WorldWideScience

Sample records for dsb repair efficiency

  1. Chromatin dynamics during DSB repair

    Czech Academy of Sciences Publication Activity Database

    Falk, Martin; Lukášová, Emilie; Gabrielová, Barbora; Ondřej, Vladan; Kozubek, Stanislav

    2007-01-01

    Roč. 1773, č. 10 (2007), s. 1534-1545 ISSN 0167-4889 R&D Projects: GA ČR(CZ) GP204/06/P349; GA ČR(CZ) 1QS500040508; GA AV ČR(CZ) IAA1065203; GA MŠk(CZ) 1P05OC084 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chromatin structure * double- strand breaks (DSB) * DNA repair Subject RIV: BO - Biophysics Impact factor: 4.374, year: 2007

  2. Repair of DNA DSB in higher eukaryotes

    International Nuclear Information System (INIS)

    Wang, H.; Perrault, A.R.; Takeda, Y.; Iliakis, G.

    2003-01-01

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a NHEJ apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4, and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK- dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. We studied the role of Ku and DNA-PKcs in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient error-free endjoining observed in such in-vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite that fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA endjoining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing endjoining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts sugggesting the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3' or 5' protruding single strands with similar efficiency, but addition of Ku suppresses joining of blunt ends and homologous ends with 3' overhangs. We propose that the

  3. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Ann-Sofie, E-mail: ann-sofie.gustafsson@bms.uu.se; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-15

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  4. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair

    International Nuclear Information System (INIS)

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-01-01

    Highlights: • We reduced the level of DNA-PKcs with siRNA and examined cells after γ-irradiation. • Low DNA-PKcs levels lead to radiosensitivity but did not affect repair of DSB. • Low DNA-PKcs levels may block progression of mitosis. • DNA-PKcs role in mitotic progression is independent of its role in DSB repair. • We suggest different mechanisms by which loss of DNA-PKcs function sensitize cells. - Abstract: Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80–95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure

  5. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  6. Understanding the role of RecN in DSB repair pathway in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Pellegrino, S.

    2012-01-01

    Deinococcus radiodurans is a Gram-positive bacterium known for its extreme resistance to a broad variety of DNA damaging agents. Among these, Ionizing Radiations and desiccation are the most harmful for the cell, since they introduce breaks in the genome. Double Strand Breaks (DSB) are particularly hazardous for the cell and they need to be repaired very efficiently, in order to avoid mutations leading to altered, if not lethal, phenotypes. Homologous Recombination (HR) is the most efficient mechanism by which DSBs are repaired. D. radiodurans is able to completely restore its genome in only 3 hours, and it accomplishes the entire process through the RecFOR pathway. In order to be repaired, DSBs first need to be recognized. The protein believed to be responsible for this important step that takes place soon after the damage occurs in the cell, is RecN. RecN is recruited at the early stages of DNA repair and in vivo studies have demonstrated its propensity to localize to discrete foci. In vitro studies also suggest that RecN possesses a DNA end-joining activity previously observed for SMC proteins (such as cohesin), which are structurally related to RecN. Several structural studies have been carried out on the SMC-like protein, Rad50, but so far no structural information is available for RecN. The work presented here focused on the structural characterization of RecN and its constitutive domains. We obtained crystal structures of three partially overlapping constructs of RecN and Small Angle X-ray Scattering was performed on the individual domains and the full-length protein. The study of RecN in solution complemented our crystallographic study and enabled us to build a reliable, atomic model of the full-length protein. Mutations were designed and the mutant RecN proteins were produced in order to characterize the ATP hydrolysis activity of RecN, which is a conserved feature of this family of proteins. Extensive biochemical studies were carried out on wild-type and

  7. Screening of Pesticides with the Potential of Inducing DSB and Successive Recombinational Repair

    Directory of Open Access Journals (Sweden)

    Karen Suárez-Larios

    2017-01-01

    Full Text Available A study was realized to ascertain whether eight selected pesticides would induce double strand breaks (DSB in lymphocyte cultures and whether this damage would induce greater levels of proteins Rad51 participating in homologous recombination or of p-Ku80 participating in nonhomologous end joining. Only five pesticides were found to induce DSB of which only glyphosate and paraoxon induced a significant increase of p-Ku80 protein, indicating that nonhomologous end joining recombinational DNA repair system would be activated. The type of gamma-H2AX foci observed was comparable to that induced by etoposide at similar concentrations. These results are of importance since these effects occurred at low concentrations in the micromolar range, in acute treatments to the cells. Effects over longer exposures in actual environmental settings are expected to produce cumulative damage if repeated events of recombination take place over time.

  8. Higher-order chromatin structure in DSB induction, repair and misrepair

    Czech Academy of Sciences Publication Activity Database

    Falk, Martin; Lukášová, Emilie; Kozubek, Stanislav

    2010-01-01

    Roč. 704, 1-3 (2010), s. 88-100 ISSN 1383-5742 R&D Projects: GA MŠk ME 919; GA AV ČR(CZ) IAA500040802; GA AV ČR(CZ) 1QS500040508 Grant - others:GA MŠk(CZ) LC535 Program:LC Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA double strand breaks * DSB repair * higher-order chromatin structure Subject RIV: BO - Biophysics Impact factor: 8.741, year: 2010

  9. Biochemical Kinetics Model of DSB Repair and GammaH2AX FOCI by Non-homologous End Joining

    Science.gov (United States)

    Cucinotta, Francis, A.; Pluth, Janice M.; Anderson, Jennifer A.; Harper, Jane V.; O'Neill, Peter

    2007-01-01

    We developed a biochemical kinetics approach to describe the repair of double strand breaks (DSB) produced by low LET radiation by modeling molecular events associated with the mechanisms of non-homologous end-joining (NHEJ). A system of coupled non-linear ordinary differential equations describes the induction of DSB and activation pathways for major NHEJ components including Ku(sub 70/80), DNA-PK(sub cs), and the Ligase IV-XRCC4 hetero-dimer. The autophosphorylation of DNA-PK(sub cs and subsequent induction of gamma-H2AX foci observed after ionizing radiation exposure were modeled. A two-step model of DNA-PK(sub cs) regulation of repair was developed with the initial step allowing access of other NHEJ components to breaks, and a second step limiting access to Ligase IV-XRCC4. Our model assumes that the transition from the first to second-step depends on DSB complexity, with a much slower-rate for complex DSB. The model faithfully reproduced several experimental data sets, including DSB rejoining as measured by pulsed-field electrophoresis (PFGE), quantification of the induction of gamma-H2AX foci, and live cell imaging of the induction of Ku(sub 70/80). Predictions are made for the behaviors of NHEJ components at low doses and dose-rates, where a steady-state is found at dose-rates of 0.1 Gy/hr or lower.

  10. The C. elegans DSB-2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes crossover assurance.

    Directory of Open Access Journals (Sweden)

    Simona Rosu

    Full Text Available For most organisms, chromosome segregation during meiosis relies on deliberate induction of DNA double-strand breaks (DSBs and repair of a subset of these DSBs as inter-homolog crossovers (COs. However, timing and levels of DSB formation must be tightly controlled to avoid jeopardizing genome integrity. Here we identify the DSB-2 protein, which is required for efficient DSB formation during C. elegans meiosis but is dispensable for later steps of meiotic recombination. DSB-2 localizes to chromatin during the time of DSB formation, and its disappearance coincides with a decline in RAD-51 foci marking early recombination intermediates and precedes appearance of COSA-1 foci marking CO-designated sites. These and other data suggest that DSB-2 and its paralog DSB-1 promote competence for DSB formation. Further, immunofluorescence analyses of wild-type gonads and various meiotic mutants reveal that association of DSB-2 with chromatin is coordinated with multiple distinct aspects of the meiotic program, including the phosphorylation state of nuclear envelope protein SUN-1 and dependence on RAD-50 to load the RAD-51 recombinase at DSB sites. Moreover, association of DSB-2 with chromatin is prolonged in mutants impaired for either DSB formation or formation of downstream CO intermediates. These and other data suggest that association of DSB-2 with chromatin is an indicator of competence for DSB formation, and that cells respond to a deficit of CO-competent recombination intermediates by prolonging the DSB-competent state. In the context of this model, we propose that formation of sufficient CO-competent intermediates engages a negative feedback response that leads to cessation of DSB formation as part of a major coordinated transition in meiotic prophase progression. The proposed negative feedback regulation of DSB formation simultaneously (1 ensures that sufficient DSBs are made to guarantee CO formation and (2 prevents excessive DSB levels that could

  11. DNA-PK. The major target for wortmannin-mediated radiosensitization by the inhibition of DSB repair via NHEJ pathway

    International Nuclear Information System (INIS)

    Hashimoto, Mitsumasa; Rao, S.; Tokuno, Osamu; Utsumi, Hiroshi; Takeda, Shunichi

    2003-01-01

    The effect of wortmannin posttreatment was studied in cells derived from different species (hamster, mouse, chicken, and human) with normal and defective DNA-dependent protein kinase (DNA-PK) activity, cells with and without the ataxia telangiectasia mutated (ATM) gene, and cells lacking other regulatory proteins involved in the DNA double-strand break (DSB) repair pathways. Clonogenic assays were used to obtain all results. Wortmannin radiosensitization was observed in Chinese hamster cells (V79-B310H, CHO-K1), mouse mammary carcinoma cells (SR-1), transformed human fibroblast (N2KYSV), chicken B lymphocyte wild-type cells (DT40), and chicken Rad54 knockout cells (Rad54 -/- ). However, mouse mammary carcinoma cells (SX9) with defects in the DNA-PK and chicken DNA-PK catalytic subunit (DNA-PKcs) knockout cells (DNA-PKcs -/-/- ) failed to exhibit wortmannin radiosensitization. On the other hand, severe combined immunodeficiency (SCID) mouse cells (SC3VA2) exposed to wortmannin exhibited significant increases in radiosensitivity, possibly because of some residual function of DNA-PKcs. Moreover, the transformed human cells derived from AT patients (AT2KYSV) and chicken ATM knockout cells (ATM -/- ) showed pronounced wortmannin radiosensitization. These studies demonstrate confirm that the mechanism underlying wortmannin radiosensitization is the inhibition of DNA-PK, but not of ATM, thereby resulting in the inhibition of DSB repair via nonhomologous endjoining (NHEJ). (author)

  12. High throughput measurement of γH2AX DSB repair kinetics in a healthy human population.

    Directory of Open Access Journals (Sweden)

    Preety M Sharma

    Full Text Available The Columbia University RABiT (Rapid Automated Biodosimetry Tool quantifies DNA damage using fingerstick volumes of blood. One RABiT protocol quantifies the total γ-H2AX fluorescence per nucleus, a measure of DNA double strand breaks (DSB by an immunofluorescent assay at a single time point. Using the recently extended RABiT system, that assays the γ-H2AX repair kinetics at multiple time points, the present small scale study followed its kinetics post irradiation at 0.5 h, 2 h, 4 h, 7 h and 24 h in lymphocytes from 94 healthy adults. The lymphocytes were irradiated ex vivo with 4 Gy γ rays using an external Cs-137 source. The effect of age, gender, race, ethnicity, alcohol use on the endogenous and post irradiation total γ-H2AX protein yields at various time points were statistically analyzed. The endogenous γ-H2AX levels were influenced by age, race and alcohol use within Hispanics. In response to radiation, induction of γ-H2AX yields at 0.5 h and peak formation at 2 h were independent of age, gender, ethnicity except for race and alcohol use that delayed the peak to 4 h time point. Despite the shift in the peak observed, the γ-H2AX yields reached close to baseline at 24 h for all groups. Age and race affected the rate of progression of the DSB repair soon after the yields reached maximum. Finally we show a positive correlation between endogenous γ-H2AX levels with radiation induced γ-H2AX yields (RIY (r=0.257, P=0.02 and a negative correlation with residuals (r=-0.521, P=<0.0001. A positive correlation was also observed between RIY and DNA repair rate (r=0.634, P<0.0001. Our findings suggest age, race, ethnicity and alcohol use influence DSB γ-H2AX repair kinetics as measured by RABiT immunofluorescent assay.

  13. The studies of DNA double-strand break (DSB) rejoining and mRNA expression of repair gene XRCCs in malignant transformed cell lines of human bronchial epithelial cells generated by α-particles

    International Nuclear Information System (INIS)

    Sun Jingfen; Sui Jianli; Geng Yu; Zhou Pingkun; Wu Dechang

    2002-01-01

    Objective: To investigate the efficiency of γ-ray-induced DNA DSB rejoining and the mRNA expression of DNA repair genes in malignantly transformed cell lines of human bronchial epithelial cells generated by exposure to a-particles. Methods: Pulsed field gel electrophoresis (PFGE) was used to detect DNA. DSBs mRNA expression was analyzed by RT-PCR. Results: The residual DNA DSB damage level after 4hrs repair following 0-150 Gy of γ-irradiation in the malignantly transformed cell lines BERP35T-1 and BERP35T-4 was significantly higher than that in their parental BEP2D cells. The analysis of mRNA level revealed a 2.5-to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 (XRCC-5) in BERP35T-1 and BERP35T-4 cells as compared with the parental BEP2D cells. In contrast, the expression of DNA-PKcs(XRCC7) was 2.4-fold up-regulated in the transformed cell line BERP35T-4, in which there was a significantly higher proportion of polyploid cells. Conclusion: This study results show that the deficiency of DNA DSB rejoining and depressed mRNA expression of DNA repair genes could be involved in the malignant transformation process of BEP2D cells induced by exposure to α-particles

  14. Low concentrations of antimony impair DNA damage signaling and the repair of radiation-induced DSB in HeLa S3 cells.

    Science.gov (United States)

    Koch, Barbara; Maser, Elena; Hartwig, Andrea

    2017-12-01

    Antimony is utilized in a large variety of industrial applications, leading to significant environmental and occupational exposure. Mainly based on animal experiments, the IARC and MAK Commission have classified antimony and its inorganic compounds as Group 2B or 2 carcinogens, respectively. However, the underlying mode(s) of action are still largely unknown. In the present study, we investigated the impact of non-cytotoxic up to cytotoxic concentrations of SbCl 3 on DNA DSB repair and cell cycle control in HeLa S3 cells. We induced DSB by γ-irradiation and analyzed inhibitory actions of antimony on potential molecular targets of the DSB repair machinery. Antimony disturbed cell cycle control, affecting phosphorylation of Chk1. Furthermore, the repair of DSB was impaired in the presence of antimony, as monitored by pulsed-field gel electrophoresis and γH2AX foci formation of cells in G1 and G2 phase. Specifically, BRCA1 and RAD51 were identified as molecular targets. Our results point towards an interference with both non-homologous end-joining (NHEJ) and homologous recombination (HR), and inhibitory effects may be explained by interactions with critical cysteine groups; this needs to be further investigated. Altogether, the results provide further evidence for the impairment of DNA repair processes as one underlying mechanism in antimony-induced carcinogenicity.

  15. Local changes of higher-order chromatin structure during DSB-repair

    International Nuclear Information System (INIS)

    Falk, M; Lukasova, E; Gabrielova, B; Ondrej, V; Kozubek, S

    2008-01-01

    We show that double-strand breaks (DSBs) induced in DNA of human cells by γ-radiation arise mainly in active, gene-rich, decondensed chromatin. We demonstrate that DSBs show limited movement in living cells, occasionally resulting in their permanent clustering, which poses a risk of incorrect DNA rejoining. In addition, some DSBs remain unrepaired for several days after irradiation, forming lesions repairable only with difficulty which are hazardous for genome stability. These 'late' DSBs colocalize with heterochromatin markers (dimethylated histone H3 at lysine 9, HP1 and CENP-A proteins), despite the low density of the surrounding chromatin. This indicates that there is epigenetic silencing of loci close to unrepaired DSBs and/or stabilization of damaged decondensed chromatin loops during repair and post-repair reconstitution of chromatin structure

  16. In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins

    DEFF Research Database (Denmark)

    Kasten-Pisula, Ulla; Vronskaja, Svetlana; Overgaard, Jens

    2008-01-01

    in the activity of the DNA-PK complex induced upon irradiation. CONCLUSIONS: For normal human fibroblasts, the level or activity of NHEJ proteins measured prior to or after irradiation cannot be used to predict the DSB repair capacity or cellular radiosensitivity. Udgivelsesdato: 2008-Mar......BACKGROUND AND PURPOSE: The aim of the present study was to test whether for normal human fibroblasts the variation in double-strand break (DSB) repair capacity results from radiation-induced differences in localisation, expression or activity of major non-homologous end-joining (NHEJ) proteins....... MATERIALS AND METHODS: Experiments were performed with 11 normal human fibroblast strains AF01-11. NHEJ proteins were determined by Western blot and DNA-PK activity by pulldown-assay. RESULTS: The four NHEJ proteins tested (Ku70, Ku80, XRCC4 and DNA-PKcs) were found to be localised almost exclusively...

  17. Aberrant overexpression of miR-421 downregulates ATM and leads to a pronounced DSB repair defect and clinical hypersensitivity in SKX squamous cell carcinoma

    International Nuclear Information System (INIS)

    Mansour, Wael Y.; Bogdanova, Natalia V.; Kasten-Pisula, Ulla; Rieckmann, Thorsten; Köcher, Sabrina; Borgmann, Kerstin; Baumann, Michael; Krause, Mechtild; Petersen, Cordula; Hu, Hailiang; Gatti, Richard A.; Dikomey, Ekkehard; Dörk, Thilo; Dahm-Daphi, Jochen

    2013-01-01

    Background: Cellular and clinical sensitivity to ionizing radiation (IR) is determined by DNA double-strand breaks (DSB) repair. Here, we investigate the molecular mechanism underlying the extreme response of a head and neck tumor case (SKX) to standard radiotherapy. Methods: Immunofluorescence (IF) was used for the assessment of DSB repair, Western blot and real-time PCR for protein and mRNA expression, respectively. Results: SKX cells exhibited a pronounced radiosensitivity associated with numerous residual γ-H2AX foci after IR. This was not associated with lacking canonical repair proteins. SKX cells did not express any ATM protein. Accordingly, immunoblotting revealed no ATM kinase activity toward substrates such as p-SMC1, p-CHK2 and p-KAP1. Sequencing of all 66 exons of ATM showed no mutation. ATM mRNA level was moderately reduced, which could be reverted by 5′-Aza-C treatment but without restoring protein levels. Importantly, we demonstrated a post-transcriptional regulation in SKX cells via 6-fold enhanced levels of miR-421, which targets the 3′-UTR of ATM mRNA. Transfection of SKX cells with either anti-miR-421 inhibitor or a microRNA-insensitive ATM vector recovered ATM expression and abrogated the hyper-radiosensitivity. Conclusion: This is the first report describing microRNA-mediated down-regulation of ATM leading to clinically manifest tumor radiosensitivity

  18. Plant γH2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors

    OpenAIRE

    Smetana, Ondrej; Sanchez-Calderon, Lenin; Lincker, Frédéric; Genestier, Julie; Schmit, Anne-Catherine; Houlné, Guy; Chabouté, Marie Edith

    2012-01-01

    Cellular responses to DNA double-strand breaks (DSBs) are linked in mammals and yeasts to the phosphorylated histones H2AX (cH2AX) repair foci which are multiproteic nuclear complexes responsible for DSB sensing and signalling. However, neither the components of these foci nor their role are yet known in plants. In this paper, we describe the effects of cH2AX deficiency in Arabidopsis thaliana plants challenged with DSBs in terms of genotoxic sensitivity and E2F-mediated transcriptional respo...

  19. Ubiquitin-specific protease 5 is required for the efficient repair of DNA double-strand breaks.

    Directory of Open Access Journals (Sweden)

    Satoshi Nakajima

    Full Text Available During the DNA damage response (DDR, ubiquitination plays an important role in the recruitment and regulation of repair proteins. However, little is known about elimination of the ubiquitination signal after repair is completed. Here we show that the ubiquitin-specific protease 5 (USP5, a deubiquitinating enzyme, is involved in the elimination of the ubiquitin signal from damaged sites and is required for efficient DNA double-strand break (DSB repair. Depletion of USP5 sensitizes cells to DNA damaging agents, produces DSBs, causes delayed disappearance of γH2AX foci after Bleocin treatment, and influences DSB repair efficiency in the homologous recombination pathway but not in the non-homologous end joining pathway. USP5 co-localizes to DSBs induced by laser micro-irradiation in a RAD18-dependent manner. Importantly, polyubiquitin chains at sites of DNA damage remained for longer periods in USP5-depleted cells. Our results show that disassembly of polyubiquitin chains by USP5 at sites of damage is important for efficient DSB repair.

  20. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    Directory of Open Access Journals (Sweden)

    Leyla Vahidi Ferdousi

    2014-11-01

    Full Text Available The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.

  1. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny.

    Science.gov (United States)

    Vahidi Ferdousi, Leyla; Rocheteau, Pierre; Chayot, Romain; Montagne, Benjamin; Chaker, Zayna; Flamant, Patricia; Tajbakhsh, Shahragim; Ricchetti, Miria

    2014-11-01

    The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs. Copyright © 2014. Published by Elsevier B.V.

  2. Acute Normal Tissue Reactions in Head-and-Neck Cancer Patients Treated With IMRT: Influence of Dose and Association With Genetic Polymorphisms in DNA DSB Repair Genes

    International Nuclear Information System (INIS)

    Werbrouck, Joke; Ruyck, Kim de; Duprez, Frederic; Veldeman, Liv; Claes, Kathleen; Eijkeren, Marc van; Boterberg, Tom; Willems, Petra; Vral, Anne; Neve, Wilfried de; Thierens, Hubert

    2009-01-01

    Purpose: To investigate the association between dose-related parameters and polymorphisms in DNA DSB repair genes XRCC3 (c.-1843A>G, c.562-14A>G, c.722C>T), Rad51 (c.-3429G>C, c.-3392G>T), Lig4 (c.26C>T, c.1704T>C), Ku70 (c.-1310C>G), and Ku80 (c.2110-2408G>A) and the occurrence of acute reactions after radiotherapy. Materials and Methods: The study population consisted of 88 intensity-modulated radiation therapy (IMRT)-treated head-and-neck cancer patients. Mucositis, dermatitis, and dysphagia were scored using the Common Terminology Criteria (CTC) for Adverse Events v.3.0 scale. The population was divided into a CTC0-2 and CTC3+ group for the analysis of each acute effect. The influence of the dose on critical structures was analyzed using dose-volume histograms. Genotypes were determined by polymerase chain reaction (PCR) combined with restriction fragment length polymorphism or PCR-single base extension assays. Results: The mean dose (D mean ) to the oral cavity and constrictor pharyngeus (PC) muscles was significantly associated with the development of mucositis and dysphagia, respectively. These parameters were considered confounding factors in the radiogenomics analyses. The XRCC3c.722CT/TT and Ku70c.-1310CG/GG genotypes were significantly associated with the development of severe dysphagia (CTC3+). No association was found between the investigated polymorphisms and the development of mucositis or dermatitis. A risk analysis model for severe dysphagia, which was developed based on the XRCC3c.722CT/TT and Ku70c.-1310CG/GG genotypes and the PC dose, showed a sensitivity of 78.6% and a specificity of 77.6%. Conclusions: The XRCC3c.722C>T and Ku70c.-1310C>G polymorphisms as well as the D mean to the PC muscles were highly associated with the development of severe dysphagia after IMRT. The prediction model developed using these parameters showed a high sensitivity and specificity

  3. DNA DSB measurements and modelling approaches based on gamma-H2AX foci time evolution

    Science.gov (United States)

    Esposito, Giuseppe; Campa, Alessandro; Antonelli, Francesca; Mariotti, Luca; Belli, Mauro; Giardullo, Paola; Simone, Giustina; Antonella Tabocchini, Maria; Ottolenghi, Andrea

    DNA double strand breaks (DSBs) induced by ionising radiation are considered the main dam-age related to the deleterious consequences in the cells. Unrepaired or mis-repaired DSBs can cause mutations or loss of chromosome regions which can eventually lead to cell death or neo-plastic transformation. Quantification of the number and complexity of DSBs induced by low doses of radiation remains a complex problem. About ten years ago Rogakou et al. proposed an immunofluorescent technique able to detect even a single DSB per cell. This approach is based on the serine 139 phosphorylation of many molecules (up to 2000) of histone H2AX (γg-H2AX) following the induction of a DSB in the DNA. DSB can be visualized as foci by immunofluores-cence by using phospho-specific antibodies, so that enumeration of foci can be used to measure DSB induction and processing. It is still not completely clear how γ-H2AX dephosphorylation takes place; however it has been related with DSB repair, in particular with the efficiency of DSB repair. In this work we analyse the H2AX phosphorylation-dephosphorylation kinetics after irradiation of primary human fibroblasts (AG1522 cell line) with radiation of differing quality, that is γ-rays and α-particles (125 keV/µm), with the aim of comparing the time evolution of γ-H2AX foci. Our results show that, after a dose of 0.5 Gy, both γ-rays and α-particles induce the maximum number of γ-H2AX foci within 30 minutes from irradiation, that this number depends on the radiation type and is consistent with the number of track traversal in α-irradiated nuclei, that the dephosphorylation kinetics are very different, being the α-induced foci rate of disappearence slower than that of γ-induced foci. In this work a modellistic approach to estimate the number of DSB induced by γ-rays detectable by using the γ-H2AX assay is presented. The competing processes of appearance and disappearance of visible foci will be modeled taking into account the

  4. TU-EF-304-10: Efficient Multiscale Simulation of the Proton Relative Biological Effectiveness (RBE) for DNA Double Strand Break (DSB) Induction and Bio-Effective Dose in the FLUKA Monte Carlo Radiation Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Moskvin, V; Tsiamas, P; Axente, M; Farr, J [St. Jude Children’s Research Hospital, Memphis, TN (United States); Stewart, R [University of Washington, Seattle, WA. (United States)

    2015-06-15

    Purpose: One of the more critical initiating events for reproductive cell death is the creation of a DNA double strand break (DSB). In this study, we present a computationally efficient way to determine spatial variations in the relative biological effectiveness (RBE) of proton therapy beams within the FLUKA Monte Carlo (MC) code. Methods: We used the independently tested Monte Carlo Damage Simulation (MCDS) developed by Stewart and colleagues (Radiat. Res. 176, 587–602 2011) to estimate the RBE for DSB induction of monoenergetic protons, tritium, deuterium, hellium-3, hellium-4 ions and delta-electrons. The dose-weighted (RBE) coefficients were incorporated into FLUKA to determine the equivalent {sup 6}°60Co γ-ray dose for representative proton beams incident on cells in an aerobic and anoxic environment. Results: We found that the proton beam RBE for DSB induction at the tip of the Bragg peak, including primary and secondary particles, is close to 1.2. Furthermore, the RBE increases laterally to the beam axis at the area of Bragg peak. At the distal edge, the RBE is in the range from 1.3–1.4 for cells irradiated under aerobic conditions and may be as large as 1.5–1.8 for cells irradiated under anoxic conditions. Across the plateau region, the recorded RBE for DSB induction is 1.02 for aerobic cells and 1.05 for cells irradiated under anoxic conditions. The contribution to total effective dose from secondary heavy ions decreases with depth and is higher at shallow depths (e.g., at the surface of the skin). Conclusion: Multiscale simulation of the RBE for DSB induction provides useful insights into spatial variations in proton RBE within pristine Bragg peaks. This methodology is potentially useful for the biological optimization of proton therapy for the treatment of cancer. The study highlights the need to incorporate spatial variations in proton RBE into proton therapy treatment plans.

  5. Processing of radiation-induced clustered DNA damage generates DSB in mammalian cells

    International Nuclear Information System (INIS)

    Gulston, M.K.; De Lara, C.M.; Davis, E.L.; Jenner, T.J.; O'Neill, P.

    2003-01-01

    Full text: Clustered DNA damage sites, in which two or more lesions are formed within a few helical turns of the DNA after passage of a single radiation track, are signatures of DNA modifications induced by ionizing radiation in mammalian cell. With 60 Co-radiation, the abundance of clustered DNA damage induced in CHO cells is ∼4x that of prompt double strand breaks (DSB) determined by PFGE. Less is known about the processing of non-DSB clustered DNA damage induced in cells. To optimize observation of any additional DSB formed during processing of DNA damage at 37 deg C, xrs-5 cells deficient in non-homologous end joining were used. Surprisingly, ∼30% of the DSB induced by irradiation at 37 deg C are rejoined within 4 minutes in both mutant and wild type cells. No significant mis-repair of these apparent DSB was observed. It is suggested that a class of non-DSB clustered DNA damage is formed which repair correctly within 4 min but, if 'trapped' prior to repair, are converted into DSB during the lysis procedure of PFGE. However at longer times, a proportion of non-DSB clustered DNA damage sites induced by γ-radiation are converted into DSB within ∼30 min following post-irradiation incubation at 37 deg C. The corresponding formation of additional DSB was not apparent in wild type CHO cells. From these observations, it is estimated that only ∼10% of the total yield of non DSB clustered DNA damage sites are converted into DSB through cellular processing. The biological consequences that the majority of non-DSB clustered DNA damage sites are not converted into DSBs may be significant even at low doses, since a finite chance exists of these clusters being formed in a cell by a single radiation track

  6. A role for small RNAs in DNA double-strand break repair

    DEFF Research Database (Denmark)

    Wei, W.; Ba, Z.; Wu, Y.

    2012-01-01

    Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells....... We refer to these as diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. In Arabidopsis, di...

  7. Protein disulfide bond generation in Escherichia coli DsbB–DsbA

    International Nuclear Information System (INIS)

    Inaba, Kenji

    2008-01-01

    The crystal structure of the DsbB–DsbA–ubiquinone ternary complex has revealed a mechanism of protein disulfide bond generation in Escherichia coli. Protein disulfide bond formation is catalyzed by a series of Dsb enzymes present in the periplasm of Escherichia coli. The crystal structure of the DsbB–DsbA–ubiquinone ternary complex provided important insights into mechanisms of the de novo disulfide bond generation cooperated by DsbB and ubiquinone and of the disulfide bond shuttle from DsbB to DsbA. The structural basis for prevention of the crosstalk between the DsbA–DsbB oxidative and the DsbC–DsbD reductive pathways has also been proposed

  8. Space-Efficient Re-Pair Compression

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Prezza, Nicola

    2017-01-01

    Re-Pair [5] is an effective grammar-based compression scheme achieving strong compression rates in practice. Let n, σ, and d be the text length, alphabet size, and dictionary size of the final grammar, respectively. In their original paper, the authors show how to compute the Re-Pair grammar...... in expected linear time and 5n + 4σ2 + 4d + √n words of working space on top of the text. In this work, we propose two algorithms improving on the space of their original solution. Our model assumes a memory word of [log2 n] bits and a re-writable input text composed by n such words. Our first algorithm runs...

  9. Clustering of double strand break-containing chromosome domains is not inhibited by inactivation of major repair proteins

    International Nuclear Information System (INIS)

    Krawczyk, P. M.; Stap, C.; Van Oven, C.; Hoebe, R.; Aten, J. A.

    2006-01-01

    For efficient repair of DNA double strand breaks (DSBs) cells rely on a process that involves the Mre11/Rad50/Nbs1 complex, which may help to protect non-repaired DNA ends from separating until they can be rejoined by DNA repair proteins. It has been observed that as a secondary effect, this process can lead to unintended clustering of multiple, initially separate, DSB-containing chromosome domains. This work demonstrates that neither inactivation of the major repair proteins XRCC3 and the DNA-dependent protein kinase (DNA-PK) nor inhibition of DNA-PK by vanillin influences the aggregation of DSB-containing chromosome domains. (authors)

  10. SCAI promotes DNA double-strand break repair in distinct chromosomal contexts

    DEFF Research Database (Denmark)

    Hansen, Rebecca Kring; Mund, Andreas; Poulsen, Sara Lund

    2016-01-01

    cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1...... in repressive chromatin environments. Moreover, we establish an important role of SCAI in meiotic recombination, as SCAI deficiency in mice leads to germ cell loss and subfertility associated with impaired retention of the DMC1 recombinase on meiotic chromosomes. Collectively, our findings uncover SCAI...... as a physiologically important component of both NHEJ- and HR-mediated pathways that potentiates DSB repair efficiency in specific chromatin contexts....

  11. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    International Nuclear Information System (INIS)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J.

    2014-01-01

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed

  12. Homeostatic regulation of meiotic DSB formation by ATM/ATR

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Tim J.; Wardell, Kayleigh; Garcia, Valerie; Neale, Matthew J., E-mail: m.neale@sussex.ac.uk

    2014-11-15

    Ataxia–telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.

  13. APOBEC3G enhances lymphoma cell radioresistance by promoting cytidine deaminase-dependent DNA repair.

    Science.gov (United States)

    Nowarski, Roni; Wilner, Ofer I; Cheshin, Ori; Shahar, Or D; Kenig, Edan; Baraz, Leah; Britan-Rosich, Elena; Nagler, Arnon; Harris, Reuben S; Goldberg, Michal; Willner, Itamar; Kotler, Moshe

    2012-07-12

    APOBEC3 proteins catalyze deamination of cytidines in single-stranded DNA (ssDNA), providing innate protection against retroviral replication by inducing deleterious dC > dU hypermutation of replication intermediates. APOBEC3G expression is induced in mitogen-activated lymphocytes; however, no physiologic role related to lymphoid cell proliferation has yet to be determined. Moreover, whether APOBEC3G cytidine deaminase activity transcends to processing cellular genomic DNA is unknown. Here we show that lymphoma cells expressing high APOBEC3G levels display efficient repair of genomic DNA double-strand breaks (DSBs) induced by ionizing radiation and enhanced survival of irradiated cells. APOBEC3G transiently accumulated in the nucleus in response to ionizing radiation and was recruited to DSB repair foci. Consistent with a direct role in DSB repair, inhibition of APOBEC3G expression or deaminase activity resulted in deficient DSB repair, whereas reconstitution of APOBEC3G expression in leukemia cells enhanced DSB repair. APOBEC3G activity involved processing of DNA flanking a DSB in an integrated reporter cassette. Atomic force microscopy indicated that APOBEC3G multimers associate with ssDNA termini, triggering multimer disassembly to multiple catalytic units. These results identify APOBEC3G as a prosurvival factor in lymphoma cells, marking APOBEC3G as a potential target for sensitizing lymphoma to radiation therapy.

  14. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants.

    Science.gov (United States)

    Adams, Bret R; Golding, Sarah E; Rao, Raj R; Valerie, Kristoffer

    2010-04-02

    The DNA double-strand break (DSB) is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR) is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ) is dominant. We have characterized the DNA damage response (DDR) and quality of DNA double-strand break (DSB) repair in human embryonic stem cells (hESCs), and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF) was used as a surrogate for DSB repair. The resolution of gamma-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs) and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR), showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ]) in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.

  15. Impact of nuclear organization and chromatin structure on DNA repair and genome stability

    International Nuclear Information System (INIS)

    Batte, Amandine

    2016-01-01

    The non-random organization of the eukaryotic cell nucleus and the folding of genome in chromatin more or less condensed can influence many functions related to DNA metabolism, including genome stability. Double-strand breaks (DSBs) are the most deleterious DNA damages for the cells. To preserve genome integrity, eukaryotic cells thus developed DSB repair mechanisms conserved from yeast to human, among which homologous recombination (HR) that uses an intact homologous sequence to repair a broken chromosome. HR can be separated in two sub-pathways: Gene Conversion (GC) transfers genetic information from one molecule to its homologous and Break Induced Replication (BIR) establishes a replication fork than can proceed until the chromosome end. My doctorate work was focused on the contribution of the chromatin context and 3D genome organization on DSB repair. In S. cerevisiae, nuclear organization and heterochromatin spreading at sub-telomeres can be modified through the overexpression of the Sir3 or sir3A2Q mutant proteins. We demonstrated that reducing the physical distance between homologous sequences increased GC rates, reinforcing the notion that homology search is a limiting step for recombination. We also showed that hetero-chromatinization of DSB site fine-tunes DSB resection, limiting the loss of the DSB ends required to perform homology search and complete HR. Finally, we noticed that the presence of heterochromatin at the donor locus decreased both GC and BIR efficiencies, probably by affecting strand invasion. This work highlights new regulatory pathways of DNA repair. (author) [fr

  16. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  17. RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells.

    Science.gov (United States)

    King, Harry O; Brend, Tim; Payne, Helen L; Wright, Alexander; Ward, Thomas A; Patel, Karan; Egnuni, Teklu; Stead, Lucy F; Patel, Anjana; Wurdak, Heiko; Short, Susan C

    2017-01-10

    Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Michael R; Morrison, James A; Spomer, Eric; Thimot, Carol A

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heat and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.

  19. Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis.

    Directory of Open Access Journals (Sweden)

    Tamara Goldfarb

    2010-10-01

    Full Text Available Recombination between homologous chromosomes of different parental origin (homologs is necessary for their accurate segregation during meiosis. It has been suggested that meiotic inter-homolog recombination is promoted by a barrier to inter-sister-chromatid recombination, imposed by meiosis-specific components of the chromosome axis. Consistent with this, measures of Holliday junction-containing recombination intermediates (joint molecules [JMs] show a strong bias towards inter-homolog and against inter-sister JMs. However, recombination between sister chromatids also has an important role in meiosis. The genomes of diploid organisms in natural populations are highly polymorphic for insertions and deletions, and meiotic double-strand breaks (DSBs that form within such polymorphic regions must be repaired by inter-sister recombination. Efforts to study inter-sister recombination during meiosis, in particular to determine recombination frequencies and mechanisms, have been constrained by the inability to monitor the products of inter-sister recombination. We present here molecular-level studies of inter-sister recombination during budding yeast meiosis. We examined events initiated by DSBs in regions that lack corresponding sequences on the homolog, and show that these DSBs are efficiently repaired by inter-sister recombination. This occurs with the same timing as inter-homolog recombination, but with reduced (2- to 3-fold yields of JMs. Loss of the meiotic-chromosome-axis-associated kinase Mek1 accelerates inter-sister DSB repair and markedly increases inter-sister JM frequencies. Furthermore, inter-sister JMs formed in mek1Δ mutants are preferentially lost, while inter-homolog JMs are maintained. These findings indicate that inter-sister recombination occurs frequently during budding yeast meiosis, with the possibility that up to one-third of all recombination events occur between sister chromatids. We suggest that a Mek1-dependent reduction in

  20. Targeting abnormal DNA double strand break repair in cancer

    OpenAIRE

    Rassool, Feyruz V.; Tomkinson, Alan E.

    2010-01-01

    A major challenge in cancer treatment is the development of therapies that target cancer cells with little or no toxicity to normal tissues and cells. Alterations in DNA double strand break (DSB) repair in cancer cells include both elevated and reduced levels of key repair proteins and changes in the relative contributions of the various DSB repair pathways. These differences can result in increased sensitivity to DSB-inducing agents and increased genomic instability. The development of agent...

  1. Why is DsbA such an oxidizing disulfide catalyst?

    DEFF Research Database (Denmark)

    Grauschopf, U; Winther, Jakob R.; Korber, P

    1995-01-01

    in determining the exceptional oxidizing power of DsbA. Mutations that change these two residues can alter the equilibrium oxidation potential of DsbA by more than 1000-fold. A quantitative explanation for the very high redox potential of DsbA was found by measuring the pKa of a single residue, Cys-30. The pKa...

  2. Efficient Composite Repair Methods for Launch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Polymer matrix composites are increasingly replacing traditional metallic materials in NASA launch vehicles. However, the repair and subsequent inspection methods...

  3. Comparative sequence, structure and redox analyses of Klebsiella pneumoniae DsbA show that anti-virulence target DsbA enzymes fall into distinct classes.

    Directory of Open Access Journals (Sweden)

    Fabian Kurth

    Full Text Available Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA. Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example, Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA shares almost identical structural, surface and redox properties. Using comparative sequence and structure analysis we predicted that five other bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA (KpDsbA, 81 % identity to EcDsbA. As expected, the redox properties, structure and surface features (from crystal and NMR data of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit DsbAs within the same class.

  4. Current topics in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Kobayashi, Junya; Takata, Minoru; Iwabuchi, Kuniyoshi; Miyagawa, Kiyoshi; Sonoda, Eiichiro; Suzuki, Keiji; Tauchi, Hiroshi

    2008-01-01

    DNA double strand break (DSB) is one of the most critical types of damage which is induced by ionizing radiation. In this review, we summarize current progress in investigations on the function of DSB repair-related proteins. We focused on recent findings in the analysis of the function of proteins such as 53BP1, histone H2AX, Mus81-Eme1, Fanc complex, and UBC13, which are found to be related to homologous recombination repair or to non-homologous end joining. In addition to the function of these proteins in DSB repair, the biological function of nuclear foci formation following DSB induction is discussed. (author)

  5. Rad52 SUMOylation affects the efficiency of the DNA repair

    DEFF Research Database (Denmark)

    Altmannova, Veronika; Eckert-Boulet, Nadine; Arneric, Milica

    2010-01-01

    Homologous recombination (HR) plays a vital role in DNA metabolic processes including meiosis, DNA repair, DNA replication and rDNA homeostasis. HR defects can lead to pathological outcomes, including genetic diseases and cancer. Recent studies suggest that the post-translational modification by ...

  6. Double strand break repair: two mechanisms in competition but tightly linked to cell cycle

    International Nuclear Information System (INIS)

    Delacote, F.

    2002-11-01

    DNA double strand breaks (DSB) are highly toxic damage although they can be induced to create genetic diversity. Two distinct pathways can repair DSB: Homologous Recombination (HR) and Non Homologous End Joining (NHEJ). If un- or mis-repaired, this damage can lead to cancer. Thus, it is essential to investigate how these two pathways are regulated for DSB repair. NHEJ inhibition leads to HR DSB repair stimulation. However, this channeling to HR is tightly linked to cell cycle since NHEJ and HR are active in G1/early S and late S/G2, respectively. Our results suggest that G1-unrepaired DSB go through S phase to be repaired by HR in G2. Those results allow a better understanding of DSB repair mechanisms regulation. (author)

  7. Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants.

    Directory of Open Access Journals (Sweden)

    Bret R Adams

    2010-04-01

    Full Text Available The DNA double-strand break (DSB is the most toxic form of DNA damage. Studies aimed at characterizing DNA repair during development suggest that homologous recombination repair (HRR is more critical in pluripotent cells compared to differentiated somatic cells in which nonhomologous end joining (NHEJ is dominant. We have characterized the DNA damage response (DDR and quality of DNA double-strand break (DSB repair in human embryonic stem cells (hESCs, and in vitro-derived neural cells. Resolution of ionizing radiation-induced foci (IRIF was used as a surrogate for DSB repair. The resolution of gamma-H2AX foci occurred at a slower rate in hESCs compared to neural progenitors (NPs and astrocytes perhaps reflective of more complex DSB repair in hESCs. In addition, the resolution of RAD51 foci, indicative of active homologous recombination repair (HRR, showed that hESCs as well as NPs have high capacity for HRR, whereas astrocytes do not. Importantly, the ATM kinase was shown to be critical for foci formation in astrocytes, but not in hESCs, suggesting that the DDR is different in these cells. Blocking the ATM kinase in astrocytes not only prevented the formation but also completely disassembled preformed repair foci. The ability of hESCs to form IRIF was abrogated with caffeine and siRNAs targeted against ATR, implicating that hESCs rely on ATR, rather than ATM for regulating DSB repair. This relationship dynamically changed as cells differentiated. Interestingly, while the inhibition of the DNA-PKcs kinase (and presumably non-homologous endjoining [NHEJ] in astrocytes slowed IRIF resolution it did not in hESCs, suggesting that repair in hESCs does not utilize DNA-PKcs. Altogether, our results show that hESCs have efficient DSB repair that is largely ATR-dependent HRR, whereas astrocytes critically depend on ATM for NHEJ, which, in part, is DNA-PKcs-independent.

  8. Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome.

    Science.gov (United States)

    Odom, Obed W; Baek, Kwang-Hyun; Dani, Radhika N; Herrin, David L

    2008-03-01

    Certain group I introns insert into intronless DNA via an endonuclease that creates a double-strand break (DSB). There are two models for intron homing in phage: synthesis-dependent strand annealing (SDSA) and double-strand break repair (DSBR). The Cr.psbA4 intron homes efficiently from a plasmid into the chloroplast psbA gene in Chlamydomonas, but little is known about the mechanism. Analysis of co-transformants selected using a spectinomycin-resistant 16S gene (16S(spec)) provided evidence for both pathways. We also examined the consequences of the donor DNA having only one-sided or no homology with the psbA gene. When there was no homology with the donor DNA, deletions of up to 5 kb involving direct repeats that flank the psbA gene were obtained. Remarkably, repeats as short as 15 bp were used for this repair, which is consistent with the single-strand annealing (SSA) pathway. When the donor had one-sided homology, the DSB in most co-transformants was repaired using two DNAs, the donor and the 16S(spec) plasmid, which, coincidentally, contained a region that is repeated upstream of psbA. DSB repair using two separate DNAs provides further evidence for the SDSA pathway. These data show that the chloroplast can repair a DSB using short dispersed repeats located proximally, distally, or even on separate molecules relative to the DSB. They also provide a rationale for the extensive repertoire of repeated sequences in this genome.

  9. STUDY OF THE PARAMETERS OF EFFICIENCY IN CENTRES FOR REPAIR OF AGRICULTURAL MACHINERY

    Directory of Open Access Journals (Sweden)

    Natalia Stoyanova

    2015-06-01

    Full Text Available The paper makes a thorough study of the parameters of efficiency in the centers for the repair of agricultural machinery, considering production and technological structure, the basic principles for design of the process of service, the quantitative indicators for servicing. It presents a theoretical model for the management of services in the service business, taking into account the basic system requirements for maintenance of agricultural machinery, the main elements of the standards of customer service, choice of forms for maintenance of agricultural machinery. Opportunities are proposed for the optimization of repair activities in the centers for repair of agricultural machinery.

  10. Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy.

    Directory of Open Access Journals (Sweden)

    Yvonne Lorat

    Full Text Available DNA double-strand breaks (DSBs generated by ionizing radiation pose a serious threat to the preservation of genetic and epigenetic information. The known importance of local chromatin configuration in DSB repair raises the question of whether breaks in different chromatin environments are recognized and repaired by the same repair machinery and with similar efficiency. An essential step in DSB processing by non-homologous end joining is the high-affinity binding of Ku70-Ku80 and DNA-PKcs to double-stranded DNA ends that holds the ends in physical proximity for subsequent repair.Using transmission electron microscopy to localize gold-labeled pKu70 and pDNA-PKcs within nuclear ultrastructure, we monitored the formation and repair of actual DSBs within euchromatin (electron-lucent and heterochromatin (electron-dense in cortical neurons of irradiated mouse brain.While DNA lesions in euchromatin (characterized by two pKu70-gold beads, reflecting the Ku70-Ku80 heterodimer are promptly sensed and rejoined, DNA packaging in heterochromatin appears to retard DSB processing, due to the time needed to unravel higher-order chromatin structures. Complex pKu70-clusters formed in heterochromatin (consisting of 4 or ≥ 6 gold beads may represent multiple breaks in close proximity caused by ionizing radiation of highly-compacted DNA. All pKu70-clusters disappeared within 72 hours post-irradiation, indicating efficient DSB rejoining. However, persistent 53BP1 clusters in heterochromatin (comprising ≥ 10 gold beads, occasionally co-localizing with γH2AX, but not pKu70 or pDNA-PKcs, may reflect incomplete or incorrect restoration of chromatin structure rather than persistently unrepaired DNA damage.Higher-order organization of chromatin determines the accessibility of DNA lesions to repair complexes, defining how readily DSBs are detected and processed. DNA lesions in heterochromatin appear to be more complex, with multiple breaks in spatial vicinity inducing

  11. Efficient and reproducible identification of mismatch repair deficient colon cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Bendahl, Pär-Ola; Halvarsson, Britta

    2013-01-01

    BACKGROUND: The identification of mismatch-repair (MMR) defective colon cancer is clinically relevant for diagnostic, prognostic and potentially also for treatment predictive purposes. Preselection of tumors for MMR analysis can be obtained with predictive models, which need to demonstrate ease...... of application and favorable reproducibility. METHODS: We validated the MMR index for the identification of prognostically favorable MMR deficient colon cancers and compared performance to 5 other prediction models. In total, 474 colon cancers diagnosed ≥ age 50 were evaluated with correlation between...... clinicopathologic variables and immunohistochemical MMR protein expression. RESULTS: Female sex, age ≥60 years, proximal tumor location, expanding growth pattern, lack of dirty necrosis, mucinous differentiation and presence of tumor-infiltrating lymphocytes significantly correlated with MMR deficiency. Presence...

  12. The Heterochromatic Barrier to DNA Double Strand Break Repair: How to Get the Entry Visa

    Directory of Open Access Journals (Sweden)

    Aaron A. Goodarzi

    2012-09-01

    Full Text Available Over recent decades, a deep understanding of pathways that repair DNA double strand breaks (DSB has been gained from biochemical, structural, biophysical and cellular studies. DNA non-homologous end-joining (NHEJ and homologous recombination (HR represent the two major DSB repair pathways, and both processes are now well understood. Recent work has demonstrated that the chromatin environment at a DSB significantly impacts upon DSB repair and that, moreover, dramatic modifications arise in the chromatin surrounding a DSB. Chromatin is broadly divided into open, transcriptionally active, euchromatin (EC and highly compacted, transcriptionally inert, heterochromatin (HC, although these represent extremes of a spectrum. The HC superstructure restricts both DSB repair and damage response signaling. Moreover, DSBs within HC (HC-DSBs are rapidly relocalized to the EC-HC interface. The damage response protein kinase, ataxia telangiectasia mutated (ATM, is required for HC-DSB repair but is dispensable for the relocalization of HC-DSBs. It has been proposed that ATM signaling enhances HC relaxation in the DSB vicinity and that this is a prerequisite for HC-DSB repair. Hence, ATM is essential for repair of HC-DSBs. Here, we discuss how HC impacts upon the response to DSBs and how ATM overcomes the barrier that HC poses to repair.

  13. Efficiency of repair of pyrimidine dimers and psoralen monoadducts in normal and xeroderma pigmentosum human cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Charles, W.C.; Kong, S.H.

    1984-01-01

    Repair of DNA damage produced by ultraviolet light or 5-methylisopsoralen in normal and xeroderma pigmentosum human cells involves many similar steps. Aphidicolin and cytosine arabinoside block repair of both kinds of damage with similar efficiency, indicating that DNA polymerase α has a major role in repair for these lesions. In xeroderma pigmentosum cells of various complementation groups, the relative efficiency of excision repair for both ultraviolet- and 5-methylisopsoralen-induced damage was group A< C< D, indicating a close resemblance between both kinds of lesions in relation to the repair deficiencies in these groups. At high doses, the maximum rate of repair of damage by ultraviolet light was about twice that for methylisopsoralen damage, possibly because ultraviolet-induced damage forms a substrate that is more readily recognized and excised than that of the psoralen adducts. Differences in the structural distortions to DNA caused by these kinds of damage could be detected using single strand specific nucleases which excised dimers but not 5-MIP adducts from double strand DNA. (author)

  14. Structural and Biochemical Characterization of the Oxidoreductase NmDsbA3 from Neisseria meningitidis

    Energy Technology Data Exchange (ETDEWEB)

    Vivian, Julian P.; Scoullar, Jessica; Robertson, Amy L.; Bottomley, Stephen P.; Horne, James; Chin, Yanni; Wielens, Jerome; Thompson, Philip E.; Velkov, Tony; Piek, Susannah; Byres, Emma; Beddoe, Travis; Wilce, Matthew C.J.; Kahler, Charlene M.; Rossjohn, Jamie; Scanlon, Martin J. (UWA); (Monash)

    2009-09-02

    DsbA is an enzyme found in the periplasm of Gram-negative bacteria that catalyzes the formation of disulfide bonds in a diverse array of protein substrates, many of which are involved in bacterial pathogenesis. Although most bacteria possess only a single essential DsbA, Neisseria meningitidis is unusual in that it possesses three DsbAs, although the reason for this additional redundancy is unclear. Two of these N. meningitidis enzymes (NmDsbA1 and NmDsbA2) play an important role in meningococcal attachment to human epithelial cells, whereas NmDsbA3 is considered to have a narrow substrate repertoire. To begin to address the role of DsbAs in the pathogenesis of N. meningitidis, we have determined the structure of NmDsbA3 to 2.3-{angstrom} resolution. Although the sequence identity between NmDsbA3 and other DsbAs is low, the NmDsbA3 structure adopted a DsbA-like fold. Consistent with this finding, we demonstrated that NmDsbA3 acts as a thiol-disulfide oxidoreductase in vitro and is reoxidized by Escherichia coli DsbB (EcDsbB). However, pronounced differences in the structures between DsbA3 and EcDsbA, which are clustered around the active site of the enzyme, suggested a structural basis for the unusual substrate specificity that is observed for NmDsbA3.

  15. USING THE OUTSOURCING MECHANISM TO INCREASE THE EFFICIENCY OF REPAIR AND MAINTENANCE IN METALLURGICAL ENTERPRISES

    Directory of Open Access Journals (Sweden)

    Elena I. Kozlova

    2017-01-01

    Full Text Available Abstract. Objectives The aim of the work is to study the outsourcing mechanism from the point of view of increasing the efficiency of repair and maintenance at a metallurgical enterprise. Method Analysis of the experience of using outsourcing of repair services at domestic and foreign metallurgical enterprises was carried out. Analysis of the experience of the withdrawal from enterprise repair services into a separate outsourcing company has shown that the main advantages of this method of organising repair activities are an increase in the transparency of the costs of repairs and maintenance, and hence their reduction, as well as a reduction in the amount of equipment downtime. The main characteristics of outsourcing were revealed, substantiating its expediency. The restructuring of the repair system provides a step-by-step transition from decentralised to centralised structures of technical, mechanical, power and electrical repair services of enterprises, from the principle of "self-service" to the principle of "proprietary service" by isolating the subdivisions of the repair system from the structure of enterprises and creating competing members of the repair services market. Put another way, this is typified by moving away from the status of auxiliary production to a selfdependent activity. The stages of outsourcing the repair services of the enterprise are considered and possible problems that may arise in the course of the work of a working group are established to determine the suitability of outsourcing and to resolve the numerous issues arising from the transfer of repair functions. Results The findings of the research include approaches developed for overcoming risky situations: providing guarantees from the customer and the contractor and indicating them in the contract, increasing the motivation of the outsourcing company through a key performance indicator that should increase the interest of the performer in providing quality

  16. The spatial regulation of meiotic recombination hotspots: are all DSB hotspots crossover hotspots?

    Science.gov (United States)

    Serrentino, Maria-Elisabetta; Borde, Valérie

    2012-07-15

    A key step for the success of meiosis is programmed homologous recombination, during which crossovers, or exchange of chromosome arms, take place. Crossovers increase genetic diversity but their main function is to ensure accurate chromosome segregation. Defects in crossover number and position produce aneuploidies that represent the main cause of miscarriages and chromosomal abnormalities such as Down's syndrome. Recombination is initiated by the formation of programmed double strand breaks (DSBs), which occur preferentially at places called DSB hotspots. Among all DSBs generated, only a small fraction is repaired by crossover, the other being repaired by other homologous recombination pathways. Crossover maps have been generated in a number of organisms, defining crossover hotspots. With the availability of genome-wide maps of DSBs as well as the ability to measure genetically the repair outcome at several hotspots, it is becoming more and more clear that not all DSB hotspots behave the same for crossover formation, suggesting that chromosomal features distinguish different types of hotspots. Copyright © 2012. Published by Elsevier Inc.

  17. Repair pathways for heavy ion-induced complex DNA double strand breaks

    International Nuclear Information System (INIS)

    Yajima, Hirohiko; Nakajima, Nakako; Hirakawa, Hirokazu; Murakami, Takeshi; Okayasu, Ryuichi; Fujimori, Akira

    2012-01-01

    DNA double strand break (DSB) induced by ionizing radiation (IR) is a deleterious damage leading to cell death and genome instability if not properly repaired. It is well known that DSB is repaired by two major pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). It is also known that NHEJ is dominant throughout the cell cycle after X- or gamma-ray irradiation in mammalian cells, Meanwhile, it is thought that heavy-ion radiation (e.g., carbon-ions, iron-ions) gives rise to clustered DNA damages consisting of not only strand breaks but also aberrant bases in the vicinity of DSBs (complex DSBs). Our previous work suggested that the efficiency of NHEJ is diminished for repair of complex DSBs induced by heavy-ion radiation. We thought that this difficulty in NHEJ process associated with heavy ion induced complex DNA damage might be extended to HR process in cells exposed to heavy ions. In order to find out if this notion is true or not, exposed human cells to X-rays and heavy-ions, and studied HR associated processes at the molecular level. Our result indicates that complex DSBs induced by heavy ions effectively evoke DNA end resection activity during the HR process. Together with our results, a relevant recent progress in the field of DNA DSB repair will be discussed. (author)

  18. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment.

