SPI drought class prediction using log-linear models applied to wet and dry seasons
Moreira, Elsa E.
2016-08-01
A log-linear modelling for 3-dimensional contingency tables was used with categorical time series of SPI drought class transitions for prediction of monthly drought severity. Standardized Precipitation Index (SPI) time series in 12- and 6-month time scales were computed for 10 precipitation time series relative to GPCC datasets with 2.5° spatial resolution located over Portugal and with 112 years length (1902-2014). The aim was modelling two-month step class transitions for the wet and dry seasons of the year and then obtain probability ratios - Odds - as well as their respective confidence intervals to estimate how probable a transition is compared to another. The prediction results produced by the modelling applied to wet and dry season separately, for the 6- and the 12-month SPI time scale, were compared with the results produced by the same modelling without the split, using skill scores computed for the entire time series length. Results point to good prediction performances ranging from 70 to 80% in the percentage of corrects (PC) and 50-70% in the Heidke skill score (HSS), with the highest scores obtained when the modelling is applied to the SPI12. The adding up of the wet and dry seasons introduced in the modelling brought improvements in the predictions, of about 0.9-4% in the PC and 1.3-6.8% in the HSS, being the highest improvements obtained in the SPI6 application.
Development of A Darcy-flow model applied to simulate the drying of shrinking media
Directory of Open Access Journals (Sweden)
S. Chemkhi
2008-09-01
Full Text Available A mathematical model is developed to describe the coupling between heat, mass, and momentum transfers and is applied to simulate the drying of saturated and shrinking media. This model is called "the Darcy-flow model", which is based on the fact that the liquid flow is induced by a pressure gradient. The main novelties of the model are that firstly no phenomenological law need be introduced by keeping solid mass conservation and solid volume conservation together and secondly we use the effective stresses notion strongly coupling mechanical behaviour with mass transport. The analysis is limited to the preheating and the constant rate drying periods because shrinkage occurs during these two periods for most materials. Our purpose is to simulate the drying process and to compare the results of the simulations and the experiments done on clay material to demonstrate the consistency of the model developed. One of the important conclusions is that is no correlation between moisture flow and moisture gradient.
Global sensitivity analysis applied to drying models for one or a population of granules
DEFF Research Database (Denmark)
Mortier, Severine Therese F. C.; Gernaey, Krist; Thomas, De Beer;
2014-01-01
compared to our earlier work. beta(2) was found to be the most important factor for the single particle model which is useful information when performing model calibration. For the PBM-model, the granule radius and gas temperature were found to be most sensitive. The former indicates that granulator......The development of mechanistic models for pharmaceutical processes is of increasing importance due to a noticeable shift toward continuous production in the industry. Sensitivity analysis is a powerful tool during the model building process. A global sensitivity analysis (GSA), exploring...... sensitivity in a broad parameter space, is performed to detect the most sensitive factors in two models, that is, one for drying of a single granule and one for the drying of a population of granules [using population balance model (PBM)], which was extended by including the gas velocity as extra input...
Choi, Won; Lee, Jee Bum; Cui, Lian; Li, Ying; Li, Zhengri; Choi, Ji Suk; Lee, Hyo Seok; Yoon, Kyung Chul
2016-01-01
Purpose. To investigate the therapeutic effects of topical administration of antioxidant medicinal plant extracts in a mouse model of experimental dry eye (EDE). Methods. Eye drops containing balanced salt solution (BSS) or 0.001%, 0.01%, and 0.1% extracts were applied for the treatment of EDE. Tear volume, tear film break-up time (BUT), and corneal fluorescein staining scores were measured 10 days after desiccating stress. In addition, we evaluated the levels of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, interferon- (IFN-) γ, and IFN-γ associated chemokines, percentage of CD4+C-X-C chemokine receptor type 3 positive (CXCR3+) T cells, goblet cell density, number of 4-hydroxy-2-nonenal (4-HNE) positive cells, and extracellular reactive oxygen species (ROS) production. Results. Compared to the EDE and BSS control groups, the mice treated with topical application of the 0.1% extract showed significant improvements in all clinical parameters, IL-1β, IL-6, TNF-α, and IFN-γ levels, percentage of CD4+CXCR3+ T cells, goblet cell density, number of 4-HNE-positive cells, and extracellular ROS production (P plant extracts improved clinical signs, decreased inflammation, and ameliorated oxidative stress marker and ROS production on the ocular surface of the EDE model mice.
Mathematical and computational modeling simulation of solar drying Systems
Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...
Improvement of water transport mechanisms during potato drying by applying ultrasound.
Ozuna, César; Cárcel, Juan A; García-Pérez, José V; Mulet, Antonio
2011-11-01
The drying rate of vegetables is limited by internal moisture diffusion and convective transport mechanisms. The increase of drying air temperature leads to faster water mobility; however, it provokes quality loss in the product and presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during convective drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve convective drying of potato and quantify the influence of the applied power in the water transport mechanisms. Drying kinetics of potato cubes were increased by the ultrasonic application. The influence of power ultrasound was dependent on the ultrasonic power (from 0 to 37 kW m(-3) ), the higher the applied power, the faster the drying kinetic. The diffusion model considering external resistance to mass transfer provided a good fit of drying kinetics. From modelling, it was observed a proportional and significant (P diffusivity and mass transfer coefficient. The ultrasonic application during drying represents an interesting alternative to traditional convective drying by shortening drying time, which may involve an energy saving concerning industrial applications. In addition, the ultrasonic effect in the water transport is based on mechanical phenomena with a low heating capacity, which is highly relevant for drying heat sensitive materials and also for obtaining high-quality dry products. Copyright © 2011 Society of Chemical Industry.
Mathematical Model for the Continuous Vacuum Drying
Institute of Scientific and Technical Information of China (English)
DAI Hui-liang
2002-01-01
An improved mathematical model for the continuous vacuum drying of highly viscous and heatsensitive foodstuffs was proposed, The process of continuous vacuum drying was presented as a moving boundary problem of moisture evaporation in cylindrical coordinates. Boundary condition of the first kind for the known functional dependence of the drying body surface temperature on time was considered. Finally, the appropriate system of differential equations was solved numerically and the values of drying rate, integral moisture content of the material, moving boundary position as well as temperature in any point of the material and at any moment time were obtained. This procedure was applied to continuous vacuum drying of foods such as natural cheese and fresh meat paste.
Fang, Guor-Cheng; Chang, Chia-Ying
2014-09-01
The main purpose for this study was to monitor ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) in total suspended particulate (TSP) concentration and dry deposition. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) were evaluated using Woods' model at urban and wetland areas for the 2009-2010 period. The results indicated that the mean highest concentrations of metallic elements Mn, Fe, Zn, Cr, Cu and Pb in TSP were found in Chang-Hua (urban) sampling site. And as for the two characteristic sampling sites, the Woods' model exhibits better dry deposition of particulates of 18 µm particle size than the rest of the other particle sizes at any sampling site in this study. The average calculated/measured flux ratios for two seasons (summer and fall) by using Woods model at 2.5, 10 and 18 µm particles sizes were also studied. The results indicated that the average calculated/measured flux ratios orders for two seasons of various particles sizes were all displayed as Fe > Mn > Zn > Cu > Cr > Pb > particle. And these calculated/measured flux ratios orders were Fe > Mn > Cu > Zn > Cr > Pb > particle and were Fe > Mn > Zn > Cu > Cr > particle > Pb, during spring and winter seasons, respectively. Finally, in the spring and summer seasons of Gao-Mei (wetland) sampling site, the average calculated/measured flux ratios using Woods' model was found to be 2.5, 10 and 18 µm, showing the order of the calculated/measured flux ratios to be Fe > Cu > Zn > Mn > Cr > Pb > particle. And the calculated/measured flux ratio orders were Fe > Zn > Mn > Cu > Cr > particle > Pb and were Fe > Cu > Zn > Mn > Cr > particle > Pb for fall and winter season, respectively.
A Mathematical Model for Freeze-Drying
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Based on the experiments on freeze-drying carrot and potato slabs, the effects of some parameters, such as heating temperature and pressure on the freeze-drying process are examined. A simple model of freeze-drying is established to predict drying time and the mass variations of materials during the drying. The experimental results agree well with those calculated by the model.
Applying a novel electrostatic dry powder coating technology to pellets.
Yang, Qingliang; Ma, Yingliang; Zhu, Jesse
2015-11-01
The present study aimed to apply a novel dry powder technology to coat pellets with different coating materials grounded into fine powders. Piroxicam, a non-steroidal anti-inflammatory drug, was used as the active pharmaceutical ingredient (API). Eudragit® EPO, Eudragit® RS/RL and Acryl EZE were used as the coating materials to achieve immediate release, sustained release and delayed release, respectively. Three steps including preheating, powder adhesion and curing were carried out to form the coating film while liquid plasticizers were used to decrease the glass transition temperature of coating powders and also served to reduce the electrical resistance of pellets. Results of SEM indicated coating film could be better formed by increasing curing temperature or extending curing time. Dissolution tests showed that three different drug release profiles, including immediate release, sustained release and delayed release, were achieved by this coating technology with different coating formulations. And the dry powder coated pellets using this developed technology exhibited an excellent stability with 1 month at 40 °C/75% RH. The coating procedure could be shortened to within 120 min and the use of fluidized hot air was minimized, both cutting down the overall cost dramatically compared to organic solvent coating and aqueous coating. All results demonstrated that the novel electrostatic dry powder coating method is a promising technology in the pharmaceutical coating industry.
Applied impulsive mathematical models
Stamova, Ivanka
2016-01-01
Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.
Mathematical modelling of cucumber (cucumis sativus) drying
Shahari, N.; Hussein, S. M.; Nursabrina, M.; Hibberd, S.
2014-07-01
This paper investigates the applicability of using an experiment based mathematical model (empirical model) and a single phase mathematical model with shrinkage to describe the drying curve of cucumis sativus (cucumber). Drying experiments were conducted using conventional air drying and data obtained from these experiments were fitted to seven empirical models using non-linear least square regression based on the Levenberg Marquardt algorithm. The empirical models were compared according to their root mean square error (RMSE), sum of square error (SSE) and coefficient of determination (R2). A logarithmic model was found to be the best empirical model to describe the drying curve of cucumber. The numerical result of a single phase mathematical model with shrinkage was also compared with experiment data for cucumber drying. A good agreement was obtained between the model predictions and the experimental data.
Freeze-drying applied to radioactive source preparation.
de Sanoit, J; Leprince, B; Bobin, Ch; Bouchard, J
2004-12-01
In the framework of R&D studies for the improvement of radioactive source efficiencies prepared on thin films for 4pibeta-gamma coincidence counting, a comparative study on two drying methods has been undertaken in our laboratory (BNM-Laboratoire National Henri Becquerel, France). The standard method of evaporation at atmospheric pressure and a method based on freeze-drying using commercial equipment are compared. The preliminary results of this study obtained with 65Zn sources are presented and a significant improvement of the detection efficiencies to the electron emission for freeze-dried sources is shown. In the course of validation of this method, other radionuclides were studied and, up to now, the results confirm the better crystallization homogeneity achieved for freeze-dried sources.
Modeling of electrohydrodynamic drying process using response surface methodology.
Dalvand, Mohammad Jafar; Mohtasebi, Seyed Saeid; Rafiee, Shahin
2014-05-01
Energy consumption index is one of the most important criteria for judging about new, and emerging drying technologies. One of such novel and promising alternative of drying process is called electrohydrodynamic (EHD) drying. In this work, a solar energy was used to maintain required energy of EHD drying process. Moreover, response surface methodology (RSM) was used to build a predictive model in order to investigate the combined effects of independent variables such as applied voltage, field strength, number of discharge electrode (needle), and air velocity on moisture ratio, energy efficiency, and energy consumption as responses of EHD drying process. Three-levels and four-factor Box-Behnken design was employed to evaluate the effects of independent variables on system responses. A stepwise approach was followed to build up a model that can map the entire response surface. The interior relationships between parameters were well defined by RSM.
MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS
Directory of Open Access Journals (Sweden)
Daniele Penteado Rosa
2015-06-01
Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol
Congdon, Peter
2014-01-01
This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBU
An experimental simulation model for coated paper drying
Directory of Open Access Journals (Sweden)
A. Hallajisani
2013-09-01
Full Text Available Due to the lack of information regarding the phenomena of mass, heat, and momentum transfer in coated paper drying, substantial research work still needs to be done. A simulation model for coated paper drying is introduced which integrates heat and mass transfer mechanisms. In the model, the coated paper was assumed to have 3 layers (coated layer, wet and dry layers of the base paper, in which the thickness of each layer is a function of drying time and condition. The thickness of the wet layer of the base paper was considered to be a function of water permeability rate that in turn is a function of the moisture diffusion coefficient, time and drying rate. Movement of vapor resulting from evaporation in the middle layer was assumed to be a combination of laminar bulk flow and molecular diffusion. Radiation absorption was used as a diminishing exponential model, which depends on moisture content. Hot air and super heated vapor were used as drying fluids. Functional variables were temperature, drying fluid velocity and delay time. To verify the simulation results two compositions were applied for the coating suspension. The simulation results matched well with experimental outcomes.
Energy Technology Data Exchange (ETDEWEB)
Larkin, A. I.; Khmelnitskii, D. E., E-mail: dekl2@cam.ac.uk [Landau Institute for Theoretical Physics (Russian Federation)
2013-09-15
Friction of elastic bodies is connected with the passing through the metastable states that arise at the contact of surfaces rubbing against each other. Three models are considered that give rise to the metastable states. Friction forces and their dependence on the pressure are calculated. In Appendix A, the contact problem of elasticity theory is solved with adhesion taken into account.
MODELLING OF THIN LAYER DRYING KINETICS OF COCOA BEANS DURING ARTIFICIAL AND NATURAL DRYING
Directory of Open Access Journals (Sweden)
C.L. HII
2008-04-01
Full Text Available Drying experiments were conducted using air-ventilated oven and sun dryer to simulate the artificial and natural drying processes of cocoa beans. The drying data were fitted with several published thin layer drying models. A new model was introduced which is a combination of the Page and two-term drying model. Selection of the best model was investigated by comparing the determination of coefficient (R2, reduced chi-square (2 and root mean square error (RMSE between the experimental and predicted values. The results showed that the new model was found best described the artificial and natural drying kinetics of cocoa under the conditions tested.
Model Stickiness in Spray Drying
DEFF Research Database (Denmark)
Petersen, Thomas
droplet which consisted of a skin with high viscosity and a core with lower viscosity. The surrounding air had an even lower viscosity and a lower density.The droplet was modelled without elastic properties. The simulations were initiated withthe condition that the droplet was moving towards the wall...... with a predened velocity.The simulation was run while individually varying initial droplet velocity, viscosity of skin, core and air, density of droplet and air, surface tension, droplet radius and the radius ofthe core relative to the droplet. A parameter analogous to the radius of the contact areawas dened...... and the dependency of this parameter upon the ones listed above was mapped.The radius of spreading, normalized with the droplet radius, correlated with the squareroot of the Reynolds' number (based on material properties of the skin) multiplied withthe volume of the droplet divided by the volume of the skin...
Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; De Meyer, Laurens; Corver, Jos; Vervaet, Chris; Nopens, Ingmar; De Beer, Thomas
2017-01-12
Conventional pharmaceutical freeze-drying is an inefficient and expensive batch-wise process, associated with several disadvantages leading to an uncontrolled end product variability. The proposed continuous alternative, based on spinning the vials during freezing and on optimal energy supply during drying, strongly increases process efficiency and improves product quality (uniformity). The heat transfer during continuous drying of the spin frozen vials is provided via non-contact infrared (IR) radiation. The energy transfer to the spin frozen vials should be optimised to maximise the drying efficiency while avoiding cake collapse. Therefore, a mechanistic model was developed which allows computing the optimal, dynamic IR heater temperature in function of the primary drying progress and which, hence, also allows predicting the primary drying endpoint based on the applied dynamic IR heater temperature. The model was validated by drying spin frozen vials containing the model formulation (3.9mL in 10R vials) according to the computed IR heater temperature profile. In total, 6 validation experiments were conducted. The primary drying endpoint was experimentally determined via in-line near-infrared (NIR) spectroscopy and compared with the endpoint predicted by the model (50min). The mean ratio of the experimental drying time to the predicted value was 0.91, indicating a good agreement between the model predictions and the experimental data. The end product had an elegant product appearance (visual inspection) and an acceptable residual moisture content (Karl Fischer).
Pallagi, Edina; Karimi, Keyhaneh; Ambrus, Rita; Szabó-Révész, Piroska; Csóka, Ildikó
2016-09-10
The current work outlines the application of an up-to-date and regulatory-based pharmaceutical quality management method, applied as a new development concept in the process of formulating dry powder inhalation systems (DPIs). According to the Quality by Design (QbD) methodology and Risk Assessment (RA) thinking, a mannitol based co-spray dried formula was produced as a model dosage form with meloxicam as the model active agent. The concept and the elements of the QbD approach (regarding its systemic, scientific, risk-based, holistic, and proactive nature with defined steps for pharmaceutical development), as well as the experimental drug formulation (including the technological parameters assessed and the methods and processes applied) are described in the current paper. Findings of the QbD based theoretical prediction and the results of the experimental development are compared and presented. Characteristics of the developed end-product were in correlation with the predictions, and all data were confirmed by the relevant results of the in vitro investigations. These results support the importance of using the QbD approach in new drug formulation, and prove its good usability in the early development process of DPIs. This innovative formulation technology and product appear to have a great potential in pulmonary drug delivery.
Thin-Layer Drying Characteristics and Modeling of Chinese Jujubes
Directory of Open Access Journals (Sweden)
Xiao-Kang Yi
2012-01-01
Full Text Available A mathematical modeling of thin-layer drying of jujubes in a convective dryer was established under controlled conditions of temperature and velocity. The drying process took place both in the accelerating rate and falling rate period. We observed that higher temperature reduced the drying time, indicating higher drying rates of jujubes. The experimental drying data of jujubes were used to fit ten different thin-layer models, then drying rate constants and coefficients of models tested were determined by nonlinear regression analysis using the Statistical Computer Program. As for all the drying models, the Weibull distribution model was superior and best predicted the experimental values. Therefore, this model can be used to facilitate dryer design and promote efficient dryer operation by simulation and optimization of the drying processes. The volumetric shrinkable coefficient of jujubes decreased as the drying air temperature increased.
Thin layer modelling of Gelidium sesquipedale solar drying process
Energy Technology Data Exchange (ETDEWEB)
Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)
2008-05-15
The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)
Maulidah, Rifa'atul; Purqon, Acep
2016-08-01
Mendong (Fimbristylis globulosa) has a potentially industrial application. We investigate a predictive model for heat and mass transfer in drying kinetics during drying a Mendong. We experimentally dry the Mendong by using a microwave oven. In this study, we analyze three mathematical equations and feed forward neural network (FNN) with back propagation to describe the drying behavior of Mendong. Our results show that the experimental data and the artificial neural network model has a good agreement and better than a mathematical equation approach. The best FNN for the prediction is 3-20-1-1 structure with Levenberg- Marquardt training function. This drying kinetics modeling is potentially applied to determine the optimal parameters during mendong drying and to estimate and control of drying process.
Mechanistic modelling of the drying behaviour of single pharmaceutical granules
DEFF Research Database (Denmark)
Thérèse F.C. Mortier, Séverine; Beer, Thomas De; Gernaey, Krist
2012-01-01
The trend to move towards continuous production processes in pharmaceutical applications enhances the necessity to develop mechanistic models to understand and control these processes. This work focuses on the drying behaviour of a single wet granule before tabletting, using a six...... of b on the drying behaviour. Experimental data with the six-segmented fluidised bed dryer were collected to calibrate b. An exponential dependence on the drying air temperature was found. Independent experiments were done for the validation of the drying model.......-segmented fluidised bed drying system, which is part of a fully continuous from-powder-to-tablet manufacturing line. The drying model is based on a model described by Mezhericher et al. [1] and consists of two submodels. In the first drying phase (submodel 1), the surface water evaporates, while in the second drying...
Finite element based model of parchment coffee drying
Preeda Prakotmak
2015-01-01
Heat and mass transfer in the parchment coffee during convective drying represents a complicated phenomena since it is important to consider not only the transport phenomena during drying but also the various changes of the drying materials. In order to describe drying of biomaterials adequately, a suitable mathematical model is needed. The aim of the present study was to develop a 3-D finite element model to simulate the transport of heat and mass within parchment coffee during the thin laye...
Directory of Open Access Journals (Sweden)
Akram Sharifi
2013-02-01
Full Text Available In an investigation on kinetics of seedless barberry drying at 35, 45 and 55°C in vacuum and with water vapor and citric acid pre-treatments, the value of effective moisture Diffusivity (Deff was calculated using the second Fick's diffusion equation, activation energy was determined and drying process was simulated by 10 common mathematical equations of thin layer-drying models. Results which were obtained from regression analysis of studied models showed that approximation of diffusion model had the best fitting for vacuum-drying of barberries through available data. Drying barberry took place in the falling rate drying period and pre-treated samples had higher drying rate. The effective diffusivity coefficient for vacuum-drying of barberry fruits was evaluated between 0.022810-10 and 0.253810-10m2/s, which increased along with temperature rise. An Arrhenius equation for drying of seedless barberry with activation energy values ranged from 27.618 to 92.493 kJ/mol expressed the effect of temperature on moisture diffusivity.
Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.
Fernando, J A K M; Amarasinghe, A D U S
2016-01-01
Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).
Development of Solar Drying Model for Selected Cambodian Fish Species
Directory of Open Access Journals (Sweden)
Anna Hubackova
2014-01-01
Full Text Available A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R2, chi-square (χ2 test, and root-mean-square error (RMSE, the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.
Development of solar drying model for selected Cambodian fish species.
Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan
2014-01-01
A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6 °C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg · h(-1). Based on coefficient of determination (R(2)), chi-square (χ(2)) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.
Long-Term Results of Punctal Plug Applied to Dry Eye Patients
Directory of Open Access Journals (Sweden)
ismet Doğru
2011-08-01
Full Text Available Purpose: The evaluation of long-term results of punctal plugs applied to dry eye patients and the potential problems they may bring about. Material and Method: In this study, we retrospectively assessed 30 eyes of 15 patients with moderate to advanced dry eyes who were applied punctal plug (5 mm for treatment purpose and were observed for 12 months. The patients’ Ocular Surface Disease Index (OSDI scoring, Schimer-1 test (without topical anesthesia, tear film break-up time (TBUT and ocular surface staining with fluorescein results were evaluated and compared before and after 6- and 12-month use of punctal plug. The patients were started on topical antiinflammatory treatment and artificial tears two months before the application of the punctum plug. Results: The patients’ average age was 56.4±2.3 (range: 36-70 years, and the average follow-up period was 15 (12-30 months. The average OSDI score was statistically significantly decreased at 6 and 12 months when compared to the initial value (p<0.05. The average Schirmer-1 test values measured at 6 and 12 months were also statistically significantly increased compared with the initial value (p<0.05. The average Schirmer-1 test value at 12 months was considerably increased when compared with the 6th month’s value (p<0.05. The average TBUT was statistically significantly increased when compared to the values at 6 and 12 months (p<0.05. When the outcomes of ocular surface staining with fluorescein were evaluated, a significant decrease was seen at 6 and 12 months when compared to the initial value (p<0.05. Discussion: The punctal plug treatment associated with topical anti-inflammatory treatment for moderate and advanced dry eye patients is a reliable method. It decreases the dry eye symptoms and findings in the long term. (Turk J Ophthalmol 2011; 41: 225-9
Effect of geometry of rice kernels on drying modeling results
Geometry of rice grain is commonly represented by sphere, spheroid or ellipsoid shapes in the drying models. Models using simpler shapes are easy to solve mathematically, however, deviation from the true grain shape might lead to large errors in predictions of drying characteristics such as, moistur...
Modelling and Forecasting in the Dry Bulk Shipping Market
Chen, S.
2011-01-01
This dissertation proposes strategies not only for modelling price behavior in the dry bulk market, but also for modelling relationships between economic and technical variables of dry bulk ships, by using modern time series approaches, Monte Carlo simulation and other economic techniques. The time
Modeling of convective drying kinetics of Pistachio kernels in a fixed bed drying system
Directory of Open Access Journals (Sweden)
Balbay Asım
2013-01-01
Full Text Available Drying kinetics of Pistachio kernels (PKs with initial moisture content of 32.4% (w.b was investigated as a function of drying conditions in a fixed bed drying system. The drying experiments were carried out at different temperatures of drying air (40, 60 and 80°C and air velocities (0.05, 0.075 and 0.1 m/s. Several experiments were performed in terms of mass of PKs (15g and 30g using a constant air velocity of 0.075 m/s. The fit quality of models was evaluated using the determination coefficient (R2, sum square error (SSE and root mean square error (RMSE. Among the selected models, the Midilli et al model was found to be the best models for describing the drying behavior of PKs. The activation energies were calculated as 29.2 kJ/mol and effective diffusivity values were calculated between 1.38 and 4.94x10-10 m2/s depending on air temperatures.
Extended Holstein polaron model for charge transfer in dry DNA
Institute of Scientific and Technical Information of China (English)
Liu Tao; Wang Yi; Wang Ke-Lin
2007-01-01
The variational method is applied to the study of charge transfer in dry DNA by using an extended Holstein small polaron model in two cases: the site-dependent finite-chain discrete case and the site-independent continuous one. The treatments in the two cases are proven to be consistent in theory and calculation. Discrete and continuous treatments of Holstein model both can yield a nonlinear equation to describe the charge migration in an actual long-range DNA chain.Our theoretical results of binding energy Eb, probability amplitude of charge carrier φ and the relation between energy and charge-lattice coupling strength are in accordance with the available experimental results and recent theoretical calculations.
Finite element based model of parchment coffee drying
Directory of Open Access Journals (Sweden)
Preeda Prakotmak
2015-03-01
Full Text Available Heat and mass transfer in the parchment coffee during convective drying represents a complicated phenomena since it is important to consider not only the transport phenomena during drying but also the various changes of the drying materials. In order to describe drying of biomaterials adequately, a suitable mathematical model is needed. The aim of the present study was to develop a 3-D finite element model to simulate the transport of heat and mass within parchment coffee during the thin layer drying. Thin layer drying experiments of coffee bean and parchment coffee were conducted in the temperature range of 40-60o C, the relative humidity ranged from 14 to 28% and drying air velocity of 1.4 m/s. The moisture diffusivities in different coffee’s components (parchment and coffee bean were determined by minimizing the RMSE between the predicted and the experimental data of moisture contents. The simulated results showed that the moisture diffusivities of coffee bean were three orders of magnitude higher than those of the parchment. Moisture diffusivities of coffee components were found to significantly increase (P<0.05 with the increase in drying air temperature and were expressed by Arrhenius-type equations. Moreover, the model was also used to predict the moisture gradient in coffee bean during drying. The model simulates the moisture contents in different components of parchment coffee well and it provides a better understanding of the transport processes in the different components of the parchment coffee
Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities
Energy Technology Data Exchange (ETDEWEB)
Lee, S.Y.
1999-01-13
The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.
Game-theoretic model of dispersed material drying process
Oleg, Malafeyev; Denis, Rylow; Irina, Zaitseva; Pavel, Zelenkovskii; Marina, Popova; Lydia, Novozhilova
2017-07-01
Continuous and discrete game-theoretic models of dispersed material drying process are formalized and studied in the paper. The existence of optimal drying strategies is shown through application of results from the theory of differential games and dynamic programming. These optimal strategies can be found numerically.
Mathematical modeling of convective air drying of quinoa-supplemented feed for laboratory rats
Directory of Open Access Journals (Sweden)
Antonio Vega-Gálvez
2011-02-01
Full Text Available Drying kinetics of quinoa-supplemented feed for laboratory rats during processing at 50, 60, 70, 80 and 90ºC was studied and modeled in this work. Desorption isotherm was obtained at 60ºC giving a monolayer moisture content of 0.04 g water/g d.m. The experimental drying curves showed that drying process took place only in the falling rate period. Several thin-layer drying equations available in the literature were evaluated based on determination coefficient (r², sum squared errors (SSE and Chi-square (χ2 statisticals. In comparison to the experimental moisture values, the values estimated with the Logarithmic model gave the best fit quality (r² >0.994, SSE < 0.00015 and χ2 < 0.00018, showing this equation could predict very accurately the drying time of rat feed under the operative conditions applied.
The drying of amaranth grain: mathematical modeling and simulation
Directory of Open Access Journals (Sweden)
A. Calzetta Resio
2005-06-01
Full Text Available A model for isothermal diffusion of bound water was used to simulate the thin-layer drying kinetics of amaranth grain. The model assumes that the driving force for the transport of bound water is the gradient of spreading pressure. The gradient of spreading pressure was related to the moisture gradient using the GAB isotherm. This variation shows a relative maximum moisture content about 8% (d.b, after which the diffusion coefficient falls sharply as the moisture content is further reduced. To verify the model, drying tests of amaranth grain were conducted at 40 to 70ºC in a laboratory drier from 32.5 to 6% moisture (d.b.. Equilibrium moisture contents were also determined using an electronic hygrometer at temperatures and relative humidities corresponding to drying conditions. The applicability of the model to simulation of drying curves was satisfactory in the full range of moisture.
Applied groundwater modeling, 2nd Edition
Anderson, Mary P.; Woessner, William W.; Hunt, Randall J.
2015-01-01
This second edition is extensively revised throughout with expanded discussion of modeling fundamentals and coverage of advances in model calibration and uncertainty analysis that are revolutionizing the science of groundwater modeling. The text is intended for undergraduate and graduate level courses in applied groundwater modeling and as a comprehensive reference for environmental consultants and scientists/engineers in industry and governmental agencies.
A Grey-Box Model for Spray Drying Plants
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
2013-01-01
Multi-stage spray drying is an important and widely used unit operation in the production of food powders. In this paper we develop and present a dynamic model of the complete drying process in a multi-stage spray dryer. The dryer is divided into three stages: The spray stage and two fluid bed...... are compared to datasets gathered at GEA Process Engineering’s test facility. The identified grey-box model parameters are identified from data and the resulting model fits the data well. The complexity of the model has been selected such that it is suitable for development of real-time optimization algorithms...
Dry deposition modelling of air pollutants over urban areas
Cherin, N.; Roustan, Y.; Seigneur, C.; Musson Genon, L.
2012-04-01
More than one-half of the world's inhabitants lives in urban areas. Consequently, the evolution of pollutants inside these urban areas are problems of great concern in air quality studies. Though the dry deposition fluxes of air pollutants, which are known to be significant in the neighborhood of sources of pollution, like urban areas, have not been modeled precisely until recently within urban areas. By reviewing the physics of the processes leading to the dry deposition of air pollutants, it is clear that atmosphere turbulence is crucial for dry deposition. Urban areas, and particularly buildings, are known to significantly impact flow fields and then by extension the dry deposition fluxes. Numerous urban schemes have been developed in the past decades to approximate the effect of the local scale urban elements on drag, heat flux and radiative budget. The most recent urban canopy models are based on quite simple geometries, but sufficiently close to represent the aerodynamic and thermal characteristics of cities. These canopy models are generally intended to parameterize aerodynamic and thermal fields, but not dry deposition. For dry deposition, the current classical "roughness" approach, uses only two representative parameters, z0 and d, namely the roughness length and the zero-plane displacement height to represent urban areas. In this work, an innovative dry deposition model based on the urban canyon concept, is proposed. It considers a single road, bordered by two facing buildings, which are treated separately. It accounts for sub-grid effects of cities, especially a better parameterization of the turbulence scheme, through the use of local mixing length and a more detailled description of the urban area and key parameters within the urban canopy. Three different flow regimes are distinguished in the urban canyon according to the height-to-width ratio: isolated roughness flow, wake interference flow and skimming flow regime. The magnitude of differences in
A user-friendly model for spray drying to aid pharmaceutical product development.
Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W
2013-01-01
The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadsheet software. The output of the model was first fitted to the experimental output of a Büchi B-290 spray dryer and subsequently validated. The predicted outlet temperatures of the spray dryer model matched the experimental values very well over the entire range of spray dryer settings that were tested. Finally, the model was applied to produce glassy sugars by spray drying, an often used excipient in formulations of biopharmaceuticals. For the production of glassy sugars, the model was extended to predict the relative humidity at the outlet, which is not measured in the spray dryer by default. This extended model was then successfully used to predict whether specific settings were suitable for producing glassy trehalose and inulin by spray drying. In conclusion, a spray dryer model was developed that is able to predict the output parameters of the spray drying process. The model can aid the development of spray dried pharmaceutical products by shifting from a trial-and-error towards a quality-by-design approach.
A COUPLED MORPHODYNAMIC MODEL FOR APPLICATIONS INVOLVING WETTING AND DRYING*
Institute of Scientific and Technical Information of China (English)
LIANG Qiuhua
2011-01-01
This work presents a new finite volume Godunov-type model for predicting morphological changes under the rapidly varying flood conditions with wetting and drying. The model solves the coupled shallow water and Exner equations, with the interface fluxes evaluated by an Harten-Lax-van Leer-Contact (HLLC) approximate Riemann solver. Well-balanced solution is achieved using the surface gradient method and wetting and drying are handled by a non-negative reconstruction approach. The new model is validated against several theoretical benchmark tests and promising results are obtained.
MODELLING THE PROCESSES OF HYGROTHERMAL MECHANICS IN RICE DRYING
Directory of Open Access Journals (Sweden)
S. A. Podgornyi
2015-01-01
Full Text Available Grain-crops are justly considered to be the staple food in Russia as well as all over the world. The specific feature is that postharvest processing of the grain and, above all, drying is an essential stage of providing products of high quality in the sufficient amount. The changes of the technological parameters of the drying process which take place over time, have a significant practical value in terms of monitoring the process and defining the modes providing the quality of the product as well as calculating energy demands necessary to carry out this process. Hereof, the quality of the product received is defined by minimum crack formation of rice grain after the process. The aim of the work is to get a mathematical model of hygrothermal mechanics of rice drying. On the basis of A.V. Lykov’s system of differential equations which describe the changes in moisture content, temperature and pressure, transition to the system of ordinary differential equations was offered which is based on drawing up balance of mass and heat during the process of drying. This approach does not consider the properties of moisture content and temperature within the material but takes into account their mean value. Using a simplified model of hygrothermal mechanics of rice drying that we have got enabled us to reproduce the process of drying in the conditions of minimum crack formation within the studied range (the temperature of the drying agent from 50 to 70 °C, speed from 2.3 to 2.8 м/sеk. The dependences we have got enable us to predict the quality of rice grain during drying.
Mathematical Modeling on Combined Mid-infrared and Hot Air Drying of Beef Meat
Directory of Open Access Journals (Sweden)
Xiao-Lei Xie
2015-05-01
Full Text Available To investigate the drying models and characteristics of Combined Mid-Infrared and Hot Air (CMIHA drying BEEF MEAT (BM, a laboratory scale CMIHA dryer was applied to the treatment of BM samples in a temperature range from 40-70°C, with air velocity of 1m/s and mid-infrared of 2.8-3.1 m. Microsoft visual C sharp (C# was used to develop a Moisture Prediction System (MPS to digitize the prediction process. The results indicated that the Modified Henderson and Pabis model could present better predictions for the moisture transfer than others and the MPS could predict the moisture ratio through the whole drying process conveniently. Besides, higher temperature could accelerate effective diffusivities to increase drying rate, thus shorten the drying time. The activation energy of BM dried with CMIHA was 32.83 kJ/mol. All of these could be used in the design and operation of the combination drying beef meat.
Computational modelling for dry-powder inhalers
Kröger, Ralf; Woolhouse, Robert; Becker, Michael; Wachtel, Herbert; de Boer, Anne; Horner, Marc
2012-01-01
Computational fluid dynamics (CFD) is a simulation tool used for modelling powder flow through inhalers to allow optimisation both of device design and drug powder. Here, Ralf Kröger, Consulting Senior CFD Engineer, ANSYS Germany GmbH; Marc Horner, Lead Technical Services Engineer, Healthcare, ANSYS
Computational modelling for dry-powder inhalers
Kröger, Ralf; Woolhouse, Robert; Becker, Michael; Wachtel, Herbert; de Boer, Anne; Horner, Marc
2012-01-01
Computational fluid dynamics (CFD) is a simulation tool used for modelling powder flow through inhalers to allow optimisation both of device design and drug powder. Here, Ralf Kröger, Consulting Senior CFD Engineer, ANSYS Germany GmbH; Marc Horner, Lead Technical Services Engineer, Healthcare,
Educational software design: applying models of learning
Directory of Open Access Journals (Sweden)
Stephen Richards
1996-12-01
Full Text Available The model of learning adopted within this paper is the 'spreading ripples' (SR model proposed by Race (1994. This model was chosen for two important reasons. First, it makes use of accessible ideas and language, .and is therefore simple. Second, .Race suggests that the model can be used in the design, of educational and training programmes (and can thereby be applied to the design of computer-based learning materials.
Solute based Lagrangian scheme in modeling the drying process of soft matter solutions.
Meng, Fanlong; Luo, Ling; Doi, Masao; Ouyang, Zhongcan
2016-02-01
We develop a new dynamical model to study the drying process of a droplet of soft matter solutions. The model includes the processes of solute diffusion, gel-layer formation and cavity creation. A new scheme is proposed to handle the diffusion dynamics taking place in such processes. In this scheme, the dynamics is described by the motion of material points taken on solute. It is convenient to apply this scheme to solve problems that involve moving boundaries and phase changes. As an example, we show results of a numerical calculation for a drying spherical droplet, and discuss how initial concentration and evaporation rate affect the structural evolution of the droplet.
Geostatistical methods applied to field model residuals
DEFF Research Database (Denmark)
Maule, Fox; Mosegaard, K.; Olsen, Nils
consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...
