water leaks is essential in order to reduce losses affecting distribution networks of drinking water. This paper focuses on leak detection by using vibration monitoring techniques. The long-term goal is the development of a system for automatic early detection of burst leaks in service pipes. An experimental campaign was started to measure vibrations transmitted along water pipes by real burst leaks occurring in actual water supply networks. Th...

  6. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Science.gov (United States)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Zhao, Xiaomeng; Fan, Shangchun

    2015-10-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  7. Theory and experiment research for ultra-low frequency maglev vibration sensor

    International Nuclear Information System (INIS)

    Zheng, Dezhi; Liu, Yixuan; Guo, Zhanshe; Fan, Shangchun; Zhao, Xiaomeng

    2015-01-01

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements

  8. Theory and experiment research for ultra-low frequency maglev vibration sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dezhi; Liu, Yixuan, E-mail: xuan61x@163.com; Guo, Zhanshe; Fan, Shangchun [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Zhao, Xiaomeng [Laser Medicine Laboratory, Institute of Biomedical Engineering, Chinese Academy of medical Sciences and Peking Union Medical College, Tianjin 300192 (China)

    2015-10-15

    A new maglev sensor is proposed to measure ultra-low frequency (ULF) vibration, which uses hybrid-magnet levitation structure with electromagnets and permanent magnets as the supporting component, rather than the conventional spring structure of magnetoelectric vibration sensor. Since the lower measurement limit needs to be reduced, the equivalent bearing stiffness coefficient and the equivalent damping coefficient are adjusted by the sensitivity unit structure of the sensor and the closed-loop control system, which realizes both the closed-loop control and the solving algorithms. A simple sensor experimental platform is then assembled based on a digital hardware system, and experimental results demonstrate that the lower measurement limit of the sensor is increased to 0.2 Hz under these experimental conditions, indicating promising results of the maglev sensor for ULF vibration measurements.

  9. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  10. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Science.gov (United States)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-06-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  11. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    International Nuclear Information System (INIS)

    Keersmaekers, Lissa; Keustermans, William; De Greef, Daniël; Dirckx, Joris J. J.

    2016-01-01

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  12. Full-field vibration measurements of the violin using digital stroboscopic holographic interferometry and electromagnetic stimulation of the strings

    Energy Technology Data Exchange (ETDEWEB)

    Keersmaekers, Lissa; Keustermans, William, E-mail: william.keustermans@uantwerpen.be; De Greef, Daniël; Dirckx, Joris J. J. [University of Antwerp, Laboratory of Biophysics and Biomedical Physics, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2016-06-28

    We developed a setup in which the strings of the violin are driven electromagnetically, and the resulting vibration of the instrument is measured with digital stroboscopic holography. A 250 mW single mode green laser beam is chopped using an acousto-optic modulator, generating illumination pulses of 2% of the vibration period. The phase of the illumination pulse is controlled by a programmable function generator so that digital holograms can be recorded on a number of subsequent time positions within the vibration phase. From these recordings, the out of plane motion as a function of time is reconstructed in full field. We show results of full-field vibration amplitude and vibration phase maps, and time resolved full-field deformations of the violin back plane. Time resolved measurements show in detail how the deformation of the violin plane changes as a function of time at different frequencies. We found very different behavior under acoustic stimulation of the instrument and when using electromagnetic stimulation of a string. The aim of the work it to gather data which can be used in power flow calculations to study how the energy of the strings is conducted to the body of the violin and eventually is radiated as sound.

  13. Viscoelastic material properties’ identification using high speed full field measurements on vibrating plates

    Directory of Open Access Journals (Sweden)

    Pierron F.

    2010-06-01

    Full Text Available The paper presents an experimental application of a method leading to the identification of the elastic and damping material properties of isotropic vibrating plates. The theory assumes that the searched parameters can be extracted from curvature and deflection fields measured on the whole surface of the plate at two particular instants of the vibrating motion. The experimental application consists in an original excitation fixture, a particular adaptation of an optical full-field measurement technique, a data preprocessing giving the curvature and deflection fields and finally in the identification process using the Virtual Fields Method (VFM. The principle of the deflectometry technique used for the measurements is presented. First results of identification on an acrylic plate are presented and compared to reference values. Details about a new experimental arrangement, currently in progress, is presented. It uses a high speed digital camera to over sample the full-field measurements.