    Science.gov (United States)

    van Oorschot, Bregje; Granata, Giovanna; Di Franco, Simone; Ten Cate, Rosemarie; Rodermond, Hans M; Todaro, Matilde; Medema, Jan Paul; Franken, Nicolaas A P

    2016-10-04

    Radiotherapy is based on the induction of lethal DNA damage, primarily DNA double-strand breaks (DSB). Efficient DSB repair via Non-Homologous End Joining or Homologous Recombination can therefore undermine the efficacy of radiotherapy. By suppressing DNA-DSB repair with hyperthermia (HT) and DNA-PKcs inhibitor NU7441 (DNA-PKcsi), we aim to enhance the effect of radiation.The sensitizing effect of HT for 1 hour at 42°C and DNA-PKcsi [1 μM] to radiation treatment was investigated in cervical and breast cancer cells, primary breast cancer sphere cells (BCSCs) enriched for cancer stem cells, and in an in vivo human tumor model. A significant radio-enhancement effect was observed for all cell types when DNA-PKcsi and HT were applied separately, and when both were combined, HT and DNA-PKcsi enhanced radio-sensitivity to an even greater extent. Strikingly, combined treatment resulted in significantly lower survival rates, 2 to 2.5 fold increase in apoptosis, more residual DNA-DSB 6 h post treatment and a G2-phase arrest. In addition, tumor growth analysis in vivo showed significant reduction in tumor growth and elevated caspase-3 activity when radiation was combined with HT and DNA-PKcsi compared to radiation alone. Importantly, no toxic side effects of HT or DNA-PKcsi were found.In conclusion, inhibiting DNA-DSB repair using HT and DNA-PKcsi before radiotherapy leads to enhanced cytotoxicity in cancer cells. This effect was even noticed in the more radio-resistant BCSCs, which are clearly sensitized by combined treatment. Therefore, the addition of HT and DNA-PKcsi to conventional radiotherapy is promising and might contribute to more efficient tumor control and patient outcome.

  19. Sulfur Denitrosylation by an Engineered Trx-like DsbG Enzyme Identifies Nucleophilic Cysteine Hydrogen Bonds as Key Functional Determinant.

    Science.gov (United States)

    Lafaye, Céline; Van Molle, Inge; Tamu Dufe, Veronica; Wahni, Khadija; Boudier, Ariane; Leroy, Pierre; Collet, Jean-François; Messens, Joris

    2016-07-15

    Exposure of bacteria to NO results in the nitrosylation of cysteine thiols in proteins and low molecular weight thiols such as GSH. The cells possess enzymatic systems that catalyze the denitrosylation of these modified sulfurs. An important player in these systems is thioredoxin (Trx), a ubiquitous, cytoplasmic oxidoreductase that can denitrosylate proteins in vivo and S-nitrosoglutathione (GSNO) in vitro However, a periplasmic or extracellular denitrosylase has not been identified, raising the question of how extracytoplasmic proteins are repaired after nitrosative damage. In this study, we tested whether DsbG and DsbC, two Trx family proteins that function in reducing pathways in the Escherichia coli periplasm, also possess denitrosylating activity. Both DsbG and DsbC are poorly reactive toward GSNO. Moreover, DsbG is unable to denitrosylate its specific substrate protein, YbiS. Remarkably, by borrowing the CGPC active site of E. coli Trx-1 in combination with a T200M point mutation, we transformed DsbG into an enzyme highly reactive toward GSNO and YbiS. The pKa of the nucleophilic cysteine, as well as the redox and thermodynamic properties of the engineered DsbG are dramatically changed and become similar to those of E. coli Trx-1. X-ray structural insights suggest that this results from a loss of two direct hydrogen bonds to the nucleophilic cysteine sulfur in the DsbG mutant. Our results highlight the plasticity of the Trx structural fold and reveal that the subtle change of the number of hydrogen bonds in the active site of Trx-like proteins is the key factor that thermodynamically controls reactivity toward nitrosylated compounds. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Visualization of DNA double-strand break repair: From molecules to cells

    NARCIS (Netherlands)

    Krawczyk, Przemek M.; Stap, Jan; Aten, Jacob A.

    2008-01-01

    DNA double-strand break (DSB) signaling and repair processes are positioned at the crossroad of nuclear pathways that regulate DNA replication, cell division, senescence and apoptosis. Importantly, errors in DSB repair may lead to lethal or potentially tumorigenic chromosome rearrangements.

  1. ENERGY EFFICIENCY OF DIESEL LOCOMOTIVE HYDRAULIC TRANSMISSION TESTS AT LOCOMOTIVE REPAIR PLANT

    Directory of Open Access Journals (Sweden)

    B. E. Bodnar

    2015-10-01

    Full Text Available Purpose. In difficult economic conditions, cost reduction of electricity consumption for the needs of production is an urgent task for the country’s industrial enterprises. Technical specifications of enterprises, which repair diesel locomotive hydraulic transmission, recommend conducting a certain amount of evaluation and regulatory tests to monitor their condition after repair. Experience shows that a significant portion of hydraulic transmission defects is revealed by bench tests. The advantages of bench tests include the ability to detect defects after repair, ease of maintenance of the hydraulic transmission and relatively low labour intensity for eliminating defects. The quality of these tests results in the transmission resource and its efficiency. Improvement of the technology of plant post-repairs hydraulic tests in order to reduce electricity consumption while testing. Methodology. The possible options for hydraulic transmission test bench improvement were analysed. There was proposed an energy efficiency method for diesel locomotive hydraulic transmission testing in locomotive repair plant environment. This is achieved by installing additional drive motor which receives power from the load generator. Findings. Based on the conducted analysis the necessity of improving the plant stand testing of hydraulic transmission was proved. The variants of the stand modernization were examined. The test stand modernization analysis was conducted. Originality. The possibility of using electric power load generator to power the stand electric drive motor or the additional drive motor was theoretically substantiated. Practical value. A variant of hydraulic transmission test stand based on the mutual load method was proposed. Using this method increases the hydraulic transmission load range and power consumption by stand remains unchanged. The additional drive motor will increase the speed of the input shaft that in its turn wil allow testing in

  2. Radioadaptive response. Efficient repair of radiation-induced DNA damage in adapted cells

    International Nuclear Information System (INIS)

    Ikushima, Takaji; Aritomi, Hisako; Morisita, Jun

    1996-01-01

    To verify the hypothesis that the induction of a novel, efficient repair mechanism for chromosomal DNA breaks may be involved in the radioadaptive response, the repair kinetics of DNA damage has been studied in cultured Chinese hamster V79 cells with single-cell gel electrophoresis. The cells were adapted by priming exposure with 5 cGy of γ-rays and 4-h incubation at 37C. There were no indication of any difference in the initial yields of DNA double-strand breaks induced by challenging doses from non-adapted cells and from adapted cells. The rejoining of DNA double-strand breaks was monitored over 120 min after the adapted cells were challenged with 5 or 1.5 Gy, doses at the same level to those used in the cytogenetical adaptive response. The rate of DNA damage repair in adapted cells was higher than that in non-adapted cells, and the residual damage was less in adapted cells than in non-adapted cells. These results indicate that the radioadaptive response may result from the induction of a novel, efficient DNA repair mechanism which leads to less residual damage, but not from the induction of protective functions that reduce the initial DNA damage

  3. Radiosensitization of tumour cell lines by the polyphenol Gossypol results from depressed double-strand break repair and not from enhanced apoptosis.

    Science.gov (United States)

    Kasten-Pisula, Ulla; Windhorst, Sabine; Dahm-Daphi, Jochen; Mayr, Georg; Dikomey, Ekkehard

    2007-06-01

    New drugs are needed to increase the efficiency of radiotherapy in order to improve the therapeutic outcome of tumour patients. In this respect, the polyphenol Gossypol might be of interest, because of its effect on apoptosis and DNA repair, which is either mediated directly or indirectly via the inositol phosphate metabolism. It was investigated, whether these effects result in enhanced radiosensitivity of tumour cells. Tumour cell lines investigated: A549, FaDu, H1299, MCF7 and Du145. Cell cycle distribution was determined by FACS analysis, apoptosis was measured by DAPI staining and caspase3/7 activity. Double-strand breaks (DSB) were investigated via gammaH2AX-foci and cell survival by colony formation assay. The level of inositol phosphates was determined by HPLC, protein expression by Western blot. In A549 cells, Gossypol at concentrations 1microM strongly affects proliferation with only a modest arrest in the G1-phase, but with no increase in the fraction of apoptotic cells or the number of additional DSB. Additional DSB were only seen in FaDu cells, where Gossypol (2microM) was extremely toxic with a plating efficiency even found to be enhanced by Gossypol. For some tumour cell lines treatment with low concentrations of Gossypol can be used to inhibit DSB repair capacity and with that to increase the cellular radiosensitivity.

  4. Double-strand break repair-adox: Restoration of suppressed double-strand break repair during mitosis induces genomic instability.

    Science.gov (United States)

    Terasawa, Masahiro; Shinohara, Akira; Shinohara, Miki

    2014-12-01

    Double-strand breaks (DSBs) are one of the severest types of DNA damage. Unrepaired DSBs easily induce cell death and chromosome aberrations. To maintain genomic stability, cells have checkpoint and DSB repair systems to respond to DNA damage throughout most of the cell cycle. The failure of this process often results in apoptosis or genomic instability, such as aneuploidy, deletion, or translocation. Therefore, DSB repair is essential for maintenance of genomic stability. During mitosis, however, cells seem to suppress the DNA damage response and proceed to the next G1 phase, even if there are unrepaired DSBs. The biological significance of this suppression is not known. In this review, we summarize recent studies of mitotic DSB repair and discuss the mechanisms of suppression of DSB repair during mitosis. DSB repair, which maintains genomic integrity in other phases of the cell cycle, is rather toxic to cells during mitosis, often resulting in chromosome missegregation and aberration. Cells have multiple safeguards to prevent genomic instability during mitosis: inhibition of 53BP1 or BRCA1 localization to DSB sites, which is important to promote non-homologous end joining or homologous recombination, respectively, and also modulation of the non-homologous end joining core complex to inhibit DSB repair. We discuss how DSBs during mitosis are toxic and the multiple safeguard systems that suppress genomic instability. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  5. IDN2 Interacts with RPA and Facilitates DNA Double-Strand Break Repair by Homologous Recombination in Arabidopsis.

    Science.gov (United States)

    Liu, Mingming; Ba, Zhaoqing; Costa-Nunes, Pedro; Wei, Wei; Li, Lanxia; Kong, Fansi; Li, Yan; Chai, Jijie; Pontes, Olga; Qi, Yijun

    2017-03-01

    Repair of DNA double-strand breaks (DSBs) is critical for the maintenance of genome integrity. We previously showed that DSB-induced small RNAs (diRNAs) facilitate homologous recombination-mediated DSB repair in Arabidopsis thaliana Here, we show that INVOLVED IN DE NOVO2 (IDN2), a double-stranded RNA binding protein involved in small RNA-directed DNA methylation, is required for DSB repair in Arabidopsis. We find that IDN2 interacts with the heterotrimeric replication protein A (RPA) complex. Depletion of IDN2 or the diRNA binding ARGONAUTE2 leads to increased accumulation of RPA at DSB sites and mislocalization of the recombination factor RAD51. These findings support a model in which IDN2 interacts with RPA and facilitates the release of RPA from single-stranded DNA tails and subsequent recruitment of RAD51 at DSB sites to promote DSB repair. © 2017 American Society of Plant Biologists. All rights reserved.

  6. Expression and crystallization of SeDsbA, SeDsbL and SeSrgA from Salmonella enterica serovar Typhimurium

    International Nuclear Information System (INIS)

    Jarrott, R.; Shouldice, S. R.; Gunčar, G.; Totsika, M.; Schembri, M. A.; Heras, B.

    2010-01-01

    The cloning, purification, crystallization and preliminary crystallographic studies of three DsbA-like proteins present in S. enterica serovar Typhimurium, SeDsbA, SeDsbL and SeSrgA, are reported. Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P2 1 , P2 1 2 1 2 and C2, respectively

  7. Histone H2AX in DNA repair

    International Nuclear Information System (INIS)

    Lewandowska, H.; Szumiel, I.

    2002-01-01

    The paper reviews the recent reports on the role of the phosphorylated histone H2AX (γ-H2AX). The modification of this histone is an important part of the cellular response to the induction of DNA double strand brakes (DSB) by ionising radiation and other DSB-generating factors. In irradiated cells the modification is carried out mainly by ATM (ataxia-telangiectasia mutated) kinase, the enzyme that starts the alarm signalling upon induction of DSB.γ-H2AX molecules are formed within 1-3 min after irradiation and form foci at the sites of DSB. This seems to be necessary for the recruitment of repair factors that are later present in foci of damaged nuclei. Modification of a constant percentage of H2AX molecules per DSB takes place, corresponding to chromatin domains of megabase of DNA. (author)

  8. The bases for optimisation of scheduled repairs and tests of safety systems to improve the NPP productive efficiency

    International Nuclear Information System (INIS)

    Bilej, D.V.; Vasil'chenko, S.V.; Vlasenko, N.I.; Vasil'chenko, V.N.; Skalozubov, V.I.

    2004-01-01

    In the frames of risk-informed approaches the paper proposed the theoretical bases for methods of optimisation of scheduled repairs and tests of safety systems at nuclear power plants. The optimisation criterion is the objective risk function minimising. This function depends on the scheduled repairs/tests periodicity and the allowed time to bring the system channel to a state of non-operability. The main optimisation direct is to reduce the repair time with the purpose of enhancement of productive efficiency

  9. ROLE OF METHODS FOR CAR-REPAIRING ORGANIZATIONS AND THEIR INFLUENCE ON INCREASE OF LABOR EFFICIENCY

    Directory of Open Access Journals (Sweden)

    V. V. Myamlin

    2010-11-01

    Full Text Available The advantages of the line form of production organization are shown. The examples of forming the lines in different branches of industry are given. Main characteristics of line production are presented. An important role in the development of new structures of car repair lines promoting in production efficiency and labor productivity growth is emphasized. Huge reserves in this direction can be seen in creation of multi-subject flexible asynchronous systems with high level of production mechanization and automation.

  10. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    Science.gov (United States)

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  11. Correlation between ultraviolet survival and DNA repair efficiency in mouse cell hybrids and their parent lines

    International Nuclear Information System (INIS)

    Limbosch, S.

    1982-01-01

    Three hybrid cell lines formed between mouse lymphoma (LS) and mouse fibroblasts (A9) have been tested for their capacity to perform unscheduled DNA synthesis; their recovery characteristics after uv irradiation have also been studied to determine if DNA repair is implicated in the high survival observed in one hybrid (clone 3). The results of these investigations indicate that hybrid clone 3 was distinguishable from the more uv sensitive parental and other hybrid cell lines by its higher uv-induced unscheduled DNA synthesis, its greater clonogenic survival in plateau phase, and its faster recovery when maintained in conditioned medium after irradiation. The simultaneous increase of these three properties in hybrid clone 3 suggest that, by three different approaches, we have evidenced the same molecular process, a process involved in the elimination of potentially lethal damage, most probably the excision repair pathway. This report also shows that the low efficiency in excision repair in the parent line A9 is probably not due to deletion but rather to repression of the relevant gene(s) and that somatic cell hybridization can result in a stimulation of a previously poorly expressed repair process

  12. Folding of DsbB in mixed micelles

    DEFF Research Database (Denmark)

    Otzen, Daniel

    2003-01-01

    state and an unfolding intermediate that accumulates only under unfolding conditions at high mole fractions of SDS. The stability of DsbB is around 4.4 kcal/mol in DM, and this is halved upon reduction of the two periplasmic disulfide bonds, and is sensitive to mutagenesis. With the caveat that kinetic...... is sensitive to changes in lipid and detergent composition. As an attempt to overcome this problem, I present a kinetic analysis of the folding of a membrane protein, disulfide bond reducing protein B (DsbB), in a mixed micelle system consisting of varying molar ratios of sodium dodecyl sulfate (SDS...

  13. The base excision repair pathway is required for efficient lentivirus integration.

    Directory of Open Access Journals (Sweden)

    Kristine E Yoder

    Full Text Available An siRNA screen has identified several proteins throughout the base excision repair (BER pathway of oxidative DNA damage as important for efficient HIV infection. The proteins identified included early repair factors such as the base damage recognition glycosylases OGG1 and MYH and the late repair factor POLß, implicating the entire BER pathway. Murine cells with deletions of the genes Ogg1, Myh, Neil1 and Polß recapitulate the defect of HIV infection in the absence of BER. Defective infection in the absence of BER proteins was also seen with the lentivirus FIV, but not the gammaretrovirus MMLV. BER proteins do not affect HIV infection through its accessory genes nor the central polypurine tract. HIV reverse transcription and nuclear entry appear unaffected by the absence of BER proteins. However, HIV integration to the host chromosome is reduced in the absence of BER proteins. Pre-integration complexes from BER deficient cell lines show reduced integration activity in vitro. Integration activity is restored by addition of recombinant BER protein POLß. Lentiviral infection and integration efficiency appears to depend on the presence of BER proteins.

  14. DNA Repair Alterations in Children With Pediatric Malignancies: Novel Opportunities to Identify Patients at Risk for High-Grade Toxicities

    International Nuclear Information System (INIS)

    Ruebe, Claudia E.; Fricke, Andreas; Schneider, Ruth; Simon, Karin; Kuehne, Martin; Fleckenstein, Jochen; Graeber, Stefan; Graf, Norbert; Ruebe, Christian

    2010-01-01

    Purpose: To evaluate, in a pilot study, the phosphorylated H2AX (γH2AX) foci approach for identifying patients with double-strand break (DSB) repair deficiencies, who may overreact to DNA-damaging cancer therapy. Methods and Materials: The DSB repair capacity of children with solid cancers was analyzed compared with that of age-matched control children and correlated with treatment-related normal-tissue responses (n = 47). Double-strand break repair was investigated by counting γH2AX foci in blood lymphocytes at defined time points after irradiation of blood samples. Results: Whereas all healthy control children exhibited proficient DSB repair, 3 children with tumors revealed clearly impaired DSB repair capacities, and 2 of these repair-deficient children developed life-threatening or even lethal normal-tissue toxicities. The underlying mutations affecting regulatory factors involved in DNA repair pathways were identified. Moreover, significant differences in mean DSB repair capacity were observed between children with tumors and control children, suggesting that childhood cancer is based on genetic alterations affecting DSB repair function. Conclusions: Double-strand break repair alteration in children may predispose to cancer formation and may affect children's susceptibility to normal-tissue toxicities. Phosphorylated H2AX analysis of blood samples allows one to detect DSB repair deficiencies and thus enables identification of children at risk for high-grade toxicities.

  15. Steroids Regulate CXCL4 in the Human Endometrium During Menstruation to Enable Efficient Endometrial Repair.

    Science.gov (United States)

    Maybin, Jacqueline A; Thiruchelvam, Uma; Madhra, Mayank; Saunders, Philippa T K; Critchley, Hilary O D

    2017-06-01

    Repair of the endometrial surface at menstruation must be efficient to minimize blood loss and optimize reproductive function. The mechanism and regulation of endometrial repair remain undefined. To determine the presence/regulation of CXCL4 in the human endometrium as a putative repair factor at menses. Endometrial tissue was collected throughout the menstrual cycle from healthy women attending the gynecology department. Menstrual blood loss was objectively measured in a subset, and heavy menstrual bleeding (HMB) was defined as >80 mL per cycle. Monocytes were isolated from peripheral blood. CXCL4 messenger RNA (mRNA) and protein were identified by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The function/regulation of endometrial CXCL4 was explored by in vitro cell culture. CXCL4 mRNA concentrations were significantly increased during menstruation. Intense staining for CXCL4 was detected in late secretory and menstrual tissue, localized to stromal, epithelial and endothelial cells. Colocalization identified positive staining in CD68+ macrophages. Treatment of human endometrial stromal and endothelial cells (hESCs and HEECs, respectively) with steroids revealed differential regulation of CXCL4. Progesterone withdrawal resulted in significant increases in CXCL4 mRNA and protein in hESCs, whereas cortisol significantly increased CXCL4 in HEECs. In women with HMB, CXCL4 was reduced in endothelial cells during the menstrual phase compared with women with normal menstrual bleeding. Cortisol-exposed macrophages displayed increased chemotaxis toward CXCL4 compared with macrophages incubated with estrogen or progesterone. These data implicate CXCL4 in endometrial repair after menses. Reduced cortisol at the time of menses may contribute to delayed endometrial repair and HMB, in part by mechanisms involving aberrant expression of CXCL4. Copyright © 2017 by the Endocrine Society

  16. Double-Strand DNA Break Repair in Mycobacteria.

    Science.gov (United States)

    Glickman, Michael S

    2014-10-01

    Discontinuity of both strands of the chromosome is a lethal event in all living organisms because it compromises chromosome replication. As such, a diversity of DNA repair systems has evolved to repair double-strand DNA breaks (DSBs). In part, this diversity of DSB repair systems has evolved to repair breaks that arise in diverse physiologic circumstances or sequence contexts, including cellular states of nonreplication or breaks that arise between repeats. Mycobacteria elaborate a set of three genetically distinct DNA repair pathways: homologous recombination, nonhomologous end joining, and single-strand annealing. As such, mycobacterial DSB repair diverges substantially from the standard model of prokaryotic DSB repair and represents an attractive new model system. In addition, the presence in mycobacteria of a DSB repair system that can repair DSBs in nonreplicating cells (nonhomologous end joining) or when DSBs arise between repeats (single-strand annealing) has clear potential relevance to Mycobacterium tuberculosis pathogenesis, although the exact role of these systems in M. tuberculosis pathogenesis is still being elucidated. In this article we will review the genetics of mycobacterial DSB repair systems, focusing on recent insights.

  17. Impact of charged particle exposure on homologous DNA double-strand break repair in human blood-derived cells

    Directory of Open Access Journals (Sweden)

    Melanie eRall

    2015-11-01

    Full Text Available Ionizing radiation generates DNA double-strand breaks (DSB which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC, potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL, particularly regarding homologous DSB repair (HR. Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET in HSPC versus PBL. For higher LET, 53BP1 foci kinetics were similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose-dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment.

  18. Genetic defects in DNA repair system and enhancement of intergenote transformation efficiency in Bacillus subtilis Marburg

    International Nuclear Information System (INIS)

    Matsumoto, K.; Takahashi, H.; Saito, H.; Ikeda, Y.

    1978-01-01

    Mechanisms of inefficiency in heterospecies transformation were studied with a transformation system consisting of Bacillus subtilis 168TI (trpC2thy) as recipient and of DNA prepared from partially hybrid strains of B. subtilis which had incorporated trp + DNA of B. amyloliquefaciens 203 (formerly, B. megaterium 203) in the chromosome (termed intergenote). The intergenote transformation was not so efficient as the corresponding homospecies transformation and the efficiency appeared to relate inversely with the length of heterologous portion in the intergenote. When a variety of ultraviolet light (UV) sensitive mutants, deficient in host-cell reactivation capacity, were used as recipients for the intergenote transformation, 2 out of 16 mutants exhibited significantly enhanced transformation efficiency of the trpC marker. Genetic studies by transformation showed that the trait relating to the enhancement of intergenote-transformation efficiency was always associated with the UV sensitivity, suggesting that these two traits are determined by a single gene. The efficiency of intergenote transformation was highly affected also by DNA concentration; the lower the concentration, the less the efficiency. When, however, the UV sensitive mutant was used as recipient, the effect of DNA concentration was largely diminished, suggesting the reduction of DNA-inactivating activity in the UV sensitive recipient. These results were discussed in relation to a possible excision-repair system selectively correcting the mismatched DNA in the course of intergenote transformation. (orig.) [de

  19. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  20. Budding yeast ATM/ATR control meiotic double-strand break (DSB levels by down-regulating Rec114, an essential component of the DSB-machinery.

    Directory of Open Access Journals (Sweden)

    Jesús A Carballo

    2013-06-01

    Full Text Available An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs. Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks.

  1. Budding Yeast ATM/ATR Control Meiotic Double-Strand Break (DSB) Levels by Down-Regulating Rec114, an Essential Component of the DSB-machinery

    Science.gov (United States)

    Carballo, Jesús A.; Panizza, Silvia; Serrentino, Maria Elisabetta; Johnson, Anthony L.; Geymonat, Marco; Borde, Valérie; Klein, Franz; Cha, Rita S.

    2013-01-01

    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or “DSB homeostasis”, might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks. PMID:23825959

  2. Clustering of DSB in DNA by X-Ray and a-particle irradiation in MCF-7 cells studied with anti γ-H2AX

    International Nuclear Information System (INIS)

    Tapia, O.; Soto, J.; Castro, F.A.; Berciano, Ma T; Lafarga, M.; Cos, S.; Sanchez-Barcelo, E.

    2007-01-01

    Among the effects produced by the ionizing radiations in cellular DNA, double strand breaks (DSB) are considered particularly important. These ruptures and their grouping in certain points, clustering, are acknowledged as the cause for mutagenic effects and cellular death. In this work we present the methodology and the results of the application of the DSB - DNA marking technique by using anti γ-H2AX, taking human cancerous cells MCF-7 as model and X-rays and a particles as irradiation agents. The obtained results are showed in a qualitative way like a set of figures. Are shows the effects of a dose of 2 Gy X-rays in the DSB - DNA after 30 minutes of the irradiation that responds to a certain pattern in which a spatially homogenous irradiation interacts with the DNA. As in previous case, the effects of X-rays in the DSB - DNA shows a different pattern affecting the cells that are in mitosis. Also, the effects of a dose of 2 Gy X-rays obtained after 24 hours of irradiation shows a number of DSB smaller, which is indicative of the repairing process. The results of the irradiation with a dose of 0.1 Gy originated from a particles cause a smaller number of DSB. Nevertheless, the existence of a bigger clustering with the appearance of clearly more intense points is appraised. Also, the effect of the irradiation is showed as an aligned trace of clusters that is possible to attribute to the passing of a a particle through the cellular nucleus. (Author)

  3. AAV Vectorization of DSB-mediated Gene Editing Technologies.

    Science.gov (United States)

    Moser, Rachel J; Hirsch, Matthew L

    2016-01-01

    Recent work both at the bench and the bedside demonstrate zinc-finger nucleases (ZFNs), CRISPR/Cas9, and other programmable site-specific endonuclease technologies are being successfully utilized within and alongside AAV vectors to induce therapeutically relevant levels of directed gene editing within the human chromosome. Studies from past decades acknowledge that AAV vector genomes are enhanced substrates for homology-directed repair in the presence or absence of targeted DNA damage within the host genome. Additionally, AAV vectors are currently the most efficient format for in vivo gene delivery with no vector related complications in >100 clinical trials for diverse diseases. At the same time, advancements in the design of custom-engineered site-specific endonucleases and the utilization of elucidated endonuclease formats have resulted in efficient and facile genetic engineering for basic science and for clinical therapies. AAV vectors and gene editing technologies are an obvious marriage, using AAV for the delivery of repair substrate and/or a gene encoding a designer endonuclease; however, while efficient delivery and enhanced gene targeting by vector genomes are advantageous, other attributes of AAV vectors are less desirable for gene editing technologies. This review summarizes the various roles that AAV vectors play in gene editing technologies and provides insight into its trending applications for the treatment of genetic diseases.

  4. Use efficiency of dynamic stabilizer in the post-repair period of railways in Ukraine

    Directory of Open Access Journals (Sweden)

    O.V. Gubar

    2013-08-01

    Full Text Available Purpose. To analyze the interaction forces of the track and rolling stock at application of dynamic stabilizers, as well as the determination of the area, on which the track stabilization is necessary not only according to the technical indices but also according to the economic ones. Methodology.To achieve the research purpose the methods of analysis of material flows, peculiar to the places that need applications of dynamic stabilizers on railway transport tracks are used. Findings. Researches of relatively economic efficiency of dynamic stabilizers application, which were conducted by scientists during the last years, do not spread to comparison of cost of works on the track stabilizing and losses of railway for period of running. During the running period the trains move with a limited speed that causes corresponding financial losses. Speed limitation result in the both the motion time increase and in some occasions in the heavy consumption of fuel and energy resources. The more intensive track discord and expenses increase for its maintenance are observed in the sections of braking and acceleration immediately in front of and after the areas of limitation. The methodology relative to the estimation of economic efficiency of dynamic stabilizers application after completion of track repairs for the areas of Ukrainian railways with different operational conditions was developed. This methodology includes the losses calculation of railroad, which are predefined by extra motion time, heavy consumption of fuel and energy resources and charges for current maintenance. Originality. The methodology of cost effectiveness evaluating of the dynamic stabilizers application in the post-repair period was developed. Such an approach would allow one to take the rational decisions taking into account the features of the track sections, which were reconstructed. Practical value. The obtained results will rationally assign the works on the dynamic track

  5. A component of DNA double-strand break repair is dependent on the spatial orientation of the lesions within the higher-order structures of chromatin

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, P.J.; Bryant, P.E. (Saint Andrews Univ. (United Kingdom))

    1994-11-01

    By the use of a modified neutral filter elution procedure variations in the repair of DNA dsb have been observed between the ionising radiation sensitive mutant xrs-5 and the parent cell line CHO-K1. Conventional neutral filter elution requires harsh lysis conditions to remove higher-order chromatin structures which interfere with elution of DNA containing dsb. By lysing cells with non-ionic detergent in the presence of 2 mol dm[sup -3] salt, histone-depleted structures that retain the higher-order nuclear matrix organization, including chromatin loops, can be produced. Elution from these structures will only occur if two or more dsb lie within a single-looped domain delineated by points of attachment to the nuclear matrix. Repair experiments indicate that in CHO cells repair of dsb in loops containing multiple dsb are repaired with slow kinetics whilst dsb occurring in loops containing single dsb are repaired with fast kinetics. Xrs-5 cells are defective in the repair of multiply damaged loops. This work indicates that the spatial orientation of dsb in the higher-order structures of chromatin are a possible factor in the repair of these lesions. (Author).

  6. A component of DNA double-strand break repair is dependent on the spatial orientation of the lesions within the higher-order structures of chromatin

    International Nuclear Information System (INIS)

    Johnston, P.J.; Bryant, P.E.

    1994-01-01

    By the use of a modified neutral filter elution procedure variations in the repair of DNA dsb have been observed between the ionising radiation sensitive mutant xrs-5 and the parent cell line CHO-K1. Conventional neutral filter elution requires harsh lysis conditions to remove higher-order chromatin structures which interfere with elution of DNA containing dsb. By lysing cells with non-ionic detergent in the presence of 2 mol dm -3 salt, histone-depleted structures that retain the higher-order nuclear matrix organization, including chromatin loops, can be produced. Elution from these structures will only occur if two or more dsb lie within a single-looped domain delineated by points of attachment to the nuclear matrix. Repair experiments indicate that in CHO cells repair of dsb in loops containing multiple dsb are repaired with slow kinetics whilst dsb occurring in loops containing single dsb are repaired with fast kinetics. Xrs-5 cells are defective in the repair of multiply damaged loops. This work indicates that the spatial orientation of dsb in the higher-order structures of chromatin are a possible factor in the repair of these lesions. (Author)

  7. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template.

    Science.gov (United States)

    Keskin, Havva; Storici, Francesca

    2018-01-01

    A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells. © 2018 Elsevier Inc. All rights reserved.

  8. Efficient gene targeting by homology-directed repair in rat zygotes using TALE nucleases.

    Science.gov (United States)

    Remy, Séverine; Tesson, Laurent; Menoret, Séverine; Usal, Claire; De Cian, Anne; Thepenier, Virginie; Thinard, Reynald; Baron, Daniel; Charpentier, Marine; Renaud, Jean-Baptiste; Buelow, Roland; Cost, Gregory J; Giovannangeli, Carine; Fraichard, Alexandre; Concordet, Jean-Paul; Anegon, Ignacio

    2014-08-01

    The generation of genetically modified animals is important for both research and commercial purposes. The rat is an important model organism that until recently lacked efficient genetic engineering tools. Sequence-specific nucleases, such as ZFNs, TALE nucleases, and CRISPR/Cas9 have allowed the creation of rat knockout models. Genetic engineering by homology-directed repair (HDR) is utilized to create animals expressing transgenes in a controlled way and to introduce precise genetic modifications. We applied TALE nucleases and donor DNA microinjection into zygotes to generate HDR-modified rats with large new sequences introduced into three different loci with high efficiency (0.62%-5.13% of microinjected zygotes). Two of these loci (Rosa26 and Hprt1) are known to allow robust and reproducible transgene expression and were targeted for integration of a GFP expression cassette driven by the CAG promoter. GFP-expressing embryos and four Rosa26 GFP rat lines analyzed showed strong and widespread GFP expression in most cells of all analyzed tissues. The third targeted locus was Ighm, where we performed successful exon exchange of rat exon 2 for the human one. At all three loci we observed HDR only when using linear and not circular donor DNA. Mild hypothermic (30°C) culture of zygotes after microinjection increased HDR efficiency for some loci. Our study demonstrates that TALE nuclease and donor DNA microinjection into rat zygotes results in efficient and reproducible targeted donor integration by HDR. This allowed creation of genetically modified rats in a work-, cost-, and time-effective manner. © 2014 Remy et al.; Published by Cold Spring Harbor Laboratory Press.

  9. DNA-damage foci to detect and characterize DNA repair alterations in children treated for pediatric malignancies.

    Directory of Open Access Journals (Sweden)

    Nadine Schuler

    Full Text Available PURPOSE: In children diagnosed with cancer, we evaluated the DNA damage foci approach to identify patients with double-strand break (DSB repair deficiencies, who may overreact to DNA-damaging radio- and chemotherapy. In one patient with Fanconi anemia (FA suffering relapsing squamous cell carcinomas of the oral cavity we also characterized the repair defect in biopsies of skin, mucosa and tumor. METHODS AND MATERIALS: In children with histologically confirmed tumors or leukemias and healthy control-children DSB repair was investigated by counting γH2AX-, 53BP1- and pATM-foci in blood lymphocytes at defined time points after ex-vivo irradiation. This DSB repair capacity was correlated with treatment-related normal-tissue responses. For the FA patient the defective repair was also characterized in tissue biopsies by analyzing DNA damage response proteins by light and electron microscopy. RESULTS: Between tumor-children and healthy control-children we observed significant differences in mean DSB repair capacity, suggesting that childhood cancer is based on genetic alterations affecting DNA repair. Only 1 out of 4 patients with grade-4 normal-tissue toxicities revealed an impaired DSB repair capacity. The defective DNA repair in FA patient was verified in irradiated blood lymphocytes as well as in non-irradiated mucosa and skin biopsies leading to an excessive accumulation of heterochromatin-associated DSBs in rapidly cycling cells. CONCLUSIONS: Analyzing human tissues we show that DSB repair alterations predispose to cancer formation at younger ages and affect the susceptibility to normal-tissue toxicities. DNA damage foci analysis of blood and tissue samples allows one to detect and characterize DSB repair deficiencies and enables identification of patients at risk for high-grade toxicities. However, not all treatment-associated normal-tissue toxicities can be explained by DSB repair deficiencies.

  10. Inhibition of DNA-double strand break repair by antimony compounds

    International Nuclear Information System (INIS)

    Takahashi, Sentaro; Sato, Hiroshi; Kubota, Yoshihisa; Utsumi, Hiroshi; Bedford, Joel S.; Okayasu, Ryuichi

    2002-01-01

    DNA double strand breaks (DSBs), induced by γ-irradiation in Chinese hamster ovary cells, were used to examine whether antimony compounds affect the repair of DNA damage. The cells were first incubated with antimony trichloride or antimony potassium tartrate (both Sb(III)) for 2 h, and then irradiated with γ-rays at a dose of 40 Gy. The DNA DSB was quantified with pulsed field gel electrophoresis immediately after irradiation (non-repair group) as well as at 30 min post-irradiation (repair group). The degree of repair inhibition was determined by the differences in the amount of DNA DSB between non-repair and repair groups. Both antimony compounds inhibited repair of DNA DSB in a dose dependent manner. In trichloride, 0.2 mM antimony significantly inhibited the rejoining of DSB, while 0.4 mM was necessary in potassium antimony tartrate. The mean lethal doses, D 0 , for the treatment with antimony trichloride and antimony potassium tartrate, were approximately 0.21 and 0.12 mM, respectively. This indicates that the repair inhibition by antimony trichloride occurred in the dose range near D 0 , but the antimony potassium tartrate inhibited the repair at doses where most cells lost their proliferating ability. This is the first report to indicate that antimony compounds may inhibit the repair of radiation-induced DNA DSB

  11. Sibling rivalry: competition between Pol X family members in V(D)J recombination and general double strand break repair.

    Science.gov (United States)

    Nick McElhinny, Stephanie A; Ramsden, Dale A

    2004-08-01

    The nonhomologous end-joining pathway is a major means for repairing double-strand breaks (DSBs) in all mitotic cell types. This repair pathway is also the only efficient means for resolving DSB intermediates in V(D)J recombination, a lymphocyte-specific genome rearrangement required for assembly of antigen receptors. A role for polymerases in end-joining has been well established. They are a major factor in determining the character of repair junctions but, in contrast to 'core' end-joining factors, typically appear to have a subtle impact on the efficiency of end-joining. Recent work implicates several members of the Pol X family in end-joining and suggests surprising complexity in the control of how these different polymerases are employed in this pathway.

  12. Rapid MCNP simulation of DNA double strand break (DSB) relative biological effectiveness (RBE) for photons, neutrons, and light ions.

    Science.gov (United States)

    Stewart, Robert D; Streitmatter, Seth W; Argento, David C; Kirkby, Charles; Goorley, John T; Moffitt, Greg; Jevremovic, Tatjana; Sandison, George A

    2015-11-07

    To account for particle interactions in the extracellular (physical) environment, information from the cell-level Monte Carlo damage simulation (MCDS) for DNA double strand break (DSB) induction has been integrated into the general purpose Monte Carlo N-particle (MCNP) radiation transport code system. The effort to integrate these models is motivated by the need for a computationally efficient model to accurately predict particle relative biological effectiveness (RBE) in cell cultures and in vivo. To illustrate the approach and highlight the impact of the larger scale physical environment (e.g. establishing charged particle equilibrium), we examined the RBE for DSB induction (RBEDSB) of x-rays, (137)Cs γ-rays, neutrons and light ions relative to γ-rays from (60)Co in monolayer cell cultures at various depths in water. Under normoxic conditions, we found that (137)Cs γ-rays are about 1.7% more effective at creating DSB than γ-rays from (60)Co (RBEDSB  =  1.017) whereas 60-250 kV x-rays are 1.1 to 1.25 times more efficient at creating DSB than (60)Co. Under anoxic conditions, kV x-rays may have an RBEDSB up to 1.51 times as large as (60)Co γ-rays. Fission neutrons passing through monolayer cell cultures have an RBEDSB that ranges from 2.6 to 3.0 in normoxic cells, but may be as large as 9.93 for anoxic cells. For proton pencil beams, Monte Carlo simulations suggest an RBEDSB of about 1.2 at the tip of the Bragg peak and up to 1.6 a few mm beyond the Bragg peak. Bragg peak RBEDSB increases with decreasing oxygen concentration, which may create opportunities to apply proton dose painting to help address tumor hypoxia. Modeling of the particle RBE for DSB induction across multiple physical and biological scales has the potential to aid in the interpretation of laboratory experiments and provide useful information to advance the safety and effectiveness of hadron therapy in the treatment of cancer.

  13. Analysis of DNA double-strand break repair pathways in mice

    International Nuclear Information System (INIS)

    Brugmans, Linda; Kanaar, Roland; Essers, Jeroen

    2007-01-01

    During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues

  14. Two pathways of DNA double-strand break repair in G1 cells of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Glazunov, A.V.

    1988-01-01

    The G1 cells of the diploid yeast Saccharomyces cerevislae are known to be capable of a slow repair of DNA double-strand breaks (DSB) during holding the cells in a non-nutrient medium. In the present paper, it has been shown that S. cerevislae cells γ-irradiated in the G1 phase of cell cycle are capable of fast repair of DNA DSB; this process is completed within 30-40 min of holding the cells in water at 28 deg C. For this reason, the kinetics of DNA DSB repair during holding the cells in a non-nutrient medium are biphasic, i.e., the first, ''fast'' phase is completed within 30-40 min; wheras the second, ''slow'' one, within 48 h. Mutations rad51, rad52, rad54 and rad55 inhibit the fast repair of DNA DSB, whereas mutations rad50, rad53 and rad57 do not practically influence this process. It has been shown that the observed fast and slow repair of DNA DSB in the G1 diploid cells of S, cerevislae are separate pathways of DNA DSB repair in yeast

  15. On the mutagenicity of homologous recombination and double-strand break repair in bacteriophage.

    Science.gov (United States)

    Shcherbakov, Victor P; Plugina, Lidiya; Shcherbakova, Tamara; Sizova, Svetlana; Kudryashova, Elena

    2011-01-02

    The double-strand break (DSB) repair via homologous recombination is generally construed as a high-fidelity process. However, some molecular genetic observations show that the recombination and the recombinational DSB repair may be mutagenic and even highly mutagenic. Here we developed an effective and precise method for studying the fidelity of DSB repair in vivo by combining DSBs produced site-specifically by the SegC endonuclease with the famous advantages of the recombination analysis of bacteriophage T4 rII mutants. The method is based on the comparison of the rate of reversion of rII mutation in the presence and in the absence of a DSB repair event initiated in the proximity of the mutation. We observed that DSB repair may moderately (up to 6-fold) increase the apparent reversion frequency, the effect of being dependent on the mutation structure. We also studied the effect of the T4 recombinase deficiency (amber mutation in the uvsX gene) on the fidelity of DSB repair. We observed that DSBs are still repaired via homologous recombination in the uvsX mutants, and the apparent fidelity of this repair is higher than that seen in the wild-type background. The mutator effect of the DSB repair may look unexpected given that most of the normal DNA synthesis in bacteriophage T4 is performed via a recombination-dependent replication (RDR) pathway, which is thought to be indistinguishable from DSB repair. There are three possible explanations for the observed mutagenicity of DSB repair: (1) the origin-dependent (early) DNA replication may be more accurate than the RDR; (2) the step of replication initiation may be more mutagenic than the process of elongation; and (3) the apparent mutagenicity may just reflect some non-randomness in the pool of replicating DNA, i.e., preferential replication of the sequences already involved in replication. We discuss the DSB repair pathway in the absence of UvsX recombinase. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Repair kinetics of DNA double-strand breaks and incidence of apoptosis in mouse neural stem/progenitor cells and their differentiated neurons exposed to ionizing radiation.

    Science.gov (United States)

    Kashiwagi, Hiroki; Shiraishi, Kazunori; Sakaguchi, Kenta; Nakahama, Tomoya; Kodama, Seiji

    2018-05-01

    Neuronal loss leads to neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease and Huntington's disease. Because of their long lifespans, neurons are assumed to possess highly efficient DNA repair ability and to be able to protect themselves from deleterious DNA damage such as DNA double-strand breaks (DSBs) produced by intrinsic and extrinsic sources. However, it remains largely unknown whether the DSB repair ability of neurons is more efficient compared with that of other cells. Here, we investigated the repair kinetics of X-ray-induced DSBs in mouse neural cells by scoring the number of phosphorylated 53BP1 foci post irradiation. We found that p53-independent apoptosis was induced time dependently during differentiation from neural stem/progenitor cells (NSPCs) into neurons in culture for 48 h. DSB repair in neurons differentiated from NSPCs in culture was faster than that in mouse embryonic fibroblasts (MEFs), possibly due to the higher DNA-dependent protein kinase activity, but it was similar to that in NSPCs. Further, the incidence of p53-dependent apoptosis induced by X-irradiation in neurons was significantly higher than that in NSPCs. This difference in response of X-ray-induced apoptosis between neurons and NSPCs may reflect a difference in the fidelity of non-homologous end joining or a differential sensitivity to DNA damage other than DSBs.

  17. SPOC1 modulates DNA repair by regulating key determinants of chromatin compaction and DNA damage response

    DEFF Research Database (Denmark)

    Mund, Andreas; Schubert, Tobias; Staege, Hannah

    2012-01-01

    -dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non...

  18. Influence of chromatin condensation on the number of direct DSB damages induced by ions studied using a Monte Carlo code

    International Nuclear Information System (INIS)

    Dos Santos, M.; Clairand, I.; Gruel, G.; Barquinero, J.F.; Villagrasa, C.; Incerti, S.

    2014-01-01

    The purpose of this work is to evaluate the influence of the chromatin condensation on the number of direct double-strand break (DSB) damages induced by ions. Two geometries of chromosome territories containing either condensed or de-condensed chromatin were implemented as biological targets in the Geant4 Monte Carlo simulation code and proton and alpha irradiation was simulated using the Geant4-DNA processes. A DBSCAN algorithm was used in order to detect energy deposition clusters that could give rise to single-strand breaks or DSBs on the DNA molecule. The results of this study show an increase in the number and complexity of DNA DSBs in condensed chromatin when compared with de-condensed chromatin. This work aims to evaluate the influence of the chromatin condensation in the number and complexity of direct DSB damages induced by proton and alpha irradiation. With the simulations of this study, the increase in the number and complexity of DSB-like clusters induced by ions in the heterochromatin when compared with euchromatin regions of the cell nucleus has been observed and quantified. These results suggest that condensed chromatin can be the location of more severe radiation-induced lesions, more difficult to repair, than de-condensed chromatin. On the other hand, it was also observed that, whatever the chromatin condensation, more possible damages are found after proton irradiation compared with alpha particles of the same LET. Nevertheless, as already remarked, this study concerns only the direct effect of ionising radiation that can be calculated from the results of the physical stage simulated with Geant4-DNA. To include indirect effects induced by radicals around the DNA molecule, the elements needed for simulating the chemical stage are being developed in the frame of the Geant4-DNA project(15, 16) and they are planned to be included in future work. With a complete calculation (direct + indirect damages) it would then be possible to estimate an energy

  19. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chongjie [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Ma, Li [Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Mou, Shanli [Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao (China); Wang, Yibin, E-mail: wangyibin@fio.org.cn [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); Miao, Jinlai, E-mail: miaojinlai@163.com [Key Laboratory of Marine Bioactive Substance, The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061 (China); State Key Laboratory of Biological Fermentation Engineering of Beer (In Preparation), Qingdao (China)

    2015-03-15

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm{sup 2} UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field.

  20. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: Remarkable UVB resistance and efficient DNA damage repair

    International Nuclear Information System (INIS)

    Li, Chongjie; Ma, Li; Mou, Shanli; Wang, Yibin; Zheng, Zhou; Liu, Fangming; Qi, Xiaoqing; An, Meiling; Chen, Hao; Miao, Jinlai

    2015-01-01

    Highlights: • Chlamydomonas sp. ICE-L photolyase gene PHR2 is first cloned and expressed in E. coli. • PHR2 complemented E. coli could efficiently survival from UV radiation. • Expressed PHR2 photolyase has distinct photo-reactivation activity in vitro. - Abstract: Bacteria living in the Antarctic region have developed several adaptive features for growth and survival under extreme conditions. Chlamydomonas sp. ICE-Lis well adapted to high levels of solar UV radiation. A putative photolyase was identified in the Chlamydomonas sp. ICE-L transcriptome. The complete cDNA sequence was obtained by RACE-PCR. This PHR encoding includes a polypeptide of 579 amino acids with clear photolyase signatures belonging to class II CPD-photolyases, sharing a high degree of homology with Chlamydomonas reinhardtii (68%). Real-time PCR was performed to investigate the potential DNA damage and responses following UVB exposure. CPD photolyase mRNA expression level increased over 50-fold in response to UVB radiation for 6 h. Using photolyase complementation assay, we demonstrated that DNA photolyase increased photo-repair more than 116-fold in Escherichia coli strain SY2 under 100 μw/cm 2 UVB radiation. To determine whether photolyase is active in vitro, CPD photolyase was over-expressed. It was shown that pyrimidine dimers were split by the action of PHR2. This study reports the unique structure and high activity of the enzyme. These findings are relevant for further understanding of molecular mechanisms of photo-reactivation, and will accelerate the utilization of photolyase in the medical field

  1. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny

    OpenAIRE

    Leyla Vahidi Ferdousi; Pierre Rocheteau; Romain Chayot; Benjamin Montagne; Zayna Chaker; Patricia Flamant; Shahragim Tajbakhsh; Miria Ricchetti

    2014-01-01

    International audience; The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their...

  2. Mycobacteria exploit three genetically distinct DNA double-strand break repair pathways.

    Science.gov (United States)

    Gupta, Richa; Barkan, Daniel; Redelman-Sidi, Gil; Shuman, Stewart; Glickman, Michael S

    2011-01-01

    Bacterial pathogens rely on their DNA repair pathways to resist genomic damage inflicted by the host. DNA double-strand breaks (DSBs) are especially threatening to bacterial viability. DSB repair by homologous recombination (HR) requires nucleases that resect DSB ends and a strand exchange protein that facilitates homology search. RecBCD and RecA perform these functions in Escherichia coli and constitute the major pathway of error-free DSB repair. Mycobacteria, including the human pathogen M. tuberculosis, elaborate an additional error-prone pathway of DSB repair via non-homologous end-joining (NHEJ) catalysed by Ku and DNA ligase D (LigD). Little is known about the relative contributions of HR and NHEJ to mycobacterial chromosome repair, the factors that dictate pathway choice, or the existence of additional DSB repair pathways. Here we demonstrate that Mycobacterium smegmatis has three DSB repair pathway options: HR, NHEJ and a novel mechanism of single-strand annealing (SSA). Inactivation of NHEJ or SSA is compensated by elevated HR. We find that mycobacterial RecBCD does not participate in HR or confer resistance to ionizing radiation (IR), but is required for the RecA-independent SSA pathway. In contrast, the mycobacterial helicase-nuclease AdnAB participates in the RecA-dependent HR pathway, and is a major determinant of resistance to IR and oxidative DNA damage. These findings reveal distinctive features of mycobacterial DSB repair, most notably the dedication of the RecBCD and AdnAB helicase-nuclease machines to distinct repair pathways. © 2010 Blackwell Publishing Ltd.

  3. Correlation between slowly repairable double-strand breaks and thermal radiosensitization in the human HeLa S3 cell line

    NARCIS (Netherlands)

    Kampinga, HH; Hiemstra, YS; Konings, AWT; Dikomey, E

    The effect of heat on double-strand breaks (dsb) repair was compared with thermal radiosensitization using HeLa S3 cells. Cells were exposed to a combined treatment of X-irradiation followed by heat (44 degrees C, 0.5 h) separated by time intervals up to 8h. DNA dsb were measured by PFGE and

  4. Opposing roles of RNF8/RNF168 and deubiquitinating enzymes in ubiquitination-dependent DNA double-strand break response signaling and DNA-repair pathway choice

    International Nuclear Information System (INIS)

    Nakada, Shinichiro

    2016-01-01

    The E3 ubiquitin ligases ring finger protein (RNF) 8 and RNF168 transduce the DNA double-strand break (DSB) response (DDR) signal by ubiquitinating DSB sites. The depletion of RNF8 or RNF168 suppresses the accumulation of DNA-repair regulating factors such as 53BP1 and RAP80 at DSB sites, suggesting roles for RNF8- and RNF168-mediated ubiquitination in DSB repair. This mini-review provides a brief overview of the RNF8- and RNF168-dependent DDR-signaling and DNA-repair pathways. The choice of DNA-repair pathway when RNF8- and RNF168-mediated ubiquitination-dependent DDR signaling is negatively regulated by deubiquitinating enzymes (DUBs) is reviewed to clarify how the opposing roles of RNF8/RNF168 and DUBs regulate ubiquitination-dependent DDR signaling and the choice of DNA-repair pathway

  5. Preliminary crystallographic data of the three homologues of the thiol–disulfide oxidoreductase DsbA in Neisseria meningitidis

    Energy Technology Data Exchange (ETDEWEB)

    Lafaye, Céline [Laboratoire des Protéines Membranaires, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France); Iwena, Thomas; Ferrer, Jean-Luc [Laboratoire de Cristallogénèse et Cristallisation des Protéines, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France); Kroll, J. Simon [Department of Paediatrics, Imperial College London, St Mary’s Hospital Campus, Norfolk Place, London W2 1PG (United Kingdom); Griat, Mickael; Serre, Laurence, E-mail: laurence.serre@ibs.fr [Laboratoire des Protéines Membranaires, Institut de Biologie Structurale, CEA/CNRS/Université Joseph Fourier, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 01 (France)

    2008-02-01

    The Neisseria meningitidis genome possesses three genes encoding active DsbAs. To throw light on the reason for this genetic multiplicity, the three enzymes have been purified and crystallized. Bacterial virulence depends on the correct folding of surface-exposed proteins, a process that is catalyzed by the thiol-disulfide oxidoreductase DsbA, which facilitates the synthesis of disulfide bonds in Gram-negative bacteria. Uniquely among bacteria, the Neisseria meningitidis genome possesses three genes encoding active DsbAs: DsbA1, DsbA2 and DsbA3. DsbA1 and DsbA2 have been characterized as lipoproteins involved in natural competence and in host-interactive biology, while the function of DsbA3 remains unknown. In an attempt to shed light on the reason for this multiplicity of dsbA genes, the three enzymes from N. meningitidis have been purified and crystallized in the presence of high concentrations of ammonium sulfate. The best crystals were obtained using DsbA1 and DsbA3; they belong to the orthorhombic and tetragonal systems and diffract to 1.5 and 2.7 Å resolution, respectively.

  6. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants.

    Science.gov (United States)

    Charbonnel, Cyril; Gallego, Maria E; White, Charles I

    2010-10-01

    Double-strand breakage (DSB) of DNA involves loss of information on the two strands of the DNA fibre and thus cannot be repaired by simple copying of the complementary strand which is possible with single-strand DNA damage. Homologous recombination (HR) can precisely repair DSB using another copy of the genome as template and non-homologous recombination (NHR) permits repair of DSB with little or no dependence on DNA sequence homology. In addition to the well-characterised Ku-dependent non-homologous end-joining (NHEJ) pathway, much recent attention has been focused on Ku-independent NHR. The complex interrelationships and regulation of NHR pathways remain poorly understood, even more so in the case of plants, and we present here an analysis of Ku-dependent and Ku-independent repair of DSB in Arabidopsis thaliana. We have characterised an Arabidopsis xrcc1 mutant and developed quantitative analysis of the kinetics of appearance and loss of γ-H2AX foci as a tool to measure DSB repair in dividing root tip cells of γ-irradiated plants in vivo. This approach has permitted determination of DSB repair kinetics in planta following a short pulse of γ-irradiation, establishing the existence of a Ku-independent, Xrcc1-dependent DSB repair pathway. Furthermore, our data show a role for Ku80 during the first minutes post-irradiation and that Xrcc1 also plays such a role, but only in the absence of Ku. The importance of Xrcc1 is, however, clearly visible at later times in the presence of Ku, showing that alternative end-joining plays an important role in DSB repair even in the presence of active NHEJ. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  7. Regulation of DNA repair mechanism in human glioma xenograft cells both in vitro and in vivo in nude mice.

    Science.gov (United States)

    Ponnala, Shivani; Veeravalli, Krishna Kumar; Chetty, Chandramu; Dinh, Dzung H; Rao, Jasti S

    2011-01-01

    Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian cells. Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9-cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls. Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand

  8. Regulation of DNA repair mechanism in human glioma xenograft cells both in vitro and in vivo in nude mice.

    Directory of Open Access Journals (Sweden)

    Shivani Ponnala

    Full Text Available Glioblastoma Multiforme (GBM is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ repair mechanism plays a major role in double strand break (DSB repair in mammalian cells.Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU and MMP9-cathepsin B (pMC shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated γH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated γH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls.Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from

  9. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.

    Science.gov (United States)

    Letavayová, Lucia; Marková, Eva; Hermanská, Katarína; Vlcková, Viera; Vlasáková, Danusa; Chovanec, Miroslav; Brozmanová, Jela

    2006-05-10

    Oxidative damage to DNA seems to be an important factor in developing many human diseases including cancer. It involves base and sugar damage, base-free sites, DNA-protein cross-links and DNA single-strand (SSB) and double-strand (DSB) breaks. Oxidative DSB can be formed in various ways such as their direct induction by the drug or their generation either through attempted and aborted repair of primary DNA lesions or through DNA replication-dependent conversion of SSB. In general, two main pathways are responsible for repairing DSB, homologous recombination (HR) and non-homologous end-joining (NHEJ), with both of them being potential candidates for the repair of oxidative DSB. We have examined relative contribution of HR and NHEJ to cellular response after oxidative stress in Saccharomyces cerevisiae. Therefore, cell survival, mutagenesis and DSB induction and repair in the rad52, yku70 and rad52 yku70 mutants after hydrogen peroxide (H(2)O(2)), menadione (MD) or bleomycin (BLM) exposure were compared to those obtained for the corresponding wild type. We show that MD exposure does not lead to observable DSB induction in yeast, suggesting that the toxic effects of this agent are mediated by other types of DNA damage. Although H(2)O(2) treatment generates some DSB, their yield is relatively low and hence DSB may only partially be responsible for toxicity of H(2)O(2), particularly at high doses of the agent. On the other hand, the basis of the BLM toxicity resides primarily in DSB induction. Both HR and NHEJ act on BLM-induced DSB, although their relative participation in the process is not equal. Based on our results we suggest that the complexity and/or the quality of the BLM-induced DSB might represent an obstacle for the NHEJ pathway.

  10. Virtual Screening of Peptide and Peptidomimetic Fragments Targeted to Inhibit Bacterial Dithiol Oxidase DsbA.

    Directory of Open Access Journals (Sweden)

    Wilko Duprez

    Full Text Available Antibacterial drugs with novel scaffolds and new mechanisms of action are desperately needed to address the growing problem of antibiotic resistance. The periplasmic oxidative folding system in Gram-negative bacteria represents a possible target for anti-virulence antibacterials. By targeting virulence rather than viability, development of resistance and side effects (through killing host native microbiota might be minimized. Here, we undertook the design of peptidomimetic inhibitors targeting the interaction between the two key enzymes of oxidative folding, DsbA and DsbB, with the ultimate goal of preventing virulence factor assembly. Structures of DsbB--or peptides--complexed with DsbA revealed key interactions with the DsbA active site cysteine, and with a hydrophobic groove adjacent to the active site. The present work aimed to discover peptidomimetics that target the hydrophobic groove to generate non-covalent DsbA inhibitors. The previously reported structure of a Proteus mirabilis DsbA active site cysteine mutant, in a non-covalent complex with the heptapeptide PWATCDS, was used as an in silico template for virtual screening of a peptidomimetic fragment library. The highest scoring fragment compound and nine derivatives were synthesized and evaluated for DsbA binding and inhibition. These experiments discovered peptidomimetic fragments with inhibitory activity at millimolar concentrations. Although only weakly potent relative to larger covalent peptide inhibitors that interact through the active site cysteine, these fragments offer new opportunities as templates to build non-covalent inhibitors. The results suggest that non-covalent peptidomimetics may need to interact with sites beyond the hydrophobic groove in order to produce potent DsbA inhibitors.