Nonequilibrium Thermal Dynamic Modeling of Porous Medium Vacuum Drying Process
Directory of Open Access Journals (Sweden)
Zhijun Zhang
2012-01-01
Full Text Available Porous medium vacuum drying is a complicated heat and mass transfer process. Based on the theory of heat and mass transfer, a coupled model for the porous medium vacuum drying process is constructed. The model is implemented and solved using COMSOL software. The water evaporation rate is determined using a nonequilibrium method with the rate constant parameter Kr. Kr values of 1, 10, 1000, and 10000 are simulated. The effects of vapor pressures of 1000, 5000, and 9000 Pa; initial moistures of 0.6, 0.5, and 0.4 water saturation; heat temperatures of 323, 333, and 343 K; and intrinsic permeability of 10−13, 10−14, and 10−15 m2 are studied. The results facilitate a better understanding of the porous medium vacuum drying process.
Model-free kinetics applied to sugarcane bagasse combustion
Energy Technology Data Exchange (ETDEWEB)
Ramajo-Escalera, B.; Espina, A.; Garcia, J.R. [Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo (Spain); Sosa-Arnao, J.H. [Mechanical Engineering Faculty, State University of Campinas (UNICAMP), P.O. Box 6122, 13083-970 Campinas, SP (Brazil); Nebra, S.A. [Interdisciplinary Center of Energy Planning, State University of Campinas (UNICAMP), R. Shigeo Mori 2013, 13083-770 Campinas, SP (Brazil)
2006-09-15
Vyazovkin's model-free kinetic algorithms were applied to determine conversion, isoconversion and apparent activation energy to both dehydration and combustion of sugarcane bagasse. Three different steps were detected with apparent activation energies of 76.1+/-1.7, 333.3+/-15.0 and 220.1+/-4.0kJ/mol in the conversion range of 2-5%, 15-60% and 70-90%, respectively. The first step is associated with the endothermic process of drying and release of water. The others correspond to the combustion (and carbonization) of organic matter (mainly cellulose, hemicellulose and lignin) and the combustion of the products of pyrolysis. (author)
Murthy, Thirupathihalli Pandurangappa Krishna; Manohar, Balaraman
2014-12-01
Mango ginger (Curcuma amada) was dried in a through-flow dryer system at different temperatures (40-70 °C) and air velocities (0.84 - 2.25 m/s) to determine the effect of drying on drying rate and effective diffusivity. As the temperature and air velocity increased, drying time significantly decreased. Among the ten different thin layer drying models considered to determine the kinetic drying parameters, semi empirical Midilli et al., model gave the best fit for all drying conditions. Effective moisture diffusivity varied from 3.7 × 10(-10) m(2)/s to 12.5 × 10(-10) m(2)/s over the temperature and air velocity range of study. Effective moisture diffusivity regressed well with Arrhenius model and activation energy of the model was found to be 32.6 kJ/mol. Artificial neural network modeling was also employed to predict the drying behaviour and found suitable to describe the drying kinetics with very high correlation coefficient of 0.998.
Modelling fruit set, fruit growth and dry matter partitioning
Marcelis, L.F.M.; Heuvelink, E.
1999-01-01
This paper discusses how fruit set, fruit growth and dry matter partitioning can be simulated by models where sink strength (assimilate demand) and source strength (assimilate supply) are the key variables. Although examples are derived from experiments on fruit vegetables such as tomato, sweet pepp
Establishment of ANEDr model for evaluating absorbed-nitrogen effects on wheat dry matter production
Institute of Scientific and Technical Information of China (English)
ZHAO Jiao; TAO Hong-bin; LIAO Shu-hua; WANG Pu
2016-01-01
Applying mathematic models to evaluate absorbed-N effects on dry matter production at different developmental stages would help determine proper nitrogen management according to crop demands and yield target. Two ifeld trials were car-ried out for establishing absorbed-N effects on dry matter production (ANEDr) model, using uniform design in 2010–2011 and 2012–2013 winter wheat growing seasons in Hebei Province, China. Another ifeld trial was carried out in 2010–2011 for model validation. Dry matter and N concentration in leaf and non-leaf organs were measured at setting, jointing, an-thesis, and maturity. Theory of best linear unbiased prediction (BLUP) was applied to analyse the N effects of leaf and non-leaf organs on dry matter production. Within ANEDr model, four N-affected phases at each stage were concerned, leaf absorbed-N effect before this stage, non-leaf organ absorbed-N effect before this stage,leaf absorbed-N effect at this stage, and non-leaf organ absorbed-N effect at this stage. In addition, developmental processes, genotype characters and temperature were three factors that determine each N effect. It was demonstrated that ANEDr model can precisely quantify absorbed-N effects on dry matter production with high correlation coefifcient (r=0.95). Comparing with other models, ANEDr model considered both leaf and non-leaf organs according to developmental processes of winter wheat, showed higher lfexibility and simplicity, thus could be applied to different environments, cultivars and crops after parameter adjustment.
Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem
2015-06-01
The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.
Applying the WEAP Model to Water Resource
DEFF Research Database (Denmark)
Gao, Jingjing; Christensen, Per; Li, Wei
Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...... efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment...
Cases of foodborne illness have been linked to the consumption of fermented dry or semi-dry sausages (FDSS) contaminated with Escherichia coli O157:H7. The purpose of this study was to model the inactivation of E. coli O157:H7 during FDSS manufacturing and storage. Beef batter (20% fat) containing...
Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni
2017-09-01
Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data (R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy (Ea) values were calculated from effective moisture diffusivity (Deff), thermal diffusivity (α) and the rate constant of the best model (k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.
Applying incentive sensitization models to behavioral addiction
DEFF Research Database (Denmark)
Rømer Thomsen, Kristine; Fjorback, Lone; Møller, Arne
2014-01-01
The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical...
Applied probability models with optimization applications
Ross, Sheldon M
1992-01-01
Concise advanced-level introduction to stochastic processes that frequently arise in applied probability. Largely self-contained text covers Poisson process, renewal theory, Markov chains, inventory theory, Brownian motion and continuous time optimization models, much more. Problems and references at chapter ends. ""Excellent introduction."" - Journal of the American Statistical Association. Bibliography. 1970 edition.
Dynamic Decision Making for Graphical Models Applied to Oil Exploration
Martinelli, Gabriele; Hauge, Ragnar
2012-01-01
We present a framework for sequential decision making in problems described by graphical models. The setting is given by dependent discrete random variables with associated costs or revenues. In our examples, the dependent variables are the potential outcomes (oil, gas or dry) when drilling a petroleum well. The goal is to develop an optimal selection strategy that incorporates a chosen utility function within an approximated dynamic programming scheme. We propose and compare different approximations, from simple heuristics to more complex iterative schemes, and we discuss their computational properties. We apply our strategies to oil exploration over multiple prospects modeled by a directed acyclic graph, and to a reservoir drilling decision problem modeled by a Markov random field. The results show that the suggested strategies clearly improve the simpler intuitive constructions, and this is useful when selecting exploration policies.
Modelling the drying of a parallelepipedic oil shale particle
Energy Technology Data Exchange (ETDEWEB)
Porto, P.S.S.; Lisboa, A.C.L. [State University of Campinas (UNICAMP), SP (Brazil). School of Chemical Engineering], Emails: porto@feq.unicamp.br, lisboa@feq.unicamp.br
2005-04-15
A numerical model is proposed to describe the process of drying a parallelepipedic oil shale particle. Assuming Fick's law, the diffusion equation for the shape of the particle was used. The objective of the study was to develop a computer program in Fortran to estimate the moisture content of an oil shale particle undergoing drying as a function of time and position. The average moisture content was also obtained. The model takes into account the migration of water by diffusion within the solid and its loss at the interface. The model results were compared to experimental data from an apparatus which measured the mass loss of a particle. The apparatus comprised an electronic balance attached by a thin wire to the particle placed inside an incubator. (author)
Modeling and simulation of milk emulsion drying in spray dryers
Directory of Open Access Journals (Sweden)
V. S. Birchal
2005-06-01
Full Text Available This work aims at modeling and simulating the drying of whole milk emulsion in spray dryers. Drops and particles make up the discrete phase and are distributed into temporal compartments following their residence time in the dryer. Air is the continuous and well-mixed phase. Mass and energy balances are developed for each phase, taking into account their interactions. Constitutive equations for describing the drop swelling and drying mechanisms as well as the heat and mass transfer between particles and hot air are proposed and analyzed. A set of algebraic-differential equations is obtained and solved by specific numerical codes. Results from experiments carried out in a pilot spray dryer are used to validate the model developed and the numerical algorithm. Comparing the simulated and experimental data, it is shown that the model predicts well the individual drop-particle history inside the dryer as well as the overall outlet air-particle temperature and humidity.
Modelling the drying of a parallelepipedic oil shale particle
Directory of Open Access Journals (Sweden)
P. S. S. Porto
2005-06-01
Full Text Available A numerical model is proposed to describe the process of drying a parallelepipedic oil shale particle. Assuming Fick's law, the diffusion equation for the shape of the particle was used. The objective of the study was to develop a computer program in Fortran to estimate the moisture content of an oil shale particle undergoing drying as a function of time and position. The average moisture content was also obtained. The model takes into account the migration of water by diffusion within the solid and its loss at the interface. The model results were compared to experimental data from an apparatus which measured the mass loss of a particle. The apparatus comprised an electronic balance attached by a thin wire to the particle placed inside an incubator.
Applied Integer Programming Modeling and Solution
Chen, Der-San; Dang, Yu
2011-01-01
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and
Modeling and numerical analysis of an atypical convective coal drying process
Energy Technology Data Exchange (ETDEWEB)
Stakic, M.; Tsotsas, E. [Otto von Guericke University, Magdeburg (Germany)
2004-07-01
This work presents modeling and numerical simulation of batch convective coal drying in a deep packed bed after a high-pressure steam treatment (a part of the Fleissner coal drying process). The process is atypical, because ambient air is used to dry, and cool hot particles, while usually, e.g., in the deep packed bed drying of biomaterials, hot air is contacting cold particles. Product-specific data (intraparticle mass transfer, gas-solids moisture equilibrium) for coal (here lignite) are taken from the literature. Available data on coal drying in packed beds of medium height are used for model validation. Then, the model is applied to the considered industrial process. The design point of the process is critically reviewed, and alternatives are developed by systematically simulating the influence of inlet air conditions (temperature, humidity, flow-rate) and coal particle size. This type of analysis is necessary for efficiently scheduling plant dryers, since coal particle size may change, and air inlet temperature and humidity are changing with the ambient conditions.
A. Waheed Deshmukh; Mahesh N. Varma; Chang Kyoo Yoo; Wasewar, Kailas L.
2014-01-01
Drying is a simultaneous heat and mass transfer energy intensive operation, widely used as a food preservation technique. In view of improper postharvest methods, energy constraint, and environmental impact of conventional drying methods, solar drying could be a practical, economical, and environmentally reliable alternative. In the present paper applicability of mixed mode solar cabinet dryer was investigated for drying of commercially important and export oriented ginger. Freshly harvested ...
Applied research in uncertainty modeling and analysis
Ayyub, Bilal
2005-01-01
Uncertainty has been a concern to engineers, managers, and scientists for many years. For a long time uncertainty has been considered synonymous with random, stochastic, statistic, or probabilistic. Since the early sixties views on uncertainty have become more heterogeneous. In the past forty years numerous tools that model uncertainty, above and beyond statistics, have been proposed by several engineers and scientists. The tool/method to model uncertainty in a specific context should really be chosen by considering the features of the phenomenon under consideration, not independent of what is known about the system and what causes uncertainty. In this fascinating overview of the field, the authors provide broad coverage of uncertainty analysis/modeling and its application. Applied Research in Uncertainty Modeling and Analysis presents the perspectives of various researchers and practitioners on uncertainty analysis and modeling outside their own fields and domain expertise. Rather than focusing explicitly on...
A depth integrated model for dry geophysical granular flows
Rossi, Giulia; Armanini, Aronne
2017-04-01
Granular flows are rapid to very rapid flows, made up of dry sediment (rock and snow avalanches) or mixture of water and sediment (debris flows). They are among the most dangerous and destructive natural phenomena and the definition of run-out scenarios for risk assessment has received wide interest in the last decades. Nowadays there are many urbanized mountain areas affected by these phenomena, which cause several properties damages and loss of lives. The numerical simulation is a fundamental step to analyze these phenomena and define the runout scenarios. For this reason, a depth-integrated model is developed to analyze the case of dry granular flows, representative of snow avalanches or rock avalanches. The model consists of a two-phase mathematical description of the flow motion: it is similar to the solid transport equations but substantially different since there is no water in this case. A set of partial differential equations is obtained and written in the form of a hyperbolic system. The numerical solution is computed through a path-conservative SPH (Smoothed Particles Hydrodynamics) scheme, in the two dimensional case. Appropriate closure relations are necessary, with respect to the concentration C and the shear stress at the bed τ0. In first approximation, it is possible to derive a formulation for the two closure relations from appropriate rheological models (Bagnold theory and dense gas analogy). The model parameters are determined by means of laboratory tests on dry granular material and the effectiveness of the closure relation verified through a comparison with the experimental results. In particular, the experimental investigation aims to reproduce two case of study for dry granular material: the dam-break test problem and the stationary motion with changes in planimetry. The experiments are carried out in the Hydraulic Laboratory of the University of Trento, by means of channels with variable slope and variable shape. The mathematical model will
Modeling multiple resource limitation in tropical dry forests
Medvigy, D.; Xu, X.; Zarakas, C.
2015-12-01
Tropical dry forests (TDFs) are characterized by a long dry season when little rain falls. At the same time, many neotropical soils are highly weathered and relatively nutrient poor. Because TDFs are often subject to both water and nutrient constraints, the question of how they will respond to environmental perturbations is both complex and highly interesting. Models, our basic tools for projecting ecosystem responses to global change, can be used to address this question. However, few models have been specifically parameterized for TDFs. Here, we present a new version of the Ecosystem Demography 2 (ED2) model that includes a new parameterization of TDFs. In particular, we focus on the model's framework for representing limitation by multiple resources (carbon, water, nitrogen, and phosphorus). Plant functional types are represented in terms of a dichotomy between "acquisitive" and "conservative" resource acquisition strategies. Depending on their resource acquisition strategy and basic stoichiometry, plants can dynamically adjust their allocation to organs (leaves, stem, roots), symbionts (e.g. N2-fixing bacteria), and mycorrhizal fungi. Several case studies are used to investigate how resource acquisition strategies affect ecosystem responses to environmental perturbations. Results are described in terms of the basic setting (e.g., rich vs. poor soils; longer vs. shorter dry season), and well as the type and magnitude of environmental perturbation (e.g., changes in precipitation or temperature; changes in nitrogen deposition). Implications for ecosystem structure and functioning are discussed.
Comparison between analytical and numerical solution of mathematical drying model
Shahari, N.; Rasmani, K.; Jamil, N.
2016-02-01
Drying is often related to the food industry as a process of shifting heat and mass inside food, which helps in preserving food. Previous research using a mass transfer equation showed that the results were mostly concerned with the comparison between the simulation model and the experimental data. In this paper, the finite difference method was used to solve a mass equation during drying using different kinds of boundary condition, which are equilibrium and convective boundary conditions. The results of these two models provide a comparison between the analytical and the numerical solution. The result shows a close match between the two solution curves. It is concluded that the two proposed models produce an accurate solution to describe the moisture distribution content during the drying process. This analysis indicates that we have confidence in the behaviour of moisture in the numerical simulation. This result demonstrated that a combined analytical and numerical approach prove that the system is behaving physically. Based on this assumption, the model of mass transfer was extended to include the temperature transfer, and the result shows a similar trend to those presented in the simpler case.
Determination of suitable drying curve model for bread moisture loss during baking
Soleimani Pour-Damanab, A. R.; Jafary, A.; Rafiee, S.
2013-03-01
This study presents mathematical modelling of bread moisture loss or drying during baking in a conventional bread baking process. In order to estimate and select the appropriate moisture loss curve equation, 11 different models, semi-theoretical and empirical, were applied to the experimental data and compared according to their correlation coefficients, chi-squared test and root mean square error which were predicted by nonlinear regression analysis. Consequently, of all the drying models, a Page model was selected as the best one, according to the correlation coefficients, chi-squared test, and root mean square error values and its simplicity. Mean absolute estimation error of the proposed model by linear regression analysis for natural and forced convection modes was 2.43, 4.74%, respectively.
Applied Mathematics, Modelling and Computational Science
Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan
2015-01-01
The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...
Applying incentive sensitization models to behavioral addiction
DEFF Research Database (Denmark)
Rømer Thomsen, Kristine; Fjorback, Lone; Møller, Arne
2014-01-01
The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical...... symptoms and underlying neurobiology. We examine the relevance of this theory for Gambling Disorder and point to predictions for future studies. The theory promises a significant contribution to the understanding of behavioral addiction and opens new avenues for treatment....
Sustainable Dry Land Management Model on Corn Agribusiness System
Directory of Open Access Journals (Sweden)
Yulia Pujiharti
2008-01-01
Full Text Available The study aimed at building model of dry land management. Dynamic System Analysis was used to build model and Powersim 2.51 version for simulating. The parameter used in model were fertilizer (urea, SP-36, ACL, productivity (corn, cassava, mungbean, soil nutrient (N, P, K, crop nutrient requirements (corn, cassava, mungbean, mucuna, price (corn, cassava, mungbeans corn flour, feed, urea, SP-36, KCl, food security credit, area planted of (maize, cassava, mungbean, area harvested of (maize, cassava, mungbean, (corn, cassava, mungbean production, wages and farmer income. Sustainable indicator for ecology aspect was soil fertility level, economic aspects were productivity and farmer income, and social aspects were job possibility and traditions. The simulation result indicated that sustainable dry land management can improve soil fertility and increase farmer revenue, became sustainable farming system and farmer society. On the other hand, conventional dry land management decreased soil fertility and yield, caused farmer earnings to decrease and a farm activity could not be continued. Fertilizer distribution did not fulfill farmer requirement, which caused fertilizer scarcity. Food security credit increased fertilizer application. Corn was processed to corn flour or feed to give value added.
Directory of Open Access Journals (Sweden)
B. Honarvar
2012-06-01
Full Text Available Drying of a cylindrical sample in a fluidized bed dryer containing inert particles was studied. For this purpose, a pilot-scaled fluidized bed dryer was constructed in which two different heat sources, hot air and infrared radiation were applied, and pieces of carrot were chosen as test samples. The heat transfer coefficient for cylindrical objects in a fluidized bed was also measured. The heat absorption coefficient for carrot was studied. The absorption coefficient can be computed by dividing the absorbed heat by the carrot to the heat absorbed for the water and black ink. In this regard, absorbed heat values by the carrot, water and black ink were used A mathematical model was proposed based on the mass and heat transfer phenomena within the drying sample. The results obtained by the proposed model were in favorable agreement with the experimental data.
Drying and Heating Modelling of Granular Flow: Application to the Mix-Asphalt Processes
Directory of Open Access Journals (Sweden)
L Le Guen
2011-01-01
Full Text Available Concrete asphalt is a hydrocarbon material that includes a mix of mineral components along with a bituminous binder. Prior to mixing, its production protocol requires drying and heating the aggregates. Generally performed in a rotary drum, these drying and heating steps within mix asphalt processes have never been studied from a physical perspective. We are thus proposing in the present paper to analyze the drying and heating mechanisms when granular materials and hot gases are involved in a co-current flow. This process step accounts for a large proportion of the overall energy consumed during hot-mix asphalt manufacturing. In the present context, the high energy cost associated with this step has encouraged developing new strategies specifically for the drying process. Applying new asphalt techniques so that an amount of moisture can be preserved in the asphalt concrete appears fundamental to such new strategies. This low-energy asphalt, also referred to as the "warm technique", depends heavily on a relevant prediction of the actual moisture content inside asphalt concrete during the mixing step. The purpose of this paper is to present a physical model dedicated to the evolution in temperature and moisture of granular solids throughout the drying and heating steps carried out inside a rotary drum. An initial experimental campaign to visualize inside a drum at the pilot scale (i.e. 1/3 scale has been carried out in order to describe the granular flow and establish the necessary physical assumptions for the drying and heating model. Energy and mass balance equations are solved by implementing an adequate heat and mass transfer coupling, yielding a 1D model from several parameters that in turn drives the physical modeling steps. Moreover, model results will be analyzed and compared to several measurements performed in an actual asphalt mix plant at the industrial scale (i.e. full scale.
Modeling of heat transfer and energy analysis of potato slices and cylinders during solar drying
Energy Technology Data Exchange (ETDEWEB)
Tripathy, P.P. [Centre for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi 110 016 (India); Kumar, Subodh [Centre for Energy Studies, Indian Institute of Technology, Hauz Khas, New Delhi 110 016 (India)], E-mail: subodh@ces.iitd.ernet.in
2009-04-15
In the present work, a method based on energy balance considering the effects of heat capacity of the food product, radiative heat transfer from food product to the drying chamber and solar radiation absorbed in the product during drying is proposed for determination of convective heat transfer coefficient, h{sub c}. A natural convection mixed-mode solar dryer is used for performing the experiments on potato cylinders and slices of same thickness of 0.01 m with respective length and diameter of 0.05 m. The present investigation indicates that the cylindrical samples exhibit higher values of h{sub c} and faster drying rate compared to those of slices, as expected. The h{sub c} values for each sample shape are correlated by an equation of the form Nu = C(Ra){sup n}. Laplace transform is applied to solve the proposed heat transfer diffusion model considering the effect of moisture transfer rate to predict the transient sample temperature. The model is validated through a close agreement between calculated and experimental results of transient sample temperature. Results of energy analysis reveal that for both the sample geometries, decreasing product moisture content during drying resulted in significant reduction in specific energy consumption. For almost similar drying conditions, a considerable amount of reduction in specific energy consumption is achieved for cylinders, as expected.
Heat and Mass Transfer Model in Freeze-Dried Medium
Alfat, Sayahdin; Purqon, Acep
2017-07-01
There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.
Directory of Open Access Journals (Sweden)
Carolina M. Sánchez-Sáenz
2015-12-01
Full Text Available ABSTRACT Mathematical modeling enables dimensioning of dryers, optimization of drying conditions and the evaluation of process performance. The aim of this research was to describe the behavior of orange bagasse drying using Page's and Fick's second law models, and to assess activation energy (using Arrhenius equation, moisture content, water activity and bulk density of product at the end of the process. The drying experimental assays were performed in 2011 with convective air temperature between 36 and 64 ºC and infrared radiation application time in the range from 23 to 277 s in accordance with the experimental central composite rotatable design. Analysis of variance and F-test were applied to results. At the end of the drying process, moisture content was about 0.09 to 0.87 db and water activity was between 0.25 and 0.87. Bulk density did not vary under studied conditions. Empirical Page's model demonstrated better representation of experimental data than the Fick's model for spheres. Activation energy values were about 18.491; 14.975 and 11.421 kJ mol-1 for infrared application times of 60; 150 e 244 s, respectively.
Applied Regression Modeling A Business Approach
Pardoe, Iain
2012-01-01
An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a
Markov Model Applied to Gene Evolution
Institute of Scientific and Technical Information of China (English)
季星来; 孙之荣
2001-01-01
The study of nucleotide substitution is very important both to our understanding of gene evolution and to reliable estimation of phylogenetic relationships. In this paper nucleotide substitution is assumed to be random and the Markov model is applied to the study of the evolution of genes. Then a non-linear optimization approach is proposed for estimating substitution in real sequences. This substitution is called the "Nucleotide State Transfer Matrix". One of the most important conclusions from this work is that gene sequence evolution conforms to the Markov process. Also, some theoretical evidences for random evolution are given from energy analysis of DNA replication.
Mathematical modeling of a convective textile drying process
Directory of Open Access Journals (Sweden)
G. Johann
2014-12-01
Full Text Available This study aims to develop a model that accurately represents the convective drying process of textile materials. The mathematical modeling was developed from energy and mass balances and, for the solution of the mathematical model, the technique of finite differences, in Cartesian coordinates, was used. It transforms the system of partial differential equations into a system of ordinary equations, with the unknowns, the temperature and humidity of both the air and the textile material. The simulation results were compared with experimental data obtained from the literature. In the statistical analysis the Shapiro-Wilk test was used to validate the model and, in all cases simulated, the results were p-values greater than 5 %, indicating normality of the data. The R-squared values were above 0.997 and the ratios Fcalculated/Fsimulated, at the 95 % confidence level, higher than five, indicating that the modeling was predictive in all simulations.
Model-based optimization of the primary drying step during freeze-drying
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; Van Bockstal, Pieter-Jan; Nopens, Ingmar;
2015-01-01
Since large molecules are considered the key driver for growth of the pharmaceutical industry, the focus of the pharmaceutical industry is shifting from small molecules to biopharmaceuticals: around 50% of the approved biopharmaceuticals are freeze-dried products. Therefore, freeze- drying is an ...
Modelling of intermittent microwave convective drying: parameter sensitivity
Directory of Open Access Journals (Sweden)
Zhang Zhijun
2017-06-01
Full Text Available The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Modelling of intermittent microwave convective drying: parameter sensitivity
Zhang, Zhijun; Qin, Wenchao; Shi, Bin; Gao, Jingxin; Zhang, Shiwei
2017-06-01
The reliability of the predictions of a mathematical model is a prerequisite to its utilization. A multiphase porous media model of intermittent microwave convective drying is developed based on the literature. The model considers the liquid water, gas and solid matrix inside of food. The model is simulated by COMSOL software. Its sensitivity parameter is analysed by changing the parameter values by ±20%, with the exception of several parameters. The sensitivity analysis of the process of the microwave power level shows that each parameter: ambient temperature, effective gas diffusivity, and evaporation rate constant, has significant effects on the process. However, the surface mass, heat transfer coefficient, relative and intrinsic permeability of the gas, and capillary diffusivity of water do not have a considerable effect. The evaporation rate constant has minimal parameter sensitivity with a ±20% value change, until it is changed 10-fold. In all results, the temperature and vapour pressure curves show the same trends as the moisture content curve. However, the water saturation at the medium surface and in the centre show different results. Vapour transfer is the major mass transfer phenomenon that affects the drying process.
Chayjan, Reza Amiri; Salari, Kamran; Abedi, Qasem; Sabziparvar, Ali Akbar
2013-08-01
This study investigated thin layer drying of squash seeds under semi fluidized and fluidized bed conditions with initial moisture content about 83.99% (d.b.). An experimental fluidized bed dryer was also used in this study. Air temperature levels of 50, 60, 70 and 80 °C were applied in drying samples. To estimate the drying kinetic of squash seed, seven mathematical models were used to fit the experimental data of thin layer drying. Among the applied models, Two-term model has the best performance to estimate the thin layer drying behavior of the squash seeds. Fick's second law in diffusion was used to determine the effective moisture diffusivity of squash seeds. The range of calculated values of effective moisture diffusivity for drying experiments were between 0.160 × 10(-9) and 0.551 × 10(-10) m(2)/s. Moisture diffusivity values decreased as the input air temperature decreased. Activation energy values were found to be between 31.94 and 34.49 kJ/mol for 50 °C to 80 °C, respectively. The specific energy consumption for squash seeds was calculated at the boundary of 0.783 × 10(6) and 2.303 × 10(6) kJ/kg. Increasing in drying air temperature in different bed conditions led to decrease in specific energy value. Results showed that applying the semi fluidized bed condition is more effective for convective drying of squash seeds. The aforesaid drying characteristics are useful to select the best operational point of fluidized bed dryer and to precise design of system.
Approach to hp10nm resolution by applying Dry Development Rinse Process (DDRP) and Materials (DDRM)
Shibayama, Wataru; Shigaki, Shuhei; Takeda, Satoshi; Onishi, Ryuji; Nakajima, Makoto; Sakamoto, Rikimaru
2016-03-01
EUV lithography has been desired as the leading technology for single nm half-pitch patterning. However, the source power, masks and resist materials still have critical issues for mass production. Especially in resist materials, RLS trade-off is the key issue. To overcome this issue, we are suggesting Dry Development Rinse Process (DDRP) and Materials (DDRM) as the pattern collapse mitigation approach. This DDRM can perform not only as pattern collapse free materials for fine pitch, but also as the etching hard mask against bottom layer (spin on carbon : SOC). In this paper, we especially propose new approaches to achieve high resolution around hp10nm. The key points of our concepts are 1) control PR profiles, 2) new solvent system to avoid chemical mixture, 3) high etching selective DDR materilas and 4) high planar DDR materials. This new DDRM technology can be the promising approach for hp10nm level patterning in N7/N5 and beyond.
Modeling dry deposition of reactive nitrogen in China with RAMS-CMAQ
Han, Xiao; Zhang, Meigen; Skorokhod, Andrei; Kou, Xingxia
2017-10-01
China has the world highest production of reactive nitrogen (Nr), and the Nr consumption increased sharply during the last decade. However, the potential environmental influence of dry nitrogen (N) deposition in China remains uncertain due to that the long-term measurement or remote sensing of various N species are difficult. This requires a better understanding of dry N deposition over China in its various forms and including magnitude and distribution features. Thus, the air quality modeling system RAMS-CMAQ was applied to simulate dry deposition of Nr over China from 2010 to 2014. The model results were then analyzed to investigate the long-term spatial and temporal distributions of major inorganic nitrogen (N) components (10 species) and selected organic N components (5 species). Comparisons between modeled and observed deposition rates and surface mass concentrations showed generally good agreement. Model results indicated a total dry N deposition budget of 9.31 Tg N yr-1 in China, including 4.29 Tg N yr-1 as NOy and 4.43 Tg N yr-1 as NH3. NOy was the main component of dry N deposition in the Beijing-Tianjin-Hebei area (0.31 Tg N yr-1), the Yangtze River Delta (0.29 Tg N yr-1), and the Pearl River Delta (0.09 Tg N yr-1), where the major megacity clusters of China are located. NH3 was the main component of dry N deposition in Shandong province (0.24 Tg N yr-1), Northeast China (0.46 Tg N yr-1), the Sichuan Basin (0.48 Tg N yr-1), and central China (0.95 Tg N yr-1), where the major agricultural regions are located. The highest values of the deposition flux for NH3 occurred in Shandong province (19.40 kg N ha-1 yr-1) and Beijing-Tianjin-Hebei (17.20 kg N ha-1 yr-1). The seasonal variation of total dry N deposition was obvious in the east part of China, and was higher in July and lower in January. The spatio-temporal variations and major sources of dry N deposition were strongly heterogeneous, implying that the comprehensive pollution control strategies should be
Terahertz spectroscopy applied to food model systems
DEFF Research Database (Denmark)
Møller, Uffe
Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult to differ...... to differentiate between these types of water in subsequent quality controls. This thesis describes terahertz time-domain spectroscopy applied on aqueous food model systems, with particular focus on ethanol-water mixtures and confined water pools in inverse micelles.......Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult...
Applying Spray Drying to Customized Powder Manufacture%用喷雾干燥方法制造具有指定特性的颗粒
Institute of Scientific and Technical Information of China (English)
Keith Masters
2004-01-01
Spray drying is an important continuous industrial process for drying pumpable liquid formulations irrespective of their heat sensitivity, rheology, solids content and processing rate. Furthermore spray drying has the capability through drying chamber design, plant layout and mode of operation to produce dried products of specific particulate size and morphology. These are important aspects when spray drying technology is applied to the needs of customized powder manufacture. There are many examples in industry where spray dried powders have to meet stringent specifications set by such factors as end-product powder quality standards dictated by global competition,dry raw material characteristics required for optimum downstream processing, and dry materials handling to comply with environmental, health and safety issues. Spray drying is no longer regarded just as a convective industrial drying concept, but also as an integral part of modern manufacturing practices applying powder technology. This paper reviews the aspects of spray dryer design and operation for consideration when customized powder manufacture is involved.
Fluidized bed drying characteristics and modeling of ginger ( zingiber officinale) slices
Parlak, Nezaket
2015-08-01
In this study fluidized bed drying characteristics of ginger have been investigated. The effects of the fluidizing air temperature, velocity, humidity and bed height on the drying performance of ginger slices have been found. The experimental moisture loss data of ginger slices has been fitted to the eight thin layer drying models. Two-term model drying model has shown a better fit to the experimental data with R2 of 0.998 as compared to others.
Energy Technology Data Exchange (ETDEWEB)
Lahsasni, S.; Mahrouz, M. [Unite de Chimie Agroalimentaire (LCOA), Faculte des Sciences Semlalia, Marrakech (Morocco); Kouhila, M.; Idlimam, A.; Jamali, A. [Ecole Normale Superieure, Marrakech (Morocco). Lab. d' Energie Solaire et Plantes Aromatiques et Medicinales
2004-02-01
This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 {sup o} C of ambient air temperature, 50 to 60 {sup o}C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m{sup 3}/s of drying air flow rate and 200 to 950 W/m{sup 2} of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square ({chi}{sup 2}) of 4.6572 10{sup -5}. (Author)
Angelo, T; Barbalho, G N; Gelfuso, G M; Gratieri, T
2016-09-01
There is yet no consensus among prescribers whether minoxidil (MXD) formulations should be applied on wet/damp or dry scalp and no clear FDA guidelines on the matter. We hypothesized that the use of MXD on damp scalp may lead to higher drug penetration. First, because the drug diffusion and consequent deposition into the hair follicle may be favored when follicle cast is humid. Second, because humidity may also prevent drug crystallization and, therefore, maintain a higher thermodynamic activity for longer periods, which leads to increased penetration. Following in vitro experiments on rat and porcine skin we confirmed the hypothesis, which could markedly improve treatment effectiveness. © 2016 Wiley Periodicals, Inc.
Monitoring and modelling for dry-stone walls terracement maintenance
Preti, Federico; Errico, Alessandro; Giambastiani, Yamuna; Guastini, Enrico; Penna, Daniele
2017-04-01
An analysis of dry-stone walls stability in agricultural areas based on innovative monitoring and modeling is here presented The field test took place in Lamole, a terraced rural area located in the province of Florence, Tuscany, central Italy, where wine production is the most important agricultural activity business. Results show a good capability of the model to predict the time-space distribution and the intensity of stresses on the instrumented dry-stone wall and to describe the bulging of the ancient ones. We obtained significant information on how the terrace failure in Lamole resulted mainly related to the water concentration pathways at specific portions of the walls. An accurate drainage of the terraced slopes, even by means of simple ditches, could reduce the concentration factor at the critical parts of terraces strongly reducing the water pressures on the walls. The analysis of the effects caused by high return time events has been carried out by means of artificially reproduced severe rainfalls on the presented experimental area.
Shakedown modeling of unsaturated expansive soils subjected to wetting and drying cycles
Directory of Open Access Journals (Sweden)
Nowamooz Hossein
2016-01-01
Full Text Available It is important to model the behavior of unsaturated expansive soils subjected to wetting and drying cycles because they alter significantly their hydro-mechanical behavior and therefore cause a huge differential settlement on shallow foundations of the structure. A simplified model based on the shakedown theory (Zarka method has been developed in this study for unsaturated expansive soils subjected to wetting and drying cycles. This method determines directly the stabilized limit state and consequently saves the calculation time. The parameters of the proposed shakedown-based model are calibrated by the suction-controlled oedometer tests obtained for an expansive soil compacted at loose and dense initial states, and then validated for the same soil compacted at intermediate initial state by comparing the model predictions with the experimental results. Finally, the finite element equations for the proposed shakedown model are developed and these equations are implemented in the finite element code CAST3M to carry out the full-scale calculations. A 2D geometry made up of the expansive soil compacted at the intermediate state is subjected to successive extremely dry and wet seasons for the different applied vertical loads. The results show the swelling plastic deformations for the lower vertical stresses and the shrinkage deformations for the higher vertical stresses.
A Cooperation Model Applied in a Kindergarten
Directory of Open Access Journals (Sweden)
Jose I. Rodriguez
2011-10-01
Full Text Available The need for collaboration in a global world has become a key factor for success for many organizations and individuals. However in several regions and organizations in the world, it has not happened yet. One of the settings where major obstacles occur for collaboration is in the business arena, mainly because of competitive beliefs that cooperation could hurt profitability. We have found such behavior in a wide variety of countries, in advanced and developing economies. Such cultural behaviors or traits characterized entrepreneurs by working in isolation, avoiding the possibilities of building clusters to promote regional development. The needs to improve the essential abilities that conforms cooperation are evident. It is also very difficult to change such conduct with adults. So we decided to work with children to prepare future generations to live in a cooperative world, so badly hit by greed and individualism nowadays. We have validated that working with children at an early age improves such behavior. This paper develops a model to enhance the essential abilities in order to improve cooperation. The model has been validated by applying it at a kindergarten school.
CFD modelling of condensers for freeze-drying processes
Indian Academy of Sciences (India)
Miriam Petitti; Antonello A Barresi; Daniele L Marchisio
2013-12-01
The aim of the present research is the development of a computational tool for investigating condensation processes and equipment with particular attention to freeze-dryers. These condensers in fact are usually operated at very low pressures, making it difficult to experimentally acquire quantitative knowledge of all the variables involved. Mathematical modelling and CFD (Computational Fluid Dynamics) simulations are used here to achieve a better comprehension of the flow dynamics and of the process of ice condensation and deposition in the condenser, in order to evaluate condenser efficiency and gain deeper insights of the process to be used for the improvement of its design. Both a complete laboratory-scale freeze-drying apparatus and an industrial-scale condenser have been investigated in this work, modelling the process of water vapour deposition. Different operating conditions have been considered and the influence exerted by the inert gas as well as other parameters has been investigated.
Directory of Open Access Journals (Sweden)
ileas toth
2016-10-01
Full Text Available Applying nitrogen fertilisers in legume species has been subjected to scientific research due to the efficacy of these fertilisers on yield (symbiotic atmospheric nitrogen fixation. In general, applying high rates of nitrogen fertilisers on legume species does not correlate directly with green matter production because these species take the necessary nitrogen from the atmosphere. This feature is specific also to bird’s-foot-trefoil, which fixes important amounts of atmospheric nitrogen during vegetation. This paper presents the impact of the interaction between organic and mineral fertilisers on bird’s-foot-trefoil within a bifactorial experiment. Differences in yield at both unilateral effect of the factors and at that of the interaction of the factors are statistically ensured. Keywords: common bird’s-foot-trefoil (Lotus corniculatus L., organic and mineral fertilisers, dry matter
Development of Solar Drying Model for Selected Cambodian Fish Species
Anna Hubackova; Iva Kucerova; Rithy Chrun; Petra Chaloupkova; Jan Banout
2014-01-01
A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h...