  14. MU-SYNTHESIS BASED ACTIVE ROBUST VIBRATION CONTROL OF AN MRI INLET

    Directory of Open Access Journals (Sweden)

    Atta Oveisi

    2016-04-01

    Full Text Available In this paper, a robust control technique based on μ-synthesis is employed in order to investigate the vibration control of a funnel-shaped structure that is used as the inlet of a magnetic resonance imaging (MRI device. MRI devices are widely subjected to the vibration of the magnetic gradient coil which then propagates to acoustic noise and leads to a series of clinical and mechanical problems. In order to address this issue and as a part of noise cancellation study in MRI devices, distributed piezo-transducers are bounded on the top surface of the funnel as functional sensor/actuator modules. Then, a reduced order linear time-invariant (LTI model of the piezolaminated structure in the state-space representation is estimated by means of a predictive error minimization (PEM algorithm as a subspace identification method based on the trust-region-reflective technique. The reduced order model is expanded by the introduction of appropriate frequency-dependent weighting functions that address the unmodeled dynamics and the augmented multiplicative modeling uncertainties of the system. Then, the standard D-K iteration algorithm as an output-feedback control method is used based on the nominal model with the subordinate uncertainty elements from the previous step. Finally, the proposed control system implemented experimentally on the real structure is to evaluate the robust vibration attenuation performance of the closed-loop system.

  15. Absolute measurement of subnanometer scale vibration of cochlear partition of an excised guinea pig cochlea using spectral-domain phase-sensitive optical coherence tomography

    Science.gov (United States)

    Subhash, Hrebesh M.; Choudhury, Niloy; Jacques, Steven L.; Wang, Ruikang K.; Chen, Fangyi; Zha, Dingjun; Nuttall, Alfred L.

    2012-01-01

    Direct measurement of absolute vibration parameters from different locations within the mammalian organ of Corti is crucial for understanding the hearing mechanics such as how sound propagates through the cochlea and how sound stimulates the vibration of various structures of the cochlea, namely, basilar membrane (BM), recticular lamina, outer hair cells and tectorial membrane (TM). In this study we demonstrate the feasibility a modified phase-sensitive spectral domain optical coherence tomography system to provide subnanometer scale vibration information from multiple angles within the imaging beam. The system has the potential to provide depth resolved absolute vibration measurement of tissue microstructures from each of the delay-encoded vibration images with a noise floor of ~0.3nm at 200Hz.

  16. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Directory of Open Access Journals (Sweden)

    Yongzhi Qu

    2014-01-01

    Full Text Available In recent years, acoustic emission (AE sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance.

  17. Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study

    Science.gov (United States)

    Qu, Yongzhi; He, David; Yoon, Jae; Van Hecke, Brandon; Bechhoefer, Eric; Zhu, Junda

    2014-01-01

    In recent years, acoustic emission (AE) sensors and AE-based techniques have been developed and tested for gearbox fault diagnosis. In general, AE-based techniques require much higher sampling rates than vibration analysis-based techniques for gearbox fault diagnosis. Therefore, it is questionable whether an AE-based technique would give a better or at least the same performance as the vibration analysis-based techniques using the same sampling rate. To answer the question, this paper presents a comparative study for gearbox tooth damage level diagnostics using AE and vibration measurements, the first known attempt to compare the gearbox fault diagnostic performance of AE- and vibration analysis-based approaches using the same sampling rate. Partial tooth cut faults are seeded in a gearbox test rig and experimentally tested in a laboratory. Results have shown that the AE-based approach has the potential to differentiate gear tooth damage levels in comparison with the vibration-based approach. While vibration signals are easily affected by mechanical resonance, the AE signals show more stable performance. PMID:24424467

  18. Vibration Theory, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R. K.

    The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration th...... theory is unchanged in comparison to the 3rd edition. Only a few errors have been corrected.......The present textbook has been written based on previous lecture notes for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M. Sc. students in structural engineering. The present 4th edition of this textbook on linear stochastic vibration...

  19. Blast damage predictions from vibration measurements at the SKB underground laboratories at Aespoe in Sweden

    International Nuclear Information System (INIS)

    Ouchterlony, F.; Sjoeberg, C.; Jonsson, B.A.