  11. A miR-590/Acvr2a/Rad51b Axis Regulates DNA Damage Repair during mESC Proliferation

    Directory of Open Access Journals (Sweden)

    Qidong Liu

    2014-12-01

    Full Text Available Embryonic stem cells (ESCs enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF, which maintains the self-renewal capability of mouse ESCs (mESCs, significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB and double-strand break (DSB damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal.

  12. Writers, Readers, and Erasers of Histone Ubiquitylation in DNA Double-Strand Break Repair

    DEFF Research Database (Denmark)

    Smeenk, Godelieve; Mailand, Niels

    2016-01-01

    accurate lesion repair and restoration of genome integrity. In vertebrate cells, ubiquitin-dependent modifications of histones adjacent to DSBs by RNF8, RNF168, and other ubiquitin ligases have a key role in promoting the assembly of repair protein complexes, serving as direct recruitment platforms...... for a range of genome caretaker proteins and their associated factors. These DNA damage-induced chromatin ubiquitylation marks provide an essential component of a histone code for DSB repair that is controlled by multifaceted regulatory circuits, underscoring its importance for genome stability maintenance....... In this review, we provide a comprehensive account of how DSB-induced histone ubiquitylation is sensed, decoded and modulated by an elaborate array of repair factors and regulators. We discuss how these mechanisms impact DSB repair pathway choice and functionality for optimal protection of genome integrity...

  13. Annexins are instrumental for efficient plasma membrane repair in cancer cells.

    Science.gov (United States)

    Lauritzen, Stine Prehn; Boye, Theresa Louise; Nylandsted, Jesper

    2015-09-01

    Plasma membrane stress can cause damage to the plasma membrane, both when imposed by the extracellular environment and by enhanced oxidative stress. Cells cope with these injuries by rapidly activating their plasma membrane repair system, which is triggered by Ca(2+) influx at the wound site. The repair system is highly dynamic, depends on both lipid and protein components, and include cytoskeletal reorganization, membrane replacements, and membrane fusion events. Cancer cells experience enhanced membrane stress when navigating through dense extracellular matrix, which increases the frequency of membrane injuries. In addition, increased motility and oxidative stress further increase the risk of plasma membrane lesions. Cancer cells compensate by overexpressing Annexin proteins including Annexin A2 (ANXA2). Annexin family members can facilitate membrane fusion events and wound healing by binding to negatively charged phospholipids in the plasma membrane. Plasma membrane repair in cancer cells depends on ANXA2 protein, which is recruited to the wound site and forms a complex with the Ca(2+)-binding EF-hand protein S100A11. Here they regulate actin accumulation around the wound perimeter, which is required for wound closure. In this review, we will discuss the requirement for Annexins, S100 proteins and actin cytoskeleton in the plasma membrane repair response of cancer cells, which reveals a novel avenue for targeting metastatic cancers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Altered Hematopoiesis in Mice Lacking DNA Polymerase μ Is Due to Inefficient Double-Strand Break Repair

    Science.gov (United States)

    Lucas, Daniel; Escudero, Beatriz; Ligos, José Manuel; Segovia, Jose Carlos; Estrada, Juan Camilo; Terrados, Gloria; Blanco, Luis; Samper, Enrique; Bernad, Antonio

    2009-01-01

    Polymerase mu (Polμ) is an error-prone, DNA-directed DNA polymerase that participates in non-homologous end-joining (NHEJ) repair. In vivo, Polμ deficiency results in impaired Vκ-Jκ recombination and altered somatic hypermutation and centroblast development. In Polμ−/− mice, hematopoietic development was defective in several peripheral and bone marrow (BM) cell populations, with about a 40% decrease in BM cell number that affected several hematopoietic lineages. Hematopoietic progenitors were reduced both in number and in expansion potential. The observed phenotype correlates with a reduced efficiency in DNA double-strand break (DSB) repair in hematopoietic tissue. Whole-body γ-irradiation revealed that Polμ also plays a role in DSB repair in non-hematopoietic tissues. Our results show that Polμ function is required for physiological hematopoietic development with an important role in maintaining early progenitor cell homeostasis and genetic stability in hematopoietic and non-hematopoietic tissues. PMID:19229323

  15. Immediate and repair induced DNA double strand breaks in mammalian cells

    International Nuclear Information System (INIS)

    Bryant, P.E.

    1986-01-01

    It seems logical to postulate that double strand breaks (dsb) arising both at the time of irradiation and via repair processes are potentially equally damaging for a cell in terms of the potential to induce chromosomal aberrations. However, in some cell systems the repair of double es or es-ssb sites may run concurrently with the incision so that these lesions do not remain open for long: hence the lack of accumulation of dsb during repair. The rate of incision will thus determine both the accumulation and the probability of exchanges leading to chromosomal aberrations between these and other frank dsb. Rapid incision leading to a large additional pool of dsb appears to be the case in Chinese hamster V79 cells. Some evidence also exists for the conversion of base damage, via dsb, into deletion type chromatid aberrations which accumulate in irradiated G2 human cells treated with ara C. A small fraction of dsb, probably arising both at the time of irradiation as well as enzymatically during repair of base or sugar damage, appears to be either left unrepaired, yielding deletion type chromosomal aberrations, or is misrepaired, yielding exchange aberrations. The induction of these aberrations appears to be of central importance in the biological effects of ionizing radiation such as mutations, oncogenic transformation, and cell death. 52 refs., 5 figs

  16. Inhibition of APOBEC3G Activity Impedes Double-Strand DNA Repair

    Science.gov (United States)

    Prabhu, Ponnandy; Shandilya, Shivender; Britan-Rosich, Elena; Nagler, Adi; Schiffer, Celia A.; Kotler, Moshe

    2015-01-01

    The cellular cytidine deaminase APOBEC3G (A3G) was first described as an anti-HIV-1 restriction factor by directly deaminating reverse transcripts of the viral genome. HIV-1 Vif neutralizes the activity of A3G, primarily by mediating degradation of A3G to establish effective infection in host target cells. Lymphoma cells, which express high amounts of A3G, can restrict Vif-deficient HIV-1. Interestingly, these cells are more stable in the face of treatments that result in dsDNA damage, such as ionizing irradiation (IR) and chemotherapies. Previously, we showed that the Vif-derived peptide (Vif25-39) efficiently inhibits A3G deamination, and increases sensitivity of lymphoma cells to IR. In the current study, we show that additional peptides derived from Vif, A3G and A3F, which contain the LYYF motif, inhibit deamination activity. Each residue in the Vif25-39 sequence moderately contributes to the inhibitory effect, while, replacing a single amino acid in the LYYF motif completely abrogate inhibition of deamination. Treatment of A3G-expressing lymphoma cells exposed to ionizing radiation with the new inhibitory peptides reduces double-strand break (DSB) repair after radiation. Incubation of cultured irradiated lymphoma cells with peptides that inhibit DSB repair halts their propagation. These results suggest that A3G may be a potential therapeutic target amenable to peptide and peptidomimetic inhibition. PMID:26460502

  17. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    Science.gov (United States)

    Eccles, Laura J.; O’Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a “friend”, leading to cell killing in tumour cells or as a “foe”, resulting in the formation of mutations and genetic instability in normal tissue. PMID:21130102

  18. Delayed repair of radiation induced clustered DNA damage: Friend or foe?

    International Nuclear Information System (INIS)

    Eccles, Laura J.; O'Neill, Peter; Lomax, Martine E.

    2011-01-01

    A signature of ionizing radiation exposure is the induction of DNA clustered damaged sites, defined as two or more lesions within one to two helical turns of DNA by passage of a single radiation track. Clustered damage is made up of double strand breaks (DSB) with associated base lesions or abasic (AP) sites, and non-DSB clusters comprised of base lesions, AP sites and single strand breaks. This review will concentrate on the experimental findings of the processing of non-DSB clustered damaged sites. It has been shown that non-DSB clustered damaged sites compromise the base excision repair pathway leading to the lifetime extension of the lesions within the cluster, compared to isolated lesions, thus the likelihood that the lesions persist to replication and induce mutation is increased. In addition certain non-DSB clustered damaged sites are processed within the cell to form additional DSB. The use of E. coli to demonstrate that clustering of DNA lesions is the major cause of the detrimental consequences of ionizing radiation is also discussed. The delayed repair of non-DSB clustered damaged sites in humans can be seen as a 'friend', leading to cell killing in tumour cells or as a 'foe', resulting in the formation of mutations and genetic instability in normal tissue.

  19. Crystallization and preliminary diffraction analysis of a DsbA homologue from Wolbachia pipientis

    Energy Technology Data Exchange (ETDEWEB)

    Kurz, M. [Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, St Lucia, QLD 4072 (Australia); Iturbe-Ormaetxe, I. [School of Integrative Biology, The University of Queensland, St Lucia, QLD 4072 (Australia); Jarrott, R. [Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, St Lucia, QLD 4072 (Australia); O’Neill, S. L. [School of Integrative Biology, The University of Queensland, St Lucia, QLD 4072 (Australia); Byriel, K. A.; Martin, J. L., E-mail: j.martin@imb.uq.edu.au; Heras, B., E-mail: j.martin@imb.uq.edu.au [Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, St Lucia, QLD 4072 (Australia)

    2008-02-01

    The first crystallization of a W. pipientis protein, α-DsbA1, was achieved using hanging-drop and sitting-drop vapour diffusion. α-DsbA1 is one of two DsbA homologues encoded by the Gram-negative α-proteobacterium Wolbachia pipientis, an endosymbiont that can behave as a reproductive parasite in insects and as a mutualist in medically important filarial nematodes. The α-DsbA1 protein is thought to be important for the folding and secretion of Wolbachia proteins involved in the induction of reproductive distortions. Crystals of native and SeMet α-DsbA1 were grown by vapour diffusion and belong to the monoclinic space group C2, with unit-cell parameters a = 71.4, b = 49.5, c = 69.3 Å, β = 107.0° and one molecule in the asymmetric unit (44% solvent content). X-ray data were recorded from native crystals to a resolution of 2.01 Å using a copper anode and data from SeMet α-DsbA1 crystals were recorded to 2.45 Å resolution using a chromium anode.

  20. Chromosome aberration model combining radiation tracks, chromatin structure, DSB repair and chromatin mobility

    International Nuclear Information System (INIS)

    Friedland, W.; Kundrat, P.

    2015-01-01

    The module that simulates the kinetics and yields of radiation-induced chromosome aberrations within the biophysical code PARTRAC is described. Radiation track structures simulated by Monte Carlo methods are overlapped with multi-scale models of DNA and chromatin to assess the resulting DNA damage. Spatial mobility of individual DNA ends from double-strand breaks is modelled simultaneously with their processing by the non-homologous end-joining enzymes. To score diverse types of chromosome aberrations, the joined ends are classified regarding their original chromosomal location, orientation and the involvement of centromeres. A comparison with experimental data on dicentrics induced by gamma and alpha particles shows that their relative dose dependence is predicted correctly, although the absolute yields are overestimated. The critical model assumptions on chromatin mobility and on the initial damage recognition and chromatin remodelling steps and their future refinements to solve this issue are discussed. (authors)

  1. Measurement of DNA breakage and breakage repair in mice spleen cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Wang Qin; Xue Jingying; Li Jin; Mu Chuanjie; Fan Feiyue

    2007-01-01

    Objective: To investigate the radioresistance mechanism of IBM-2 mice through measuring DNA single-strand break(SSB) and double-strands break (DSB) as well as their repair. Methods: Pulsed-field gel electrophoresis was used to measure DSB and SSB in IRM-2 mice and their parental mice ICR/JCL and 615 mice after exposure to different doses of γ-ray at different postirradiation time. Results: The initial DNA damages, ie the quantities of DSB and SSB in unirradiation IRM-2 mice were less serious than that of their parental mice ICR/JCL and 615 alice(P<0.01). The percent- age of DSB and SSB in IBM -2 mice was significantly lower than that of ICB/JCL and 615 mice after exposure to various doses of γ-ray(P<0.01 and P<0.05). There were not statistic differences in DSB and SSB repair between IRM-2 mice and their parental mice after exposure to 2Gy radiation. The DNA damage repair rate induced by 4Gy and 8Gy radiation in IRM - 2 mice was rapid, ie the repair rate of SSB and DSB after 0.5h and 1h postirradiation in IRM-2 mice was higher than that of their' parental mice (P<0.01 and P<0.05). And remaining damages after repair in IRM-2 mice were lower than that of ICR/JCL and 615 mice. Conclusion: The DNA damages in IBM-2 mice were lower than that of their parental mice after exposure to ionizing radiation. Moreover, the repair rate of SSB and DSB was higher than that of their parental mice, which perhaps were the radioresistance causes of IBM-2 mice. Therefore IRM-2 mice are naturally resistant to DNA damages induced by ionizing radiation. (authors)

  2. The Roles of Several Residues of Escherichia coli DNA Photolyase in the Highly Efficient Photo-Repair of Cyclobutane Pyrimidine Dimers

    Directory of Open Access Journals (Sweden)

    Lei Xu

    2010-01-01

    Full Text Available Escherichia coli DNA photolyase is an enzyme that repairs the major kind of UV-induced lesions, cyclobutane pyrimidine dimer (CPD in DNA utilizing 350–450 nm light as energy source. The enzyme has very high photo-repair efficiency (the quantum yield of the reaction is ~0.85, which is significantly greater than many model compounds that mimic photolyase. This suggests that some residues of the protein play important roles in the photo-repair of CPD. In this paper, we have focused on several residues discussed their roles in catalysis by reviewing the existing literature and some hypotheses.

  3. Evaluation of the efficiency of a repaired chloride-contaminated concrete

    Directory of Open Access Journals (Sweden)

    Andrade, C.

    1988-09-01

    Full Text Available This report describes several tests that are being carried out on a viaduct near Madrid City, whose reinforcements have been seriously damaged by corrosion. These tests consist in measuring corrosion potentials and in a time soon to come, they will include the measurement of corrosion rates by means of the apparent Polarization Resistance. A methodology of laboratory tests to evaluate the protective capacity of the repairing system used towards the reinforcements is also included. Tests results have reported that the repairing materials employed do not fit the repassivating and protective function they should satisfy. Finally, it is also recalled to attention the real need in developing suitable test specifications able to provide a characterization of these repairing materials when they are going to be employed in structures damaged by corrosion in reinforcements.

    En el presente trabajo se describen los ensayos que se están efectuando en un viaducto de las cercanías de Madrid y que tía sufrido importantes daños por corrosión de armaduras. Estos Ensayos consisten en la medida de los potenciales de corrosión y en un próximo futuro, de la velocidad de corrosión (método de la Resistencia de Polarización Aparente. También se presenta la metodología de los ensayos de laboratorio efectuados para caracterizar la capacidad protectora hacia las armaduras del sistema de reparación utilizado en el viaducto. Los resultado de estos ensayos han mostrado que los materiales de reparación no resultan idóneos para la función repasivante y protectora que deberán desempeñar. Se destaca, finalmente, la necesidad de desarrollar una normativa de ensayos adecuada que permita caracterizar a estos materiales de reparación cuando van a ser usados en obras dañadas por corrosión de armaduras.

  4. The contribution of alu elements to mutagenic DNA double-strand break repair.

    Science.gov (United States)

    Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L

    2015-03-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both

  5. A model system for DNA repair studies

    International Nuclear Information System (INIS)

    Lange, C.S.; Perlmutter, E.

    1984-01-01

    The search for the ''lethal lesion:'' which would yield a molecular explanation of biological survival curves led to attempts to correlate unrepaired DNA lesions with loss of reproductive integrity. Such studies have shown the crucial importance of DNA repair systems. The unrepaired DSB has been sought for such correlation, but in such study the DNA was too large, polydisperse, and/or structurally complex to permit precise measurement of break induction and repair. Therefore, an analog of higher order systems but with a genome of readily measurable size, is needed. Bacteriophage T4 is such an analog. Both its biological (PFU) and molecular (DNA) survival curves are exponentials. Its aerobic /sub PFU/D/sub 37///sub DNA/D/sub 37/ ratio, (410 +- 4.5Gy/540 +- 25 Gy) indicates that 76 +- 4% of lethality at low multiplicity infection (moi 1) the survival is greater than can be explained if the assumption of no parental DSB repair were valid. Both T4 and its host have DSB repair systems which can be studied by the infectious center method. Results of such studies are discussed

  6. Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange

    NARCIS (Netherlands)

    H.B. Beverloo (Berna); R.D. Johnson (Roger); M. Jasin (Maria); R. Kanaar (Roland); J.H.J. Hoeijmakers (Jan); M.L.G. Dronkert (Mies)

    2000-01-01

    textabstractCells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we

  7. DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing.

    Science.gov (United States)

    Rübe, Claudia E; Grudzenski, Saskia; Kühne, Martin; Dong, Xiaorong; Rief, Nicole; Löbrich, Markus; Rübe, Christian

    2008-10-15

    Radiotherapy is an effective cancer treatment, but a few patients suffer severe radiation toxicities in neighboring normal tissues. There is increasing evidence that the variable susceptibility to radiation toxicities is caused by the individual genetic predisposition, by subtle mutations, or polymorphisms in genes involved in cellular responses to ionizing radiation. Double-strand breaks (DSB) are the most deleterious form of radiation-induced DNA damage, and DSB repair deficiencies lead to pronounced radiosensitivity. Using a preclinical mouse model, the highly sensitive gammaH2AX-foci approach was tested to verify even subtle, genetically determined DSB repair deficiencies known to be associated with increased normal tissue radiosensitivity. By enumerating gammaH2AX-foci in blood lymphocytes and normal tissues (brain, lung, heart, and intestine), the induction and repair of DSBs after irradiation with therapeutic doses (0.1-2 Gy) was investigated in repair-proficient and repair-deficient mouse strains in vivo and blood samples irradiated ex vivo. gammaH2AX-foci analysis allowed to verify the different DSB repair deficiencies; even slight impairments caused by single polymorphisms were detected similarly in both blood lymphocytes and solid tissues, indicating that DSB repair measured in lymphocytes is valid for different and complex organs. Moreover, gammaH2AX-foci analysis of blood samples irradiated ex vivo was found to reflect repair kinetics measured in vivo and, thus, give reliable information about the individual DSB repair capacity. gammaH2AX analysis of blood and tissue samples allows to detect even minor genetically defined DSB repair deficiencies, affecting normal tissue radiosensitivity. Future studies will have to evaluate the clinical potential to identify patients more susceptible to radiation toxicities before radiotherapy.

  8. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography.

    Science.gov (United States)

    Thompson, Larry H

    2012-01-01

    The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. The Thioredoxin Domain of Neisseria Gonorrhoeae PilB can use Electrons from DsbD to Reduce Downstream Methionine Sulfoxide Reductases

    Energy Technology Data Exchange (ETDEWEB)

    Brot,N.; Collet, J.; Johnson, L.; Jonsson, T.; Weissbach, H.; Lowther, W.

    2006-01-01

    The PilB protein from Neisseria gonorrhoeae is located in the periplasm and made up of three domains. The N-terminal, thioredoxin-like domain (NT domain) is fused to tandem methionine sulfoxide reductase A and B domains (MsrA/B). We show that the {alpha} domain of Escherichia coli DsbD is able to reduce the oxidized NT domain, which suggests that DsbD in Neisseria can transfer electrons from the cytoplasmic thioredoxin to the periplasm for the reduction of the MsrA/B domains. An analysis of the available complete genomes provides further evidence for this proposition in other bacteria where DsbD/CcdA, Trx, MsrA, and MsrB gene homologs are all located in a gene cluster with a common transcriptional direction. An examination of wild-type PilB and a panel of Cys to Ser mutants of the full-length protein and the individually expressed domains have also shown that the NT domain more efficiently reduces the MsrA/B domains when in the polyprotein context. Within this framework there does not appear to be a preference for the NT domain to reduce the proximal MsrA domain over MsrB domain. Finally, we report the 1.6 {angstrom} crystal structure of the NT domain. This structure confirms the presence of a surface loop that makes it different from other membrane-tethered, Trx-like molecules including TlpA, CcmG and ResA. Subtle differences are observed in this loop when compared to the N. meningitidis NT domain structure. The data taken together supports the formation of specific NT domain interactions with the MsrA/B domains and its in vivo recycling partner, DsbD.

  10. Efficient Generation of Orthologous Point Mutations in Pigs via CRISPR-assisted ssODN-mediated Homology-directed Repair

    Directory of Open Access Journals (Sweden)

    Kankan Wang

    2016-01-01

    Full Text Available Precise genome editing in livestock is of great value for the fundamental investigation of disease modeling. However, genetically modified pigs carrying subtle point mutations were still seldom reported despite the rapid development of programmable endonucleases. Here, we attempt to investigate single-stranded oligonucleotides (ssODN mediated knockin by introducing two orthologous pathogenic mutations, p.E693G for Alzheimer's disease and p.G2019S for Parkinson's disease, into porcine APP and LRRK2 loci, respectively. Desirable homology-directed repair (HDR efficiency was achieved in porcine fetal fibroblasts (PFFs by optimizing the dosage and length of ssODN templates. Interestingly, incomplete HDR alleles harboring partial point mutations were observed in single-cell colonies, which indicate the complex mechanism of ssODN-mediated HDR. The effect of mutation-to-cut distance on incorporation rate was further analyzed by deep sequencing. We demonstrated that a mutation-to-cut distance of 11 bp resulted in a remarkable difference in HDR efficiency between two point mutations. Finally, we successfully obtained one cloned piglet harboring the orthologous p.C313Y mutation at the MSTN locus via somatic cell nuclear transfer (SCNT. Our proof-of-concept study demonstrated efficient ssODN-mediated incorporation of pathogenic point mutations in porcine somatic cells, thus facilitating further development of disease modeling and genetic breeding in pigs.

  11. Power loss and right ventricular efficiency in patients after tetralogy of Fallot repair with pulmonary insufficiency: clinical implications.

    Science.gov (United States)

    Fogel, Mark A; Sundareswaran, Kartik S; de Zelicourt, Diane; Dasi, Lakshmi P; Pawlowski, Tom; Rome, Jack; Yoganathan, Ajit P

    2012-06-01

    To quantify right ventricular output power and efficiency and correlate these to ventricular function in patients with repaired tetralogy of Fallot. This might aid in determining the optimal timing for pulmonary valve replacement. We reviewed the cardiac catheterization and magnetic resonance imaging data of 13 patients with tetralogy of Fallot (age, 22 ± 17 years). Using pressure and flow measurements in the main pulmonary artery, cardiac output and regurgitation fraction, right ventricular (RV) power output, loss, and efficiency were calculated. The RV function was evaluated using cardiac magnetic resonance imaging. The RV systolic power was 1.08 ± 0.62 W, with 20.3% ± 8.6% power loss owing to 41% ± 14% pulmonary regurgitation (efficiency, 79.7% ± 8.6%; 0.84 ± 0.73 W), resulting in a net cardiac output of 4.24 ± 1.82 L/min. Power loss correlated significantly with the indexed RV end-diastolic and end-systolic volume (R = 0.78, P = .002 and R = 0.69, P = .009, respectively). The normalized RV power output had a significant negative correlation with RV end-diastolic and end-systolic volumes (both R = -0.87, P = .002 and R = -0.68, P = .023, respectively). A rapid decrease occurred in the RV power capacity with an increasing RV volume, with the curve flattening out at an indexed RV end-diastolic and end-systolic volume threshold of 139 mL/m(2) and 75 mL/m(2), respectively. Significant power loss is present in patients with repaired tetralogy of Fallot and pulmonary regurgitation. A rapid decrease in efficiency occurs with increasing RV volume, suggesting that pulmonary valve replacement should be done before the critical value of 139 mL/m(2) and 75 mL/m(2) for the RV end-diastolic and end-systolic volume, respectively, to preserve RV function. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  12. DNA repair: Dynamic defenders against cancer and aging

    Energy Technology Data Exchange (ETDEWEB)

    Fuss, Jill O.; Cooper, Priscilla K.

    2006-04-01

    (UV) component of sunlight. NER can be divided into two classes based on where the repair occurs. NER occurring in DNA that is not undergoing transcription (i.e., most of the genome) is called global genome repair (GGR or GGNER), while NER taking place in the transcribed strand of active genes is called transcription-coupled repair (TCR or TC-NER). We will explore NER in more detail below. Mismatch repair (MMR) is another type of excision repair that specifically removes mispaired bases resulting from replication errors. DNA damage can also result in breaks in the DNA backbone, in one or both strands. Single-strand breaks (SSBs) are efficiently repaired by a mechanism that shares common features with the later steps in BER. Double-strand breaks (DSBs) are especially devastating since by definition there is no intact complementary strand to serve as a template for repair, and even one unrepaired DSB can be lethal [3]. In cells that have replicated their DNA prior to cell division, the missing information can be supplied by the duplicate copy, or sister chromatid, and DSBs in these cells are faithfully repaired by homologous recombination involving the exchange of strands of DNA between the two copies. However, most cells in the body are non-dividing, and in these cells the major mechanism for repairing DSBs is by non-homologous end joining (NHEJ), which as the name implies involves joining two broken DNA ends together without a requirement for homologous sequence and which therefore has a high potential for loss of genetic information.

  13. Dealing with unexpected events : efficient and safe solutions to emergent repair on NPP

    Energy Technology Data Exchange (ETDEWEB)

    Liekens Massazza, I.

    2015-07-01

    Nuclear Facilities are constantly challenged with unexpected events occurring on Primary Circuit components. A solution must be deployed quickly to minimize impact on the scheduled outage duration while guaranteeing safety, quality and ALARA standards. AREVA NP has demonstrated worldwide recognized capabilities and expertise through efficient management of various unexpected forced events through the time. Turnkey packaged solutions which are proposed are based on proven technics which can be quickly adapted and qualified to the specific problem, resulting in customers’ full satisfaction. (Author)

  14. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases

    International Nuclear Information System (INIS)

    Premkumar, Lakshmanane; Heras, Begoña; Duprez, Wilko; Walden, Patricia; Halili, Maria; Kurth, Fabian; Fairlie, David P.; Martin, Jennifer L.

    2013-01-01

    The gene product of M. tuberculosis Rv2969c is shown to be a disulfide oxidase enzyme that has a canonical DsbA-like fold with novel structural and functional characteristics. The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited

  15. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Lakshmanane, E-mail: p.lakshmanane@imb.uq.edu.au; Heras, Begoña; Duprez, Wilko; Walden, Patricia; Halili, Maria; Kurth, Fabian; Fairlie, David P.; Martin, Jennifer L., E-mail: p.lakshmanane@imb.uq.edu.au [University of Queensland, St Lucia, QLD 4067 (Australia)

    2013-10-01

    The gene product of M. tuberculosis Rv2969c is shown to be a disulfide oxidase enzyme that has a canonical DsbA-like fold with novel structural and functional characteristics. The bacterial disulfide machinery is an attractive molecular target for developing new antibacterials because it is required for the production of multiple virulence factors. The archetypal disulfide oxidase proteins in Escherichia coli (Ec) are DsbA and DsbB, which together form a functional unit: DsbA introduces disulfides into folding proteins and DsbB reoxidizes DsbA to maintain it in the active form. In Mycobacterium tuberculosis (Mtb), no DsbB homologue is encoded but a functionally similar but structurally divergent protein, MtbVKOR, has been identified. Here, the Mtb protein Rv2969c is investigated and it is shown that it is the DsbA-like partner protein of MtbVKOR. It is found that it has the characteristic redox features of a DsbA-like protein: a highly acidic catalytic cysteine, a highly oxidizing potential and a destabilizing active-site disulfide bond. Rv2969c also has peptide-oxidizing activity and recognizes peptide segments derived from the periplasmic loops of MtbVKOR. Unlike the archetypal EcDsbA enzyme, Rv2969c has little or no activity in disulfide-reducing and disulfide-isomerase assays. The crystal structure of Rv2969c reveals a canonical DsbA fold comprising a thioredoxin domain with an embedded helical domain. However, Rv2969c diverges considerably from other DsbAs, including having an additional C-terminal helix (H8) that may restrain the mobility of the catalytic helix H1. The enzyme is also characterized by a very shallow hydrophobic binding surface and a negative electrostatic surface potential surrounding the catalytic cysteine. The structure of Rv2969c was also used to model the structure of a paralogous DsbA-like domain of the Ser/Thr protein kinase PknE. Together, these results show that Rv2969c is a DsbA-like protein with unique properties and a limited

  16. Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 or PARP

    Energy Technology Data Exchange (ETDEWEB)

    Stenerl& #246; w, Bo; Karlsson, Karin H.; Radulescu, Irina; Rydberg, Bjorn; Stenerlow, Bo

    2008-04-29

    Ionizing radiation induces a variety of different DNA lesions: in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have previously shown that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites (HLS) within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of HLS on DSB induction and repair, four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for bi-phasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements the fraction of fast rejoining decreased to less than 50% of the total. However, neither the half-times of the fast (t{sub 1/2} = 7-8 min) or slow (t{sub 1/2} = 2.5 h) DSB rejoining were changed significantly. At t=0 the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSB/cell/Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all tested cells, including M059K cells treated with wortmannin or DNA-PKcs defect M059J cells. Furthermore, cells lacking XRCC1 or Poly(ADP-ribose) polymerase-1 (PARP-1) rejoined both total DSBs and heat-released DSBs similar to normal cells. In summary, the presence of heat-labile sites have a substantial impact on DSB induction yields and DSB rejoining rates measured by pulsed-field gel electrophoresis, and HLS repair is independent of DNA-PKcs, XRCC1 and PARP.

  17. Structural and Biochemical Characterization of Xylella fastidiosa DsbA Family Members: New insightsinto the Enzyme-Substrate Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, F.; Meza, A; Gulmarges, B

    2009-01-01

    Disulfide oxidoreductase DsbA catalyzes disulfide bond formation in proteins secreted to the periplasm and has been related to the folding process of virulence factors in many organisms. It is among the most oxidizing of the thioredoxin-like proteins, and DsbA redox power is understood in terms of the electrostatic interactions involving the active site motif CPHC. The plant pathogen Xylella fastidiosa has two chromosomal genes encoding two oxidoreductases belonging to the DsbA family, and in one of them, the canonical motif CPHC is replaced by CPAC. Biochemical assays showed that both X. fastidiosa homologues have similar redox properties and the determination of the crystal structure of XfDsbA revealed substitutions in the active site of X. fastidiosa enzymes, which are proposed to compensate for the lack of the conserved histidine in XfDsbA2. In addition, electron density maps showed a ligand bound to the XfDsbA active site, allowing the characterization of the enzyme interaction with an 8-mer peptide. Finally, surface analysis of XfDsbA and XfDsbA2 suggests that X. fastidiosa enzymes may have different substrate specificities.

  18. Constructing Periodic Timetables using MIP - a case study from DSB S-train

    DEFF Research Database (Denmark)

    Nielsen, Morten N.; Hove, Bjørn; Clausen, Jens

    2006-01-01

    We describe a mathematical model to create operational timetable alternatives in DSB S-tog a/s. The model is a mixed integer program implemented in GAMS and solved by CPLEX. We investigate the impact of automatic merges of lines and perform scenario analysis for a subset of the parameters...

  19. Correlation of Meiotic DSB Formation and Transcription Initiation Around Fission Yeast Recombination Hotspots.

    Science.gov (United States)

    Yamada, Shintaro; Okamura, Mika; Oda, Arisa; Murakami, Hiroshi; Ohta, Kunihiro; Yamada, Takatomi

    2017-06-01

    Meiotic homologous recombination, a critical event for ensuring faithful chromosome segregation and creating genetic diversity, is initiated by programmed DNA double-strand breaks (DSBs) formed at recombination hotspots. Meiotic DSB formation is likely to be influenced by other DNA-templated processes including transcription, but how DSB formation and transcription interact with each other has not been understood well. In this study, we used fission yeast to investigate a possible interplay of these two events. A group of hotspots in fission yeast are associated with sequences similar to the cyclic AMP response element and activated by the ATF/CREB family transcription factor dimer Atf1-Pcr1. We first focused on one of those hotspots, ade6-3049 , and Atf1. Our results showed that multiple transcripts, shorter than the ade6 full-length messenger RNA, emanate from a region surrounding the ade6-3049 hotspot. Interestingly, we found that the previously known recombination-activation region of Atf1 is also a transactivation domain, whose deletion affected DSB formation and short transcript production at ade6-3049 These results point to a possibility that the two events may be related to each other at ade6-3049 In fact, comparison of published maps of meiotic transcripts and hotspots suggested that hotspots are very often located close to meiotically transcribed regions. These observations therefore propose that meiotic DSB formation in fission yeast may be connected to transcription of surrounding regions. Copyright © 2017 by the Genetics Society of America.

  20. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation

    Czech Academy of Sciences Publication Activity Database

    Barilla, J.; Lokajíček, Miloš; Pisaková, Hana; Šimr, P.

    2013-01-01

    Roč. 36, č. 1 (2013), s. 11-17 ISSN 0158-9938 Institutional support: RVO:68378271 Keywords : radiobiological mechanism * chemical phase * DSB formation * oxygen effect Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.848, year: 2013

  1. Targeting Bacterial Dsb Proteins for the Development of Anti-Virulence Agents

    Directory of Open Access Journals (Sweden)

    Roxanne P. Smith

    2016-07-01

    Full Text Available Recent years have witnessed a dramatic increase in bacterial antimicrobial resistance and a decline in the development of novel antibiotics. New therapeutic strategies are urgently needed to combat the growing threat posed by multidrug resistant bacterial infections. The Dsb disulfide bond forming pathways are potential targets for the development of antimicrobial agents because they play a central role in bacterial pathogenesis. In particular, the DsbA/DsbB system catalyses disulfide bond formation in a wide array of virulence factors, which are essential for many pathogens to establish infections and cause disease. These redox enzymes are well placed as antimicrobial targets because they are taxonomically widespread, share low sequence identity with human proteins, and many years of basic research have provided a deep molecular understanding of these systems in bacteria. In this review, we discuss disulfide bond catalytic pathways in bacteria and their significance in pathogenesis. We also review the use of different approaches to develop inhibitors against Dsb proteins as potential anti-virulence agents, including fragment-based drug discovery, high-throughput screening and other structure-based drug discovery methods.

  2. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice.

    Science.gov (United States)

    Schipler, Agnes; Iliakis, George

    2013-09-01

    Although the DNA double-strand break (DSB) is defined as a rupture in the double-stranded DNA molecule that can occur without chemical modification in any of the constituent building blocks, it is recognized that this form is restricted to enzyme-induced DSBs. DSBs generated by physical or chemical agents can include at the break site a spectrum of base alterations (lesions). The nature and number of such chemical alterations define the complexity of the DSB and are considered putative determinants for repair pathway choice and the probability that errors will occur during this processing. As the pathways engaged in DSB processing show distinct and frequently inherent propensities for errors, pathway choice also defines the error-levels cells opt to accept. Here, we present a classification of DSBs on the basis of increasing complexity and discuss how complexity may affect processing, as well as how it may cause lethal or carcinogenic processing errors. By critically analyzing the characteristics of DSB repair pathways, we suggest that all repair pathways can in principle remove lesions clustering at the DSB but are likely to fail when they encounter clusters of DSBs that cause a local form of chromothripsis. In the same framework, we also analyze the rational of DSB repair pathway choice.

  3. Mechanism of radiation tolerance in higher plants. Radiation damage of DNA in cultured tobacco BY-2 cells and implication from its repair process

    International Nuclear Information System (INIS)

    Yokota, Yuichiro; Narumi, Issay; Funayama, Tomoo; Kobayashi, Yasuhiko; Tanaka, Jun; Inoue, Masayoshi

    2007-01-01

    This paper describes the mechanism of radiation tolerance at the cellular level in higher plants, of which fundamental study basis is rather poor, in cultured cells in the title (BY-2 cells, Nicotiana tabacum L., allotetraploid). When compared with LD 50 of radiation in higher animals (2.4-8.6 Gy), higher plants are generally tolerant to radiation (known LD 50 , >360-2000 Gy). Authors have made unicellular BY-2 cells (protoplasts) by enzyme treatment to see their colony forming ability (CFA) and have found those cells are also resistant to radiation: D 10 (10% CFA dose) (Gy) is found to be 8.2-47.2 by radiation with various linear energy transfer (LET)s like gamma ray and heavy ion beams, in contrast to human D 10 (1.17-8.12, by X-ray and carbon beam). Double strand break (DSB) of DNA by radiation per one BY-2 cell initially occurs 7-10 times more frequently than mammalian cells (CHO-K1). However, DSB repair in BY-2 cells is found only as efficient as in mammalian cells: a slow repair relative to DSB number. Checkpoint mechanism of DNA damage is found poorly working in BY-cells, which results in frequent chromosome aberration like micronucleus. Authors consider that, for an herbaceous plant, to precede the cell cycle rather than to recover from the genomic instability can be profitable for growing more rapidly to have more sunlight energy than other individuals. Improvement of plants by gene technological approach with such a mean as mutation by radiation is conceivably important from aspects of food supply and of ecological environment. (R.T.)

  4. Search for novel remedies to augment radiation resistance of inhabitants of Fukushima and Chernobyl disasters: identifying DNA repair protein XRCC4 inhibitors.

    Science.gov (United States)

    Sun, Mao-Feng; Chen, Hsin-Yi; Tsai, Fuu-Jen; Lui, Shu-Hui; Chen, Chih-Yi; Chen, Calvin Yu-Chian

    2011-10-01

    Two nuclear plant disasters occurring within a span of 25 years threaten health and genome integrity both in Fukushima and Chernobyl. Search for remedies capable of enhancing DNA repair efficiency and radiation resistance in humans appears to be a urgent problem for now. XRCC4 is an important enhancer in promoting repair pathway triggered by DNA double-strand break (DSB). In the context of radiation therapy, active XRCC4 could reduce DSB-mediated apoptotic effect on cancer cells. Hence, developing XRCC4 inhibitors could possibly enhance radiotherapy outcomes. In this study, we screened traditional Chinese medicine (TCM) database, TCM Database@Taiwan, and have identified three potent inhibitor agents against XRCC4. Through molecular dynamics simulation, we have determined that the protein-ligand interactions were focused at Lys188 on chain A and Lys187 on chain B. Intriguingly, the hydrogen bonds for all three ligands fluctuated frequently but were held at close approximation. The pi-cation interactions and ionic interactions mediated by o-hydroxyphenyl and carboxyl functional groups respectively have been demonstrated to play critical roles in stabilizing binding conformations. Based on these results, we reported the identification of potential radiotherapy enhancers from TCM. We further characterized the key binding elements for inhibiting the XRCC4 activities.

  5. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  6. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure

    International Nuclear Information System (INIS)

    Falk, Martin; Lukášová, Emilie; Štefančíková, Lenka; Baranová, Elena; Falková, Iva; Ježková, Lucie; Davídková, Marie; Bačíková, Alena; Vachelová, Jana; Michaelidesová, Anna; Kozubek, Stanislav

    2014-01-01

    Cell differentiation is associated with extensive gene silencing, heterochromatinization and potentially decreasing need for repairing DNA double-strand breaks (DSBs). Differentiation stages of blood cells thus represent an excellent model to study DSB induction, repair and misrepair in the context of changing higher-order chromatin structure. We show that immature granulocytes form γH2AX and 53BP1 foci, contrary to the mature cells; however, these foci colocalize only rarely and DSB repair is inefficient. Moreover, specific chromatin structure of granulocytes probably influences DSB induction. - Highlights: ► DSB repair is absent in mature granulocytes with condensed chromatin. ► Repair proteins and γH2AX appear in immature stages but rarely colocalize. ► γH2AX persist long times in these cells and DSB repair is inefficient. ► Even though, γH2AX foci “move” out of the dense chromatin. ► 53BP1 enters HP1β domains only after their decondensation

  7. Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection.

    Science.gov (United States)

    Heaton, Brook E; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C; Glickman, Michael S

    2014-08-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. An inverse switch in DNA base excision and strand break repair contributes to melphalan resistance in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Mirta M L Sousa

    Full Text Available Alterations in checkpoint and DNA repair pathways may provide adaptive mechanisms contributing to acquired drug resistance. Here, we investigated the levels of proteins mediating DNA damage signaling and -repair in RPMI8226 multiple myeloma cells and its Melphalan-resistant derivative 8226-LR5. We observed markedly reduced steady-state levels of DNA glycosylases UNG2, NEIL1 and MPG in the resistant cells and cross-resistance to agents inducing their respective DNA base lesions. Conversely, repair of alkali-labile sites was apparently enhanced in the resistant cells, as substantiated by alkaline comet assay, autoribosylation of PARP-1, and increased sensitivity to PARP-1 inhibition by 4-AN or KU58684. Reduced base-excision and enhanced single-strand break repair would both contribute to the observed reduction in genomic alkali-labile sites, which could jeopardize productive processing of the more cytotoxic Melphalan-induced interstrand DNA crosslinks (ICLs. Furthermore, we found a marked upregulation of proteins in the non-homologous end-joining (NHEJ pathway of double-strand break (DSB repair, likely contributing to the observed increase in DSB repair kinetics in the resistant cells. Finally, we observed apparent upregulation of ATR-signaling and downregulation of ATM-signaling in the resistant cells. This was accompanied by markedly increased sensitivity towards Melphalan in the presence of ATR-, DNA-PK, or CHK1/2 inhibitors whereas no sensitizing effect was observed subsequent to ATM inhibition, suggesting that replication blocking lesions are primary triggers of the DNA damage response in the Melphalan resistant cells. In conclusion, Melphalan resistance is apparently contributed by modulation of the DNA damage response at multiple levels, including downregulation of specific repair pathways to avoid repair intermediates that could impair efficient processing of cytotoxic ICLs and ICL-induced DSBs. This study has revealed several novel

  9. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  10. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair

    DEFF Research Database (Denmark)

    McCord, Ronald A; Michishita, Eriko; Hong, Tao

    2009-01-01

    -PKcs) to chromatin in response to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced site-specific DSB. Abrogation of these SIRT6 activities leads to impaired resolution of DSBs. Together, these findings elucidate a mechanism whereby regulation of dynamic interaction of a DNA repair factor......-dependent protein kinase) and promotes DNA DSB repair. In response to DSBs, SIRT6 associates dynamically with chromatin and is necessary for an acute decrease in global cellular acetylation levels on histone H3 Lysine 9. Moreover, SIRT6 is required for mobilization of the DNA-PK catalytic subunit (DNA......, and SIRT6 knockout cells exhibit genomic instability and DNA damage hypersensitivity. However, the molecular mechanisms underlying these defects are not fully understood. Here, we show that SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB) repair factor DNA-PK (DNA...

  11. Studies on the repair of double strand break of DNA and cellular carcinogenesis, and consideration on the concept of extinction of nuclear power

    International Nuclear Information System (INIS)

    Teraoka, Hirobumi

    2013-01-01

    This paper describes the relationship between the repair of double strand break (DSB) of DNA and cellular carcinogenesis mainly on author's investigations, and his recent thought aiming at the extinction of nuclear power. The molecular repairing system is explained about DNA DSB induced by radiation and chemicals. When DSB occurs, nucleosome consisting from 4 core-histones participates to link the broken ends and then repair mechanisms of homologous recombination (HRR) and non-homologous end joining (NHEJ) begin to work. The latter is dominant in mammalians. Thus the genetic defect in these systems of DSB response and repair is a course of disorders such as ataxia telangiectasia (AT) (DSB sensor defect), genetic breast cancer (HRR defect), and radiosensitive-severe combined immunodeficiency (RS-SCID) (NHEJ defect), all of which result in cancer formation. NHEJ repair is known to be error-prone. Against multi-step carcinogenesis where accumulated gene mutations lead to the cancer formation, the author thinks chromosomal instability is one of important carcinogenic causes: the instability can be a trigger of producing cancer stem cells because the cells can be yielded from mouse embryonic stem cells where DSB is shown to participate in the process. Low dose radiation produces a small amount of DSB, to which the repair response is less sensitive at G2/M checkpoint, ultimately leading to genomic instability. Considering effects of the low dose radiation exposure above, and of the internal exposure to 3 H-thymidine beta ray in cells, of indoor Rn participating 16% of lung cancer incidence (Canadian epidemiological data) and so on, together with moral and social responsibility of scientist and technologist, the author says to have attained to the concept of the ''Extinction of Nuclear Power''. (T.T)

  12. Rolling Stock Planning at DSB S-tog - Processes, Cost Structures and Requirements

    DEFF Research Database (Denmark)

    Thorlacius, Per

    A central issue for operators of suburban passenger train transport systems is providing sufficient number of seats for the passengers while at the same time minimising operating costs. The process of providing this is called rolling stock planning. This technical report documents the terminology......, the processes, the cost structures and the requirements for rolling stock planning at DSB S-tog, the suburban passenger train operator of the City of Copenhagen. The focus of the technical report is directed at practical train operator oriented issues. The technical report is thought to serve as a basis...... for investigating better methods to perform the rolling stock planning (to be the topic of later papers). This technical report is produced as a part of the current industrial Ph. D. project to improve the rolling stock planning process of DSB S-tog....

  13. Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system.

    Science.gov (United States)

    Dahan-Meir, Tal; Filler-Hayut, Shdema; Melamed-Bessudo, Cathy; Bocobza, Samuel; Czosnek, Henryk; Aharoni, Asaph; Levy, Avraham A

    2018-04-18

    Current breeding relies mostly on random mutagenesis and recombination to generate novel genetic variation. However, targeted genome editing is becoming an increasingly important tool for precise plant breeding. Using the CRISPR-Cas system combined with the bean yellow dwarf virus rolling circle replicon we optimized a method for targeted mutagenesis and gene replacement in tomato. The carotenoid isomerase (CRTISO) and phytoene synthase 1 (PSY1) genes from the carotenoid biosynthesis pathway were chosen as targets due to their easily detectable change of phenotype. We took advantage of the geminiviral replicon amplification as a mean to provide a large amount of donor template for the repair of a CRISPR-Cas-induced DNA double strand break (DSB) in the target gene, via homologous recombination. Mutagenesis experiments, performed in the Micro-Tom variety achieved precise modification of the CRTISO and PSY1 loci at an efficiency of up to 90%. In the gene targeting experiments, our target was a fast-neutron-induced crtiso allele that contained a 281bp deletion. This deletion was repaired with the wildtype sequence through homologous recombination between the CRISPR-Cas-induced DSB in the crtiso target and the amplified donor in 25% of the plants transformed. This shows that efficient gene targeting can be achieved in the absence of selection markers or reporters using a single and modular construct that is adaptable to other tomato targets and other crops. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. Detection and characterization of polymorphisms in XRCC DNA repair genes in human population

    International Nuclear Information System (INIS)

    Staynova, A.; Hadjidekova, V.; Savov, A.

    2004-01-01

    Human population is continuously exposed to low levels of ionizing radiation. The main contribution gives the exposure due to medical applications. Nevertheless, most of the damage induced is repaired shortly after exposure by cellular repair systems. The review is focused on the development and application of methods to estimate the character of polymorphisms in repair genes (XRCC1, APE1), involved in single strand breaks repair which is corresponding mainly to the repair of X-ray induced DNA damage. Since, DSB are major factor for chromosomal aberrations formation, the assays described in this review might be useful for the assessment of the radiation risk for human population. (authors)

  15. A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice.

    Science.gov (United States)

    Escribano-Díaz, Cristina; Orthwein, Alexandre; Fradet-Turcotte, Amélie; Xing, Mengtan; Young, Jordan T F; Tkáč, Ján; Cook, Michael A; Rosebrock, Adam P; Munro, Meagan; Canny, Marella D; Xu, Dongyi; Durocher, Daniel

    2013-03-07

    DNA double-strand break (DSB) repair pathway choice is governed by the opposing activities of 53BP1 and BRCA1. 53BP1 stimulates nonhomologous end joining (NHEJ), whereas BRCA1 promotes end resection and homologous recombination (HR). Here we show that 53BP1 is an inhibitor of BRCA1 accumulation at DSB sites, specifically in the G1 phase of the cell cycle. ATM-dependent phosphorylation of 53BP1 physically recruits RIF1 to DSB sites, and we identify RIF1 as the critical effector of 53BP1 during DSB repair. Remarkably, RIF1 accumulation at DSB sites is strongly antagonized by BRCA1 and its interacting partner CtIP. Lastly, we show that depletion of RIF1 is able to restore end resection and RAD51 loading in BRCA1-depleted cells. This work therefore identifies a cell cycle-regulated circuit, underpinned by RIF1 and BRCA1, that governs DSB repair pathway choice to ensure that NHEJ dominates in G1 and HR is favored from S phase onward. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Small molecules, inhibitors of DNA-PK, targeting DNA repair and beyond

    Directory of Open Access Journals (Sweden)

    David eDavidson

    2013-01-01

    Full Text Available Many current chemotherapies function by damaging genomic DNA in rapidly dividing cells ultimately leading to cell death. This therapeutic approach differentially targets cancer cells that generally display rapid cell division compared to normal tissue cells. However, although these treatments are initially effective in arresting tumor growth and reducing tumor burden, resistance and disease progression eventually occur. A major mechanism underlying this resistance is increased levels of cellular DNA repair. Most cells have complex mechanisms in place to repair DNA damage that occurs due to environmental exposures or normal metabolic processes. These systems, initially overwhelmed when faced with chemotherapy induced DNA damage, become more efficient under constant selective pressure and as a result chemotherapies become less effective. Thus, inhibiting DNA repair pathways using target specific small molecule inhibitors may overcome cellular resistance to DNA damaging chemotherapies. Non-homologous end joining (NHEJ a major mechanism for the repair of double strand breaks (DSB in DNA is regulated in part by the serine/threonine kinase, DNA dependent protein kinase (DNA-PK. The DNA-PK holoenzyme acts as a scaffold protein tethering broken DNA ends and recruiting other repair molecules. It also has enzymatic activity that may be involved in DNA damage signaling. Because of its’ central role in repair of DSBs, DNA-PK has been the focus of a number of small molecule studies. In these studies specific DNA-PK inhibitors have shown efficacy in synergizing chemotherapies in vitro. However, compounds currently known to specifically inhibit DNA-PK are limited by poor pharmacokinetics: these compounds have poor solubility and have high metabolic lability in vivo leading to short serum half-lives. Future improvement in DNA-PK inhibition will likely be achieved by designing new molecules based on the recently reported crystallographic structure of DNA

  17. ErbB2 regulates NHEJ repair pathway by affecting erbB1-triggered IR-induced Akt activity

    International Nuclear Information System (INIS)

    Toulany, Mahmoud; Peter Rodemann, H.

    2009-01-01

    We have already reported that erbBl-PI3K-AKT signaling is an important pathway in regulating radiation sensitivity and DNA double strand break repair of human tumor cells. In the present study using small interfering RNA and pharmacological inhibitors in non-small cell lung cancer cell lines we investigated the role of Aktl on radiation-induced DNA-PKcs activity and DNA-double strand break (DNA-DSB) repair. Likewise, the function of erbB2 as hetrodimerization partner of erbBl in radiation-induced Akt activity and regulation of DNA-dsb repair through DNA-PKcs was evaluated. In A549 and H460 transfected with AKTl-siRNA radiation-induced phosphorylation of DNA-PKcs the key enzyme regulating NHEJ repair pathway was markedly inhibited. In both cell lines downregulation of Aktl led to a significant enhancement of residual DNA-DSB, i.e. impaired DNA-DSB repair. Interestingly, in cells transfected with DNA-PKcs-siRNA a lack of effect of AKTl-siRNA on enhancement of residual DNA-DSBs was observed. This results indicate that Aktl regulates NHEJ repair in a DNA-PKcs dependent manner

  18. An initial DNA damage and the repair efficiency of UV induces damages estimated by SCGE assay in lymphocytes from occupationally exposed to pesticides and reference group from Greece

    International Nuclear Information System (INIS)

    Niedzwiedz, W.; Cebulska-Wasilewska, A.; Piperakis, S.M.

    2000-01-01

    The purpose of this study was to examine the individual susceptibility to UV-C induced DNA damage in lymphocytes of Greece people occupationally exposed to pesticides and from reference group with reported no occupational exposure. We also analyzed if there are any differences in the cellular repair capacity between both groups. Lymphocytes were isolated from fresh blood samples collected in Greece from 50 persons recognized as non-exposed to pesticides and from 50 farmers at the end of the spraying season. The average age in exposed to pesticide and reference group was 42.08 and 42.19, respectively. Frozen lymphocytes were transported in a dry ice into DREB laboratory for DNA damage analysis. The DNA damage was measured with the application of single cell gel electrophoresis method (SCGE technique). Our results show that there was not any statistically significant difference concerning the level of the DNA damage detected in defrosted lymphocytes between exposed and non-exposed group. The photoproducts excision efficiency after exposure to UV-C (6 Jm 2 ) and difference in repair capacity by incubation in present and absent of PHA were also studied. There were no statistically significant differences detected directly after UV irradiation between both investigated groups (p >0.1). However, for group exposed to pesticide the ratio of DNA damage measured right after exposition and two hours later was higher (32.19) comparing to reference group (28.60). It may suggest that in exposed group photoproducts excision efficiency was higher or the rejoining rates of the breaks was lower. The differences between repair efficiency observed in lymphocytes from group exposed and non-exposed to pesticides (with or without stimulation to division) were also statistically insignificant (for Tail Length, Tail DNA and Tail moment parameters - p >0.1). Statistically significant differences in DNA damage repair capacities were observed (for all analyzed parameters) between lymphocytes

  19. Crystal Structure of the Dithiol Oxidase DsbA Enzyme from Proteus Mirabilis Bound Non-covalently to an Active Site Peptide Ligand

    Science.gov (United States)

    Kurth, Fabian; Duprez, Wilko; Premkumar, Lakshmanane; Schembri, Mark A.; Fairlie, David P.; Martin, Jennifer L.

    2014-01-01

    The disulfide bond forming DsbA enzymes and their DsbB interaction partners are attractive targets for development of antivirulence drugs because both are essential for virulence factor assembly in Gram-negative pathogens. Here we characterize PmDsbA from Proteus mirabilis, a bacterial pathogen increasingly associated with multidrug resistance. PmDsbA exhibits the characteristic properties of a DsbA, including an oxidizing potential, destabilizing disulfide, acidic active site cysteine, and dithiol oxidase catalytic activity. We evaluated a peptide, PWATCDS, derived from the partner protein DsbB and showed by thermal shift and isothermal titration calorimetry that it binds to PmDsbA. The crystal structures of PmDsbA, and the active site variant PmDsbAC30S were determined to high resolution. Analysis of these structures allows categorization of PmDsbA into the DsbA class exemplified by the archetypal Escherichia coli DsbA enzyme. We also present a crystal structure of PmDsbAC30S in complex with the peptide PWATCDS. The structure shows that the peptide binds non-covalently to the active site CXXC motif, the cis-Pro loop, and the hydrophobic groove adjacent to the active site of the enzyme. This high-resolution structural data provides a critical advance for future structure-based design of non-covalent peptidomimetic inhibitors. Such inhibitors would represent an entirely new antibacterial class that work by switching off the DSB virulence assembly machinery. PMID:24831013

  20. Deficiency of Double-Strand DNA Break Repair Does Not Impair Mycobacterium tuberculosis Virulence in Multiple Animal Models of Infection

    OpenAIRE

    Heaton, Brook E.; Barkan, Daniel; Bongiorno, Paola; Karakousis, Petros C.; Glickman, Michael S.

    2014-01-01

    Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA bre...

  1. Enhancement of excision-repair efficiency by conditioned medium from density-inhibited cultures in V79 Chinese hamster cells

    International Nuclear Information System (INIS)

    Nakano, S.

    1979-01-01

    Conditioned medium from density-inhibited V79 Chinese hamster cell cultures, given as a post-treatment to UV-irradiated homologous cells, was demonstrated to reduce the lethal action of ultraviolet light by temporarily blocking DNA replication. Since the increased survival was not affected by various nontoxic concentrations of caffeine, such protective effect would be attributable to the prolonged intervention of excision repair before DNA replication during the post-treatment period. The influence of conditioned medium on the UV-induced mutation at the ouabain-resistance locus was also examined and a significant decrease in mutation frequecy was noted. The observed reduction in killing and mutation as a result of post-incubation in conditioned medium, which delays DNA replication, would be interpreted as evidence that conditioned medium provides a longer period of time for an error-free excision-repair process, leaving lesion in DNA available for error-prone post-replication repair. (Auth.)

  2. Cytotoxicity of 125I decay in the DNA double strand break repair deficient mutant cell line, xrs-5

    International Nuclear Information System (INIS)

    Yasui, L.S.