Mathematical modelling of the thin layer solar drying of banana, mango and cassava
Energy Technology Data Exchange (ETDEWEB)
Koua, Kamenan Blaise; Fassinou, Wanignon Ferdinand; Toure, Siaka [Laboratoire d' Energie Solaire, Universite de Cocody- Abidjan, 22 BP 582 Abidjan 22 (Ivory Coast); Gbaha, Prosper [Laboratoire d' Energie Nouvelle et Renouvelable, Institut National Polytechnique, Felix HOUPHOUET - BOIGNY de Yamoussoukro (Ivory Coast)
2009-10-15
The main objectives of this paper are firstly to investigate the behaviour of the thin layer drying of plantain banana, mango and cassava experimentally in a direct solar dryer and secondly to perform mathematical modelling by using thin layer drying models encountered in literature. The variation of the moisture content of the products studied and principal drying parameters are analysed. Seven statistical models, which are empirical or semi-empirical, are tested to validate the experimental data. A non-linear regression analysis using a statistical computer program is used to evaluate the constants of the models. The Henderson and Pabis drying model is found to be the most suitable for describing the solar drying curves of plantain banana, mango and cassava. The drying data of these products have been analysed to obtain the values of the effective diffusivity during the falling drying rate phase. (author)
Modeling the long-term kinetics of Salmonella survival on dry pet food.
Lambertini, Elisabetta; Mishra, Abhinav; Guo, Miao; Cao, Huilin; Buchanan, Robert L; Pradhan, Abani K
2016-09-01
Due to multiple outbreaks and large-scale product recalls, Salmonella has emerged as a priority pathogen in dry pet food and treats. However, little data are available to quantify risks posed by these classes of products to both pets and their owners. Specifically, the kinetics of Salmonella survival on complex pet food matrices are not available. This study measured the long-term kinetics of Salmonella survival on a dry pet food under storage conditions commonly encountered during production, retail, and in households (aw pet foods and treats was used to inoculate commercial dry dog food. Salmonella was enumerated on non-selective (BHI) and selective (XLD and BS) media. Results at 570 days indicated an initial relatively rapid decline (up to 54 days), followed by a much slower extended decline phase. The Weibull model provided a satisfactory fit for time series of Log-transformed Salmonella counts from all three media (δ: mean 4.65 day/Log (CFU/g); p: mean 0.364 on BHI). This study provides a survival model that can be applied in quantitative risk assessment models. Copyright © 2016 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Denin-Đurđević Jelena D.
2002-01-01
Full Text Available Skim milk powder reconstituted to 8.44% TS, 9.65% TS and 10.84% TS respectively was used for investigation. Untreated milk and milk heat treated at 85ºC/20 min and 90ºC/10 min, respectively, were used for the investigation. Milk was inoculated with 2.5% of yogurt culture (containing Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in the ratio 1:1 at 43ºC. Samples were incubated until pH 4.6 was reached. Samples were immediately cooled to 4ºC and held at that temperature during 14 days. Acid casein gel was stirred after 1, 7 and 14 days of storage. Measurements were done at 30 rpm during 2 min, at 20ºC. According to the investigation, it could be concluded that both applied heat treatment and dry matter content influence viscosity of stirred yogurt. Viscosity increases when dry matter content increases. The smallest viscosity had yogurt produced from untreated milk with 8.44% TS, while samples produced from milk with 10.84% TS had the highest viscosity. Applied heat treatments had significant influence on viscosity of yogurt gained by stirring of acid casein gels after 7 and 14 days of storage. Stirred yogurt produced from milk heat treated at 90ºC/10 min had a higher viscosity than samples produced from milk heat treated at 85ºC/20 min. Storage period influenced average viscosity of stirred yogurt. Samples of stirred yogurt produced from milk with 8.44% TS showed a decrease of average viscosity during storage regardless of the applied heat treatment of milk. The highest average viscosity had samples produced from milk with 10.84% TS.
A diffusion model for drying of a heat sensitive solid under multiple heat input modes.
Sun, Lan; Islam, Md Raisul; Ho, J C; Mujumdar, A S
2005-09-01
To obtain optimal drying kinetics as well as quality of the dried product in a batch dryer, the energy required may be supplied by combining different modes of heat transfer. In this work, using potato slice as a model heat sensitive drying object, experimental studies were conducted using a batch heat pump dryer designed to permit simultaneous application of conduction and radiation heat. Four heat input schemes were compared: pure convection, radiation-coupled convection, conduction-coupled convection and radiation-conduction-coupled convection. A two-dimensional drying model was developed assuming the drying rate to be controlled by liquid water diffusion. Both drying rates and temperatures within the slab during drying under all these four heat input schemes showed good accord with measurements. Radiation-coupled convection is the recommended heat transfer scheme from the viewpoint of high drying rate and low energy consumption.
Modeling dry-scrubbing of gaseous HCl with hydrated lime in cyclones with and without recirculation
Energy Technology Data Exchange (ETDEWEB)
Chibante, Vania G., E-mail: vaniachi@fe.up.pt [DEQ/LEPAE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Fonseca, Ana M., E-mail: afonseca@ufp.pt [CIAGEB, Universidade Fernando Pessoa, Praca 9 Abril 349, 4249-004 Porto (Portugal); Salcedo, Romualdo R., E-mail: rsalcedo@fe.up.pt [DEQ/LEPAE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal); Advanced Cyclone Systems S.A., Rua de Salazares, 842, Ed. Promonet, Porto (Portugal)
2010-06-15
A mathematical model describing the dry-scrubbing of gaseous hydrogen chloride (HCl) with solid hydrated lime particles (Ca(OH){sub 2}) was developed and experimentally verified. The model applies to cyclone systems with and without recirculation, where reaction and particle collection occurs in the same processing unit. The Modified Grain Model was selected to describe the behavior of the reaction process and it was assumed that the gas and the solid particles flow in the reactor with a plug flow. In this work, this behavior is approximated by a cascade of N CSTRs in series. Some of the model parameters were estimated by optimization taking into account the experimental results obtained. A good agreement was observed between the experimental results and those predicted by the model, where the main control resistance is the diffusion of the gaseous reactant in the layer of solid product formed.
Volume and aboveground biomass models for dry Miombo woodland in Tanzania
DEFF Research Database (Denmark)
Mwakalukwa, Ezekiel Edward; Meilby, Henrik; Treue, Thorsten
2014-01-01
Tools to accurately estimate tree volume and biomass are scarce for most forest types in East Africa, including Tanzania. Based on a sample of 142 trees and 57 shrubs from a 6,065 ha area of dry miombo woodland in Iringa rural district in Tanzania, regression models were developed for volume...... and biomass of three important species, Brachystegia spiciformis Benth. (n=40), Combretum molle G. Don (n=41), and Dalbergia arbutifolia Baker (n=37) separately, and for broader samples of trees (28 species, n=72), shrubs (16 species, n=31), and trees and shrubs combined (44 species, n=104). Applied...... of the predictions tended to increase from general to species-specific models. Except for a few volume and biomass models developed for shrubs, all models had R2 values of 96–99%. Thus, the models appear robust and should be applicable to forests with similar site conditions, species, and diameter ranges....
Experiment and modelling of parameters influencing natural wind drying of willow chunks
Gigler, J.K.; Loon, van W.K.P.; Sonneveld, C.
2004-01-01
The objective of this study was to investigate the parameters that govern the drying process of willow chunks. Indicative chunk drying trials were conducted to assess the potential of natural wind drying. Supportive model simulations were conducted to gain insight into the influence of different pro
Empirical Modeling on Hot Air Drying of Fresh and Pre-treated Pineapples
Directory of Open Access Journals (Sweden)
Tanongkankit Yardfon
2016-01-01
Full Text Available This research was aimed to study drying kinetics and determine empirical model of fresh pineapple and pre-treated pineapple with sucrose solution at different concentrations during drying. 3 mm thick samples were immersed into 30, 40 and 50 Brix of sucrose solution before hot air drying at temperatures of 60, 70 and 80°C. The empirical models to predict the drying kinetics were investigated. The results showed that the moisture content decreased when increasing the drying temperatures and times. Increase in sucrose concentration led to longer drying time. According to the statistical values of the highest coefficients (R2, the lowest least of chi-square (χ2 and root mean square error (RMSE, Logarithmic model was the best models for describing the drying behavior of soaked samples into 30, 40 and 50 Brix of sucrose solution.
Physical Model of Drying Shrinkage of Recycled Aggregate Concrete
Institute of Scientific and Technical Information of China (English)
GUO Yuanchen; WANG Xue; QIAN Jueshi
2015-01-01
We prepared concretes (RC0, RC30, and RC100) with three different mixes. The pore-size distribution parameters of RAC were examined by high-precision mercury intrusion method (MIM) and nuclear magnetic resonance (NMR) imaging. A capillary-bundle physical model with random-distribution pores (improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental veriifcation.
Mathematical model for solar drying of potato cylinders with thermal conductivity radially modulated
Trujillo Arredondo, Mariana
2014-05-01
A mathematical model for drying potato cylinders using solar radiation is proposed and solved analytically. The model incorporates the energy balance for the heat capacity of the potato, the radiation heat transfer from the potato toward the drying chamber and the solar radiation absorbed by the potato during the drying process. Potato cylinders are assumed to exhibit a thermal conductivity which is radially modulated. The method of the Laplace transform, with integral Bromwich and residue theorem will be applied and the analytic solutions for the temperature profiles in the potato cylinder will be derived in the form of an infinite series of Bessel functions, when the thermal conductivity is constant; and in the form of an infinite series of Heun functions, when the thermal conductivity has a linear radial modulation. All computations are performed using computer algebra, specifically Maple. It is expected that the analytical results obtained will be useful in food engineering and industry. Our results suggest some lines for future investigations such as the adoption of more general forms of radial modulation for the thermal conductivity of potato cylinders; and possible applications of other computer algebra software such as Maxima and Mathematica.
Beyond the model democracy: observational constraints indicate risk of drying in the Amazon basin
Shiogama, Hideo; Emori, Seita; Hanasaki, Naota; Abe, Manabu; Masutomi, Yuji; Takahashi, Kiyoshi; Nozawa, Toru
2013-04-01
Climate warming due to human activities will be accompanied by hydrological cycle changes. Economies, societies and ecosystems in South America (SA) are vulnerable to such water resource changes. Hence, water resource impact assessments for SA, and corresponding adaptation and mitigation policies, have attracted increased attention. However, substantial uncertainties remain in the current water resource assessments that are based on multiple coupled Atmosphere Ocean General Circulation models. This uncertainty varies from significant wetting to catastrophic drying. By applying a statistical method, we characterised the uncertainty and identified global-scale metrics for measuring the reliability of water resource assessments in SA. Here we show that, whereas the ensemble mean assessment suggested wetting across most of SA, the observational constraints indicate a higher probability of drying in the Amazon basin. Naive over-reliance on the consensus of models can lead to inappropriate decision making. Reference: Shiogama, H. et al. Observational constraints indicate risk of drying in the Amazon basin. Nature Communications 2:253 doi: 10.1038/ncomms1252 (2011).
Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato
Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif
2016-03-01
In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.
A numerical modelling approach for biomass field drying
Bartzanas, T.; Bochtis, D.D.; Sørensen, C.G.; Sapounas, A.; Green, O.
2010-01-01
In grass conservation systems, the field drying process of cut grass is an important function since it determines subsequent losses and possible hazardous effects of during silage. The drying process of harvested grass was evaluated using two different numerical approaches. Firstly, an existing expe
A numerical modelling approach for biomass field drying
Bartzanas, T.; Bochtis, D.D.; Sørensen, C.G.; Sapounas, A.; Green, O.
2010-01-01
In grass conservation systems, the field drying process of cut grass is an important function since it determines subsequent losses and possible hazardous effects of during silage. The drying process of harvested grass was evaluated using two different numerical approaches. Firstly, an existing
STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS
Directory of Open Access Journals (Sweden)
Mojtaba Nouri
2015-06-01
Full Text Available The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C and microwave (90, 180, 360, 600 and 900w in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2, Chi square(X2, root mean square errors(RSME. Results also revealed that temperature and microwave power effectively reduce the drying time when increase. Drying occurs in degrading stage; moreover the comparison of results exhibited that Page and Two sentences models were fitted appropriately to estimate moisture changing and drying description. Regarding all the results, it is cleared that microwave method is an appropriate method in spinach drying as a result of reducing drying temperature and its high efficiency.
Applying mechanistic models in bioprocess development
DEFF Research Database (Denmark)
Lencastre Fernandes, Rita; Bodla, Vijaya Krishna; Carlquist, Magnus
2013-01-01
models should be combined with proper model analysis tools, such as uncertainty and sensitivity analysis. When assuming distributed inputs, the resulting uncertainty in the model outputs can be decomposed using sensitivity analysis to determine which input parameters are responsible for the major part...... of the output uncertainty. Such information can be used as guidance for experimental work; i.e., only parameters with a significant influence on model outputs need to be determined experimentally. The use of mechanistic models and model analysis tools is demonstrated in this chapter. As a practical case study......, experimental data from Saccharomyces cerevisiae fermentations are used. The data are described with the well-known model of Sonnleitner and Käppeli (Biotechnol Bioeng 28:927-937, 1986) and the model is analyzed further. The methods used are generic, and can be transferred easily to other, more complex case...
Applied Creativity: The Creative Marketing Breakthrough Model
Titus, Philip A.
2007-01-01
Despite the increasing importance of personal creativity in today's business environment, few conceptual creativity frameworks have been presented in the marketing education literature. The purpose of this article is to advance the integration of creativity instruction into marketing classrooms by presenting an applied creative marketing…
Applying Modeling Tools to Ground System Procedures
Di Pasquale, Peter
2012-01-01
As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.
Mathematical Modeling and Effect of Various Hot-Air Drying on Mushroom (Lentinus edodes)
Institute of Scientific and Technical Information of China (English)
GUO Xiao-hui; XIA Chun-yan; TAN Yu-rong; CHEN Long; MING Jian
2014-01-01
An experimental study was performed to determine the characteristics and drying process of mushroom (Lentinus edodes) by 6 different hot-air drying methods namely isothermal drying, uniform raise drying, non-uniform raise drying, uniform intermittent drying, non-uniform intermittent drying and combined drying. The chemical composition (dry matter, ash, crude protein, crude fat, total sugars, dietary ifber, and energy), color parameters (L, a*, b*, c*, and h0) and rehydration capacities were determined. Among all the experiments, non-uniform intermittent drying reached a better comprehensive results due to the higher chemical composition, better color quality associated with high bright (26.381±5.842), high color tone (73.670±2.975), low chroma (13.349±3.456) as well as the highest rehydration (453.76%weigh of dried body). Nine kinds of classical mathematical model were used to obtained moisture data and the Midili-kucuk model can be described by the drying process with the coefifcient (R2 ranged from 0.99790 to 0.99967), chi-square (χ2 ranged from 0.00003 to 0.00019) and root mean square error (RMSE ranged from 0.000486 to 0.0012367).
Accuracy of cuticular resistance parameterizations in ammonia dry deposition models
Schrader, Frederik; Brümmer, Christian; Richter, Undine; Fléchard, Chris; Wichink Kruit, Roy; Erisman, Jan Willem
2016-04-01
Accurate representation of total reactive nitrogen (Nr) exchange between ecosystems and the atmosphere is a crucial part of modern air quality models. However, bi-directional exchange of ammonia (NH3), the dominant Nr species in agricultural landscapes, still poses a major source of uncertainty in these models, where especially the treatment of non-stomatal pathways (e.g. exchange with wet leaf surfaces or the ground layer) can be challenging. While complex dynamic leaf surface chemistry models have been shown to successfully reproduce measured ammonia fluxes on the field scale, computational restraints and the lack of necessary input data have so far limited their application in larger scale simulations. A variety of different approaches to modelling dry deposition to leaf surfaces with simplified steady-state parameterizations have therefore arisen in the recent literature. We present a performance assessment of selected cuticular resistance parameterizations by comparing them with ammonia deposition measurements by means of eddy covariance (EC) and the aerodynamic gradient method (AGM) at a number of semi-natural and grassland sites in Europe. First results indicate that using a state-of-the-art uni-directional approach tends to overestimate and using a bi-directional cuticular compensation point approach tends to underestimate cuticular resistance in some cases, consequently leading to systematic errors in the resulting flux estimates. Using the uni-directional model, situations where low ratios of total atmospheric acids to NH3 concentration occur lead to fairly high minimum cuticular resistances, limiting predicted downward fluxes in conditions usually favouring deposition. On the other hand, the bi-directional model used here features a seasonal cycle of external leaf surface emission potentials that can lead to comparably low effective resistance estimates under warm and wet conditions, when in practice an expected increase in the compensation point due to
Applying MDL to Learning Best Model Granularity
Gao, Q; Vitanyi, P; Gao, Qiong; Li, Ming; Vitanyi, Paul
2000-01-01
The Minimum Description Length (MDL) principle is solidly based on a provably ideal method of inference using Kolmogorov complexity. We test how the theory behaves in practice on a general problem in model selection: that of learning the best model granularity. The performance of a model depends critically on the granularity, for example the choice of precision of the parameters. Too high precision generally involves modeling of accidental noise and too low precision may lead to confusion of models that should be distinguished. This precision is often determined ad hoc. In MDL the best model is the one that most compresses a two-part code of the data set: this embodies ``Occam's Razor.'' In two quite different experimental settings the theoretical value determined using MDL coincides with the best value found experimentally. In the first experiment the task is to recognize isolated handwritten characters in one subject's handwriting, irrespective of size and orientation. Based on a new modification of elastic...
Biplot models applied to cancer mortality rates.
Osmond, C
1985-01-01
"A graphical method developed by Gabriel to display the rows and columns of a matrix is applied to tables of age- and period-specific cancer mortality rates. It is particularly useful when the pattern of age-specific rates changes with time. Trends in age-specific rates and changes in the age distribution are identified as projections. Three examples [from England and Wales] are given."
A mouse dry eye model induced by topical administration of benzalkonium chloride
Lin, Zhirong; Liu, Xiaochen; Zhou, Tong; Wang, Yihui; Bai, Li; He, Hui
2011-01-01
Purpose To develop a dry eye model of mouse induced by topical administration of benzalkonium chloride (BAC) and investigate the possible mechanisms. Methods BAC at concentration of 0.2% was applied to the mouse ocular surface for 7 days. Phenol red thread tear test, tear break-up time (BUT) test, corneal inflammatory index scoring, fluorescein and rose bengal test were performed to evaluate the toxic effects of BAC on the ocular surface. Global specimens were collected on day (D) 7 and labeled with a series of antibodies including cytokeratin 10 (K10) and mucin 5AC (MUC5AC). Apoptosis of ocular surface epithelium was evaluated by in situ terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Histologic analysis and transmission electron microscopy (TEM) were performed on D7. Results BAC at a concentration of 0.2% successfully induced a dry eye condition with decreased tear volume and BUTs, increased corneal fluorescein and rose bengal scores. The Inflammatory index was increased in accompanyment with higher tumor necrosis factor-α (TNF-α) expression and more inflammatory infiltration in the cornea. Immunolabeling revealed positive K10 expression in BAC-treated corneal epithelium and fewer MUC5AC-positive cells in the BAC-treated conjunctival fornix. TUNEL assay showed more apoptotic cells in the corneal basal epithelium. TEM showed that the size and intervals of the microvillis were both reduced in the corneal epithelium. Conclusions Topical administration of 0.2% BAC in mouse induces changes resembling that of dry eye syndrome in humans, and thus, represents a novel model of dry eye. PMID:21283525
Applying the Sport Education Model to Tennis
Ayvazo, Shiri
2009-01-01
The physical education field abounds with theoretically sound curricular approaches such as fitness education, skill theme approach, tactical approach, and sport education. In an era that emphasizes authentic sport experiences, the Sport Education Model includes unique features that sets it apart from other curricular models and can be a valuable…
Technology Advances and Mechanistic Modelling in Freeze-drying and Dehydration of Food
Directory of Open Access Journals (Sweden)
Wanren Chen
2015-08-01
Full Text Available Aim of study is to introduce some advanced freeze-drying technology and mechanistic modelling in freeze-drying and dehydration of food, freeze-drying is based on the dehydration by sublimation of a frozen product, due to very low temperature, all the deterioration activity and microbiological activity are stopped and provide better quality to the final product. Meanwhile the main problems of the freeze-dried food were proposed and its prospect and outlook was also analyzed, expecting to obtain technical and theoretical support for the production of freeze-drying food.
Thin-layer drying characteristics of sweet potato slices and mathematical modelling
Doymaz, Ibrahim
2011-03-01
The effect of blanching and drying temperature (50, 60 and 70°C) on drying kinetics and rehydration ratio of sweet potatoes was investigated. It was observed that both the drying temperature and blanching affected the drying time and rehydration ratio. The logarithmic model showed the best fit to experimental drying data. The values of effective moisture diffusivity and activation energy ranged from 9.32 × 10-11 to 1.75 × 10-10 m2/s, and 22.7-23.2 kJ/mol, respectively.
MEASUREMENT AND MODELING OF THE DRY DEPOSITION OF PEROXIDES
Measurements of the dry deposition velocity (Vd) of hydrogen peroxide (H2O2) and total organic peroxides (ROOH) were made during four experiments at three forested sites. Details and uncertainties associated with the measurement of peroxide...
Applied mathematics: Models, Discretizations, and Solvers
Institute of Scientific and Technical Information of China (English)
D.E. Keyes
2007-01-01
@@ Computational plasma physicists inherit decades of developments in mathematical models, numerical algorithms, computer architecture, and software engineering, whose recent coming together marks the beginning of a new era of large-scale simulation.
Applied modelling and computing in social science
Povh, Janez
2015-01-01
In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.
Applying Machine Trust Models to Forensic Investigations
Wojcik, Marika; Venter, Hein; Eloff, Jan; Olivier, Martin
Digital forensics involves the identification, preservation, analysis and presentation of electronic evidence for use in legal proceedings. In the presence of contradictory evidence, forensic investigators need a means to determine which evidence can be trusted. This is particularly true in a trust model environment where computerised agents may make trust-based decisions that influence interactions within the system. This paper focuses on the analysis of evidence in trust-based environments and the determination of the degree to which evidence can be trusted. The trust model proposed in this work may be implemented in a tool for conducting trust-based forensic investigations. The model takes into account the trust environment and parameters that influence interactions in a computer network being investigated. Also, it allows for crimes to be reenacted to create more substantial evidentiary proof.
Energy Technology Data Exchange (ETDEWEB)
Barigozzi, G.; Perdichizzi, A.; Ravelli, S. [Department of Industrial Engineering, Bergamo University (Italy)
2011-04-15
In Brescia, Italy, heat is delivered to 70% of 200.000 city inhabitants by means of a district heating system, mainly supplied by a waste to energy plant, utilizing the non recyclable fraction of municipal and industrial solid waste (800,000 tons/year, otherwise landfilled), thus saving annually over 150,000 tons of oil equivalent and over 400,000 tons of CO{sub 2} emissions. This study shows how the performance of the waste-to-energy cogeneration plant can be improved by optimising the condensation system, with particular focus on the combination of wet and dry cooling systems. The analysis has been carried out using two subsequent steps: in the first one a schematic model of the steam cycle was accomplished in order to acquire a knowledge base about the variables that would be most influential on the performance. In the second step the electric power output for different operating conditions was predicted and optimized in a homemade program. In more details, a thermodynamic analysis of the steam cycle, according to the design operating condition, was performed by means of a commercial code (Thermoflex {sup copyright}) dedicated to power plant modelling. Then the off-design behaviour was investigated by varying not only the ambient conditions but also several parameters connected to the heat rejection rate, like the heat required from district heating and the auxiliaries load. Each of these parameters has been addressed and considered in determining the overall performance of the thermal cycle. After that, a complete prediction of the cycle behaviour was performed by simultaneously varying different operating conditions. Finally, a Matlab {sup copyright} computer code was developed in order to optimize the net electric power as a function of the way in which the condensation is operated. The result is an optimum set of variables allowing the wet and dry cooling system to be regulated in such a way that the maximum power is achieved. The best strategy consists in
Multistructure Statistical Model Applied To Factor Analysis
Bentler, Peter M.
1976-01-01
A general statistical model for the multivariate analysis of mean and covariance structures is described. Matrix calculus is used to develop the statistical aspects of one new special case in detail. This special case separates the confounding of principal components and factor analysis. (DEP)
Applying waste logistics modeling to regional planning
Energy Technology Data Exchange (ETDEWEB)
Holter, G.M.; Khawaja, A.; Shaver, S.R.; Peterson, K.L.
1995-05-01
Waste logistics modeling is a powerful analytical technique that can be used for effective planning of future solid waste storage, treatment, and disposal activities. Proper waste management is essential for preventing unacceptable environmental degradation from ongoing operations, and is also a critical part of any environmental remediation activity. Logistics modeling allows for analysis of alternate scenarios for future waste flowrates and routings, facility schedules, and processing or handling capacities. Such analyses provide an increased understanding of the critical needs for waste storage, treatment, transport, and disposal while there is still adequate lead time to plan accordingly. They also provide a basis for determining the sensitivity of these critical needs to the various system parameters. This paper discusses the application of waste logistics modeling concepts to regional planning. In addition to ongoing efforts to aid in planning for a large industrial complex, the Pacific Northwest Laboratory (PNL) is currently involved in implementing waste logistics modeling as part of the planning process for material recovery and recycling within a multi-city region in the western US.
Support vector machine applied in QSAR modelling
Institute of Scientific and Technical Information of China (English)
MEI Hu; ZHOU Yuan; LIANG Guizhao; LI Zhiliang
2005-01-01
Support vector machine (SVM), partial least squares (PLS), and Back-Propagation artificial neural network (ANN) were employed to establish QSAR models of 2 dipeptide datasets. In order to validate predictive capabilities on external dataset of the resulting models, both internal and external validations were performed. The division of dataset into both training and test sets was carried out by D-optimal design. The results showed that support vector machine (SVM) behaved well in both calibration and prediction. For the dataset of 48 bitter tasting dipeptides (BTD), the results obtained by support vector regression (SVR) were superior to that by PLS in both calibration and prediction. When compared with BP artificial neural network, SVR showed less calibration power but more predictive capability. For the dataset of angiotensin-converting enzyme (ACE) inhibitors, the results obtained by support vector machine (SVM) regression were equivalent to those by PLS and BP artificial neural network. In both datasets, SVR using linear kernel function behaved well as that using radial basis kernel function. The results showed that there is wide prospect for the application of support vector machine (SVM) into QSAR modeling.
Effect of human milk as a treatment for dry eye syndrome in a mouse model
Diego, Jose L.; Bidikov, Luke; Pedler, Michelle G.; Kennedy, Jeffrey B.; Quiroz-Mercado, Hugo; Gregory, Darren G.; Petrash, J. Mark
2016-01-01
Purpose Dry eye syndrome (DES) affects millions of people worldwide. Homeopathic remedies to treat a wide variety of ocular diseases have previously been documented in the literature, but little systematic work has been performed to validate the remedies’ efficacy using accepted laboratory models of disease. The purpose of this study was to evaluate the efficacy of human milk and nopal cactus (prickly pear), two widely used homeopathic remedies, as agents to reduce pathological markers of DES. Methods The previously described benzalkonium chloride (BAK) dry eye mouse model was used to study the efficacy of human milk and nopal cactus (prickly pear). BAK (0.2%) was applied to the mouse ocular surface twice daily to induce dry eye pathology. Fluorescein staining was used to verify that the animals had characteristic signs of DES. After induction of DES, the animals were treated with human milk (whole and fat-reduced), nopal, nopal extract derivatives, or cyclosporine four times daily for 7 days. Punctate staining and preservation of corneal epithelial thickness, measured histologically at the end of treatment, were used as indices of therapeutic efficacy. Results Treatment with BAK reduced the mean corneal epithelial thickness from 36.77±0.64 μm in the control mice to 21.29±3.2 μm. Reduction in corneal epithelial thickness was largely prevented by administration of whole milk (33.2±2.5 μm) or fat-reduced milk (36.1±1.58 μm), outcomes that were similar to treatment with cyclosporine (38.52±2.47 μm), a standard in current dry eye therapy. In contrast, crude or filtered nopal extracts were ineffective at preventing BAK-induced loss of corneal epithelial thickness (24.76±1.78 μm and 27.99±2.75 μm, respectively), as were solvents used in the extraction of nopal materials (26.53±1.46 μm for ethyl acetate, 21.59±5.87 μm for methanol). Epithelial damage, as reflected in the punctate scores, decreased over 4 days of treatment with whole and fat
S-wave velocity self-adaptive prediction based on a variable dry rock frame equivalent model
Feng-Ying, Yang; Xing-Yao, Yin; Bo, Liu
2014-08-01
Seismic velocities are important reservoir parameters in seismic exploration. The Gassmann theory has been widely used to predict velocities of fluid-saturated isotropic reservoirs at low frequency. According to Gassmann theory, dry rock frame moduli are essential input parameters for estimating reservoir velocities. A variable dry rock frame equivalent model called VDEM based on the differential effective medium (DEM) theory is constructed in this paper to obtain the dry rock frame moduli. We decouple the DEM equations by introducing variable parameters, then simplify these decoupled equations to get the equivalent dry rock fame model. The predicted dry rock frame moduli by the VDEM are in good agreement with the laboratory data. The VDEM is also utilized to predict S-wave velocity combined with Gassmann theory. A self-adaptive inversion method is applied to fit the variable parameters with the constraint of P-wave velocity from well logging data. The S-wave velocity is estimated from these inversed parameters. A comparison between the self-adaptive method and the Xu-White model on S-wave velocity estimation is made. The results corroborate that the self-adaptive method is flexible and effective for S-wave velocity prediction.
Rendina, Elizabeth; Hembree, Kelsey D; Davis, McKale R; Marlow, Denver; Clarke, Stephen L; Halloran, Bernard P; Lucas, Edralin A; Smith, Brenda J
2013-01-01
Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX) C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w) dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx) activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum's unique effects on bone.
Mathematical modeling and simulation of gel drying with supercritical carbon dioxide
Directory of Open Access Journals (Sweden)
ALEKSANDAR ORLOVIC
2005-02-01
Full Text Available Mathematical models of alumina/silica gel supercritical drying with carbon dioxide were studied using supercritical drying experimental data. An alumina/silica gel with zinc chloride was synthesized and dried with superciritical carbon dioxide, and its weight change wasmonitored as a function of drying time. The pore size distribution of the obtained aerogel was determined using the BET method and nitrogen adsorption/desorption. Themathematical model of the supercritical drying of the wet gel was represented as unsteady and one-dimensional diffusion of solvent through the aerogel pores filled with supercitical carbon dioxide. Parallel pore model and pores in series model were developed on the basis of the measured porous structure of the aerogel. It was found that these models which use different effective diffusivity value for each pore size were in much better agreement with the experimental data than models which use an overall effective diffusivity. The local effective diffusivity coefficients were calculated using different tortuosity values for each pore size, and they were distributed according to the pore size distribution data. Model simulations of the superciritical drying with carbon dioxide confirmed that the drying temperature and gel particle diameter have a significant influence on the drying time.
Directory of Open Access Journals (Sweden)
Cristian F. Costa
2016-06-01
Full Text Available ABSTRACT Jabuticaba is a fruit native of Brazil and, besides containing many nutritional qualities, it also has a good field for use in products such as flour for cakes and biscuits, juice, liqueur, jelly and others. This study aimed to model the drying kinetics and determine the thermodynamic properties of jabuticaba peel at different drying air temperatures. Ripe fruits of jabuticaba (Myrciaria jaboticaba were collected and pulped manually. Drying was carried out in a forced-air circulation oven with a flow of 5.6 m s-1 at temperatures of 40, 50, 60 and 70 °C. Six mathematical models commonly used to represent the drying process of agricultural products were fitted to the experimental data. The Arrhenius model was used to represent the drying constant as a function of temperature. The Midilli model showed the best fit to the experimental data of drying. The drying constant increased with the increment in drying temperature and promoted an activation energy of 37.29 kJ mol-1. Enthalpy and Gibbs free energy decreased with the increase in drying temperature, while entropy decreased and was negative.
Torki-Harchegani, Mehdi; Ghasemi-Varnamkhasti, Mahdi; Ghanbarian, Davoud; Sadeghi, Morteza; Tohidi, Mojtaba
2016-02-01
In this study, the effect of drying temperature on drying behaviour and mass transfer parameters of lemon slices was investigated. The drying experiments were conducted in a laboratory air ventilated oven dryer at temperatures of 50, 60 and 75 °C. It was observed that the drying temperature affected the drying time and drying rate significantly. Drying rate curves revealed that the process at the temperature levels taken place in the falling rate period entirely. The usefulness of eight thin layer models to simulate the drying kinetics was evaluated and the Midilli and Kucuk model showed the best fit to experimental drying curves. The effective moisture diffusivity was determined on the basis of Fick's second law and obtained to be 1.62 × 10-11, 3.25 × 10-11 and 8.11 × 10-11 m2 s-1 for the temperatures of 50, 60 and 75 °C, respectively. The activation energy and Arrhenius constant were calculated to be 60.08 kJ mol-1 and 0.08511 m2 s-1, respectively. The average value of convective mass transfer coefficient for the drying temperatures of 50, 60 and 75 °C was calculated to be 5.71 × 10-7, 1.62 × 10-6 and 2.53 × 10-6 m s-1, respectively.
Šumić, Zdravko; Vakula, Anita; Tepić, Aleksandra; Čakarević, Jelena; Vitas, Jasmina; Pavlić, Branimir
2016-07-15
Fresh red currants were dried by vacuum drying process under different drying conditions. Box-Behnken experimental design with response surface methodology was used for optimization of drying process in terms of physical (moisture content, water activity, total color change, firmness and rehydratation power) and chemical (total phenols, total flavonoids, monomeric anthocyanins and ascorbic acid content and antioxidant activity) properties of dried samples. Temperature (48-78 °C), pressure (30-330 mbar) and drying time (8-16 h) were investigated as independent variables. Experimental results were fitted to a second-order polynomial model where regression analysis and analysis of variance were used to determine model fitness and optimal drying conditions. The optimal conditions of simultaneously optimized responses were temperature of 70.2 °C, pressure of 39 mbar and drying time of 8 h. It could be concluded that vacuum drying provides samples with good physico-chemical properties, similar to lyophilized sample and better than conventionally dried sample.
Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.
2016-12-01
Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.
Modelling the drying kinetics of green peas in a solar dryer and under open sun
Energy Technology Data Exchange (ETDEWEB)
Sunil [Department of Mechanical Engineering, BRCM CET Bahal, Haryana–127028 (India); Varun [Department of Mechanical Engineering, NIT Hamirpur, (H.P.)–177005 (India); Sharma, Naveen [Department of Mechanical and Industrial Engineering, IITR, (U.K.)–247667 (India)
2013-07-01
The drying kinetics of green peas was investigated in an indirect solar dryer and under open sun. The entire drying process took place exclusively in falling rate period. The constant rate period was absent from the drying curves. The rehydration capacity was also determined for peas dried in solar dryer and under open sun. The rehydration capacity of solar dried peas was found higher than open sun dried peas. The drying data obtained from experiments were fitted to eight different mathematical models. The performance of these models was examined by comparing the coefficient of correlation (R2), sum of squares error (SSE), mean squared error (MSE) and root mean square error (RMSE) between observed and predicted values of moisture ratios. Among these models, the thin layer drying model developed by Page showed good agreement with the data obtained from experiments for bottom tray. The Midilli et al. model has shown better fit to the experimental data for top tray and open sun than other models.
Modelling the drying kinetics of green peas in a solar dryer and under open sun
Directory of Open Access Journals (Sweden)
Sunil, Varun, Naveen Sharma
2013-01-01
Full Text Available The drying kinetics of green peas was investigated in an indirect solar dryer and under open sun. The entire drying process took place exclusively in falling rate period. The constant rate period was absent from the drying curves. The rehydration capacity was also determined for peas dried in solar dryer and under open sun. The rehydration capacity of solar dried peas was found higher than open sun dried peas. The drying data obtained from experiments were fitted to eight different mathematical models. The performance of these models was examined by comparing the coefficient of correlation (R2, sum of squares error (SSE, mean squared error (MSE and root mean square error (RMSE between observed and predicted values of moisture ratios. Among these models, the thin layer drying model developed by Page showed good agreement with the data obtained from experiments for bottom tray. The Midilli et al. model has shown better fit to the experimental data for top tray and open sun than other models.
Documentation of the DRI Model of the US economy, December 1993
Energy Technology Data Exchange (ETDEWEB)
1994-02-28
The Energy Information Administration (EIA) uses models of the US economy developed by Data Resources, Inc. (DRI) for conducting policy analyses, preparing forecasts for the Annual Energy Outlook, the Short-Term Energy Outlook, and related analyses in conjunction with EIA`s National Energy Modeling System (NEMS) and its other energy market models. Both the DRI Model of the US Economy and the DRI Personal Computer Input-Output Model (PC-IO){sup 2} were developed and are maintained by DRI as proprietary models. This report provides documentation, as required by EIA standards for the use of proprietary models; describes the theoretical basis, structure and functions of both DRI models; and contains brief descriptions of the models and their equations. Appendix A describes how the two large-scale models documented here are used to support the macroeconomic and interindustry modeling associated with the National Energy Modeling System. Appendix B is an article by Stephen McNees of the Federal Reserve Bank of Boston on ``How Large are Economic Forecast Errors.`` This article assesses the forecast accuracy of a number of economic forecasting models (groups) and is attached as an independent assessment of the forecast accuracy of the DRI Model of the US Economy.