    1993-01-01

    This contribution reports an investigation of the blasting damage in the contour of an access ramp to a Swedish underground laboratory for nuclear waste related studies. Near zone vibration measurements were made for 7 rounds and the results converted to a site specific scaling law. A simple engineering correction for the influence of the charge length was developed and the resulting equations used to predict the damage zone depths of three different drilling and charging patterns. These predictions were then compared with actual blast damage measurements. The agreement with geophysical borehole logging results is remarkably good. This gives good support to the engineering method in which a critical vibration velocity is used to predict the zones of blast damage around bore holes

  20. Vibration in car repair work.

    Science.gov (United States)

    Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E

    1987-03-01

    The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.

  1. An FPGA-based rapid prototyping platform for wavelet coprocessors

    Science.gov (United States)

    Vera, Alonzo; Meyer-Baese, Uwe; Pattichis, Marios

    2007-04-01

    MatLab/Simulink-based design flows are being used by DSP designers to improve time-to-market of FPGA implementations. 1 Commonly, digital signal processing cores are integrated in an embedded system as coprocessors. Existing CAD tools do not fully address the integration of a DSP coprocessor into an embedded system design. This integration might prove to be time consuming and error prone. It also requires that the DSP designer has an excellent knowledge of embedded systems and computer architecture details. We present a prototyping platform and design flow that allows rapid integration of embedded systems with a wavelet coprocessor. The platform comprises of software and hardware modules that allow a DSP designer a painless integration of a coprocessor with a PowerPC-based embedded system. The platform has a wide range of applications, from industrial to educational environments.

  2. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  3. A search for optimal parameters of resonance circuits ensuring damping of electroelastic structure vibrations based on the solution of natural vibration problem

    Science.gov (United States)

    Oshmarin, D.; Sevodina, N.; Iurlov, M.; Iurlova, N.

    2017-06-01

    In this paper, with the aim of providing passive control of structure vibrations a new approach has been proposed for selecting optimal parameters of external electric shunt circuits connected to piezoelectric elements located on the surface of the structure. The approach is based on the mathematical formulation of the natural vibration problem. The results of solution of this problem are the complex eigenfrequencies, the real part of which represents the vibration frequency and the imaginary part corresponds to the damping ratio, characterizing the rate of damping. A criterion of search for optimal parameters of the external passive shunt circuits, which can provide the system with desired dissipative properties, has been derived based on the analysis of responses of the real and imaginary parts of different complex eigenfrequencies to changes in the values of the parameters of the electric circuit. The efficiency of this approach has been verified in the context of natural vibration problem of rigidly clamped plate and semi-cylindrical shell, which is solved for series-connected and parallel -connected external resonance (consisting of resistive and inductive elements) R-L circuits. It has been shown that at lower (more energy-intensive) frequencies, a series-connected external circuit has the advantage of providing lower values of the circuit parameters, which renders it more attractive in terms of practical applications.

  4. Vibration study of the APS magnet support assemblies

    International Nuclear Information System (INIS)

    Wambsganss, M.W.; Jendrzejczyk, J.A.; Chen, S.S.

    1990-11-01

    Stability of the positron closed orbit is a requirement for successful operation of the Advanced Photon Source. The fact that vibration of the storage ring quadrupole magnets can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth provides the motivation for the subject studies. Low frequency vibrations can be controlled with steering magnets using feedback systems, provided the vibration amplitudes are within the dynamic range of the controllers. High frequency vibration amplitudes, on the other hand, are out of the range of the controller and, therefore must be limited to ensure the emittance growth will not exceed a prescribed value. Vibration criteria were developed based on the requirement that emittance growth be limited to 10 percent. Recognizing that the quadrupole magnets have the most significant effect, three different scenarios were considered: vibration of a single quadrupole within the storage ring, random vibration of all the quadrupoles in the ring, and the hypothetical case of a plane wave sweeping across the site and the quadrupoles following the motion of the plane wave. The maximum allowable peak vibration amplitudes corresponding to these three vibration scenarios are given. The criteria associated with the passage of a plane wave is dependent on wavelength, or, alternatively, on frequency given the wave speed. The wave speed used is that measured as a part of the geotechnical investigation at the APS site

  5. Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

    Science.gov (United States)

    Krasniqi, F. S.; Zhong, Y.; Epp, S. W.; Foucar, L.; Trigo, M.; Chen, J.; Reis, D. A.; Wang, H. L.; Zhao, J. H.; Lemke, H. T.; Zhu, D.; Chollet, M.; Fritz, D. M.; Hartmann, R.; Englert, L.; Strüder, L.; Schlichting, I.; Ullrich, J.

    2018-03-01

    Long wavelength vibrational modes in the ferromagnetic semiconductor Ga0.91 Mn0.09 As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.