    1992-01-01

    Survival of parental Chinese hamster ovary (CHO) K1 cells and the DNA double strand break (DSB) repair deficient mutant, xrs-5 was determined after accumulation of 125 I decays. Both CHO and xrs-5 cells were extremely sensitive to accumulated 125 I decays. D o values for CHO and xrs-5 cells were 40 and approximately 7 decays per cell, respectively. Difference in cell survival between CHO and xrs-5 cells was not due to differences in overall 125 IUdR incorporation, differences in labelling index (LI) or differences in plating efficiency (PE). Relative biological effectiveness (RBE) values calculated relative to 137 Cs gamma radiation survival values (D o and D 10 ) were higher in xrs-5 cells compared with CHO cells, although both CHO and xrs-5 cells have high RBE values that correspond to a high sensitivity of CHO and xrs-5 cells to 125 I decay. (Author)

  3. Extremophilic Acinetobacter Strains from High-Altitude Lakes in Argentinean Puna: Remarkable UV-B Resistance and Efficient DNA Damage Repair

    Science.gov (United States)

    Albarracín, Virginia Helena; Pathak, Gopal P.; Douki, Thierry; Cadet, Jean; Borsarelli, Claudio Darío; Gärtner, Wolfgang; Farias, María Eugenia

    2012-06-01

    High-Altitude Andean Lakes (HAAL) of the South American Andes are almost unexplored ecosystems of shallow lakes. The HAAL are recognized by a remarkably high UV exposure, strong changes in temperature and salinity, and a high content of toxic elements, especially arsenic. Being exposed to remarkably extreme conditions, they have been classified as model systems for the study of life on other planets. Particularly, Acinetobacter strains isolated from the HAAL were studied for their survival competence under strong UV-B irradiation. Clinical isolates, Acinetobacter baumannii and Acinetobacter johnsonii, served as reference material. Whereas the reference strains rapidly lost viability under UV-B irradiation, most HAAL-derived strains readily survived this exposure and showed less change in cell number after the treatment. Controls for DNA repair activity, comparing dark repair (DR) or photo repair (PR), gave evidence for the involvement of photolyases in the DNA repair. Comparative measurements by HPLC-mass spectrometry detected the number of photoproducts: bipyrimidine dimers under both PR and DR treatments were more efficiently repaired in the HAAL strains (up to 85 % PR and 38 % DR) than in the controls (31 % PR and zero DR ability). Analysis of cosmid-cloned total genomic DNA from the most effective DNA-photorepair strain (Ver3) yielded a gene (HQ443199) encoding a protein with clear photolyase signatures belonging to class I CPD-photolyases. Despite the relatively low sequence similarity of 41 % between the enzymes from Ver3 and from E. coli (PDB 1DNPA), a model-building approach revealed a high structural homology to the CPD-photolyase of E. coli.

  4. ATM and SIRT6/SNF2H Mediate Transient H2AX Stabilization When DSBs Form by Blocking HUWE1 to Allow Efficient γH2AX Foci Formation

    Directory of Open Access Journals (Sweden)

    Yuko Atsumi

    2015-12-01

    Full Text Available In response to DNA double-strand breaks (DSBs, H2AX is rapidly phosphorylated at Ser139 to promote DSB repair. Here we show that H2AX is rapidly stabilized in response to DSBs to efficiently generate γH2AX foci. This mechanism operated even in quiescent cells that barely expressed H2AX. H2AX stabilization resulted from the inhibition of proteasome-mediated degradation. Synthesized H2AX ordinarily underwent degradation through poly-ubiquitination mediated by the E3 ligase HUWE1; however, H2AX ubiquitination was transiently halted upon DSB formation. Such rapid H2AX stabilization by DSBs was associated with chromatin incorporation of H2AX and halting of its poly-ubiquitination mediated by the ATM kinase, the sirtuin protein SIRT6, and the chromatin remodeler SNF2H. H2AX Ser139, the ATM phosphorylation site, was essential for H2AX stabilization upon DSB formation. Our results reveal a pathway controlled by ATM, SIRT6, and SNF2H to block HUWE1, which stabilizes H2AX and induces its incorporation into chromatin only when cells are damaged.

  5. JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks

    Directory of Open Access Journals (Sweden)

    Michael Van Meter

    2016-09-01

    Full Text Available The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6, promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK, phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose polymerase 1 (PARP1 to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.

  6. DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance.

    Science.gov (United States)

    Rother, Magdalena B; van Attikum, Haico

    2017-10-05

    Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'. © 2017 The Authors.

  7. Functional and structural studies of the disulfide isomerase DsbC from the plant pathogen Xylella fastidiosa reveals a redox-dependent oligomeric modulation in vitro.

    Science.gov (United States)

    Santos, Clelton A; Toledo, Marcelo A S; Trivella, Daniela B B; Beloti, Lilian L; Schneider, Dilaine R S; Saraiva, Antonio M; Crucello, Aline; Azzoni, Adriano R; Souza, Alessandra A; Aparicio, Ricardo; Souza, Anete P

    2012-10-01

    Xylella fastidiosa is a Gram-negative bacterium that grows as a biofilm inside the xylem vessels of susceptible plants and causes several economically relevant crop diseases. In the present study, we report the functional and low-resolution structural characterization of the X. fastidiosa disulfide isomerase DsbC (XfDsbC). DsbC is part of the disulfide bond reduction/isomerization pathway in the bacterial periplasm and plays an important role in oxidative protein folding. In the present study, we demonstrate the presence of XfDsbC during different stages of X. fastidiosa biofilm development. XfDsbC was not detected during X. fastidiosa planktonic growth; however, after administering a sublethal copper shock, we observed an overexpression of XfDsbC that also occurred during planktonic growth. These results suggest that X. fastidiosa can use XfDsbC in vivo under oxidative stress conditions similar to those induced by copper. In addition, using dynamic light scattering and small-angle X-ray scattering, we observed that the oligomeric state of XfDsbC in vitro may be dependent on the redox environment. Under reducing conditions, XfDsbC is present as a dimer, whereas a putative tetrameric form was observed under nonreducing conditions. Taken together, our findings demonstrate the overexpression of XfDsbC during biofilm formation and provide the first structural model of a bacterial disulfide isomerase in solution. © 2012 The Authors Journal compilation © 2012 FEBS.

  8. Kub5-Hera, the human Rtt103 homolog, plays dual functional roles in transcription termination and DNA repair.

    Science.gov (United States)

    Morales, Julio C; Richard, Patricia; Rommel, Amy; Fattah, Farjana J; Motea, Edward A; Patidar, Praveen L; Xiao, Ling; Leskov, Konstantin; Wu, Shwu-Yuan; Hittelman, Walter N; Chiang, Cheng-Ming; Manley, James L; Boothman, David A

    2014-04-01

    Functions of Kub5-Hera (In Greek Mythology Hera controlled Artemis) (K-H), the human homolog of the yeast transcription termination factor Rtt103, remain undefined. Here, we show that K-H has functions in both transcription termination and DNA double-strand break (DSB) repair. K-H forms distinct protein complexes with factors that repair DSBs (e.g. Ku70, Ku86, Artemis) and terminate transcription (e.g. RNA polymerase II). K-H loss resulted in increased basal R-loop levels, DSBs, activated DNA-damage responses and enhanced genomic instability. Significantly lowered Artemis protein levels were detected in K-H knockdown cells, which were restored with specific K-H cDNA re-expression. K-H deficient cells were hypersensitive to cytotoxic agents that induce DSBs, unable to reseal complex DSB ends, and showed significantly delayed γ-H2AX and 53BP1 repair-related foci regression. Artemis re-expression in K-H-deficient cells restored DNA-repair function and resistance to DSB-inducing agents. However, R loops persisted consistent with dual roles of K-H in transcription termination and DSB repair.

  9. Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1

    Science.gov (United States)

    Headey, Stephen J.; Vazirani, Mansha; Shouldice, Stephen R.; Coinçon, Mathieu; Tay, Stephanie; Morton, Craig J.; Simpson, Jamie S.; Martin, Jennifer L.

    2017-01-01

    At a time when the antibiotic drug discovery pipeline has stalled, antibiotic resistance is accelerating with catastrophic implications for our ability to treat bacterial infections. Globally we face the prospect of a future when common infections can once again kill. Anti-virulence approaches that target the capacity of the bacterium to cause disease rather than the growth or survival of the bacterium itself offer a tantalizing prospect of novel antimicrobials. They may also reduce the propensity to induce resistance by removing the strong selection pressure imparted by bactericidal or bacteriostatic agents. In the human pathogen Pseudomonas aeruginosa, disulfide bond protein A (PaDsbA1) plays a central role in the oxidative folding of virulence factors and is therefore an attractive target for the development of new anti-virulence antimicrobials. Using a fragment-based approach we have identified small molecules that bind to PaDsbA1. The fragment hits show selective binding to PaDsbA1 over the DsbA protein from Escherichia coli, suggesting that developing species-specific narrow-spectrum inhibitors of DsbA enzymes may be feasible. Structures of a co-complex of PaDsbA1 with the highest affinity fragment identified in the screen reveal that the fragment binds on the non-catalytic surface of the protein at a domain interface. This biophysical and structural data represent a starting point in the development of higher affinity compounds, which will be assessed for their potential as selective PaDsbA1 inhibitors. PMID:28346540

  10. Repair of DNA double-strand breaks and cell killing by charged particles

    Science.gov (United States)

    Eguchi-Kasai, K.; Murakami, M.; Itsukaichi, H.; Fukutsu, K.; Yatagai, F.; Kanai, T.; Ohara, H.; Sato, K.

    It has been suggested that it is not simple double-strand breaks (dsb) but the non-reparable breaks which correlate well with the high biological effectiveness of high LET radiations for cell killing. We have compared the effects of charged particles on cell death in 3 pairs of cell lines which are normal or defective in the repair of DNA dsbs. For the cell lines SL3-147, M10, and SX10 which are deficient in DNA dsb repair, RBE values were close to unity for cell killing induced by charged particles with linear energy transfer (LET) up to 200 keV/mum and were even smaller than unity for the LET region greater than 300 keV/mum. The inactivation cross section (ICS) increased with LET for all 3 pairs. The ICS of dsb repair deficient mutants was always larger than that of their parents for all the LET ranges, but with increasing LET the difference in ICS between the mutant and its parent became smaller. Since a small difference in ICS remained at LET of about 300 keV/mum, dsb repair may still take place at this high LET, even if its role is apparently small. These results suggest that the DNA repair system does not play a major role in protection against the attack of high LET radiations and that a main cause of cell death is non-reparable dsb which are produced at a higher yield compared with low LET radiations. No correlation was observed between DNA content or nuclear area and ICS.

  11. Análisis funcional de DsbA una tiol oxidorreductasa de Rhizobium leguminosarum

    OpenAIRE

    Vega de los Reyes, Rosa Mª

    2009-01-01

    Las proteínas que se exportan fuera del citoplasma bacteriano constituyen hasta un 20% del total de proteínas sintetizadas. Algunas de estas proteínas necesitan adquirir su conformación tridimensional particular en el citoplasma, incorporando frecuentemente cofactores metálicos antes de su transporte. Dicho transporte está mediado por el sistema Tat que es capaz de transportar proteínas que presentan un péptido señal característico en conformación plegada. Se ha postulado DsbA como proteína d...

  12. Cell sensitivity to irradiation and DNA repair processes. II

    International Nuclear Information System (INIS)

    Kozubek, S.; Krasavin, E.A.

    1984-01-01

    A new model of DNA single-strand break (SSB) and double-strand break (DSB) induction by radiations of different linear energy transfer (LET) has been developed. Utilizing quadratic dependence of the dose that delta-electrons depart in the track of heavy particles the fraction of heavy particle energy deposited in the target of DNA dimensions has been calculated. SSBs arise from energy depositions in one strand of DNA, direct DSBs arise from two SSBs on opposite strands of DNA in the track of one particle. It is concluded that DSB's induced by γ-radiation are mostly of enzymatic origin, meanwhile DSB's induced by high-LET radiation are direct DSB's. The dependence of radiosensitivity D 0 -1 on LET (L) for isogenic mutants of E. coli with different sensitivity to γ-radiation has been determined on the bases of the model and considering microscopic energy fluctuations. The shape of D 0 -1 (L) function is formed both by physical characteristics of radiation and by the ability of cells to repair some types of DNA damage. The model provides a basis for further investigation. (author)

  13. Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair.

    Science.gov (United States)

    Nakanishi, Koji; Yang, Yun-Gui; Pierce, Andrew J; Taniguchi, Toshiyasu; Digweed, Martin; D'Andrea, Alan D; Wang, Zhao-Qi; Jasin, Maria

    2005-01-25

    Fanconi anemia (FA) is a recessive disorder characterized by congenital abnormalities, progressive bone-marrow failure, and cancer susceptibility. Cells from FA patients are hypersensitive to agents that produce DNA crosslinks and, after treatment with these agents, have pronounced chromosome breakage and other cytogenetic abnormalities. Eight FANC genes have been cloned, and the encoded proteins interact in a common cellular pathway. DNA-damaging agents activate the monoubiquitination of FANCD2, resulting in its targeting to nuclear foci that also contain BRCA1 and BRCA2/FANCD1, proteins involved in homology-directed DNA repair. Given the interaction of the FANC proteins with BRCA1 and BRCA2, we tested whether cells from FA patients (groups A, G, and D2) and mouse Fanca-/- cells with a targeted mutation are impaired for this repair pathway. We find that both the upstream (FANCA and FANCG) and downstream (FANCD2) FA pathway components promote homology-directed repair of chromosomal double-strand breaks (DSBs). The FANCD2 monoubiquitination site is critical for normal levels of repair, whereas the ATM phosphorylation site is not. The defect in these cells, however, is mild, differentiating them from BRCA1 and BRCA2 mutant cells. Surprisingly, we provide evidence that these proteins, like BRCA1 but unlike BRCA2, promote a second DSB repair pathway involving homology, i.e., single-strand annealing. These results suggest an early role for the FANC proteins in homologous DSB repair pathway choice.

  14. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation.

    Science.gov (United States)

    Barilla, Jiří; Lokajíček, Miloš; Pisaková, Hana; Simr, Pavel

    2013-03-01

    Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.

  15. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation

    International Nuclear Information System (INIS)

    Barilla, Jiři; Simr, Pavel; Lokajíček, Miloš; Pisaková, Hana

    2013-01-01

    Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.

  16. SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Waaqo Daddacha

    2017-08-01

    Full Text Available DNA double-strand break (DSB repair by homologous recombination (HR is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate DSB repair by HR. SAMHD1 deficiency or Vpx-mediated degradation causes hypersensitivity to DSB-inducing agents, and SAMHD1 is recruited to DSBs. SAMHD1 complexes with CtIP via a conserved C-terminal domain and recruits CtIP to DSBs to facilitate end resection and HR. Significantly, a cancer-associated mutant with impaired CtIP interaction, but not dNTPase-inactive SAMHD1, fails to rescue the end resection impairment of SAMHD1 depletion. Our findings define a dNTPase-independent function for SAMHD1 in HR-mediated DSB repair by facilitating CtIP accrual to promote DNA end resection, providing insight into how SAMHD1 promotes genome integrity.

  17. Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain

    Directory of Open Access Journals (Sweden)

    Katarzyna Marta Bocian-Ostrzycka

    2015-10-01

    Full Text Available Helicobacter pylori does not encode the classical DsbA/DsbB oxidoreductases that are crucial for oxidative folding of extracytoplasmic proteins. Instead, this microorganism encodes an untypical two proteins playing a role in disulfide bond formation – periplasmic HP0231, which structure resembles that of EcDsbC/DsbG, and its redox partner, a membrane protein HpDsbI (HP0595 with a -propeller structure. The aim of presented work was to assess relations between HP0231 structure and function.We showed that HP0231 is most closely related evolutionarily to the catalytic domain of DsbG, even though it possesses a catalytic motif typical for canonical DsbA proteins. Similarly, the highly diverged N-terminal dimerization domain is homologous to the dimerization domain of DsbG. To better understand the functioning of this atypical oxidoreductase, we examined its activity using in vivo and in vitro experiments. We found that HP0231 exhibits oxidizing and chaperone activities but no isomerizing activity, even though H. pylori does not contain a classical DsbC. We also show that HP0231 is not involved in the introduction of disulfide bonds into HcpC (Helicobacter cysteine-rich protein C, a protein involved in the modulation of the H. pylori interaction with its host. Additionally, we also constructed a truncated version of HP0231 lacking the dimerization domain, denoted HP0231m, and showed that it acts in E. coli cells in a DsbB-dependent manner. In contrast, HP0231m and classical monomeric EcDsbA (Escherichia coli DsbA protein were both unable to complement the lack of HP0231 in H. pylori cells, though they exist in oxidized forms. HP0231m is inactive in the insulin reduction assay and possesses high chaperone activity, in contrast to EcDsbA. In conclusion, HP0231 combines oxidative functions characteristic of DsbA proteins and chaperone activity characteristic of DsbC/DsbG, and it lacks isomerization activity.

  18. Postoperative analgesic efficiency of transversus abdominis plane block after ventral hernia repair: a prospective, randomized, controlled clinical trial.

    Science.gov (United States)

    Chesov, Ion; Belîi, Adrian

    2017-10-01

    Effective postoperative analgesia is a key element in reducing postoperative morbidity, accelerating recovery and avoiding chronic postoperative pain. The aim of this study was to evaluate the effectiveness of ultrasound-guided Transversus Abdominis Plane (TAP) block, performed before surgical incision, in providing postoperative analgesia for patients undergoing open ventral hernia repair under general anaesthesia. Seventy elective patients scheduled for open ventral hernia repair surgery under general anaesthesia were divided randomly into two equal groups: Group I received bilateral TAP block performed before surgical incision (n = 35); Group II received systemic postoperative analgesia with parenteral opioid (morphine) alone (n = 35). Postoperatively pain scores at rest and with movement, total morphine consumption and opioid related side effects were recorded. Postoperative pain scores at rest and mobilization/cough were significantly higher in patients without TAP block (p consumption was comparable between the two groups: 0.75 ± 0.31 mg in group I (TAP) and 0.86 ± 0.29 mg in group II (MO), p = 0.1299. Patients undergoing preincisional TAP block had reduced morphine requirements during the first 24 hours after surgery, compared to patients from group II, without TAP block (p = 0.0001). There was no difference in the incidence of opioid related side effects (nausea, vomiting) in the both groups during the first 24 postoperative hours. The use of preincisional ultrasound guided TAP block reduced the pain scores at rest and with movement/cough, opioid consumption and opioid-related side effects after ventral hernia repair when compared with opioid-only analgesia.

  19. Development of a radiation track structure clustering algorithm for the prediction of DNA DSB yields and radiation induced cell death in Eukaryotic cells.

    Science.gov (United States)

    Douglass, Michael; Bezak, Eva; Penfold, Scott

    2015-04-21

    The preliminary framework of a combined radiobiological model is developed and calibrated in the current work. The model simulates the production of individual cells forming a tumour, the spatial distribution of individual ionization events (using Geant4-DNA) and the stochastic biochemical repair of DNA double strand breaks (DSBs) leading to the prediction of survival or death of individual cells. In the current work, we expand upon a previously developed tumour generation and irradiation model to include a stochastic ionization damage clustering and DNA lesion repair model. The Geant4 code enabled the positions of each ionization event in the cells to be simulated and recorded for analysis. An algorithm was developed to cluster the ionization events in each cell into simple and complex double strand breaks. The two lesion kinetic (TLK) model was then adapted to predict DSB repair kinetics and the resultant cell survival curve. The parameters in the cell survival model were then calibrated using experimental cell survival data of V79 cells after low energy proton irradiation. A monolayer of V79 cells was simulated using the tumour generation code developed previously. The cells were then irradiated by protons with mean energies of 0.76 MeV and 1.9 MeV using a customized version of Geant4. By replicating the experimental parameters of a low energy proton irradiation experiment and calibrating the model with two sets of data, the model is now capable of predicting V79 cell survival after low energy (cell survival probability, the cell survival probability is calculated for each cell in the geometric tumour model developed in the current work. This model uses fundamental measurable microscopic quantities such as genome length rather than macroscopic radiobiological quantities such as alpha/beta ratios. This means that the model can be theoretically used under a wide range of conditions with a single set of input parameters once calibrated for a given cell line.

  20. miR-24-mediated down-regulation of H2AX suppresses DNA repair in terminally differentiated blood cells

    Science.gov (United States)

    Lal, Ashish; Pan, Yunfeng; Navarro, Francisco; Dykxhoorn, Derek M.; Moreau, Lisa; Meire, Eti; Bentwich, Zvi; Lieberman, Judy; Chowdhury, Dipanjan

    2010-01-01

    Terminally differentiated cells have reduced capacity to repair double strand breaks (DSB), but the molecular mechanism behind this down-regulation is unclear. Here we find that miR-24 is consistently up-regulated during post-mitotic differentiation of hematopoietic cell lines and regulates the histone variant H2AX, a key DSB repair protein that activates cell cycle checkpoint proteins and retains DSB repair factors at DSB foci. The H2AX 3’UTR contains conserved miR-24 binding sites regulated by miR-24. Both H2AX mRNA and protein are substantially reduced during hematopoietic cell terminal differentiation by miR-24 up-regulation both in in vitro differentiated cells and primary human blood cells. miR-24 suppression of H2AX renders cells hypersensitive to γ-irradiation and genotoxic drugs. Antagonizing miR-24 in differentiating cells protects them from DNA damage-induced cell death, while transfecting miR-24 mimics in dividing cells increases chromosomal breaks and unrepaired DNA damage and reduces viability in response to DNA damage. This DNA repair phenotype can be fully rescued by over-expressing miR-24-insensitive H2AX. Therefore, miR-24 up-regulation in post-replicative cells reduces H2AX and thereby renders them highly vulnerable to DNA damage. PMID:19377482

  1. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks

    International Nuclear Information System (INIS)

    Turney, Benjamin W.; Kerr, Martin; Chitnis, Meenali M.; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S.; Brewster, Simon F.; Macaulay, Valentine M.

    2012-01-01

    Background and purpose: IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. Methods: We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. Results: We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30–40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. Conclusions: These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments.

  2. Depletion of the type 1 IGF receptor delays repair of radiation-induced DNA double strand breaks.

    Science.gov (United States)

    Turney, Benjamin W; Kerr, Martin; Chitnis, Meenali M; Lodhia, Kunal; Wang, Yong; Riedemann, Johann; Rochester, Mark; Protheroe, Andrew S; Brewster, Simon F; Macaulay, Valentine M

    2012-06-01

    IGF-1R depletion sensitizes prostate cancer cells to ionizing radiation and DNA-damaging cytotoxic drugs. This study investigated the hypothesis that IGF-1R regulates DNA double strand break (DSB) repair. We tested effects of IGF-1R siRNA transfection on the repair of radiation-induced DSBs by immunoblotting and immunofluorescence for γH2AX, and pulsed-field gel electrophoresis. Homologous recombination (HR) was quantified by reporter assays, and cell cycle distribution by flow cytometry. We confirmed that IGF-1R depletion sensitized DU145 and PC3 prostate cancer cells to ionizing radiation. DU145 control transfectants resolved radiation-induced DSBs within 24 h, while IGF-1R depleted cells contained 30-40% unrepaired breaks at 24 h. IGF-1R depletion induced significant reduction in DSB repair by HR, although the magnitude of the repair defect suggests additional contributory factors. Radiation-induced G2-M arrest was attenuated by IGF-1R depletion, potentially suppressing cell cycle-dependent processes required for HR. In contrast, IGF-1R depletion induced only minor radiosensitization in LNCaP cells, and did not influence repair. Cell cycle profiles were similar to DU145, so were unlikely to account for differences in repair responses. These data indicate a role for IGF-1R in DSB repair, at least in part via HR, and support use of IGF-1R inhibitors with DNA damaging cancer treatments. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Effect of antioxidants on x-ray induced DNA SSB and DSB in different cell systems

    International Nuclear Information System (INIS)

    Ramadu, Kadem

    1998-01-01

    The effect of x-ray radiation or antioxidants such as actinomycin D, cycloheximide and mitomycin C is studied on CHO, BHK and HeLa cells. X-ray radiation caused DNA single strand breaks (SSB) and double strand breaks (DSB) are prevented by cycloheximide and actinomycin-D. The DSB and SSB are significant in the case of x-ray radiation in combination with MMC, but different with actinomycin-D and cycloheximide in combination with x-ray radiation which causes less number of SSB and DSB. The ISC is observed more with x-ray radiation in combination with antioxidants mitomycin C (MMC) than that of cycloheximide and actinomycin-D, which individually causes inhibition of ISC induced by x-ray radiation. This observation proves that the MMC has an additive effect on x-ray induced ISC during cell proliferation. During cell proliferation, cell viability is observed with x-ray radiation and antioxidants which are dependent on the cell cycle phase. However, in the control cells, the initial Go-phase has shown negligible difference in percent cell viability thereby during S-phase gradual increase in the cell viability, and cell proliferation have been found to be stopped at G2+M-phase. On the contrary, cell viability and the extent of cell proliferation with x-ray radiation in combination with MMC have shown more damage (OH-damage) than is caused by x-ray radiation and MMC, separately. But, the fact is that actinomycin-D and cycloheximide act as antioxidants preventing thereby free radical formation and cell death, caused by x-ray radiation. During cell proliferation, cells observed from S and (G2+M) phase exhibit difference in cell viability in all the treatments alone and in combination. HeLa cells have been found insensitive to x-ray radiation and could be ascribed to the presence of glutathione transferase, which is less in CHO/BHK cell line. (author)

  4. DNA double-strand break repair: a tale of pathway choices

    Institute of Scientific and Technical Information of China (English)

    Jing Li; Xingzhi Xu

    2016-01-01

    Deoxyribonucleic acid double-strand breaks (DSBs) are cytotoxic lesions that must be repaired either through homologous recombination (HR) or non-homologous end-joining (NHEJ) pathways.DSB repair is critical for genome integrity,cellular homeostasis and also constitutes the biological foundation for radiotherapy and the majority of chemotherapy.The choice between HR and NHEJ is a complex yet not completely understood process that will entail more future efforts.Herein we review our current understandings about how the choice is made over an antagonizing balance between p53-binding protein 1 and breast cancer 1 in the context of cell cycle stages,downstream effects,and distinct chromosomal histone marks.These exciting areas of research will surely bring more mechanistic insights about DSB repair and be utilized in the clinical settings.

  5. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Martini

    2011-09-01

    Full Text Available Meiotic DNA double-strand breaks (DSBs initiate crossover (CO recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs. Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs. First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.

  6. Feasibility of measuring radiation-induced DNA double strand breaks and their repair by pulsed field gel electrophoresis in freshly isolated cells from the mouse RIF-1 tumor

    International Nuclear Information System (INIS)

    Waarde, Maria A.W.H. van; Assen, Annette J. van; Konings, Antonius W.T.; Kampinga, Harm H.

    1996-01-01

    Purpose: To examine the technical feasibility of pulsed field gel electrophoresis (PFGE) as a predictive assay for the radio responsiveness of tumors. Induction and repair of DNA double strand breaks (DSBs) in a freshly prepared cell suspension from a RIF-1 tumor (irradiated ex vivo) was compared with DSB induction and repair in exponentially growing RIF-1 cells in culture (irradiated in vitro). Methods and Materials: A murine RIF-1 tumor grown in vivo was digested, and cells were exposed to x-rays (ex vivo) at doses of 1 to 75 Gy. DNA damage was measured using CHEF (clamped homogeneous electric fields) electrophoresis. Repair kinetics were studied at 37 deg. C for 4 h after irradiation. Radiosensitivity was determined by clonogenic assay, and cell cycle distributions by flow cytometry. For comparison, a trypsinized suspension of exponentially growing RIF-1 cells in vitro was run parallel with each ex vivo experiment. Results: Induction of DSBs, expressed as % DNA extracted from the plug, was similar in the in vitro and ex vivo irradiated cells. Compared to repair rates in in vitro cultured RIF-1 cells, repair kinetics in a freshly prepared cell suspension from the tumor were decreased, unrelated to differences in radiosensitivity. Differences in repair could not be explained by endogenous DNA degradation, nor by influences of enzymes used for digestion of the tumor. A lower plating efficiency and differences in ploidy (as revealed by flow cytometry) were the only reproducible differences between in vivo and in vitro grown cells that may explain the differences in repair kinetics. Conclusions: The current results do not support the idea that PFGE is a technique robust enough to be a predictive assay for the radiosensitivity of tumor cells

  7. DNA-PK inhibition causes a low level of H2AX phosphorylation and homologous recombination repair in Medaka (Oryzias latipes) cells

    International Nuclear Information System (INIS)

    Urushihara, Yusuke; Kobayashi, Junya; Matsumoto, Yoshihisa; Komatsu, Kenshi; Oda, Shoji; Mitani, Hiroshi

    2012-01-01

    Highlights: ► We investigated the effect of DNA-PK inhibition on DSB repair using fish cells. ► A radiation sensitive mutant RIC1 strain showed a low level of DNA-PK activity. ► DNA-PK dysfunction leads defects in HR repair and DNA-PKcs autophosphorylation. ► DNA-PK dysfunction leads a slight increase in the number of 53BP1 foci after DSBs. ► DNA-PK dysfunction leads an alternative NHEJ that depends on 53BP1. -- Abstract: Nonhomologous end joining (NHEJ) and homologous recombination (HR) are known as DNA double-strand break (DSB) repair pathways. It has been reported that DNA-PK, a member of PI3 kinase family, promotes NHEJ and aberrant DNA-PK causes NHEJ deficiency. However, in this study, we demonstrate that a wild-type cell line treated with DNA-PK inhibitor and a mutant cell line with dysfunctional DNA-PK showed decreased HR efficiency in fish cells (Medaka, Oryzias latipes). Previously, we reported that the radiation-sensitive mutant RIC1 strain has a defect in the Histone H2AX phosphorylation after γ-irradiation. Here, we showed that a DNA-PK inhibitor, NU7026, treatment resulted in significant reduction in the number of γH2AX foci after γ-irradiation in wild-type cells, but had no significant effect in RIC1 cells. In addition, RIC1 cells showed significantly lower levels of DNA-PK kinase activity compared with wild-type cells. We investigated NHEJ and HR efficiency after induction of DSBs. Wild-type cells treated with NU7026 and RIC1 cells showed decreased HR efficiency. These results indicated that aberrant DNA-PK causes the reduction in the number of γH2AX foci and HR efficiency in RIC1 cells. We performed phosphorylated DNA-PKcs (Thr2609) and 53BP1 focus assay after γ-irradiation. RIC1 cells showed significant reduction in the number of phosphorylated DNA-PKcs foci and no deference in the number of 53BP1 foci compared with wild-type cells. These results suggest that low level of DNA-PK activity causes aberrant DNA-PKcs autophosphorylation

  8. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  9. Mitosis, double strand break repair, and telomeres: a view from the end: how telomeres and the DNA damage response cooperate during mitosis to maintain genome stability.

    Science.gov (United States)

    Cesare, Anthony J

    2014-11-01

    Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular aging and in cancer is known to be refractory to G2/M checkpoint activation. Such DDR-positive telomeres, and those that occur as part of the telomere-dependent prolonged mitotic arrest checkpoint, normally pass through mitosis without covalent ligation, but result in cell growth arrest in G1 phase. The discovery that suppressing DSB repair during mitosis may function primarily to protect DDR-positive telomeres from fusing during cell division reinforces the unique cooperation between telomeres and the DDR to mediate tumor suppression. © 2014 The Author. Bioessays published by WILEY Periodicals, Inc.

  10. New Modeling and Simulation Platform for Communications Systems:(I Double Sideband Suppressed Carrier AM Modulator DSB-SC

    Directory of Open Access Journals (Sweden)

    H. A. Ahmed

    2012-08-01

    Full Text Available The main goal of this paper is to introduce a new platform for the implementation and simulation of communication systems. SCILAB/SCICOS is an open source software for conducting communication system related experiments, aiming to provide an experimentation platform for research on communication theories. Double Sideband Suppressed Carrier (DSB-SC Modulator is modeled and simulated using this platform.

  11. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant

    Czech Academy of Sciences Publication Activity Database

    Pavkova, I.; Kopečková, M.; Klimentová, J.; Schmidt, M.; Sheshko, V.; Sobol, Margaryta; Žáková, J.; Hozák, Pavel; Stulík, J.

    2017-01-01

    Roč. 7, zima (2017), č. článku 503. ISSN 2235-2988 Institutional support: RVO:68378050 Keywords : DsbA * SILAC * glyceraldehyde-3-phosphate dehydrogenase * Francisella tularensis * moonlighting Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 4.300, year: 2016

  12. DNA Repair Defects and Chromosomal Aberrations

    Science.gov (United States)

    Hada, Megumi; George, K. A.; Huff, J. L.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Yields of chromosome aberrations were assessed in cells deficient in DNA doublestrand break (DSB) repair, after exposure to acute or to low-dose-rate (0.018 Gy/hr) gamma rays or acute high LET iron nuclei. We studied several cell lines including fibroblasts deficient in ATM (ataxia telangiectasia mutated; product of the gene that is mutated in ataxia telangiectasia patients) or NBS (nibrin; product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase (DNA-PK) activity. Chromosomes were analyzed using the fluorescence in situ hybridization (FISH) chromosome painting method in cells at the first division post irradiation, and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma irradiation induced greater yields of both simple and complex exchanges in the DSB repair-defective cells than in the normal cells. The quadratic dose-response terms for both simple and complex chromosome exchanges were significantly higher for the ATM- and NBS-deficient lines than for normal fibroblasts. However, in the NBS cells the linear dose-response term was significantly higher only for simple exchanges. The large increases in the quadratic dose-response terms in these repair-defective cell lines points the importance of the functions of ATM and NBS in chromatin modifications to facilitate correct DSB repair and minimize the formation of aberrations. The differences found between ATM- and NBS-deficient cells at low doses suggest that important questions should with regard to applying observations of radiation sensitivity at high dose to low-dose exposures. For aberrations induced by iron nuclei, regression models preferred purely linear dose responses for simple exchanges and quadratic dose responses for complex exchanges. Relative biological effectiveness (RBE) factors of all of

  13. Reward optimization of a repairable system

    Energy Technology Data Exchange (ETDEWEB)

    Castro, I.T. [Departamento de Matematicas, Facultad de Veterinaria, Universidad de Extremadura, Avenida de la Universidad, s/n. 10071 Caceres (Spain)]. E-mail: inmatorres@unex.es; Perez-Ocon, R. [Departamento de Estadistica e Investigacion Operativa, Facultad de Ciencias, Universidad de Granada, Avenida de Severo Ochoa, s/n. 18071 Granada (Spain)]. E-mail: rperezo@ugr.es

    2006-03-15

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures.

  14. Reward optimization of a repairable system

    International Nuclear Information System (INIS)

    Castro, I.T.; Perez-Ocon, R.

    2006-01-01

    This paper analyzes a system subject to repairable and non-repairable failures. Non-repairable failures lead to replacement of the system. Repairable failures, first lead to repair but they lead to replacement after a fixed number of repairs. Operating and repair times follow phase type distributions (PH-distributions) and the pattern of the operating times is modelled by a geometric process. In this context, the problem is to find the optimal number of repairs, which maximizes the long-run average reward per unit time. To this end, the optimal number is determined and it is obtained by efficient numerical procedures

  15. Ionizing radiation-induced DNA damage and repair as a potential biomarker in biodosimetry, cancer risk analysis and for prediction of radiotherapy induced toxicity

    International Nuclear Information System (INIS)

    Satish Rao, B.S.

    2017-01-01

    Lymphocytes isolated from peripheral blood from 100 healthy individuals, 232 cancer patients (cervical, breast cancer and head and neck cancer) irradiated in vitro or in vivo were used for measuring DNA damage and repair. The microscopic method of the γ-H2AX assay was adopted to elucidate the significance of DSB in biodosimetry, cancer risk susceptibility, and normal tissue toxicity prediction. We validated the use of H2AX assay in early triage biodosimetry by using lymphocytes from cervical cancer patients exposed to radiotherapy. Further, the basal and residual damage was significantly higher in cancer individuals compared to the healthy individuals. In cancer patients undergoing radiotherapy, we could able to show the increase in normal tissue toxicity with decreased DSB repair capacity. In conclusion this study indicates the DSB estimation by γ-H2AX foci analysis can serve as a tool to understand the triage of radiation exposed individuals, identifying individuals at cancer risk and normal tissue toxicity

  16. The Multiple Localized Glyceraldehyde-3-Phosphate Dehydrogenase Contributes to the Attenuation of the Francisella tularensis dsbA Deletion Mutant

    Directory of Open Access Journals (Sweden)

    Ivona Pavkova

    2017-12-01

    Full Text Available The DsbA homolog of Francisella tularensis was previously demonstrated to be required for intracellular replication and animal death. Disruption of the dsbA gene leads to a pleiotropic phenotype that could indirectly affect a number of different cellular pathways. To reveal the broad effects of DsbA, we compared fractions enriched in membrane proteins of the wild-type FSC200 strain with the dsbA deletion strain using a SILAC-based quantitative proteomic analysis. This analysis enabled identification of 63 proteins with significantly altered amounts in the dsbA mutant strain compared to the wild-type strain. These proteins comprise a quite heterogeneous group including hypothetical proteins, proteins associated with membrane structures, and potential secreted proteins. Many of them are known to be associated with F. tularensis virulence. Several proteins were selected for further studies focused on their potential role in tularemia's pathogenesis. Of them, only the gene encoding glyceraldehyde-3-phosphate dehydrogenase, an enzyme of glycolytic pathway, was found to be important for full virulence manifestations both in vivo and in vitro. We next created a viable mutant strain with deleted gapA gene and analyzed its phenotype. The gapA mutant is characterized by reduced virulence in mice, defective replication inside macrophages, and its ability to induce a protective immune response against systemic challenge with parental wild-type strain. We also demonstrate the multiple localization sites of this protein: In addition to within the cytosol, it was found on the cell surface, outside the cells, and in the culture medium. Recombinant GapA was successfully obtained, and it was shown that it binds host extracellular serum proteins like plasminogen, fibrinogen, and fibronectin.

  17. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair.

    Science.gov (United States)

    Zapotoczny, Grzegorz; Sekelsky, Jeff

    2017-04-03

    DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate) can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells. Copyright © 2017 Zapotoczny and Sekelsky.

  18. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair

    Directory of Open Access Journals (Sweden)

    Grzegorz Zapotoczny

    2017-04-01

    Full Text Available DNA double-strand breaks (DSBs are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila. To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells.

  19. Mycobacterial nonhomologous end joining mediates mutagenic repair of chromosomal double-strand DNA breaks.

    Science.gov (United States)

    Stephanou, Nicolas C; Gao, Feng; Bongiorno, Paola; Ehrt, Sabine; Schnappinger, Dirk; Shuman, Stewart; Glickman, Michael S

    2007-07-01

    Bacterial nonhomologous end joining (NHEJ) is a recently described DNA repair pathway best characterized in mycobacteria. Bacterial NHEJ proteins LigD and Ku have been analyzed biochemically, and their roles in linear plasmid repair in vivo have been verified genetically; yet the contributions of NHEJ to repair of chromosomal DNA damage are unknown. Here we use an extensive set of NHEJ- and homologous recombination (HR)-deficient Mycobacterium smegmatis strains to probe the importance of HR and NHEJ in repairing diverse types of chromosomal DNA damage. An M. smegmatis Delta recA Delta ku double mutant has no apparent growth defect in vitro. Loss of the NHEJ components Ku and LigD had no effect on sensitivity to UV radiation, methyl methanesulfonate, or quinolone antibiotics. NHEJ deficiency had no effect on sensitivity to ionizing radiation in logarithmic- or early-stationary-phase cells but was required for ionizing radiation resistance in late stationary phase in 7H9 but not LB medium. In addition, NHEJ components were required for repair of I-SceI mediated chromosomal double-strand breaks (DSBs), and in the absence of HR, the NHEJ pathway rapidly mutates the chromosomal break site. The molecular outcomes of NHEJ-mediated chromosomal DSB repair involve predominantly single-nucleotide insertions at the break site, similar to previous findings using plasmid substrates. These findings demonstrate that prokaryotic NHEJ is specifically required for DSB repair in late stationary phase and can mediate mutagenic repair of homing endonuclease-generated chromosomal DSBs.

  20. Aging impairs double-strand break repair by homologous recombination in Drosophila germ cells.

    Science.gov (United States)

    Delabaere, Laetitia; Ertl, Henry A; Massey, Dashiell J; Hofley, Carolyn M; Sohail, Faraz; Bienenstock, Elisa J; Sebastian, Hans; Chiolo, Irene; LaRocque, Jeannine R

    2017-04-01

    Aging is characterized by genome instability, which contributes to cancer formation and cell lethality leading to organismal decline. The high levels of DNA double-strand breaks (DSBs) observed in old cells and premature aging syndromes are likely a primary source of genome instability, but the underlying cause of their formation is still unclear. DSBs might result from higher levels of damage or repair defects emerging with advancing age, but repair pathways in old organisms are still poorly understood. Here, we show that premeiotic germline cells of young and old flies have distinct differences in their ability to repair DSBs by the error-free pathway homologous recombination (HR). Repair of DSBs induced by either ionizing radiation (IR) or the endonuclease I-SceI is markedly defective in older flies. This correlates with a remarkable reduction in HR repair measured with the DR-white DSB repair reporter assay. Strikingly, most of this repair defect is already present at 8 days of age. Finally, HR defects correlate with increased expression of early HR components and increased recruitment of Rad51 to damage in older organisms. Thus, we propose that the defect in the HR pathway for germ cells in older flies occurs following Rad51 recruitment. These data reveal that DSB repair defects arise early in the aging process and suggest that HR deficiencies are a leading cause of genome instability in germ cells of older animals. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Proteasome nuclear import mediated by Arc3 can influence efficient DNA damage repair and mitosis in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Cabrera, Rodrigo; Sha, Zhe; Vadakkan, Tegy J.

    2010-01-01

    Proteasomes must remove regulatory molecules and abnormal proteins throughout the cell, but how proteasomes can do so efficiently remains unclear. We have isolated a subunit of the Arp2/3 complex, Arc3, which binds proteasomes. When overexpressed, Arc3 rescues phenotypes associated with proteasom...

  2. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair

    NARCIS (Netherlands)

    Y.J. Choi (Yong Jun); H. Li (Han); M.Y. Son (Mi Young); X.-H. Wang (Xiao-Hong); J.L. Fornsaglio (Jamie L.); R.W. Sobol (Robert W.); M. Lee (Moonsook); J. Vijg (Jan); S. Imholz (Sandra); M.E.T. Dollé (Martijn); H. van Steeg (Harry); E. Reiling (Erwin); P. Hasty (Paul)

    2014-01-01

    textabstractKu70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS) to repair DNA double strand breaks (DSBs) through the nonhomologous end joining (NHEJ) pathway. As expected mutating these genes in mice caused a similar DSB

  3. The rate of X-ray-induced DNA double-strand break repair in the embryonic mouse brain is unaffected by exposure to 50 Hz magnetic fields.

    Science.gov (United States)

    Woodbine, Lisa; Haines, Jackie; Coster, Margaret; Barazzuol, Lara; Ainsbury, Elizabeth; Sienkiewicz, Zenon; Jeggo, Penny

    2015-06-01

    Following in utero exposure to low dose radiation (10-200 mGy), we recently observed a linear induction of DNA double-strand breaks (DSB) and activation of apoptosis in the embryonic neuronal stem/progenitor cell compartment. No significant induction of DSB or apoptosis was observed following exposure to magnetic fields (MF). In the present study, we exploited this in vivo system to examine whether exposure to MF before and after exposure to 100 mGy X-rays impacts upon DSB repair rates. 53BP1 foci were quantified following combined exposure to radiation and MF in the embryonic neuronal stem/progenitor cell compartment. Embryos were exposed in utero to 50 Hz MF at 300 μT for 3 h before and up to 9 h after exposure to 100 mGy X-rays. Controls included embryos exposed to MF or X-rays alone plus sham exposures. Exposure to MF before and after 100 mGy X-rays did not impact upon the rate of DSB repair in the embryonic neuronal stem cell compartment compared to repair rates following radiation exposure alone. We conclude that in this sensitive system MF do not exert any significant level of DNA damage and do not impede the repair of X-ray induced damage.

  4. Excess single-stranded DNA inhibits meiotic double-strand break repair.

    Directory of Open Access Journals (Sweden)

    Rebecca Johnson

    2007-11-01

    Full Text Available During meiosis, self-inflicted DNA double-strand breaks (DSBs are created by the protein Spo11 and repaired by homologous recombination leading to gene conversions and crossovers. Crossover formation is vital for the segregation of homologous chromosomes during the first meiotic division and requires the RecA orthologue, Dmc1. We analyzed repair during meiosis of site-specific DSBs created by another nuclease, VMA1-derived endonuclease (VDE, in cells lacking Dmc1 strand-exchange protein. Turnover and resection of the VDE-DSBs was assessed in two different reporter cassettes that can repair using flanking direct repeat sequences, thereby obviating the need for a Dmc1-dependent DNA strand invasion step. Access of the single-strand binding complex replication protein A, which is normally used in all modes of DSB repair, was checked in chromatin immunoprecipitation experiments, using antibody against Rfa1. Repair of the VDE-DSBs was severely inhibited in dmc1Delta cells, a defect that was associated with a reduction in the long tract resection required to initiate single-strand annealing between the flanking repeat sequences. Mutants that either reduce Spo11-DSB formation or abolish resection at Spo11-DSBs rescued the repair block. We also found that a replication protein A component, Rfa1, does not accumulate to expected levels at unrepaired single-stranded DNA (ssDNA in dmc1Delta cells. The requirement of Dmc1 for VDE-DSB repair using flanking repeats appears to be caused by the accumulation of large quantities of ssDNA that accumulate at Spo11-DSBs when Dmc1 is absent. We propose that these resected DSBs sequester both resection machinery and ssDNA binding proteins, which in wild-type cells would normally be recycled as Spo11-DSBs repair. The implication is that repair proteins are in limited supply, and this could reflect an underlying mechanism for regulating DSB repair in wild-type cells, providing protection from potentially harmful effects

  5. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair.

    Science.gov (United States)

    Löser, Dana A; Shibata, Atsushi; Shibata, Akiko K; Woodbine, Lisa J; Jeggo, Penny A; Chalmers, Anthony J

    2010-06-01

    As single agents, chemical inhibitors of poly(ADP-ribose) polymerase (PARP) are nontoxic and have clinical efficacy against BRCA1- and BRCA2-deficient tumors. PARP inhibitors also enhance the cytotoxicity of ionizing radiation and alkylating agents but will only improve clinical outcomes if tumor sensitization exceeds effects on normal tissues. It is unclear how tumor DNA repair proficiency affects the degree of sensitization. We have previously shown that the radiosensitizing effect of PARP inhibition requires DNA replication and will therefore affect rapidly proliferating tumors more than normal tissues. Because many tumors exhibit defective DNA repair, we investigated the impact of double-strand break (DSB) repair integrity on the sensitizing effects of the PARP inhibitor olaparib. Sensitization to ionizing radiation and the alkylating agent methylmethane sulfonate was enhanced in DSB repair-deficient cells. In Artemis(-/-) and ATM(-/-) mouse embryo fibroblasts, sensitization was replication dependent and associated with defective repair of replication-associated damage. Radiosensitization of Ligase IV(-/-) mouse embryo fibroblasts was independent of DNA replication and is explained by inhibition of "alternative" end joining. After methylmethane sulfonate treatment, PARP inhibition promoted replication-independent accumulation of DSB, repair of which required Ligase IV. Our findings predict that the sensitizing effects of PARP inhibitors will be more pronounced in rapidly dividing and/or DNA repair defective tumors than normal tissues and show their potential to enhance the therapeutic ratio achieved by conventional DNA-damaging agents.

  6. Inhibition of homologous recombination repair in irradiated tumor cells pretreated with Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin

    International Nuclear Information System (INIS)

    Noguchi, Miho; Yu, Dong; Hirayama, Ryoichi; Ninomiya, Yasuharu; Sekine, Emiko; Kubota, Nobuo; Ando, Koichi; Okayasu, Ryuichi

    2006-01-01

    In order to investigate the mechanism of radio-sensitization by an Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), we studied repair of DNA double strand breaks (DSBs) in irradiated human cells pre-treated with 17-AAG. DSBs are thought to be the critical target for radiation-induced cell death. Two human tumor cell lines DU145 and SQ-5 which showed clear radio-sensitization by 17-AAG revealed a significant inhibition of DSB repair, while normal human cells which did not show radio-sensitization by the drug indicated no change in the DSB repair kinetics with 17-AAG. We further demonstrated that BRCA2 was a novel client protein for Hsp90, and 17-AAG caused the degradation of BRCA2 and in turn altered the behavior of Rad51, a critical protein for homologous recombination (HR) pathway of DSB repair. Our data demonstrate for the first time that 17-AAG inhibits the HR repair process and could provide a new therapeutic strategy to selectively result in higher tumor cell killing

  7. Loss of CHD1 causes DNA repair defects and enhances prostate cancer therapeutic responsiveness

    DEFF Research Database (Denmark)

    Kari, Vijayalakshmi; Mansour, Wael Yassin; Raul, Sanjay Kumar

    2016-01-01

    The CHD1 gene, encoding the chromo-domain helicase DNA-binding protein-1, is one of the most frequently deleted genes in prostate cancer. Here, we examined the role of CHD1 in DNA double-strand break (DSB) repair in prostate cancer cells. We show that CHD1 is required for the recruitment of Ct......-homologous end joining. Together, we provide evidence for a previously unknown role of CHD1 in DNA DSB repair via HR and show that CHD1 depletion sensitizes cells to PARP inhibitors, which has potential therapeutic relevance. Our findings suggest that CHD1 deletion, like BRCA1/2 mutation in ovarian cancer, may...... serve as a marker for prostate cancer patient stratification and the utilization of targeted therapies such as PARP inhibitors, which specifically target tumors with HR defects....

  8. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    International Nuclear Information System (INIS)

    Swindall, Amanda F.; Stanley, Jennifer A.; Yang, Eddy S.

    2013-01-01

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation

  9. PARP-1: Friend or Foe of DNA Damage and Repair in Tumorigenesis?

    Energy Technology Data Exchange (ETDEWEB)

    Swindall, Amanda F.; Stanley, Jennifer A. [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Yang, Eddy S., E-mail: eyang@uab.edu [Department of Radiation Oncology Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, 176F HSROC Suite 2232B, 1700 6th Avenue South, Birmingham, AL 35249 (United States); Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States); Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35249 (United States)

    2013-07-26

    Oxidative stress induced by reactive oxygen species can result in DNA damage within cells and subsequently increase risk for carcinogenesis. This may be averted by repair of DNA damage through the base or nucleotide excision repair (BER/NER) pathways. PARP, a BER protein, is known for its role in DNA-repair. However, multiple lesions can occur within a small range of DNA, known as oxidative clustered DNA lesions (OCDLs), which are difficult to repair and may lead to the more severe DNA double-strand break (DSB). Inefficient DSB repair can then result in increased mutagenesis and neoplastic transformation. OCDLs occur more frequently within a variety of tumor tissues. Interestingly, PARP is highly expressed in several human cancers. Additionally, chronic inflammation may contribute to tumorigenesis through ROS-induced DNA damage. Furthermore, PARP can modulate inflammation through interaction with NFκB and regulating the expression of inflammatory signaling molecules. Thus, the upregulation of PARP may present a double-edged sword. PARP is needed to repair ROS-induced DNA lesions, but PARP expression may lead to increased inflammation via upregulation of NFκB signaling. Here, we discuss the role of PARP in the repair of oxidative damage versus the formation of OCDLs and speculate on the feasibility of PARP inhibition for the treatment and prevention of cancers by exploiting its role in inflammation.

  10. Heterochromatinization associated with cell differentiation as a model to study DNA double strand break induction and repair in the context of higher-order chromatin structure

    Czech Academy of Sciences Publication Activity Database

    Falk, Martin; Lukášová, Emilie; Štefančíková, Lenka; Baranová, E.; Falková, Iva; Ježková, L.; Davídková, Marie; Bačíková, Alena; Vachelová, Jana; Michaelidesová, Anna; Kozubek, Stanislav

    2014-01-01

    Roč. 83, Jan (2014), s. 177-185 ISSN 0969-8043 R&D Projects: GA MŠk(CZ) LD12039 Institutional support: RVO:68081707 ; RVO:61389005 Keywords : DNA double strand break (DSB) repair * Immature and terminally differentiated granulocytes * gamma H2AX/53BP1 repair foci Subject RIV: BO - Biophysics; BO - Biophysics (UJF-V) Impact factor: 1.231, year: 2014

  11. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available DNA double strand break (DSB repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC. We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs and 95% confidence intervals (CIs. Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7 and 0.58 (0.45-0.74, P = 2.00 × 10(-5 respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5, n = 74, and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3, n = 123. Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

  12. Repair of full-thickness tendon injury using connective tissue progenitors efficiently derived from human embryonic stem cells and fetal tissues.

    Science.gov (United States)

    Cohen, Shahar; Leshansky, Lucy; Zussman, Eyal; Burman, Michael; Srouji, Samer; Livne, Erella; Abramov, Natalie; Itskovitz-Eldor, Joseph

    2010-10-01

    The use of stem cells for tissue engineering (TE) encourages scientists to design new platforms in the field of regenerative and reconstructive medicine. Human embryonic stem cells (hESC) have been proposed to be an important cell source for cell-based TE applications as well as an exciting tool for investigating the fundamentals of human development. Here, we describe the efficient derivation of connective tissue progenitors (CTPs) from hESC lines and fetal tissues. The CTPs were significantly expanded and induced to generate tendon tissues in vitro, with ultrastructural characteristics and biomechanical properties typical of mature tendons. We describe a simple method for engineering tendon grafts that can successfully repair injured Achilles tendons and restore the ankle joint extension movement in mice. We also show the CTP's ability to differentiate into bone, cartilage, and fat both in vitro and in vivo. This study offers evidence for the possibility of using stem cell-derived engineered grafts to replace missing tissues, and sets a basic platform for future cell-based TE applications in the fields of orthopedics and reconstructive surgery.

  13. Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance

    Science.gov (United States)

    Liu, Meilian; Xiang, Ruihua; Wilk, Sarah Ann; Zhang, Ning; Sloane, Lauren B.; Azarnoush, Kian; Zhou, Lijun; Chen, Hongzhi; Xiang, Guangda; Walter, Christi A.; Austad, Steven N.; Musi, Nicolas; DeFronzo, Ralph A.; Asmis, Reto; Scherer, Philipp E.; Dong, Lily Q.; Liu, Feng

    2012-01-01

    The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders. PMID:22807031

  14. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair.

    Science.gov (United States)

    Mian, Elisabeth; Wiesmüller, Lisa

    2017-01-01

    Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells

  15. Induction and repair of DNA double strand breaks: The increasing spectrum of non-homologous end joining pathways

    International Nuclear Information System (INIS)

    Mladenov, Emil; Iliakis, George

    2011-01-01

    A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis.

  16. In vivo formation and repair of DNA double-strand breaks after computed tomography examinations.

    Science.gov (United States)

    Löbrich, Markus; Rief, Nicole; Kühne, Martin; Heckmann, Martina; Fleckenstein, Jochen; Rübe, Christian; Uder, Michael

    2005-06-21

    Ionizing radiation can lead to a variety of deleterious effects in humans, most importantly to the induction of cancer. DNA double-strand breaks (DSBs) are among the most significant genetic lesions introduced by ionizing radiation that can initiate carcinogenesis. We have enumerated gamma-H2AX foci as a measure for DSBs in lymphocytes from individuals undergoing computed tomography examination of the thorax and/or the abdomen. The number of DSBs induced by computed tomography examination was found to depend linearly on the dose-length product, a radiodiagnostic unit that is proportional to both the local dose delivered and the length of the body exposed. Analysis of lymphocytes sampled up to 1 day postirradiation provided kinetics for the in vivo loss of gamma-H2AX foci that correlated with DSB repair. Interestingly, in contrast to results obtained in vitro, normal individuals repair DSBs to background levels. A patient who had previously shown severe side effects after radiotherapy displayed levels of gamma-H2AX foci at various sampling times postirradiation that were several times higher than those of normal individuals. Gamma-H2AX and pulsed-field gel electrophoresis analysis of fibroblasts obtained from this patient confirmed a substantial DSB repair defect. Additionally, these fibroblasts showed significant in vitro radiosensitivity. These data show that the in vivo induction and repair of DSBs can be assessed in individuals exposed to low radiation doses, adding a further dimension to DSB repair studies and providing the opportunity to identify repair-compromised individuals after diagnostic irradiation procedures.

  17. A role for the malignant brain tumour (MBT domain protein LIN-61 in DNA double-strand break repair by homologous recombination.

    Directory of Open Access Journals (Sweden)

    Nicholas M Johnson

    Full Text Available Malignant brain tumour (MBT domain proteins are transcriptional repressors that function within Polycomb complexes. Some MBT genes are tumour suppressors, but how they prevent tumourigenesis is unknown. The Caenorhabditis elegans MBT protein LIN-61 is a member of the synMuvB chromatin-remodelling proteins that control vulval development. Here we report a new role for LIN-61: it protects the genome by promoting homologous recombination (HR for the repair of DNA double-strand breaks (DSBs. lin-61 mutants manifest numerous problems associated with defective HR in germ and somatic cells but remain proficient in meiotic recombination. They are hypersensitive to ionizing radiation and interstrand crosslinks but not UV light. Using a novel reporter system that monitors repair of a defined DSB in C. elegans somatic cells, we show that LIN-61 contributes to HR. The involvement of this MBT protein in HR raises the possibility that MBT-deficient tumours may also have defective DSB repair.