On the hydrological-hydraulic modelling of hillslope dry-stone walls
Perlotto, Chiara; Michelini, Tamara; D'Agostino, Vincenzo
2015-04-01
Terraces are among the most evident human signatures on the landscape as they cover large cultivated territories of the Earth. The importance of dry-stone walls to realize bench terraces has always played a key role in the management of the agricultural hilly/mountain areas. These works are generally built to allow tractors and ploughs to operate under acceptable conditions, to make human work in the slopes easy and comfortable, and to promote irrigation. Few studies in literature are available on rainfall-runoff transformation and flood risk mitigation in terrace areas. Then, research results in this field are still scarce. Bench terraces reduce the terrain slope and the length of the overland flow, quantitatively controlling the runoff flow velocity, facilitating the drainage and thus leading to a reduction of soil erosion. As to the hydrological response, a terraced slope should result in a reduction in the peak runoff at the toe of hillslope and in a delay in the passage of the peak flows. This fact occurs mainly due to the change of the original land topography. The goal of this study is highlighting the benefit in terms of runoff reduction, which is provided by sequence of dry-stone walls under different space arrangements along the hillslope. In particular, the FLO-2D model was recursively applied to a schematic hillslope simulating both the local variations of the hydrological soil characteristics and the morphological stepped profile of the bench terraces. The simulations have been carried out by varying the main parameters underlying the design of the terrace system (spacing, height and number of terraces). The results have shown an interesting clear linkage between the peak-discharge reduction of the overland flows and the area extent, which is consolidated by means of the dry-stone walls. The modelling outcomes well support and inform design criteria, cost-benefit analysis and the assessment of the functionality level of this historical consolidation
Naderinezhad, Samira; Etesami, Nasrin; Poormalek Najafabady, Arefe; Ghasemi Falavarjani, Majid
2016-01-01
The effect of air temperature, air velocity, and sample shapes (circle and square with the same cross-sectional area) on kinetic drying of potato slices in a tunnel dryer was investigated experimentally and a suitable drying model was developed. The experiments of drying of potato slices were conducted at an air temperature of 45-70°C with an air velocity 1.60 and 1.81 m sec(-1). Results showed that drying temperature was the most effective parameter in the drying rate. The influence of air velocity was more profound in low temperature. The time for drying square slices was lower compared to the circle ones. Furthermore, drying data were fitted to different empirical models. Among the models, Midilli-Kucuk was the best to explain the single layer drying of potato slices. The parameters of this model were determined as functions of air velocity and temperature by multiple regression analysis for circle and square slices. Various statistical parameters were examined for evaluating the model.
A k-{\\varepsilon} turbulence closure model of an isothermal dry granular dense matter
Fang, Chung
2016-07-01
The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k-{\\varepsilon} turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.
Volume and Aboveground Biomass Models for Dry Miombo Woodland in Tanzania
Directory of Open Access Journals (Sweden)
Ezekiel Edward Mwakalukwa
2014-01-01
Full Text Available Tools to accurately estimate tree volume and biomass are scarce for most forest types in East Africa, including Tanzania. Based on a sample of 142 trees and 57 shrubs from a 6,065 ha area of dry miombo woodland in Iringa rural district in Tanzania, regression models were developed for volume and biomass of three important species, Brachystegia spiciformis Benth. (n = 40, Combretum molle G. Don (n = 41, and Dalbergia arbutifolia Baker (n = 37 separately, and for broader samples of trees (28 species, n = 72, shrubs (16 species, n = 32, and trees and shrubs combined (44 species, n = 104. Applied independent variables were log-transformed diameter, height, and wood basic density, and in each case a range of different models were tested. The general tendency among the final models is that the fit improved when height and wood basic density were included. Also the precision and accuracy of the predictions tended to increase from general to species-specific models. Except for a few volume and biomass models developed for shrubs, all models had R2 values of 96–99%. Thus, the models appear robust and should be applicable to forests with similar site conditions, species, and diameter ranges.
Model of Mass and Heat Transfer during Vacuum Freeze-Drying for Cornea
Directory of Open Access Journals (Sweden)
Zou Huifen
2012-01-01
Full Text Available Cornea is the important apparatus of organism, which has complex cell structure. Heat and mass transfer and thermal parameters during vacuum freeze-drying of keeping corneal activity are studied. The freeze-drying cornea experiments were operated in the homemade vacuum freeze dryer. Pressure of the freeze-drying box was about 50 Pa and temperature was about −10°C by controlled, and operating like this could guarantee survival ratio of the corneal endothelium over the grafting normal. Theory analyzing of corneal freeze-drying, mathematical model of describing heat and mass transfer during vacuum freeze-drying of cornea was established. The analogy computation for the freeze-drying of cornea was made by using finite-element computational software. When pressure of the freeze-drying box was about 50 Pa and temperature was about −10°C, time of double-side drying was 170 min. In this paper, a moving-grid finite-element method was used. The sublimation interface was tracked continuously. The finite-element mesh is moved continuously such that the interface position always coincides with an element node. Computational precision was guaranteed. The computational results were agreed with the experimental results. It proved that the mathematical model was reasonable. The finite-element software is adapted for calculating the heat and mass transfer of corneal freeze-drying.
Development of Simple Drying Model for Performance Prediction of Solar Dryer: Theoretical Analysis
DEFF Research Database (Denmark)
Singh, Shobhana; Kumar, Subodh
2012-01-01
of experimental drying parameters. A laboratory model of mixed-mode solar dryer system is tested with cylindrical potato samples of thickness 5 and 18 mm under simulated indoor conditions. The potato samples were dried at a constant absorbed thermal energy of 750 W/m2 and air mass flow rate of 0.011 kg...
MCNP6 and DRiFT modeling efforts for the NEUANCE/DANCE detector array
Energy Technology Data Exchange (ETDEWEB)
Pinilla, Maria Isabel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-30
This report seeks to study and benchmark code predictions against experimental data; determine parameters to match MCNP-simulated detector response functions to experimental stilbene measurements; add stilbene processing capabilities to DRiFT; and improve NEUANCE detector array modeling and analysis using new MCNP6 and DRiFT features.
Modeling a Dry Etch Process for Large-Area Devices
Energy Technology Data Exchange (ETDEWEB)
Buss, R.J.; Hebner, G.A.; Ruby, D.S.; Yang, P.
1999-07-28
There has been considerable interest in developing dry processes which can effectively replace wet processing in the manufacture of large area photovoltaic devices. Environmental and health issues are a driver for this activity because wet processes generally increase worker exposure to toxic and hazardous chemicals and generate large volumes of liquid hazardous waste. Our work has been directed toward improving the performance of screen-printed solar cells while using plasma processing to reduce hazardous chemical usage.
Modeling of molecular and particulate transport in dry spent nuclear fuel canisters
Casella, Andrew M.
2007-09-01
The transportation and storage of spent nuclear fuel is one of the prominent issues facing the commercial nuclear industry today, as there is still no general consensus regarding the near- and long-term strategy for managing the back-end of the nuclear fuel cycle. The debate continues over whether the fuel cycle should remain open, in which case spent fuel will be stored at on-site reactor facilities, interim facilities, or a geologic repository; or if the fuel cycle should be closed, in which case spent fuel will be recycled. Currently, commercial spent nuclear fuel is stored at on-site reactor facilities either in pools or in dry storage containers. Increasingly, spent fuel is being moved to dry storage containers due to decreased costs relative to pools. As the number of dry spent fuel containers increases and the roles they play in the nuclear fuel cycle increase, more regulations will be enacted to ensure that they function properly. Accordingly, they will have to be carefully analyzed for normal conditions, as well as any off-normal conditions of concern. This thesis addresses the phenomena associated with one such concern; the formation of a microscopic through-wall breach in a dry storage container. Particular emphasis is placed on the depressurization of the canister, release of radioactivity, and plugging of the breach due to deposition of suspended particulates. The depressurization of a dry storage container upon the formation of a breach depends on the temperature and quantity of the fill gas, the pressure differential across the breach, and the size of the breach. The first model constructed in this thesis is capable of determining the depressurization time for a breached container as long as the associated parameters just identified allow for laminar flow through the breach. The parameters can be manipulated to quantitatively determine their effect on depressurization. This model is expanded to account for the presence of suspended particles. If
Černíková, Michaela; Nebesářová, Jana; Salek, Richardos Nikolaos; Řiháčková, Lada; Buňka, František
2017-04-05
The aim of this work was to examine the effect of a different dry matter (DM) contents (35 and 45% wt/wt) and fat in DM contents (40 and 50% wt/wt) on the textural and viscoelastic properties and microstructure of model processed cheeses made from real ingredients regularly used in the dairy industry. A constant DM content and constant fat in DM content were kept throughout the whole study. Apart from the basic chemical parameters, textural and viscoelastic properties of the model samples were measured and scanning electron microscopy was carried out. With increasing DM content, the rigidity of the products increased and the size of the fat globules in the model samples of the processed cheeses decreased. With increasing fat in DM content, the rigidity of the processed cheeses decreased and the size of the fat globules increased.
Finite element models applied in active structural acoustic control
Oude Nijhuis, Marco H.H.; Boer, de André; Rao, Vittal S.
2002-01-01
This paper discusses the modeling of systems for active structural acoustic control. The finite element method is applied to model structures including the dynamics of piezoelectric sensors and actuators. A model reduction technique is presented to make the finite element model suitable for controll
Modelling and simulation of a moving interface problem: freeze drying of black tea extract
Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan
2017-01-01
The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.
Modelling and simulation of a moving interface problem: freeze drying of black tea extract
Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan
2017-06-01
The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.
Parameters Online Detection and Model Predictive Control during the Grain Drying Process
Directory of Open Access Journals (Sweden)
Lihui Zhang
2013-01-01
Full Text Available In order to improve the grain drying quality and automation level, combined with the structural characteristics of the cross-flow circulation grain dryer designed and developed by us, the temperature, moisture, and other parameters measuring sensors were placed on the dryer, to achieve online automatic detection of process parameters during the grain drying process. A drying model predictive control system was set up. A grain dry predictive control model at constant velocity and variable temperature was established, in which the entire process was dried at constant velocity (i.e., precipitation rate per hour is a constant and variable temperature. Combining PC with PLC, and based on LabVIEW, a system control platform was designed.
Modelling and experimental validation of thin layer indirect solar drying of mango slices
Energy Technology Data Exchange (ETDEWEB)
Dissa, A.O.; Bathiebo, J.; Kam, S.; Koulidiati, J. [Laboratoire de Physique et de Chimie de l' Environnement (LPCE), Unite de Formation et de Recherche en Sciences Exactes et Appliquee (UFR/SEA), Universite de Ouagadougou, Avenue Charles de Gaulle, BP 7021 Kadiogo (Burkina Faso); Savadogo, P.W. [Laboratoire Sol Eau Plante, Institut de l' Environnement et de Recherches Agricoles, 01 BP 476, Ouagadougou (Burkina Faso); Desmorieux, H. [Laboratoire d' Automatisme et de Genie des Procedes (LAGEP), UCBL1-CNRS UMR 5007-CPE Lyon, Bat.308G, 43 bd du 11 Nov. 1918 Villeurbanne, Universite Claude Bernard Lyon1, Lyon (France)
2009-04-15
The thin layer solar drying of mango slices of 8 mm thick was simulated and experimented using a solar dryer designed and constructed in laboratory. Under meteorological conditions of harvest period of mangoes, the results showed that 3 'typical days' of drying were necessary to reach the range of preservation water contents. During these 3 days of solar drying, 50%, 40% and 5% of unbound water were eliminated, respectively, at the first, second and the third day. The final water content obtained was about 16 {+-} 1.33% d.b. (13.79% w.b.). This final water content and the corresponding water activity (0.6 {+-} 0.02) were in accordance with previous work. The drying rates with correction for shrinkage and the critical water content were experimentally determined. The critical water content was close to 70% of the initial water content and the drying rates were reduced almost at 6% of their maximum value at night. The thin layer drying model made it possible to simulate suitably the solar drying kinetics of mango slices with a correlation coefficient of r{sup 2} = 0.990. This study thus contributed to the setting of solar drying time of mango and to the establishment of solar drying rates' curves of this fruit. (author)
Adjustment of mathematical models and quality of soybean grains in the drying with high temperatures
Directory of Open Access Journals (Sweden)
Paulo C. Coradi
2016-04-01
Full Text Available ABSTRACT The aim of this study was to evaluate the influence of the initial moisture content of soybeans and the drying air temperatures on drying kinetics and grain quality, and find the best mathematical model that fit the experimental data of drying, effective diffusivity and isosteric heat of desorption. The experimental design was completely randomized (CRD, with a factorial scheme (4 x 2, four drying temperatures (75, 90, 105 and 120 ºC and two initial moisture contents (25 and 19% d.b., with three replicates. The initial moisture content of the product interferes with the drying time. The model of Wang and Singh proved to be more suitable to describe the drying of soybeans to temperature ranges of the drying air of 75, 90, 105 and 120 °C and initial moisture contents of 19 and 25% (d.b.. The effective diffusivity obtained from the drying of soybeans was higher (2.5 x 10-11 m2 s-1 for a temperature of 120 °C and water content of 25% (d.b.. Drying of soybeans at higher temperatures (above 105 °C and higher initial water content (25% d.b. also increases the amount of energy (3894.57 kJ kg-1, i.e., the isosteric heat of desorption necessary to perform the process. Drying air temperature and different initial moisture contents affected the quality of soybean along the drying time (electrical conductivity of 540.35 µS cm-1g-1; however, not affect the final yield of the oil extracted from soybean grains (15.69%.
MODELING OF THE SPRAY DRYING PROCESS OF GREEN PROTEIN SUSPENSION CONCENTRATE (PGC
Directory of Open Access Journals (Sweden)
A. A. Shevtsov
2015-01-01
Full Text Available Development and implementation of high-tech and energy-efficient methods of feed production is important and ap¬propriate due to the fact that enterprises are not able to provide the market of feed consumers with high quality products at affordable prices. To solve this problem, an alternative technology for the production of protein green concentrate (PGC from the cormophyte mass of high protein plants was developed. The most energy-intensive process of obtaining PGC is spray drying. At the same time the problems of energy saving, and the product quality are solved by modeling. The drying model developed in this study is based on the falling edge of evaporation, which is used in many studies of drops drying. The problem of obtaining the basic equations of heat and mass transfer during the periods of constant and decreasing drying rate was to be solved. It is also supposed that the drying takes place during the periods of constant and decreasing drying rate. Basic equations of heat and mass transfer for both periods of drying were obtained. Changing of thermophysical characteristics were determined by statistical methods in the range of PGC humidity of 10 ... 75% and a temperature of 20 ... 100%. The model is solved by finite difference method with an accuracy of modeling results of 12%. Method of finite differences is a numerical method for solving differential equations based on the replacement of derivative differences schemes and is the grid method. Identification of model parameters to experimental data obtained in the experimental spray dryer was carried out. The solution allows the mathematical model to determine the change in moisture content (DS concentration and drop radial temperature in the spray drying of the PGC concentrate that is necessary both to select the geometrical sizes of the dryer and the drying process parameters controlling.
Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices
National Research Council Canada - National Science Library
Darvishi, Hosain; Zarein, Mohammad; Farhudi, Zanyar
2016-01-01
This work focused on the effects of the moisture content, slices thickness and microwave power on aspects of energy and exergy, drying kinetics, moisture diffusivity, activation energy, and modeling...
Directory of Open Access Journals (Sweden)
Karimi K
2016-10-01
Full Text Available Keyhaneh Karimi, Edina Pallagi, Piroska Szabó-Révész, Ildikó Csóka, Rita Ambrus Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary Abstract: Pulmonary drug delivery of ciprofloxacin hydrochloride offers effective local antibacterial activity and convenience of easy application. Spray drying is a trustworthy technique for the production of ciprofloxacin hydrochloride microparticles. Quality by design (QbD, an up-to-date regulatory-based quality management method, was used to predict the final quality of the product. According to the QbD-based theoretical preliminary parameter ranking and priority classification, dry powder inhalation formulation tests were successfully performed in practice. When focusing on the critical parameters, the practical development was more effective and was in correlation with our previous findings. Spray drying produced spherical microparticles. The dry powder formulations prepared were examined by particle size analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and in vitro drug release and aerodynamic particle size analyses were also performed. These formulations showed an appropriate particle size ranging between 2 and 4 µm and displayed an enhanced aerosol performance with fine particle fraction up to 80%. Keywords: antibiotic, carrier-free formulation, quality by design, aerodynamic evaluation, dry powder for inhalation
Convective and Microwave Dryings of Raffia Fruit: Modeling and Effects on Color and Hardness
Directory of Open Access Journals (Sweden)
Raymond G. Elenga
2013-08-01
Full Text Available Biodiversity conservation with the improvement of living conditions requires the efficiency in use of all resources. For instance, A better exploitation of the endemic oleaginous plants of the tropical forests should mitigate the extension of the palm plantations which is one of the greatest threats of the biodiversity in this area. The raffia palm fruit contains edible oil richer in nutrients than oil palm. However, oil raffia production remains weak because entirely based on empirical methods. This study compares the effect of convective and microwave dryings on the drying kinetics, color and hardness of the raffia pulp. Moreover, four drying kinetics models and the concept of characteristic drying curve have been tested for this pulp. To this end, six drying temperatures and four power levels have been used. The results show that the drying time passes from 10 h at 40°C to 3 h at 90°C and from 30 min at 140 W to 5 min at 560 W. The results could be represented by one characteristic drying curve. Among the four models used, the Modified Khazaei model is the best. The coefficient of effective diffusivity varies from 0.63×10-10 to 3.8×10-10 m2/s for convective drying and from 10.05×10-10 to 88.5×10-10 m2/s for microwave. The activation energy is 34±2 KJ/mol. It is found that convective drying degrades the color and increases the hardness of the pulp more than microwave drying.
Rodríguez, J; Clemente, G; Sanjuán, N; Bon, J
2014-01-01
The drying kinetics of thyme was analyzed by considering different conditions: air temperature of between 40°C and 70°C , and air velocity of 1 m/s. A theoretical diffusion model and eight different empirical models were fitted to the experimental data. From the theoretical model application, the effective diffusivity per unit area of the thyme was estimated (between 3.68 × 10(-5) and 2.12 × 10 (-4) s(-1)). The temperature dependence of the effective diffusivity was described by the Arrhenius relationship with activation energy of 49.42 kJ/mol. Eight different empirical models were fitted to the experimental data. Additionally, the dependence of the parameters of each model on the drying temperature was determined, obtaining equations that allow estimating the evolution of the moisture content at any temperature in the established range. Furthermore, artificial neural networks were developed and compared with the theoretical and empirical models using the percentage of the relative errors and the explained variance. The artificial neural networks were found to be more accurate predictors of moisture evolution with VAR ≥ 99.3% and ER ≤ 8.7%.
Teaching students to apply multiple physical modeling methods
Wiegers, T.; Verlinden, J.C.; Vergeest, J.S.M.
2014-01-01
Design students should be able to explore a variety of shapes before elaborating one particular shape. Current modelling courses don’t address this issue. We developed the course Rapid Modelling, which teaches students to explore multiple shape models in a short time, applying different methods and
Teaching students to apply multiple physical modeling methods
Wiegers, T.; Verlinden, J.C.; Vergeest, J.S.M.
2014-01-01
Design students should be able to explore a variety of shapes before elaborating one particular shape. Current modelling courses don’t address this issue. We developed the course Rapid Modelling, which teaches students to explore multiple shape models in a short time, applying different methods and
Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan;
2013-01-01
The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...
Physically based modelling and optimal operation for product drying during post-harvest processing.
Boxtel, van A.J.B.; Lukasse, L.; Farkas, I.; Rendik, Z.
1996-01-01
The development of new procedures for crop production and post-harvest processing requires models. Models based on physical backgrounds are most useful for this purpose because of their extrapolation potential. An optimal procedure is developed for alfalfa drying using a physical model. The model co
Physically based modelling and optimal operation for product drying during post-harvest processing.
Boxtel, van A.J.B.; Lukasse, L.; Farkas, I.; Rendik, Z.
1996-01-01
The development of new procedures for crop production and post-harvest processing requires models. Models based on physical backgrounds are most useful for this purpose because of their extrapolation potential. An optimal procedure is developed for alfalfa drying using a physical model. The model co
Drying of Durum Wheat Pasta and Enriched Pasta: A Review of Modeling Approaches.
Mercier, Samuel; Mondor, Martin; Moresoli, Christine; Villeneuve, Sébastien; Marcos, Bernard
2016-05-18
Models on drying of durum wheat pasta and enriched pasta were reviewed to identify avenues for improvement according to consumer needs, product formulation and processing conditions. This review first summarized the fundamental phenomena of pasta drying, mass transfer, heat transfer, momentum, chemical changes, shrinkage and crack formation. The basic equations of the current models were then presented, along with methods for the estimation of pasta transport and thermodynamic properties. The experimental validation of these models was also presented and highlighted the need for further model validation for drying at high temperatures (>-100°C) and for more accurate estimation of the pasta diffusion and mass transfer coefficients. This review indicates the need for the development of mechanistic models to improve our understanding of the mass and heat transfer mechanisms involved in pasta drying, and to consider the local changes in pasta transport properties and relaxation time for more accurate description of the moisture transport near glass transition conditions. The ability of current models to describe dried pasta quality according to the consumers expectations or to predict the impact of incorporating ingredients high in nutritional value on the drying of these enriched pasta was also discussed.
Thin Layer Modeling of the Convective Drying of Barberry Fruit (Berberis vulgaris
Directory of Open Access Journals (Sweden)
Akram Sharifi
2013-04-01
Full Text Available In this study, the drying kinetics of seedless barberry fruit was studied at 55, 65 and 75˚C air temperatures and 1±0.2 m/s air velocity in a laboratory thin layer dryer with forced convection. Samples were subjected to two different pretreatments (citric acid and vapor. The drying of seedless barberry fruit took place in the falling rate drying period. Ten thin layer-drying models were fitted to the experimental moisture ratio. Compared with other models the Midilli et al. (2002 drying model was found to satisfactorily describe the drying curves of barberry with highest amounts of coefficient of determination (r2 and lowest amounts of reduced chi-square(x2, Mean Bias Error (MBE and Root Mean Square Error (RMSE. The effective moisture diffusivity (Deff of barberry increased as the drying air temperature increased. An Arrhenius relation with activation energy values of 45.577 kJ/mol (citric acid pretreatment expressed the effect of temperature on the diffusivity.
Institute of Scientific and Technical Information of China (English)
Yang Ning; Zhou Yunlong; Miao Yanan
2016-01-01
In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of lfuidized bed and strengthen the drying performance of oil shale particles, is creatively designed in this study. The rotating speed of the asynchronous rotating air distributor with an embedded center disk and an encircling disk is regulated to achieve the different air supply conditions. The impacts of different drying conditions on the drying characteristic of Wangqing oil shale particles are studied with the help of electronic scales. The dynamics of experimental data is analyzed with 9 common drying models. The results indicate that the particles distribution in lfuidized bed can be improved and the drying time can be reduced by decreasing the rotating speed of the embedded center disk and increasing the rotating speed of the encircling disk. The drying process of oil shale particles involves a rising drying rate period, a constant drying rate period and a falling drying rate period. Regulating the air distributor rotating speed reasonably will accelerate the shift of particles from the rising drying rate period to the falling drying rate period directly. The two-term model ifts properly the oil shale particles drying simulation among 9 drying models at different air supply conditions. Yet the air absorbed in the particles’ pores is diffused along with the moisture evaporation, and a small amount of moisture remains on the wall of lfuidized bed in each experiment, thus, the values of drying simulation are less than the experimental values.
Karimi, Keyhaneh; Pallagi, Edina; Szabó-Révész, Piroska; Csóka, Ildikó; Ambrus, Rita
2016-01-01
Pulmonary drug delivery of ciprofloxacin hydrochloride offers effective local antibacterial activity and convenience of easy application. Spray drying is a trustworthy technique for the production of ciprofloxacin hydrochloride microparticles. Quality by design (QbD), an up-to-date regulatory-based quality management method, was used to predict the final quality of the product. According to the QbD-based theoretical preliminary parameter ranking and priority classification, dry powder inhalation formulation tests were successfully performed in practice. When focusing on the critical parameters, the practical development was more effective and was in correlation with our previous findings. Spray drying produced spherical microparticles. The dry powder formulations prepared were examined by particle size analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and in vitro drug release and aerodynamic particle size analyses were also performed. These formulations showed an appropriate particle size ranging between 2 and 4 μm and displayed an enhanced aerosol performance with fine particle fraction up to 80%.
Karimi, Keyhaneh; Pallagi, Edina; Szabó-Révész, Piroska; Csóka, Ildikó; Ambrus, Rita
2016-01-01
Pulmonary drug delivery of ciprofloxacin hydrochloride offers effective local antibacterial activity and convenience of easy application. Spray drying is a trustworthy technique for the production of ciprofloxacin hydrochloride microparticles. Quality by design (QbD), an up-to-date regulatory-based quality management method, was used to predict the final quality of the product. According to the QbD-based theoretical preliminary parameter ranking and priority classification, dry powder inhalation formulation tests were successfully performed in practice. When focusing on the critical parameters, the practical development was more effective and was in correlation with our previous findings. Spray drying produced spherical microparticles. The dry powder formulations prepared were examined by particle size analysis, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray powder diffraction, differential scanning calorimetry, and in vitro drug release and aerodynamic particle size analyses were also performed. These formulations showed an appropriate particle size ranging between 2 and 4 μm and displayed an enhanced aerosol performance with fine particle fraction up to 80%. PMID:27784991
Dynamical real space renormalization group applied to sandpile models.
Ivashkevich, E V; Povolotsky, A M; Vespignani, A; Zapperi, S
1999-08-01
A general framework for the renormalization group analysis of self-organized critical sandpile models is formulated. The usual real space renormalization scheme for lattice models when applied to nonequilibrium dynamical models must be supplemented by feedback relations coming from the stationarity conditions. On the basis of these ideas the dynamically driven renormalization group is applied to describe the boundary and bulk critical behavior of sandpile models. A detailed description of the branching nature of sandpile avalanches is given in terms of the generating functions of the underlying branching process.
Comparison of two multiaxial fatigue models applied to dental implants
Directory of Open Access Journals (Sweden)
JM. Ayllon
2015-07-01
Full Text Available This paper presents two multiaxial fatigue life prediction models applied to a commercial dental implant. One model is called Variable Initiation Length Model and takes into account both the crack initiation and propagation phases. The second model combines the Theory of Critical Distance with a critical plane damage model to characterise the initiation and initial propagation of micro/meso cracks in the material. This paper discusses which material properties are necessary for the implementation of these models and how to obtain them in the laboratory from simple test specimens. It also describes the FE models developed for the stress/strain and stress intensity factor characterisation in the implant. The results of applying both life prediction models are compared with experimental results arising from the application of ISO-14801 standard to a commercial dental implant.
Energy Technology Data Exchange (ETDEWEB)
M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my; Wong, J., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my [Unit Penyelidikan Rumpai Laut (UPRL), Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia); Sulaiman, J., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my; Yasir, S. Md., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my [Program Matematik dengan Ekonomi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia)
2014-06-19
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.
2014-06-01
The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.
Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis
Energy Technology Data Exchange (ETDEWEB)
Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-07-28
Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO_{2}) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO_{2} Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO_{2} Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately
Modeling of mass transfer performance of hot-air drying of sweet potato (Ipomoea Batatas L. slices
Directory of Open Access Journals (Sweden)
Zhu Aishi
2014-01-01
Full Text Available In order to investigate the transfer characteristics of the sweet potato drying process, a laboratory convective hot air dryer was applied to study the influences of drying temperature, hot air velocity and thickness of sweet potato slice on the drying process. The experimental data of moisture ratio of sweet potato slices were used to fit the mathematical models, and the effective diffusion coefficients were calculated. The result showed that temperature, velocity and thickness influenced the drying process significantly. The Logarithmic model showed the best fit to experimental drying data for temperature and the Wang and Singh model were found to be the most satisfactory for velocity and thickness. It was also found that, with the increase of temperature from 60 to 80°C, the effective moisture diffusion coefficient varied from 2.962×10-10 to 4.694×10-10 m2×s-1, and it fitted the Arrhenius equation, the activation energy was 23.29 kJ×mol-1; with the increase of hot air velocity from 0.423 to 1.120 m×s-1, the values of effective moisture diffusion coefficient varied from 2.877×10-10 to 3.760×10-10 m2•s-1; with the increase of thickness of sweet potato slice from 0.002 m to 0.004 m, the values of effective moisture diffusion coefficient varied from 3.887×10-10 to 1.225×10-9 m2•s-1.
Applying the ARCS Motivation Model in Technological and Vocational Education
Liao, Hung-Chang; Wang, Ya-huei
2008-01-01
This paper describes the incorporation of Keller's ARCS (Attention, Relevance, Confidence, and Satisfaction) motivation model into traditional classroom instruction-learning process. Viewing that technological and vocational students have low confidence and motivation in learning, the authors applied the ARCS motivation model not only in the…
The HPT Model Applied to a Kayak Company's Registration Process
Martin, Florence; Hall, Herman A., IV; Blakely, Amanda; Gayford, Matthew C.; Gunter, Erin
2009-01-01
This case study describes the step-by-step application of the traditional human performance technology (HPT) model at a premier kayak company located on the coast of North Carolina. The HPT model was applied to address lost revenues related to three specific business issues: misinformed customers, dissatisfied customers, and guides not showing up…
An applied general equilibrium model for Dutch agribusiness policy analysis.
Peerlings, J.H.M.
1993-01-01
The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of interest.The model is fairly
Directory of Open Access Journals (Sweden)
A. A. Shevtsov
2015-01-01
Full Text Available Spray drying of solutions and suspensions is among the most common methods of producing a wide range of powdered products in chemical, food and pharmaceutical industries. For the drying of heat-sensitive materials, which is fully applicable to the distillery stillage filtrate continuous-flow type of contact of drying agent and the solution droplets is examined. Two-phase simulation method of computational hydrodynamics in a stationary state for studying the process of drying of the distillery stillage filtrate in the pilot spray dryer under the following assumptions was used. The components form an ideal mixture, the properties of which are calculated directly from the properties of the components and their proportions. The droplets were presented in spherical form. The density and specific heat of the solution and the coefficient of vapors diffusion in the gas phase remained unchanged. To solve the heat exchange equations between the drying agent and the drops by the finite volume method the software package ANSYS CFX was used. The bind between the two phases was established by Navier-Stokes equations. The continuous phase (droplets of the distillery stillage filtrate was described by the k-ε turbulence model. The results obtained showed that the interaction of "drop-wall" causes a significant change of velocity, temperature and humidity both of a drying agent and the product particles. The behavior of the particles by spraying, collision with walls and deposition of the finished product allowed to determine the dependence of physical parameters of the drying process, of the geometric dimensions of the dryer. Comparison of simulation results with experimental data showed satisfactory convergence of the results: for the temperature of the powder 10% its humidity of 12% and temperature of the spent drying agent at the outlet from the drier of 13%. The possibility of using the model in the spray dryers designing, and control of the drying process
A Model-Based Methodology for Spray-Drying Process Development
Dobry, Dan E.; Settell, Dana M.; Baumann, John M.; Ray, Rod J.; Graham, Lisa J; Beyerinck, Ron A.
2009-01-01
Solid amorphous dispersions are frequently used to improve the solubility and, thus, the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). Spray-drying, a well-characterized pharmaceutical unit operation, is ideally suited to producing solid amorphous dispersions due to its rapid drying kinetics. This paper describes a novel flowchart methodology based on fundamental engineering models and state-of-the-art process characterization techniques that ensure that spray-dr...
A GLUE uncertainty analysis of a drying model of pharmaceutical granules
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; Van Hoey, Stijn; Cierkens, Katrijn;
2013-01-01
A shift from batch processing towards continuous processing is of interest in the pharmaceutical industry. However, this transition requires detailed knowledge and process understanding of all consecutive unit operations in a continuous manufacturing line to design adequate control strategies...... uncertainty) originating from uncertainty in input data, model parameters, model structure, boundary conditions and software. In this paper, the model prediction uncertainty is evaluated for a model describing the continuous drying of single pharmaceutical wet granules in a six-segmented fluidized bed drying...... unit, which is part of the full continuous from-powder-to-tablet manufacturing line (Consigma™, GEA Pharma Systems). A validated model describing the drying behaviour of a single pharmaceutical granule in two consecutive phases is used. First of all, the effect of the assumptions at the particle level...
Directory of Open Access Journals (Sweden)
Erika Diah2
2005-04-01
Full Text Available Black pepper is one of the most popular spice traded around the globe, either in dried grain form or in bulky powder. However, for retailing purpose both are usually packaged in plastic film. This research was conducted to predict the shelf life of packaged black pepper (both dried grain and powder by applying isotherm sorption and Labuza models. Initial moisture content of dried grain was 12.17 % d.b and for the powder was 10.27 % d.b. The shelf life of black pepper calculated for the dried grain was longer than the powder. When stored at 90 % RH, the dried grain black pepper packaged in HDPE demonstrated the longest shelf life which was equal to 2187 days and for the powder equal to 2037 days. The volatile oil loss for dried grain black pepper after 30 days of preservation was 1.36 % and for the powder was 40.82%.
Bhattacharya, Mrittika; Srivastav, Prem Prakash; Mishra, Hari Niwas
2015-04-01
Oyster mushroom samples were dried under selected convective, microwave-convective drying conditions in a recirculatory hot-air dryer and microwave assisted hot-air dryer (2.45 GHz, 1.5 kW) respectively. Only falling rate period and no constant rate period, was exhibited in both the drying technique. The experimental moisture loss data were fitted to selected semi-theoretical thin-layer drying equations. The mathematical models were compared according to three statistical parameters, i.e. correlation coefficient, reduced chi-square and residual mean sum of squares. Among all the models, Midilli et al. model was found to have the best fit as suggested by 0.99 of square correlation coefficient, 0.000043 of reduced-chi square and 0.0023 of residual sum of square. The highest effective moisture diffusivity varying from 10.16 × 10(-8) to 16.18 × 10(-8) m(2)/s over the temperature range was observed in microwave-convective drying at an air velocity of 1.5 m/s and the activation energy was calculated to be 16.95 kJ/mol. The above findings can aid to select the most suitable operating conditions, so as to design drying equipment accordingly.
New model for colour kinetics of plum under infrared vacuum condition and microwave drying
Directory of Open Access Journals (Sweden)
Reza Amiri Chayjan
2016-06-01
Full Text Available Background. Quality of dried foods is aﬀected by the drying method and physiochemical changes in tissue. The drying method aﬀects properties such as colour. The colour of processed food is one of the most impor- tant quality indices and plays a determinant role in consumer acceptability of food materials and the process- ing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. Material and methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantiﬁed by the tri-stimulus L* (whiteness/darkness, a* (redness/greenness and b* (yellow- ness/blueness model, which is an international standard for color measurement developed by the Commis- sion Internationale d’Eclairage (CIE. These values were also used to calculate total colour change (∆E, chroma, hue angle, and browning index (BI. A new model was used for mathematical modelling of colour change kinetics. Results. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and ﬁrst-order kinet- ics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. Conclusion. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and
Motavali, Ali; Najafi, Gholam Hassan; Abbasi, Solayman; Minaei, Saeid; Ghaderi, Abdurrahman
2013-08-01
Drying characteristics of sour cherries were determined using microwave vacuum drier at various microwave powers (360, 600, 840, 1200 W) and absolute pressures (200, 400, 600, 800 mbars). In addition, using the artificial neural networks (ANN), trained by standard Back-Propagation algorithm, the effects of microwave power, pressure and drying time on moisture ratio (MR) and drying rate (DR) were investigated Based on the evaluation of experimental data fitting with semi-theoretical and empirical models, the Midilli et al. model was selected as the most appropriate one. Furthermore, the ANN model was able to predict the moisture ratio and drying rate quite well with determination coefficients (R(2)) of 0.9996, 0.9961 and 0.9958 for training, validation and testing, respectively. The prediction Mean Square Error of ANN was about 0.0003, 0.0071 and 0.0053 for training, validation and testing, respectively. This parameter signifies the difference between the desired outputs (as measured values) and the simulated values by the model. The good agreement between the experimental data and ANN model leads to the conclusion that the model adequately describes the drying behavior of sour cherries, in the range of operating conditions tested.
Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V
2012-10-01
Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time.
LEARNING SEMANTICS-ENHANCED LANGUAGE MODELS APPLIED TO UNSUEPRVISED WSD
Energy Technology Data Exchange (ETDEWEB)
VERSPOOR, KARIN [Los Alamos National Laboratory; LIN, SHOU-DE [Los Alamos National Laboratory
2007-01-29
An N-gram language model aims at capturing statistical syntactic word order information from corpora. Although the concept of language models has been applied extensively to handle a variety of NLP problems with reasonable success, the standard model does not incorporate semantic information, and consequently limits its applicability to semantic problems such as word sense disambiguation. We propose a framework that integrates semantic information into the language model schema, allowing a system to exploit both syntactic and semantic information to address NLP problems. Furthermore, acknowledging the limited availability of semantically annotated data, we discuss how the proposed model can be learned without annotated training examples. Finally, we report on a case study showing how the semantics-enhanced language model can be applied to unsupervised word sense disambiguation with promising results.
Modelling moisture content and dry matter loss during storage of logging residues for energy
Energy Technology Data Exchange (ETDEWEB)
Filbakk, Tore; Hoeiboe, Olav Albert (Dept. of Ecology and Natural Resource Management, Norwegian Univ. of Life Sciences, Aas (Norway)); Dibdiakova, Janka (Norwegian Forest and Landscape Inst., Aas (Norway)); Nurmi, Juha (Finnish Forest Research Inst., Kannus (Finland))
2011-04-15
To achieve optimal utilisation of logging residues for energy, it is important to know how different handling and storage methods affect fuel properties. The aim of this study was to model how the moisture content and dry matter losses of logging residues develop during storage. Logging residues were collected from five different stands of spruce and pine during different seasons of the year and stored in the same location. The logging residues were stored in covered piles of bundled residues and loose residues. Only minor differences were found in the moisture content profiles between piles of bundles and loose residues. Logging residues located in the centre of both types of piles had considerably lower moisture content than the outer parts. The moisture content significantly affected dry matter loss, with the highest dry matter losses being found in the samples with the least favourable drying conditions. The dry matter losses varied between 1 and 3% per month. Significantly higher dry matter losses were found in the spruce bundles than in the pine bundles. Seasoned logging residues had the lowest dry matter loss, while the logging residues harvested and piled in the autumn had the highest loss
Modeling in applied sciences a kinetic theory approach
Pulvirenti, Mario
2000-01-01
Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...