  6. Multi-level Simulation of a Real Time Vibration Monitoring System Component

    Science.gov (United States)

    Robertson, Bryan A.; Wilkerson, Delisa

    2005-01-01

    This paper describes the development of a custom built Digital Signal Processing (DSP) printed circuit board designed to implement the Advanced Real Time Vibration Monitoring Subsystem proposed by Marshall Space Flight Center (MSFC) Transportation Directorate in 2000 for the Space Shuttle Main Engine Advanced Health Management System (AHMS). This Real Time Vibration Monitoring System (RTVMS) is being developed for ground use as part of the AHMS Health Management Computer-Integrated Rack Assembly (HMC-IRA). The HMC-IRA RTVMS design contains five DSPs which are highly interconnected through individual communication ports, shared memory, and a unique communication router that allows all the DSPs to receive digitized data fiom two multi-channel analog boards simultaneously. This paper will briefly cover the overall board design but will focus primarily on the state-of-the-art simulation environment within which this board was developed. This 16-layer board with over 1800 components and an additional mezzanine card has been an extremely challenging design. Utilization of a Mentor Graphics simulation environment provided the unique board and system level simulation capability to ascertain any timing or functional concerns before production. By combining VHDL, Synopsys Software and Hardware Models, and the Mentor Design Capture Environment, multiple simulations were developed to verify the RTVMS design. This multi-level simulation allowed the designers to achieve complete operability without error the first time the RTVMS printed circuit board was powered. The HMC-IRA design has completed all engineering and deliverable unit testing. P

  7. Return to Flying Duties Following Centrifuge or Vibration Exposures

    Science.gov (United States)

    Scheuring, Richard A.; Clarke, Jonathan; Jones, Jeffrey A.

    2009-01-01

    Introduction: In an effort to determine the human performance limits for vibration in spacecraft being developed by NASA, astronauts were evaluated during a simulated launch profile in a centrifuge/vibration environment and separate vibration-only simulation. Current USAF and Army standards for return to flight following centrifuge exposures require 12-24 hours to pass before a crewmember may return to flying duties. There are no standards on vibration exposures and return to flying duties. Based on direct observation and provocative neurological testing of the astronauts, a new standard for return to flying duties following centrifuge and/or vibration exposures was established. Methods: 13 astronaut participants were exposed to simulated launch profiles in a + 3.5 Gx bias centrifuge/vibration environment and separately on a vibration table at the NASA-Ames Research Center. Each subject had complete neurological evaluations pre- and post-exposure for the centrifuge/vibration runs with the NASA neurological function rating scale (NFRS). Subjects who participated in the vibration-only exposures had video oculography performed with provocative maneuvers in addition to the NFRS. NFRS evaluations occurred immediately following each exposure and at 1 hour post-run. Astronauts who remained symptomatic at 1 hour had repeat NFRS performed at 1 hour intervals until the crewmember was asymptomatic. Results: Astronauts in the centrifuge/vibration study averaged a 3-5 point increase in NFRS scores immediately following exposure but returned to baseline 3 hours post-run. Subjects exposed to the vibration-only simulation had a 1-3 point increase following exposure and returned to baseline within 1-2 hours. Pre- and post- vibration exposure video oculography did not reveal any persistent ocular findings with provocative testing 1 hour post-exposure. Discussion: Based on direct observations and objective measurement of neurological function in astronauts following simulated launch

  8. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms.

    Science.gov (United States)

    Wu, Qianqian; Yue, Honghao; Liu, Rongqiang; Zhang, Xiaoyou; Ding, Liang; Liang, Tian; Deng, Zongquan

    2015-08-14

    High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  9. Measurement Model and Precision Analysis of Accelerometers for Maglev Vibration Isolation Platforms

    Directory of Open Access Journals (Sweden)

    Qianqian Wu

    2015-08-01

    Full Text Available High precision measurement of acceleration levels is required to allow active control for vibration isolation platforms. It is necessary to propose an accelerometer configuration measurement model that yields such a high measuring precision. In this paper, an accelerometer configuration to improve measurement accuracy is proposed. The corresponding calculation formulas of the angular acceleration were derived through theoretical analysis. A method is presented to minimize angular acceleration noise based on analysis of the root mean square noise of the angular acceleration. Moreover, the influence of installation position errors and accelerometer orientation errors on the calculation precision of the angular acceleration is studied. Comparisons of the output differences between the proposed configuration and the previous planar triangle configuration under the same installation errors are conducted by simulation. The simulation results show that installation errors have a relatively small impact on the calculation accuracy of the proposed configuration. To further verify the high calculation precision of the proposed configuration, experiments are carried out for both the proposed configuration and the planar triangle configuration. On the basis of the results of simulations and experiments, it can be concluded that the proposed configuration has higher angular acceleration calculation precision and can be applied to different platforms.