  18. Ionizing radiation-induced DNA double-strand break and repair assessed by γ-H2AX foci analysis in neurons in mice

    International Nuclear Information System (INIS)

    Dong Xiaorong; Wu Gang; Ruebe Claudia; Ruebe Christian

    2009-01-01

    Objective: To investigate if the γ-H2AX foci is a precise index for the DSB formation and repair in mature neurons of brain in vivo after clinically relevant doses irradiation. Methods: For the DSB formation experiment, the mature neurons in the neocortex of brain tissue of C57BL/6 mice were analyzed at 10 rain after whole-body irradiation with 0.1, 0.5 and 1.0 Gy. For the DSB repair kinetics experiment, the mature neurons in the neocortex of brain tissue of repair-proficient (C57BL/6 mice) and repair-deficient mouse strains (BALB/c, A-T and SCID mice) were analyzed at 0.5, 2.5, 5, 24 and 48 h after whole-body irradiation with 2 Gy. The mature neurons in the neocortex of brain tissue of sham-irradiated mice of each strain served as controls. γ-H2AX immunohistochemistry and γ-H2AX and NeuN double immunofluorescence analysis was used to measure DSBs formation and repair in the mature neurons in the neocortex of brain tissue of the different mouse strains. Results: For the DSB formation experiment, γ-H2AX foci levels with a clear linear close correlation and very low backgrounds in the nuclei in the neocortex of brain tissue were observed. Scoring the loss of γ-H2AX foci allowed us to verify the different, genetically determined DSB repair deficiencies, including the minor impairment of BALB/c mice. Repair-proficient C57BL/6 mice exhibited the fastest decrease in foci number with time, and displayed low levels of residual damage at 24 h and 48 h post-irradiation. In contrast, SCID mice showed highly increased γ-H2AX foci levels at all repair times (0.5 h to 48 h) while A-T mice exhibited a lesser defect which was most significant at later repair times (≥ 5 h). Radiosensitive BALB/c mice exhibited slightly elevated foci numbers compared with C57BL/6 mice at 5 h and 24 h but not at 48 h post-irradiation. Conclusion: Quantifying the γ-H2AX foci in normal tissue represents a sensitivie tool for the detection of induction and repair of radiation-induced DSBs at

  19. Meningocele repair

    Science.gov (United States)

    ... is surgery to repair birth defects of the spine and spinal membranes. Meningocele and myelomeningocele ... is covered by a sterile dressing. Your child may then be transferred to a neonatal intensive ...

  20. DNA repair and cytokines: TGF-beta, IL-6, and thrombopoietin as different biomarkers of radioresistance

    Directory of Open Access Journals (Sweden)

    Francesca Bianca Aiello

    2016-07-01

    Full Text Available Double strand breaks (DSBs induced by radiotherapy are highly cytotoxic lesions, leading to chromosomal aberrations and cell death. ATM-dependent DNA-damage response, non-homologous end joining, and homologous recombination pathways coordinately contribute to repairing DSBs in higher eukaryotes. It is known that the expression of DSB repair genes is increased in tumors which is one of the main reasons for radioresistance. The inhibition of DSB repair pathways may be useful to increase tumor cell radiosensitivity and may target stem cell-like cancer cells, known to be the most radioresistant tumor components. Commonly overexpressed in neoplastic cells, cytokines confer radioresistance by promoting proliferation, survival, invasion, and angiogenesis. Unfortunately, tumor irradiation increases the expression of various cytokines displaying these effects, including transforming growth factor-beta and interlukin-6. Recently the capabilities of these cytokines to support DNA repair pathways and the ATM-dependent DNA response have been demonstrated. Thrombopoietin, essential for megakaryopoiesis and very important for hematopoietic stem cell homeostasis, has also been found to promote DNA repair in a highly selective manner. These findings reveal a novel mechanism underlying cytokine-related radioresistance, which may be clinically relevant. Therapies targeting specific cytokines may be used to improve radiosensitivity. Specific inhibitors may be chosen in consideration of different tumor microenvironments. Thrombopoietin may be useful in fending off irradiation-induced loss of hematopoietic stem cells.

  1. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    International Nuclear Information System (INIS)

    Dupuy, Aurélie; Sarasin, Alain

    2015-01-01

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients

  2. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease

    Energy Technology Data Exchange (ETDEWEB)

    Dupuy, Aurélie [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Sarasin, Alain, E-mail: alain.sarasin@gustaveroussy.fr [Laboratory of Genetic Instability and Oncogenesis UMR8200CNRS, Institut Gustave Roussy and University Paris-Sud, Villejuif (France); Service de Génétique, Institut Gustave Roussy (France)

    2015-06-15

    Graphical abstract: - Highlights: • Full correction of mutation in the XPC gene by engineered nucleases. • Meganucleases and TALENs are inhibited by 5-MeC for inducing double strand breaks. • Gene therapy of XP cells is possible using homologous recombination for DSB repair. - Abstract: Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients.

  3. Clustered DNA lesion repair in eukaryotes: Relevance to mutagenesis and cell survival

    Energy Technology Data Exchange (ETDEWEB)

    Sage, Evelyne [Institut Curie, Bat. 110, Centre Universitaire, 91405 Orsay (France); CNRS UMR3348, Bat. 110, Centre Universitaire, 91405 Orsay (France); Harrison, Lynn, E-mail: lclary@lsuhsc.edu [Department of Molecular and Cellular Physiology, LSUHSC-S, 1501 Kings Highway, Shreveport, LA 71130 (United States)

    2011-06-03

    A clustered DNA lesion, also known as a multiply damaged site, is defined as {>=}2 damages in the DNA within 1-2 helical turns. Only ionizing radiation and certain chemicals introduce DNA damage in the genome in this non-random way. What is now clear is that the lethality of a damaging agent is not just related to the types of DNA lesions introduced, but also to how the damage is distributed in the DNA. Clustered DNA lesions were first hypothesized to exist in the 1990s, and work has progressed where these complex lesions have been characterized and measured in irradiated as well as in non-irradiated cells. A clustered lesion can consist of single as well as double strand breaks, base damage and abasic sites, and the damages can be situated on the same strand or opposing strands. They include tandem lesions, double strand break (DSB) clusters and non-DSB clusters, and base excision repair as well as the DSB repair pathways can be required to remove these complex lesions. Due to the plethora of oxidative damage induced by ionizing radiation, and the repair proteins involved in their removal from the DNA, it has been necessary to study how repair systems handle these lesions using synthetic DNA damage. This review focuses on the repair process and mutagenic consequences of clustered lesions in yeast and mammalian cells. By examining the studies on synthetic clustered lesions, and the effects of low vs high LET radiation on mammalian cells or tissues, it is possible to extrapolate the potential biological relevance of these clustered lesions to the killing of tumor cells by radiotherapy and chemotherapy, and to the risk of cancer in non-tumor cells, and this will be discussed.

  4. What role for DNA damage and repair in the bystander response?

    International Nuclear Information System (INIS)

    Prise, Kevin M.; Folkard, Melvyn; Kuosaite, Virginija; Tartier, Laurence; Zyuzikov, Nikolai; Shao, Chunlin

    2006-01-01

    The radiation-induced bystander effect challenges the accepted paradigm of direct DNA damage in response to energy deposition driving the biological consequences of radiation exposure. With the bystander response, cells which have not been directly exposed to radiation respond to their neighbours being targeted. In our own studies we have used novel targeted microbeam approaches to specifically irradiate parts of individual cells within a population to quantify the bystander response and obtain mechanistic information. Using this approach it has become clear that energy deposited by radiation in nuclear DNA is not required to trigger the effect, with cytoplasmic irradiation required. Irradiated cells also trigger a bystander response regardless of whether they themselves live or die, suggesting that the phenotype of the targeted cell is not a determining factor. Despite this however, a range of evidence has shown that repair status is important for dealing with the consequences of a bystander signal. Importantly, repair processes involved in the processing of dsb appear to be involved suggesting that the bystander response involves the delayed or indirect production of dsb-type lesions in bystander cells. Whether these are infact true dsb or complexes of oxidised bases in combination with strand breaks and the mechanisms for their formation, remains to be elucidated

  5. A quantitative model of the major pathways for radiation-induced DNA double-strand break repair

    International Nuclear Information System (INIS)

    Belov, O.V.; Krasavin, E.A.; Lyashko, M.S.; Batmunkh, M.; Sweilam, N.H.

    2014-01-01

    We have developed a model approach to simulate the major pathways of DNA double-strand break (DSB) repair in mammalian and human cells. The proposed model shows a possible mechanistic explanation of the basic regularities of DSB processing through the nonhomologous end-joining (NHEJ), homologous recombination (HR), and single-strand annealing (SSA). It reconstructs the time-courses of radiation-induced foci specific to particular repair processes including the major intermediate stages. The model is validated for ionizing radiations of a wide range of linear energy transfer (0.2-236 keV/μm) including a relatively broad spectrum of heavy ions. The appropriate set of reaction rate constants was suggested to satisfy the kinetics of DSB rejoining for the considered types of exposure. The simultaneous assessment of three repair pathways allows one to describe their possible biological relations in response to radiation. With the help of the proposed approach, we reproduce several experimental data sets on γ-H2AX foci remaining in different types of cells including those defective in NHEJ, HR, or SSA functions.

  6. APOBEC3 cytidine deaminases in double-strand DNA break repair and cancer promotion.

    Science.gov (United States)

    Nowarski, Roni; Kotler, Moshe

    2013-06-15

    High frequency of cytidine to thymidine conversions was identified in the genome of several types of cancer cells. In breast cancer cells, these mutations are clustered in long DNA regions associated with single-strand DNA (ssDNA), double-strand DNA breaks (DSB), and genomic rearrangements. The observed mutational pattern resembles the deamination signature of cytidine to uridine carried out by members of the APOBEC3 family of cellular deaminases. Consistently, APOBEC3B (A3B) was recently identified as the mutational source in breast cancer cells. A3G is another member of the cytidine deaminases family predominantly expressed in lymphoma cells, where it is involved in mutational DSB repair following ionizing radiation treatments. This activity provides us with a new paradigm for cancer cell survival and tumor promotion and a mechanistic link between ssDNA, DSBs, and clustered mutations. Cancer Res; 73(12); 3494-8. ©2013 AACR. ©2013 AACR.

  7. Ku-mediated coupling of DNA cleavage and repair during programmed genome rearrangements in the ciliate Paramecium tetraurelia.

    Directory of Open Access Journals (Sweden)

    Antoine Marmignon

    2014-08-01

    Full Text Available During somatic differentiation, physiological DNA double-strand breaks (DSB can drive programmed genome rearrangements (PGR, during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES. IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium

  8. ATM is required for the repair of Topotecan-induced replication-associated double-strand breaks

    International Nuclear Information System (INIS)

    Köcher, Sabrina; Spies-Naumann, Anja; Kriegs, Malte; Dahm-Daphi, Jochen; Dornreiter, Irena

    2013-01-01

    Purpose: DNA replication is a promising target for anti-cancer therapies. Therefore, the understanding of replication-associated DNA repair mechanisms is of great interest. One key factor of DNA double-strand break (DSB) repair is the PIK kinase Ataxia-Telangiectasia Mutated (ATM) but it is still unclear whether ATM is involved in the repair of replication-associated DSBs. Here, we focused on the involvement of ATM in homology-directed repair (HDR) of indirect DSBs associated with replication. Material and methods: Experiments were performed using ATM-deficient and -proficient human cells. Replication-associated DSBs were induced with Topotecan (TPT) and compared with γ-irradiation (IR). Cell survival was measured by clonogenic assay. Overall DSB repair and HDR were evaluated by detecting residual γH2AX/53BP1 and Rad51 foci, respectively. Cell cycle distribution was analysed by flow cytometry and protein expression by Western blot. Results: ATM-deficiency leads to enhanced numbers of residual DSBs, resulting in a pronounced S/G2-block and decreased survival upon TPT-treatment. In common with IR, persisting Rad51 foci were detected following TPT-treatment. Conclusions: These results demonstrate that ATM is essentially required for the completion of HR-mediated repair of TPT-induced DSBs formed indirectly at replication forks

  9. Radiation induced bystander signals are independent of DNA damage and DNA repair capacity of the irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, Genro [Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom); Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Suzuki, Keiji [Division of Radiation Biology, Department of Radiology and Radiation Biology, Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan); Matsuda, Naoki [Division of Radiation Biology and Protection, Center for Frontier Life Sciences, Nagasaki University, Nagasaki 852-8102 (Japan); Kodama, Seiji [Radiation Biology Laboratory, Radiation Research Center, Frontier Science Innovation Center, Organization for University-Industry-Government Cooperation, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8570 (Japan); Ono, Koji [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Watanabe, Masami [Laboratory of Radiation Biology, Division of Radiation Life Science, Department of Radiation Life Science and Radiation Medical Science, Kyoto University Research Reactor Institute, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Prise, Kevin M [Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom) and Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Lisburn Road, Belfast BT9 7AB (United Kingdom)]. E-mail: prise@gci.ac.uk

    2007-06-01

    Evidence is accumulating that irradiated cells produce signals, which interact with non-exposed cells in the same population. Here, we analysed the mechanism for bystander signal arising in wild-type CHO cells and repair deficient varients, focussing on the relationship between DNA repair capacity and bystander signal arising in irradiated cells. In order to investigate the bystander effect, we carried out medium transfer experiments after X-irradiation where micronuclei were scored in non-targeted DSB repair deficient xrs5 cells. When conditioned medium from irradiated cells was transferred to unirradiated xrs5 cells, the level of induction was independent of whether the medium came from irradiated wild-type, ssb or dsb repair deficient cells. This result suggests that the activation of a bystander signal is independent of the DNA repair capacity of the irradiated cells. Also, pre-treatment of the irradiated cells with 0.5% DMSO, which suppresses micronuclei induction in CHO but not in xrs5 cells, suppressed bystander effects completely in both conditioned media, suggesting that DMSO is effective for suppression of bystander signal arising independently of DNA damage in irradiated cells. Overall the work presented here adds to the understanding that it is the repair phenotype of the cells receiving bystander signals, which determines overall response rather than that of the cell producing the bystander signal.

  10. Break-induced ATR and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast

    DEFF Research Database (Denmark)

    Moss, Jennifer; Tinline-Purvis, Helen; Walker, Carol A

    2010-01-01

    Nucleotide synthesis is a universal response to DNA damage, but how this response facilitates DNA repair and cell survival is unclear. Here we establish a role for DNA damage-induced nucleotide synthesis in homologous recombination (HR) repair in fission yeast. Using a genetic screen, we found...... the Ddb1-Cul4(Cdt)² ubiquitin ligase complex and ribonucleotide reductase (RNR) to be required for HR repair of a DNA double-strand break (DSB). The Ddb1-Cul4(Cdt)² ubiquitin ligase complex is required for degradation of Spd1, an inhibitor of RNR in fission yeast. Accordingly, deleting spd1(+) suppressed...

  11. Repair process and a repaired component

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, III, Herbert Chidsey; Simpson, Stanley F.

    2018-02-20

    Matrix composite component repair processes are disclosed. The matrix composite repair process includes applying a repair material to a matrix composite component, securing the repair material to the matrix composite component with an external securing mechanism and curing the repair material to bond the repair material to the matrix composite component during the securing by the external securing mechanism. The matrix composite component is selected from the group consisting of a ceramic matrix composite, a polymer matrix composite, and a metal matrix composite. In another embodiment, the repair process includes applying a partially-cured repair material to a matrix composite component, and curing the repair material to bond the repair material to the matrix composite component, an external securing mechanism securing the repair material throughout a curing period, In another embodiment, the external securing mechanism is consumed or decomposed during the repair process.

  12. Use of a ring chromosome and pulsed-field gels to study recombinational repair

    International Nuclear Information System (INIS)

    Game, J.C.; Arabi, S.; Mortimer, R.K.

    1989-01-01

    In wild type yeast, it is known that x-ray induced DNA double-strand breaks (dsb) are repaired, leading to recovery of high molecular-weight molecules on gradients or pulsed-field gels. There is genetic evidence that some or all of this repair occurs via recombinational mechanisms involving sister-chromatid exchange (SCE) and (in diploids) inter-homologue recombination. However, this evidence is indirect and qualitative. The authors of this paper are attempting to use pulsed-field gels to detect and measure recombinational repair at the physical level in yeast strains with a circular homologue of Chr. III. The authors have previously used such strains to study meiotic recombination. The authors have shown that double-size circular molecules can be detected in log-phase haploid yeast cells carrying a ring chromosome, when such cells are exposed to x-rays and allowed time for subsequent repair. Large circular molecules will not enter our pulsed-field gels, but treatment of the DNA samples with radiation prior to running the gels will linearize a fraction of such molecules with a single dsb. Such linearized molecules will run as a band whose position indicates the size of the original unbroken circles

  13. Motorcycle Repair.

    Science.gov (United States)

    Hein, Jim; Bundy, Mike

    This motorcycle repair curriculum guide contains the following ten areas of study: brake systems, clutches, constant mesh transmissions, final drives, suspension, mechanical starting mechanisms, electrical systems, fuel systems, lubrication systems, and overhead camshafts. Each area consists of one or more units of instruction. Each instructional…

  14. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    International Nuclear Information System (INIS)

    Campos-Nebel, Marcelo de; Larripa, Irene; Gonzalez-Cid, Marcela

    2008-01-01

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by γH2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU-induced DSB

  15. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Nebel, Marcelo de [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)], E-mail: mnebel@hematologia.anm.edu.ar; Larripa, Irene; Gonzalez-Cid, Marcela [Departamento de Genetica, Instituto de Investigaciones Hematologicas Mariano R. Castex, Academia Nacional de Medicina, Buenos Aires (Argentina)

    2008-11-10

    Fludarabine (FLU), an analogue of adenosine, interferes with DNA synthesis and inhibits the chain elongation leading to replication arrest and DNA double strand break (DSB) formation. Mammalian cells use two main pathways of DSB repair to maintain genomic stability: homologous recombination (HR) and non-homologous end joining (NHEJ). The aim of the present work was to evaluate the repair pathways employed in the restoration of DSB formed following replication arrest induced by FLU in mammalian cells. Replication inhibition was induced in human lymphocytes and fibroblasts by FLU. DSB occurred in a dose-dependent manner on early/middle S-phase cells, as detected by {gamma}H2AX foci formation. To test whether conservative HR participates in FLU-induced DSB repair, we measured the kinetics of Rad51 nuclear foci formation in human fibroblasts. There was no significant induction of Rad51 foci after FLU treatment. To further confirm these results, we analyzed the frequency of sister chromatid exchanges (SCE) in both human cells. We did not find increased frequencies of SCE after FLU treatment. To assess the participation of NHEJ pathway in the repair of FLU-induced damage, we used two chemical inhibitors of the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), vanillin and wortmannin. Human fibroblasts pretreated with DNA-PKcs inhibitors showed increased levels of chromosome breakages and became more sensitive to cell death. An active role of NHEJ pathway was also suggested from the analysis of Chinese hamster cell lines. XR-C1 (DNA-PKcs-deficient) and XR-V15B (Ku80-deficient) cells showed hypersensitivity to FLU as evidenced by the increased frequency of chromosome aberrations, decreased mitotic index and impaired survival rates. In contrast, CL-V4B (Rad51C-deficient) and V-C8 (Brca2-deficient) cell lines displayed a FLU-resistant phenotype. Together, our results suggest a major role for NHEJ repair in the preservation of genome integrity against FLU

  16. Turbine repair process, repaired coating, and repaired turbine component

    Science.gov (United States)

    Das, Rupak; Delvaux, John McConnell; Garcia-Crespo, Andres Jose

    2015-11-03

    A turbine repair process, a repaired coating, and a repaired turbine component are disclosed. The turbine repair process includes providing a turbine component having a higher-pressure region and a lower-pressure region, introducing particles into the higher-pressure region, and at least partially repairing an opening between the higher-pressure region and the lower-pressure region with at least one of the particles to form a repaired turbine component. The repaired coating includes a silicon material, a ceramic matrix composite material, and a repaired region having the silicon material deposited on and surrounded by the ceramic matrix composite material. The repaired turbine component a ceramic matrix composite layer and a repaired region having silicon material deposited on and surrounded by the ceramic matrix composite material.

  17. [Biomarkers of radiation-induced DNA repair processes].

    Science.gov (United States)

    Vallard, Alexis; Rancoule, Chloé; Guy, Jean-Baptiste; Espenel, Sophie; Sauvaigo, Sylvie; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2017-11-01

    The identification of DNA repair biomarkers is of paramount importance. Indeed, it is the first step in the process of modulating radiosensitivity and radioresistance. Unlike tools of detection and measurement of DNA damage, DNA repair biomarkers highlight the variations of DNA damage responses, depending on the dose and the dose rate. The aim of the present review is to describe the main biomarkers of radiation-induced DNA repair. We will focus on double strand breaks (DSB), because of their major role in radiation-induced cell death. The most important DNA repair biomarkers are DNA damage signaling proteins, with ATM, DNA-PKcs, 53BP1 and γ-H2AX. They can be analyzed either using immunostaining, or using lived cell imaging. However, to date, these techniques are still time and money consuming. The development of "omics" technologies should lead the way to new (and usable in daily routine) DNA repair biomarkers. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  18. CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method

    KAUST Repository

    Zhou, Jian

    2016-03-25

    Data repairing aims at discovering and correcting erroneous data in databases. Traditional methods relying on predefined quality rules to detect the conflict between data may fail to choose the right way to fix the detected conflict. Recent efforts turn to use the power of crowd in data repairing, but the crowd power has its own drawbacks such as high human intervention cost and inevitable low efficiency. In this paper, we propose a crowd-aided interactive data repairing method which takes the advantages of both rule-based method and crowd-based method. Particularly, we investigate the interaction between crowd-based repairing and rule-based repairing, and show that by doing crowd-based repairing to a small portion of values, we can greatly improve the repairing quality of the rule-based repairing method. Although we prove that the optimal interaction scheme using the least number of values for crowd-based repairing to maximize the imputation recall is not feasible to be achieved, still, our proposed solution identifies an efficient scheme through investigating the inconsistencies and the dependencies between values in the repairing process. Our empirical study on three data collections demonstrates the high repairing quality of CrowdAidRepair, as well as the efficiency of the generated interaction scheme over baselines.

  19. Improving Fab' fragment retention in an autonucleolytic Escherichia coli strain by swapping periplasmic nuclease translocation signal from OmpA to DsbA.

    Science.gov (United States)

    Schofield, Desmond M; Sirka, Ernestas; Keshavarz-Moore, Eli; Ward, John M; Nesbeth, Darren N

    2017-12-01

    To reduce unwanted Fab' leakage from an autonucleolytic Escherichia coli strain, which co-expresses OmpA-signalled Staphylococcal nuclease and Fab' fragment in the periplasm, by substituting in Serratial nuclease and the DsbA periplasm translocation signal as alternatives. We attempted to genetically fuse a nuclease from Serratia marcescens to the OmpA signal peptide but plasmid construction failed, possibly due to toxicity of the resultant nuclease. Combining Serratial nuclease to the DsbA signal peptide was successful. The strain co-expressing this nuclease and periplasmic Fab' grew in complex media and exhibited nuclease activity detectable by DNAse agar plate but its growth in defined medium was retarded. Fab' coexpression with Staphylococcal nuclease fused to the DsbA signal peptide resulted in cells exhibiting nuclease activity and growth in defined medium. In cultivation to high cell density in a 5 l bioreactor, DsbA-fused Staphylococcal nuclease co-expression coincided with reduced Fab' leakage relative to the original autonucleolytic Fab' strain with OmpA-fused staphylococcal nuclease. We successfully rescued Fab' leakage back to acceptable levels and established a basis for future investigation of the linkage between periplasmic nuclease expression and leakage of co-expressed periplasmic Fab' fragment to the surrounding growth media.

  20. DsbA-L prevents obesity-induced inflammation and insulin resistance by suppressing the mtDNA release-activated cGAS-cGAMP-STING pathway.

    Science.gov (United States)

    Bai, Juli; Cervantes, Christopher; Liu, Juan; He, Sijia; Zhou, Haiyan; Zhang, Bilin; Cai, Huan; Yin, Dongqing; Hu, Derong; Li, Zhi; Chen, Hongzhi; Gao, Xiaoli; Wang, Fang; O'Connor, Jason C; Xu, Yong; Liu, Meilian; Dong, Lily Q; Liu, Feng

    2017-11-14

    Chronic inflammation in adipose tissue plays a key role in obesity-induced insulin resistance. However, the mechanisms underlying obesity-induced inflammation remain elusive. Here we show that obesity promotes mtDNA release into the cytosol, where it triggers inflammatory responses by activating the DNA-sensing cGAS-cGAMP-STING pathway. Fat-specific knockout of disulfide-bond A oxidoreductase-like protein (DsbA-L), a chaperone-like protein originally identified in the mitochondrial matrix, impaired mitochondrial function and promoted mtDNA release, leading to activation of the cGAS-cGAMP-STING pathway and inflammatory responses. Conversely, fat-specific overexpression of DsbA-L protected mice against high-fat diet-induced activation of the cGAS-cGAMP-STING pathway and inflammation. Taken together, we identify DsbA-L as a key molecule that maintains mitochondrial integrity. DsbA-L deficiency promotes inflammation and insulin resistance by activating the cGAS-cGAMP-STING pathway. Our study also reveals that, in addition to its well-characterized roles in innate immune surveillance, the cGAS-cGAMP-STING pathway plays an important role in mediating obesity-induced metabolic dysfunction.

  1. Electric Co'Co' bi-voltage locomotive class EG 3100 of DSB; Co'Co'-Zweifrequenzlokomotive EG 3100 fuer Danske Statsbaner

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, B.O. [DSB Materiel Technik, Copenhagen (Denmark); Joergensen, O.A. [Siemens AG, Erlangen (Germany). Abt. VT 62; Proell, J. [Siemens AG, Muenchen (Germany). Abt. VT 68

    2000-12-01

    DSB has purchased a series of heavy electric locomotives for hauling transit freight trains between Central Europe and Scandinavia. Demands, basic features and technical components are described in detail. (orig.) [German] Fuer den Transitgueterverkehr zwischen Mitteleuropa und Skandinavien hat Danske Statsbaner eine Serie schwerer elektrischer Lokomotiven beschafft. Die Anforderungen, das Grundkonzept und die technischen Komponenten werden ausfuehrlich beschrieben. (orig.)

  2. Electric Co'Co' bi-voltage locomotive class EG 3100 of DSB; Co'Co'-Zweifrequenzlokomotive EG 3100 fuer Danske Statsbaner

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, B.O. [DSB Materiel Technik, Copenhagen (Denmark); Joergensen, O.A. [Siemens AG, Erlangen (Germany). Abt. VT 62; Proell, G. [Siemens AG, Muenchen (Germany). Abt. VT 68

    2001-07-01

    DSB has purchased a series of heavy electric locomotives for hauling transit freight trains between Central Europe and Scandinavia. Demands, basic features and technical components are described in detail. (orig.) [German] Fuer den Transitgueterverkehr zwischen Mitteleuropa und Skandinavien hat Danske Statsbaner eine Serie schwerer elektrischer Lokomotiven beschafft. Die Anforderungen, das Grundkonzept und die technischen Komponenten werden ausfuehrlich beschrieben. (orig.)

  3. New In-Field Composite Repair Techniques for Transmission or Distribution Pipelines

    Science.gov (United States)

    2009-05-18

    In-field repair of a damaged pipeline must be performed safely, efficiently, rapidly and reliably. Reinforcement of damaged pipelines is typically accomplished by welding a repair patch and then recoating the repaired area. The welded full-encircleme...

  4. Trex2 enables spontaneous sister chromatid exchanges without facilitating DNA double-strand break repair.

    Science.gov (United States)

    Dumitrache, Lavinia C; Hu, Lingchuan; Son, Mi Young; Li, Han; Wesevich, Austin; Scully, Ralph; Stark, Jeremy; Hasty, Paul

    2011-08-01

    Trex2 is a 3' → 5' exonuclease that removes 3'-mismatched sequences in a biochemical assay; however, its biological function remains unclear. To address biology we previously generated trex2(null) mouse embryonic stem (ES) cells and expressed in these cells wild-type human TREX2 cDNA (Trex2(hTX2)) or cDNA with a single-amino-acid change in the catalytic domain (Trex2(H188A)) or in the DNA-binding domain (Trex2(R167A)). We found the trex2(null) and Trex2(H188A) cells exhibited spontaneous broken chromosomes and trex2(null) cells exhibited spontaneous chromosomal rearrangements. We also found ectopically expressed human TREX2 was active at the 3' ends of I-SceI-induced chromosomal double-strand breaks (DSBs). Therefore, we hypothesized Trex2 participates in DNA DSB repair by modifying 3' ends. This may be especially important for ends with damaged nucleotides. Here we present data that are unexpected and prompt a new model. We found Trex2-altered cells (null, H188A, and R167A) were not hypersensitive to camptothecin, a type-1 topoisomerase inhibitor that induces DSBs at replication forks. In addition, Trex2-altered cells were not hypersensitive to γ-radiation, an agent that causes DSBs throughout the cell cycle. This observation held true even in cells compromised for one of the two major DSB repair pathways: homology-directed repair (HDR) or nonhomologous end joining (NHEJ). Trex2 deletion also enhanced repair of an I-SceI-induced DSB by both HDR and NHEJ without affecting pathway choice. Interestingly, however, trex2(null) cells exhibited reduced spontaneous sister chromatid exchanges (SCEs) but this was not due to a defect in HDR-mediated crossing over. Therefore, reduced spontaneous SCE could be a manifestation of the same defect that caused spontaneous broken chromosomes and spontaneous chromosomal rearrangements. These unexpected data suggest Trex2 does not enable DSB repair and prompt a new model that posits Trex2 suppresses the formation of broken

  5. DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids

    Directory of Open Access Journals (Sweden)

    Emad A. Ahmed

    2015-12-01

    Full Text Available Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX foci marking DNA double strand breaks (DSBs in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP-ribose polymerase 1 (PARP1 inhibitor (DPQ-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.

  6. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    International Nuclear Information System (INIS)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-01-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO 3 ). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  7. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate

    Energy Technology Data Exchange (ETDEWEB)

    Bajinskis, Ainars, E-mail: ainars.bajinskis@gmt.su.se [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden); Olsson, Gunilla; Harms-Ringdahl, Mats [Centre for Radiation Protection Research, Department of Genetics, Microbiology and Toxicology, Stockholm University, S-10691 Stockholm (Sweden)

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO{sub 3}). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure.

  8. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Kalpana Mujoo

    2017-11-01

    Full Text Available The nitric oxide (NO-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1. Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18, which causes stem cell differentiation has no effect on double-strand break (DSB repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells.

  9. Effect of Wortmannin on the repair profiles of DNA double-strand breaks in the whole genome and in interstitial telomeric sequences of Chinese hamster cells

    International Nuclear Information System (INIS)

    Losada, Raquel; Rivero, Maria Teresa; Slijepcevic, Predrag; Goyanes, Vicente; Fernandez, Jose Luis

    2005-01-01

    The DNA breakage detection-fluorescence in situ hybridization (DBD-FISH) procedure was applied to analyze the effect of Wortmannin (WM) in the rejoining kinetics of ionizing radiation-induced DNA double-strand breaks (DSBs) in the whole genome and in the long interstitial telomeric repeat sequence (ITRS) blocks from Chinese hamster cell lines. The results indicate that the ITRS blocks from wild-type Chinese hamster cell lines, CHO9 and V79B, exhibit a slower initial rejoining rate of ionizing radiation-induced DSBs than the genome overall. Neither Rad51C nor the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) activities, involved in homologous recombination (HR) and in non-homologous end-joining (NHEJ) pathways of DSB repair respectively, influenced the rejoining kinetics within ITRS in contrast to DNA sequences in the whole genome. Nevertheless, DSB removal rate within ITRS was decreased in the absence of Ku86 activity, though at a lower affectation level than in the whole genome, thus homogenizing both rejoining kinetics rates. WM treatment slowed down the DSB rejoining kinetics rate in ITRS, this effect being more pronounced in the whole genome, resulting in a similar pattern to that of the Ku86 deficient cells. In fact, no WM effect was detected in the Ku86 deficient Chinese hamster cells, so probably WM does not add further impairment in DSB rejoining than that resulted as a consequence of absence of Ku activity. The same slowing effect was also observed after treatment of Rad51C and DNA-PKcs defective hamster cells by WM, suggesting that: (1) there is no potentiation of the HR when the NHEJ is impaired by WM, either in the whole genome or in the ITRS, and (2) that this impairment may probably involve more targets than DNA-PKcs. These results suggest that there is an intragenomic heterogeneity in DSB repair, as well as in the effect of WM on this process

  10. UVA-induced DNA double-strand breaks result from the repair of clustered oxidative DNA damages

    Science.gov (United States)

    Greinert, R.; Volkmer, B.; Henning, S.; Breitbart, E. W.; Greulich, K. O.; Cardoso, M. C.; Rapp, Alexander

    2012-01-01

    UVA (320–400 nm) represents the main spectral component of solar UV radiation, induces pre-mutagenic DNA lesions and is classified as Class I carcinogen. Recently, discussion arose whether UVA induces DNA double-strand breaks (dsbs). Only few reports link the induction of dsbs to UVA exposure and the underlying mechanisms are poorly understood. Using the Comet-assay and γH2AX as markers for dsb formation, we demonstrate the dose-dependent dsb induction by UVA in G1-synchronized human keratinocytes (HaCaT) and primary human skin fibroblasts. The number of γH2AX foci increases when a UVA dose is applied in fractions (split dose), with a 2-h recovery period between fractions. The presence of the anti-oxidant Naringin reduces dsb formation significantly. Using an FPG-modified Comet-assay as well as warm and cold repair incubation, we show that dsbs arise partially during repair of bi-stranded, oxidative, clustered DNA lesions. We also demonstrate that on stretched chromatin fibres, 8-oxo-G and abasic sites occur in clusters. This suggests a replication-independent formation of UVA-induced dsbs through clustered single-strand breaks via locally generated reactive oxygen species. Since UVA is the main component of solar UV exposure and is used for artificial UV exposure, our results shine new light on the aetiology of skin cancer. PMID:22941639

  11. Applied Railway Optimization in Production Planning at DSB-S-tog - Tasks, Tools and Challenges

    DEFF Research Database (Denmark)

    Clausen, Jens

    2007-01-01

    these conflicting goals. S-tog has therefore on the strategic level decided to use software with optimization capabilities in the planning processes. We describe the current status for each activity using optimization or simulation as a tool: Timetable evaluation, rolling stock planning, and crew scheduling...... to the customers, and has concurrently been met with demands for higher efficiency in the daily operation. The plans of timetable, rolling stock and crew must hence allow for a high level of customer service, be efficient, and be robust against disturbances of operations. It is a highly non-trivial task to meet....... In addition we describe on-going efforts in using mathematical models in activities such as timetable design and work-force planning. We also identify some organizatorial key factors, which have paved the way for extended use of optimization methods in railway production planning....

  12. Pathways for double-strand break repair in genetically unstable Z-DNA-forming sequences.

    Science.gov (United States)

    Kha, Diem T; Wang, Guliang; Natrajan, Nithya; Harrison, Lynn; Vasquez, Karen M

    2010-05-14

    DNA can adopt many structures that differ from the canonical B-form, and several of these non-canonical DNA structures have been implicated in genetic instability associated with human disease. Earlier, we found that Z-DNA causes DNA double-strand breaks (DSBs) in mammalian cells that can result in large-scale deletions and rearrangements. In contrast, the same Z-DNA-forming CG repeat in Escherichia coli resulted in only small contractions or expansions within the repeat. This difference in the Z-DNA-induced mutation spectrum between mammals and bacteria might be due to different mechanisms for DSB repair; in mammalian cells, non-homologous end-joining (NHEJ) is a major DSB repair pathway, while E. coli do not contain this system and typically use homologous recombination (HR) to process DSBs. To test the extent to which the different DSB repair pathways influenced the Z-DNA-induced mutagenesis, we engineered bacterial E.coli strains to express an inducible NHEJ system, to mimic the situation in mammalian cells. Mycobacterium tuberculosis NHEJ proteins Ku and ligase D (LigD) were expressed in E.coli cells in the presence or absence of HR, and the Z-DNA-induced mutations were characterized. We found that the presence of the NHEJ mechanism markedly shifted the mutation spectrum from small deletions/insertions to large-scale deletions (from 2% to 24%). Our results demonstrate that NHEJ plays a role in the generation of Z-DNA-induced large-scale deletions, suggesting that this pathway is associated with DNA structure-induced destabilization of genomes from prokaryotes to eukaryotes. (c) 2010 Elsevier Ltd. All rights reserved.

  13. Base excision repair efficiency and mechanism in nuclear extracts are influenced by the ratio between volume of nuclear extraction buffer and nuclei—Implications for comparative studies

    International Nuclear Information System (INIS)

    Akbari, Mansour; Krokan, Hans E.

    2012-01-01

    Highlights: • We examine effect of volume of extraction buffer relative to volume of isolated nuclei on repair activity of nuclear extract. • Base excision repair activity of nuclear extracts prepared from the same batch and number of nuclei varies inversely with the volume of nuclear extraction buffer. • Effect of the volume of extraction buffer on BER activity of nuclear extracts can only be partially reversed after concentration of the more diluted extract by ultrafiltration. - Abstract: The base excision repair (BER) pathway corrects many different DNA base lesions and is important for genomic stability. The mechanism of BER cannot easily be investigated in intact cells and therefore in vitro methods that reflect the in vivo processes are in high demand. Reconstitution of BER using purified proteins essentially mirror properties of the proteins used, and does not necessarily reflect the mechanism as it occurs in the cell. Nuclear extracts from cultured cells have the capacity to carry out complete BER and can give important information on the mechanism. Furthermore, candidate proteins in extracts can be inhibited or depleted in a controlled way, making defined extracts an important source for mechanistic studies. The major drawback is that there is no standardized method of preparing nuclear extract for BER studies, and it does not appear to be a topic given much attention. Here we have examined BER activity of nuclear cell extracts from HeLa cells, using as substrate a circular DNA molecule with either uracil or an AP-site in a defined position. We show that BER activity of nuclear extracts from the same batch of cells varies inversely with the volume of nuclear extraction buffer relative to nuclei volume, in spite of identical protein concentrations in the BER assay mixture. Surprisingly, the uracil–DNA glycosylase activity (mainly UNG2), but not amount of UNG2, also correlated negatively with the volume of extraction buffer. These studies demonstrate

  14. Age and gender effects on DNA strand break repair in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Garm, Christian; Moreno-Villanueva, Maria; Bürkle, Alexander

    2013-01-01

    Exogenous and endogenous damage to DNA is constantly challenging the stability of our genome. This DNA damage increase the frequency of errors in DNA replication, thus causing point mutations or chromosomal rearrangements and has been implicated in aging, cancer, and neurodegenerative diseases...... in a study population consisting of 216 individuals from a population-based sample of twins aged 40-77 years. Age in this range did not seem to have any effect on the SSB parameters. However, γ-H2AX response and DSB repair capacity decreased with increasing age, although the associations did not reach...... statistical significance after adjustment for batch effect across multiple experiments. No gender differences were observed for any of the parameters analyzed. Our findings suggest that in PBMCs, the repair of SSBs is maintained until old age, whereas the response to and the repair of DSBs decrease....

  15. Complex networks under dynamic repair model

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Kun, Zhao; Yangjun, Gao

    2018-01-01

    Invulnerability is not the only factor of importance when considering complex networks' security. It is also critical to have an effective and reasonable repair strategy. Existing research on network repair is confined to the static model. The dynamic model makes better use of the redundant capacity of repaired nodes and repairs the damaged network more efficiently than the static model; however, the dynamic repair model is complex and polytropic. In this paper, we construct a dynamic repair model and systematically describe the energy-transfer relationships between nodes in the repair process of the failure network. Nodes are divided into three types, corresponding to three structures. We find that the strong coupling structure is responsible for secondary failure of the repaired nodes and propose an algorithm that can select the most suitable targets (nodes or links) to repair the failure network with minimal cost. Two types of repair strategies are identified, with different effects under the two energy-transfer rules. The research results enable a more flexible approach to network repair.

  16. Base excision repair efficiency and mechanism in nuclear extracts are influenced by the ratio between volume of nuclear extraction buffer and nuclei-Implications for comparative studies

    DEFF Research Database (Denmark)

    Akbari, Mansour; Krokan, Hans E

    2012-01-01

    The base excision repair (BER) pathway corrects many different DNA base lesions and is important for genomic stability. The mechanism of BER cannot easily be investigated in intact cells and therefore in vitro methods that reflect the in vivo processes are in high demand. Reconstitution of BER...... using purified proteins essentially mirror properties of the proteins used, and does not necessarily reflect the mechanism as it occurs in the cell. Nuclear extracts from cultured cells have the capacity to carry out complete BER and can give important information on the mechanism. Furthermore......, candidate proteins in extracts can be inhibited or depleted in a controlled way, making defined extracts an important source for mechanistic studies. The major drawback is that there is no standardized method of preparing nuclear extract for BER studies, and it does not appear to be a topic given much...

  17. Radiation-induced mutagenicity in repair deficient Chinese hamster ovary (CHO) mutants

    International Nuclear Information System (INIS)

    Tesmer, J.G.; Saunders, E.H.; Chen, D.J.

    1987-01-01

    To determine if there is a relationship between DNA double-strand break repair and mutagenicity the authors utilized two x-ray sensitive mutants of Chinese hamster ovary cells along with the parental line K1. The two mutant lines xrs-5 and xrs-6, which have different DSB repair capabilities, were used to determine cell killing and 6-thioguanine resistance (6TG/sup r/) mutation frequencies induced by either x-rays of α-particles, x-ray survival data indicated the two mutant lines have similar sensitivity and are 5-7 fold more sensitive than the parental line K1. The mutant lines are also sensitive to α-particles but to a lesser extent. The authors' 6TG mutation data indicated that the two mutant lines are hypermutable. When mutation frequencies were plotted against the log of survival, mutation frequency at a given survival level was greater in mutant cell population than in parental K1 cells. Their results support the notion that repair of DSB play an important role in the expression of radiation-induced cell killing and mutagenicity

  18. The role of the Mre11–Rad50–Nbs1 complex in double-strand break repair—facts and myths

    International Nuclear Information System (INIS)

    Takeda, Shunichi; Hoa, Nguyen Ngoc; Sasanuma, Hiroyuki

    2016-01-01

    Homologous recombination (HR) initiates double-strand break (DSB) repair by digesting 5′-termini at DSBs, the biochemical reaction called DSB resection, during which DSBs are processed by nucleases to generate 3′ single-strand DNA. Rad51 recombinase polymerizes along resected DNA, and the resulting Rad51–DNA complex undergoes homology search. Although DSB resection by the Mre11 nuclease plays a critical role in HR in Saccharomyces cerevisiae, it remains elusive whether DSB resection by Mre11 significantly contributes to HR-dependent DSB repair in mammalian cells. Depletion of Mre11 decreases the efficiency of DSB resection only by 2- to 3-fold in mammalian cells. We show that although Mre11 is required for efficient HR-dependent repair of ionizing-radiation–induced DSBs, Mre11 is largely dispensable for DSB resection in both chicken DT40 and human TK6 B cell lines. Moreover, a 2- to 3-fold decrease in DSB resection has virtually no impact on the efficiency of HR. Thus, although a large number of researchers have reported the vital role of Mre11-mediated DSB resection in HR, the role may not explain the very severe defect in HR in Mre11-deficient cells, including their lethality. We here show experimental evidence for the additional roles of Mre11 in (i) elimination of chemical adducts from DSB ends for subsequent DSB repair, and (ii) maintaining HR intermediates for their proper resolution

  19. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

    Science.gov (United States)

    Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc

    2016-05-05

    The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in

  20. Prediction of radiotherapy induced normal tissue adverse reactions: the role of double-strand break repair

    International Nuclear Information System (INIS)

    Rao, B.S. Satish; Mumbrekar, K.D.; Goutham, H.V.; Donald, J.F.; Vadhiraja, M.B.; Satyamoorthy, K.

    2016-01-01

    We aimed at evaluating the predictive potential of DSB repair kinetics (using γH2AX foci assay) in lymphocytes and analysed the genetic variants in the selected radioresponsive candidate genes like XRCC3, LIG4, NBN, CD44, RAD9A, LIG3, SH3GL1, BAXS, XRCC1, MAD2L2 on the individual susceptibility to radiotherapy (RT) induced acute skin reactions among the head and neck cancer (HNC), and breast cancer (BC) patients. All the 183 HNC and 132 BC patients were treated by a 3-dimensional conformal RT technique

  1. Plan Repair as an Extension of Planning

    NARCIS (Netherlands)

    Van der Krogt, R.P.J.; De Weerdt, M.M.

    2005-01-01

    In dynamic environments, agents have to deal with changing situations. In these cases, repairing a plan is often more efficient than planning from scratch, but existing planning techniques are more advanced than existing plan repair techniques. Therefore, we propose a straightforward method to

  2. DTU’s undersøgelser af lav adhæsion / glatte skinner for Transportministeriet og DSB

    DEFF Research Database (Denmark)

    Stockmarr, Anders; Ersbøll, Bjarne Kjær; Kotwa, Ewelina Katarzyna

    Nærværende undersøgelse af forekomsten af lav adhæsion / ”glatte skinner” er en opfølgning på DTU’s undersøgelser af IC4 togenes bremseadfærd ved Marslev den 7. november 2011, som blev gennemført for Transportministeriet og DSB i perioden april - juni 2012, og som konkluderede at den helt...... overvejende årsag til IC4 togets lange standselængde ved Marslev-hændelsen var lav adhæsion, det vil sige ”glathed” mellem hjul og skinner. Afledt af dette resultat er der opstået en interesse og et behov for en bredere analyse af sikkerhedskritiske faktorer i forbindelse med togdrift, som belyser fænomenet...... at gennemføre nedenstående tre udredningsopgaver, som DTU har gennemført i perioden oktober 2012 – oktober 2013: •En erfaringsindsamling med henblik på, hvordan andre lande i Nord- og Mellemeuropa håndterer lav adhæsion / ”glatte skinner”. •En systematisk kortlægning af hyppighed og omfang af lav adhæsion...

  3. Recombinational DNA repair and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Larry H.; Schild, David

    2002-11-30

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities.

  4. Recombinational DNA repair and human disease

    International Nuclear Information System (INIS)

    Thompson, Larry H.; Schild, David

    2002-01-01

    We review the genes and proteins related to the homologous recombinational repair (HRR) pathway that are implicated in cancer through either genetic disorders that predispose to cancer through chromosome instability or the occurrence of somatic mutations that contribute to carcinogenesis. Ataxia telangiectasia (AT), Nijmegen breakage syndrome (NBS), and an ataxia-like disorder (ATLD), are chromosome instability disorders that are defective in the ataxia telangiectasia mutated (ATM), NBS, and Mre11 genes, respectively. These genes are critical in maintaining cellular resistance to ionizing radiation (IR), which kills largely by the production of double-strand breaks (DSBs). Bloom syndrome involves a defect in the BLM helicase, which seems to play a role in restarting DNA replication forks that are blocked at lesions, thereby promoting chromosome stability. The Werner syndrome gene (WRN) helicase, another member of the RecQ family like BLM, has very recently been found to help mediate homologous recombination. Fanconi anemia (FA) is a genetically complex chromosomal instability disorder involving seven or more genes, one of which is BRCA2. FA may be at least partially caused by the aberrant production of reactive oxidative species. The breast cancer-associated BRCA1 and BRCA2 proteins are strongly implicated in HRR; BRCA2 associates with Rad51 and appears to regulate its activity. We discuss in detail the phenotypes of the various mutant cell lines and the signaling pathways mediated by the ATM kinase. ATM's phosphorylation targets can be grouped into oxidative stress-mediated transcriptional changes, cell cycle checkpoints, and recombinational repair. We present the DNA damage response pathways by using the DSB as the prototype lesion, whose incorrect repair can initiate and augment karyotypic abnormalities

  5. Recruitment of RecA homologs Dmc1p and Rad51p to the double-strand break repair site initiated by meiosis-specific endonuclease VDE (PI-SceI).

    Science.gov (United States)

    Fukuda, Tomoyuki; Ohya, Yoshikazu

    2006-02-01

    During meiosis, VDE (PI-SceI), a homing endonuclease in Saccharomyces cerevisiae, introduces a double-strand break (DSB) at its recognition sequence and induces homologous recombinational repair, called homing. Meiosis-specific RecA homolog Dmc1p, as well as mitotic RecA homolog Rad51p, acts in the process of meiotic recombination, being required for strand invasion and exchange. In this study, recruitment of Dmc1p and Rad51p to the VDE-induced DSB repair site is investigated by chromatin immunoprecipitation assay. It is revealed that Dmc1p and Rad51p are loaded to the repair site in an independent manner. Association of Rad51p requires other DSB repair proteins of Rad52p, Rad55p, and Rad57p, while loading of Dmc1p is facilitated by the different protein, Sae3p. Absence of Tid1p, which can bind both RecA homologs, appears specifically to cause an abnormal distribution of Dmc1p. Lack of Hop2, Mnd1p, and Sae1p does not impair recruitment of both RecA homologs. These findings reveal the discrete functions of each strand invasion protein in VDE-initiated homing, confirm the similarity between VDE-initiated homing and Spo11p-initiated meiotic recombination, and demonstrate the availability of VDE-initiated homing for the study of meiotic recombination.

  6. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  7. Brain aneurysm repair

    Science.gov (United States)

    ... aneurysm repair; Dissecting aneurysm repair; Endovascular aneurysm repair - brain; Subarachnoid hemorrhage - aneurysm ... Your scalp, skull, and the coverings of the brain are opened. A metal clip is placed at ...

  8. Role of XRCC4 phosphorylation by DNA-PK in the regulation of NHEJ repair pathway of DNA double strand break

    International Nuclear Information System (INIS)

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Kamdar, Radhika P.; Sicheng, Liu; Wanotayan, Rujira; Matsumoto, Yoshihisa

    2014-01-01

    Non-homologous end-joining (NHEJ) is the predominant pathway of DNA double strand breaks in higher eukaryotes and is active throughout the cell cycle. NHEJ repair includes many factors as Ku70/86, DNA-PKcs, XRCC4-Ligase IV complex and XLF (also known as Cernunnos). In these factors, DNA-PKcs acts as central regulator in NHEJ repair. It recruited at the DNA damages site after DNA damage and after association with Ku its kinase activity is activated. It phosphorylates many of important NHEJ proteins in vitro including XRCC4, Ku 70/86, Artemis, and even DNA-PKcs but till now, very less studies have been done to know the role and significance of phosphorylation in the NHEJ repair. Studies by other researchers identified various phosphorylation sites in XRCC4 by DNA-PK using mass spectrometry but these phosphorylation sites were shown to be dispensable for DSB repair. In the present investigation, we identified 3 serine and one new threonine phosphorylation sites in XRCC4 protein by DNA-PK. In vivo phosphorylation at these sites was verified by generating phosphorylation specific antibodies and the requirement for DNA-PK therein was verified by using DNA-PK inhibitor and DNA-PK proficient and deficient cell lines in response to radiation and zeocin treatment. We have also found that phosphorylation at these sites showed dose dependency in response to radiation treatment. The two serine and one threonine phosphorylation site is also biological important as their mutation into alanine significantly elevated radiosensitivity as measured by colony formation assay. Neutral comet assay showed delayed kinetics in DSB repair of these mutants. Furthermore, we have found a protein, with putative DSB repair function, which interacts with domain including the phosphorylation sites.These results indicate that these phosphorylation sites would mediate functional link between XRCC4 and DNA-PK. (author)

  9. DNA damage and repair in plants

    International Nuclear Information System (INIS)

    Britt, A.B.

    1996-01-01

    The biological impact of any DNA damaging agent is a combined function of the chemical nature of the induced lesions and the efficiency and accuracy of their repair. Although much has been learned frommicrobes and mammals about both the repair of DNA damage and the biological effects of the persistence of these lesions, much remains to be learned about the mechanism and tissue-specificity of repair in plants. This review focuses on recent work on the induction and repair of DNA damage in higher plants, with special emphasis on UV-induced DNA damage products. (author)

  10. Functional Analysis of Homologous Recombination Repair Proteins HerA and NurA in the Thermophile Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Huang, Qihong

    A number of DNA lesions are generated in each cell every day, among which double-stranded breaks (DSBs) constitute one of the most detrimental types of DNA damage. DSBs lead to genome instability, cell death, or even tumorigenesis in human, if not repaired timely. Two main pathways are known...... in the S/G2 phase of the cell cycle are preferentially repaired by HRR pathway, while NHEJ is the favorate pathway to repair DSBs in the G1 phase. Bacteria encode multiple pathways for DSB repair, including RecBCD, the primary HR pathway, SbcC-SbcD, and one backup system, RecFOR. In eukaryotes, the HRR...... pathway is mediated by Mre11-Rad50, homologs of bacterial SbcD-SbcC. However, numerous proteins and multiple layers of regulation exist to ensure these repair pathways are accurate and restricted to the appropriate cellular contexts, making many important mechanistic details poorly understood...

  11. Comparison of initial DNA (Chromosome) damage/repair in cells exposed to heavy ion particles and X-rays

    International Nuclear Information System (INIS)

    Okayasu, Ryuichi; Okada, Maki; Noguchi, Mitsuho; Saito, Shiori; Okabe, Atsushi; Takakura, Kahoru

    2005-01-01

    We have studied cell survival and chromosome damage/repair in normal and non homologous end-joining (NHEJ) deficient human cells exposed to carbon ions (290 MeV/u, ∼70 keV/um), iron ions (500 MeV/u, ∼200 keV/um) and X-rays. In order to examine the effect of heavy ion on double strand break (DSB) repair machinery, the auto-phosphorylation of DNA-PKcs was also investigated. The important discoveries made during this period are: 200 keV/um iron irradiation induced additional molecular damage beyond that 70 keV/um carbon did. Iron irradiation not only caused an inefficient G1 chromosome repair, but also induced non-repairable DSB/chromosome damage. The auto-phosphorylation of DNA-PKcs was significantly affected by high linear energy transfer (LET) irradiation when compared to X-rays. These results indicate NHEJ machinery was markedly disturbed by high LET radiation when compared to low LET radiation. (author)

  12. Scarf Repair of Composite Laminates

    Directory of Open Access Journals (Sweden)

    Xie Zonghong

    2016-01-01

    Full Text Available The use of composite materials, such as carbon-fiber reinforced plastic (CFRP composites, aero-structures has led to an increased need of advanced assembly joining and repair technologies. Adhesive bonded repairs as an alternative to recover full or part of initial strength were investigated. Tests were conducted with the objective of evaluating the effectiveness of techniques used for repairing damage fiber reinforced laminated composites. Failure loads and failure modes were generated and compared with the following parameters: scarf angles, roughness of grind tool and number of external plies. Results showed that scarf angle was the critical parameter and the largest tensile strength was observed with the smallest scarf angle. Besides, the use of external plies at the outer surface could not increase the repairs efficiency for large scarf angle. Preparing the repair surfaces by sanding them with a sander ranging from 60 to 100 grit number had significant effect on the failure load. These results allowed the proposal of design principles for repairing CFRP structures.

  13. DNA repair , cell repair and radiosensitivity

    International Nuclear Information System (INIS)

    Zhestyanikov, V.D.

    1983-01-01

    Data obtained in laboratory of radiation cytology and literature data testifying to a considerable role of DNA repair in cell sensitivity to radiation and chemical DNA-tropic agents have been considered. Data pointing to the probability of contribution of inducible repair of DNA into plant cells sensitivity to X-rays are obtained. Certain violations of DNA repair do not result in the increase of radiosensitivity. It is assumed that in the cases unknown mechanisms of DNA repair operate

  14. Organizing DNA repair in the nucleus: DSBs hit the road.

    Science.gov (United States)

    Marnef, Aline; Legube, Gaëlle

    2017-06-01

    In the past decade, large-scale movements of DNA double strand breaks (DSBs) have repeatedly been identified following DNA damage. These mobility events include clustering, anchoring or peripheral movement at subnuclear structures. Recent work suggests roles for motion in homology search and in break sequestration to preclude deleterious outcomes. Yet, the precise functions of these movements still remain relatively obscure, and the same holds true for the determinants. Here we review recent advances in this exciting area of research, and highlight that a recurrent characteristic of mobile DSBs may lie in their inability to undergo rapid repair. A major future challenge remains to understand how DSB mobility impacts on genome integrity. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. A new model describing the curves for repair of both DNA double-strand breaks and chromosome damage

    International Nuclear Information System (INIS)

    Foray, N.; Badie, C.; Alsbeih, G.; Malaise, E.P.; Fertil, B.

    1996-01-01

    A review of reports dealing with fittings of the data for repair of DNA double-strand breaks (DSBs) and excess chromosome fragments (ECFs) shows that several models are used to fit the repair curves. Since DSBs and ECFs are correleated, it is worth developing a model describing both phenomena. The curve-fitting models used most extensively, the two repair half-times model for DSBs and the monoexponential plus residual model for ECFs, appear to be too inflexible to describe the repair curves for both DSBs and ECFs. We have therefore developed a new concept based on a variable repair half-time. According to this concept, the repair curve is continuously bending and dependent on time and probably reflects a continuous spectrum of damage repairability. The fits of the curves for DSB repair to the variable repair half-time and the variable repair half-time plus residual models were compared to those obtained with the two half-times plus residual and two half-times models. Similarly, the fits of the curves for ECF repair to the variable repair half-time and variable half-time plus residual models were compared to that obtained with the monoexponential plus residual model. The quality of fit and the dependence of adjustable parameters on the portion of the curve fitted were used as comparison criteria. We found that: (a) It is useful to postulate the existence of a residual term for unrepairable lesions, regardless of the model adopted. (b) With the two cell lines tested (a normal and a hypersensitive one), data for both DSBs and ECTs are best fitted to the variable repair half-time plus residual model, whatever the repair time range. 47 refs., 3 figs., 3 tabs

  16. Silencing of end-joining repair for efficient site-specific gene insertion after TALEN/CRISPR mutagenesis in Aedes aegypti.