Economic Model Predictive Control for Spray Drying Plants
DEFF Research Database (Denmark)
Petersen, Lars Norbert
and a complexity reduced control model is used for state estimation and prediction in the controllers. These models facilitate development and comparison of control strategies. We develop two MPC strategies; a linear tracking MPC with a Real-Time Optimization layer (MPC with RTO) and an Economic Nonlinear MPC (E...... and sticky powder is avoided from building up on the dryer walls; 3) Demonstrate the industrial application of an MPC strategy to a full-scale industrial four-stage spray dryer. The main scientific contributions can be summarized to: - Modeling of a four-stage spray dryer. We develop new first...
Nganhou, J.; Njomo, D.; Bénet, J. C.; Augier, F.; Berthomieu, G.
2003-09-01
This article is about the study of the diffusion of water and acetic acid in a grain of cocoa in course of drying. The authors present a method of microanalysis which enables the analysis of each little slice of the grain : a precise measurement of each slice is realised in view of the analysis from the centre to the surface of the grain with the aid of a cutting apparatus, designed and realised to this effect. At each instant of the drying process, the profiles of water and acetic acid contents are then determined. A one dimensional diffusion model enables a shell by shell evaluation of the diffusion of water and acid in the cocoa grain. The results obtained show an augmentation of transport coefficients in course of drying. We however observe a decrease of the diffusion coefficient of water to the low moisture content : what makes us think of the appearance of crusting phenomenon.
Directory of Open Access Journals (Sweden)
F. T. Ademiluyi
2013-01-01
Full Text Available A mathematical model was developed for predicting the drying kinetics of spherical particles in a rotary dryer. Drying experiments were carried out by drying fermented ground cassava particles in a bench scale rotary dryer at inlet air temperatures of 115–230°C, air velocities of 0.83 m/s–1.55 m/s, feed mass of 50–500 g, drum drive speed of 8 rpm, and feed drive speed of 100 rpm to validate the model. The data obtained from the experiments were used to calculate the experimental moisture ratio which compared well with the theoretical moisture ratio calculated from the newly developed Abowei-Ademiluyi model. The comparisons and correlations of the results indicate that validation and performance of the established model are rather reasonable.
2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material
Hassini, Lamine; Raja, Lamloumi; Lecompte-Nana, Gisèle Laure; Elcafsi, Mohamed Afif
2017-04-01
The aim of this work was to simulate in two dimensions the spatio-temporal evolution of the moisture content, the temperature, the solid (dry matter) concentration, the dry product total porosity, the gas porosity, and the mechanical stress within a deformable and unsaturated product during convective drying. The material under study was an elongated cellulose-clay composite sample with a square section placed in hot air flow. Currently, this innovative composite is used in the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation (moisture, insects, etc.). A comprehensive and rigorous hydrothermal model had been merged with a dynamic linear viscoelasticity model based on Bishop's effective stress theory, assuming that the stress tensor is the sum of solid, liquid, and gas stresses. The material viscoelastic properties were measured by means of stress relaxation tests for different water contents. The viscoelastic behaviour was described by a generalized Maxwell model whose parameters were correlated to the water content. The equations of our model were solved by means of the 'COMSOL Multiphysics' software. The hydrothermal part of the model was validated by comparison with experimental drying curves obtained in a laboratory hot-air dryer. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of material potential damage. The sample shape was also predicted all over the drying process.
Modelling atmospheric dry deposition in urban areas using an urban canopy approach
Directory of Open Access Journals (Sweden)
N. Cherin
2014-12-01
Full Text Available Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially-distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially-distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs and flow regimes (recirculation and ventilation within the urban area.
Modelling atmospheric dry deposition in urban areas using an urban canopy approach
Directory of Open Access Journals (Sweden)
N. Cherin
2015-03-01
Full Text Available Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs and flow regimes (recirculation and ventilation within the urban area.
Information-theoretic model selection applied to supernovae data
Biesiada, M
2007-01-01
There are several different theoretical ideas invoked to explain the dark energy with relatively little guidance of which one of them might be right. Therefore the emphasis of ongoing and forthcoming research in this field shifts from estimating specific parameters of cosmological model to the model selection. In this paper we apply information-theoretic model selection approach based on Akaike criterion as an estimator of Kullback-Leibler entropy. In particular, we present the proper way of ranking the competing models based on Akaike weights (in Bayesian language - posterior probabilities of the models). Out of many particular models of dark energy we focus on four: quintessence, quintessence with time varying equation of state, brane-world and generalized Chaplygin gas model and test them on Riess' Gold sample. As a result we obtain that the best model - in terms of Akaike Criterion - is the quintessence model. The odds suggest that although there exist differences in the support given to specific scenario...
The Potential of Economic Model Predictive Control for Spray Drying Plants
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik
In 2015 the milk quota system in the European Union will be completely liberalized. As a result, analysts expect production of skimmed and whole milk powder to increase by 5-6% while its price will decline by about 6-7%. Multi-stage spray drying is the prime process for the production of food...... powders. The process is highly energy consuming and capacity depends among other factors on correct control of the dryer. Consequently efficient control and optimization of the spray drying process has become increasingly important to accommodate the future market challenges. The goal of the presentation...... be adjusted to describe drying of various products and describes the complete drying process of a multi-stage spray dryer. The dryer is divided into three stages, the spray stage and two uid bed stages. Each stage is assumed ideally mixed and described by mass- and energy balances. The model is able...
Thermal analysis of dry eye subjects and the thermal impulse perturbation model of ocular surface.
Zhang, Aizhong; Maki, Kara L; Salahura, Gheorghe; Kottaiyan, Ranjini; Yoon, Geunyoung; Hindman, Holly B; Aquavella, James V; Zavislan, James M
2015-03-01
In this study, we explore the usage of ocular surface temperature (OST) decay patterns to distinguished between dry eye patients with aqueous deficient dry eye (ADDE) and meibomian gland dysfunction (MGD). The OST profiles of 20 dry eye subjects were measured by a long-wave infrared thermal camera in a standardized environment (24 °C, and relative humidity (RH) 40%). The subjects were instructed to blink every 5 s after 20 ∼ 25 min acclimation. Exponential decay curves were fit to the average temperature within a region of the central cornea. We find the MGD subjects have both a higher initial temperature (p thermal impulse perturbation (TIP) model. We conclude that long-wave-infrared thermal imaging is a plausible tool in assisting with the classification of dry eye patient.
Forecast model applied to quality control with autocorrelational data
Directory of Open Access Journals (Sweden)
Adriano Mendonça Souza
2013-11-01
Full Text Available This research approaches the prediction models applied to industrial processes, in order to check the stability of the process by means of control charts, applied to residues from linear modeling. The data used for analysis refers to the moisture content, permeability and compression resistance to the green (RCV, belonging to the casting process of green sand molding in A Company, which operates in the casting and machining, for which dynamic multivariate regression model was set. As the observations were auto-correlated, it was necessary to seek a mathematical model that produces independent and identically distribuibed residues. The models found make possible to understand the variables behavior, assisting in the achievement of the forecasts and in the monitoring of the referred process. Thus, it can be stated that the moisture content is very unstable comparing to the others variables.
Mathematical modeling of thin-layer drying of fermented and non-fermented sugarcane bagasse
Energy Technology Data Exchange (ETDEWEB)
Mazutti, Marcio A.; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Debora; Di Luccio, Marco; Oliveira, J. Vladimir; Treichel, Helen [Department of Food Engineering, URI - Campus de Erechim, P.O. Box 743, CEP 99700-000, Erechim - RS (Brazil); Rodrigues, Maria Isabel; Maugeri, Francisco [Department of Food Engineering, Faculty of Food Engineering, University of Campinas - UNICAMP, P.O. Box 6121, CEP 13083-862, Campinas - SP (Brazil)
2010-05-15
This work reports hot-air convective drying of thin-layer fermented and non-fermented sugarcane bagasse. For this purpose, experiments were carried out in a laboratory-scale dryer assessing the effects of solid-state fermentation (SSF) on the drying kinetics of the processing material. The fermented sugarcane bagasse in SSF was obtained with the use of Kluyveromyces marxianus NRRL Y-7571. Drying experiments were carried out at 30, 35, 40 and 45 C, at volumetric air flow rates of 2 and 3 m{sup 3} h{sup -1}. The ability of ten different thin-layer mathematical models was evaluated towards representing the experimental drying profiles obtained. Results showed that the fermented sugarcane bagasse presents a distinct, faster drying, behavior from that verified for the non-fermented material at the same conditions of temperature and volumetric air flow rate. It is shown that the fermented sugarcane bagasse presented effective diffusion coefficient values of about 1.3 times higher than the non-fermented material. A satisfactory agreement between experimental data and model results of the thin-layer drying of fermented and non-fermented sugarcane bagasse was achieved at the evaluated experimental conditions. (author)
Methods for model selection in applied science and engineering.
Energy Technology Data Exchange (ETDEWEB)
Field, Richard V., Jr.
2004-10-01
Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be
Evaluation of water and energy budgets in regional climate models applied over Europe
Energy Technology Data Exchange (ETDEWEB)
Hagemann, S.; Jacob, D. [Max Planck Institute for Meteorology, Hamburg (Germany); Machenhauer, B.; Christensen, O.B. [Danish Meteorological Institute, Climate Research Division, Copenhagen Oe (Denmark); Jones, R. [Meteorological Office Hadley Centre, Bracknell (United Kingdom); Deque, M. [Meteo-France CNRM/GMGEC/EAC, Toulouse Cedex 01 (France); Vidale, P.L. [Climate Research ETH, Zuerich (Switzerland)
2004-10-01
This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is
Energy Technology Data Exchange (ETDEWEB)
Droppo, James G.
2006-07-01
The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and
Mathematical modeling of the drying of extruded fish feed and its experimental demonstration
DEFF Research Database (Denmark)
Haubjerg, Anders Fjeldbo; Simonsen, B.; Løvgreen, S.
This paper present a mathematical model for the drying of extruded fish feed pellets. The model relies on conservation balances for moisture and energy. Sorption isotherms from literature are used together with diffusion and transfer coefficients obtained from dual parameter regression analysis...
DEFF Research Database (Denmark)
Ferrari, A.; Gutierrez, S.; Sin, Gürkan
2016-01-01
A steady state model for a production scale milk drying process was built to help process understanding and optimization studies. It involves a spray chamber and also internal/external fluid beds. The model was subjected to a comprehensive statistical analysis for quality assurance using sensitiv...
Model based analysis of the drying of a single solution droplet in an ultrasonic levitator
DEFF Research Database (Denmark)
Sloth, Jakob; Kiil, Søren; Jensen, Anker
2006-01-01
are compared to data for the drying of aqueous solutions of maltodextrin DE 15 and trehalose from experiments conducted using an ultrasonic levitator. Model predictions are in good agreement with the experimental data, indicating that the model describes the most important physical phenomena of the process....
A user-friendly model for spray drying to aid pharmaceutical product development
Grasmeijer, Niels; de Waard, Hans; Hinrichs, Wouter L J; Frijlink, Henderik W
2013-01-01
The aim of this study was to develop a user-friendly model for spray drying that can aid in the development of a pharmaceutical product, by shifting from a trial-and-error towards a quality-by-design approach. To achieve this, a spray dryer model was developed in commercial and open source spreadshe
Mathematical modeling of handmade recycled paper drying kinetics and sorption isotherms
Directory of Open Access Journals (Sweden)
M. G. A. Vieira
2008-06-01
Full Text Available The objective of this work is to analyze and compare the natural and forced convective drying of handmade recycled paper. Drying of recycled cellulose pulp was carried out under laboratory environment conditions and in a convective dryer with forced air circulation and controlled conditions of air temperature and velocity. The tests were conducted following a two-factor central composed factorial design of experiments, with six runs at the central point. The drying results were analyzed and fitted to mathematical models of Fick, Henderson and Pabis (Fick’s modified equation, Page and He (considering the nonlinear Fick effect. The model of Page represented best the experimental data and the one of Henderson and Pabis resulted in an adequate fit for the paper drying kinetics. Sorption isotherms were determined for the dried paper and the models of GAB (Guggenheim-Anderson-de Boer and GDW (Generalised D’Arcy and Watt resulted in excellent fits of the experimental data. The water sorption mechanism was suggested by the analysis of the calculated parameters of the GDW model.
Phase-field modeling of dry snow metamorphism.
Kaempfer, Thomas U; Plapp, Mathis
2009-03-01
Snow on the ground is a complex three-dimensional porous medium consisting of an ice matrix formed by sintered snow crystals and a pore space filled with air and water vapor. If a temperature gradient is imposed on the snow, a water vapor gradient in the pore space is induced and the snow microstructure changes due to diffusion, sublimation, and resublimation: the snow metamorphoses. The snow microstructure, in turn, determines macroscopic snow properties such as the thermal conductivity of a snowpack. We develop a phase-field model for snow metamorphism that operates on natural snow microstructures as observed by computed x-ray microtomography. The model takes into account heat and mass diffusion within the ice matrix and pore space, as well as phase changes at the ice-air interfaces. Its construction is inspired by phase-field models for alloy solidification, which allows us to relate the phase-field to a sharp-interface formulation of the problem without performing formal matched asymptotics. To overcome the computational difficulties created by the large difference between diffusional and interface-migration time scales, we introduce a method for accelerating the numerical simulations that formally amounts to reducing the heat- and mass-diffusion coefficients while maintaining the correct interface velocities. The model is validated by simulations for simple one- and two-dimensional test cases. Furthermore, we perform qualitative metamorphism simulations on natural snow structures to demonstrate the potential of the approach.
A particle based model to simulate microscale morphological changes of plant tissues during drying.
Karunasena, H C P; Senadeera, W; Brown, R J; Gu, Y T
2014-08-07
Fundamental understanding on microscopic physical changes of plant materials is vital to optimize product quality and processing techniques, particularly in food engineering. Although grid-based numerical modelling can assist in this regard, it becomes quite challenging to overcome the inherited complexities of these biological materials especially when such materials undergo critical processing conditions such as drying, where the cellular structure undergoes extreme deformations. In this context, a meshfree particle based model was developed which is fundamentally capable of handling extreme deformations of plant tissues during drying. The model is built by coupling a particle based meshfree technique: Smoothed Particle Hydrodynamics (SPH) and a Discrete Element Method (DEM). Plant cells were initiated as hexagons and aggregated to form a tissue which also accounts for the characteristics of the middle lamella. In each cell, SPH was used to model cell protoplasm and DEM was used to model the cell wall. Drying was incorporated by varying the moisture content, the turgor pressure, and cell wall contraction effects. Compared to the state of the art grid-based microscale plant tissue drying models, the proposed model can be used to simulate tissues under excessive moisture content reductions incorporating cell wall wrinkling. Also, compared to the state of the art SPH-DEM tissue models, the proposed model better replicates real tissues and the cell-cell interactions used ensure efficient computations. Model predictions showed good agreement both qualitatively and quantitatively with experimental findings on dried plant tissues. The proposed modelling approach is fundamentally flexible to study different cellular structures for their microscale morphological changes at dehydration.
Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza
2015-08-01
To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.
The Potential of Economic Model Predictive Control for Spray Drying Plants
DEFF Research Database (Denmark)
Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik;
In 2015 the milk quota system in the European Union will be completely liberalized. As a result, analysts expect production of skimmed and whole milk powder to increase by 5-6% while its price will decline by about 6-7%. Multi-stage spray drying is the prime process for the production of food...... powders. The process is highly energy consuming and capacity depends among other factors on correct control of the dryer. Consequently efficient control and optimization of the spray drying process has become increasingly important to accommodate the future market challenges. The goal of the presentation...... is to present our results regarding modeling of the process and how the efficiency and protability can be lifted by introducing an economic optimizing MPC scheme. Firstly, we develop a first-principle engineering model that can be used to simulate spray drying processes with high accuracy. The model can...
Applied data analysis and modeling for energy engineers and scientists
Reddy, T Agami
2011-01-01
""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and
Micromechanics Models for Unsaturated, Saturated, and Dry Sands.
1988-01-25
grains must ride over one another. Soils which exhibit such behavior are loose granular materials and normaiiy consolidated clays. For soils of...of change of stress is a function of the rate of change of strain. This Is known as the hypoelastic formulation. At present, this formulation has not...attempt to describe the actual grain motion within the soil mass, but ratner tne parameter N is cnosen to fit experimental data. Some models of granular
Mathematical models applied in inductive non-destructive testing
Energy Technology Data Exchange (ETDEWEB)
Wac-Wlodarczyk, A.; Goleman, R.; Czerwinski, D. [Technical University of Lublin, 20 618 Lublin, Nadbystrzycka St 38a (Poland); Gizewski, T. [Technical University of Lublin, 20 618 Lublin, Nadbystrzycka St 38a (Poland)], E-mail: t.gizewski@pollub.pl
2008-10-15
Non-destructive testing are the wide group of investigative methods of non-homogenous material. Methods of computer tomography, ultrasonic, magnetic and inductive methods still developed are widely applied in industry. In apparatus used for non-destructive tests, the analysis of signals is made on the basis of complex system answers. The answer is linearized due to the model of research system. In this paper, the authors will discuss the applications of the mathematical models applied in investigations of inductive magnetic materials. The statistical models and other gathered in similarity classes will be taken into consideration. Investigation of mathematical models allows to choose the correct method, which in consequence leads to precise representation of the inner structure of examined object. Inductive research of conductive media, especially those with ferromagnetic properties, are run with high frequency magnetic field (eddy-currents method), which considerably decrease penetration depth.
Transtheoretical Model of Health Behavior Change Applied to Voice Therapy
2007-01-01
Studies of patient adherence to health behavior programs, such as physical exercise, smoking cessation, and diet, have resulted in the formulation and validation of the Transtheoretical Model (TTM) of behavior change. Although widely accepted as a guide for the development of health behavior interventions, this model has not been applied to vocal rehabilitation. Because resolution of vocal difficulties frequently depends on a patient’s ability to make changes in vocal and health behaviors, th...
Dynamical behavior of the Niedermayer algorithm applied to Potts models
Girardi, D.; Penna, T. J. P.; Branco, N. S.
2012-01-01
In this work we make a numerical study of the dynamic universality class of the Niedermayer algorithm applied to the two-dimensional Potts model with 2, 3, and 4 states. This algorithm updates clusters of spins and has a free parameter, $E_0$, which controls the size of these clusters, such that $E_0=1$ is the Metropolis algorithm and $E_0=0$ regains the Wolff algorithm, for the Potts model. For $-1
An applied general equilibrium model for Dutch agribusiness policy analysis
Peerlings, J.
1993-01-01
The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of interest.
An applied general equilibrium model for Dutch agribusiness policy analysis
Peerlings, J.
1993-01-01
The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of
Knowledge Growth: Applied Models of General and Individual Knowledge Evolution
Silkina, Galina Iu.; Bakanova, Svetlana A.
2016-01-01
The article considers the mathematical models of the growth and accumulation of scientific and applied knowledge since it is seen as the main potential and key competence of modern companies. The problem is examined on two levels--the growth and evolution of objective knowledge and knowledge evolution of a particular individual. Both processes are…
Remarks on orthotropic elastic models applied to wood
Directory of Open Access Journals (Sweden)
Nilson Tadeu Mascia
2006-09-01
Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.
Applying computer simulation models as learning tools in fishery management
Johnson, B.L.
1995-01-01
Computer models can be powerful tools for addressing many problems in fishery management, but uncertainty about how to apply models and how they should perform can lead to a cautious approach to modeling. Within this approach, we expect models to make quantitative predictions but only after all model inputs have been estimated from empirical data and after the model has been tested for agreement with an independent data set. I review the limitations to this approach and show how models can be more useful as tools for organizing data and concepts, learning about the system to be managed, and exploring management options. Fishery management requires deciding what actions to pursue to meet management objectives. Models do not make decisions for us but can provide valuable input to the decision-making process. When empirical data are lacking, preliminary modeling with parameters derived from other sources can help determine priorities for data collection. When evaluating models for management applications, we should attempt to define the conditions under which the model is a useful, analytical tool (its domain of applicability) and should focus on the decisions made using modeling results, rather than on quantitative model predictions. I describe an example of modeling used as a learning tool for the yellow perch Perca flavescens fishery in Green Bay, Lake Michigan.
Socio-optics: optical knowledge applied in modeling social phenomena
Chisleag, Radu; Chisleag Losada, Ioana-Roxana
2011-05-01
The term "Socio-optics" (as a natural part of Socio-physics), is rather not found in literature or at Congresses. In Optics books, there are not made references to optical models applied to explain social phenomena, in spite of Optics relying on the duality particle-wave which seems convenient to model relationships among society and its members. The authors, who have developed a few models applied to explain social phenomena based on knowledge in Optics, along with a few other models applying, in Social Sciences, knowledge from other branches of Physics, give their own examples of such optical models, f. e., of relationships among social groups and their sub-groups, by using kowledge from partially coherent optical phenomena or to explain by tunnel effect, the apparently impossible penetration of social barriers by individuals. They consider that the term "Socio-optics" may come to life. There is mentioned the authors' expertise in stimulating Socio-optics approach by systematically asking students taken courses in Optics to find applications of the newly got Wave and Photon Optics knowledge, to model social and even everyday life phenomena, eventually engaging in such activities other possibly interested colleagues.
Engagement Model of Dry Friction Clutch with Diaphragm Spring
Directory of Open Access Journals (Sweden)
Trinoy Dutta
2014-11-01
Full Text Available The duration of engagement of automotive clutch plays an important role in the driving comfort and smooth launching of the vehicle. It is a transient phenomenon controlled by many variables like dynamics of release bearing and linkage, relation between release bearing travel and pressure plate lift, the clamp load developed with respect to cushion deflection and inertia of driver and driven shafts. Modern automobiles employ diaphragm spring clutch, which is advantageous in terms of less overall height and weight, number of components, low release load and increased service life. The non-linear characteristics of the diaphragm spring can be exploited favorably in achieving smooth engagement process. In this paper a mathematical model of transient engagement dynamics is developed correlating the parameters like spring characteristics, clamp load characteristics, pressure plate lift and release bearing travel characteristics, clutch pedal kinematics during engagement, vehicle driveline dynamics during startup, etc. The engagement duration of the clutch can be simulated along with the clamp load build up and torque transmission to the driveline using this model. Results of simulation are also included here which were verified through actual tests. This analysis should be useful in design of release mechanism for achieving smooth clutch engagement and to compare various clutches on the duration of slippage.
Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications
Petroff, Alexandre; Mailliat, Alain; Amielh, Muriel; Anselmet, Fabien
2008-05-01
This paper presents a new approach for the modelling of aerosol dry deposition on vegetation. It follows a companion article, in which a review of the current knowledge highlights the need for a better description of the aerosol behaviour within the canopy [Petroff, A., Mailliat, A., Amielh, M., Anselmet, F., 2008. Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2007.09.043]. Concepts from multi-phase flow studies are used for describing the canopy medium and deriving a time and space-averaged aerosol balance equation and the associated deposition terms. The closure of the deposition terms follows an up-scaling procedure based on the statistical distribution of the collecting elements. This aerosol transport model is then applied in a stationary and mono-dimensional configuration and takes into account the properties of the vegetation, the aerosol and the turbulent flow. Deposition mechanisms are Brownian diffusion, interception, inertial and turbulent impactions, and gravitational settling. For each of them, a parameterisation of the particle collection is derived and the quality of their predictions is assessed by comparison with wind-tunnel deposition measurements on coniferous twigs [Belot, Y., Gauthier, D., 1975. Transport of micronic particles from atmosphere to foliar surfaces. In: De Vries, D.A., Afgan, N.H. (Eds.), Heat and Mass Transfer in the Biosphere. Scripta Book, Washington, DC, pp. 583-591; Belot, Y., 1977. Etude de la captation des polluants atmosphériques par les végétaux. CEA, R-4786, Fontenay-aux-Roses; Belot, Y., Camus, H., Gauthier, D., Caput, C., 1994. Uptake of small particles by canopies. The Science of the Total Environment 157, 1-6]. Under a real canopy configuration, the predictions of the aerosol transport model compare reasonably well with detailed on-site deposition measurements of Aitken mode particles [Buzorius, G., Rannik, Ü., M
Mathematical modeling for temperature and concentration study inside a thermal drying oven
Tanthadiloke, Surasit; Kittisupakorn, Paisan
2017-08-01
In order to investigate the dynamic behavior for further performance improvements of a thermal drying oven in a can production plant, mathematical models based on continuity equations are developed and validated with COMSOL simulation result. Profiles of temperature and the concentration of evaporated solvent (Ethylene glycol monobutyl ether; C6H14O2) in three different volumetric air flow rates such as 1.67, 1.00 and 0.33 m3/s are investigated and compared with the simulation results. The results demonstrated that the developed models for the thermal drying oven provide good prediction with a very small error from the validating data and the coefficient of determination (R2) of these models is 0.9926. Furthermore, these models can keep a good evaluation of both temperature and the concentration of evaporated solvent when changing the volumetric air flow rates. The simulation results from the developed models in all cases have the similar trends when compared with the COMSOL results. In addition, the results in this work guarantee that the developed models can provide the dynamic behavior inside the thermal drying oven and are applicable for the future improvements of the thermal drying oven performance.
Applying Particle Tracking Model In The Coastal Modeling System
2011-01-01
Rev. 8-98) Prescribed by ANSI Std Z39-18 ERDC/CHL CHETN-IV-78 January 2011 2 Figure 1. CMS domain, grid, and bathymetry . CMS-Flow is driven by...through the simulation. At the end of the simulation, about 65 percent of the released clay particles are considered “ dead ,” ERDC/CHL CHETN-IV-78 January...2011 11 which means that they are either permanently buried at the sea bed or have moved out of the model domain. Figure 11. Specifications of
Mathematical Modeling of Drying Kinetics of Bird’s Eye Chilies in a Convective Hot-Air Dryer
Directory of Open Access Journals (Sweden)
Kongdej LIMPAIBOON
2013-12-01
Full Text Available The drying kinetics of red bird’s eye chilies and the color of the product were investigated in a laboratory scale hot-air dryer under 3 air temperatures of 55, 60 and 65 °C. The 6 mathematical models (Lewis model; Page model; Henderson and Pabis model; Logarithmic model; Modified Page model; and Wang and Singh model were used to fit the experimental data obtained in order to estimate the moisture ratio as the function of drying time. The results showed that operating temperature enhanced the kinetics of the drying of chilies; the drying times of chilies at 55, 60 and 65 °C were 510, 360 and 330 min, respectively. The experimental drying curves obtained at all operating conditions took place in the falling rate period. Comparing the dried products, it was observed that the red bird’s eye chilies dried at a lower temperature had higher Hunter L (lightness, a* (redness and b* (yellowness values. The experimental data were fitted to different drying models. The performance of these models was investigated by comparing the determination of coefficient (R2 and root mean square error (RMSE between the observed and predicted moisture ratios. Among the 6 mathematical models, the Wang and Singh model satisfactorily described the drying kinetics of chilies.
Critical review of creep FRAPCON-3 model under dry storage conditions
Energy Technology Data Exchange (ETDEWEB)
Feria, F.; Herranz, L.E. [Unit of Nuclear Safety Research, CIEMAT, Avda. Complutense 22, Madrid, Madrid 28040 (Spain)
2009-06-15
There is a general agreement that cladding creep rupture is the most likely and limiting failure mechanism of spent fuel in dry storage compared to other potential mechanisms, like stress corrosion cracking and/or delayed hydride cracking. Nevertheless, occurrence of creep rupture is very improbable since both decay heat and hoop stress tend to decrease throughout dry storage. In spite of this, the current trend to higher burn up levels needs further attention that ensures safe storage of spent fuel irradiated over 45 GWd/MTU. An extensive work has been carried out during the last four decades in the area of in-reactor creep modelling. Unfortunately, the in-reactor conditions are so different from those prevailing under dry storage, that all the experience gained cannot be extrapolated in a straightforward manner. On the other side, as creep tests simulating conditions throughout a 20-40 year dry storage are impractical, post-irradiation cladding creep behaviour has been modelled by means of time-temperature dependent laws developed on the basis of currently available zirconium alloys data. Additionally, some tests have been exploring the effect of irradiation, hydrogen distribution and material composition on the materials creep behaviour. Adaptation of fuel performance codes initially developed for normal and off-normal reactor operation is not an easy task either. Creep modelling is usually dependent of host codes because a good part of its validation and update has been carried out in an integral way, and as a consequence its independent performance assessment is not an easy task. This work examines the current capability of FRAPCON-3 to model creep behaviour under dry storage conditions. To do so, a review of its major fundamentals has been done and its range of applicability discussed. Once its main approximations and drawbacks have been identified, an attempt to overcome some of them has been intended by implementing an alternative expression for creep under
Molecular modeling: An open invitation for applied mathematics
Mezey, Paul G.
2013-10-01
Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.
Mathematical modelling and analysis of the mushroom drying process at the optimal temperature
Directory of Open Access Journals (Sweden)
O. Kubaychuk
2016-02-01
Full Text Available To preserve food is used drying method. It was found experimentally that drying mushroom caps and legs should be conducted at temperatures close to 52,5°C and 55,5°C, accordingly. In this case, we can get the product of the highest quality. Statistically, we proved that the drying processes of mushroom caps are different for fixed levels of temperature (from 40° C to 80° C, by step 10° C. At the same time, at higher temperatures, the nature of the process changes abruptly. Based on the experimental data, the polynomial regression model was built. This model can used for estimating and forecasting a specific evaporation heat at the optimal temperature.
A procedure for Applying a Maturity Model to Process Improvement
Directory of Open Access Journals (Sweden)
Elizabeth Pérez Mergarejo
2014-09-01
Full Text Available A maturity model is an evolutionary roadmap for implementing the vital practices from one or moredomains of organizational process. The use of the maturity models is poor in the Latin-Americancontext. This paper presents a procedure for applying the Process and Enterprise Maturity Modeldeveloped by Michael Hammer [1]. The procedure is divided into three steps: Preparation, Evaluationand Improvement plan. The Hammer´s maturity model joint to the proposed procedure can be used byorganizations to improve theirs process, involving managers and employees.
Predictive control applied to an evaporator mathematical model
Directory of Open Access Journals (Sweden)
Daniel Alonso Giraldo Giraldo
2010-07-01
Full Text Available This paper outlines designing a predictive control model (PCM applied to a mathematical model of a falling film evaporator with mechanical steam compression like those used in the dairy industry. The controller was designed using the Connoisseur software package and data gathered from the simulation of a non-linear mathematical model. A control law was obtained from minimising a cost function sublect to dynamic system constraints, using a quadratic programme (QP algorithm. A linear programming (LP algorithm was used for finding a sub-optimal operation point for the process in stationary state.
Chloride Ion Transmission Model under the Drying-wetting Cycles and Its Solution
Institute of Scientific and Technical Information of China (English)
HUANG Ying; WEI Jun; DONG Rongzhen; ZENG Hua
2014-01-01
The chloride ion transmission model considering diffusion and convection was established respectively for different zones in concrete by analyzing chloride ion transmission mechanism under the drying-wetting cycles. The finite difference method was adopted to solve the model. The equation of chloride ion transmission model in the convection and diffusion zone of concrete was discreted by the group explicit scheme with right single point (GER method) and the equation in diffusion zone was discreted by FTCS difference scheme. According to relative humidity characteristics in concrete under drying-wetting cycles, the seepage velocity equation was formulated based on Kelvin Equation and Darcy’s Law. The time-variant equations of chloride ion concentration of concrete surface and the boundary surface of the convection and diffusion zone were established. Based on the software MATLAB the numerical calculation was carried out by using the model and basic material parameters from the experiments. The calculation of chloride ion concentration distribution in concrete is in good agreement with the drying-wetting cycles experiments. It can be shown that the chloride ion transmission model and the seepage velocity equation are reasonable and practical. Studies have shown that the chloride ion transmission in concrete considering convection and diffusion under the drying-wetting cycles is the better correlation with the actual situation than that only considering the diffusion.
Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content
DEFF Research Database (Denmark)
Chen, Chong; Hu, Kelin; Arthur, Emmanuel;
2014-01-01
curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model......Accurate information on the dry end (matric potential less than −1500 kPa) of soil water retention curves (SWRCs) is crucial for studying water vapor transport and evaporation in soils. The objectives of this study were to assess the potential of the Oswin model for describing the water adsorption...... combined with the Kelvin equation (CS-K) produced better fits to dry-end SWRCs of soils dominated by 2:1 clays but provided poor fits for soils dominated by 1:1 clays. The shape parameter α of the Oswin model was dependent on clay mineral type, and approximate values of 0.29 and 0.57 were obtained...
Amniotic membrane extract ameliorates benzalkonium chloride-induced dry eye in a murine model.
Xiao, Xinye; Luo, Pingping; Zhao, Hui; Chen, Jingyao; He, Hui; Xu, Yuxue; Lin, Zhirong; Zhou, Yueping; Xu, Jianjiang; Liu, Zuguo
2013-10-01
Human amniotic membrane (AM) is avascular but contains various beneficial bioactive factors, its extract (AE) is also effective in treating many ocular surface disorders. In this study, we for the first time evaluated the therapeutic effects of AE on dry eye induced by benzalkonium chloride in a BALB/c mouse model. Topical application of AE (1.5 and 3 μg/eye/day) resulted in significantly longer tear break-up time on Day 3 and 6, lower fluorescein staining scores on Day 3, and lower inflammatory index on Day 6. AE reduced corneal epithelial K10 expression, inflammatory infiltration, and levels of TNF-α, IL-1β and IL-6 in BAC treated mice than that in the control mice. Moreover, decreased TUNEL positive cells in cornea and increased goblet cells in conjunctiva were also observed in AE treated corneas. Finally, AE induced more Ki-67 positive cells in corneal epithelium of dry eye mouse. Taken together, our data provide further support for BAC induced dry eye model as a valuable for dry eye study and suggest a great potential for AE as a therapeutic agent in the clinical treatment of dry eye.
Mathematical Modeling of Hot Air Drying Kinetics of Momordica Charantia Slices and Its Color Change
Directory of Open Access Journals (Sweden)
Jie Chen
2013-09-01
Full Text Available This study presented the drying characteristics of fresh Momordica Charantia slices at different drying temperatures (50, 60, 70 and 80°C and different thicknesses (0.5, 0.75 and 1.0 cm. Three mathematical models including Page, Henderson and Pabis and Wang and Singh equations were compared and discussed. The results showed that the Page model provided the best correlation capacity with the decision coefficient R2 of 0.998. The color change of Momordica Charantia slices during hot air drying at different temperatures were also studied by the measuring of color parameters such as the values of Hunter L* (whiteness/darkness, a* (redness/greenness and b* (yellowness/blueness. The total color change (ΔE of the samples was observed to increase as drying temperature increased. The results show that the color ofMomordica Charantia slices changed sharply when temperature was higher than about 70°C. The study could provide theoretical bases of the equipment design and process optimization for hot air drying of Momordica Charantia
Applying Model Based Systems Engineering to NASA's Space Communications Networks
Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert
2013-01-01
System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its
A general diagnostic model applied to language testing data.
von Davier, Matthias
2008-11-01
Probabilistic models with one or more latent variables are designed to report on a corresponding number of skills or cognitive attributes. Multidimensional skill profiles offer additional information beyond what a single test score can provide, if the reported skills can be identified and distinguished reliably. Many recent approaches to skill profile models are limited to dichotomous data and have made use of computationally intensive estimation methods such as Markov chain Monte Carlo, since standard maximum likelihood (ML) estimation techniques were deemed infeasible. This paper presents a general diagnostic model (GDM) that can be estimated with standard ML techniques and applies to polytomous response variables as well as to skills with two or more proficiency levels. The paper uses one member of a larger class of diagnostic models, a compensatory diagnostic model for dichotomous and partial credit data. Many well-known models, such as univariate and multivariate versions of the Rasch model and the two-parameter logistic item response theory model, the generalized partial credit model, as well as a variety of skill profile models, are special cases of this GDM. In addition to an introduction to this model, the paper presents a parameter recovery study using simulated data and an application to real data from the field test for TOEFL Internet-based testing.
Size-specific sensitivity: Applying a new structured population model
Energy Technology Data Exchange (ETDEWEB)
Easterling, M.R.; Ellner, S.P.; Dixon, P.M.
2000-03-01
Matrix population models require the population to be divided into discrete stage classes. In many cases, especially when classes are defined by a continuous variable, such as length or mass, there are no natural breakpoints, and the division is artificial. The authors introduce the integral projection model, which eliminates the need for division into discrete classes, without requiring any additional biological assumptions. Like a traditional matrix model, the integral projection model provides estimates of the asymptotic growth rate, stable size distribution, reproductive values, and sensitivities of the growth rate to changes in vital rates. However, where the matrix model represents the size distributions, reproductive value, and sensitivities as step functions (constant within a stage class), the integral projection model yields smooth curves for each of these as a function of individual size. The authors describe a method for fitting the model to data, and they apply this method to data on an endangered plant species, northern monkshood (Aconitum noveboracense), with individuals classified by stem diameter. The matrix and integral models yield similar estimates of the asymptotic growth rate, but the reproductive values and sensitivities in the matrix model are sensitive to the choice of stage classes. The integral projection model avoids this problem and yields size-specific sensitivities that are not affected by stage duration. These general properties of the integral projection model will make it advantageous for other populations where there is no natural division of individuals into stage classes.
Agrochemical fate models applied in agricultural areas from Colombia
Garcia-Santos, Glenda; Yang, Jing; Andreoli, Romano; Binder, Claudia
2010-05-01
The misuse application of pesticides in mainly agricultural catchments can lead to severe problems for humans and environment. Especially in developing countries where there is often found overuse of agrochemicals and incipient or lack of water quality monitoring at local and regional levels, models are needed for decision making and hot spots identification. However, the complexity of the water cycle contrasts strongly with the scarce data availability, limiting the number of analysis, techniques, and models available to researchers. Therefore there is a strong need for model simplification able to appropriate model complexity and still represent the processes. We have developed a new model so-called Westpa-Pest to improve water quality management of an agricultural catchment located in the highlands of Colombia. Westpa-Pest is based on the fully distributed hydrologic model Wetspa and a fate pesticide module. We have applied a multi-criteria analysis for model selection under the conditions and data availability found in the region and compared with the new developed Westpa-Pest model. Furthermore, both models were empirically calibrated and validated. The following questions were addressed i) what are the strengths and weaknesses of the models?, ii) which are the most sensitive parameters of each model?, iii) what happens with uncertainties in soil parameters?, and iv) how sensitive are the transfer coefficients?