  10. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Science.gov (United States)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  11. The approximation function of bridge deck vibration derived from the measured eigenmodes

    Directory of Open Access Journals (Sweden)

    Sokol Milan

    2017-12-01

    Full Text Available This article deals with a method of how to acquire approximate displacement vibration functions. Input values are discrete, experimentally obtained mode shapes. A new improved approximation method based on the modal vibrations of the deck is derived using the least-squares method. An alternative approach to be employed in this paper is to approximate the displacement vibration function by a sum of sine functions whose periodicity is determined by spectral analysis adapted for non-uniformly sampled data and where the parameters of scale and phase are estimated as usual by the least-squares method. Moreover, this periodic component is supplemented by a cubic regression spline (fitted on its residuals that captures individual displacements between piers. The statistical evaluation of the stiffness parameter is performed using more vertical modes obtained from experimental results. The previous method (Sokol and Flesch, 2005, which was derived for near the pier areas, has been enhanced to the whole length of the bridge. The experimental data describing the mode shapes are not appropriate for direct use. Especially the higher derivatives calculated from these data are very sensitive to data precision.

  12. The interior working mechanism and temperature characteristics of a fluid based micro-vibration isolator

    Science.gov (United States)

    Wang, Jie; Zhao, Shougen; Wu, Dafang; Jing, Xingjian

    2016-01-01

    Micro-vibration isolation is a hot topic in spacecraft vibration control, and fluid based vibration isolators alternatively provide a good and reliable solution to this challenging issue. In this paper, a novel fluid based micro-vibration isolator (FBMVI) is investigated. According to its inherent working principle and deformation pattern, the generation mechanisms of the damping and stiffness characteristics are derived, which are nonlinear functions of the environmental temperature. Then a lumped parameter model which is expressed by the physical design parameters (PDPs) is constructed, and the corresponding performance objective indices (POIs) are also obtained by applying the equivalence of mechanical impedance. Based on the finite element analysis of the internal damping component, a single variable method is further adopted to carry out the parametric study, and the influences of each PDP on the POIs are analyzed in details. Finally, experiments are conducted to identify the variation of fluid bulk modulus with the outside environmental temperature, and to validate the performance of the isolator under different temperature environments. The tested results show great consistence compared with the predicted tendencies of the parametric study. The results of this study can provide a very useful insight into and/or an important guidance for the design and application of this type of FBMVIs in engineering practice.

  13. Evaluation methods of vibration stress of small bore piping

    Energy Technology Data Exchange (ETDEWEB)

    Hiramatsu, Miki; Sasaki, Toru [Institute of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2001-09-01

    Fatigue fracture by vibration stress is one of the main causes of troubles which occur at small bore piping in nuclear power plants. Therefore at the plants they manage small bore piping using a method in which their vibration accelerations are measured and the vibration stresses are calculated. In this work, vibration tests for two sets of mock-ups simulating actual piping in the plants by sinusoidal oscillation and by that obtained at an actual plant were carried out, and then an evaluation method was developed to obtain proper value of vibration stress from the measured data by the vibration tests. In comparison of the vibration stress obtained from the measured acceleration with that directly measured using strain gauges, it is confirmed that accurate vibration stress can be evaluated by a formula in which the real center of gravity of small bore piping and the acceleration of main (system) piping are considered. (author)

  14. Adaptive Technology Application for Vibration-Based Diagnostics of Roller Bearings on Industrial Plants

    Directory of Open Access Journals (Sweden)

    Mironov Aleksey

    2014-09-01

    Full Text Available Roller bearings are widely used in equipment of different applications; therefore, the issues related to the assessment of bearing technical state and localization of bearing faults are quite important and relevant. The reason is that technical state of a bearing is a critical component, which determines efficiency of a mechanism or equipment. For bearings inspection and diagnostics, various methods of vibration-based diagnostics are used. The adaptive technology for vibration-based diagnostics developed in „D un D centrs” is an effective tool for evaluation of technical state of bearings in operation compared to the existing SKF method.