    Science.gov (United States)

    Basu, Sanjay; Aryan, Azadeh; Overcash, Justin M; Samuel, Glady Hazitha; Anderson, Michelle A E; Dahlem, Timothy J; Myles, Kevin M; Adelman, Zach N

    2015-03-31

    Conventional control strategies for mosquito-borne pathogens such as malaria and dengue are now being complemented by the development of transgenic mosquito strains reprogrammed to generate beneficial phenotypes such as conditional sterility or pathogen resistance. The widespread success of site-specific nucleases such as transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 in model organisms also suggests that reprogrammable gene drive systems based on these nucleases may be capable of spreading such beneficial phenotypes in wild mosquito populations. Using the mosquito Aedes aegypti, we determined that mutations in the FokI domain used in TALENs to generate obligate heterodimeric complexes substantially and significantly reduce gene editing rates. We found that CRISPR/Cas9-based editing in the mosquito Ae. aegypti is also highly variable, with the majority of guide RNAs unable to generate detectable editing. By first evaluating candidate guide RNAs using a transient embryo assay, we were able to rapidly identify highly effective guide RNAs; focusing germ line-based experiments only on this cohort resulted in consistently high editing rates of 24-90%. Microinjection of double-stranded RNAs targeting ku70 or lig4, both essential components of the end-joining response, increased recombination-based repair in early embryos as determined by plasmid-based reporters. RNAi-based suppression of Ku70 concurrent with embryonic microinjection of site-specific nucleases yielded consistent gene insertion frequencies of 2-3%, similar to traditional transposon- or ΦC31-based integration methods but without the requirement for an initial docking step. These studies should greatly accelerate investigations into mosquito biology, streamline development of transgenic strains for field releases, and simplify the evaluation of novel Cas9-based gene drive systems.

  17. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Ian Hare

    2016-01-01

    Full Text Available Mesenchymal stem cells (MSCs are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs, the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16 at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  18. In Vitro Expansion of Bone Marrow Derived Mesenchymal Stem Cells Alters DNA Double Strand Break Repair of Etoposide Induced DNA Damage.

    Science.gov (United States)

    Hare, Ian; Gencheva, Marieta; Evans, Rebecca; Fortney, James; Piktel, Debbie; Vos, Jeffrey A; Howell, David; Gibson, Laura F

    2016-01-01

    Mesenchymal stem cells (MSCs) are of interest for use in diverse cellular therapies. Ex vivo expansion of MSCs intended for transplantation must result in generation of cells that maintain fidelity of critical functions. Previous investigations have identified genetic and phenotypic alterations of MSCs with in vitro passage, but little is known regarding how culturing influences the ability of MSCs to repair double strand DNA breaks (DSBs), the most severe of DNA lesions. To investigate the response to DSB stress with passage in vitro, primary human MSCs were exposed to etoposide (VP16) at various passages with subsequent evaluation of cellular damage responses and DNA repair. Passage number did not affect susceptibility to VP16 or the incidence and repair kinetics of DSBs. Nonhomologous end joining (NHEJ) transcripts showed little alteration with VP16 exposure or passage; however, homologous recombination (HR) transcripts were reduced following VP16 exposure with this decrease amplified as MSCs were passaged in vitro. Functional evaluations of NHEJ and HR showed that MSCs were unable to activate NHEJ repair following VP16 stress in cells after successive passage. These results indicate that ex vivo expansion of MSCs alters their ability to perform DSB repair, a necessary function for cells intended for transplantation.

  19. A Role for BLM in Double-Strand Break Repair Pathway Choice: Prevention of CtIP/Mre11-Mediated Alternative Nonhomologous End-Joining

    DEFF Research Database (Denmark)

    Grabarz, Anastazja; Guirouilh-Barbat, Josée; Barascu, Aurelia

    2013-01-01

    The choice of the appropriate double-strand break (DSB) repair pathway is essential for the maintenance of genomic stability. Here, we show that the Bloom syndrome gene product, BLM, counteracts CtIP/MRE11-dependent long-range deletions (>200 bp) generated by alternative end-joining (A-EJ). BLM...... represses A-EJ in an epistatic manner with 53BP1 and RIF1 and is required for ionizing-radiation-induced 53BP1 focus assembly. Conversely, in the absence of 53BP1 or RIF1, BLM promotes formation of A-EJ long deletions, consistent with a role for BLM in DSB end resection. These data highlight a dual role...... for BLM that influences the DSB repair pathway choice: (1) protection against CtIP/MRE11 long-range deletions associated with A-EJ and (2) promotion of DNA resection. These antagonist roles can be regulated, according to cell-cycle stage, by interacting partners such as 53BP1 and TopIII, to avoid...

  20. Lipofection and nucleofection of substrate plasmid can generate widely different readings of DNA end-joining efficiency in different cell lines.

    Science.gov (United States)

    Magin, Simon; Saha, Janapriya; Wang, Minli; Mladenova, Veronika; Coym, Nadine; Iliakis, George

    2013-02-01

    In vivo plasmid end-joining assays are valuable tools for dissecting important qualitative and quantitative aspects of non-homologous end-joining (NHEJ)--a key mechanism for the repair of DNA double-strand breaks (DSBs) in higher eukaryotes. They enable the use of defined DNA ends as substrates for end-joining and the analysis by sequencing of the resulting junctions to identify the repair pathways engaged. Yet, plasmid assays have generated divergent results of end-joining capacity in the same DSB repair mutants when used under different conditions, which implies contributions from undefined and therefore uncontrolled parameters. To help standardize these assays, we searched for parameters underpinning these variations and identified transfection method as an important determinant. Here, we compare a lipid-based transfection method, lipofection, with an electroporation method, nucleofection, and find large, unanticipated and cell line-dependent differences in percent end-joining without recognizable trends. For example, in rodent cells, transfection using lipofection gives nearly WT end-joining in DNA-PKcs mutants and only mildly inhibited end-joining in Lig4 and Ku mutants. In contrast, transfection using nucleofection shows marked end-joining inhibition in all NHEJ mutants tested as compared to the WT. In human HCT116 cells, end-joining after nucleofection is strongly suppressed even in the WT and the differences to the mutants are small. After lipofection, in contrast, end-joining is high in WT cells and markedly suppressed in the mutants. We conclude that better understanding and control of the physicochemical/biological and analytical parameters underpinning these differences will be required to generate with plasmid assays results with quantitative power comparable to that of well-established methods of DSB analysis such as pulsed-field gel electrophoresis or γ-H2AX foci scoring. Until then, caution is needed in the interpretation of the results obtained

  1. CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method

    KAUST Repository

    Zhou, Jian; Li, Zhixu; Gu, Binbin; Xie, Qing; Zhu, Jia; Zhang, Xiangliang; Li, Guoliang

    2016-01-01

    turn to use the power of crowd in data repairing, but the crowd power has its own drawbacks such as high human intervention cost and inevitable low efficiency. In this paper, we propose a crowd-aided interactive data repairing method which takes

  2. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Directory of Open Access Journals (Sweden)

    Jinpeng Qi

    Full Text Available Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR by using mathematical framework of kinetic theory of active particles (KTAP. Firstly, we focus on illustrating the profile of Cellular Repair System (CRS instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs and Repair Protein (RP generating, DSB-protein complexes (DSBCs synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  3. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    Science.gov (United States)

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  4. Differential repair of radiation-induced DNA damage in cells of human squamous cell carcinoma and the effect of caffeine and cysteamine on induction and repair of DNA double-strand breaks

    Energy Technology Data Exchange (ETDEWEB)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Abdel-Wahab, A.H.A.; Begg, A.C. [Netherlands Cancer Institute, Amsterdam (Netherlands)

    1994-11-01

    The goal of these experiments was to investigate further the relationship between DNA double-strand breaks and cell killing in human tumor cells, first by comparing different cell lines, and second by radiomodification studies. Field-inversion gel electrophoresis was used to quantify double-strand breaks. Two subclones of the radioresistant human squamous cell carcinoma line SQ20B (SQD9 and SQG6) were compared. These subclones differed in DNA index by a factor of 1.7 but showed the same resistance to radiation as cells of the parental cell line. It was found that, although induction of DSBs was not significantly different in the two cell lines, the t{sub 1/2} of the fast component of repair was significantly shorter for SQD9 cells, leading to greater overall repair which was not reflected in increased survival. Caffeine and cysteamine were tested as modifiers of radiosensitivity, using the radioresistant SQ20B line and the radiosensitive SCC61 cell line. No effect of caffeine was seen when the drug was present only during irradiation. Postirradiation incubations with caffeine, however, resulted in a dose reduction factor greater than 2.0 in cell survival for both cell lines. In contrast, induction of DSBs was reduced by caffeine, and no effect on DSB repair was observed. Cysteamine led to a dose protection factor greater than 1.8 in cell survival in both cell lines. A reduction in induced DSBs was found at high doses corresponding approximately with the increase in cell survival. Over the same (low) dose range, however, the correlation between DSB induction and cell killing was poor. These data indicate that DSB induction does not correlate well with cell killing either for different cell lines, for radiochemical modification (cysteamine) or for some other types of modification (caffeine). 31 refs., 8 figs.

  5. Direct Involvement of Retinoblastoma Family Proteins in DNA Repair by Non-homologous End-Joining

    Directory of Open Access Journals (Sweden)

    Rebecca Cook

    2015-03-01

    Full Text Available Deficiencies in DNA double-strand break (DSB repair lead to genetic instability, a recognized cause of cancer initiation and evolution. We report that the retinoblastoma tumor suppressor protein (RB1 is required for DNA DSB repair by canonical non-homologous end-joining (cNHEJ. Support of cNHEJ involves a mechanism independent of RB1’s cell-cycle function and depends on its amino terminal domain with which it binds to NHEJ components XRCC5 and XRCC6. Cells with engineered loss of RB family function as well as cancer-derived cells with mutational RB1 loss show substantially reduced levels of cNHEJ. RB1 variants disabled for the interaction with XRCC5 and XRCC6, including a cancer-associated variant, are unable to support cNHEJ despite being able to confer cell-cycle control. Our data identify RB1 loss as a candidate driver of structural genomic instability and a causative factor for cancer somatic heterogeneity and evolution.

  6. MO-FG-CAMPUS-TeP3-02: Benchmarks of a Proton Relative Biological Effectiveness (RBE) Model for DNA Double Strand Break (DSB) Induction in the FLUKA, MCNP, TOPAS, and RayStation™ Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R [University of Washington, Seattle, WA (United States); Streitmatter, S [University of Utah Hospitals, Salt Lake City, UT (United States); Traneus, E [RAYSEARCH LABORATORIES AB, Stockholm (Sweden); Moskvin, V [St. Jude Children’s Hospital, Memphis, TN (United States); Schuemann, J [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: Validate implementation of a published RBE model for DSB induction (RBEDSB) in several general purpose Monte Carlo (MC) code systems and the RayStation™ treatment planning system (TPS). For protons and other light ions, DSB induction is a critical initiating molecular event that correlates well with the RBE for cell survival. Methods: An efficient algorithm to incorporate information on proton and light ion RBEDSB from the independently tested Monte Carlo Damage Simulation (MCDS) has now been integrated into MCNP (Stewart et al. PMB 60, 8249–8274, 2015), FLUKA, TOPAS and a research build of the RayStation™ TPS. To cross-validate the RBEDSB model implementation LET distributions, depth-dose and lateral (dose and RBEDSB) profiles for monodirectional monoenergetic (100 to 200 MeV) protons incident on a water phantom are compared. The effects of recoil and secondary ion production ({sub 2}H{sub +}, {sub 3}H{sub +}, {sub 3}He{sub 2+}, {sub 4}He{sub 2+}), spot size (3 and 10 mm), and transport physics on beam profiles and RBEDSB are examined. Results: Depth-dose and RBEDSB profiles among all of the MC models are in excellent agreement using a 1 mm distance criterion (width of a voxel). For a 100 MeV proton beam (10 mm spot), RBEDSB = 1.2 ± 0.03 (− 2–3%) at the tip of the Bragg peak and increases to 1.59 ± 0.3 two mm distal to the Bragg peak. RBEDSB tends to decrease as the kinetic energy of the incident proton increases. Conclusion: The model for proton RBEDSB has been accurately implemented into FLUKA, MCNP, TOPAS and the RayStation™TPS. The transport of secondary light ions (Z > 1) has a significant impact on RBEDSB, especially distal to the Bragg peak, although light ions have a small effect on (dosexRBEDSB) profiles. The ability to incorporate spatial variations in proton RBE within a TPS creates new opportunities to individualize treatment plans and increase the therapeutic ratio. Dr. Erik Traneus is employed full-time as a Research Scientist

  7. Reprogramming Cells for Brain Repair

    Directory of Open Access Journals (Sweden)

    Randall D. McKinnon

    2013-08-01

    Full Text Available At present there are no clinical therapies that can repair traumatic brain injury, spinal cord injury or degenerative brain disease. While redundancy and rewiring of surviving circuits can recover some lost function, the brain and spinal column lack sufficient endogenous stem cells to replace lost neurons or their supporting glia. In contrast, pre-clinical studies have demonstrated that exogenous transplants can have remarkable efficacy for brain repair in animal models. Mesenchymal stromal cells (MSCs can provide paracrine factors that repair damage caused by ischemic injury, and oligodendrocyte progenitor cell (OPC grafts give dramatic functional recovery from spinal cord injury. These studies have progressed to clinical trials, including human embryonic stem cell (hESC-derived OPCs for spinal cord repair. However, ESC-derived allografts are less than optimal, and we need to identify a more appropriate donor graft population. The cell reprogramming field has developed the ability to trans-differentiate somatic cells into distinct cell types, a technology that has the potential to generate autologous neurons and glia which address the histocompatibility concerns of allografts and the tumorigenicity concerns of ESC-derived grafts. Further clarifying how cell reprogramming works may lead to more efficient direct reprogram approaches, and possibly in vivo reprogramming, in order to promote brain and spinal cord repair.

  8. Temporal analysis of meiotic DNA double-strand break formation and repair in Drosophila females.

    Science.gov (United States)

    Mehrotra, S; McKim, K S

    2006-11-24

    Using an antibody against the phosphorylated form of His2Av (gamma-His2Av), we have described the time course for the series of events leading from the formation of a double-strand break (DSB) to a crossover in Drosophila female meiotic prophase. MEI-P22 is required for DSB formation and localizes to chromosomes prior to gamma-His2Av foci. Drosophila females, however, are among the group of organisms where synaptonemal complex (SC) formation is not dependent on DSBs. In the absence of two SC proteins, C(3)G and C(2)M, the number of DSBs in oocytes is significantly reduced. This is consistent with the appearance of SC protein staining prior to gamma-His2Av foci. However, SC formation is incomplete or absent in the neighboring nurse cells, and gamma-His2Av foci appear with the same kinetics as in oocytes and do not depend on SC proteins. Thus, competence for DSB formation in nurse cells occurs with a specific timing that is independent of the SC, whereas in the oocytes, some SC proteins may have a regulatory role to counteract the effects of a negative regulator of DSB formation. The SC is not sufficient for DSB formation, however, since DSBs were absent from the heterochromatin even though SC formation occurs in these regions. All gamma-His2Av foci disappear before the end of prophase, presumably as repair is completed and crossovers are formed. However, oocytes in early prophase exhibit a slower response to X-ray-induced DSBs compared to those in the late pachytene stage. Assuming all DSBs appear as gamma-His2Av foci, there is at least a 3:1 ratio of noncrossover to crossover products. From a comparison of the frequency of gamma-His2Av foci and crossovers, it appears that Drosophila females have only a weak mechanism to ensure a crossover in the presence of a low number of DSBs.

  9. Conservation of the rad21 Schizosaccharomyces pombe DNA double-strand break repair gene in mammals

    International Nuclear Information System (INIS)

    McKay, Michael J.; Spek, Peter van der; Kanaar, Roland; Smit, Bep; Bootsma, Dirk; Hoeijmakers, Jan H. J.

    1996-01-01

    Purpose/Objective: Genetic factors are likely to be major determinants of human cellular ionizing radiation sensitivity. DNA double strand breaks (dsbs) are significant ionizing radiation-induced lesions; cellular DNA dsb processing is also important in a number of other contexts. To further the understanding of DNA dsb processing in mammalian cells, we cloned and sequenced mammalian homologs of the rad21 Schizosaccharomyces pombe DNA dsb repair gene. Materials and Methods: The genes were cloned by evolutionary walking, exploiting sequence homology between the yeast and mammalian genes. Results: No major motifs indicative of a particular function were present in the predicted amino acid sequences of the mammalian genes. Alignment of the Rad21 amino acid sequence with its putative homologs showed that similarity was distributed across the length of the proteins, with more highly conserved regions at both termini. The mHR21 sp (mouse homolog ofR ad21, S. pombe) and hHR21 sp (humanh omolog of Rad21, S. pombe) predicted proteins were 96% identical, whereas the human and S. pombe proteins were 25% identical and 47% similar. RNA blot analysis showed that mHR21 sp mRNA was abundant in all adult mouse tissues examined, with highest expression in testis and thymus. In addition to a 3.1kb mRNA transcript in all tissues, an additional 2.2kb transcript was present at a high level in post-meiotic spermatids, white expression of the 3.1kb mRNA in testis was confined to the meiotic compartment. hHR21 sp mRNA was cell cycle regulated in human cells, increasing in late S phase to a peak in G2 phase. The level of hHR21 sp transcripts was not altered by exposure of normal diploid fibroblasts to 10 Gy ionizing radiation. In situ hybridization showed mHR21 sp resided on chromosome 15D3, whereashHR21 sp localized to the syntenic 8q24 region. Conclusion: Cloning these novel mammalian genes and characterization of their protein products should contribute to the understanding of cellular

  10. NF-κB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes.

    Science.gov (United States)

    Volcic, Meta; Karl, Sabine; Baumann, Bernd; Salles, Daniela; Daniel, Peter; Fulda, Simone; Wiesmüller, Lisa

    2012-01-01

    NF-κB is involved in immune responses, inflammation, oncogenesis, cell proliferation and apoptosis. Even though NF-κB can be activated by DNA damage via Ataxia telangiectasia-mutated (ATM) signalling, little was known about an involvement in DNA repair. In this work, we dissected distinct DNA double-strand break (DSB) repair mechanisms revealing a stimulatory role of NF-κB in homologous recombination (HR). This effect was independent of chromatin context, cell cycle distribution or cross-talk with p53. It was not mediated by the transcriptional NF-κB targets Bcl2, BAX or Ku70, known for their dual roles in apoptosis and DSB repair. A contribution by Bcl-xL was abrogated when caspases were inhibited. Notably, HR induction by NF-κB required the targets ATM and BRCA2. Additionally, we provide evidence that NF-κB interacts with CtIP-BRCA1 complexes and promotes BRCA1 stabilization, and thereby contributes to HR induction. Immunofluorescence analysis revealed accelerated formation of replication protein A (RPA) and Rad51 foci upon NF-κB activation indicating HR stimulation through DSB resection by the interacting CtIP-BRCA1 complex and Rad51 filament formation. Taken together, these results define multiple NF-κB-dependent mechanisms regulating HR induction, and thereby providing a novel intriguing explanation for both NF-κB-mediated resistance to chemo- and radiotherapies as well as for the sensitization by pharmaceutical intervention of NF-κB activation.

  11. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis

    International Nuclear Information System (INIS)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Begg, A.C.

    1993-01-01

    Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitivities. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis. (author)

  12. Individual repair of radiation-induced DNA double-strand breaks in lymphocytes. Implications for radiation-induced dermatitis in breast cancer

    International Nuclear Information System (INIS)

    Melchior, Patrick Wilhelm

    2011-01-01

    Purpose: Adjuvant 'whole breast radiotherapy' (WBRT) is the standard of care after breast conserving surgery in women with breast cancer. Throughout different cancer stages the addition of WBRT leads to significantly improved rates of freedom from local failure and overall survival. WBRT is generally well tolerated. A 5-10%-rate of severe acute or long-term side effects is commonly observed. For both radiation-mediated tumor-cell-elimination and induction of side effects, DNA-double-strand-breaks (DSB) presumably play the decisive role. The intensity of normal tissue reactions in radiotherapy can, in part, be attributed to the intrinsic DSB repair-capacity. In this study in vivo and in vitro experiments are carried through in order to assess DSB repair-kinetics in blood lymphocytes of women with breast cancer. These findings are to be correlated with the degree of radiation-induced normal tissue toxicity. Patients and Methods: Eighteen patients with breast cancer, in whom WBRT was indicated, were examined. A total WBRT dose of 50 Gy (single dose 2 Gy) with an additional boost-radiotherapy to the initial tumor-region to a total dose of 60-66 Gy was administered. DSB repair was determined by means of counting γ-H2AX foci in blood lymphocytes at predefined points in time, i.e. before and 0.5 h; 2.5 h; 5 h and 24 h after in vivo irradiation (1st fraction of WBRT) and before and 0.5 h; 2.5 h and 5 h after in vitro irradiation with increasing radiation doses in the range of 10 - 500 mGy. Acute normal tissue toxicity was scored on the basis of a modified RTOG-classification (main aspects were erythema and dry or moist skin desquamation). Results: DSB repair-halflife-times did not differ between patients with a higher or lower than average incidence of acute side effects. In patients with 'above average' side effects larger irradiation volumes were treated (volume surrounded by the 50%-isodose). Adjusted for these, no single patients showed elevated residual γ-H2AX foci

  13. Ku80-deleted cells are defective at base excision repair

    International Nuclear Information System (INIS)

    Li, Han; Marple, Teresa; Hasty, Paul

    2013-01-01

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H 2 O 2 and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs

  14. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  15. Rapid road repair vehicle

    Science.gov (United States)

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  16. Synapsis-defective mutants reveal a correlation between chromosome conformation and the mode of double-strand break repair during Caenorhabditis elegans meiosis.

    Science.gov (United States)

    Smolikov, Sarit; Eizinger, Andreas; Hurlburt, Allison; Rogers, Eric; Villeneuve, Anne M; Colaiácovo, Mónica P

    2007-08-01

    SYP-3 is a new structural component of the synaptonemal complex (SC) required for the regulation of chromosome synapsis. Both chromosome morphogenesis and nuclear organization are altered throughout the germlines of syp-3 mutants. Here, our analysis of syp-3 mutants provides insights into the relationship between chromosome conformation and the repair of meiotic double-strand breaks (DSBs). Although crossover recombination is severely reduced in syp-3 mutants, the production of viable offspring accompanied by the disappearance of RAD-51 foci suggests that DSBs are being repaired in these synapsis-defective mutants. Our studies indicate that once interhomolog recombination is impaired, both intersister recombination and nonhomologous end-joining pathways may contribute to repair during germline meiosis. Moreover, our studies suggest that the conformation of chromosomes may influence the mode of DSB repair employed during meiosis.

  17. A novel small molecule inhibitor of the DNA repair protein Ku70/80.

    Science.gov (United States)

    Weterings, Eric; Gallegos, Alfred C; Dominick, Lauren N; Cooke, Laurence S; Bartels, Trace N; Vagner, Josef; Matsunaga, Terry O; Mahadevan, Daruka

    2016-07-01

    Non-Homologous End-Joining (NHEJ) is the predominant pathway for the repair of DNA double strand breaks (DSBs) in human cells. The NHEJ pathway is frequently upregulated in several solid cancers as a compensatory mechanism for a separate DSB repair defect or for innate genomic instability, making this pathway a powerful target for synthetic lethality approaches. In addition, NHEJ reduces the efficacy of cancer treatment modalities which rely on the introduction of DSBs, like radiation therapy or genotoxic chemotherapy. Consequently, inhibition of the NHEJ pathway can modulate a radiation- or chemo-refractory disease presentation. The Ku70/80 heterodimer protein plays a pivotal role in the NHEJ process. It possesses a ring-shaped structure with high affinity for DSBs and serves as the first responder and central scaffold around which the rest of the repair complex is assembled. Because of this central position, the Ku70/80 dimer is a logical target for the disruption of the entire NHEJ pathway. Surprisingly, specific inhibitors of the Ku70/80 heterodimer are currently not available. We here describe an in silico, pocket-based drug discovery methodology utilizing the crystal structure of the Ku70/80 heterodimer. We identified a novel putative small molecule binding pocket and selected several potential inhibitors by computational screening. Subsequent biological screening resulted in the first identification of a compound with confirmed Ku-inhibitory activity in the low micro-molar range, capable of disrupting the binding of Ku70/80 to DNA substrates and impairing Ku-dependent activation of another NHEJ factor, the DNA-PKCS kinase. Importantly, this compound synergistically sensitized human cell lines to radiation treatment, indicating a clear potential to diminish DSB repair. The chemical scaffold we here describe can be utilized as a lead-generating platform for the design and development of a novel class of anti-cancer agents. Copyright © 2016 Elsevier B.V. All

  18. DNA damage and gene therapy of xeroderma pigmentosum, a human DNA repair-deficient disease.

    Science.gov (United States)

    Dupuy, Aurélie; Sarasin, Alain

    2015-06-01

    Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to ultra-violet and a very high risk of skin cancer induction on exposed body sites. This syndrome is caused by germinal mutations on nucleotide excision repair genes. No cure is available for these patients except a complete protection from all types of UV radiations. We reviewed the various techniques to complement or to correct the genetic defect in XP cells. We, particularly, developed the correction of XP-C skin cells using the fidelity of the homologous recombination pathway during repair of double-strand break (DSB) in the presence of XPC wild type sequences. We used engineered nucleases (meganuclease or TALE nuclease) to induce a DSB located at 90 bp of the mutation to be corrected. Expression of specific TALE nuclease in the presence of a repair matrix containing a long stretch of homologous wild type XPC sequences allowed us a successful gene correction of the original TG deletion found in numerous North African XP patients. Some engineered nucleases are sensitive to epigenetic modifications, such as cytosine methylation. In case of methylated sequences to be corrected, modified nucleases or demethylation of the whole genome should be envisaged. Overall, we showed that specifically-designed TALE-nuclease allowed us to correct a 2 bp deletion in the XPC gene leading to patient's cells proficient for DNA repair and showing normal UV-sensitivity. The corrected gene is still in the same position in the human genome and under the regulation of its physiological promoter. This result is a first step toward gene therapy in XP patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Repair in unicellular green algae under the chronic action of mutagenic factors

    International Nuclear Information System (INIS)

    Sergeeva, S.A.; Ptitsina, S.N.; Shevchenko, V.A.

    1986-01-01

    Repair of single-standed DNA breaks in different strains of unicellular green Chlamidomonas reinhardii algae under the chronic action of mutagenic factors after γ-radiation was studied. It is shown, that the highest DNA break repair efficiency is observed in M γ mt++ strain, resistant to radiation. Strains, sensitive to UV-rays, possess the same repair efficiency as a wild type strain. UVS-1 strain demonstrated a higher repair efficiency, than a wild type strain. All that gives evidence of the difference in Chlamidomonas reinhardii of repair ways, leading to repair of damages, induced by γ-radiation and UV-rays

  20. Repair of exogenous DNA double-strand breaks promotes chromosome synapsis in SPO11-mutant mouse meiocytes, and is altered in the absence of HORMAD1.

    Science.gov (United States)

    Carofiglio, Fabrizia; Sleddens-Linkels, Esther; Wassenaar, Evelyne; Inagaki, Akiko; van Cappellen, Wiggert A; Grootegoed, J Anton; Toth, Attila; Baarends, Willy M

    2018-03-01

    Repair of SPO11-dependent DNA double-strand breaks (DSBs) via homologous recombination (HR) is essential for stable homologous chromosome pairing and synapsis during meiotic prophase. Here, we induced radiation-induced DSBs to study meiotic recombination and homologous chromosome pairing in mouse meiocytes in the absence of SPO11 activity (Spo11 YF/YF model), and in the absence of both SPO11 and HORMAD1 (Spo11/Hormad1 dko). Within 30 min after 5 Gy irradiation of Spo11 YF/YF mice, 140-160 DSB repair foci were detected, which specifically localized to the synaptonemal complex axes. Repair of radiation-induced DSBs was incomplete in Spo11 YF/YF compared to Spo11 +/YF meiocytes. Still, repair of exogenous DSBs promoted partial recovery of chromosome pairing and synapsis in Spo11 YF/YF meiocytes. This indicates that at least part of the exogenous DSBs can be processed in an interhomolog recombination repair pathway. Interestingly, in a seperate experiment, using 3 Gy of irradiation, we observed that Spo11/Hormad1 dko spermatocytes contained fewer remaining DSB repair foci at 48 h after irradiation compared to irradiated Spo11 knockout spermatocytes. Together, these results show that recruitment of exogenous DSBs to the synaptonemal complex, in conjunction with repair of exogenous DSBs via the homologous chromosome, contributes to homology recognition. In addition, the data suggest a role for HORMAD1 in DNA repair pathway choice in mouse meiocytes. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  2. Retinal detachment repair

    Science.gov (United States)

    ... medicines Problems breathing You may not recover full vision. ... detachments can be repaired. Failure to repair the retina always results in loss of vision to some degree. After surgery, the quality of ...

  3. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  4. Direct and inverted repeats elicit genetic instability by both exploiting and eluding DNA double-strand break repair systems in mycobacteria.

    Directory of Open Access Journals (Sweden)

    Ewelina A Wojcik

    Full Text Available Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs. However, the contribution of each of the DSB repair pathways, homologous recombination (HR, non-homologous end-joining (NHEJ and single-strand annealing (SSA, to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ~1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1 directly interfering with replication fidelity, 2 stimulating the three main DSB repair pathways, and 3 enticing L5 site-specific recombination.

  5. Direct and inverted repeats elicit genetic instability by both exploiting and eluding DNA double-strand break repair systems in mycobacteria.

    Science.gov (United States)

    Wojcik, Ewelina A; Brzostek, Anna; Bacolla, Albino; Mackiewicz, Pawel; Vasquez, Karen M; Korycka-Machala, Malgorzata; Jaworski, Adam; Dziadek, Jaroslaw

    2012-01-01

    Repetitive DNA sequences with the potential to form alternative DNA conformations, such as slipped structures and cruciforms, can induce genetic instability by promoting replication errors and by serving as a substrate for DNA repair proteins, which may lead to DNA double-strand breaks (DSBs). However, the contribution of each of the DSB repair pathways, homologous recombination (HR), non-homologous end-joining (NHEJ) and single-strand annealing (SSA), to this sort of genetic instability is not fully understood. Herein, we assessed the genome-wide distribution of repetitive DNA sequences in the Mycobacterium smegmatis, Mycobacterium tuberculosis and Escherichia coli genomes, and determined the types and frequencies of genetic instability induced by direct and inverted repeats, both in the presence and in the absence of HR, NHEJ, and SSA. All three genomes are strongly enriched in direct repeats and modestly enriched in inverted repeats. When using chromosomally integrated constructs in M. smegmatis, direct repeats induced the perfect deletion of their intervening sequences ~1,000-fold above background. Absence of HR further enhanced these perfect deletions, whereas absence of NHEJ or SSA had no influence, suggesting compromised replication fidelity. In contrast, inverted repeats induced perfect deletions only in the absence of SSA. Both direct and inverted repeats stimulated excision of the constructs from the attB integration sites independently of HR, NHEJ, or SSA. With episomal constructs, direct and inverted repeats triggered DNA instability by activating nucleolytic activity, and absence of the DSB repair pathways (in the order NHEJ>HR>SSA) exacerbated this instability. Thus, direct and inverted repeats may elicit genetic instability in mycobacteria by 1) directly interfering with replication fidelity, 2) stimulating the three main DSB repair pathways, and 3) enticing L5 site-specific recombination.

  6. The inhibition of assembly of HIV-1 virus-like particles by 3-O-(3',3'-dimethylsuccinyl betulinic acid (DSB is counteracted by Vif and requires its Zinc-binding domain

    Directory of Open Access Journals (Sweden)

    Bouaziz Serge

    2008-12-01

    Full Text Available Abstract Background DSB, the 3-O-(3',3'dimethylsuccinyl derivative of betulinic acid, blocks the last step of protease-mediated processing of HIV-1 Gag precursor (Pr55Gag, which leads to immature, noninfectious virions. When administered to Pr55Gag-expressing insect cells (Sf9, DSB inhibits the assembly and budding of membrane-enveloped virus-like particles (VLP. In order to explore the possibility that viral factors could modulate the susceptibility to DSB of the VLP assembly process, several viral proteins were coexpressed individually with Pr55Gag in DSB-treated cells, and VLP yields assayed in the extracellular medium. Results Wild-type Vif (Vifwt restored the VLP production in DSB-treated cells to levels observed in control, untreated cells. DSB-counteracting effect was also observed with Vif mutants defective in encapsidation into VLP, suggesting that packaging and anti-DSB effect were separate functions in Vif. The anti-DSB effect was abolished for VifC133S and VifS116V, two mutants which lacked the zinc binding domain (ZBD formed by the four H108C114C133H139 coordinates with a Zn atom. Electron microscopic analysis of cells coexpressing Pr55Gag and Vifwt showed that a large proportion of VLP budded into cytoplasmic vesicles and were released from Sf9 cells by exocytosis. However, in the presence of mutant VifC133S or VifS116V, most of the VLP assembled and budded at the plasma membrane, as in control cells expressing Pr55Gag alone. Conclusion The function of HIV-1 Vif protein which negated the DSB inhibition of VLP assembly was independent of its packaging capability, but depended on the integrity of ZBD. In the presence of Vifwt, but not with ZBD mutants VifC133S and VifS116V, VLP were redirected to a vesicular compartment and egressed via the exocytic pathway.

  7. Histone displacement during nucleotide excision repair

    DEFF Research Database (Denmark)

    Dinant, C.; Bartek, J.; Bekker-Jensen, S.

    2012-01-01

    Nucleotide excision repair (NER) is an important DNA repair mechanism required for cellular resistance against UV light and toxic chemicals such as those found in tobacco smoke. In living cells, NER efficiently detects and removes DNA lesions within the large nuclear macromolecular complex called...... of histone variants and histone displacement (including nucleosome sliding). Here we review current knowledge, and speculate about current unknowns, regarding those chromatin remodeling activities that physically displace histones before, during and after NER....

  8. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    Science.gov (United States)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  9. A Preliminary Study: Human Fibroid Stro-1+/CD44+ Stem Cells Isolated From Uterine Fibroids Demonstrate Decreased DNA Repair and Genomic Integrity Compared to Adjacent Myometrial Stro-1+/CD44+ Cells.

    Science.gov (United States)

    Prusinski Fernung, Lauren E; Al-Hendy, Ayman; Yang, Qiwei

    2018-01-01

    Although uterine fibroids (UFs) continue to place a major burden on female reproductive health, the mechanisms behind their origin remain undetermined. Normal myometrial stem cells may be transformed into tumor-initiating stem cells, causing UFs, due to unknown causes of somatic mutations in MED12, found in up to 85% of sporadically formed UFs. It is well established in other tumor types that defective DNA repair increases the risk of such tumorigenic somatic mutations, mechanisms not yet studied in UFs. To examine the putative cause(s) of this stem cell transformation, we analyzed DNA repair within stem cells from human UFs compared to those from adjacent myometrium to determine whether DNA repair in fibroid stem cells is compromised. Human fibroid (F) and adjacent myometrial (Myo) stem cells were isolated from fresh tissues, and gene expression relating to DNA repair was analyzed. Fibroid stem cells differentially expressed DNA repair genes related to DNA double- (DSBs) and single-strand breaks. DNA damage was measured using alkaline comet assay. Additionally, DNA DSBs were induced in these stem cells and DNA DSB repair evaluated (1) by determining changes in phosphorylation of DNA DSB-related proteins and (2) by determining differences in γ-H2AX foci formation and relative DNA repair protein RAD50 expression. Overall, F stem cells demonstrated increased DNA damage and altered DNA repair gene expression and signaling, suggesting that human F stem cells demonstrate impaired DNA repair. Compromised F stem cell DNA repair may contribute to further mutagenesis and, consequently, further growth and propagation of UF tumors.

  10. Repair of UV-damaged incoming plasmid DNA in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Keszenman-Pereyra, David

    1990-01-01

    A whole-cell transformation assay was used for the repair of UV-damaged plasma DNA in highly-transformable haploid strains of Saccharomyces cerevisiae having different repair capabilities. The experiments described demonstrate that three epistasis groups (Friedberg 1988) are involved in the repair of UV-incoming DNA and that the repair processes act less efficiently on incoming DNA than they do on chromosomal DNA. The implications of these findings for UV repair in Saccharomyces cerevisiae are discussed. (author)

  11. DNA repair genes RAD52 and SRS2, a cell wall synthesis regulator gene SMI1, and the membrane sterol synthesis scaffold gene ERG28 are important in efficient Agrobacterium-mediated yeast transformation with chromosomal T-DNA.

    Science.gov (United States)

    Ohmine, Yuta; Satoh, Yukari; Kiyokawa, Kazuya; Yamamoto, Shinji; Moriguchi, Kazuki; Suzuki, Katsunori

    2016-04-02

    Plant pathogenic Agrobacterium strains can transfer T-DNA regions of their Ti plasmids to a broad range of eukaryotic hosts, including fungi, in vitro. In the recent decade, the yeast Saccharomyces cerevisiae is used as a model host to reveal important host proteins for the Agrobacterium-mediated transformation (AMT). Further investigation is required to understand the fundamental mechanism of AMT, including interaction at the cell surface, to expand the host range, and to develop new tools. In this study, we screened a yeast mutant library for low AMT mutant strains by advantage of a chromosome type T-DNA, which transfer is efficient and independent on integration into host chromosome. By the mutant screening, we identified four mutant strains (srs2Δ, rad52Δ, smi1Δ and erg28Δ), which showed considerably low AMT efficiency. Structural analysis of T-DNA product replicons in AMT colonies of mutants lacking each of the two DNA repair genes, SRS2 and RAD52, suggested that the genes act soon after T-DNA entry for modification of the chromosomal T-DNA to stably maintain them as linear replicons and to circularize certain T-DNA simultaneously. The cell wall synthesis regulator SMI1 might have a role in the cell surface interaction between the donor and recipient cells, but the smi1Δ mutant exhibited pleiotropic effect, i.e. low effector protein transport as well as low AMT for the chromosomal T-DNA, but relatively high AMT for integrative T-DNAs. The ergosterol synthesis regulator/enzyme-scaffold gene ERG28 probably contributes by sensing a congested environment, because growth of erg28Δ strain was unaffected by the presence of donor bacterial cells, while the growth of the wild-type and other mutant yeast strains was suppressed by their presence. RAD52 and the DNA helicase/anti-recombinase gene SRS2 are necessary to form and maintain artificial chromosomes through the AMT of chromosomal T-DNA. A sterol synthesis scaffold gene ERG28 is important in the high-efficiency

  12. Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining.

    Science.gov (United States)

    Moscariello, Mario; Wieloch, Radi; Kurosawa, Aya; Li, Fanghua; Adachi, Noritaka; Mladenov, Emil; Iliakis, George

    2015-07-01

    Exposure of cells to ionizing radiation or radiomimetic drugs generates DNA double-strand breaks that are processed either by homologous recombination repair (HRR), or by canonical, DNA-PKcs-dependent non-homologous end-joining (C-NHEJ). Chemical or genetic inactivation of factors involved in C-NHEJ or HRR, but also their local failure in repair proficient cells, promotes an alternative, error-prone end-joining pathway that serves as backup (A-EJ). There is evidence for the involvement of Artemis endonuclease, a protein deficient in a human radiosensitivity syndrome associated with severe immunodeficiency (RS-SCID), in the processing of subsets of DSBs by HRR or C-NHEJ. It is thought that within HRR or C-NHEJ Artemis processes DNA termini at complex DSBs. Whether Artemis has a role in A-EJ remains unknown. Here, we analyze using pulsed-field gel electrophoresis (PFGE) and specialized reporter assays, DSB repair in wild-type pre-B NALM-6 lymphocytes, as well as in their Artemis(-/-), DNA ligase 4(-/-) (LIG4(-/-)), and LIG4(-/-)/Artemis(-/-) double mutant counterparts, under conditions allowing evaluation of A-EJ. Our results substantiate the suggested roles of Artemis in C-NHEJ and HRR, but also demonstrate a role for the protein in A-EJ that is confirmed in Artemis deficient normal human fibroblasts. We conclude that Artemis is a nuclease participating in DSB repair by all major repair pathways. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    Science.gov (United States)

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. DNA double strand break repair is enhanced by P53 following induction by DNA damage and is dependent on the C-terminal domain of P53

    International Nuclear Information System (INIS)

    Wei Tang; Powell, Simon N.

    1996-01-01

    Purpose: The tumor suppressor gene p53 can mediate cell cycle arrest or apoptosis in response to DNA damage. Accumulating evidence suggests that it may also directly or indirectly influence the DNA repair machinery. In the present study, we investigated whether p53, induced by DNA damage, could enhance the rejoining of double-strand DNA breaks. Materials and Methods: DNA double-strand breaks (dsb) were made by restriction enzyme digestion of a plasmid, between a promoter and a 'reporter' gene: luciferase (LUC) or chloramphenicol acetyl-transferase (CAT). Linear or circular plasmid DNA (LUC or CAT) was co-transfected with circular β-Gal plasmid (to normalize for uptake) into mouse embryonic fibroblasts genetically matched to be (+/+) or (-/-) for p53. Their ability to rejoin linearized plasmid was measured by the luciferase or CAT activity detected in rescued plasmids. The activity detected in cells transfected with linear plasmid was scored relative to the activity detected in cells transfected with circular plasmid. Results: Ionizing radiation (IR, 2 Gy) enhanced the dsb repair activity in wild type p53 cells; however, p53 null cells lose this effect, indicating that the enhancement of dsb repair was p53-dependent. REF cells with dominant-negative mutant p53 showed a similar induction compared with the parental REF cells with wild-type p53. This ala-143 mutant p53 prevents cell cycle arrest and transactivation of p21 WAF1/cip1) following IR, indicating that the p53-dependent enhancement of DNA repair is distinct from transactivation. Immortalized murine embryonic fibroblasts, 10(1)VasK1 cells, which express p53 cDNA encoding a temperature-sensitive mutant in the DNA sequence specific binding domain (ala135 to val135) with an alternatively spliced C-terminal domain (ASp53: amino-acids 360-381) and, 10(1)Val5 cells, which express the normal spliced p53 (NSp53) with the same temperature-sensitive mutant were compared. It was found that 10(1)VasK1 cells showed no DNA

  15. The role of non-protein sulphydryls in determining the chemical repair rates of free radical precursors of DNA damage and cell killing in Chinese hamster V79 cells

    International Nuclear Information System (INIS)

    Prise, K.M.; Davies, S.; Stratford, M.R.L.; Michael, B.D.

    1992-01-01

    Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 μmol dm -3 ; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s -1 to 144 s -1 , and for lethal lesion precursors from 533 s -1 to 165 s -1 . (Author)

  16. Design and Analysis of a Stiffened Composite Structure Repair Concept

    Science.gov (United States)

    Przekop, Adam

    2011-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.

  17. Induction of DNA deletions after UV-light irradiation in yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Stepanova, A.N.; Koltovaya, N.A.

    2008-01-01

    We study mutagenic action of such a damaging agent as UV light, which can lead to DNA double-strand breaks (DSB). DNA deletions and gross rearrangements occur in process of DSB repair. We show that UV light induces deletion and rearrangement very efficiently. Analysis of efficacy of different types of repair shows that cell tries to repair DSBs with a combination of both homologous recombination (HR) and nonhomologous end joining (NHEJ) if available and that DSB repair by HR is more effective than by NHEJ in growing culture of haploid yeast

  18. The role of DNA repair in the realizatian of oxygen effect in bacteria ESCHERICHIA COLI irradiated with Various types of radiation (theoretical apalySis)

    International Nuclear Information System (INIS)

    Kozubek, S.; Krasavin, E.A.

    1983-01-01

    The regUlarities of the induction of basic types of DNA injuries influencing OER by the radiations of different LETs are considered. The DNA injuries arising from two, three and more acts of energy depositions are shown to increase with increasing LET. On the basis of proposed model the amount of irreparable by repair 11 single-strand breaks (Nsub(SSB1)sup(ir)) DNA in the dependence on LET is estimated. The dependence Nsub(SSB1)sup(ir) (LET) forms a slight maximum typical of multihit processes. The maximUm arises in the region of LET 200-300 keV/μm. The amoUnts of direct double-strand breaks (Nsub(dDSB)) DNA in both the presence and absence of oxygen in the dependence on LET have been estimated, too. The calculations show that in the region beyond the maximum of Nsub(dDSB) (LET) dependence constant ratio between NsUb(dDSB) in oxic and anoxic conditions is preserved. In the region of the maximum the ratio decreases. On the basis of our analysis a critical look at both the ''interacting radicals'' and ''oxygen in track'' hypotheses is given

  19. DNA replication and repair in Tilapia cells

    International Nuclear Information System (INIS)

    Yew, F.H.; Chang, L.M.

    1984-01-01

    The effect of ultraviolet radiation on a cell line established from the warm water fish Tilapia has been assessed by measuring the rate of DNA synthesis, excision repair, post-replication repair and cell survival. The cells tolerate ultraviolet radiation better than mammalian cells with respect to DNA synthesis, post-replication repair and cell survival. They are also efficient in excision repair, which in other fish cell lines has been found to be at a low level or absent. Their response to the inhibitors hydroxyurea and 1-β-D-arabinofuranosylcytosine is less sensitive than that of other cell lines, yet the cells seem to have very small pools of DNA precursor. (author)

  20. Collaborative action of Brca1 and CtIP in elimination of covalent modifications from double-strand breaks to facilitate subsequent break repair.

    Directory of Open Access Journals (Sweden)

    Kyoko Nakamura

    2010-01-01

    Full Text Available Topoisomerase inhibitors such as camptothecin and etoposide are used as anti-cancer drugs and induce double-strand breaks (DSBs in genomic DNA in cycling cells. These DSBs are often covalently bound with polypeptides at the 3' and 5' ends. Such modifications must be eliminated before DSB repair can take place, but it remains elusive which nucleases are involved in this process. Previous studies show that CtIP plays a critical role in the generation of 3' single-strand overhang at "clean" DSBs, thus initiating homologous recombination (HR-dependent DSB repair. To analyze the function of CtIP in detail, we conditionally disrupted the CtIP gene in the chicken DT40 cell line. We found that CtIP is essential for cellular proliferation as well as for the formation of 3' single-strand overhang, similar to what is observed in DT40 cells deficient in the Mre11/Rad50/Nbs1 complex. We also generated DT40 cell line harboring CtIP with an alanine substitution at residue Ser332, which is required for interaction with BRCA1. Although the resulting CtIP(S332A/-/- cells exhibited accumulation of RPA and Rad51 upon DNA damage, and were proficient in HR, they showed a marked hypersensitivity to camptothecin and etoposide in comparison with CtIP(+/-/- cells. Finally, CtIP(S332A/-/-BRCA1(-/- and CtIP(+/-/-BRCA1(-/- showed similar sensitivities to these reagents. Taken together, our data indicate that, in addition to its function in HR, CtIP plays a role in cellular tolerance to topoisomerase inhibitors. We propose that the BRCA1-CtIP complex plays a role in the nuclease-mediated elimination of oligonucleotides covalently bound to polypeptides from DSBs, thereby facilitating subsequent DSB repair.

  1. Production and repair of chromosome damage in an X-ray sensitive CHO mutant visualized and analysed in interphase using the technique of premature chromosome condensation

    International Nuclear Information System (INIS)

    Iliakis, G.E.; Pantelias, G.E.

    1990-01-01

    Production of chromosome damage per unit of absorbed radiation dose was in xrs-5 cells larger by a factor of 2.6 than in CHO cells (5.2 breaks per cell per Gy). Changes in chromatin structure, associated with the radiation-sensitive pheno-type of xrs-5 cells, that increase the probability of conversion of a DNA double-strand break (dsb) to a chromosome break are invoked to explain this. Repair of chromosome breaks as measured in plateau-phase G 1 cells was deficient in xrs-5 cells and the number of residual chromosome breaks practically identical to the number of lethal lesions calculated from survival data, suggesting that non-repaired chromosome breaks are likely to be manifestations of lethal events in the cell. The yield of ring chromosomes scored after a few hours of repair was higher by a factor of three in xrs-5 compared with CHO cells. (author)

  2. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  3. Nucleotide excision repair in differentiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Wees, Caroline van der [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Jansen, Jacob [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Vrieling, Harry [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Laarse, Arnoud van der [Department of Cardiology, Leiden University Medical Center, Leiden (Netherlands); Zeeland, Albert van [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands); Mullenders, Leon [Department of Toxicogenetics, Leiden University Medical Center, Leiden (Netherlands)]. E-mail: l.mullenders@lumc.nl

    2007-01-03

    Nucleotide excision repair (NER) is the principal pathway for the removal of a wide range of DNA helix-distorting lesions and operates via two NER subpathways, i.e. global genome repair (GGR) and transcription-coupled repair (TCR). Although detailed information is available on expression and efficiency of NER in established mammalian cell lines, little is known about the expression of NER pathways in (terminally) differentiated cells. The majority of studies in differentiated cells have focused on repair of UV-induced cyclobutane pyrimidine dimers (CPD) and 6-4-photoproducts (6-4PP) because of the high frequency of photolesions at low level of toxicity and availability of sensitive technologies to determine photolesions in defined regions of the genome. The picture that emerges from these studies is blurred and rather complex. Fibroblasts and terminally differentiated myocytes of the rat heart display equally efficient GGR of 6-4PP but poor repair of CPD due to the absence of p48 expression. This repair phenotype is clearly different from human terminal differentiated neurons. Furthermore, both cell types were found to carry out TCR of CPD, thus mimicking the repair phenotype of established rodent cell lines. In contrast, in intact rat spermatogenic cells repair was very inefficient at the genome overall level and in transcriptionally active genes indicating that GGR and TCR are non-functional. Also, non-differentiated mouse embryonic stem (ES) cells exhibit low levels of NER after UV irradiation. However, the mechanisms that lead to low NER activity are clearly different: in differentiated spermatogenic cells differences in chromatin compaction and sequestering of NER proteins may underlie the lack of NER activity in pre-meiotic cells, whereas in non-differentiated ES cells NER is impaired by a strong apoptotic response.

  4. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  5. Repair kinetics in tissues

    International Nuclear Information System (INIS)

    Thames, H.D.

    1989-01-01

    Monoexponential repair kinetics is based on the assumption of a single, dose-independent rate of repair of sublethal injury in the target cells for tissue injury after exposure to ionizing radiation. Descriptions of the available data based on this assumption have proved fairly successful for both acutely responding (skin, lip mucosa, gut) and late-responding (lung, spinal cord) normal tissues. There are indications of biphasic exponential repair in both categories, however. Unfortunately, the data usually lack sufficient resolution to permit unambiguous determination of the repair rates. There are also indications that repair kinetics may depend on the size of the dose. The data are conflicting on this account, however, with suggestions of both faster and slower repair after larger doses. Indeed, experiments that have been explicitly designed to test this hypothesis show either no effect (gut, spinal cord), faster repair after higher doses (lung, kidney), or slower repair after higher doses (skin). Monoexponential repair appears to be a fairly accurate description that provides an approximation to a more complicated picture, the elucidation of whose details will, however, require very careful and extensive experimental study. (author). 30 refs.; 1 fig

  6. DNA double strand break repair pathway plays a significant role in determining the radiotherapy induced normal tissue toxicity among head-and-neck and breast cancer

    International Nuclear Information System (INIS)

    Sadashiva, Satish Rao Bola; Mumbrekar, Kamalesh Dattaram; Venkatesh, Goutham Hassan; Fernandes, Donald Jerard; Bejadi, Vadhiraja Manjunath; Kapaettu, Satyamoorthy

    2014-01-01

    The ability to predict individual risk of radiotherapy induced normal tissue complications prior to the therapy may give an opportunity to personalize the treatment aiming improved therapeutic effect and quality of life. Therefore, predicting the risk of developing acute reactions before the initiation of radiation therapy may serve as a potential biomarker. DNA double-strand break (DSB) induction and its repair kinetics in lymphocytes of Head-and-Neck (n = 183) and Breast cancer (n = 132) patients undergoing chemoradiation or radiation therapy alone were analyzed by performing γ-H2AX foci, neutral comet and a modified neutral filter elution assay. Candidate radioresponsive genes like DNA repair, antioxidant pathway, profibrotic cytokine genes were screened for the common variants for their association with normal tissue toxicity outcome. Patients were stratified as non-over responders (NOR) and over responders (OR) based on their Radiation Therapy Oncology Group grading for normal tissue adverse reactions. Our results suggest that DSB repair plays a major role in the development of normal tissue adverse reactions in H and N and Breast cancer patients. The cellular (γ-H2AX analysis) and SNP analysis may have the potential to be developed into a clinically useful predictive assay for identifying the normal tissue over reactors

  7. RYBP Is a K63-Ubiquitin-Chain-Binding Protein that Inhibits Homologous Recombination Repair

    Directory of Open Access Journals (Sweden)

    Mohammad A.M. Ali

    2018-01-01

    Full Text Available Summary: Ring1-YY1-binding protein (RYBP is a member of the non-canonical polycomb repressive complex 1 (PRC1, and like other PRC1 members, it is best described as a transcriptional regulator. However, several PRC1 members were recently shown to function in DNA repair. Here, we report that RYBP preferentially binds K63-ubiquitin chains via its Npl4 zinc finger (NZF domain. Since K63-linked ubiquitin chains are assembled at DNA double-strand breaks (DSBs, we examined the contribution of RYBP to DSB repair. Surprisingly, we find that RYBP is K48 polyubiquitylated by RNF8 and rapidly removed from chromatin upon DNA damage by the VCP/p97 segregase. High expression of RYBP competitively inhibits recruitment of BRCA1 repair complex to DSBs, reducing DNA end resection and homologous recombination (HR repair. Moreover, breast cancer cell lines expressing high endogenous RYBP levels show increased sensitivity to DNA-damaging agents and poly ADP-ribose polymerase (PARP inhibition. These data suggest that RYBP negatively regulates HR repair by competing for K63-ubiquitin chain binding. : Ali et al. find that RYBP binds K63-linked ubiquitin chains and is removed from DNA damage sites. This K63-ubiquitin binding allows RYBP to hinder the recruitment of BRCA1 and Rad51 to DNA double-strand breaks, thus inhibiting homologous recombination repair. Accordingly, cancer cells expressing high RYBP are more sensitive to DNA-damaging therapies. Keywords: DNA damage response, homologous recombination, ubiquitylation, RYBP, polycomb proteins, double-strand break repair, chromatin, histone modification

  8. Germline stem cell gene PIWIL2 mediates DNA repair through relaxation of chromatin.

    Directory of Open Access Journals (Sweden)

    De-Tao Yin

    Full Text Available DNA damage response (DDR is an intrinsic barrier of cell to tumorigenesis initiated by genotoxic agents. However, the mechanisms underlying the DDR are not completely understood despite of extensive investigation. Recently, we have reported that ectopic expression of germline stem cell gene PIWIL2 is associated with tumor stem cell development, although the underlying mechanisms are largely unknown. Here we show that PIWIL2 is required for the repair of DNA-damage induced by various types of genotoxic agents. Upon ultraviolet (UV irradiation, silenced PIWIL2 gene in normal human fibroblasts was transiently activated after treatment with UV light. This activation was associated with DNA repair, because Piwil2-deficienct mouse embryonic fibroblasts (mili(-/- MEFs were defective in cyclobutane pyrimidine dimers (CPD repair after UV treatment. As a result, the UV-treated mili(-/- MEFs were more susceptible to apoptosis, as characterized by increased levels of DNA damage-associated apoptotic proteins, such as active caspase-3, cleaved Poly (ADP-ribose polymerase (PARP and Bik. The impaired DNA repair in the mili(-/- MEFs was associated with the reductions of histone H3 acetylation and chromatin relaxation, although the DDR pathway downstream chromatin relaxation appeared not to be directly affected by Piwil2. Moreover, guanine-guanine (Pt-[GG] and double strand break (DSB repair were also defective in the mili(-/- MEFs treated by genotoxic chemicals Cisplatin and ionizing radiation (IR, respectively. The results indicate that Piwil2 can mediate DNA repair through an axis of Piwil2 → histone acetylation → chromatin relaxation upstream DDR pathways. The findings reveal a new role for Piwil2 in DNA repair and suggest that Piwil2 may act as a gatekeeper against DNA damage-mediated tumorigenesis.

  9. Identification of the DNA repair defects in a case of Dubowitz syndrome.

    Directory of Open Access Journals (Sweden)

    Jingyin Yue

    Full Text Available Dubowitz Syndrome is an autosomal recessive disorder with a unique set of clinical features including microcephaly and susceptibility to tumor formation. Although more than 140 cases of Dubowitz syndrome have been reported since 1965, the genetic defects of this disease has not been identified. In this study, we systematically analyzed the DNA damage response and repair capability of fibroblasts established from a Dubowitz Syndrome patient. Dubowitz syndrome fibroblasts are hypersensitive to ionizing radiation, bleomycin, and doxorubicin. However, they have relatively normal sensitivities to mitomycin-C, cisplatin, and camptothecin. Dubowitz syndrome fibroblasts also have normal DNA damage signaling and cell cycle checkpoint activations after DNA damage. These data implicate a defect in repair of DNA double strand break (DSB likely due to defective non-homologous end joining (NHEJ. We further sequenced several genes involved in NHEJ, and identified a pair of novel compound mutations in the DNA Ligase IV gene. Furthermore, expression of wild type DNA ligase IV completely complement the DNA repair defects in Dubowitz syndrome fibroblasts, suggesting that the DNA ligase IV mutation is solely responsible for the DNA repair defects. These data suggests that at least subset of Dubowitz syndrome can be attributed to DNA ligase IV mutations.