Piotrowski, Jerzy
2012-10-01
Dither generated by rolling contact of wheel and rail smoothes dry friction damping provided by the primary suspension dampers of freight wagons and it should be taken into account in numerical simulations. But numerically the problem is non-smooth and this leads to long execution time during simulation, especially when the vehicle with friction dampers is modelled in the environment of an multi-body system simulation program, whose solver has to cope with many strong non-linearities. The other difficulty is the necessity of handling within the code a number of big volume files of recorded dither sampled with high frequency. To avoid these difficulties, a substitute model of two-dimensional dry friction exposed to dither is proposed that does not need application of dither during simulation, but it behaves as if dither were applied. Due to this property of the model, the excitation of the vehicle model by track irregularities may be supplied as low-frequency input, which allows fast execution and, the necessity of handling high-volume files of recorded dither is avoided. The substitute model is numerically effective. To identify parameters of the substitute model, a pre-processing employing a sample of the realistic dither is carried-out on a simple two-degrees-of-freedom system. The substitute model is anisotropic, describing anisotropic properties of the two-dimensional friction arising in the presence of one-dimensional dither. The model may be applied in other branches of engineering, for example, in mechatronics and robotics, where application of dither may improve the accuracy of positioning devices.
Surface-bounded growth modeling applied to human mandibles
DEFF Research Database (Denmark)
Andresen, Per Rønsholt
1999-01-01
This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward...... to yield a spatially dense field. Different methods for constructing the sparse field are compared. Adaptive Gaussian smoothing is the preferred method since it is parameter free and yields good results in practice. A new method, geometry-constrained diffusion, is used to simplify The most successful...... growth model is linear and based on results from shape analysis and principal component analysis. The growth model is tested in a cross validation study with good results. The worst case mean modeling error in the cross validation study is 3.7 mm. It occurs when modeling the shape and size of a 12 years...
Applied systems ecology: models, data, and statistical methods
Energy Technology Data Exchange (ETDEWEB)
Eberhardt, L L
1976-01-01
In this report, systems ecology is largely equated to mathematical or computer simulation modelling. The need for models in ecology stems from the necessity to have an integrative device for the diversity of ecological data, much of which is observational, rather than experimental, as well as from the present lack of a theoretical structure for ecology. Different objectives in applied studies require specialized methods. The best predictive devices may be regression equations, often non-linear in form, extracted from much more detailed models. A variety of statistical aspects of modelling, including sampling, are discussed. Several aspects of population dynamics and food-chain kinetics are described, and it is suggested that the two presently separated approaches should be combined into a single theoretical framework. It is concluded that future efforts in systems ecology should emphasize actual data and statistical methods, as well as modelling.
Model Driven Mutation Applied to Adaptative Systems Testing
Bartel, Alexandre; Munoz, Freddy; Klein, Jacques; Mouelhi, Tejeddine; Traon, Yves Le
2012-01-01
Dynamically Adaptive Systems modify their behav- ior and structure in response to changes in their surrounding environment and according to an adaptation logic. Critical sys- tems increasingly incorporate dynamic adaptation capabilities; examples include disaster relief and space exploration systems. In this paper, we focus on mutation testing of the adaptation logic. We propose a fault model for adaptation logics that classifies faults into environmental completeness and adaptation correct- ness. Since there are several adaptation logic languages relying on the same underlying concepts, the fault model is expressed independently from specific adaptation languages. Taking benefit from model-driven engineering technology, we express these common concepts in a metamodel and define the operational semantics of mutation operators at this level. Mutation is applied on model elements and model transformations are used to propagate these changes to a given adaptation policy in the chosen formalism. Preliminary resul...
Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility
A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...
A model study of the response of dry and wet firn to climate change
Kuipers Munneke, Peter; Ligtenberg, Stefan; Suder, E. A.; van den Broeke, Michiel
2015-01-01
We study the response of firn to a stepwise surface temperature change, using a firn model that includes meltwater hydrology and is driven by an idealized surface climate. We find that adjustment of dry firn (i.e. without surface melt) to surface warming takes longer than a subsequent cooling to the
Model to predict inhomogeneous protein-sugar distribution in powders prepared by spray drying
Grasmeijer, Niels; Frijlink, Henderik W.; Hinrichs, Wouter L. J.
2016-01-01
A protein can be stabilized by spray drying an aqueous solution of the protein and a sugar, thereby incorporating the protein into a glassy sugar matrix. For optimal stability, the protein should be homogeneously distributed inside the sugar matrix. The aim of this study was to develop a model that
Modeling of Ammonia Dry Deposition to a Pocosin Landscape Downwind of a Large Poultry Facility
A semi-empirical bi-directional flux modeling approach is used to estimate NH3 air concentrations and dry deposition fluxes to a portion of the Pocosin Lakes National Wildlife Refuge (PLNWR) downwind of a large poultry facility. Meteorological patterns at PLNWR are such that som...
Modeling of particles orientation in magnetic field in drying magnetic coatings
Potanin, Andrei A.; Reynolds, George; J. Hirko, Ronald
2000-03-01
Filament coating is studied as a model of magnetic tape manufacturing. Freshly coated filament is driven through a solenoid magnet which orients particles. After drying the coated filament, its squareness is measured as a function of the magnet position, field and the filament speed during coating. Production and model mixes are tested, which differ in dispersion quality and drying rate. A mean-field model is used to describe orientation of particles in the coating. The model fits experiments with two parameters: particles mobility and a mean-field interaction coefficient. Well dispersed kneaded mix has higher mobility and weaker interactions than non-kneaded mixes. The model well agrees with the data for squareness decay with magnet separation from the mix deposition point, thereby providing a theoretical tool for finding proper magnet position on the production coating lines.
Nonstandard Analysis Applied to Advanced Undergraduate Mathematics - Infinitesimal Modeling
Herrmann, Robert A.
2003-01-01
This is a Research and Instructional Development Project from the U. S. Naval Academy. In this monograph, the basic methods of nonstandard analysis for n-dimensional Euclidean spaces are presented. Specific rules are deveoped and these methods and rules are applied to rigorous integral and differential modeling. The topics include Robinson infinitesimals, limited and infinite numbers; convergence theory, continuity, *-transfer, internal definition, hyprefinite summation, Riemann-Stieltjes int...
Property Prediction of Dry Common Carp (Cyprinus Carpio During Storage by Kinetic Model
Directory of Open Access Journals (Sweden)
Qian Lu
2014-12-01
Full Text Available Common carp (Cyprinus carpio is an important food resource in European and Asian countries. Nowadays, common carp after drying process is appreciated by the transportation agency and food industry because of its low transportation cost. Changes of acid value (AV, total bacterial count (TBC, and peroxide value (PV were reported in this study. We found that the changes of AV, TBC and PV of dry common carp fitted the first order reaction model and the reaction energies of changes of AV, TBC, and PV during storage were 4.56 kJ/mol, 2.21 kJ/mol, and 2.33 kJ/mol, respectively. This study will provide theoretical knowledge to food factories relating with dry fish storage and transportation.
Numerical modeling of seawater flow through the flooding system of dry docks
Najafi-Jilani, A.; Naghavi, A.
2009-12-01
Numerical simulations have been carried out on the flooding system of a dry dock in design stage and to be located at the south coasts of Iran. The main goals of the present investigation are to evaluate the flooding time as well as the seawater flow characteristics in the intake channels of the dock. The time dependent upstream and downstream boundary conditions of the flooding system are imposed in the modeling. The upstream boundary condition is imposed in accordance with the tidal fluctuations of sea water level. At the downstream, the gradually rising water surface elevation in the dry dock is described in a transient boundary condition. The numerical results are compared with available laboratory measured data and a good agreement is obtained. The seawater discharge through the flooding system and the required time to filling up the dry dock is determined at the worst case. The water current velocity and pressure on the rigid boundaries are also calculated and discussed.
Directory of Open Access Journals (Sweden)
Prithvi Simha
2016-03-01
Full Text Available To highlight the shortcomings in conventional methods of extraction, this study investigates the efficacy of Microwave Assisted Extraction (MAE toward bioactive compound recovery from pharmaceutically-significant medicinal plants, Adathoda vasica and Cymbopogon citratus. Initially, the microwave (MW drying behavior of the plant leaves was investigated at different sample loadings, MW power and drying time. Kinetics was analyzed through empirical modeling of drying data against 10 conventional thin-layer drying equations that were further improvised through the incorporation of Arrhenius, exponential and linear-type expressions. 81 semi-empirical Midilli equations were derived and subjected to non-linear regression to arrive at the characteristic drying equations. Bioactive compounds recovery from the leaves was examined under various parameters through a comparative approach that studied MAE against Soxhlet extraction. MAE of A. vasica reported similar yields although drastic reduction in extraction time (210 s as against the average time of 10 h in the Soxhlet apparatus. Extract yield for MAE of C. citratus was higher than the conventional process with optimal parameters determined to be 20 g sample load, 1:20 sample/solvent ratio, extraction time of 150 s and 300 W output power. Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy were performed to depict changes in internal leaf morphology.
Study of a dry room in a battery manufacturing plant using a process model
Energy Technology Data Exchange (ETDEWEB)
Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.
2016-09-01
The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studies the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study is conducted with the help of a process model for a dry room with a volume of 16000 cubic meters. For a defined base case scenario it is found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.
Study of a dry room in a battery manufacturing plant using a process model
Ahmed, Shabbir; Nelson, Paul A.; Dees, Dennis W.
2016-09-01
The manufacture of lithium ion batteries requires some processing steps to be carried out in a dry room, where the moisture content should remain below 100 parts per million. The design and operation of such a dry room adds to the cost of the battery. This paper studied the humidity management of the air to and from the dry room to understand the impact of design and operating parameters on the energy demand and the cost contribution towards the battery manufacturing cost. The study was conducted with the help of a process model for a dry room with a volume of 16,000 cubic meters. For a defined base case scenario it was found that the dry room operation has an energy demand of approximately 400 kW. The paper explores some tradeoffs in design and operating parameters by looking at the humidity reduction by quenching the make-up air vs. at the desiccant wheel, and the impact of the heat recovery from the desiccant regeneration cycle.
Mathematical modelling applied to LiDAR data
Directory of Open Access Journals (Sweden)
Javier Estornell
2013-06-01
Full Text Available The aim of this article is to explain the application of several mathematic calculations to LiDAR (Light Detection And Ranging data to estimate vegetation parameters and modelling the relief of a forest area in the town of Chiva (Valencia. To represent the surface that describes the topography of the area, firstly, morphological filters were applied iteratively to select LiDAR ground points. From these data, the Triangulated Irregular Network (TIN structure was applied to model the relief of the area. From LiDAR data the canopy height model (CHM was also calculated. This model allowed obtaining bare soil, shrub and tree vegetation mapping in the study area. In addition, biomass was estimated from measurements taken in the field in 39 circular plots of radius 0.5 m and the 95th percentile of the LiDAR height datanincluded in each plot. The results indicated a high relationship between the two variables (measurednbiomass and 95th percentile with a coeficient of determination (R2 of 0:73. These results reveal the importance of using mathematical modelling to obtain information of the vegetation and land relief from LiDAR data.
Probabilistic Analysis Techniques Applied to Complex Spacecraft Power System Modeling
Hojnicki, Jeffrey S.; Rusick, Jeffrey J.
2005-01-01
Electric power system performance predictions are critical to spacecraft, such as the International Space Station (ISS), to ensure that sufficient power is available to support all the spacecraft s power needs. In the case of the ISS power system, analyses to date have been deterministic, meaning that each analysis produces a single-valued result for power capability because of the complexity and large size of the model. As a result, the deterministic ISS analyses did not account for the sensitivity of the power capability to uncertainties in model input variables. Over the last 10 years, the NASA Glenn Research Center has developed advanced, computationally fast, probabilistic analysis techniques and successfully applied them to large (thousands of nodes) complex structural analysis models. These same techniques were recently applied to large, complex ISS power system models. This new application enables probabilistic power analyses that account for input uncertainties and produce results that include variations caused by these uncertainties. Specifically, N&R Engineering, under contract to NASA, integrated these advanced probabilistic techniques with Glenn s internationally recognized ISS power system model, System Power Analysis for Capability Evaluation (SPACE).
Online traffic flow model applying dynamic flow-density relation
Kim, Y
2002-01-01
This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic fl...
Air-drying Models for New-built Offshore Gas Pipelines%新建海底天然气管道干空气干燥模型研究
Institute of Scientific and Technical Information of China (English)
曹学文; 王立洋; 林宗虎
2005-01-01
Drying (conditioning) is an important procedure to prevent hydrate formation during gas pipeline gas-up and to protect pipelines against corrosion. The air-drying method is preferred in offshore gas pipelines pre-commissioning. The air-drying process of gas pipelines commonly includes two steps, air purging and soak test. The mass conservation and the phase equilibrium theory are applied to setting up the mathematical models of air purging, which can be used to simulate dry airflow rate and drying time. Fick diffusion law is applied to setting up the mathematical model of soak test, which can predict the water vapor concentration distribution. The results calculated from the purging model and the soak test model are in good agreement with the experimental data in the DF1-1 offshore production pipeline conditioning. The models are verified to be available for the air-drying project design of offshore gas pipelines. Some proposals for air-drying engineering and operational procedures are put forward by analyzing the air-drying process of DF1-1 gas-exporting pipelines.
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; Daele, Timothy, Van; Gernaey, Krist V.
2013-01-01
The development of a Population Balance Model (PBM) for a pharmaceutical granule drying process requires a continuous growth term; the latter actually represents the drying process as the moisture content is the internal coordinate of the PBM. To establish such a PBM, a complex drying model for a...... the drying behavior of a population of granules. © 2012 American Institute of Chemical Engineers AIChE J, 59: 1127–1138, 2013...
A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...
Alma Delia Baez-Gonzalez; James R. Kiniry; Jose Saul Padilla Ramirez; Guillermo Medina Garcia; Jose Luis Ramos Gonzalez; Esteban Salvador Osuna Ceja
2015-01-01
Dry bean simulation models can be used to make management decisions when properly parameterized. This study aimed to parameterize the ALMANAC (Agricultural Land Management Alternatives with Numerical Assessment Criteria) crop simulation model for dry bean in the semi-arid temperate areas of Mexico. The parameterization process was based on data from two important non-irrigated dry bean fields in Mexico. The parameters were potential heat units (PHU), leaf area index (LAI) and harvest index (H...
Apply a hydrological model to estimate local temperature trends
Igarashi, Masao; Shinozawa, Tatsuya
2014-03-01
Continuous times series {f(x)} such as a depth of water is written f(x) = T(x)+P(x)+S(x)+C(x) in hydrological science where T(x),P(x),S(x) and C(x) are called the trend, periodic, stochastic and catastrophic components respectively. We simplify this model and apply it to the local temperature data such as given E. Halley (1693), the UK (1853-2010), Germany (1880-2010), Japan (1876-2010). We also apply the model to CO2 data. The model coefficients are evaluated by a symbolic computation by using a standard personal computer. The accuracy of obtained nonlinear curve is evaluated by the arithmetic mean of relative errors between the data and estimations. E. Halley estimated the temperature of Gresham College from 11/1692 to 11/1693. The simplified model shows that the temperature at the time rather cold compared with the recent of London. The UK and Germany data sets show that the maximum and minimum temperatures increased slowly from the 1890s to 1940s, increased rapidly from the 1940s to 1980s and have been decreasing since the 1980s with the exception of a few local stations. The trend of Japan is similar to these results.
Simple predictive electron transport models applied to sawtoothing plasmas
Kim, D.; Merle, A.; Sauter, O.; Goodman, T. P.
2016-05-01
In this work, we introduce two simple transport models to evaluate the time evolution of electron temperature and density profiles during sawtooth cycles (i.e. over a sawtooth period time-scale). Since the aim of these simulations is to estimate reliable profiles within a short calculation time, two simplified ad-hoc models have been developed. The goal for these models is to rely on a few easy-to-check free parameters, such as the confinement time scaling factor and the profiles’ averaged scale-lengths. Due to the simplicity and short calculation time of the models, it is expected that these models can also be applied to real-time transport simulations. We show that it works well for Ohmic and EC heated L- and H-mode plasmas. The differences between these models are discussed and we show that their predictive capabilities are similar. Thus only one model is used to reproduce with simulations the results of sawtooth control experiments on the TCV tokamak. For the sawtooth pacing, the calculated time delays between the EC power off and sawtooth crash time agree well with the experimental results. The map of possible locking range is also well reproduced by the simulation.
Applying a Dynamic Resource Supply Model in a Smart Grid
Directory of Open Access Journals (Sweden)
Kaiyu Wan
2014-09-01
Full Text Available Dynamic resource supply is a complex issue to resolve in a cyber-physical system (CPS. In our previous work, a resource model called the dynamic resource supply model (DRSM has been proposed to handle resources specification, management and allocation in CPS. In this paper, we are integrating the DRSM with service-oriented architecture and applying it to a smart grid (SG, one of the most complex CPS examples. We give the detailed design of the SG for electricity charging request and electricity allocation between plug-in hybrid electric vehicles (PHEV and DRSM through the Android system. In the design, we explain a mechanism for electricity consumption with data collection and re-allocation through ZigBee network. In this design, we verify the correctness of this resource model for expected electricity allocation.
Curve Fitting And Interpolation Model Applied In Nonel Dosage Detection
Directory of Open Access Journals (Sweden)
Jiuling Li
2013-06-01
Full Text Available The Curve Fitting and Interpolation Model are applied in Nonel dosage detection in this paper firstly, and the gray of continuous explosive in the Nonel has been forecasted. Although the traditional infrared equipment establishes the relationship of explosive dosage and light intensity, but the forecast accuracy is very low. Therefore, gray prediction models based on curve fitting and interpolation are framed separately, and the deviations from the different models are compared. Simultaneously, combining on the sample library features, the cubic polynomial fitting curve of the higher precision is used to predict grays, and 5mg-28mg Nonel gray values are calculated by MATLAB. Through the predictive values, the dosage detection operations are simplified, and the defect missing rate of the Nonel are reduced. Finally, the quality of Nonel is improved.
Remote sensing applied to numerical modelling. [water resources pollution
Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.
1975-01-01
Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.
Three-Dimensional Gravity Model Applied to Underwater Navigation
Institute of Scientific and Technical Information of China (English)
YAN Lei; FENG Hao; DENG Zhongliang; GAO Zhengbing
2004-01-01
At present, new integrated navigation, which usesthe location function of reference gravity anomaly map to control the errors of the inertial navigation system (INS), has been developed in marine navigation. It is named the gravityaided INS. Both the INS and real-time computation of gravity anomalies need a 3-D marine normal gravity model.Conventionally, a reduction method applied in geophysical survey is directly introduced to observed data processing. This reduction does not separate anomaly from normal gravity in the observed data, so errors cannot be avoided. The 3-D marine normal gravity model was derived from the J2 gravity model, and is suitable for the region whose depth is less than 1000 m.
Chen, Xiaodong; Sadineni, Vikram; Maity, Mita; Quan, Yong; Enterline, Matthew; Mantri, Rao V
2015-12-01
Lyophilization is an approach commonly undertaken to formulate drugs that are unstable to be commercialized as ready to use (RTU) solutions. One of the important aspects of commercializing a lyophilized product is to transfer the process parameters that are developed in lab scale lyophilizer to commercial scale without a loss in product quality. This process is often accomplished by costly engineering runs or through an iterative process at the commercial scale. Here, we are highlighting a combination of computational and experimental approach to predict commercial process parameters for the primary drying phase of lyophilization. Heat and mass transfer coefficients are determined experimentally either by manometric temperature measurement (MTM) or sublimation tests and used as inputs for the finite element model (FEM)-based software called PASSAGE, which computes various primary drying parameters such as primary drying time and product temperature. The heat and mass transfer coefficients will vary at different lyophilization scales; hence, we present an approach to use appropriate factors while scaling-up from lab scale to commercial scale. As a result, one can predict commercial scale primary drying time based on these parameters. Additionally, the model-based approach presented in this study provides a process to monitor pharmaceutical product robustness and accidental process deviations during Lyophilization to support commercial supply chain continuity. The approach presented here provides a robust lyophilization scale-up strategy; and because of the simple and minimalistic approach, it will also be less capital intensive path with minimal use of expensive drug substance/active material.
Modeling evaporation processes in a saline soil from saturation to oven dry conditions
Directory of Open Access Journals (Sweden)
M. Gran
2011-07-01
Full Text Available Thermal, suction and osmotic gradients interact during evaporation from a salty soil. Vapor fluxes become the main water flow mechanism under very dry conditions. A coupled nonisothermal multiphase flow and reactive transport model was developed to study mass and energy transfer mechanisms during an evaporation experiment from a sand column. Very dry and hot conditions, including the formation of a salt crust, necessitate the modification of the retention curve to represent oven dry conditions. Experimental observations (volumetric water content, temperature and concentration profiles were satisfactorily reproduced using mostly independently measured parameters, which suggests that the model can be used to assess the underlying processes. Results show that evaporation concentrates at a very narrow front and is controlled by heat flow, and limited by salinity and liquid and vapor fluxes. The front divides the soil into a dry and saline portion above and a moist and diluted portion below. Vapor diffusses not only upwards but also downwards from the evaporation front, as dictated by temperature gradients. Condensation of this downward flux causes dilution, so that salt concentration is minimum and lower than the initial one, just beneath the evaporation front. While this result is consistent with observations, it required adopting a vapor diffusion enhancement factor of 8.
Modeling evaporation processes in a saline soil from saturation to oven dry conditions
Directory of Open Access Journals (Sweden)
M. Gran
2011-01-01
Full Text Available Thermal, suction and osmotic gradients interact during evaporation from a salty soil. Vapor fluxes become the main water flow mechanism under very dry conditions. A coupled nonisothermal multiphase flow and a reactive transport model of a salty sand soil was developed to study such an intricate system. The model was calibrated with data from an evaporation experiment (volumetric water content, temperature and concentration. The retention curve and relative permeability functions were modified to simulate oven dry conditions. Experimental observations were satisfactorily reproduced, which suggests that the model can be used to assess the underlying processes. Results show that evaporation is controlled by heat, and limited by salinity and liquid and vapor fluxes. Below evaporation front vapor flows downwards controlled by temperature gradient and thus generates a dilution. Vapor diffusion and dilution are strongly influenced by heat boundary conditions. Gas diffusion plays a major role in the magnitude of vapor fluxes.
Directory of Open Access Journals (Sweden)
A. N. Ostrikov
2013-01-01
Full Text Available A mathematical model of combined radiation and convection drying of fruit and vegetable chips with pulsed energy supply is developed, the model describes the change in temperature and moisture content during the period of constant and periods of decreasing drying rate.
Investigation of Precipitation Variations over Wet and Dry Areas from Observation and Model
Directory of Open Access Journals (Sweden)
James H. Trammell
2015-01-01
Full Text Available Our observational study revealed that the precipitation increased over the wet area and decreased over the dry area during the past two decades. Here, we further investigate whether the current atmospheric models can quantitatively capture the characteristics of precipitation from the observation. The NASA Goddard Institute for Space Studies (GISS model is used to examine the historic simulation of the precipitation, in which the historic greenhouse gases and aerosols are included in the radiative forcing. The consistency between the historic GISS simulation and the Global Precipitation Climatology Project (GPCP precipitation suggests that the model can qualitatively capture the temporal trends of precipitation over the wet and dry areas. However, the precipitation trends are weaker in the model than in the observation. The observed trends of precipitation do not appear in the control simulation with the fixed concentrations of greenhouse gases and aerosols, which suggests that the global warming due to anthropogenic forcing can influence the temporal variations of precipitation over the wet and dry areas. Diagnostic studies of other variables from the model further suggest that enhanced rising air can increase the precipitation over the wet area.
Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans
Baker, Alex R.; Kanakidou, Maria; Altieri, Katye E.; Daskalakis, Nikos; Okin, Gregory S.; Myriokefalitakis, Stelios; Dentener, Frank; Uematsu, Mitsuo; Sarin, Manmohan M.; Duce, Robert A.; Galloway, James N.; Keene, William C.; Singh, Arvind; Zamora, Lauren; Lamarque, Jean-Francois; Hsu, Shih-Chieh; Rohekar, Shital S.; Prospero, Joseph M.
2017-07-01
Anthropogenic nitrogen (N) emissions to the atmosphere have increased significantly the deposition of nitrate (NO3-) and ammonium (NH4+) to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ˜ 2900 observations of aerosol NO3- and NH4+ concentrations, acquired from sampling aboard ships in the period 1995-2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx) on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep) of oxidised N (NOy) and reduced N (NHx) and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4): ModDep for NOy, NHx and particulate NO3- and NH4+, and surface-level particulate NO3- and NH4+ concentrations. As a model ensemble, ACCMIP can be expected to be more robust than
Applying Mechanistic Dam Breach Models to Historic Levee Breaches
Directory of Open Access Journals (Sweden)
Risher Paul
2016-01-01
Full Text Available Hurricane Katrina elevated levee risk in the US national consciousness, motivating agencies to assess and improve their levee risk assessment methodology. Accurate computation of the flood flow magnitude and timing associated with a levee breach remains one of the most difficult and uncertain components of levee risk analysis. Contemporary methods are largely empirical and approximate, introducing substantial uncertainty to the damage and life loss models. Levee breach progressions are often extrapolated to the final width and breach formation time based on limited experience with past breaches or using regression equations developed from a limited data base of dam failures. Physically based embankment erosion models could improve levee breach modeling. However, while several mechanistic embankment breach models are available, they were developed for dams. Several aspects of the levee breach problem are distinct, departing from dam breach assumptions. This study applies three embankments models developed for dam breach analysis (DL Breach, HR BREACH, and WinDAM C to historic levee breaches with observed (or inferred breach rates, assessing the limitations, and applicability of each model to the levee breach problem.
Relative Binding Free Energy Calculations Applied to Protein Homology Models.
Cappel, Daniel; Hall, Michelle Lynn; Lenselink, Eelke B; Beuming, Thijs; Qi, Jun; Bradner, James; Sherman, Woody
2016-12-27
A significant challenge and potential high-value application of computer-aided drug design is the accurate prediction of protein-ligand binding affinities. Free energy perturbation (FEP) using molecular dynamics (MD) sampling is among the most suitable approaches to achieve accurate binding free energy predictions, due to the rigorous statistical framework of the methodology, correct representation of the energetics, and thorough treatment of the important degrees of freedom in the system (including explicit waters). Recent advances in sampling methods and force fields coupled with vast increases in computational resources have made FEP a viable technology to drive hit-to-lead and lead optimization, allowing for more efficient cycles of medicinal chemistry and the possibility to explore much larger chemical spaces. However, previous FEP applications have focused on systems with high-resolution crystal structures of the target as starting points-something that is not always available in drug discovery projects. As such, the ability to apply FEP on homology models would greatly expand the domain of applicability of FEP in drug discovery. In this work we apply a particular implementation of FEP, called FEP+, on congeneric ligand series binding to four diverse targets: a kinase (Tyk2), an epigenetic bromodomain (BRD4), a transmembrane GPCR (A2A), and a protein-protein interaction interface (BCL-2 family protein MCL-1). We apply FEP+ using both crystal structures and homology models as starting points and find that the performance using homology models is generally on a par with the results when using crystal structures. The robustness of the calculations to structural variations in the input models can likely be attributed to the conformational sampling in the molecular dynamics simulations, which allows the modeled receptor to adapt to the "real" conformation for each ligand in the series. This work exemplifies the advantages of using all-atom simulation methods with
Fedrizzi, Bruno; Zapparoli, Giacomo; Finato, Fabio; Tosi, Emanuele; Turri, Arianna; Azzolini, Michela; Versini, Giuseppe
2011-03-09
From harvest until wine arrives to the consumer, oxygen plays a crucial role in the definition of the final aroma. In the present research, the effect of the model oxidative aging on a dry red Botrytis wine, such as Italian Amarone, was considered. Amarone wine was submitted to model oxidative aging and then analyzed with two different approaches (SPE-GC-MS and HS-SPME/GC-MS). The same sampling plan was adopted to study the model aging of the same Amarone wine in anaerobic conditions. The HS-SPME/GC-MS method was applied to investigate for the first time the effect of the oxidative aging on a vast number of fermentative sulfur compounds. This research highlighted peculiar evolutions for several volatile compounds. In particular, benzaldehyde showed a sensitive increment during the oxidative aging, with a rate much higher than that reported for non-Botrytis red wines. On the other hand, several sulfides (dimethyl sulfide, 3-(methylthio)-1-propanol, etc.) disappeared after just 15 days of oxidative aging. A wine oxidation marker such as 3-(methylthio)-propanal was not found in any of the oxidized wines; conversely methionol-S-oxide was tentatively identified. This evidence has not been mentioned in the literature. A possible involvement of grape withering process and Botrytis in these mechanisms was supposed: a dry red wine, produced from the same but without any grape withering process and Botrytis infection (e.g., Bardolino wine), was submitted to oxidative aging and analysis. This red wine showed an evolution similar to those reported in the literature for dry red wines but significantly different from the Amarone wine.
Assessment of diffusion models to describe drying of roof tiles using generalized coordinates
Farias, Vera S. O.; da Silva, Wilton Pereira; e Silva, Cleide M. D. P. S.; da Silva Júnior, Aluízio Freire; de Farias Aires, Juarez Everton; Rocha, Vicente P. T.
2016-07-01
This article aims to study the mass transient diffusion in solids with an arbitrary shape, highlighting boundary condition of the third kind. To this end, the numerical formalism to discretize the transient 3D diffusion equation written in generalized coordinates is presented. For the discretization, it was used the finite volume method with a fully implicit formulation. An application to drying of roof tiles has been done. Three models were used to describe the drying process: (1) the volume V and the effective mass diffusivity D are considered constant for the boundary condition of the first kind; (2) V and D are considered constant for the boundary condition of the third kind and (3) V and D are considered variable for the boundary condition of the third kind. For all models, the convective mass transfer coefficient h was considered constant. The analyses of the results obtained make it possible to affirm that the model 3 describes the drying process better than the other models.
Dong, Yong-Yi; Li, Gang; An, Dong-Sheng; Luo, Wei-Hong
2012-04-01
Dry matter allocation and translocation is the base of the formation of appearance quality of ornamental plants, and strongly affected by water supply. Taking cut lily cultivar 'Sorbonne' as test material, a culture experiment of different planting dates and water supply levels was conducted in a multi-span greenhouse in Nanjing from March 2009 to January 2010 to quantitatively analyze the seasonal changes of the dry matter allocation and translocation in 'Sorbonne' plants and the effects of substrate water potential on the dry matter allocation indices for different organs (flower, stem, leaf, bulb, and root), aimed to define the critical substrate water potential for the normal growth of the cultivar, and establish a simulation model for predicting the dry matter allocation in cut lily plants under effects of substrate water potential. The model established in this study gave a good prediction on the dry mass of plant organs, with the coefficient of determination and the relative root mean square error between the simulated and measured values of the cultivar' s flower dry mass, stem dry mass, leaf dry mass, bulb dry mass, and root dry mass being 0.96 and 19.2%, 0.95 and 12.4%, 0.86 and 19.4%, 0.95 and 12.2%, and 0.85 and 31.7%, respectively. The critical water potential for the water management of cut lily could be -15 kPa.
Applying a realistic evaluation model to occupational safety interventions
DEFF Research Database (Denmark)
Pedersen, Louise Møller
2017-01-01
of occupational safety interventions. Conclusion: The revised realistic evaluation model can help safety science forward in identifying key factors for the success of occupational safety interventions. However, future research should strengthen the link between the immediate intervention results and outcome.......Background: Recent literature characterizes occupational safety interventions as complex social activities, applied in complex and dynamic social systems. Hence, the actual outcomes of an intervention will vary, depending on the intervention, the implementation process, context, personal...... characteristics of key actors (defined mechanisms), and the interplay between them, and can be categorized as expected or unexpected. However, little is known about ’how’ to include context and mechanisms in evaluations of intervention effectiveness. A revised realistic evaluation model has been introduced...
Nature preservation acceptance model applied to tanker oil spill simulations
DEFF Research Database (Denmark)
Friis-Hansen, Peter; Ditlevsen, Ove Dalager
2003-01-01
is exemplified by a study of oil spills due to simulated tanker collisions in the Danish straits. It is found that the distribution of the oil spill volume per spill is well represented by an exponential distribution both in Oeresund and in Great Belt. When applied in the Poisson model, a risk profile reasonably...... close to the standard lognormal profile is obtained. Moreover, based on data pairs (volume, cost) for world wide oil spills it is inferred that the conditional distribution of the costs given the spill volume is well modeled by a lognormal distribution. By unconditioning by the exponential distribution...... of the single oil spill, a risk profile for the costs is obtained that is indistinguishable from the standard lognormal risk profile.Finally the question of formulating a public risk acceptance criterion is addressed following Ditlevsen, and it is argued that a Nature Preservation Willingness Index can...
A Model-Based Methodology for Spray-Drying Process Development.
Dobry, Dan E; Settell, Dana M; Baumann, John M; Ray, Rod J; Graham, Lisa J; Beyerinck, Ron A
2009-09-01
Solid amorphous dispersions are frequently used to improve the solubility and, thus, the bioavailability of poorly soluble active pharmaceutical ingredients (APIs). Spray-drying, a well-characterized pharmaceutical unit operation, is ideally suited to producing solid amorphous dispersions due to its rapid drying kinetics. This paper describes a novel flowchart methodology based on fundamental engineering models and state-of-the-art process characterization techniques that ensure that spray-drying process development and scale-up are efficient and require minimal time and API. This methodology offers substantive advantages over traditional process-development methods, which are often empirical and require large quantities of API and long development times. This approach is also in alignment with the current guidance on Pharmaceutical Development Q8(R1). The methodology is used from early formulation-screening activities (involving milligrams of API) through process development and scale-up for early clinical supplies (involving kilograms of API) to commercial manufacturing (involving metric tons of API). It has been used to progress numerous spray-dried dispersion formulations, increasing bioavailability of formulations at preclinical through commercial scales.
Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan
2016-01-01
A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g−1, respectively, at a current density of 2 A g−1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088
Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan
2016-04-01
A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g‑1, respectively, at a current density of 2 A g‑1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.
Applying the luminosity function statistics in the fireshell model
Rangel Lemos, L. J.; Bianco, C. L.; Ruffini, R.
2015-12-01
The luminosity function (LF) statistics applied to the data of BATSE, GBM/Fermi and BAT/Swift is the theme approached in this work. The LF is a strong statistical tool to extract useful information from astrophysical samples, and the key point of this statistical analysis is in the detector sensitivity, where we have performed careful analysis. We applied the tool of the LF statistics to three GRB classes predicted by the Fireshell model. We produced, by LF statistics, predicted distributions of: peak ux N(Fph pk), redshift N(z) and peak luminosity N(Lpk) for the three GRB classes predicted by Fireshell model; we also used three GRB rates. We looked for differences among the distributions, and in fact we found. We performed a comparison between the distributions predicted and observed (with and without redshifts), where we had to build a list with 217 GRBs with known redshifts. Our goal is transform the GRBs in a standard candle, where a alternative is find a correlation between the isotropic luminosity and the Band peak spectral energy (Liso - Epk).
Optimal control applied to a thoraco-abdominal CPR model.
Jung, Eunok; Lenhart, Suzanne; Protopopescu, Vladimir; Babbs, Charles
2008-06-01
The techniques of optimal control are applied to a validated blood circulation model of cardiopulmonary resuscitation (CPR), consisting of a system of seven difference equations. In this system, the non-homogeneous forcing terms are chest and abdominal pressures acting as the 'controls'. We seek to maximize the blood flow, as measured by the pressure difference between the thoracic aorta and the right atrium. By applying optimal control methods, we characterize the optimal waveforms for external chest and abdominal compression during cardiac arrest and CPR in terms of the solutions of the circulation model and of the corresponding adjoint system. Numerical results are given for various scenarios. The optimal waveforms confirm the previously discovered positive effects of active decompression and interposed abdominal compression. These waveforms can be implemented with manual (Lifestick-like) and mechanical (vest-like) devices to achieve levels of blood flow substantially higher than those provided by standard CPR, a technique which, despite its long history, is far from optimal.
Mechanistic modelling of fluidized bed drying processes of wet porous granules
DEFF Research Database (Denmark)
Mortier, Séverine Thérèse F.C.; De Beer, Thomas; Gernaey, Krist;
2011-01-01
Fluidized bed dryers are frequently used in industrial applications and also in the pharmaceutical industry. The general incentives to develop mechanistic models for pharmaceutical processes are listed, and our vision on how this can particularly be done for fluidized bed drying processes of wet...... will reside in a certain interval. Population Balance Model (ling) (PBM) offers a tool to describe the distribution of particle properties which can be of interest for the application. PBM formulation and solution methods are therefore reviewed. In a fluidized bed, the granules show a fluidization pattern...... Eddy Simulation (LES). Another important aspect of CFD is the choice between the Eulerian–Lagrangian and the Eulerian–Eulerian approach. Finally, the PBM and CFD frameworks can be integrated, to describe the evolution of the moisture content of granules during fluidized bed drying....
Goswami, Bidyut Bikash; Goswami, B. N.
2017-09-01
An outstanding problem of climate models is the persistent dry bias in simulating precipitation over the south Asian summer monsoon region. Guided by observations, it is hypothesized that the dry-bias in simulating precipitation by the models is related to underestimation of high pass variance by most models. An analysis of the simulated mean and variance in precipitation by 36 coupled models show that the dry bias in simulating the mean precipitation by the models is indeed proportional to the underestimation of the variance. Models also indicate that the underestimation of the high-pass variance arise due to the underestimation of the intense rainfall events by models. Further, it is found that the higher resolution models simulate increasingly reduced dry bias by simulating high-frequency variance better through better simulation probability of intense rainfall events. The robustness of our findings over different regions and during both boreal summer and winter seasons indicates the universality of the hypothesis.
Directory of Open Access Journals (Sweden)
Salemović Duško R.