  15. Protection of historic buildings against environmental pollution of vibrations

    Directory of Open Access Journals (Sweden)

    Kowalska-Koczwara Alicja

    2016-01-01

    Full Text Available Historic buildings in Poland are largely neglected objects that small percentage is preserved in its original form. Unrelenting in the case of historic buildings is a time that brings with it the natural processes of aging of buildings, but also the history of the object which is often marked by military conflicts, fires or even incompetently carried out reconstruction. Nowadays historic buildings are also destroyed by the rapid development of infrastructure and residential construction. This development could lead to changes of water in the soil, make changes in the geologic al structure or cause exposure of the historic building to the new influences (eg. traffic vibrations, to which building has not been subjected so far. Vibrations are often omitted in environmental issues, although the protection against noise and vibration has its place in the Law on Environmental Protection. This article presents the methodology for the measurement and interpretation of vibration influence on historic buildings and the assessment methods of technical condition of historic building on the example of dynamic measurements made on St. Nicholas Church in Krakow. The importance of well-done crack-by-crack documentation and characterization of damages based on damage index is shown. Difficulties that can be encountered when determining the causes of technical condition of historic buildings are also shown. Based on the example of the Church in the article are also given the possible protection solutions of historic structures from vibrations.

  16. Low-frequency characteristics extension for vibration sensors

    Institute of Scientific and Technical Information of China (English)

    杨学山; 高峰; 候兴民

    2004-01-01

    Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.

  17. Study on the status of the working bodies grinding machines based on vibration analysis

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2016-01-01

    Full Text Available Improvement of technology and engineering aimed at the use of secondary raw material is an important task. One of the most important operations in the preparation of raw materials for mixed feeds is fine grinding. In this regard, the article discusses the grinding equipment allowing to obtain raw materials of higher quality with the lower energy consumption. Methods and diagnostic tools were proposed, the principle of determining the locations (points of installation of vibration measurement sensors as well as the choice of the vibration signal analysis method were considered. Investigation of the state of the disintegrator working bodies was carried out in the workshop of LLC PСF "Luch 2000". The object of study is a disintegrator with rotors diameter of 350 mm, each of them having two rows of pins. The result of the experiment revealed that during the operation the working bodies of grinding machines are exposed to uneven wear and under the action of multicycle load micro-cracks and fatigue fractures occur. The method of spectral analysis revealed the appearance of harmonics with large vibration at a frequency of 126 Hz, as well as multiple frequencies, allowing a high degre e of probability to determine not only the actual state of the working bodies, but also to predict the defect development trend. Based on the analysis of the spectra, the decision on further time operation of the equipment is made, which significantly reduces the probability of an emergency stop of equipment and expensive repairs. The research data will be relevant when using vibration diagnostics tools in enterprises, as well as in the design, construction and choice of materials for grinding equipment.

  18. Nondestructive evaluation of green wood using stress wave and transverse vibration techniques

    Science.gov (United States)

    Udaya B. Halabe; Gangadhar M. Bidigalu; Hota V.S. GangaRao; Robert J. Ross

    1997-01-01

    Longitudinal stress wave and transverse vibration nondestructive testing (NDT) techniques have proven to be accurate means of evaluating the quality of wood based products. Researchers have found strong relationships between stress wave and transverse vibration parameters (e.g., wave velocity and modulus of elasticity predicted using NDT measurements) with the actual...

  19. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  20. Vibration-based Fault Diagnostic of a Spur Gearbox

    Directory of Open Access Journals (Sweden)

    Hartono Dennis

    2016-01-01

    Full Text Available This paper presents comparative studies of Fast Fourier Transform (FFT, Short Time Fourier Transform (STFT and Continuous Wavelet Transform (CWT as several advanced time-frequency analysis methods for diagnosing an early stage of spur gear tooth failure. An incipient fault of a chipped tooth was investigated in this work using vibration measurements from a spur gearbox test rig. Time Synchronous Averaging was implemented for the analysis to enhance the clarity of fault feature from the gear of interest. Based on the experimental results and analysis, it was shown that FFT method could identify the location of the faulty gear with sufficient accuracy. On the other hand, Short Time Fourier Transform method could not provide the angular location information of the faulty gear. It was found that the Continuous Wavelet Transform method offered the best representation of angle-frequency representation. It was not only able to distinguish the difference between the normal and faulty gearboxes from the joint angle-frequency results but could also provide an accurate angular location of the faulty gear tooth in the gearbox.