  10. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment

    International Nuclear Information System (INIS)

    Zhang Liyuan; Chen Liesong; Sun Rui; Ji Shengjun; Ding Yanyan; Wu Jia; Tian Ye

    2013-01-01

    Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5 and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, id est (i.e.) DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway. (author)

  11. DNA repair in modeled microgravity: Double strand break rejoining activity in human lymphocytes irradiated with γ-rays

    International Nuclear Information System (INIS)

    Mognato, Maddalena; Girardi, Cristina; Fabris, Sonia; Celotti, Lucia

    2009-01-01

    Cell response to ionising radiation depends, besides on genetic and physiological features of the biological systems, on environmental conditions occurring during DNA repair. Many data showed that microgravity, experienced by astronauts during space flights or modeled on Earth, causes apoptosis, cytoskeletal alteration, cell growth inhibition, increased frequency of mutations and chromosome aberrations. In this study, we analysed the progression of the rejoining of double strand breaks (DSBs) in human peripheral blood lymphocytes (PBLs) irradiated with γ-rays and incubated in static condition (1g) or in modeled microgravity (MMG). γ-H2AX foci formation and disappearance, monitored during the repair incubation, showed that the kinetics of DSBs rejoining was different in the two gravity conditions. The fraction of foci-positive cells decreased slower in MMG than in 1g at 6 and 24 h after irradiation (P < 0.01) and the mean number of γ-H2AX foci per nucleus was significantly higher in MMG than in 1g at the same time-points (P < 0.001). In the same samples we determined apoptotic level and the rate of DSB rejoining during post-irradiation incubation. A significant induction of apoptosis was observed in MMG at 24 h after irradiation (P < 0.001), whereas at shorter times the level of apoptosis was slightly higher in MMG respect to 1g. In accordance with the kinetics of γ-H2AX foci, the slower rejoining of radiation-induced DSBs in MMG was observed by DNA fragmentation analyses during the repair incubation; the data of pulsed-field gel electrophoresis assay showed that the fraction of DNA released in the gel was significantly higher in PBL incubated in MMG after irradiation with respect to cells maintained in 1g. Our results provide evidences that MMG incubation during DNA repair delayed the rate of radiation-induced DSB rejoining, and increased, as a consequence, the genotoxic effects of ionising radiation.

  12. DNA repair in modeled microgravity: Double strand break rejoining activity in human lymphocytes irradiated with {gamma}-rays

    Energy Technology Data Exchange (ETDEWEB)

    Mognato, Maddalena, E-mail: maddalena.mognato@unipd.it [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Girardi, Cristina; Fabris, Sonia [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Celotti, Lucia [Dipartimento di Biologia, Universita di Padova, via U. Bassi 58 B, 35121 Padova (Italy); Laboratori Nazionali di Legnaro, INFN, Padova (Italy)

    2009-04-26

    Cell response to ionising radiation depends, besides on genetic and physiological features of the biological systems, on environmental conditions occurring during DNA repair. Many data showed that microgravity, experienced by astronauts during space flights or modeled on Earth, causes apoptosis, cytoskeletal alteration, cell growth inhibition, increased frequency of mutations and chromosome aberrations. In this study, we analysed the progression of the rejoining of double strand breaks (DSBs) in human peripheral blood lymphocytes (PBLs) irradiated with {gamma}-rays and incubated in static condition (1g) or in modeled microgravity (MMG). {gamma}-H2AX foci formation and disappearance, monitored during the repair incubation, showed that the kinetics of DSBs rejoining was different in the two gravity conditions. The fraction of foci-positive cells decreased slower in MMG than in 1g at 6 and 24 h after irradiation (P < 0.01) and the mean number of {gamma}-H2AX foci per nucleus was significantly higher in MMG than in 1g at the same time-points (P < 0.001). In the same samples we determined apoptotic level and the rate of DSB rejoining during post-irradiation incubation. A significant induction of apoptosis was observed in MMG at 24 h after irradiation (P < 0.001), whereas at shorter times the level of apoptosis was slightly higher in MMG respect to 1g. In accordance with the kinetics of {gamma}-H2AX foci, the slower rejoining of radiation-induced DSBs in MMG was observed by DNA fragmentation analyses during the repair incubation; the data of pulsed-field gel electrophoresis assay showed that the fraction of DNA released in the gel was significantly higher in PBL incubated in MMG after irradiation with respect to cells maintained in 1g. Our results provide evidences that MMG incubation during DNA repair delayed the rate of radiation-induced DSB rejoining, and increased, as a consequence, the genotoxic effects of ionising radiation.

  13. Phytochemicals radiosensitize cancer cells by inhibiting DNA repair

    International Nuclear Information System (INIS)

    Singh, Rana P.

    2017-01-01

    Solid tumors are mostly treated with radiotherapy. Radiotherapy is toxic to normal tissues and also promote the invasiveness and radioresistance in cancer cells. The resistance against radiotherapy and adverse effects to normal cells reduce the overall therapeutic effects of the treatment. Radiosensitizing agents usually show limited success during clinical trials. Therefore, the search and development of new radiosensitizers showing selective response to only cancer cells is desirable. We analyzed the radiosensitizing effects including cell death effect of silibinin, a phytochemical on prostate cancer cells. Silibinin enhanced gamma radiation (2.5-10 Gy) induced inhibition in colony formation selectively in prostate cancer cells. In cell cycle progression, G2/M phase is the most sensitive phase for radiation-induced damage which was delayed by the compound treatment in radiation exposed cells. The lower concentrations of silibinin substantially enhanced radiation-induced apoptosis. A prolonged reactive oxygen species production was also observed in these treatments EGFR signaling pathway can contribute to radiation-induced pro-survival mechanisms and to the therapeutic resistance. Agent treatment reduced the IR-induced EGFR phosphorylation and consequently reversed the resistance mediating mechanisms within the cancer cell. Thus, inhibiting DNA repair in cancer cells would enhance therapeutic response of radiation in cancer cells. Silibinin affected the localization of EGFR and DNA-dependent protein kinase, the DNA-PK is known to be an important mediator of DSB repair in human cells, and showed increased number of pH2AX (ser139) foci, and thus indicating lower DNA repair in these cancer cells. This was also confirmed in the tumor xenograft study. Our findings suggest that a combination of silibinin with radiation could be an effective treatment of radioresistant human prostate cancer and warrants further investigation. (author)

  14. Snowmobile Repair. Teacher Edition.

    Science.gov (United States)

    Hennessy, Stephen S.; Conrad, Rex

    This teacher's guide contains 14 units on snowmobile repair: (1) introduction to snowmobile repair; (2) skis, front suspension, and steering; (3) drive clutch; (4) drive belts; (5) driven clutch; (6) chain drives; (7) jackshafts and axles; (8) rear suspension; (9) tracks; (10) shock absorbers; (11) brakes; (12) engines; (13) ignition and…

  15. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  16. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  17. Understanding the -C-X1-X2-C- motif in the active site of the thioredoxin superfamily: E. coli DsbA and its mutants as a model system.

    Science.gov (United States)

    Karshikoff, Andrey; Nilsson, Lennart; Foloppe, Nicolas

    2013-08-27

    E. coli DsbA is an intensively studied enzyme of the thioredoxin superfamily of thiol-disulfide oxidoreductases. DsbA catalyzes the disulfide bond formation and folding of proteins in the bacterial periplasm. DsbA and its mutants have highlighted the strong and puzzling influence of the -C-X1-X2-C- active site variants, found across the thioredoxin superfamily, on the ionization and redox properties of this site. However, the interpretation of these observations remains wanting, largely due to a dearth of structural information. Here, molecular dynamics simulations are used to provide extensive information on the structure and dynamics of reduced -C30-X31-X32-C33- motifs in wild type DsbA and 13 of its mutants. These simulations are combined with calculations of the pK of H32 and of the very low pK of the catalytic cysteine C30. In wild type DsbA, the titrations of C30 and H32 are shown to be coupled; the protonation states and dynamics of H32 are examined. The thiolate of C30 is stabilized by hydrogen bonds with the protein. Modulation of these hydrogen bonds by alteration of residue X32 has the greatest impact on the pK of C30, which rationalizes its higher pK in thioredoxin and tryparedoxin. Because of structural constrains, residue X31 has only an indirect and weak influence on the pK of C30. The dynamics of C30 is clearly related to its stabilizing interactions and pK value. Although relatively small differences between pKs were not reproduced in the calculations, the major trends are explained, adding new insights to our understanding of enzymes in this family.

  18. Induction and repair of DNA double-strand breaks in hippocampal neurons of mice of different age after exposure to 60Co γ-rays in vivo and in vitro

    Science.gov (United States)

    Kozhina, R. A.; Chausov, V. N.; Kuzmina, E. A.; Boreyko, A. V.

    2018-04-01

    One of the central problems of modern radiobiology is the study of DNA damage induction and repair mechanisms in central nervous system cells, in particular, in hippocampal cells. The study of the regularities of molecular damage formation and repair in the hippocampus cells is of special interest, because these cells, unlike most cells of the central nervous system (CNS), keep proliferative activity, i.e. ability to neurogenesis. Age-related changes in hippocampus play an important role, which could lead to radiosensitivity changes in neurons to the ionizing radiation exposure. Regularities in DNA double-strand breaks (DSB) induction and repair in different aged mice hippocampal cells in vivo and in vitro under the action of γ-rays 60Co were studied with DNA comet-assay. The obtained dose dependences of DNA DSB induction are linear both in vivo and in vitro. It is established that in young animals' cells, the degree of DNA damage is higher than in older animals. It is shown that repair kinetics is basically different for exposure in vivo and in vitro.

  19. Heterogenous mismatch-repair status in colorectal cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Veurink, Nynke; Holck, Susanne

    2014-01-01

    BACKGROUND: Immunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative......, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms. METHODS: Heterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative....... CONCLUSIONS: Heterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification. VIRTUAL SLIDES: The virtual slide(s) for this article...

  20. Epigenetic changes of DNA repair genes in cancer.

    Science.gov (United States)

    Lahtz, Christoph; Pfeifer, Gerd P

    2011-02-01

    'Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, and genetic deficiencies in specific DNA repair genes are associated with tumor-prone phenotypes. In addition to mutations, which can be either inherited or somatically acquired, epigenetic silencing of DNA repair genes may promote tumorigenesis. This review will summarize current knowledge of the epigenetic inactivation of different DNA repair components in human cancer.

  1. Repair of furocoumarin adducts in mammalian cells

    International Nuclear Information System (INIS)

    Zolan, M.E.; Smith, C.A.; Hanawalt, P.C.

    1984-01-01

    DNA repair was studied in cultured mammalian cells treated with the furocoumarins 8-methoxypsoralen (8-MOP), aminomethyl trioxsalen, or angelicin and irradiated with near UV light. The amount of DNA cross-linked by 8-MOP in normal human cells decreased by about one-half in 24 hours after treatment; no decrease was observed in xeroderma pigmentosum cells, group A. At present, it is not known to what extent this decrease represents complete repair events at the sites of cross-links. Furocoumarin adducts elicited excision repair in normal human and monkey cells but not in xeroderma pigmentosum group A cells. This excision repair resembled in several aspects that elicited by pyrimidine dimers, formed in DNA by irradiation with 254-nm UV light; however, it appeared that for at least 8-MOP and aminomethyl trioxsalen, removal of adducts was not as efficient as was the removal of pyrimidine dimers. A comparison was also made of repair in the 172-base-pair repetitive alpha-DNA component of monkey cells to repair in the bulk of the genome. Although repair elicited by pyrimidine dimers in alpha-DNA was the same as in the bulk DNA, that following treatment of cells with either aminomethyl trioxsalen or angelicin and near UV was markedly deficient in alpha-DNA. This deficiency reflected the removal of fewer adducts from alpha-DNA after the same initial adduct frequencies. These results could mean that each furocoumarin may produce several structurally distinct adducts to DNA in cells and that the capacity of cellular repair systems to remove these various adducts may vary greatly

  2. KIN17, XPC, DNA-PKCS and XRCC4 proteins in the cellular response to DNA damages. Relations between nucleotide excision repair and non-homologous end joining in a human syn-genic model

    International Nuclear Information System (INIS)

    Despras, Emmanuelle

    2006-01-01

    The response to genotoxic stress involves many cellular factors in a complex network of mechanisms that aim to preserve the genetic integrity of the organism. These mechanisms enclose the detection and repair of DNA lesions, the regulation of transcription and replication and, eventually, the setting of cell death. Among the nuclear proteins involved in this response, kin17 proteins are zinc-finger proteins conserved through evolution and activated by ultraviolet (UV) or ionizing radiations (IR). We showed that human kin17 protein (HSAkin17) is found in the cell under a soluble form and a form tightly anchored to nuclear structures. A fraction of HSAkin17 protein is directly associated with chromatin. HSAkin17 protein is recruited to nuclear structures 24 hours after treatment with various agents inducing DNA double-strand breaks (DSB) and/or replication forks blockage. Moreover, the reduction of total HSAkin17 protein level sensitizes RKO cells to IR. We also present evidence for the involvement of HSAkin17 protein in DNA replication. This hypothesis was further confirmed by the biochemical demonstration of its belonging to the replication complex. HSAkin17 protein could link DNA replication and DNA repair, a defect in the HSAkin17 pathway leading to an increased radiosensitivity. In a second part, we studied the interactions between two DNA repair mechanisms: nucleotide excision repair (NER) and non-homologous end joining (NHEJ). NER repairs a wide variety of lesions inducing a distortion of the DNA double helix including UV-induced pyrimidine dimers. NHEJ allows the repair of DSB by direct joining of DNA ends. We used a syn-genic model for DNA repair defects based on RNA interference developed in the laboratory. Epstein-Barr virus-derived vectors (pEBV) allow long-term expression of siRNA and specific extinction of the targeted gene. The reduction of the expression of genes involved in NER (XPA and XPC) or NHEJ (DNA-PKcs and XRCC4) leads to the expected

  3. A Biallelic Mutation in the Homologous Recombination Repair Gene SPIDR Is Associated With Human Gonadal Dysgenesis.

    Science.gov (United States)

    Smirin-Yosef, Pola; Zuckerman-Levin, Nehama; Tzur, Shay; Granot, Yaron; Cohen, Lior; Sachsenweger, Juliane; Borck, Guntram; Lagovsky, Irina; Salmon-Divon, Mali; Wiesmüller, Lisa; Basel-Vanagaite, Lina

    2017-02-01

    Primary ovarian insufficiency (POI) is caused by ovarian follicle depletion or follicle dysfunction, characterized by amenorrhea with elevated gonadotropin levels. The disorder presents as absence of normal progression of puberty. To elucidate the cause of ovarian dysfunction in a family with POI. We performed whole-exome sequencing in 2 affected individuals. To evaluate whether DNA double-strand break (DSB) repair activities are altered in biallelic mutation carriers, we applied an enhanced green fluorescent protein-based assay for the detection of specific DSB repair pathways in blood-derived cells. Diagnoses were made at the Pediatric Endocrine Clinic, Clalit Health Services, Sharon-Shomron District, Israel. Genetic counseling and sample collection were performed at the Pediatric Genetics Unit, Schneider Children's Medical Center Israel, Petah Tikva, Israel. Two sisters born to consanguineous parents of Israeli Muslim Arab ancestry presented with a lack of normal progression of puberty, high gonadotropin levels, and hypoplastic or absent ovaries on ultrasound. Blood samples for DNA extraction were obtained from all family members. Exome analysis to elucidate the cause of POI in 2 affected sisters. Analysis revealed a stop-gain homozygous mutation in the SPIDR gene (KIAA0146) c.839G>A, p.W280*. This mutation altered SPIDR activity in homologous recombination, resulting in the accumulation of 53BP1-labeled DSBs postionizing radiation and γH2AX-labeled damage during unperturbed growth. SPIDR is important for ovarian function in humans. A biallelic mutation in this gene may be associated with ovarian dysgenesis in cases of autosomal recessive inheritance. Copyright © 2017 by the Endocrine Society

  4. Domain structure of a NHEJ DNA repair ligase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Pitcher, Robert S; Tonkin, Louise M; Green, Andrew J; Doherty, Aidan J

    2005-08-19

    A prokaryotic non-homologous end-joining (NHEJ) system for the repair of DNA double-strand breaks (DSBs), composed of a Ku homodimer (Mt-Ku) and a multidomain multifunctional ATP-dependent DNA ligase (Mt-Lig), has been described recently in Mycobacterium tuberculosis. Mt-Lig exhibits polymerase and nuclease activity in addition to DNA ligation activity. These functions were ascribed to putative polymerase, nuclease and ligase domains that together constitute a monomeric protein. Here, the separate polymerase, nuclease and ligase domains of Mt-Lig were cloned individually, over-expressed and the soluble proteins purified to homogeneity. The polymerase domain demonstrated DNA-dependent RNA primase activity, catalysing the synthesis of unprimed oligoribonucleotides on single-stranded DNA templates. The polymerase domain can also extend DNA in a template-dependent manner. This activity was eliminated when the catalytic aspartate residues were replaced with alanine. The ligase domain catalysed the sealing of nicked double-stranded DNA designed to mimic a DSB, consistent with the role of Mt-Lig in NHEJ. Deletion of the active-site lysine residue prevented the formation of an adenylated ligase complex and consequently thwarted ligation. The nuclease domain did not function independently as a 3'-5' exonuclease. DNA-binding assays revealed that both the polymerase and ligase domains bind DNA in vitro, the latter with considerably higher affinity. Mt-Ku directly stimulated the polymerase and nuclease activities of Mt-Lig. The polymerase domain bound Mt-Ku in vitro, suggesting it may recruit Mt-Lig to Ku-bound DNA in vivo. Consistent with these data, Mt-Ku stimulated the primer extension activity of the polymerase domain, suggestive of a functional interaction relevant to NHEJ-mediated DSB repair processes.

  5. Repairing fuel for reinsertion

    International Nuclear Information System (INIS)

    Krukshenk, A.

    1986-01-01

    Eqiupment for nuclear reactor fuel assembly repairing produced by Westinghouse and Brawn Bovery companies is described. Repair of failed fuel assemblies replacement of defect fuel elements gives a noticeable economical effect. Thus if the cost of a new fuel assembly is 450-500 thousand dollars, the replacement of one fuel element in it costs approximately 40-60 thousand dollars. In simple cases repairing includes either removal of failed fuel elements from a fuel assembly and its reinsertion with the rest of fuel elements into the reactor core (reactor refueling), or replacement of unfailed fuel elements from one fuel assembly to a new one (fuel assembly overhaul and reconditioning)

  6. Chromatin challenges during DNA replication and repair

    DEFF Research Database (Denmark)

    Groth, Anja; Rocha, Walter; Verreault, Alain

    2007-01-01

    Inheritance and maintenance of the DNA sequence and its organization into chromatin are central for eukaryotic life. To orchestrate DNA-replication and -repair processes in the context of chromatin is a challenge, both in terms of accessibility and maintenance of chromatin organization. To meet...... the challenge of maintenance, cells have evolved efficient nucleosome-assembly pathways and chromatin-maturation mechanisms that reproduce chromatin organization in the wake of DNA replication and repair. The aim of this Review is to describe how these pathways operate and to highlight how the epigenetic...... landscape may be stably maintained even in the face of dramatic changes in chromatin structure....

  7. The Bright and the Dark Sides of DNA Repair in Stem Cells

    OpenAIRE

    Frosina, Guido

    2010-01-01

    DNA repair is a double-edged sword in stem cells. It protects normal stem cells in both embryonic and adult tissues from genetic damage, thus allowing perpetuation of intact genomes into new tissues. Fast and efficient DNA repair mechanisms have evolved in normal stem and progenitor cells. Upon differentiation, a certain degree of somatic mutations becomes more acceptable and, consequently, DNA repair dims. DNA repair turns into a problem when stem cells transform and become cancerous. Tran...

  8. DNA double strand break repair in a radioresistant cell line

    International Nuclear Information System (INIS)

    Koval, T.M.; Kazmar, E.R.

    1987-01-01

    TN-368 lepidopteran insect cells are on the order of 100 times more resistant to the lethal effects of ionizing radiation than cultured mammalian cells. DNA double strand breaks (DSB) are believed by many to be the critical molecular lesion leading to cell death. The authors therefore measured the rejoining of DSB in TN-368 and V79 Chinese hamster cells. Cells were irradiated on ice with /sup 137/Cs γ rays at a dose rate of 2.5 Gy/min, incubated for various periods of time, and assayed for DNA DSB using the method of neutral elution. The kinetics of DSB rejoining following a dose of 90.2 Gy are similar for both cell lines. Approximately 80% of the DSB are rejoined in both lines by 1 hr postirradiation. However, no further rejoining occurs in the TN-368 cells through at least 6 hr postirradiation, whereas 90% of the DSB are rejoined in the V79 cells by 2 hr postirradiation. Other studies (from 22.6 to 226 Gy) demonstrate that the amount of rejoining of DSB varies inversely with dose for the V79 cells but remains constant for the TN-368 cells. These findings do not support the hypothesis that unrejoined DNA DSB represent the major lesion resulting in cell death

  9. ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Bianca M Sirbu

    Full Text Available Homologous recombination (HR is required for the restart of collapsed DNA replication forks and error-free repair of DNA double-strand breaks (DSB. However, unscheduled or hyperactive HR may lead to genomic instability and promote cancer development. The cellular factors that restrict HR processes in mammalian cells are only beginning to be elucidated. The tumor suppressor p53 has been implicated in the suppression of HR though it has remained unclear why p53, as the guardian of the genome, would impair an error-free repair process. Here, we show for the first time that p53 downregulates foci formation of the RAD51 recombinase in response to replicative stress in H1299 lung cancer cells in a manner that is independent of its role as a transcription factor. We find that this downregulation of HR is not only completely dependent on the binding site of p53 with replication protein A but also the ATR/ATM serine 15 phosphorylation site. Genetic analysis suggests that ATR but not ATM kinase modulates p53's function in HR. The suppression of HR by p53 can be bypassed under experimental conditions that cause DSB either directly or indirectly, in line with p53's role as a guardian of the genome. As a result, transactivation-inactive p53 does not compromise the resistance of H1299 cells to the interstrand crosslinking agent mitomycin C. Altogether, our data support a model in which p53 plays an anti-recombinogenic role in the ATR-dependent mammalian replication checkpoint but does not impair a cell's ability to use HR for the removal of DSB induced by cytotoxic agents.

  10. DNA Repair Systems

    Indian Academy of Sciences (India)

    DNA molecule which makes it ideal for storage and propagation of genetic information. ... of these errors are broadly referred to as DNA repair. DNA can ... changes occur in the human genome per day. ..... nails, frequent physical and mental.

  11. Brain aneurysm repair - discharge

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000123.htm Brain aneurysm repair - discharge To use the sharing features ... this page, please enable JavaScript. You had a brain aneurysm . An aneurysm is a weak area in ...

  12. Ventral hernia repair

    Science.gov (United States)

    ... incarcerated) in the hernia and become impossible to push back in. This is usually painful. The blood supply ... you are lying down or that you cannot push back in. Risks The risks of ventral hernia repair ...

  13. Omphalocele repair - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100033.htm Omphalocele repair - series—Normal anatomy To use the sharing ... Go to slide 4 out of 4 Overview Omphalocele is an abdominal wall defect at the base ...

  14. Celebrating DNA's Repair Crew.

    Science.gov (United States)

    Kunkel, Thomas A

    2015-12-03

    This year, the Nobel Prize in Chemistry has been awarded to Tomas Lindahl, Aziz Sancar, and Paul Modrich for their seminal studies of the mechanisms by which cells from bacteria to man repair DNA damage that is generated by normal cellular metabolism and stress from the environment. These studies beautifully illustrate the remarkable power of DNA repair to influence life from evolution through disease susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Analysis of a damaged and repaired pre-stressed concrete bridge girder by vehicle impact and effectiveness of repair procedure

    OpenAIRE

    Domínguez Mayans, Félix

    2014-01-01

    This thesis aims to study the structural consequences of the damages produced by vehicle impact in a pres-stressed concrete bridge girder and the repair procedure in a real case-study damaged after the bridge was opened to service. From the analysis of the situation of the beam and its damage state, a study of the repair actions carried out on this beam has been analyzed in order to determine the efficiency of the repair and if other alternatives are possible or more efficient. A stat...

  16. Phylogeny of the Vitamin K 2,3-Epoxide Reductase (VKOR) Family and Evolutionary Relationship to the Disulfide Bond Formation Protein B (DsbB) Family.

    Science.gov (United States)

    Bevans, Carville G; Krettler, Christoph; Reinhart, Christoph; Watzka, Matthias; Oldenburg, Johannes

    2015-07-29

    In humans and other vertebrate animals, vitamin K 2,3-epoxide reductase (VKOR) family enzymes are the gatekeepers between nutritionally acquired K vitamins and the vitamin K cycle responsible for posttranslational modifications that confer biological activity upon vitamin K-dependent proteins with crucial roles in hemostasis, bone development and homeostasis, hormonal carbohydrate regulation and fertility. We report a phylogenetic analysis of the VKOR family that identifies five major clades. Combined phylogenetic and site-specific conservation analyses point to clade-specific similarities and differences in structure and function. We discovered a single-site determinant uniquely identifying VKOR homologs belonging to human pathogenic, obligate intracellular prokaryotes and protists. Building on previous work by Sevier et al. (Protein Science 14:1630), we analyzed structural data from both VKOR and prokaryotic disulfide bond formation protein B (DsbB) families and hypothesize an ancient evolutionary relationship between the two families where one family arose from the other through a gene duplication/deletion event. This has resulted in circular permutation of primary sequence threading through the four-helical bundle protein folds of both families. This is the first report of circular permutation relating distant a-helical membrane protein sequences and folds. In conclusion, we suggest a chronology for the evolution of the five extant VKOR clades.

  17. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.

    Directory of Open Access Journals (Sweden)

    Emanuel Santos

    Full Text Available Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.

  18. Ontology Alignment Repair through Modularization and Confidence-Based Heuristics.

    Science.gov (United States)

    Santos, Emanuel; Faria, Daniel; Pesquita, Catia; Couto, Francisco M

    2015-01-01

    Ontology Matching aims at identifying a set of semantic correspondences, called an alignment, between related ontologies. In recent years, there has been a growing interest in efficient and effective matching methods for large ontologies. However, alignments produced for large ontologies are often logically incoherent. It was only recently that the use of repair techniques to improve the coherence of ontology alignments began to be explored. This paper presents a novel modularization technique for ontology alignment repair which extracts fragments of the input ontologies that only contain the necessary classes and relations to resolve all detectable incoherences. The paper presents also an alignment repair algorithm that uses a global repair strategy to minimize both the degree of incoherence and the number of mappings removed from the alignment, while overcoming the scalability problem by employing the proposed modularization technique. Our evaluation shows that our modularization technique produces significantly small fragments of the ontologies and that our repair algorithm produces more complete alignments than other current alignment repair systems, while obtaining an equivalent degree of incoherence. Additionally, we also present a variant of our repair algorithm that makes use of the confidence values of the mappings to improve alignment repair. Our repair algorithm was implemented as part of AgreementMakerLight, a free and open-source ontology matching system.

  19. Flexural strength of structural concrete repaired with HBPMM cement

    International Nuclear Information System (INIS)

    Memon, G.H.; Khaskheli, G.B.; Kumar, A.

    2009-01-01

    To repair damaged concrete structures, Dadabhoy Cement Factory in Sindh has launched a product known as HBPMM (Hi-Bond Polymer Modified Mortar) cement. HBPMM is used to repair various concrete structures in Pakistan but the experimental back up regarding the real performance of the product, as far as flexural strength of concrete is concerned, is not well known yet. This study is thus aimed to investigate the flexural strength of structural concrete repaired with HBPMM compared to that repaired with OPC (Ordinary Portland Cement). In total 32 concrete beams (6x6x18) having compressive strength of 3000 and 5000 psi were manufactured. To obtain flexural strength of the beams, these were splitted by using a UTM (Universal Testing Machine). Beams were then repaired with different applications of HBPMM and OPC. After 28 days of curing, the repaired beams were re-splitted to determine the flexural strength of repaired beams. Results show that both HBPMM and OPC are not very effective. However, the performance of HBPMM remained slightly better than that of OPC. Both OPC and HBPMM remained more efficient in case of 5000 psi concrete than that of 3000 psi concrete. Flexural strength of repaired beams could be increased by increasing application of the repairing material. (author)

  20. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  1. BMCloud: Minimizing Repair Bandwidth and Maintenance Cost in Cloud Storage

    Directory of Open Access Journals (Sweden)

    Chao Yin

    2013-01-01

    Full Text Available To protect data in cloud storage, fault tolerance and efficient recovery become very important. Recent studies have developed numerous solutions based on erasure code techniques to solve this problem using functional repairs. However, there are two limitations to address. The first one is consistency since the Encoding Matrix (EM is different among clouds. The other one is repairing bandwidth, which is a concern for most of us. We addressed these two problems from both theoretical and practical perspectives. We developed BMCloud, a new low repair bandwidth, low maintenance cost cloud storage system, which aims to reduce repair bandwidth and maintenance cost. The system employs both functional repair and exact repair while it inherits advantages from the both. We propose the JUDGE_STYLE algorithm, which can judge whether the system should adopt exact repair or functional repair. We implemented a networked storage system prototype and demonstrated our findings. Compared with existing solutions, BMCloud can be used in engineering to save repair bandwidth and degrade maintenance significantly.

  2. Lingering single-strand breaks trigger Rad51-independent homology-directed repair of collapsed replication forks in the polynucleotide kinase/phosphatase mutant of fission yeast.

    Directory of Open Access Journals (Sweden)

    Arancha Sanchez

    2017-09-01

    Full Text Available The DNA repair enzyme polynucleotide kinase/phosphatase (PNKP protects genome integrity by restoring ligatable 5'-phosphate and 3'-hydroxyl termini at single-strand breaks (SSBs. In humans, PNKP mutations underlie the neurological disease known as MCSZ, but these individuals are not predisposed for cancer, implying effective alternative repair pathways in dividing cells. Homology-directed repair (HDR of collapsed replication forks was proposed to repair SSBs in PNKP-deficient cells, but the critical HDR protein Rad51 is not required in PNKP-null (pnk1Δ cells of Schizosaccharomyces pombe. Here, we report that pnk1Δ cells have enhanced requirements for Rad3 (ATR/Mec1 and Chk1 checkpoint kinases, and the multi-BRCT domain protein Brc1 that binds phospho-histone H2A (γH2A at damaged replication forks. The viability of pnk1Δ cells depends on Mre11 and Ctp1 (CtIP/Sae2 double-strand break (DSB resection proteins, Rad52 DNA strand annealing protein, Mus81-Eme1 Holliday junction resolvase, and Rqh1 (BLM/WRN/Sgs1 DNA helicase. Coupled with increased sister chromatid recombination and Rad52 repair foci in pnk1Δ cells, these findings indicate that lingering SSBs in pnk1Δ cells trigger Rad51-independent homology-directed repair of collapsed replication forks. From these data, we propose models for HDR-mediated tolerance of persistent SSBs with 3' phosphate in pnk1Δ cells.

  3. The use of caspase inhibitors in pulsed-field gel electrophoresis may improve the estimation of radiation-induced DNA repair and apoptosis

    International Nuclear Information System (INIS)

    Balart, Josep; Pueyo, Gemma; Llobet, Lara I de; Baro, Marta; Sole, Xavi; Marin, Susanna; Casanovas, Oriol; Mesia, Ricard; Capella, Gabriel

    2011-01-01

    Radiation-induced DNA double-strand break (DSB) repair can be tested by using pulsed-field gel electrophoresis (PFGE) in agarose-encapsulated cells. However, previous studies have reported that this assay is impaired by the spontaneous DNA breakage in this medium. We investigated the mechanisms of this fragmentation with the principal aim of eliminating it in order to improve the estimation of radiation-induced DNA repair. Samples from cancer cell cultures or xenografted tumours were encapsulated in agarose plugs. The cell plugs were then irradiated, incubated to allow them to repair, and evaluated by PFGE, caspase-3, and histone H2AX activation (γH2AX). In addition, apoptosis inhibition was evaluated through chemical caspase inhibitors. We confirmed that spontaneous DNA fragmentation was associated with the process of encapsulation, regardless of whether cells were irradiated or not. This DNA fragmentation was also correlated to apoptosis activation in a fraction of the cells encapsulated in agarose, while non-apoptotic cell fraction could rejoin DNA fragments as was measured by γH2AX decrease and PFGE data. We were able to eliminate interference of apoptosis by applying specific caspase inhibitors, and improve the estimation of DNA repair, and apoptosis itself. The estimation of radiation-induced DNA repair by PFGE may be improved by the use of apoptosis inhibitors. The ability to simultaneously determine DNA repair and apoptosis, which are involved in cell fate, provides new insights for using the PFGE methodology as functional assay

  4. Agrobacterium May Delay Plant Nonhomologous End-Joining DNA Repair via XRCC4 to Favor T-DNA Integration[W

    Science.gov (United States)

    Vaghchhipawala, Zarir E.; Vasudevan, Balaji; Lee, Seonghee; Morsy, Mustafa R.; Mysore, Kirankumar S.

    2012-01-01

    Agrobacterium tumefaciens is a soilborne pathogen that causes crown gall disease in many dicotyledonous plants by transfer of a portion of its tumor-inducing plasmid (T-DNA) into the plant genome. Several plant factors that play a role in Agrobacterium attachment to plant cells and transport of T-DNA to the nucleus have been identified, but the T-DNA integration step during transformation is poorly understood and has been proposed to occur via nonhomologous end-joining (NHEJ)–mediated double-strand DNA break (DSB) repair. Here, we report a negative role of X-RAY CROSS COMPLEMENTATION GROUP4 (XRCC4), one of the key proteins required for NHEJ, in Agrobacterium T-DNA integration. Downregulation of XRCC4 in Arabidopsis and Nicotiana benthamiana increased stable transformation due to increased T-DNA integration. Overexpression of XRCC4 in Arabidopsis decreased stable transformation due to decreased T-DNA integration. Interestingly, XRCC4 directly interacted with Agrobacterium protein VirE2 in a yeast two-hybrid system and in planta. VirE2-expressing Arabidopsis plants were more susceptible to the DNA damaging chemical bleomycin and showed increased stable transformation. We hypothesize that VirE2 titrates or excludes active XRCC4 protein available for DSB repair, thus delaying the closure of DSBs in the chromosome, providing greater opportunity for T-DNA to integrate. PMID:23064322

  5. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis.

    Science.gov (United States)

    Brzostek, Anna; Szulc, Izabela; Klink, Magdalena; Brzezinska, Marta; Sulowska, Zofia; Dziadek, Jaroslaw

    2014-01-01

    The intracellular pathogen Mycobacterium tuberculosis (Mtb) is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs). These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR) and non-homologous ends joining (NHEJ), in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA), NHEJ [Δ(ku,ligD)], or both DSB repair systems [Δ(ku,ligD,recA)]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA) mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA) mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages.

  6. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Anna Brzostek

    Full Text Available The intracellular pathogen Mycobacterium tuberculosis (Mtb is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs. These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR and non-homologous ends joining (NHEJ, in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA, NHEJ [Δ(ku,ligD], or both DSB repair systems [Δ(ku,ligD,recA]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages.

  7. The Over-expression of the β2 Catalytic Subunit of the Proteasome Decreases Homologous Recombination and Impairs DNA Double-Strand Break Repair in Human Cells

    Directory of Open Access Journals (Sweden)

    Anita Collavoli

    2011-01-01

    Full Text Available By a human cDNA library screening, we have previously identified two sequences coding two different catalytic subunits of the proteasome which increase homologous recombination (HR when overexpressed in the yeast Saccharomyces cerevisiae. Here, we investigated the effect of proteasome on spontaneous HR and DNA repair in human cells. To determine if the proteasome has a role in the occurrence of spontaneous HR in human cells, we overexpressed the β2 subunit of the proteasome in HeLa cells and determined the effect on intrachromosomal HR. Results showed that the overexpression of β2 subunit decreased HR in human cells without altering the cell proteasome activity and the Rad51p level. Moreover, exposure to MG132 that inhibits the proteasome activity reduced HR in human cells. We also found that the expression of the β2 subunit increases the sensitivity to the camptothecin that induces DNA double-strand break (DSB. This suggests that the β2 subunit has an active role in HR and DSB repair but does not alter the intracellular level of the Rad51p.

  8. Effect of microwave and ionizing radiation on formation of DNA of repair foci in lymphocytes from cord blood; Vplyv mikrovlnneho a ionizacneho ziarenia na tvorbu DNA opravnych fokusov v lymfocytoch z pupocnikovej krvi

    Energy Technology Data Exchange (ETDEWEB)

    Durdik, M.; Markova, E.; Belyaev, I. [Slovenska akademia vied, Ustav experimentalnej onkologie, 83391 Bratislava (Slovakia)

    2013-04-16

    Different types of radiation are affecting us nowadays. Electromagnetic radiation which is produced mainly by mobile phones, Wi-fi and base stations is affecting us practically all of the time. Long term effects of this type of radiation are not fully examined. It is very important to know effects of radiation that influence us so much like electromagnetic radiation. DNA double strand breaks (DSBs) are the most deleterious types of DNA damage. Several proteins involved in DNA repair and DNA damage signaling have been shown to produce discrete foci in response to ionizing radiation. These foci are believed to co-localize to DSB and referred to as ionizing radiation-induced foci or DNA repair foci. Ionizing radiation is known to induce formation of radiation induced foci which are very hard to analyze exactly. That's why the second aim of this work was to compare two automatized systems for analysis of DNA repair foci, METAFER and ImageStream. (authors)

  9. DNA-PK, ATM and ATR collaboratively regulate p53-RPA interaction to facilitate homologous recombination DNA repair.

    Science.gov (United States)

    Serrano, M A; Li, Z; Dangeti, M; Musich, P R; Patrick, S; Roginskaya, M; Cartwright, B; Zou, Y

    2013-05-09

    Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.

  10. Predictable repair of provisional restorations.

    Science.gov (United States)

    Hammond, Barry D; Cooper, Jeril R; Lazarchik, David A

    2009-01-01

    The importance of provisional restorations is often downplayed, as they are thought of by some as only "temporaries." As a result, a less-than-ideal provisional is sometimes fabricated, in part because of the additional chair time required to make provisional modifications when using traditional techniques. Additionally, in many dental practices, these provisional restorations are often fabricated by auxillary personnel who may not be as well trained in the fabrication process. Because provisionals play an important role in achieving the desired final functional and esthetic result, a high-quality provisional restoration is essential to fabricating a successful definitive restoration. This article describes a method for efficiently and predictably repairing both methacrylate and bis-acryl provisional restorations using flowable composite resin. By use of this relatively simple technique, provisional restorations can now be modified or repaired in a timely and productive manner to yield an exceptional result. Successful execution of esthetic and restorative dentistry requires attention to detail in every aspect of the case. Fabrication of high-quality provisional restorations can, at times, be challenging and time consuming. The techniques for optimizing resin provisional restorations as described in this paper are pragmatic and will enhance the delivery of dental treatment.

  11. Radiobiological significance of DNA repair

    International Nuclear Information System (INIS)

    Kuzin, A.M.

    1978-01-01

    A short outline is given on the history of the problem relating to the repair of radiation injuries, specifically its molecular mechanisms. The most urgent problems which currently confront the researchers are noted. This is a further study on the role of DNA repair in post-radiation recovery, search for ways to activate and suppress DNA repair, investigations into the activity balance of various repair enzymes as well as the problem of errors in the structure of repairing DNA. An important role is attached to the investigations of DNA repair in solving a number of practical problems

  12. Recombinational repair: workshop summary

    International Nuclear Information System (INIS)

    Howard-Flanders, P.

    1983-01-01

    Recombinational repair may or may not be synonymous with postreplication repair. Considerable progress has been made in the study of the relevant enzymes, particularly those from bacteria. In this workshop we focus on the recombination enzyme RecA protein. What structural changes take place in the protein and in DNA during repair. How does homologous pairing take place. How is ATP hydrolysis coupled to the stand exchange reaction and the formation of heteroduplx DNA. Turning to another enzyme needed for certain kinds of bacterial recombination, we will ask whether the purified recB protein and recC protein complement each other and are sufficient for exonuclease V activity. In higher cells, we would like to know whether sister exchanges, which occur in bacteria after uv irradiation, are also seen in animal cells

  13. Meniscal repair devices.

    Science.gov (United States)

    Barber, F A; Herbert, M A

    2000-09-01

    Meniscal repair devices not requiring accessory incisions are attractive. Many factors contribute to their clinical effectiveness including their biomechanical characteristics. This study compared several new meniscal repair devices with standard meniscal suture techniques. Using a porcine model, axis-of-insertion loads were applied to various meniscal sutures and repair devices. A single device or stitch was placed in a created meniscal tear and a load applied. Both loads and modes of failure were recorded. The load-to-failure data show stratification into 4 distinct statistical groups. Group A, 113 N for a double vertical stitch; group B, 80 N for a single vertical stitch; group C, 57 N for the BioStinger, 56 N for a horizontal mattress stitch, and 50 N for the T-Fix stitch; and group D, 33 N for the Meniscus Arrow (inserted by hand or gun), 32 N for the Clearfix screw, 31 N for the SDsorb staple, 30 N for the Mitek meniscal repair system, and 27 N for the Biomet staple. The failure mechanism varied. Sutures broke away from the knot. The Meniscus Arrow and BioStinger pulled through the inner rim with the crossbar intact. The Clearfix screw failed by multiple mechanisms, whereas 1 leg of the SDsorb staple always pulled out of the outer rim. The Mitek device usually failed by pullout from the inner rim. The Biomet staple always broke at the crosshead or just below it. Although the surgeon should be aware of the material properties of the repair technique chosen for a meniscal repair, this information is only an indication of device performance and may not correlate with clinical healing results.

  14. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  15. Biological radiolesions and repair

    International Nuclear Information System (INIS)

    Laskowski, W.

    1981-01-01

    In 7 chapters, the book answers the following questions: 1) What reactions are induced in biological matter by absorption of radiation energy. 2) In what parts of the cell do the radiation-induced reactions with detectable biological effects occur. 3) In which way are these cell components changed by different qualities of radiation. 4) What are the cell mechanisms by which radiation-induced changes can be repaired. 5) What is the importance of these repair processes for man, his life and evolution. At the end of each chapter, there is a bibliography of relevant publications in this field. (orig./MG) [de

  16. Vibration in car repair work.

    Science.gov (United States)

    Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E

    1987-03-01

    The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.

  17. Composite Repair System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — GTL has developed an innovative composite repair methodology known as the Composite Repair System (CRS). In this phase I effort, CRS is being developed for the...

  18. About the Collision Repair Campaign

    Science.gov (United States)

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  19. Vesicovaginal Fistula Repair During Pregnancy

    African Journals Online (AJOL)

    Vesicovaginal Fistula Repair During Pregnancy: A Case Report ... Abstract. We report a repair of Vesicovaginal fistula during pregnancy that was aimed at preventing another spontaneous ... practices that encourage teenage marriage and girl.

  20. Ship Repair Workflow Cost Model

    National Research Council Canada - National Science Library

    McDevitt, Mike

    2003-01-01

    The effects of intermittent work patterns and funding on the costs of ship repair and maintenance were modeled for the San Diego region in 2002 for Supervisor of Shipbuilding and Repair (SUPSHIP) San Diego...

  1. Metabolite damage and repair in metabolic engineering design.

    Science.gov (United States)

    Sun, Jiayi; Jeffryes, James G; Henry, Christopher S; Bruner, Steven D; Hanson, Andrew D

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects. Copyright © 2017 International Metabolic Engineering Society. All rights reserved.

  2. Metabolite damage and repair in metabolic engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jiayi; Jeffryes, James G.; Henry, Christopher S.; Bruner, Steven D.; Hanson, Andrew D.

    2017-11-01

    The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways - particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile 'plug and play' set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.

  3. Electron Transfer Mechanisms of DNA Repair by Photolyase

    Science.gov (United States)

    Zhong, Dongping

    2015-04-01

    Photolyase is a flavin photoenzyme that repairs two DNA base damage products induced by ultraviolet (UV) light: cyclobutane pyrimidine dimers and 6-4 photoproducts. With femtosecond spectroscopy and site-directed mutagenesis, investigators have recently made significant advances in our understanding of UV-damaged DNA repair, and the entire enzymatic dynamics can now be mapped out in real time. For dimer repair, six elementary steps have been characterized, including three electron transfer reactions and two bond-breaking processes, and their reaction times have been determined. A unique electron-tunneling pathway was identified, and the critical residues in modulating the repair function at the active site were determined. The dynamic synergy between the elementary reactions for maintaining high repair efficiency was elucidated, and the biological nature of the flavin active state was uncovered. For 6-4 photoproduct repair, a proton-coupled electron transfer repair mechanism has been revealed. The elucidation of electron transfer mechanisms and two repair photocycles is significant and provides a molecular basis for future practical applications, such as in rational drug design for curing skin cancer.

  4. Web-ADARE: A Web-Aided Data Repairing System

    KAUST Repository

    Gu, Binbin

    2017-03-08

    Data repairing aims at discovering and correcting erroneous data in databases. In this paper, we develop Web-ADARE, an end-to-end web-aided data repairing system, to provide a feasible way to involve the vast data sources on the Web in data repairing. Our main attention in developing Web-ADARE is paid on the interaction problem between web-aided repairing and rule-based repairing, in order to minimize the Web consultation cost while reaching predefined quality requirements. The same interaction problem also exists in crowd-based methods but this is not yet formally defined and addressed. We first prove in theory that the optimal interaction scheme is not feasible to be achieved, and then propose an algorithm to identify a scheme for efficient interaction by investigating the inconsistencies and the dependencies between values in the repairing process. Extensive experiments on three data collections demonstrate the high repairing precision and recall of Web-ADARE, and the efficiency of the generated interaction scheme over several baseline ones.

  5. Web-ADARE: A Web-Aided Data Repairing System

    KAUST Repository

    Gu, Binbin; Li, Zhixu; Yang, Qiang; Xie, Qing; Liu, An; Liu, Guanfeng; Zheng, Kai; Zhang, Xiangliang

    2017-01-01

    Data repairing aims at discovering and correcting erroneous data in databases. In this paper, we develop Web-ADARE, an end-to-end web-aided data repairing system, to provide a feasible way to involve the vast data sources on the Web in data repairing. Our main attention in developing Web-ADARE is paid on the interaction problem between web-aided repairing and rule-based repairing, in order to minimize the Web consultation cost while reaching predefined quality requirements. The same interaction problem also exists in crowd-based methods but this is not yet formally defined and addressed. We first prove in theory that the optimal interaction scheme is not feasible to be achieved, and then propose an algorithm to identify a scheme for efficient interaction by investigating the inconsistencies and the dependencies between values in the repairing process. Extensive experiments on three data collections demonstrate the high repairing precision and recall of Web-ADARE, and the efficiency of the generated interaction scheme over several baseline ones.

  6. Epigenetic changes of DNA repair genes in cancer

    OpenAIRE

    Lahtz, Christoph; Pfeifer, Gerd P.

    2011-01-01

    ‘Every Hour Hurts, The Last One Kills'. That is an old saying about getting old. Every day, thousands of DNA damaging events take place in each cell of our body, but efficient DNA repair systems have evolved to prevent that. However, our DNA repair system and that of most other organisms are not as perfect as that of Deinococcus radiodurans, for example, which is able to repair massive amounts of DNA damage at one time. In many instances, accumulation of DNA damage has been linked to cancer, ...

  7. Social repair of relationships

    DEFF Research Database (Denmark)

    Fahnøe, Kristian Relsted

    2017-01-01

    organisations, friends and family, and communities. These social relations are viewed as the foundation of citizenship as experienced and practised. Focusing on how two dimensions of lived citizenship, namely rights-responsibilities and belonging, are affected by the social repairs, the chapter shows how...

  8. Comprehensive Small Engine Repair.

    Science.gov (United States)

    Hires, Bill; And Others

    This curriculum guide contains the basic information needed to repair all two- and four-stroke cycle engines. The curriculum covers four areas, each consisting of one or more units of instruction that include performance objectives, suggested activities for teacher and students, information sheets, assignment sheets, job sheets, visual aids,…

  9. Patent urachus repair - slideshow

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools About MedlinePlus Show Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Patent urachus repair - series—Normal anatomy URL of this ...

  10. Patent urachus repair

    Science.gov (United States)

    ... Drugs & Supplements Videos & Tools About MedlinePlus Show Search Search MedlinePlus GO GO About MedlinePlus Site Map FAQs Customer Support Health Topics Drugs & Supplements Videos & Tools Español You Are Here: Home → Medical Encyclopedia → Patent urachus repair URL of this page: //medlineplus.gov/ ...

  11. DNA Repair Systems

    Indian Academy of Sciences (India)

    Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial ...

  12. Aircraft Propeller Hub Repair

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Thomas R [ORNL; Peter, William H [ORNL

    2015-02-13

    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  13. Role of DNA repair in repair of cytogenetic damages. Slowly repaired DNA injuries involved in cytogenetic damages repair

    International Nuclear Information System (INIS)

    Zaichkina, S.I.; Rozanova, O.M.; Aptikaev, G.F.; Ganassi, E.Eh.

    1989-01-01

    Caffeine was used to study the kinetics of cytogenetic damages repair in Chinese hamster fibroblasts. Its half-time (90 min) was shown to correlate with that of repair of slowly repaired DNA damages. The caffeine-induced increase in the number of irreparable DNA damages, attributed to inhibition of double-strand break repair, is in a quantitative correlation with the effect of the cytogenetic damage modification

  14. Panchromatic cooperative hyperspectral adaptive wide band deletion repair method

    Science.gov (United States)

    Jiang, Bitao; Shi, Chunyu

    2018-02-01

    In the hyperspectral data, the phenomenon of stripe deletion often occurs, which seriously affects the efficiency and accuracy of data analysis and application. Narrow band deletion can be directly repaired by interpolation, and this method is not ideal for wide band deletion repair. In this paper, an adaptive spectral wide band missing restoration method based on panchromatic information is proposed, and the effectiveness of the algorithm is verified by experiments.

  15. Dacryoscintigraph evaluation of the repaired lacrimal drainage system

    International Nuclear Information System (INIS)

    Hoehn, J.G.; Vitale, P.; Elliott, R.A. Jr.

    1976-01-01

    We have used dacryoscintigraphy to study the efficiency of the lacrimal system following the repair of a divided lower canaliculus in 4 children. This test has been reliable in evaluating lacrimal function and suggests that a canaliculus can be repaired and splinted satisfactorily. Our experience with dacryoscintigraphy confirms that it is a safe comfortable, and reliable method for studying the patency of the lacrimal drainage system

  16. BMCloud: Minimizing Repair Bandwidth and Maintenance Cost in Cloud Storage

    OpenAIRE

    Yin, Chao; Xie, Changsheng; Wan, Jiguang; Hung, Chih-Cheng; Liu, Jinjiang; Lan, Yihua

    2013-01-01

    To protect data in cloud storage, fault tolerance and efficient recovery become very important. Recent studies have developed numerous solutions based on erasure code techniques to solve this problem using functional repairs. However, there are two limitations to address. The first one is consistency since the Encoding Matrix (EM) is different among clouds. The other one is repairing bandwidth, which is a concern for most of us. We addressed these two problems from both theoretical and practi...

  17. Cleft lip and palate repair

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002979.htm Cleft lip and palate repair To use the sharing features on this ... Cheiloplasty; Cleft rhinoplasty; Palatoplasty; Tip rhinoplasty Patient Instructions Cleft lip and palate repair - discharge Images Cleft lip repair - series References ...

  18. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  19. The journey of DNA repair.

    Science.gov (United States)

    Saini, Natalie

    2015-12-01

    21 years ago, the DNA Repair Enzyme was declared "Molecule of the Year". Today, we are celebrating another "year of repair", with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  20. Function of chromatin structure and dynamics in DNA damage, repair and misrepair: gamma-rays and protons in action

    Czech Academy of Sciences Publication Activity Database

    Ježková, L.; Falk, Martin; Falková, Iva; Davídková, Marie; Bačíková, Alena; Štefančíková, Lenka; Vachelová, Jana; Michaelidesová, Anna; Lukášová, Emilie; Boreyko, A.; Krasavin, E.; Kozubek, Stanislav

    2014-01-01

    Roč. 83, SI (2014), s. 128-136 ISSN 0969-8043 R&D Projects: GA MŠk(CZ) EE2.3.30.0030; GA ČR(CZ) GBP302/12/G157; GA ČR(CZ) GAP302/10/1022; GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LD12039; GA MŠk(CZ) LD12008 Institutional support: RVO:68081707 ; RVO:61389005 Keywords : DNA double-strand breaks * Higher-order chromatin structure and DSB repair * Formation of chromosomal translocations Subject RIV: BO - Biophysics; BO - Biophysics (UJF-V) Impact factor: 1.231, year: 2014

  1. The effect of modulators of radiation-induced G2 arrest on the repair of radiation-induced DNA damage detectable by neutral filter elution

    International Nuclear Information System (INIS)

    Rowley, R.; Kort, L.

    1988-01-01

    The influence of cycloheximide (50 μg/ml), caffeine (5 mM) and cordycepin (0.15 mM) on the repair of the damage detectable in DNA by neutral filter elution was determined. Chinese hamster ovary cells (CHO) were irradiated with X-ray doses of 20, 60 and 100 Gy then allowed to repair without drug treatment or in the presence of each drug for intervals up to 6 h. DNA damage repair proceeded in two phases. The fast component of the repair process (t 1/2 approx. 7 min) was not modified by drug treatment; the slow component (t 1/2 170 min) was unaffected by cycloheximide or cordycepin, but appeared to be inhibited by caffeine. It was concluded that: (a) the lesion which results in radiation-induced G 2 arrest is not the lesion which is detectable by neutral filter elution, and (b) the influence of caffeine on dsb repair is specific to caffeine and is not mediated by a reduction in the duration of G 2 arrest. (author)

  2. Distinct roles of FANCO/RAD51C in DNA damage signaling and repair: implications for fanconi anemia and breast cancer susceptibility

    International Nuclear Information System (INIS)

    Nagaraju, G.; Somyajit, K.; Subramanya, S.

    2012-01-01

    Unrepaired or misrepaired chromosomal double-strand breaks (DSBs) can cause gross chromosomal rearrangements which eventually can lead to tumorigenesis through inactivation of tumor suppressor genes or activation of oncogenes. There are two major mechanisms of DSB repair: non-homologous end joining (NHEJ) and homologous recombination (HR). DSBs that are generated during S and G2 phase of the cell are preferentially repaired by sister chromatid recombination (SCR), an HR pathway that utilizes neighboring sister chromatid as a template. Since the copied information is accurate, SCR is potentially an error-free pathway. HR also plays a critical role in the repair of daughter strand gaps (DSGs) that arise as a result of replication fork stalling and facilitates replication fork recovery. Furthermore, in collaboration with nucleotide excision repair and translesion synthesis, HR is involved in the repair of DNA interstrand cross-links (ICLs). Thus, HR is important for the maintenance of genome integrity and its dysfunction can lead to various genetic disorders and cancer

  3. DNA repair mechanism in radioresistant bacteria

    International Nuclear Information System (INIS)

    Kitayama, Shigeru

    1992-01-01

    Many radiation resistant bacteria have been isolated from various sources which are not in high background field. Since Deinococcus radiodurans had been isolated first in 1956, studies on the mechanism for radioresistance were carried out mostly using this bacterium. DNA in this bacterium isn't protected against injury induced by not only ionizing radiation but also ultraviolet light. Therefore, DNA damages induced by various treatments are efficiently and accurately repaired in this cells. Damages in base and/or sugar in DNA are removed by endonucleases which, if not all, are synthesized during postirradiation incubation. Following the endonucleolytic cleavage the strand scissions in DNA are seemed to be rejoined by a process common for the repair of strand scissions induced by such as ionizing radiations. Induce protein(s) is also involved in this rejoining process of strand scissions. DNA repair genes were classified into three phenotypic groups. (1)Genes which are responsible for the endonucleolytic activities. (2) Genes involved in the rejoining of DNA strand scissions. (3) Genes which participate in genetic recombination and repair. Three genes belong to (1) and (2) were cloned onto approximately 1 kbp DNA fragments which base sequences have been determined. (author)

  4. DNA repair mechanism in radioresistant bacteria

    International Nuclear Information System (INIS)

    Kitayama, Shigeru

    1992-01-01

    Many radiation resistant bacteria have been isolated from various sources which are not in high background field. Since Deinococcus radiodurans had been isolated first in 1956, the studies on the mechanism of radioresistance were mostly carried out using this bacterium. DNA in this bacterium isn't protected against injury induced by not only ionizing radiation but also ultraviolet light. Therefore, DNA damages induced by various treatments are efficiently and accurately repaired in this cells. Damages in base and/or sugar in DNA are removed by endonucleases which, if not all, are synthesized during postirradiation incubation. Following the endonucleolytic cleavage the strand scissions in DNA are seemed to be rejoined by a process common for the repair of strand scissions induced by such as ionizing radiations. Induce protein(s) is also involved in this rejoining process of strand scissions. DNA repair genes were classified into three phenotypic groups. (1) Genes which are responsible for the endonucleolytic activities. (2) Genes involved in the rejoining of DNA strand scissions. (3) Genes which participate in genetic recombination and repair. Three genes belong to (1) and (2) were cloned onto approximately 1 kbp DNA fragments which base sequences have been determined. (author)

  5. Role of DNA damage and repair as predeterminant factor in the development of radiotherapy induced acute adverse reactions

    International Nuclear Information System (INIS)

    Satish Rao, B.S.; Kamalesh, D.M.; Goutham, H.V.; Donald, J.F.; Sharan, Krishna; Vadhiraja, B.M.; Satyamoorthy, K.