2015-01-01
Full Text Available This paper presents a mathematical model and numerical analysis of the convective drying process of small particles of potatoes slowly moving through the flow of a drying agent - hot moist air. The drying process was analyzed in the form of a one-dimensional thin layer. The mathematical model of the drying process is a system of two ordinary nonlinear differential equations with constant coefficients and an equation with a transcendent character. The appropriate boundary conditions of the mathematical model were given. The presented model is suitable in the automated control. The presented system of differential equations was solved numerically. The analysis presented here and the obtained results could be useful in predicting the drying kinetics of potatoes and similar natural products in a conveyor-belt dryer. [Projekat Ministarstva nauke Republike, br. TR-33049, br. TR-37002 i br. TR-37008
A model study of the response of dry and wet firn to climate change
2015-01-01
We study the response of firn to a stepwise surface temperature change, using a firn model that includes meltwater hydrology and is driven by an idealized surface climate. We find that adjustment of dry firn (i.e. without surface melt) to surface warming takes longer than a subsequent cooling to the original, colder climate, mainly because firn compacts faster at higher firn temperatures. In contrast, wet firn adjusts faster to a surface warming than to a cooling. Increased meltwater percolat...
Numerical modeling of seawater flow through the flooding system of dry docks
A. Najafi-Jilani; A. Naghavi
2009-01-01
Numerical simulations have been carried out on the flooding system of a dry dock in design stage and to be located at the south coasts of Iran. The main goals of the present investigation are to evaluate the flooding time as well as the seawater flow characteristics in the intake channels of the dock. The time dependent upstream and downstream boundary conditions of the flooding system are imposed in the modeling. The upstream boundary condition is imposed in accordance with the tidal fluctua...
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling.
Kuprat, A P; Kabilan, S; Carson, J P; Corley, R A; Einstein, D R
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton's Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets
A bidirectional coupling procedure applied to multiscale respiratory modeling
Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.
2013-07-01
pressure applied to the multiple sets of ODEs. In both the simplified geometry and in the imaging-based geometry, the performance of the method was comparable to that of monolithic schemes, in most cases requiring only a single CFD evaluation per time step. Thus, this new accelerator allows us to begin combining pulmonary CFD models with lower-dimensional models of pulmonary mechanics with little computational overhead. Moreover, because the CFD and lower-dimensional models are totally separate, this framework affords great flexibility in terms of the type and breadth of the adopted lower-dimensional model, allowing the biomedical researcher to appropriately focus on model design. Research funded by the National Heart and Blood Institute Award 1RO1HL073598.
Numerical simulation of fluid bed drying based on two-fluid model and experimental validation
Energy Technology Data Exchange (ETDEWEB)
Assari, M.R. [Jundi-shapur University, Dezful (Iran); Basirat Tabrizi, H.; Saffar-Avval, M. [Amirkabir University of Technology, Department of Mechanical Engineering, Tehran (Iran)
2007-02-15
A mathematical model for batch drying based on the Eulerian 'two-fluid models' was developed. The two-dimensional, axis-symmetrical cylindrical equations for both phases were solved numerically. The governing equations were discretized using a finite volume method with local grid refinement near the wall and inlet port. The effects of parameters such as inlet gas velocity and inlet gas temperature on the moisture content, temperature of solid and gas at the outlet are shown. This data from the model was compared with that obtained from experiments with a fluidized bed and found to be in reasonably good agreement. (author)
Augereau, F; Laux, D; Allais, L; Mottot, M; Caes, C
2007-03-01
A pulse-echo ultrasonic method is presented to measure elastic parameter variations during thermal loading with high accuracy. Using a dry coupling configuration dedicated to high temperature investigation, this technique has been applied on 6061-T6 aluminium samples up to 220 degrees C. Experimental settings are described to assess the measurement reproducibility estimated at a value of 0.2%. Consequently, the anisotropy of this aluminium between the rolling direction and two orthogonal axes has been clearly detected and also measured versus temperature. As regards the temperature dependence of these elastic parameters, these results are compared with the estimations of the Young's modulus obtained during mechanical tests in conditions of low cycle fatigue (LCF). The same linear variation versus temperature is found but with a shift of 7GPa. This difference has been classically attributed to systematic experimental error sources and to the distinction existing between dynamic and static elastic modulus.
A soil-plant model applied to phytoremediation of metals.
Lugli, Francesco; Mahler, Claudio Fernando
2016-01-01
This study reports a phytoremediation pot experiment using an open-source program. Unsaturated water flow was described by the Richards' equation and solute transport by the advection-dispersion equation. Sink terms in the governing flow and transport equations accounted for root water and solute uptake, respectively. Experimental data were related to application of Vetiver grass to soil contaminated by metal ions. Sensitivity analysis revealed that due to the specific experimental set-up (bottom flux not allowed), hydraulic model parameters did not influence root water (and contaminant) uptake. In contrast, the results were highly correlated with plant solar radiation interception efficiency (leaf area index). The amounts of metals accumulated in the plant tissue were compared to numerical values of cumulative uptake. Pb(2+) and Zn(2+) uptake was satisfactorily described using a passive model. However, for Ni(2+) and Cd(2+), a specific calibration of the active uptake model was necessary. Calibrated MM parameters for Ni(2+), Cd(2+), and Pb(2+) were compared to values in the literature, generally suggesting lower rates and saturation advance. A parameter (saturation ratio) was introduced to assess the efficiency of contaminant uptake. Numerical analysis, applying actual field conditions, showed the limitation of the active model for being independent of the transpiration rate.
Model output statistics applied to wind power prediction
Energy Technology Data Exchange (ETDEWEB)
Joensen, A.; Giebel, G.; Landberg, L. [Risoe National Lab., Roskilde (Denmark); Madsen, H.; Nielsen, H.A. [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)
1999-03-01
Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.
TCSC impedance regulator applied to the second benchmark model
Energy Technology Data Exchange (ETDEWEB)
Hamel, J.P.; Dessaint, L.A. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Electrical Engineering; Champagne, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Software and IT Engineering; Pare, D. [Institut de Recherche d' Hydro-Quebec, Varennes, PQ (Canada)
2008-07-01
Due to the combination of electrical demand growth and the high cost of building new power transmission lines, series compensation is increasingly used in power systems all around the world. Series compensation has been proposed as a new way to transfer more power on existing lines. By adding series compensation to an existing line (a relatively small change), the power transfer can be increased significantly. One of the means used for line compensation is the addition of capacitive elements in series with the line. This paper presented a thyristor-controlled series capacitor (TCSC) model that used impedance as reference, had individual controls for each phase, included a linearization module and considered only the fundamental frequency for impedance computations, without using any filter. The model's dynamic behavior was validated by applying it to the second benchmark model for subsynchronous resonance (SSR). Simulation results from the proposed model, obtained using EMTP-RV and SimPowerSystems were demonstrated. It was concluded that SSR was mitigated by the proposed approach. 19 refs., 19 figs.
A model for drying control cosolvent selection for spin-coating uniformity: the thin film limit.
Birnie, Dunbar P
2013-07-23
Striation defects in spin-coated thin films are a result of unfavorable capillary forces that develop due to the physical processes commonly involved in the spin-coating technique. Solvent evaporation during spinning causes slight compositional changes in the coating during drying, and these changes lead to instability in the surface tension, which causes lateral motions of the drying fluid up to the point where it gels and freezes in the thickness variations. In an earlier publication, we looked at the case where evaporation happens fast enough that the compositional depletion is mostly a surface effect. In terms of the mass transport rate competition within the coating solution, that work covered the thick film limit of this instability problem. However, in many cases, the coatings are thin enough or diffusion of solvent within the coating is fast enough to require a different solvent mixing strategy, which is developed here. A simple perturbation analysis of surface roughness is developed, and evaporation is allowed in the thin film limit. The perturbation analysis allows for a simple rubric to be laid out for cosolvent additions that can reduce the Marangoni effect during the later stages of coating deposition and drying when the thin film limit applies.
Applying the model of excellence in dental healthcare
Directory of Open Access Journals (Sweden)
Tekić Jasmina
2015-01-01
Full Text Available Introduction. Models of excellence are considered a practical tool in the field of management that should help a variety of organizations, including dental, to carry out the measurement of the quality of provided services, and so define their position in relation to excellence. The quality of healthcare implies the degree within which the system of healthcare and health services increases the likelihood of positive treatment outcome. Objective. The aim of the present study was to define a model of excellence in the field of dental healthcare (DHC in the Republic of Serbia and suggest the model of DHC whose services will have the characteristics of outstanding service in the dental practice. Methods. In this study a specially designed questionnaire was used for the assessment of the maturity level of applied management regarding quality in healthcare organizations of the Republic of Serbia. The questionnaire consists of 13 units and a total of 240 questions. Results. The results of the study were discussed involving four areas: (1 defining the main criteria and sub-criteria, (2 the elements of excellence of DHC in the Republic of Serbia, (3 the quality of DHC in the Republic of Serbia, and (4 defining the framework of the model of excellence for the DHC in the Republic of Serbia. The main criteria which defined the framework and implementation model of excellence in the field of DHC in Serbia were: leadership, management, human resources, policy and strategy, other resources, processes, patients’ satisfaction, employee’s satisfaction, impact on society and business results. The model had two main parts: the possibilities for the first five criteria and options for the other four criteria. Conclusion. Excellence in DHC business as well as the excellence of provided dental services are increasingly becoming the norm and good practice, and progressively less the exception.
Comparison of experimental data with results of some drying models for regularly shaped products
Energy Technology Data Exchange (ETDEWEB)
Kaya, Ahmet [Aksaray University, Department of Mechanical Engineering, Aksaray (Turkey); Aydin, Orhan [Karadeniz Technical University, Department of Mechanical Engineering, Trabzon (Turkey); Dincer, Ibrahim [University of Ontario Institute of Technology, Faculty of Engineering and Applied Science, Oshawa, ON (Canada)
2010-05-15
This paper presents an experimental and theoretical investigation of drying of moist slab, cylinder and spherical products to study dimensionless moisture content distributions and their comparisons. Experimental study includes the measurement of the moisture content distributions of slab and cylindrical carrot, slab and cylindrical pumpkin and spherical blueberry during drying at various temperatures (e.g., 30, 40, 50 and 60 C) at specific constant velocity (U = 1 m/s) and the relative humidity {phi}=30%. In theoretical analysis, two moisture transfer models are used to determine drying process parameters (e.g., drying coefficient and lag factor) and moisture transfer parameters (e.g., moisture diffusivity and moisture transfer coefficient), and to calculate the dimensionless moisture content distributions. The calculated results are then compared with the experimental moisture data. A considerably high agreement is obtained between the calculations and experimental measurements for the cases considered. The effective diffusivity values were evaluated between 0.741 x 10{sup -5} and 5.981 x 10{sup -5} m{sup 2}/h for slab products, 0.818 x 10{sup -5} and 6.287 x 10{sup -5} m{sup 2}/h for cylindrical products and 1.213 x 10{sup -7} and 7.589 x 10{sup -7} m{sup 2}/h spherical products using the model-I and 0.316 x 10{sup -5}-5.072 x 10{sup -5} m{sup 2}/h for slab products, 0.580 x 10{sup -5}-9.587 x 10{sup -5} m{sup 2}/h for cylindrical products and 1.408 x 10{sup -7}-13.913 x 10{sup -7} m{sup 2}/h spherical products using the model-II. (orig.)
A radar-based hydrological model for flash flood prediction in the dry regions of Israel
Ronen, Alon; Peleg, Nadav; Morin, Efrat
2014-05-01
Flash floods are floods which follow shortly after rainfall events, and are among the most destructive natural disasters that strike people and infrastructures in humid and arid regions alike. Using a hydrological model for the prediction of flash floods in gauged and ungauged basins can help mitigate the risk and damage they cause. The sparsity of rain gauges in arid regions requires the use of radar measurements in order to get reliable quantitative precipitation estimations (QPE). While many hydrological models use radar data, only a handful do so in dry climate. This research presents a robust radar-based hydro-meteorological model built specifically for dry climate. Using this model we examine the governing factors of flash floods in the arid and semi-arid regions of Israel in particular and in dry regions in general. The hydrological model built is a semi-distributed, physically-based model, which represents the main hydrological processes in the area, namely infiltration, flow routing and transmission losses. Three infiltration functions were examined - Initial & Constant, SCS-CN and Green&Ampt. The parameters for each function were found by calibration based on 53 flood events in three catchments, and validation was performed using 55 flood events in six catchments. QPE were obtained from a C-band weather radar and adjusted using a weighted multiple regression method based on a rain gauge network. Antecedent moisture conditions were calculated using a daily recharge assessment model (DREAM). We found that the SCS-CN infiltration function performed better than the other two, with reasonable agreement between calculated and measured peak discharge. Effects of storm characteristics were studied using synthetic storms from a high resolution weather generator (HiReS-WG), and showed a strong correlation between storm speed, storm direction and rain depth over desert soils to flood volume and peak discharge.
Dynamical behavior of the Niedermayer algorithm applied to Potts models
Girardi, D.; Penna, T. J. P.; Branco, N. S.
2012-08-01
In this work, we make a numerical study of the dynamic universality class of the Niedermayer algorithm applied to the two-dimensional Potts model with 2, 3, and 4 states. This algorithm updates clusters of spins and has a free parameter, E0, which controls the size of these clusters, such that E0=1 is the Metropolis algorithm and E0=0 regains the Wolff algorithm, for the Potts model. For -1clusters of equal spins can be formed: we show that the mean size of the clusters of (possibly) turned spins initially grows with the linear size of the lattice, L, but eventually saturates at a given lattice size L˜, which depends on E0. For L≥L˜, the Niedermayer algorithm is in the same dynamic universality class of the Metropolis one, i.e, they have the same dynamic exponent. For E0>0, spins in different states may be added to the cluster but the dynamic behavior is less efficient than for the Wolff algorithm (E0=0). Therefore, our results show that the Wolff algorithm is the best choice for Potts models, when compared to the Niedermayer's generalization.
Spectral Aging Model Applied to Meteosat First Generation Visible Band
Directory of Open Access Journals (Sweden)
Ilse Decoster
2014-03-01
Full Text Available The Meteosat satellites have been operational since the early eighties, creating so far a continuous time period of observations of more than 30 years. In order to use this data for climate data records, a consistent calibration is necessary between the consecutive instruments. Studies have shown that the Meteosat First Generation (MFG satellites (1982–2006 suffer from in-flight degradation which is spectral of nature and is not corrected by the official calibration of EUMETSAT. Continuing on previous published work by the same authors, this paper applies the spectral aging model to a set of clear-sky and cloudy targets, and derives the model parameters for all six MFG satellites (Meteosat-2 to -7. Several problems have been encountered, both due to the instrument and due to geophysical occurrences, and these are discussed and illustrated here in detail. The paper shows how the spectral aging model is an improvement compared to the EUMETSAT calibration method with a stability of 1%–2% for Meteosat-4 to -7, which increases up to 6% for ocean sites using the full MFG time period.
DEFF Research Database (Denmark)
Jabbari, Masoud; Hattel, Jesper
2016-01-01
dominant since the fraction of water approaches zero. The developed model is used to simulate a simple test for the drying process. The drying rate is simply calculated by examining the water content in each time step. It is found that the mass loss due to the evaporation is increasing close to linearly......In many industrial processes such as in tape casting for electronics or in the food industry, drying is one of the determining physical phenomena. In this study, the evaporation of water from a ceramic-water mixture is investigated with the purpose of understanding the drying rate in the drying...... process of thin sheets produced by the tape casting process. The rate of mass loss in the drying process is a key factor that often is of interest, as it affects the final properties of the tapes. The 1D heat conduction equation is solved numerically to obtain the temperature field in a ceramic sheet...
Linear model applied to the evaluation of pharmaceutical stability data
Directory of Open Access Journals (Sweden)
Renato Cesar Souza
2013-09-01
Full Text Available The expiry date on the packaging of a product gives the consumer the confidence that the product will retain its identity, content, quality and purity throughout the period of validity of the drug. The definition of this term in the pharmaceutical industry is based on stability data obtained during the product registration. By the above, this work aims to apply the linear regression according to the guideline ICH Q1E, 2003, to evaluate some aspects of a product undergoing in a registration phase in Brazil. With this propose, the evaluation was realized with the development center of a multinational company in Brazil, with samples of three different batches composed by two active principal ingredients in two different packages. Based on the preliminary results obtained, it was possible to observe the difference of degradation tendency of the product in two different packages and the relationship between the variables studied, added knowledge so new models of linear equations can be applied and developed for other products.
Eulerian Oil Spills Model Using Finite-Volume Method with Moving Boundary and Wet-Dry Fronts
Directory of Open Access Journals (Sweden)
Ehsan Sarhadi Zadeh
2012-01-01
Full Text Available The world production of crude oil is about 3 billion tons per year. The overall objective of the model in present study is supporting the decision makers in planning and conducting preventive and emergency interventions. The conservative equation for the slick dynamics was derived from layer-averaged Navier-Stokes (LNS equations, averaged over the slick thickness. Eulerian approach is applied across the model, based on nonlinear shallow water Reynolds-averaged Navier-Stokes (RANS equations. Depth-integrated standard k-ε turbulence schemes have been included in the model. Wetting and drying fronts of intertidal zone and moving boundary are treated within the numerical model. A highly accurate algorithm based on a fourth-degree accurate shape function has been used through an alternating-direction implicit (ADI scheme which separates the operators into locally one-dimensional (LOD components. The solution has been achieved by the application of KPENTA algorithm for the set of the flow equations which constitutes a pentadiagonal matrix. Hydrodynamic model was validated for a channel with a sudden expansion in width. For validation of oil spill model, predicted results are compared with experimental data from a physical modeling of oil spill in a laboratory wave basin under controlled conditions.
Transient heat conduction in a pebble fuel applying fractional model
Energy Technology Data Exchange (ETDEWEB)
Gomez A, R.; Espinosa P, G. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (Mexico)], e-mail: gepe@xanum.uam.mx
2009-10-15
In this paper we presents the equation of thermal diffusion of temporary-fractional order in the one-dimensional space in spherical coordinates, with the objective to analyze the heat transference between the fuel and coolant in a fuel element of a Pebble Bed Modular Reactor. The pebble fuel is the heterogeneous system made by microsphere constitutes by U O, pyrolytic carbon and silicon carbide mixed with graphite. To describe the heat transfer phenomena in the pebble fuel we applied a constitutive law fractional (Non-Fourier) in order to analyze the behaviour transient of the temperature distribution in the pebble fuel with anomalous thermal diffusion effects a numerical model is developed. (Author)
System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment
Directory of Open Access Journals (Sweden)
Shiwei Zhang
2014-01-01
Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.
Comparative Study of Shrinkage and Non-Shrinkage Model of Food Drying
Shahari, N.; Jamil, N.; Rasmani, KA.
2016-08-01
A single phase heat and mass model has always been used to represent the moisture and temperature distribution during the drying of food. Several effects of the drying process, such as physical and structural changes, have been considered in order to increase understanding of the movement of water and temperature. However, the comparison between the heat and mass equation with and without structural change (in terms of shrinkage), which can affect the accuracy of the prediction model, has been little investigated. In this paper, two mathematical models to describe the heat and mass transfer in food, with and without the assumption of structural change, were analysed. The equations were solved using the finite difference method. The converted coordinate system was introduced within the numerical computations for the shrinkage model. The result shows that the temperature with shrinkage predicts a higher temperature at a specific time compared to that of the non-shrinkage model. Furthermore, the predicted moisture content decreased faster at a specific time when the shrinkage effect was included in the model.
Modeling and simulation of the drying of thin sheets in a continuous infrared dryer
Energy Technology Data Exchange (ETDEWEB)
Dhib, R.; Broadbent, A.D.; Therien, N. (Sherbrooke Univ., PQ (Canada))
1994-10-01
A differential model describing the dynamics of the infrared drying process has been set up from mass and energy balances between the moving wet material, the radiant emitters, and the air forced inside the dryer. The objective of the study is to provide a predictive model that can be used to assess the dynamic behavior of the infrared drying of a thin sheet of porous material (e.g. paper or textile). The process output responses to changes in material velocity, heating power, and water content of the entering sheet are presented. Thin sheets of bleached cotton were used to calibrate the model, and experiments were conducted to cover the entire range of operating conditions of an infrared pilot-plant dryer. The model consists of a set of four coupled hyperbolic partial differential equations describing the variations of the air and web temperatures and humidities as a function of time and space along the dryer length. The model predictions agreed well with the experimental data. Model predictions using arithmetic averages for the parameters, and parameters correlated with operational variables, are also presented and discussed. 30 refs., 9 figs., 5 tabs.
Wang, Shifang; Wu, Tao; Deng, Yongju; Zheng, Qiusha; Zheng, Qian
2016-08-01
Gas diffusion in dry porous media has been a hot topic in several areas of technology for many years. In this paper, a diffusivity model for gas diffusion in dry porous media is developed based on fractal theory and Fick’s law, which incorporates the effects of converging-diverging pores and tortuous characteristics of capillaries as well as Knudsen diffusion. The effective gas diffusivity model is expressed as a function of the fluctuation amplitude of the capillary cross-section size variations, the porosity, the pore area fractal dimension and the tortuosity fractal dimension. The results show that the relative diffusivity decreases with the increase of the fluctuation amplitude and increases with the increase of pore area fractal dimension. To verify the validity of the present model, the relative diffusivity from the proposed fractal model is compared with the existing experimental data as well as two available models of Bruggeman and Shou. Our proposed diffusivity model with pore converging-diverging effect included is in good agreement with reported experimental data.
Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan
2014-11-01
Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both
... Eye > Facts About Dry Eye Facts About Dry Eye This information was developed by the National Eye ... the best person to answer specific questions. Dry Eye Defined What is dry eye? Dry eye occurs ...
Sustainable Irrigation Allocation Model for Dry and Wet Periods using Reservoir Storage and Inflow
Surianarayanan, S.; Suribabu, C. R.; Ramakrishnan, K.
2017-07-01
The dry period agriculture is inevitable both for the farmers for their earning, and for the soil for its fertility by crop-rotation. In tropical countries like INDIA, dry period agriculture becomes difficult because of less (or) no rain fall. Hence a simple water balancing model for irrigation scheduling, using the measure “Volumetric Reliability” is prepared in this paper, with the storage and inflow of a reservoir both for the dry and wet periods. The case-study is done for a reservoir in INDIA with thirty one years of hydrological data(from 1982 to 2012). The objective of this paper is to prepare a simple water balance model taking 10 days periods of demand and supply for ID crop(Irrigated Dry crop, ground nut) with usage of volumetric reliability concept for the periods of deficiency and adoption of less water requirement crops to reduce the water-stress during critical periods of crop growth, and finally arrive at a feasible allocation schedule for the success of agriculture and the yield throughout the year both for wet and dry crops with the available storage on the start of irrigation for a particular year. The reservoir is divided for storages such as full, deficient and critical storages. The starting storage for the dry period from January is used after adequate allocation for wet crops, the quantity for riparian rights and for drinking water, for the sustainability. By the water-balancing, the time-series for thirty one years, it is found that for twenty two years the demand for the ID crops is satisfied with the storage in the reservoir, and in the remaining years of deficient inflows, for three years (1986,1996,2004)the demand is managed by using the safe reliability factor for demand which can nullify the deficit in demand for the whole supply period. But it is genuine to assure that the reduction in the amount of water for each 10 days periods should not exceed the survival limit of the crop. Necessary soil-moisture must be ensured in the crop
Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model
Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael
2017-01-01
A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.
Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling
Niu, Juntian; Du, Xuesen; Ran, Jingyu; Wang, Ruirui
2016-07-01
Dry reforming of methane (DRM) is a well-studied reaction that is of both scientific and industrial importance. In order to design catalysts that minimize the deactivation and improve the selectivity and activity for a high H2/CO yield, it is necessary to understand the elementary reaction steps involved in activation and conversion of CO2 and CH4. In our present work, a microkinetic model based on density functional theory (DFT) calculations is applied to explore the reaction mechanism for methane dry reforming on Pt catalysts. The adsorption energies of the reactants, intermediates and products, and the activation barriers for the elementary reactions involved in the DRM process are calculated over the Pt(1 1 1) surface. In the process of CH4 direct dissociation, the kinetic results show that CH dissociative adsorption on Pt(1 1 1) surface is the rate-determining step. CH appears to be the most abundant species on the Pt(1 1 1) surface, suggesting that carbon deposition is not easy to form in CH4 dehydrogenation on Pt(1 1 1) surface. In the process of CO2 activation, three possible reaction pathways are considered to contribute to the CO2 decomposition: (I) CO2* + * → CO* + O*; (II) CO2* + H* → COOH* + * → CO* + OH*; (III) CO2* + H* → mono-HCOO* + * → bi-HCOO* + * [CO2* + H* → bi-HCOO* + *] → CHO* + O*. Path I requires process to overcome the activation barrier of 1.809 eV and the forward reaction is calculated to be strongly endothermic by 1.430 eV. In addition, the kinetic results also indicate this process is not easy to proceed on Pt(1 1 1) surface. While the CO2 activation by H adsorbed over the catalyst surface to form COOH intermediate (Path II) is much easier to be carried out with the lower activation barrier of 0.746 eV. The Csbnd O bond scission is the rate-determining step along this pathway and the process needs to overcome the activation barrier of 1.522 eV. Path III reveals the CO2 activation through H adsorbed over the catalyst
Hierarchic stochastic modelling applied to intracellular Ca(2+ signals.
Directory of Open Access Journals (Sweden)
Gregor Moenke
Full Text Available Important biological processes like cell signalling and gene expression have noisy components and are very complex at the same time. Mathematical analysis of such systems has often been limited to the study of isolated subsystems, or approximations are used that are difficult to justify. Here we extend a recently published method (Thurley and Falcke, PNAS 2011 which is formulated in observable system configurations instead of molecular transitions. This reduces the number of system states by several orders of magnitude and avoids fitting of kinetic parameters. The method is applied to Ca(2+ signalling. Ca(2+ is a ubiquitous second messenger transmitting information by stochastic sequences of concentration spikes, which arise by coupling of subcellular Ca(2+ release events (puffs. We derive analytical expressions for a mechanistic Ca(2+ model, based on recent data from live cell imaging, and calculate Ca(2+ spike statistics in dependence on cellular parameters like stimulus strength or number of Ca(2+ channels. The new approach substantiates a generic Ca(2+ model, which is a very convenient way to simulate Ca(2+ spike sequences with correct spiking statistics.
Infrared (IR) dry-peeling has emerged as an effective non-chemical alternative to conventional lye and steam methods of peeling tomatoes. Successful peel separation induced by IR radiation requires the delivery of a sufficient amount of thermal energy onto tomato surface in a very short duration. Th...
Lead time for medium range prediction of the dry spell of monsoon using multi-models
Indian Academy of Sciences (India)
A Jayakumar; Vinay Kumar; T N Krishnamurti
2013-08-01
The purpose of this study is to address prediction of the start date and the duration of breaks in the summer monsoon rains using multi-model superensemble. The availability of datasets from the ‘observing system research and predictability experiment (THORPEX)’ initiated a forecast data archive, called THORPEX interactive grand global ensemble (TIGGE), makes it possible to use forecasts from a suite of individual ensemble prediction systems (member models) and to construct multi-model superensemble forecasts that are designed to remove the collective bias errors of the suite of models. Precipitation datasets are important for this study, we have used high resolution daily gridded rainfall dataset of India Meteorological Department (IMD), in addition to rainfall estimates from tropical rainfall microwave mission (TRMM) satellite and the CPC morphing technique (CMORPH). The scientific approach of this study entails the use of a multi-model superensemble for forecast and to verify against the rainfall information during a training phase, as well as during a forecast phase. We examine the results of forecasts out to day-10 and ask how well do forecast strings of day-1 through day-10 handle the prediction of the onset and duration of the breaks in the summer monsoon rains. Our results confirm that it is possible to predict the onset of a dry spell, around week in advance from the use of the multi-model superensemble and a suite of TIGGE models.We also examine trajectories of the parcels arriving in India in such forecasts from member models and from the multi-model superensemble to validate the arrival of descending dry desert air from the Arabian region during the dry spells and its mode of transition from wet spell. Some phenological features such as a shift in the latitude of the tropical easterly jet and changes in its intensity during break periods are additional observed features that are validated from the history of multi-model superensemble forecasts
DEFF Research Database (Denmark)
Liu, Fulai; Song, Ri; Zhang, Xiaoyan
2008-01-01
The objective of this study was to develop a simple mechanistic model to predict the magnitude of ABA signalling ([X-ABA]) of potatoes (Solanum tuberosum L.) exposed to partial root-zone drying (PRD). Potatoes were grown in pots in a glasshouse with the roots split equally between two soil columns...... declined exponentially with declining soil water potential (Psi(soil-dry)); however, after shifting of irrigation, the previously dried roots immediately recovered the full capacity of water uptake. During the first PRD drying cycle, FI plants had the highest stomatal conductance (g(s)), and followed...... model predicting [X-ABA] in the PRD plants ([X-ABA](PRD)) was developed. Assuming that a constant [X-ABA] of 115 nM (similar to that found in the FI plants) originated from the wet roots; the simulation results indicated that irrigation should be shifted between the two sides when Psi(soil-dry) had...
Essays on Applied Resource Economics Using Bioeconomic Optimization Models
Affuso, Ermanno
With rising demographic growth, there is increasing interest in analytical studies that assess alternative policies to provide an optimal allocation of scarce natural resources while ensuring environmental sustainability. This dissertation consists of three essays in applied resource economics that are interconnected methodologically within the agricultural production sector of Economics. The first chapter examines the sustainability of biofuels by simulating and evaluating an agricultural voluntary program that aims to increase the land use efficiency in the production of biofuels of first generation in the state of Alabama. The results show that participatory decisions may increase the net energy value of biofuels by 208% and reduce emissions by 26%; significantly contributing to the state energy goals. The second chapter tests the hypothesis of overuse of fertilizers and pesticides in U.S. peanut farming with respect to other inputs and address genetic research to reduce the use of the most overused chemical input. The findings suggest that peanut producers overuse fungicide with respect to any other input and that fungi resistant genetically engineered peanuts may increase the producer welfare up to 36.2%. The third chapter implements a bioeconomic model, which consists of a biophysical model and a stochastic dynamic recursive model that is used to measure potential economic and environmental welfare of cotton farmers derived from a rotation scheme that uses peanut as a complementary crop. The results show that the rotation scenario would lower farming costs by 14% due to nitrogen credits from prior peanut land use and reduce non-point source pollution from nitrogen runoff by 6.13% compared to continuous cotton farming.
Applying the INN model to the MaxClique problem
Energy Technology Data Exchange (ETDEWEB)
Grossman, T.
1993-09-01
Max-Clique is the problem of finding the largest clique in a given graph. It is not only NP-hard, but, as recent results suggest, even hard to approximate. Nevertheless it is still very important to develop and test practical algorithms that will find approximate solutions for the maximum clique problem on various graphs stemming from numerous applications. Indeed, many different types of algorithmic approaches are applied to that problem. Several neural networks and related algorithms were applied recently to combinatorial optimization problems in general and to the Max-Clique problem in particular. These neural nets are dynamical system which minimize a cost (or computational ``energy``) function that represents the optimization problem, the Max-Clique in our case. Therefore they all belong to the class of integer programming algorithms surveyed in the Pardalos and Xue review. The work presented here is a development and improvement of a neural network algorithm that was introduced recently. In the previous work, we have considered two Hopfield type neural networks, the INN and the HcN, and their application to the max-clique problem. In this paper, I concentrate on the INN network and present an improved version of the t-A algorithm that was introduced in. The rest of this paper is organized as follows: in section 2, I describe the INN model and how it implements a given graph. In section 3, it is characterized in terms of graph theory. In particular, the stable states of the network are mapped to the maximal cliques of its underling graph. In section 4, I present the t-Annealing algorithm and an improved version of it, the Adaptive t-Annealing. Several experiments done with these algorithms on benchmark graphs are reported in section 5, and the efficiency of the new algorithm is demonstrated. I conclude with a short discussion.
Attari Moghaddam, Alireza; Kharaghani, Abdolreza; Tsotsas, Evangelos; Prat, Marc
2017-02-01
We study the velocity field in the liquid phase during the drying of a porous medium in the capillarity-dominated regime with evaporation from the top surface. A simple mass balance in the continuum framework leads to a linear variation of the filtration velocity across the sample. By contrast, the instantaneous slice-averaged velocity field determined from pore network simulations leads to step velocity profiles. The vertical velocity profile is almost constant near the evaporative top surface and zero close to the bottom of the sample. The relative extent of the two regions with constant velocity is dictated by the position of the most unstable meniscus. It is shown that the continuum and pore network results can be reconciled by averaging the velocity field obtained from the pore network simulations over time. This opens up interesting prospects regarding the transport of dissolved species during drying. Also, the study reveals the existence of an edge effect, which is not taken into account in the classical continuum models of drying.
Numerical modeling of seawater flow through the flooding system of dry docks
Directory of Open Access Journals (Sweden)
A. Najafi-Jilani
2009-12-01
Full Text Available Numerical simulations have been carried out on the flooding system of a dry dock in design stage and to be located at the south coasts of Iran. The main goals of the present investigation are to evaluate the flooding time as well as the seawater flow characteristics in the intake channels of the dock. The time dependent upstream and downstream boundary conditions of the flooding system are imposed in the modeling. The upstream boundary condition is imposed in accordance with the tidal fluctuations of sea water level. At the downstream, the gradually rising water surface elevation in the dry dock is described in a transient boundary condition. The numerical results are compared with available laboratory measured data and a good agreement is obtained. The seawater discharge through the flooding system and the required time to filling up the dry dock is determined at the worst case. The water current velocity and pressure on the rigid boundaries are also calculated and discussed.
Directory of Open Access Journals (Sweden)
KARLA V. MARTINS
Full Text Available ABSTRACT Decision support for nutrient application remains an enigma if based on soil nutrient analysis. If the crop could be used as an auxiliary indicator, the plant nutrient status during different growth stages could complement the soil test, improving the fertilizer recommendation. Nutrient absorption and partitioning in the plant are here studied and described with mathematical models. The objective of this study considers the temporal variation of the nutrient uptake rate, which should define crop needs as compared to the critical content in soil solution. A uniform maize crop was grown to observe dry matter accumulation and nutrient content in the plant. The dry matter accumulation followed a sigmoidal model and the macronutrient content a power model. The maximum nutrient absorption occurred at the R4 growth stage, for which the sap concentration was successfully calculated. It is hoped that this new approach of evaluating nutrient sap concentration will help to develop more rational ways to estimate crop fertilizer needs. This new approach has great potential for on-the-go crop sensor-based nutrient application methods and its sensitivity to soil tillage and management systems need to be examined in following studies. If mathematical model reflects management impact adequately, resources for experiments can be saved.
Aziam, R.; Chiban, M.; Eddaoudi, H.; Soudani, A.; Zerbet, M.; Sinan, F.
2017-04-01
In the present study, a low-cost bio-adsorbent is developed from the naturally and abundantly available dried Mediterranean plant which is biodegradable. The bio-adsorbent was characterized by Fourier transform infrared spectroscopy (FTIR) and point of zero charge (PZC). A study on the adsorption kinetics and isotherms was performed applying the optimized conditions. The equilibrium data for the adsorption of acid blue 113 on dried plant is tested with various adsorption isotherm models such as Langmuir, Freundlich, Temkin and Dubinin-Radushkevich equation. The Langmuir isotherm model is found to be the most suitable one for the acid blue 113 (AB113) adsorption using dried C. edulis plant and the theoretical maximum adsorption capacity obtained with the application of Langmuir isotherm model is 8.2 mg.g-1 at room temperature. The adsorption process follows the second-order kinetics and the corresponding rate constants are obtained. The thermodynamic parameters suggest that the adsorption process is spontaneous and exothermic nature. It can be concluded that the dried C. edulis adsorbent studied has good perspective to be used as adsorbent material in anionic dyes removal from industry effluents.