    2013-01-01

    Radiotherapy induced normal tissue toxicity is one of the major limitations for the compromised the therapeutic outcome and also worsens the quality of life of survivors. Further, the clinical experience demonstrated inter-individual variability with respect to their normal tissue toxicity. Therefore, the discovery of contributing key factors of variability or predicting the risk of developing acute reactions before the initiation of radiation therapy may serve as a powerful predictive biomarker for individualizing radiotherapy, anticipating increased therapeutic effect. DNA double-strand break (DSB) induction and its repair in lymphocytes of head-and-neck and breast cancer patients undergoing chemoradiation or radiation therapy alone were analyzed by performing γ-H2AX foci, neutral comet and a modified neutral filter elution assays. Treatment induced normal tissue adverse reactions (acute skin reaction, oral mucositis) were assessed by the criteria of Radiation Therapy Oncology Group. The residual damage (RD) at 6 hrs of post irradiation was used as parameters to measure cellular radiosensitivity and for its correlation with radiotherapy induced acute reactions in patients stratified as non-over responders (NOR) and over responders (OR). A large inter-individual variation in the radiosensitivity was observed in the cancer individuals with respect to their lymphocyte radiosensitivity and the severity of normal tissue adverse reactions. There was a significant difference in RD (p<0.05) between the NOR and OR in breast cancer radiotherapy. Further, the increased normal tissue toxicity such as oral mucositis and skin reactions was associated with the reduced DSB repair (p<0.05) in head-and-neck cancer patients. The percentile analysis was found to be useful in predicting the OR amongst the head-and-neck cancer patients. Our results suggest that γ-H2AX analysis may have its potential to be developed into a clinically useful predictive assay for identifying the

  6. Repair mechanisms and exposure standards

    International Nuclear Information System (INIS)

    Mills, W.A.

    1978-01-01

    The following topics are discussed; public policy for setting radiation standards; use of linear, nonthreshold theory in setting radiation standards; dose-rate dependence; occupational exposure to radiation; radon inhalation from radium in the soil in the vicinity of the phosphate industry; relation of repair mechanisms for cell survival to cancer induction; application of information on genetic repair to humans and to cancer induction; importance of repair processes in radiation protection standards; corrective factors for repair processes; relation of repair processes to age, sex, and other factors; and population distribution in radiosensitivity

  7. Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing

    International Nuclear Information System (INIS)

    Baird, Brandon J.; Dickey, Jennifer S.; Nakamura, Asako J.; Redon, Christophe E.; Parekh, Palak; Griko, Yuri V.; Aziz, Khaled; Georgakilas, Alexandros G.; Bonner, William M.; Martin, Olga A.

    2011-01-01

    Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0 o C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7 o C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13 o C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13 o C during and 12 h after irradiation. Mild hypothermia at 20 and 30 o C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13 o C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX (γ-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (OCDLs) revealed partial repair at 13 o C compared to the rapid repair at 37 o C. For both γ-H2AX foci and OCDLs, the return of lymphocytes to 37 o C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against radiation.

  8. Double-strand break repair and genetic recombination in topoisomerase and primase mutants of bacteriophage T4.

    Science.gov (United States)

    Shcherbakov, Victor P; Kudryashova, Elena

    2014-09-01

    The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i×j) and three-factor (i k×j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1×i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1-i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1×i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1×i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII(+) recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss

  9. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  10. 55K isoform of CDK9 associates with Ku70 and is involved in DNA repair

    International Nuclear Information System (INIS)

    Liu, Hongbing; Herrmann, Christine H.; Chiang, Karen; Sung, Tzu-Ling; Moon, Sung-Hwan; Donehower, Lawrence A.; Rice, Andrew P.

    2010-01-01

    Positive elongation factor b (P-TEFb) is a cellular protein kinase that is required for RNA polymerase II (RNAP II) transcriptional elongation of protein coding genes. P-TEFb is a set of different molecular complexes, each containing CDK9 as the catalytic subunit. There are two isoforms of the CDK9 protein - the major 42 KDa CDK9 isoform and the minor 55KDa isoform that is translated from an in-frame mRNA that arises from an upstream transcriptional start site. We found that shRNA depletion of the 55K CDK9 protein in HeLa cells induces apoptosis and double-strand DNA breaks (DSBs). The levels of apoptosis and DSBs induced by the depletion were reduced by expression of a 55K CDK9 protein variant resistant to the shRNA, indicating that these phenotypes are the consequence of depletion of the 55K protein and not off-target effects. We also found that the 55K CDK9 protein, but not the 42K CDK9 protein, specifically associates with Ku70, a protein involved in DSB repair. Our findings suggest that the 55K CDK9 protein may function in repair of DNA through an association with Ku70.

  11. Handbook of Equipment Repair.

    Science.gov (United States)

    1981-05-14

    state of leapin- fn’rw.rd. Tn recent years, many mechanical repair workers often write and ask us to reprint the book. In our consideration, however...ast 4iron 1. .-eat _--OSIS-RTS 5.5 . . 4-5 t4- cast -3.01 -6 ~.0 ’ ɘ.᝱ 5,,:e j?24 2 * 10- 5 aron C l 50 S lcon : Ielt rSSIS-RQTS-s;.4 u a 2.47 5at- .0

  12. Radar rainfall image repair techniques

    Directory of Open Access Journals (Sweden)

    Stephen M. Wesson

    2004-01-01

    Full Text Available There are various quality problems associated with radar rainfall data viewed in images that include ground clutter, beam blocking and anomalous propagation, to name a few. To obtain the best rainfall estimate possible, techniques for removing ground clutter (non-meteorological echoes that influence radar data quality on 2-D radar rainfall image data sets are presented here. These techniques concentrate on repairing the images in both a computationally fast and accurate manner, and are nearest neighbour techniques of two sub-types: Individual Target and Border Tracing. The contaminated data is estimated through Kriging, considered the optimal technique for the spatial interpolation of Gaussian data, where the 'screening effect' that occurs with the Kriging weighting distribution around target points is exploited to ensure computational efficiency. Matrix rank reduction techniques in combination with Singular Value Decomposition (SVD are also suggested for finding an efficient solution to the Kriging Equations which can cope with near singular systems. Rainfall estimation at ground level from radar rainfall volume scan data is of interest and importance in earth bound applications such as hydrology and agriculture. As an extension of the above, Ordinary Kriging is applied to three-dimensional radar rainfall data to estimate rainfall rate at ground level. Keywords: ground clutter, data infilling, Ordinary Kriging, nearest neighbours, Singular Value Decomposition, border tracing, computation time, ground level rainfall estimation

  13. Internal audit of costs on fixed assets repair

    Directory of Open Access Journals (Sweden)

    M.Yu. Samchyk

    2016-12-01

    Full Text Available The article focuses on the approaches to the process and methods of expenditure audit on repair and modernization of fixed assets and the author considers that there is no single approach to understanding the issue. The author improves the organizational and methodological support of internal audit of expenditures on the fixed assets repair and modernization that forms the accurate information for management repair and modernization of fixed assets. The paper specifies the goals and objectives of internal expenditures on repair and modernization of fixed assets, depending on the sources of such facilities to the company, allowing the author to determine the documentary control methods to be applied by an auditor to perform each task. The article determines the areas of risk components of internal control that can lead to ineffective implementation of authority by officials of an enterprise in the process of fixed assets repair, which can cause inefficient use of resources and, consequently, decrease in the efficiency of the work of fixed assets repair and modernization. The author proposes the list of auditor’s questions to assess the internal control system in the repair of fixed assets and these questions will help identify the significant drawbacks of control means.

  14. Parametric study on patch repaired CFRP laminates using FEA

    Energy Technology Data Exchange (ETDEWEB)

    Kashfuddoja, M.; Ramji, M. [Indian Institute of Technology. Engineering Optics Lab. Dept. of Mechanical Engineering, Hyderabad (India)

    2012-07-01

    Carbon fibre reinforced plastic (CFRP) composite laminates have become popular for structural applications as they are lighter, stronger and tougher. Composite structures are also susceptible to damage while in service. For improved service life, the damage needs to be repaired so that repair structure integrity is enhanced. Various parameters like patch size and shape, it's layup sequence and adhesive thickness would influence the performance of the repaired structure. In present work, a parametric study is carried out using finite element analysis (FEA) to investigate the influence of various parameters involved in composite repair. The panel is made of carbon / epoxy composite laminate with stacking sequence of (0/{+-}45/900)s and is subjected to tensile load. Damaged CFRP laminates is repaired by symmetrical patch adhesively bonded over the damaged area. Circular patch of different stacking sequence and size is considered. Influence of adhesive material and it's thickness on repair efficiency is also investigated. The influence of various repair parameters on peel stress is also analysed. (Author)

  15. Regulation of nucleotide excision repair through ubiquitination

    Institute of Scientific and Technical Information of China (English)

    Jia Li; Audesh Bhat; Wei Xiao

    2011-01-01

    Nucleotide excision repair (NER) is the most versatile DNA-repair pathway in all organisms.While bacteria require only three proteins to complete the incision step of NER,eukaryotes employ about 30 proteins to complete the same step.Here we summarize recent studies demonstrating that ubiquitination,a post-translational modification,plays critical roles in regulating the NER activity either dependent on or independent of ubiquitin-proteolysis.Several NER components have been shown as targets of ubiquitination while others are actively involved in the ubiquitination process.We argue through this analysis that ubiquitination serves to coordinate various steps of NER and meanwhile connect NER with other related pathways to achieve the efficient global DNA-damage response.

  16. Improving Aviation Depot Level Repairable (AVDLR) Inventory and Repair Management

    National Research Council Canada - National Science Library

    Baird, Dennis

    1997-01-01

    .... Additionally, research was conducted to document the management process for determining repair requirements at the Naval Inventory Control Point Philadelphia and how those requirements are accepted...

  17. High LET radiation and mechanism of DNA damage repair

    International Nuclear Information System (INIS)

    Furusawa, Yoshiya

    2004-01-01

    Clarifying the mechanism of repair from radiation damage gives most important information on radiation effects on cells. Approximately 10% of biological experiments groups in Heavy Ion Medical Accelerator in Chiba (HIMAC) cooperative research group has performed the subject. They gave a lot of new findings on the mechanism, and solved some open questions. The reason to show the peak of relative biological effectiveness RBE at around 100-200 keV/μm causes miss-repair of DNA damage. Sub-lethal damage generated by high linear energy transfer (LET) radiation can be repaired fully. Potentially lethal damages by high-LET radiation also repaired, but the efficiency decreased with the LET, and so on. (author)

  18. Regulation of DNA repair processes in mammalian cell

    International Nuclear Information System (INIS)

    Bil'din, V.N.; Sergina, T.B.; Zhestyanikov, V.D.

    1992-01-01

    A study was made of the repair of ionizing radiation-induced DNA single-strand breaks (SSB) in proliferating and quiescent mouse Swiss 3T6 cells and in those stimulated from the quiet status by epidermal growth factor in combination with insulin, in the presence of specific inhibitors of DNA polymerase α and β (aphidicolin) and DNA polymerase β (2', 3'-dideoxythjymidine-5'-triphosphate). The repair of DNA SSB induced by X-ray-irradiation (10 Gy) or by γ-ray irradiation (150 Gy) is more sensitive to aphidicolin and mitogen-simulated cells three times stronger than in proliferating cells. The influence of 2', 3'-dideoxythymidine-5'-triphosphate on the rate of DNA SSB repair in cells of all the three types does not differ. Thus, the decrease in DNA repair efficiency in quiescent cells is connected with a decrease in the activity of aphidicolin-sensitive DNA polymerase, apparently DNA polymerase α

  19. When is cartilage repair successful?

    International Nuclear Information System (INIS)

    Raudner, M.; Roehrich, S.; Zalaudek, M.; Trattnig, S.; Schreiner, M.M.

    2017-01-01

    Focal cartilage lesions are a cause of long-term disability and morbidity. After cartilage repair, it is crucial to evaluate long-term progression or failure in a reproducible, standardized manner. This article provides an overview of the different cartilage repair procedures and important characteristics to look for in cartilage repair imaging. Specifics and pitfalls are pointed out alongside general aspects. After successful cartilage repair, a complete, but not hypertrophic filling of the defect is the primary criterion of treatment success. The repair tissue should also be completely integrated to the surrounding native cartilage. After some months, the transplants signal should be isointense compared to native cartilage. Complications like osteophytes, subchondral defects, cysts, adhesion and chronic bone marrow edema or joint effusion are common and have to be observed via follow-up. Radiological evaluation and interpretation of postoperative changes should always take the repair method into account. (orig.) [de

  20. Modeling of DNA damage-cluster, cell-cycle and repair pathway dependent radiosensitivity after low- and high-LET irradiation

    International Nuclear Information System (INIS)

    Guenther, Paul

    2017-01-01

    This work focuses on modeling of the effects of ionizing radiation on cells, primarily on, the influence of the DNA repair pathway availability and the radiation quality on the cell-survival probability. The availability of DNA repair pathways depends on the replication state and defects of the DNA repair pathways. The radiation quality manifests itself in the microscopic ionization pattern. The Giant LOop Binary LEsion (GLOBLE) model and the Local Effect Model (LEM) describe the cell-survival after photon and ion irradiation, respectively. Both models assume that cell survival can be modeled based on the spatial distribution of Double-Strand Breaks (DSB) of the DNA (damage pattern), within a higher order chromatin structure. Single DSB are referred to as isolated DSB (iDSB) and two or more DSB in close proximity (within 540 nm) are called complex DSB (cDSB). In order to predict the cell-survival, the GLOBLE-Model considers different iDSB repair-pathways and their availability. One central assumption of the LEM is that the same damage patterns imply same effects, regardless of the radiation quality. In order to predict the damage pattern the microscopic local dose distribution of ions, described by the amorphous track structure, is evaluated. The cell survival after ion irradiation is predicted from a comparison with corresponding damage patterns after photon irradiation. The cell-survival curves after high dose photon irradiation cannot be predicted from the Linear Quadratic (LQ) Model due to their transition towards a linear dose dependence. This work uses the GLOBLE-Model to introduce a novel mechanistic approach, which allows the threshold dose to be predicted for the transition from a linear quadratic dose dependence, of survival curves at low doses, to a linear dose dependence at high doses. Furthermore, a method is presented, which allows LEM to predict the survival of synchronous cells after ion irradiation based on the cell survival after photon

  1. Assessment of single nucleotide polymorphisms in screening 52 DNA repair and cell cycle control genes in Fanconi anemia patients

    Directory of Open Access Journals (Sweden)

    Petrović Sandra

    2015-01-01

    Full Text Available Fanconi anemia (FA is a rare genetically heterogeneous disorder associated with bone marrow failure, birth defects and cancer susceptibility. Apart from the disease- causing mutations in FANC genes, the identification of specific DNA variations, such as single nucleotide polymorphisms (SNPs, in other candidate genes may lead to a better clinical description of this condition enabling individualized treatment with improvement of the prognosis. In this study, we have assessed 95 SNPs located in 52 key genes involved in base excision repair (BER, nucleotide excision repair (NER, mismatch repair (MMR, double strand break (DSB repair and cell cycle control using a DNA repair chip (Asper Biotech, Estonia which includes most of the common variants for the candidate genes. The SNP genotyping was performed in five FA-D2 patients and in one FA-A patient. The polymorphisms studied were synonymous (n=10, nonsynonymous (missense (n=52 and in non-coding regions of the genome (introns and 5 ‘and 3’ untranslated regions (UTR (n=33. Polymorphisms found at the homozygous state are selected for further analysis. Our results have shown a significant inter-individual variability among patients in the type and the frequency of SNPs and also elucidate the need for further studies of polymorphisms located in ATM, APEX APE 1, XRCC1, ERCC2, MSH3, PARP4, NBS1, BARD1, CDKN1B, TP53 and TP53BP1 which may be of great importance for better clinical description of FA. In addition, the present report recommends the use of SNPs as predictive and prognostic genetic markers to individualize therapy of FA patients. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  2. Development of Guidelines for In-Situ Repair of SLS-Class Composite Flight Hardware

    Science.gov (United States)

    Weber, Thomas P., Jr.; Cox, Sarah B.

    2018-01-01

    The purpose of composite repair development at KSC (John F. Kennedy Space Center) is to provide support to the CTE (Composite Technology for Exploration) project. This is a multi-space center effort with the goal of developing bonded joint technology for SLS (Space Launch System) -scale composite hardware. At KSC, effective and efficient repair processes need to be developed to allow for any potential damage to composite components during transport or launch preparation. The focus of the composite repair development internship during the spring of 2018 was on the documentation of repair processes and requirements for process controls based on techniques developed through hands-on work with composite test panels. Three composite test panels were fabricated for the purpose of repair and surface preparation testing. The first panel included a bonded doubler and was fabricated to be damaged and repaired. The second and third panels were both fabricated to be cut into lap-shear samples to test the strength of bond of different surface preparation techniques. Additionally, jointed composite test panels were impacted at MSFC (Marshall Space Flight Center) and analyzed for damage patterns. The observations after the impact tests guided the repair procedure at KSC to focus on three repair methods. With a finalized repair plan in place, future work will include the strength testing of different surface preparation techniques, demonstration of repair methods, and repair of jointed composite test panels being impacted at MSFC.

  3. Engineered Heart Repair.

    Science.gov (United States)

    Fujita, B; Zimmermann, W-H

    2017-08-01

    There is a pressing need for the development of advanced heart failure therapeutics. Current state-of-the-art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell-derived cardiomyocytes via tissue-engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue-engineered heart repair with a focus on engineered heart muscle (EHM). © 2017 American Society for Clinical Pharmacology and Therapeutics.

  4. Effect of an aminothiol (WR-1065) on radiation-induced mutagenesis and cytotoxicity in two repair-deficient mammalian cell lines

    International Nuclear Information System (INIS)

    Grdina, D.J.; Nagy, B.; Meechan, P.J.

    1991-01-01

    WR-2721 and its free thiol WR-1065 have been found to effectively protect against radiation- and/or chemotherapy-induced mutagenesis, transformation and carcinogenesis. With respect to the antimutagenic effect, WR-1065 significantly reduced the frequency of HGPRT mutants even when it was administered up to three hours following exposure of cells to radiation. The mechanisms of action most often attributed to these agents include their ability to scavenge free radicals, enter into chemical repair processes through the donation of hydrogen atoms, and induce intracellular hypoxia by means of auto-oxidative processes. Although evidence exists for each of these processes, none is sufficiently satisfactory to account for the post-irradiation protection of WR-1065 against mutation induction in mammalian cells. The most elegant work describing the role of aminothiols on cellular enzymatic repair processes has focused on well-characterized repair-proficient and -deficient bacterial and yeast cell systems. Protection against radiation-induced cytotoxicity by the aminothiol cysteamine was absent in E. coli cell lines that were characterized as having genetically defective repair systems. Until recently, such studies could not be effectively performed with mammalian cells. However, with the isolation and characterization of rodent cell lines deficient in their ability to repair DNA damage, it is now possible to investigate the role of cell-mediated repair systems on aminothiol radioprotection. Specifically, the authors have investigated the effects of WR-1065 on radiation-induced mutagenesis and cytotoxicity in cell lines EM9 and xrs-5, which are defective in DNA single-strand break (SSB) and double-strand break (DSB) rejoining, respectively. Corresponding parental repair-proficient cell lines, AA8 and K1, were also studied for comparative purposes. 26 refs., 5 figs., 2 tabs

  5. Autologous hematopoietic stem cell transplantation in lymphoma patients is associated with a decrease in the double strand break repair capacity of peripheral blood lymphocytes.

    Science.gov (United States)

    Lacoste, Sandrine; Bhatia, Smita; Chen, Yanjun; Bhatia, Ravi; O'Connor, Timothy R

    2017-01-01

    Patients who undergo autologous hematopoietic stem cell transplantation (aHCT) for treatment of a relapsed or refractory lymphoma are at risk of developing therapy related- myelodysplasia/acute myeloid leukemia (t-MDS/AML). Part of the risk likely resides in inherent interindividual differences in their DNA repair capacity (DRC), which is thought to influence the effect chemotherapeutic treatments have on the patient's stem cells prior to aHCT. Measuring DRC involves identifying small differences in repair proficiency among individuals. Initially, we investigated the cell model in healthy individuals (primary lymphocytes and/or lymphoblastoid cell lines) that would be appropriate to measure genetically determined DRC using host-cell reactivation assays. We present evidence that interindividual differences in DRC double-strand break repair (by non-homologous end-joining [NHEJ] or single-strand annealing [SSA]) are better preserved in non-induced primary lymphocytes. In contrast, lymphocytes induced to proliferate are required to assay base excision (BER) or nucleotide excision repair (NER). We established that both NHEJ and SSA DRCs in lymphocytes of healthy individuals were inversely correlated with the age of the donor, indicating that DSB repair in lymphocytes is likely not a constant feature but rather something that decreases with age (~0.37% NHEJ DRC/year). To investigate the predictive value of pre-aHCT DRC on outcome in patients, we then applied the optimized assays to the analysis of primary lymphocytes from lymphoma patients and found that individuals who later developed t-MDS/AML (cases) were indistinguishable in their DRC from controls who never developed t-MDS/AML. However, when DRC was investigated shortly after aHCT in the same individuals (21.6 months later on average), aHCT patients (both cases and controls) showed a significant decrease in DSB repair measurements. The average decrease of 6.9% in NHEJ DRC observed among aHCT patients was much higher

  6. Autologous hematopoietic stem cell transplantation in lymphoma patients is associated with a decrease in the double strand break repair capacity of peripheral blood lymphocytes.

    Directory of Open Access Journals (Sweden)

    Sandrine Lacoste

    Full Text Available Patients who undergo autologous hematopoietic stem cell transplantation (aHCT for treatment of a relapsed or refractory lymphoma are at risk of developing therapy related- myelodysplasia/acute myeloid leukemia (t-MDS/AML. Part of the risk likely resides in inherent interindividual differences in their DNA repair capacity (DRC, which is thought to influence the effect chemotherapeutic treatments have on the patient's stem cells prior to aHCT. Measuring DRC involves identifying small differences in repair proficiency among individuals. Initially, we investigated the cell model in healthy individuals (primary lymphocytes and/or lymphoblastoid cell lines that would be appropriate to measure genetically determined DRC using host-cell reactivation assays. We present evidence that interindividual differences in DRC double-strand break repair (by non-homologous end-joining [NHEJ] or single-strand annealing [SSA] are better preserved in non-induced primary lymphocytes. In contrast, lymphocytes induced to proliferate are required to assay base excision (BER or nucleotide excision repair (NER. We established that both NHEJ and SSA DRCs in lymphocytes of healthy individuals were inversely correlated with the age of the donor, indicating that DSB repair in lymphocytes is likely not a constant feature but rather something that decreases with age (~0.37% NHEJ DRC/year. To investigate the predictive value of pre-aHCT DRC on outcome in patients, we then applied the optimized assays to the analysis of primary lymphocytes from lymphoma patients and found that individuals who later developed t-MDS/AML (cases were indistinguishable in their DRC from controls who never developed t-MDS/AML. However, when DRC was investigated shortly after aHCT in the same individuals (21.6 months later on average, aHCT patients (both cases and controls showed a significant decrease in DSB repair measurements. The average decrease of 6.9% in NHEJ DRC observed among aHCT patients was

  7. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    Science.gov (United States)

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  8. Promoting peripheral myelin repair.

    Science.gov (United States)

    Zhou, Ye; Notterpek, Lucia

    2016-09-01

    Compared to the central nervous system (CNS), peripheral nerves have a remarkable ability to regenerate and remyelinate. This regenerative capacity to a large extent is dependent on and supported by Schwann cells, the myelin-forming glial cells of the peripheral nervous system (PNS). In a variety of paradigms, Schwann cells are critical in the removal of the degenerated tissue, which is followed by remyelination of newly-regenerated axons. This unique plasticity of Schwann cells has been the target of myelin repair strategies in acute injuries and chronic diseases, such as hereditary demyelinating neuropathies. In one approach, the endogenous regenerative capacity of Schwann cells is enhanced through interventions such as exercise, electrical stimulation or pharmacological means. Alternatively, Schwann cells derived from healthy nerves, or engineered from different tissue sources have been transplanted into the PNS to support remyelination. These transplant approaches can then be further enhanced by exercise and/or electrical stimulation, as well as by the inclusion of biomaterial engineered to support glial cell viability and neurite extension. Advances in our basic understanding of peripheral nerve biology, as well as biomaterial engineering, will further improve the functional repair of myelinated peripheral nerves. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mapping of repair genes

    International Nuclear Information System (INIS)

    Hori, Tadaaki

    1985-01-01

    Chromosome mapping of repair genes involved in U.V. sensitivity is reported. Twenty-three of 25 hybrid cells were resistant to U.V. light. Survival curves of 2 U.V.-resistant cell strains, which possessed mouse chromosomes and human chromosome No.7 - 16, were similar to those of wild strain (L5178Y). On the other hand, survival curves of U.V.-sensitive hybrid cells was analogous to those of Q31. There was a definitive difference in the frequency of inducible chromosome aberrations between U.V. resistant and sensitive mouse-human hybrid cells. U.V.-resistant cell strains possessed the ability of excision repair. Analysis of karyotype in hybrid cells showed that the difference in U.V. sensitivity is dependent upon whether or not human chromosome No.13 is present. Synteny test on esterase D-determining locus confirmed that there is an agreement between the presence of chromosome No.13 and the presence of human esterase D activity. These results led to a conclusion that human genes which compensate recessive character of U.V.-sensitive mutant strain, Q31, with mouse-human hybrid cells are located on the locus of chromosome No.13. (Namekawa, K.)

  10. Pulpal progenitors and dentin repair.

    Science.gov (United States)

    Harichane, Y; Hirata, A; Dimitrova-Nakov, S; Granja, I; Goldberg, A; Kellermann, O; Poliard, A

    2011-07-01

    Mesenchymal stem cells are present in the dental pulp. They have been shown to contribute to dentin-like tissue formation in vitro and to participate in bone repair after a mandibular lesion. However, their capacity to contribute efficiently to reparative dentin formation after pulp lesion has never been explored. After pulp exposure, we have identified proliferative cells within 3 zones. In the crown, zone I is near the cavity, and zone II corresponds to the isthmus between the mesial and central pulp. In the root, zone III, near the apex, at a distance from the inflammatory site, contains mitotic stromal cells which may represent a source of progenitor cells. Stem-cell-based strategies are promising treatments for tissue injury in dentistry. Our experiments focused on (1) location of stem cells induced to leave their quiescent state early after pulp injury and (2) implantation of pulp progenitors, a substitute for classic endodontic treatments, paving the way for pulp stem-cell-based therapies.

  11. Handbook of adhesive bonded structural repair

    CERN Document Server

    Wegman, Raymond F

    1992-01-01

    Provides repair methods for adhesive bonded and composite structures; identifies suitable materials and equipment for repairs; describes damage evaluation criteria and techniques, and methods of inspection before and after repair.

  12. [Constitutional mismatch repair deficiency syndrome

    NARCIS (Netherlands)

    Jongmans, M.C.J.; Gidding, C.E.M.; Loeffen, J.; Wesseling, P.; Mensenkamp, A.; Hoogerbrugge, N.

    2015-01-01

    BACKGROUND: Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. CASE DESCRIPTION: An 8-year-old

  13. Clamp wins pipe repair prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-04-01

    This paper describes the permanent pipeline repair system, developed by Tekmar, which is powered by seawater hydraulics and is easily installed and tested by any workclass remotely operated vehicle (rov). Details are given of the two main components of the system, namely, the diverless high pressure split repair clamp and the rov-operated tool to install it.

  14. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  15. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  16. The journey of DNA repair

    OpenAIRE

    Saini, Natalie

    2015-01-01

    21 years ago, the DNA Repair Enzyme was declared “Molecule of the Year”. Today, we are celebrating another “year of repair”, with the 2015 Nobel Prize in Chemistry being awarded to Aziz Sancar, Tomas Lindahl and Paul Modrich for their collective work on the different DNA repair pathways.

  17. DNA replication and repair in Tilapia cells. 1. The effect of ultraviolet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yew, F.H.; Chang, L.M. (National Taiwan Univ., Taipei (China))

    1984-12-01

    The effect of ultraviolet radiation on a cell line established from the warm water fish Tilapia has been assessed by measuring the rate of DNA synthesis, excision repair, post-replication repair and cell survival. The cells tolerate ultraviolet radiation better than mammalian cells with respect to DNA synthesis, post-replication repair and cell survival. They are also efficient in excision repair, which in other fish cell lines has been found to be at a low level or absent. Their response to the inhibitors hydroxyurea and 1-..beta..-D-arabinofuranosylcytosine is less sensitive than that of other cell lines, yet the cells seem to have very small pools of DNA precursor.

  18. Procedures for maintenance and repairs

    International Nuclear Information System (INIS)

    Pickel, E.

    1981-01-01

    After a general review of the operation experience in the history of more than 12 operating years, the organization in the plant will be shown with special aspect to quality assurance, capacity of the workshops and connected groups as radiation protection, chemical laboratories etc. The number, time intervals and manpower effort for the repeating tests will be discussed. Reasons and examples for back-fitting activities in the plant are given. Besides special repair and maintenance procedures as repair of the steam generators, in-service inspection of the reactor pressure vessel, repair of a feed-water pipe and repair of the core structure in the pressure vessel, the general system to handle maintenance and repair-work in the KWO-plant will be shown. This includes also the detailed planning of the annual refueling and revision of the plant. (orig./RW)

  19. Aspects of DNA repair and nucleotide pool imbalance

    Energy Technology Data Exchange (ETDEWEB)

    Holliday, R.

    1985-01-01

    Evidence that optimum repair depends on adequate pools of deoxynucleotide triphosphates (dNTPs) comes from the study of pyrimidine auxotrophs of Ustilago maydis. These strains are sensitive to UV light and X-rays, and for pyr1-1 it has been shown that the intracellular concentration of dTTP is reduced about 7-fold. The survival curve of pyr1-1 after UV-treatment, and split dose experiments with wild-type cells, provide evidence for an inducible repair mechanism, which probably depends on genetic recombination. Although inducible repair saves cellular resources, it has the disadvantage of becoming ineffective at doses which are high enough to inactivate the repressed structural gene(s) for repair enzymes. It is clear that a wide variety of repair mechanisms have evolved to remove lesions which arise either spontaneously or as a result of damage from external agents. Nevertheless, it would be incorrect to assume that all species require all possible pathways of repair. It is now well established that the accuracy of DNA and protein synthesis depends on proof-reading or editing mechanisms. Optimum accuracy levels will evolve from the balance between error avoidance in macromolecular synthesis and physiological efficiency in growth and propagation.

  20. Xeroderma Pigmentosum: defective DNA repair causes skin cancer and neurodegeneration

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1988-01-01

    Xeroderma pigmentosum is a rare autosomal recessive disease with numerous malignancies on sun-exposed areas of the skin and eye because of an inability to repair DNA damage inflicted by harmful ultraviolet (UV) radiation of the sun. Because it is the only disease in which cancer is known to result from defective DNA repair, XP has received intense clinical and biochemical study during the last two decades. Furthermore, some patients with XP develop a primary neuronal degeneration, probably due to the inability of nerve cells to repair damage to their DNA caused by intraneuronal metabolites and physicochemical events that mimic the effects of UV radiation. Studies of XP neurodegeneration and DNA-repair defects have led to the conclusion that efficient DNA repair is required to prevent premature death of human nerve cells. Since XP neurodegeneration has similarities to premature death of nerve cells that occurs in such neurodegenerative disorders, XP may be the prototype for these more common neurodegenerations. Recent studies indicate that these degenerations also may have DNA-repair defects

  1. Efficiency in man-machine communication

    NARCIS (Netherlands)

    Haakma, R.; Engel, F.L.

    1990-01-01

    Expressed in terms of speed and accuracy, intention transfer in goal-oriented inter-human communication can be very efficient. One of the mechanisms that make for efficient communication is early detection and repair of communication errors. Another important efficiency mechanism prevents repeated

  2. Wound repair in Pocillopora

    Science.gov (United States)

    Rodríguez-Villalobos, Jenny Carolina; Work, Thierry M.; Calderon-Aguileraa, Luis Eduardo

    2016-01-01

    Corals routinely lose tissue due to causes ranging from predation to disease. Tissue healing and regeneration are fundamental to the normal functioning of corals, yet we know little about this process. We described the microscopic morphology of wound repair in Pocillopora damicornis. Tissue was removed by airbrushing fragments from three healthy colonies, and these were monitored daily at the gross and microscopic level for 40 days. Grossly, corals healed by Day 30, but repigmentation was not evident at the end of the study (40 d). On histology, from Day 8 onwards, tissues at the lesion site were microscopically indistinguishable from adjacent normal tissues with evidence of zooxanthellae in gastrodermis. Inflammation was not evident. P. damicornis manifested a unique mode of regeneration involving projections of cell-covered mesoglea from the surface body wall that anastomosed to form gastrovascular canals.

  3. Repairing Nanoparticle Surface Defects.

    Science.gov (United States)

    Marino, Emanuele; Kodger, Thomas E; Crisp, Ryan W; Timmerman, Dolf; MacArthur, Katherine E; Heggen, Marc; Schall, Peter

    2017-10-23

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We utilized atomically thin semiconductor nanoplatelets as a convenient platform for studying, both microscopically and spectroscopically, the development of defects during ligand exchange with the conductive ligands Na 4 SnS 4 and (NH 4 ) 4 Sn 2 S 6 . These defects can be repaired via mild chemical or thermal routes, through the addition of L-type ligands or wet annealing, respectively. This results in a higher-quality, conductive, colloidally stable nanomaterial that may be used as the active film in optoelectronic devices. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Altered DNA repair, oxidative stress and antioxidant status

    Indian Academy of Sciences (India)

    Coronary artery disease (CAD) is a multifactorial disease caused by the interplay of environmental risk factors with multiple predisposing genes. The present study was undertaken to evaluate the role of DNA repair efficiency and oxidative stress and antioxidant status in CAD patients. Malonaldehyde (MDA), which is an ...

  5. Tissue repair capacity and repair kinetics deduced from multifractionated or continuous irradiation regimens with incomplete repair

    International Nuclear Information System (INIS)

    Thames, H.D. Jr.; Peters, L.J.

    1984-01-01

    A model is proposed for cell survival after multiple doses, when the interfraction interval is insufficient for complete Elkind repair. In the limit of ever-increasing number of ever-smaller fractional doses, the model transforms into the accumulation model of survival after continuous irradiation. When adapted to describe tissue responses to isoeffective multifractionated regimens, wherein repair is incomplete, a generalization of the usually linear plot of reciprocal total dose versus dose per fraction is obtained, in which downward curvature is evident. There is an advantage in studying tissue responses to multifractionated regimens with incomplete repair in the interfraction intervals, or continuous exposures at various dose rates since, in addition to determination of repair capacity, there is an estimate of repair kinetics. Results of analyses of previously published data are presented as illustration. Estimated from the response of three acutely responding normal tissues in the mouse (jejunum, colon and bone marrow), repair halftimes ranged from 0.3-0.9 h and values of β/delta were approximately 0.1 Gy -1 . From the response of mouse lung (LD50 for pneumonitis) to multifractionated regimens with incomplete repair, the repair halftime was estimated at 1.5 h and β/delta was 0.27 Gy -1 . In the rat spinal cord β/delta was 0.7 Gy -1 and Tsub(1/2) was 1.5 h. (U.K.)

  6. p53 regulates the repair of DNA double-strand breaks by both homologous and non-homologous recombination

    International Nuclear Information System (INIS)

    Willers, H.; Powell, S.N.; Dahm-Daphi, J.

    2003-01-01

    Full text: p53 is known to suppress spontaneous homologous recombination (HR), while its role in non-homologous recombination (NHR) remains to be clarified. Here, we sought to determine the influence of p53 on the repair of chromosomal double-strand breaks (DSBs) by HR or NHR using specially designed recombination substrates that integrate into the genome. Isogenic mouse fibroblast pairs with or without expression of exogenous p53 protein were utilized. A reporter plasmid carrying a mutated XGPRT gene was chromosomally integrated and DSBs were generated within the plasmid by the I-SceI endonuclease. Subsequent homology-mediated repair from an episomal donor resulted in XGPRT reconstitution and cellular resistance to a selection antibiotic. Analogously, the repair of chromosomal I-SceI breaks by NHR using another novel reporter plasmid restored XGPRT translation. For p53-null cells, the mean frequency of I-SceI break repair via HR was 5.5 x 10 -4 . The p53-Val135 mutant, which previously has been shown to suppress spontaneous HR by 14-fold employing the same cell system and reporter gene, only caused a 2- to 3-fold suppression of break-induced HR. In contrast, a dramatic effect of p53 on repair via NHR was found. Preliminary sequence analysis indicated that there was at least a 1000-fold reduction of illegitimate repair events resulting in loss of sequence at the break sites. The observed effects were mediated by p53 mutants defective in regulation of the cell-cycle and apoptosis. The main findings were: (1) p53 virtually blocked illegitimate rejoining of chromosomal ends. (2) The suppression of homologous DSB repair was less pronounced than the inhibition of spontaneous HR. We hypothesize that p53 allows to a certain extent error-free homology-dependent repair to proceed, while blocking error-prone NHR. The data support and extent a previous model, in which p53 maintains genomic stability by regulating recombination independently of its transactivation function

  7. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Ian R Kelsall

    Full Text Available The many proteins that function in the Fanconi anaemia (FA monoubiquitylation pathway initiate replicative DNA crosslink repair. However, it is not clear whether individual FA genes participate in DNA repair pathways other than homologous recombination and translesion bypass. Here we show that avian DT40 cell knockouts of two integral FA genes--UBE2T and FANCM are unexpectedly sensitive to UV-induced DNA damage. Comprehensive genetic dissection experiments indicate that both of these FA genes collaborate to promote nucleotide excision repair rather than translesion bypass to protect cells form UV genotoxicity. Furthermore, UBE2T deficiency impacts on the efficient removal of the UV-induced photolesion cyclobutane pyrimidine dimer. Therefore, this work reveals that the FA pathway shares two components with nucleotide excision repair, intimating not only crosstalk between the two major repair pathways, but also potentially identifying a UBE2T-mediated ubiquitin-signalling response pathway that contributes to nucleotide excision repair.

  8. Repair & Strengthening of Distressed/Damaged Ends of Prestressed Beams with FRP Composites

    Science.gov (United States)

    2018-02-01

    Over the past few decades, fiber reinforced polymer (FRP) composites have emerged as a lightweight and efficient material used for the repair and retrofit of concrete infrastructures. FRP can be applied to concrete as either externally bonded laminat...

  9. The diversity of myeloid immune cells shaping wound repair and fibrosis in the lung

    NARCIS (Netherlands)

    Florez-Sampedro, Laura; Song, Shanshan; Melgert, Barbro N

    In healthy circumstances the immune system coordinates tissue repair responses in a tight balance that entails efficient inflammation for removal of potential threats, proper wound closure, and regeneration to regain tissue function. Pathological conditions, continuous exposure to noxious agents,

  10. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  11. New Surface-Treatment Technique of Concrete Structures Using Crack Repair Stick with Healing Ingredients.

    Science.gov (United States)

    Ahn, Tae-Ho; Kim, Hong-Gi; Ryou, Jae-Suk

    2016-08-04

    This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C 12 A₇), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency.

  12. Repair of single-strand breaks induced in the DNA of Proteus mirabilis by excision repair after UV-irradiation

    International Nuclear Information System (INIS)

    Stoerl, K.; Mund, C.

    1977-01-01

    Single-strand breaks have been produced in the DNA of P. mirabilis after UV-irradiation in dependence on the incident UV-doses. It has been found that there exists a discrepancy between the single-strand breaks estimated from sedimentation in alkaline sucrose gradients and the expected single-strand breaks approximated from measurements of dimer excision. The low number in incision breaks observed by sedimentation experiments is an indication that the cells are able to repair the excision-induced breaks as fast as they are formed. Toluenized cells have been used for investigation of the incision step independently of subsequent repair processes. In presence of NMN the appearance of more single-strand breaks in the DNA has been observed. Furthermore, the number of incision breaks in toluenized cells increased in presence of exogenous ATP. The completion of the excision repair process has been investigated by observing the rejoining of incision breaks. After irradiation with UV-doses higher than approximately 240 erg/mm 2 the number of single-strand breaks remaining unrepaired in the DNA increased. Studies of the influence of nutrition conditions on the repair process have shown approximately the same capacity for repair of single-strand breaks in growth medium as well as in buffer. Progress in the excision repair was also followed by investigation of the DNA synthesized at the template-DNA containing the pyrimidine dimers. In comparison with E. coli, P. mirabilis showed a somewhat lower efficiency for the repair of single-strand breaks during the excision repair. (author)

  13. Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Suvi Jain

    2016-04-01

    Full Text Available Correct repair of DNA double-strand breaks (DSBs is critical for maintaining genome stability. Whereas gene conversion (GC-mediated repair is mostly error-free, repair by break-induced replication (BIR is associated with non-reciprocal translocations and loss of heterozygosity. We have previously shown that a Recombination Execution Checkpoint (REC mediates this competition by preventing the BIR pathway from acting on DSBs that can be repaired by GC. Here, we asked if the REC can also determine whether the ends that are engaged in a GC-compatible configuration belong to the same break, since repair involving ends from different breaks will produce potentially deleterious translocations. We report that the kinetics of repair are markedly delayed when the two DSB ends that participate in GC belong to different DSBs (termed Trans compared to the case when both DSB ends come from the same break (Cis. However, repair in Trans still occurs by GC rather than BIR, and the overall efficiency of repair is comparable. Hence, the REC is not sensitive to the "origin" of the DSB ends. When the homologous ends for GC are in Trans, the delay in repair appears to reflect their tethering to sequences on the other side of the DSB that themselves recombine with other genomic locations with which they share sequence homology. These data support previous observations that the two ends of a DSB are usually tethered to each other and that this tethering facilitates both ends encountering the same donor sequence. We also found that the presence of homeologous/repetitive sequences in the vicinity of a DSB can distract the DSB end from finding its bona fide homologous donor, and that inhibition of GC by such homeologous sequences is markedly increased upon deleting Sgs1 but not Msh6.

  14. DNA repair in DNA-polymerase-deficient mutants of Escherichia coli

    International Nuclear Information System (INIS)

    Smith, D.W.; Tait, R.C.; Harris, A.L.

    1975-01-01

    Escherichia coli mutants deficient in DNA polymerase I, in DNA polymerases I and II, or in DNA polymerase III can efficiently and completely execute excision-repair and postreplication repair of the uv-damaged DNA at 30 0 C and 43 0 C when assayed by alkaline sucrose gradients. Repair by Pol I - and Pol I - , Pol II - cells is inhibited by 1-β-D-arabinofuranosylcytosine (araC) at 43 0 C but not at 30 0 C, whereas that by Pol III - cells is insensitive to araC at any temperature. Thus, either Pol I or Pol III is required for complete and efficient repair, and in their absence Pol II mediates a limited, incomplete dark repair of uv-damaged DNA

  15. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  16. Monogenic diseases of DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Bakula, Daniela; Scheibye-Knudsen, Morten

    2017-01-01

    Maintaining the stability of the genome is essential for all organisms, and it is not surprising that damage to DNA has been proposed as an explanation for multiple chronic diseases.1-5 Conserving a pristine genome is therefore of central importance to our health. To overcome the genotoxic stress...... of a growing number of human diseases. Notably, many of these monogenic DNA-repair disorders display features of accelerated aging, supporting the notion that genome maintenance is a key factor for organismal longevity. This review focuses on the physiological consequences of loss of DNA repair, particularly...... in the context of monogenic DNA-repair diseases....

  17. Repairing and Upgrading Your PC

    CERN Document Server

    Thompson, Robert

    2009-01-01

    Repairing and Upgrading Your PC delivers start-to-finish instructions, simple enough for even the most inexperienced PC owner, for troubleshooting, repairing, and upgrading your computer. Written by hardware experts Robert Bruce Thompson and Barbara Fritchman Thompson, this book covers it all: how to troubleshoot a troublesome PC, how to identify which components make sense for an upgrade, and how to tear it all down and put it back together. This book shows how to repair and upgrade all of your PC's essential components.

  18. 40 CFR 798.5500 - Differential growth inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA...

    Science.gov (United States)

    2010-07-01

    ... repair proficient and repair deficient bacteria: âBacterial DNA damage or repair tests.â 798.5500 Section... inhibition of repair proficient and repair deficient bacteria: “Bacterial DNA damage or repair tests.” (a... killing or growth inhibition of repair deficient bacteria in a set of repair proficient and deficient...

  19. Controlling meiotic recombinational repair - specifying the roles of ZMMs, Sgs1 and Mus81/Mms4 in crossover formation.

    Directory of Open Access Journals (Sweden)

    Ashwini Oke

    2014-10-01

    Full Text Available Crossovers (COs play a critical role in ensuring proper alignment and segregation of homologous chromosomes during meiosis. How the cell balances recombination between CO vs. noncrossover (NCO outcomes is not completely understood. Further lacking is what constrains the extent of DNA repair such that multiple events do not arise from a single double-strand break (DSB. Here, by interpreting signatures that result from recombination genome-wide, we find that synaptonemal complex proteins promote crossing over in distinct ways. Our results suggest that Zip3 (RNF212 promotes biased cutting of the double Holliday-junction (dHJ intermediate whereas surprisingly Msh4 does not. Moreover, detailed examination of conversion tracts in sgs1 and mms4-md mutants reveal distinct aberrant recombination events involving multiple chromatid invasions. In sgs1 mutants, these multiple invasions are generally multichromatid involving 3-4 chromatids; in mms4-md mutants the multiple invasions preferentially resolve into one or two chromatids. Our analysis suggests that Mus81/Mms4 (Eme1, rather than just being a minor resolvase for COs is crucial for both COs and NCOs in preventing chromosome entanglements by removing 3'- flaps to promote second-end capture. Together our results force a reevaluation of how key recombination enzymes collaborate to specify the outcome of meiotic DNA repair.

  20. Innovative repair of subsidence damage

    International Nuclear Information System (INIS)

    Marino, G.G.

    1992-01-01

    In order to improve handling of subsidence damages the Illinois Mine Subsidence Insurance Fund supported the development of novel cost-effective methods of repair. The research in developing the repairs was directed towards the most common and costly damages that had been observed. As a result repair techniques were designed for structurally cracked foundations in the tension zone; structurally cracked foundations in the compression zone; and damaged or undamaged tilted foundations. When appropriate the postulated methods would result in: 1. significant cost savings (over conventional procedures); 2. a structural capacity greater than when the foundation was uncracked; and 3. an aesthetic appeal. All the postulated repair methodologies were laboratory and/or field tested. This paper will summarize the essentials of each technique developed and the test results

  1. Umbilical hernia repair - series (image)

    Science.gov (United States)

    ... treatment. The indications for umbilical hernia repair include: incarcerated (strangulated) umbilical hernia defects not spontaneously closed by 4 to 5 years of age children under 2 with very large defects unacceptable to ...

  2. Mammalian DNA Repair. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard D.

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  3. Canadian company innovates dam repair

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    Successful repair without any downtime, of the Sabana Yegua power and irrigation structure in the western Dominican Republic by Aquatic Sciences Ltd., a St. Catherine, Ontario-based underwater specialist company, is discussed. The structure was damaged by Hurricane George last when when rising water levels damaged a major valve in the control gate chamber. The repair strategy designed by Aquatic Sciences used a remotely operated vehicle with a mechanical arm for minor tasks which placed a specially-made plug into the inlet pipe. The work was completed in one week, saving the utility company a great deal of money by making it possible to make the repairs remotely in the gate chamber without having to drain the tunnel, as would have been necessary had the repair been completed manually. The remotely operated vehicles use a scanning sonar as well as light to find their way. They are particularly well adapted to work underwater under low-visibility conditions

  4. Betonreparationers holdbarhed (Durability of Concrete Repairs)

    DEFF Research Database (Denmark)

    Brimnes, Eydbjørn; Dali, Bogi í; Larsen, Erik Stoklund

    1999-01-01

    Concrete repairs on 11 pillars on bridges built in the sixties and repaired 8 to 9 years ago have been examined. Especially the chloride penetration in the repair concrete have been measured. Chloride penetration in the repair concrete is much lower than in the original concrete....

  5. 40 CFR 63.1005 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1005 Section 63.1005... Standards for Equipment Leaks-Control Level 1 § 63.1005 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected no later than 15 calendar days after it is detected, except as...

  6. 40 CFR 63.1024 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Leak repair. 63.1024 Section 63.1024... Standards for Equipment Leaks-Control Level 2 Standards § 63.1024 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical, but not later than 15 calendar...

  7. 40 CFR 65.105 - Leak repair.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Leak repair. 65.105 Section 65.105... FEDERAL AIR RULE Equipment Leaks § 65.105 Leak repair. (a) Leak repair schedule. The owner or operator shall repair each leak detected as soon as practical but not later than 15 calendar days after it is...

  8. Laparoscopic Repair of Inguinal Hernias

    OpenAIRE

    Carter, Jonathan; Duh, Quan-Yang

    2011-01-01

    For patients with recurrent inguinal hernia, or bilateral inguinal hernia, or for women, laparoscopic repair offers significant advantages over open techniques with regard to recurrence risk, pain, and recovery. For unilateral first-time hernias, either laparoscopic or open repair with mesh can offer excellent results. The major drawback of laparoscopy is that the technique requires a significant number of cases to master. For surgeons in group practice, it makes sense to have one surgeon in ...

  9. Repair Types, Procedures - Part 1

    Science.gov (United States)

    2010-05-01

    Affordable Combat Aircraft, AGARD - CP -600, 1997. [17] Helbling J, Grover R and Ratwani M. M “Analysis and Structural Test of Composite Reinforcement to...considered suitable for the composite patch repair of aluminum structure. Ductile adhesives such as FM- 73 are preferred over brittle adhesives Repair Types...zone. A proper cure cycle is followed as prescribed by the adhesive manufacturer. For FM- 73 adhesive cure at 2500F (1210C) for 120 minutes is

  10. Laparoscopic repair of postoperative perineal hernia.

    LENUS (Irish Health Repository)

    Ryan, Stephen

    2010-01-01

    Perineal hernias are infrequent complications following abdominoperineal operations. Various approaches have been described for repair of perineal hernias including open transabdominal, transperineal or combined abdominoperineal repairs. The use of laparoscopic transabdominal repair of perineal hernias is not well-described. We present a case report demonstrating the benefits of laparoscopic repair of perineal hernia following previous laparoscopic abdominoperineal resection (APR) using a nonabsorbable mesh to repair the defect. We have demonstrated that the use of laparoscopy with repair of the pelvic floor defect using a non absorbable synthetic mesh offers an excellent alternative with many potential advantages over open transabdominal and transperineal repairs.

  11. Overlapping sphincteroplasty and posterior repair.

    Science.gov (United States)

    Crane, Andrea K; Myers, Erinn M; Lippmann, Quinn K; Matthews, Catherine A

    2014-12-01

    Knowledge of how to anatomically reconstruct extensive posterior-compartment defects is variable among gynecologists. The objective of this video is to demonstrate an effective technique of overlapping sphincteroplasty and posterior repair. In this video, a scripted storyboard was constructed that outlines the key surgical steps of a comprehensive posterior compartment repair: (1) surgical incision that permits access to posterior compartment and perineal body, (2) dissection of the rectovaginal space up to the level of the cervix, (3) plication of the rectovaginal muscularis, (4) repair of internal and external anal sphincters, and (5) reconstruction of the perineal body. Using a combination of graphic illustrations and live video footage, tips on repair are highlighted. The goals at the end of repair are to: (1) have improved vaginal caliber, (2) increase rectal tone along the entire posterior vaginal wall, (3) have the posterior vaginal wall at a perpendicular plane to the perineal body, (4) reform the hymenal ring, and (5) not have an overly elongated perineal body. This video provides a step-by-step guide on how to perform an overlapping sphincteroplasty and posterior repair.

  12. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Science.gov (United States)

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  13. Repairing methods of steam turbine blades using welding procedures

    International Nuclear Information System (INIS)

    Mazur, Z.; Cristalinas, V.; Kubiak, J.

    1995-01-01

    The steam turbine blades are subjected to the natural permanent wear or damage, which may be of mechanical or metallurgical origin. The typical damage occurring during the lifetime of turbine blading may be erosion, corrosion, foreign objects damage, rubbing and cracking caused by high cycle fatigue and creep crack growth. The nozzle and diaphragm vanes (stationary blades) of the steam turbine are elements whose damage is commonly occurring and they require special repair processes. The damage of the blade trailing edge of nozzle and diaphragm vanes, due to the former causes, may be refurbished by welding deposits or stainless steel inserts welded to the blades. Both repair methods of the stationary steam turbine blades are presented. The results of the blades refurbishment are an increase of the turbine availability, reliability and efficiency, and a decrease of the risk that failure will occur. Also, the repair cost versus the spare blades cost represent significant reduction of expenditure. 7 refs

  14. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  15. DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection.

    Science.gov (United States)

    Gorna, Alina E; Bowater, Richard P; Dziadek, Jaroslaw

    2010-05-25

    Mycobacteria, including most of all MTB (Mycobacterium tuberculosis), cause pathogenic infections in humans and, during the infectious process, are exposed to a range of environmental insults, including the host's immune response. From the moment MTB is exhaled by infected individuals, through an active and latent phase in the body of the new host, until the time they reach the reactivation stage, MTB is exposed to many types of DNA-damaging agents. Like all cellular organisms, MTB has efficient DNA repair systems, and these are believed to play essential roles in mycobacterial pathogenesis. As different stages of infection have great variation in the conditions in which mycobacteria reside, it is possible that different repair systems are essential for progression to specific phases of infection. MTB possesses homologues of DNA repair systems that are found widely in other species of bacteria, such as nucleotide excision repair, base excision repair and repair by homologous recombination. MTB also possesses a system for non-homologous end-joining of DNA breaks, which appears to be widespread in prokaryotes, although its presence is sporadic within different species within a genus. However, MTB does not possess homologues of the typical mismatch repair system that is found in most bacteria. Recent studies have demonstrated that DNA repair genes are expressed differentially at each stage of infection. In the present review, we focus on different DNA repair systems from mycobacteria and identify questions that remain in our understanding of how these systems have an impact upon the infection processes of these important pathogens.

  16. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  17. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Shikazono, Naoya, E-mail: shikazono.naoya@jaea.go.jp [Japan Atomic Energy Agency, Advanced Research Science Center, 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); O' Neill, Peter [Gray Institute for Radiation Oncology and Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom)

    2009-10-02

    Clustered DNA damage induced by a single radiation track is a unique feature of ionizing radiation. Using a plasmid-based assay in Escherichia coli, we previously found significantly higher mutation frequencies for bistranded clusters containing 7,8-dihydro-8-oxoguanine (8-oxoG) and 5,6-dihydrothymine (DHT) than for either a single 8-oxoG or a single DHT in wild type and in glycosylase-deficient strains of E. coli. This indicates that the removal of an 8-oxoG from a clustered damage site is most likely retarded compared to the removal of a single 8-oxoG. To gain further insights into the processing of bistranded base lesions, several potential repair intermediates following 8-oxoG removal were assessed. Clusters, such as DHT + apurinic/apyrimidinic (AP) and DHT + GAP have relatively low mutation frequencies, whereas clusters, such as AP + AP or GAP + AP, significantly reduce the number of transformed colonies, most probably through formation of a lethal double strand break (DSB). Bistranded AP sites placed 3' to each other with various interlesion distances also blocked replication. These results suggest that bistranded base lesions, i.e., single base lesions on each strand, but not clusters containing only AP sites and strand breaks, are repaired in a coordinated manner so that the formation of DSBs is avoided. We propose that, when either base lesion is initially excised from a bistranded base damage site, the remaining base lesion will only rarely be converted into an AP site or a single strand break in vivo.

  18. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli

    International Nuclear Information System (INIS)

    Shikazono, Naoya; O'Neill, Peter

    2009-01-01

    Clustered DNA damage induced by a single radiation track is a unique feature of ionizing radiation. Using a plasmid-based assay in Escherichia coli, we previously found significantly higher mutation frequencies for bistranded clusters containing 7,8-dihydro-8-oxoguanine (8-oxoG) and 5,6-dihydrothymine (DHT) than for either a single 8-oxoG or a single DHT in wild type and in glycosylase-deficient strains of E. coli. This indicates that the removal of an 8-oxoG from a clustered damage site is most likely retarded compared to the removal of a single 8-oxoG. To gain further insights into the processing of bistranded base lesions, several potential repair intermediates following 8-oxoG removal were assessed. Clusters, such as DHT + apurinic/apyrimidinic (AP) and DHT + GAP have relatively low mutation frequencies, whereas clusters, such as AP + AP or GAP + AP, significantly reduce the number of transformed colonies, most probably through formation of a lethal double strand break (DSB). Bistranded AP sites placed 3' to each other with various interlesion distances also blocked replication. These results suggest that bistranded base lesions, i.e., single base lesions on each strand, but not clusters containing only AP sites and strand breaks, are repaired in a coordinated manner so that the formation of DSBs is avoided. We propose that, when either base lesion is initially excised from a bistranded base damage site, the remaining base lesion will only rarely be converted into an AP site or a single strand break in vivo.

  19. 49 CFR 1242.42 - Administration, repair and maintenance, machinery repair, equipment damaged, dismantling retired...

    Science.gov (United States)

    2010-10-01

    ... repair, equipment damaged, dismantling retired property, fringe benefits, other casualties and insurance, lease rentals, joint facility rents, other rents, depreciation, joint facility, repairs billed to others... maintenance, machinery repair, equipment damaged, dismantling retired property, fringe benefits, other...

  20. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    Science.gov (United States)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track a