Ferraris, Stefano; Agnese, Carmelo; Baiamonte, Giorgio; Cat Berro, Daniele; Mercalli, Luca
2016-04-01
Rainfall time variability is relevant for agricultural production. The daily time scale is often used in modelling crop and soil water balance. In this work a novel statistical analysis of wet and dry spells is presented, together with an application in an Italian area characterised by a relevant climate spatial variability, due to the presence of both high mountains (e.g.: Mont Blanc) and of the Mediterranean Sea. Statistical analysis of the sequences of rainy days, wet spells (WS), and that of no-rainy days, dry spells (DS), could be carried out separately (as widely applied in the past) or jointly, by introducing the inter-arrival time (IT), representing the time elapsed between two subsequent rainy days. Investigating on daily rainfall data series recorded in Sicily, Agnese et al. (2014) found that IT statistics can be described by the 3-parameter Lerch distribution; in turn, WS and DS distributions can be easily derived from IT distribution. Alternatively, the knowledge of both WS and DS distributions allow deriving IT distribution; in this case, WScan be described by the well-accepted geometric distribution, whereas the 2-parameter polylogarithm distribution can be used for DS, as recently suggested (Agnese et al., 2012) in place of the previously used 1-parameter logarithmic distribution (Chatfield, 1966). In this work, by using some daily rainfall data series recorded in Alpine and Sub-Alpine Areas, the equivalence between the above-mentioned approaches is showed. Furthermore, some interesting relationships between respective parameters are also illustrated. A simple soil water model is then used, using this rainfall statistical model, in order to evaluate the irrigation efficiency as a consequence of variations in the timing of surface irrigation, following the approach described in the paper of Canone et al. (2015). Agnese C., Baiamonte G., Cammalleri C., Cat Berro D., Ferraris S., Mercalli L. (2012). "Statistical analysis of inter-arrival times of
Bajwa, Kanwardeep Singh
Ammonia has recently gained importance for its increasing atmospheric concentrations and its role in the formation of aerosols. Studies have shown increasing atmospheric concentration levels of NH3 and NH 4+, especially in the regions of concentrated animal feeding operations. Atmospheric inputs of reduced nitrogen as ammonia and ammonium by dry and wet deposition may represent a substantial contribution to the acidification of semi natural ecosystems and could also affect sensitive coastal ecosystems and estuaries. The anaerobic lagoon and spray method, commonly used for waste storage and disposal in confined animal feeding operations (CAFO), is a significant source of ammonia emissions. An accurate emission model for ammonia from aqueous surfaces can help in the development of emission factors. Study of dispersion and dry deposition patterns of ammonia downwind of a hog farm will help us to understand how much ammonia gets dry deposited near the farm, and how remaining ammonia gets transported farther away. An experimental and modeling study is conducted of emissions, dispersion and dry deposition of ammonia taking one swine farm as a unit. Measurements of ammonia flux were made at 11 swine facilities in North Carolina using dynamic flow-through chamber system over the anaerobic waste treatment lagoons. Continuous measurements of ammonia flux, meteorological and lagoon parameters were made for 8-10 days at each farm during each of the warm and cold seasons. Ammonia concentrations were continuously measured in the chamber placed over the lagoon using a Thermo Environmental Instrument Incorporated (TECO) Model 17c chemiluminescnce ammonia analyzer. A similar ammonia analyzer was used to measure ammonia concentrations at selected locations on the farm. Barn emissions were measured using open-path Fourier transform infrared (OP-FTIR) spectroscopy. A 10 m meteorological tower was erected at each site to measure wind speed and direction, temperature, relative humidity
Cellular Automata Models Applied to the Study of Landslide Dynamics
Liucci, Luisa; Melelli, Laura; Suteanu, Cristian
2015-04-01
Landslides are caused by complex processes controlled by the interaction of numerous factors. Increasing efforts are being made to understand the spatial and temporal evolution of this phenomenon, and the use of remote sensing data is making significant contributions in improving forecast. This paper studies landslides seen as complex dynamic systems, in order to investigate their potential Self Organized Critical (SOC) behavior, and in particular, scale-invariant aspects of processes governing the spatial development of landslides and their temporal evolution, as well as the mechanisms involved in driving the system and keeping it in a critical state. For this purpose, we build Cellular Automata Models, which have been shown to be capable of reproducing the complexity of real world features using a small number of variables and simple rules, thus allowing for the reduction of the number of input parameters commonly used in the study of processes governing landslide evolution, such as those linked to the geomechanical properties of soils. This type of models has already been successfully applied in studying the dynamics of other natural hazards, such as earthquakes and forest fires. The basic structure of the model is composed of three modules: (i) An initialization module, which defines the topographic surface at time zero as a grid of square cells, each described by an altitude value; the surface is acquired from real Digital Elevation Models (DEMs). (ii) A transition function, which defines the rules used by the model to update the state of the system at each iteration. The rules use a stability criterion based on the slope angle and introduce a variable describing the weakening of the material over time, caused for example by rainfall. The weakening brings some sites of the system out of equilibrium thus causing the triggering of landslides, which propagate within the system through local interactions between neighboring cells. By using different rates of
Modeling of mass transfer performance of hot-air drying of sweet potato (Ipomoea Batatas L.) slices
National Research Council Canada - National Science Library
Zhu Aishi; Jiang Feiyan
2014-01-01
... velocity and thickness of sweet potato slice on the drying process. The experimental data of moisture ratio of sweet potato slices were used to fit the mathematical models, and the effective diffusion coefficients were calculated...
Dry and wet spell probability by Markov chain model- a case study of North Lakhimpur (Assam), India
National Research Council Canada - National Science Library
Parmendra Prasad Dabral; Kuntal Purkayastha; Mai Aram
2014-01-01
The present study was undertaken with the objectives to forecast dry and wet spell analysis using Markov chain model and also to find out the exact time of onset and termination of monsoon at study...
BCS-Hubbard model applied to anisotropic superconductors
Energy Technology Data Exchange (ETDEWEB)
Millan, J.S., E-mail: smillan@pampano.unacar.mx [Facultad de Ingenieria, Universidad Autonoma del Carmen, Cd. del Carmen, 24180 Campeche (Mexico); Perez, L.A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000, Mexico D.F. (Mexico); Wang, C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, 04510, Mexico D.F. (Mexico)
2011-11-15
The BCS formalism applied to a Hubbard model, including correlated hoppings, is used to study d-wave superconductors. The theoretical T{sub c} vs. n relationship is compared with experimental data from BiSr{sub 2-x}La{sub x}CuO{sub 6+{delta}} and La{sub 2-x}Sr{sub x}CuO{sub 4}. The results suggest a nontrivial correlation between the hole and the doping concentrations. Based on the BCS formalism, we study the critical temperature (T{sub c}) as a function of electron density (n) in a square lattice by means of a generalized Hubbard model, in which first ({Delta}t) and second neighbors ({Delta}t{sub 3}) correlated-hopping interactions are included in addition to the repulsive Coulomb ones. We compare the theoretical T{sub c} vs. n relationship with experimental data of cuprate superconductors BiSr{sub 2-x}La{sub x}CuO{sub 6+{delta}} (BSCO) and La{sub 2-x}Sr{sub x}CuO{sub 4}, (LSCO). The theory agrees very well with BSCO data even though the complicated association between Sr concentration (x) and hole doping (p). For the LSCO system, it is observed that in the underdoped regime, the T{sub c} vs. n behavior can be associated to different systems with small variations of t'. For the overdoped regime, a more complicated dependence n = 1 - p/2 fits better than n = 1 - p. On the other hand, it is proposed that the second neighbor hopping ratio (t'/t) should be replaced by the effective mean field hopping ratio t{sub MF}{sup '}/t{sub MF}, which can be very sensitive to small changes of t' due to the doping.
Defining Requirements and Applying Information Modeling for Protecting Enterprise Assets
Fortier, Stephen C.; Volk, Jennifer H.
The advent of terrorist threats has heightened local, regional, and national governments' interest in emergency response and disaster preparedness. The threat of natural disasters also challenges emergency responders to act swiftly and in a coordinated fashion. When a disaster occurs, an ad hoc coalition of pre-planned groups usually forms to respond to the incident. History has shown that these “system of systems” do not interoperate very well. Communications between fire, police and rescue components either do not work or are inefficient. Government agencies, non-governmental organizations (NGOs), and private industry use a wide array of software platforms for managing data about emergency conditions, resources and response activities. Most of these are stand-alone systems with very limited capability for data sharing with other agencies or other levels of government. Information technology advances have facilitated the movement towards an integrated and coordinated approach to emergency management. Other communication mechanisms, such as video teleconferencing, digital television and radio broadcasting, are being utilized to combat the challenges of emergency information exchange. Recent disasters, such as Hurricane Katrina and the tsunami in Indonesia, have illuminated the weaknesses in emergency response. This paper will discuss the need for defining requirements for components of ad hoc coalitions which are formed to respond to disasters. A goal of our effort was to develop a proof of concept that applying information modeling to the business processes used to protect and mitigate potential loss of an enterprise was feasible. These activities would be modeled both pre- and post-incident.
Numerical study on hygroscopic material drying in packed bed
Directory of Open Access Journals (Sweden)
M. Stakić
2011-06-01
Full Text Available The paper addresses numerical simulation for the case of convective drying of hygroscopic material in a packed bed, analyzing agreement between the simulated and the corresponding experimental results. In the simulation model of unsteady simultaneous one-dimensional heat and mass transfer between gas phase and dried material, it is assumed that the gas-solid interface is at thermodynamic equilibrium, while the drying rate of the specific product is calculated by applying the concept of a "drying coefficient". Model validation was done on the basis of the experimental data obtained with potato cubes. The obtained drying kinetics, both experimental and numerical, show that higher gas (drying agent velocities (flow-rates, as well as lower equivalent grain diameters, induce faster drying. This effect is more pronounced for deeper beds, because of the larger amount of wet material to be dried using the same drying agent capacity.
Applied genre analysis: a multi-perspective model
Directory of Open Access Journals (Sweden)
Vijay K Bhatia
2002-04-01
Full Text Available Genre analysis can be viewed from two different perspectives: it may be seen as a reflection of the complex realities of the world of institutionalised communication, or it may be seen as a pedagogically effective and convenient tool for the design of language teaching programmes, often situated within simulated contexts of classroom activities. This paper makes an attempt to understand and resolve the tension between these two seemingly contentious perspectives to answer the question: "Is generic description a reflection of reality, or a convenient fiction invented by applied linguists?". The paper also discusses issues related to the nature and use of linguistic description in a genre-based educational enterprise, claiming that instead of using generic descriptions as models for linguistic reproduction of conventional forms to respond to recurring social contexts, as is often the case in many communication based curriculum contexts, they can be used as analytical resource to understand and manipulate complex inter-generic and multicultural realisations of professional discourse, which will enable learners to use generic knowledge to respond to novel social contexts and also to create new forms of discourse to achieve pragmatic success as well as other powerful human agendas.
Single droplet analysis for spray drying of foods
2013-01-01
Many food ingredients, such as enzymes and probiotics, are spray dried to provide shelf-life. Major hurdle to apply spray drying is the lack of scientific insight on the inactivation mechanisms of components and the extensive optimization required for formulation and drying conditions to obtain powders of acceptable quality. This thesis reports on the development of an alternative approach to study drying behaviour involving single droplet experimentation in combination with predictive modell...
Directory of Open Access Journals (Sweden)
Du Luo
2015-05-01
Full Text Available Snails are a kind of important aquatic products and dehydration is the main technique in production of snail meal. Apple snail (Pomacea canaliculata dehydration meets both the demand for a fishmeal substitute in aquaculture and invasive species control in agriculture. In this study, we investigated the percentage of the nutritive material, examined the drying characteristics at 60, 80, 100 and 120°C, respectively, established a drying kinetics model and explored the effect of body morphology on drying efficiency. The results showed that the wet weight percentage of the soft parts was 46.61±6.18%. The drying efficiency was significantly improved with an increase of drying temperature from 60 to 120°C. The drying time increased rapidly when the final moisture content approached its equilibrium value. The Hii et al. model was selected as the best model to describe the drying curves (R2>0.99. It provided a relatively accurate prediction between the requirements of moisture content and drying time. There were statistically significant differences (p<0.01 in the drying time at 10.0 and 1.0% moisture content level among the four temperature groups. The drying efficiency was significantly correlated to the mass of the soft parts. It was found that 100°C was an appropriate temperature to effectively dehydrate the fresh apple snails, whereas 60°C was not suitable when air velocity ≤0.5 m/s. This study explored an integrated approach to efficiently dehydrate snails for snail meal production, which will benefit both aquaculture and agriculture.
Modelling and experimentation for the fabric-drying process in domestic dryers
Energy Technology Data Exchange (ETDEWEB)
Yadav, V.; Moon, C.G. [Department of Mechanical Engineering, The University of Auckland, Auckland 1142 (New Zealand)
2008-05-15
Theoretical analysis of the physical drying process occurring inside the household electric tumbler cloth-dryer is performed to determine various thermo-physical parameters affecting the energy consumption and for the development of a simulation model. Experiments are conducted on a test set-up based on a compact tumble-dryer to measure the values of parameters necessary for evaluating the performance. Three widely-accepted economy standards are considered for comparison of simulation and experimental results. Simulation results are in fair agreement with experimental data. An empirical correlation for the specific moisture-extraction rate (SMER) is developed to translate energy consumption information from one standard to the other. (author)
Modeling forest disturbance and recovery in secondary subtropical dry forests of Puerto Rico
Holm, J. A.; Shugart, H. H., Jr.; Van Bloem, S. J.
2015-12-01
Because of human pressures, the need to understand and predict the long-term dynamics of subtropical dry forests is urgent. Through modifications to the ZELIG vegetation demographic model, including the development of species- and site-specific parameters and internal modifications, the capability to predict forest change within the Guanica State Forest in Puerto Rico can now be accomplished. One objective was to test the capability of this new model (i.e. ZELIG-TROP) to predict successional patterns of secondary forests across a gradient of abandoned fields currently being reclaimed as forests. Model simulations found that abandoned fields that are on degraded lands have a delayed response to fully recover and reach a mature forest status during the simulated time period; 200 years. The forest recovery trends matched predictions published in other studies, such that attributes involving early resource acquisition (i.e. canopy height, canopy coverage, density) were the fastest to recover, but attributes used for structural development (i.e. biomass, basal area) were relatively slow in recovery. Biomass and basal area, two attributes that tend to increase during later successional stages, are significantly lower during the first 80-100 years of recovery compared to a mature forest, suggesting that the time scale of resilience in subtropical dry forests needs to be partially redefined. A second objective was to investigate the long and short-term effects of increasing hurricane disturbances on vegetation structure and dynamics, due to hurricanes playing an important role in maintaining dry forest structure in Puerto Rico. Hurricane disturbance simulations within ZELIG-TROP predicted that increasing hurricane intensity (i.e. up to 100% increase) did not lead to a large shift in long-term AGB or NPP. However, increased hurricane frequency did lead to a 5-40% decrease in AGB, and 32-50% increase in NPP, depending on the treatment. In addition, the modeling approach used
Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.
2011-12-01
for ka than Dp for both fractions. We suggest this is because of compaction effects caused to create well-aligned macropore networks that are available for gas transport through the porous material. Then, the famous predictive models, the water induced linear reduction (WLR) model for Dp and the reference point law (RPL) model for ka were modified with reference point measurements (dry conditions) and model parameters and they correlated linearly to dry bulk density values for both fractions of landfill final cover soil.
Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J
2016-01-01
Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...
Uematsu, Masashi; Kageshima, Hiroyuki; Shiraishi, Kenji
2001-01-01
Silicon oxidation in wet ambients is simulated based on the interfacial silicon emission model and is compared with dry oxidation in terms of the silicon-atom emission. The silicon emission model enables the simulation of wet oxidation to be done using the oxidant self-diffusivity in the oxide with a single activation energy. The amount of silicon emission from the interface during wet oxidation is smaller than that during dry oxidation. The small emission rate for wet oxidation is responsibl...
Modelling effect of magnetic field on material removal in dry electrical discharge machining
Abhishek, Gupta; Suhas, S. Joshi
2017-02-01
One of the reasons for increased material removal rate in magnetic field assisted dry electrical discharge machining (EDM) is confinement of plasma due to Lorentz forces. This paper presents a mathematical model to evaluate the effect of external magnetic field on crater depth and diameter in single- and multiple-discharge EDM process. The model incorporates three main effects of the magnetic field, which include plasma confinement, mean free path reduction and pulsating magnetic field effects. Upon the application of an external magnetic field, Lorentz forces that are developed across the plasma column confine the plasma column. Also, the magnetic field reduces the mean free path of electrons due to an increase in the plasma pressure and cycloidal path taken by the electrons between the electrodes. As the mean free path of electrons reduces, more ionization occurs in plasma column and eventually an increase in the current density at the inter-electrode gap occurs. The model results for crater depth and its diameter in single discharge dry EDM process show an error of 9%-10% over the respective experimental values.
Dry adhesives with sensing features
Krahn, J.; Menon, C.
2013-08-01
Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.
Koszela, K.; OtrzÄ sek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.
2014-04-01
The farming area for vegetables in Poland is constantly changed and modified. Each year the cultivation structure of particular vegetables is different. However, it is the cultivation of carrots that plays a significant role among vegetables. According to the Main Statistical Office (GUS), in 2012 carrot held second position among the cultivated root vegetables, and it was estimated at 835 thousand tons. In the world we are perceived as the leading producer of carrot, due to the fourth place in the ranking of global producers. Poland is the largest producer of this vegetable in the EU [1]. It is also noteworthy, that the demand for dried vegetables is still increasing. This tendency affects the development of drying industry in our country, contributing to utilization of the product surplus. Dried vegetables are used increasingly often in various sectors of food products industry, due to high nutrition value, as well as to changing alimentary preferences of consumers [2-3]. Dried carrot plays a crucial role among dried vegetables, because of its wide scope of use and high nutrition value. It contains a lot of carotene and sugar present in the form of crystals. Carrot also undergoes many different drying processes, which makes it difficult to perform a reliable quality assessment and classification of this dried material. One of many qualitative properties of dried carrot, having important influence on a positive or negative result of the quality assessment, is color and shape. The aim of the research project was to develop a method for the analysis of microwave-vacuum dried carrot images, and its application for the classification of individual fractions in the sample studied for quality assessment. During the research digital photographs of dried carrot were taken, which constituted the basis for assessment performed by a dedicated computer programme developed as a part of the research. Consequently, using a neural model, the dried material was classified [4-6].
Directory of Open Access Journals (Sweden)
Emrullah Beyazyıldız
2014-01-01
Full Text Available Purpose. The current study was set out to address the therapeutic efficacy of topically applied mesenchymal stem cells (MSCs on dry eye syndrome (DES induced by benzalkonium chloride (BAC in rats. Methods. Rats were divided into two groups just after establishment of DES. Eye drops containing either bromodeoxyuridine labeled MSCs (n=9 or phosphate buffer solution (n=7 were topically applied once daily for one week. Schirmer test, break-up time score, ocular surface evaluation tests, and corneal inflammatory index scoring tests were applied to all rats at baseline and after treatment. All rats were sacrificed after one week for histological and electron microscopic analysis. Results. Mean aqueous tear volume and tear film stability were significantly increased in rats treated with MSCs (P<0.05. Infiltration of bromodeoxyuridine labeled MSCs into the meibomian glands and conjunctival epithelium was observed in MSCs treated rats. Increased number of secretory granules and number of goblet cells were observed in MSCs treated rats. Conclusion. Topical application of MSCs could be a safe and effective method for the treatment of DES and could potentially be used for further clinical research studies.
Modeling Soil Water in the Caatinga Tropical Dry Forest of Northeastern Brazil
Wright, C.; Wilcox, B.; Souza, E.; Lima, J. R. D. S.; West, J. B.
2015-12-01
The Caatinga is a tropical dry forest unique to northeastern Brazil. It has a relatively high degree of endism and supports a population of about 20 million subsistence farmers. However, it is poorly understood, under-researched and often over-looked in regards to other Brazilian ecosystems. It is a highly perturbed system that suffers from deforestation, land use change, and may be threatened by climate change. How these perturbations affect hydrology is unknown, but may have implications for biodiversity and ecosystem services and resiliency. Therefore, understanding key hydrological processes is critical, particularly as related to deforestation. In this study, Hydrus 1D, which is based on van Genuchten parameters to describe the soil water curve and Richard's Equation to describe flow in the vadose zone, was used to model soil moisture in the Caatinga ecosystem. The aim was 1) to compare hydraulic characterization between a forested Caatinga site and a deforested pasture site, 2) to analyze inter-annual variability, and 3) to compare with observed soil moisture data. Hydraulic characterization included hydraulic conductivity, infiltration, water content and pressure head trends. Van Genuchten parameters were derived using the Beerkan method, which is based on soil texture, particle distribution, as well as in-situ small-scale infiltration experiments. Observational data included soil moisture and precipitation logged every half-hour from September 2013 to April 2014 to include the dry season and rainy season. It is expected that the forested Caatinga site will have a higher hydraulic conductivity as well as retain higher soil moisture values. These differences may be amplified during the dry season, as water resources become scarce. Deviations between modeled data and observed data will allow for further hypothesis to be proposed, especially those related to soil water repellency. Hence, these results may indicate difference in soil water dynamics between a
Pétel, Cécile; Courcoux, Philippe; Génovesi, Noémie; Rouillé, Jocelyn; Onno, Bernard; Prost, Carole
2017-04-01
This paper presents a new variant of the free sorting method developed to analyze the relationship between dried sourdough (DSD) and corresponding DSD-bread (bread) odors. The comparison of DSD and bread sensory characteristics is complicated due to their specific features (for example, acidity for DSD and a characteristic "baked bread" aroma for breads). To analyze them at the same time, this study introduces a new variant of the free sorting method, which adds an association task between DSD and bread after those of free sorting and verbalization. This separation makes it possible to change the product between tasks. It was applied to study the impact of 6 European commercial DSDs on their related DSD-bread. According to our results, this methodology enabled an association between different kinds of products and thus underlined the relationship between them. Moreover, as this methodology contains a verbalization task, it provides product descriptions. Compared with the standard free sorting method, free sorting with an association task gives the distance (i) between DSDs, (ii) between breads, and (iii) between DSDs and breads. The separation of product assessment through sorting and association avoids the separation of products according to their category (DSD or bread). © 2017 Institute of Food Technologists®.
Schiavon, Marco; Ragazzi, Marco; Torretta, Vincenzo; Rada, Elena Cristina
2016-01-01
Biofiltration has been widely applied to remove odours and volatile organic compounds (VOCs) from industrial off-gas and mechanical-biological waste treatments. However, conventional open biofilters cannot guarantee an efficient dispersion of air pollutants emitted into the atmosphere. The aim of this paper is to compare conventional open biofilters with biotrickling filters (BTFs) in terms of VOC dispersion in the atmosphere and air quality in the vicinity of a hypothetical municipal solid waste bio-drying plant. Simulations of dispersion were carried out regarding two VOCs of interest due to their impact in terms of odours and cancer risk: dimethyl disulphide and benzene, respectively. The use of BTFs, instead of conventional biofilters, led to significant improvements in the odour impact and the cancer risk: when adopting BTFs instead of an open biofilter, the area with an odour concentration > 1 OU m(-3) and a cancer risk > 10(-6) was reduced by 91.6% and 95.2%, respectively. When replacing the biofilter with BTFs, the annual mean concentrations of odorants and benzene decreased by more than 90% in the vicinity of the plant. These improvements are achieved above all because of the higher release height of BTFs and the higher velocity of the outgoing air flow.
Filya, I; Sucu, E; Karabulut, A
2006-05-01
The aim of this work was to study the effects of applying a strain of Propionibacterium acidipropionici, with or without Lactobacillus plantarum, on the fermentation and aerobic stability characteristics of low dry matter (DM) corn (Zea mays L.) and sorghum (Sorghum bicolor L.) silages. Corn at the dent stage and sorghum at the flowering stage were harvested. Treatments comprised control (no additives), P. acidipropionici, L. plantarum and a combination of P. acidipropionici and L. plantarum. Fresh forages were sampled prior to ensiling. Bacterial inoculants were applied to the fresh forage at 1.0 x 10(6) colony-forming units per gram. After treatment, the chopped fresh materials were ensiled in 1.5-l anaerobic glass jars equipped with a lid that enabled gas release only. Three jars per treatment were sampled on days 2, 4, 8, 16 and 60 after ensiling, for chemical and microbiological analysis. At the end of the ensiling period, 60 days, the silages were subjected to an aerobic stability test. The L. plantarum inoculated silages had significantly higher levels of lactic acid than the controls, P. acidipropionici and combination of P. acidipropionici and L. plantarum inoculated silages (Psilages. After the aerobic exposure test, the L. plantarum and combination of P. acidipropionici and L. plantarum had produced more CO2 than the controls and the silages inoculated with P. acidipropionici (Psilages had high levels of CO2 and high numbers of yeasts and molds in the experiment. Therefore, all silages were deteriorated under aerobic conditions. The P. acidipropionici and combination of P. acidipropionici and L. plantarum were not able to improve the aerobic stability of fast-fermenting silages, because they could not work well in this acidic environment. The results showed that P. acidipropionici and combination of P. acidipropionici and L. plantarum did not improve the aerobic stability of low DM corn and sorghum silages, which are prone to aerobic deterioration.
Observation- and model-based estimates of particulate dry nitrogen deposition to the oceans
Directory of Open Access Journals (Sweden)
A. R. Baker
2017-07-01
Full Text Available Anthropogenic nitrogen (N emissions to the atmosphere have increased significantly the deposition of nitrate (NO3− and ammonium (NH4+ to the surface waters of the open ocean, with potential impacts on marine productivity and the global carbon cycle. Global-scale understanding of the impacts of N deposition to the oceans is reliant on our ability to produce and validate models of nitrogen emission, atmospheric chemistry, transport and deposition. In this work, ∼ 2900 observations of aerosol NO3− and NH4+ concentrations, acquired from sampling aboard ships in the period 1995–2012, are used to assess the performance of modelled N concentration and deposition fields over the remote ocean. Three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific were selected, in which the density and distribution of observational data were considered sufficient to provide effective comparison to model products. All of these study regions are affected by transport and deposition of mineral dust, which alters the deposition of N, due to uptake of nitrogen oxides (NOx on mineral surfaces. Assessment of the impacts of atmospheric N deposition on the ocean requires atmospheric chemical transport models to report deposition fluxes; however, these fluxes cannot be measured over the ocean. Modelling studies such as the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, which only report deposition flux, are therefore very difficult to validate for dry deposition. Here, the available observational data were averaged over a 5° × 5° grid and compared to ACCMIP dry deposition fluxes (ModDep of oxidised N (NOy and reduced N (NHx and to the following parameters from the Tracer Model 4 of the Environmental Chemical Processes Laboratory (TM4: ModDep for NOy, NHx and particulate NO3− and NH4+, and surface-level particulate NO3− and NH4+ concentrations. As a model ensemble, ACCMIP can be
Iden, Sascha; Reineke, Daniela; Koonce, Jeremy; Berli, Markus; Durner, Wolfgang
2015-04-01
A reliable quantification of the soil water balance in semi-arid regions requires an accurate determination of bare soil evaporation. Modeling of soil water movement in relatively dry soils and the quantitative prediction of evaporation rates and groundwater recharge pose considerable challenges in these regions. Actual evaporation from dry soil cannot be predicted without detailed knowledge of the complex interplay between liquid, vapor and heat flow and soil hydraulic properties exert a strong influence on evaporation rates during stage-two evaporation. We have analyzed data from the SEPHAS lysimeter facility in Boulder City (NV) which was installed to investigate the near-surface processes of water and energy exchange in desert environments. The scientific instrumentation consists of 152 sensors per Lysimeter which measured soil temperature, soil water content, and soil water potential. Data from three weighing lysimeters (3 m long, surface area 4 m2) were used to identifiy effective soil hydraulic properties of the disturbed soil monoliths by inverse modeling with the Richards equation assuming isothermal flow conditions. Results indicate that the observed soil water content in 8 different soil depths can be well matched for all three lysimeters and that the effective soil hydraulic properties of the three lysimeters agree well. These results could only be obtained with a flexible model of the soil hydraulic properties which guaranteed physical plausibility of water retention towards complete dryness and accounted for capillary, film and isothermal vapor flow. Conversely, flow models using traditional parameterizations of the soil hydraulic properties were not able to match the observed evaporation fluxes and water contents. After identifying the system properties by inverse modeling, we checked the possibility to forecast evaporation rates by running a fully coupled water, heat and vapor flow model which solved the energy balance of the soil surface. In these
A unified framework for benchmark dose estimation applied to mixed models and model averaging
DEFF Research Database (Denmark)
Ritz, Christian; Gerhard, Daniel; Hothorn, Ludwig A.
2013-01-01
This article develops a framework for benchmark dose estimation that allows intrinsically nonlinear dose-response models to be used for continuous data in much the same way as is already possible for quantal data. This means that the same dose-response model equations may be applied to both...
Numerical simulation of thin layer coffee drying by control volumes
CIRO-VELÁSQUEZ, HÉCTOR J.; ABUD-CANO, LUIS C.; PÉREZ-ALEGRÍA, LUIS. R.
2011-01-01
The thin layer drying model proposed by Sokhansanj and Bruce (1987) was implemented to model the drying process of parchment coffee beans. A computational model based on a control volume approach was developed to simulate the drying process of parchment coffee. A one dimensional transient analysis was implemented in the radial direction applied to a spherical coffee bean of equivalent radius. The results found that, even though the numerical value for the mass transfer coefficient is a small ...
Applying Discourse Analysis in ELT: a Five Cs Model
Institute of Scientific and Technical Information of China (English)
肖巧慧
2009-01-01
Based on a discussion of definitions on Discourse analysis,discourse is regard as layers consist of five elements--cohesion, coherence, culture, critique and context. Moreover, we focus on applying DA in ELT.
Modelling distributed ablation on Juncal Norte Glacier, dry Andes of central Chile
Carenzo, Marco; Pellicciotti, Francesca; Helbing, Jakob; Dadic, Ruzica; Burlando, Paolo
2010-05-01
In the Aconcagua River Basin, in the dry Andes of central Chile, water resources in summer originate mostly from snow and ice glacier melt. Summer seasons are dry and stable, with precipitation close to zero, low relative humidity and very intense solar radiation. The region's economic activities are dependent on these water resources, but their assessment is still incomplete and an effort is needed to evaluate present and future changes in water from glacier and seasonal snow covers in this area. The main aim of this paper is to simulate glacier melt and runoff from Juncal Norte Glacier, in the upper Aconcagua Basin, using models of various complexity and data requirement. We simulate distributed glacier ablation for two seasons using an energy-balance model (EB) and an enhanced temperature-index model (ETI). Meteorological variables measured at Automatic Weather Stations (AWSs) located on and off-glacier are extrapolated from point observations to the glacier-wide scale. Shortwave radiation is modelled with a parametric model taking into account shading, reflection from slopes and atmospheric transmittance. In the energy-balance model, the longwave radiation flux is computed from Stefan-Boltzmann relationships and turbulent fluxes are calculated using the bulk aerodynamic method. The EB model includes subsurface heat conduction and gravitational redistribution of snow. Glacier runoff is modelled using a linear reservoir approach accounting for the temporal evolution of the system. Hourly simulations of glacier melt are validated against ablation observations (ultrasonic depth gauge and ablation stakes) and runoff measured at the glacier snout is compared to a runoff record obtained from a combination of radar water level measurements and tracer experiments. Results show that extrapolation of meteorological input data, and of temperature in particular, is the largest source of model uncertainty, together with snow water equivalent initial conditions. We explore
Directory of Open Access Journals (Sweden)
S. T. Antipov
2014-01-01
Full Text Available Summary. The mathematical model allowed to reproduce and study at qualitative level the change of berries form and the structure of the berries layer in the course of drying. The separate berry in the course of drying loses gradually its elasticity, decreases in volume, the peel gathers in folds, there appear internal emptiness. In the course of drying the berries layer decreases in thickness, contacting berries stick strongly with each other due to the coordinated folds of peel appearing, the layer is condensed due to penetration of the berries which have lost elasticity into emptiness between them. The model with high specification describes black currant drying process and therefore has a large number of the parameters available to change. Among them three most important technological parameters, influencing productivity and the drying quality are chosen: the power of microwave radiation P, thickness of the berries layer h, environmental pressure p. From output indicators of the model the most important are three functions from time: dependence of average humidity of the layer on time Wcp (t, dependence of the speed of change of average humidity on time dWcp (t/dt, dependence of the layer average temperature on time Tср (t. On the standard models classification the offered model is algorithmic, but not analytical. It means that output characteristics of model are calculated with the entrance ones, not by analytical transformations (it is impossible principally for the modeled process, but by means of spatial and temporary sampling and the corresponding calculation algorithm. Detailed research of the microwave drying process by means of the model allows to allocate the following stages: fast heating, the fast dehydration, the slowed-down dehydration, consolidation of a layer of a product, final drying, heating after dehydration.
Numerical Modelling of Agglomeration and Deagglomeration in Dry Powder Inhalers: A Review.
Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael
2015-01-01
Numerical modelling using computational fluid mechanics (CFD) and discrete element method (DEM) becomes increasingly prevalent for the exploration of agglomeration and deagglomeration in dry powder inhalers (DPIs). These techniques provide detailed information on air flow and particle-particle/wall interaction, respectively. Coupling of CFD and DEM enables an in-depth investigation of the mechanisms at the microscopic level. This paper reviews the applications of CFD and DEM in DPI development and optimisation. The recent progress in modelling of two key processes in DPIs, i.e. agglomeration and deagglomeration, is presented. It has been demonstrated that DEM-CFD is a promising numerical approach to investigate the underlying agglomeration and deagglomeration mechanisms for DPIs. With further advances in computing capacity, it is expected that DEM-CFD will be capable of addressing more realistic and complicated issues in DPI improvement.
DEFF Research Database (Denmark)
Fonteyne, Margot; Gildemyn, Delphine; Peeters, Elisabeth
2014-01-01
was chosen as model formulation. For the development of the NIR-based moisture determination model, 15 calibration experiments in the fluid bed dryer were performed. Six test experiments were conducted afterwards, and the product was monitored in-line with NIR and Raman spectroscopy during drying......Classically, the end point detection during fluid bed drying has been performed using indirect parameters, such as the product temperature or the humidity of the outlet drying air. This paper aims at comparing those classic methods to both in-line moisture and solid-state determination by means...... of Process Analytical Technology (PAT) tools (Raman and NIR spectroscopy) and a mass balance approach. The six-segmented fluid bed drying system being part of a fully continuous from-powder-to-tablet production line (ConsiGma™-25) was used for this study. A theophylline:lactose:PVP (30:67.5:2.5) blend...
Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices.
Darvishi, Hosain; Zarein, Mohammad; Farhudi, Zanyar
2016-05-01
This work focused on the effects of the moisture content, slices thickness and microwave power on aspects of energy and exergy, drying kinetics, moisture diffusivity, activation energy, and modeling of the thin layer drying of kiwi slices. Results showed that energy and exergy efficiency increased with increasing microwave power and decreasing slice thickness while values of energy efficiency (15.15-32.27 %) were higher than exergy efficiency (11.35-24.68 %). Also, these parameters decreased with a decrease in moisture content. Specific energy consumption varied from 7.79 to 10.02, 8.59 to 10.77 and 9.57 to16.20 to MJ/kg water evaporated for 3, 6 and 9 mm, respectively. The values of exergy loss were found to be in the range of 5.90 and 14.39 MJ/kg water and decreased as the microwave power increased and slice thickness decreased. Effective diffusivity increased with decreasing moisture content and increasing microwave power and slice thickness. Average effective moisture diffusivity of kiwi slices changes between 1.47 × 10(-9) and 39.29 × 10(-9) m(2)/s within the given variables range. Activation energy (17.96-21.38 W/g) showed a significant dependence on the moisture content. Although the Midilli model showed the best fit, Page's model was selected, since it had almost a similar performance but the model is simpler with two parameters instead of four.
Energy Technology Data Exchange (ETDEWEB)
Didriksen, H.; Sandvig Nielsen, J.; Weel Hansen, M.
2001-06-01
The aim of the project is to present a procedure to optimize existing drying processes. The optimization deals with energy consumption, capacity utilization and product quality. Other factors can also be included in the optimization, e.g. minimization of volume of discharged air. The optimization of existing drying processes will use calculation tool based on a mathematical simulation model for the process to calculate the most optimum operation situation on the basis of given conditions. In the project mathematical models have been developed precisely with this aim. The calculation tools have been developed with a user interface so that the tools can be used by technical staff in industrial companies and by consultants. The project also illustrates control of drying processes. Based on the developed models, the effect of using different types of control strategies by means of model simulations is illustrated. Three types of drying processes are treated: drum dryers, disc dryers and drying chambers. The work with the development of the simulation models has been very central in the project, as these have to be the basis for the optimization of the processes. The work is based on a large amount of information from academical literature and knowledge and experience about modelling thermal processes at dk-TEKNIK. The models constitute the core in the simulation programmes. The models describe the most important physical effects in connection with mass and energy transfer and transport under the drying for the three treated drying technologies. (EHS)
Directory of Open Access Journals (Sweden)
Marius Enachescu
2013-09-01
Full Text Available Model membrane approaches have attracted much attention in biomedical sciences to investigate and simulate biological processes. The application of model membrane systems for biosensor measurements is partly restricted by the fact that the integrity of membranes critically depends on the maintenance of an aqueous surrounding, while various biosensors require a preconditioning of dry sensors. This is for example true for the well-established surface acoustic wave (SAW biosensor SAM®5 blue. Here, a simple drying procedure of sensor-supported model membranes is introduced using the protective disaccharide trehalose. Highly reproducible model membranes were prepared by the Langmuir-Blodgett technique, transferred to SAW sensors and supplemented with a trehalose solution. Membrane rehydration after dry incorporation into the SAW device becomes immediately evident by phase changes. Reconstituted model membranes maintain their full functionality, as indicated by biotin/avidin binding experiments. Atomic force microscopy confirmed the morphological invariability of dried and rehydrated membranes. Approximating to more physiological recognition phenomena, the site-directed immobilization of the integrin VLA-4 into the reconstituted model membrane and subsequent VCAM-1 ligand binding with nanomolar affinity were illustrated. This simple drying procedure is a novel way to combine the model membrane generation by Langmuir-Blodgett technique with SAW biosensor measurements, which extends the applicability of SAM®5 blue in biomedical sciences.
Heat and Mass Transfer Modeling of Rough Rice Under Convective and Infrared Drying
Infrared drying of rice can reduce drying time, perform disinfestations and reduce rice fissuring compared to traditional hot air drying method. Fissures in the rice kernels are caused by high moisture content gradients within the kernels. To understand the moisture distributions within a rice ker...
Directory of Open Access Journals (Sweden)
N.R. Nwakuba
2017-01-01
Full Text Available High consumption of energy in the drying industry has prompted extensive research regarding various aspects of crop drying energy consumption. Specific energy consumption, moisture ratio and thermal efficiency in drying of fresh ex-gidankwano onions variety were determined using a hybrid electric-gas dryer at air temperatures of 50, 60 and 70oC, and at air velocities of 0.5, 1.0 and 1.5m/s. Thin layer models were selected by carrying out statistical analyses to fit the drying rate data to themodels. The Page drying model was found more suitable to describe the drying behaviour of onions slices based on its highest average R2 -values of 0.99 and lowest average RMSE of 3.91for all temperatures and air velocitiesirrespective of the heat source. Records of drying rates and energy consumption were made using electronic weighing balances and the Arduino microprocessor respectively. Results obtained show that the specific energy consumption decreases with increase in air temperature but increases with increase in air velocity in both heat sources. The minimum and maximum specific energies for the electric and gas heat sources were 48.73MJ/kg and 90.21MJ/kg, and 36.83MJ/kg and64.65MJ/kg of moisture evaporated respectively.The thermal efficiency of the heat sources increased proportionally with increasing drying air temperature and decreased with increase in drying air velocity with maximum values of 54.8% and 68.2% for the electric and gas heaters respectively. The gas heat source performed more efficiently in terms of energy consumption and thermal efficiency at different temperatures and air velocities.
Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology
Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy
2016-05-10
A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.
Empirical modeling and data analysis for engineers and applied scientists
Pardo, Scott A
2016-01-01
This textbook teaches advanced undergraduate and first-year graduate students in Engineering and Applied Sciences to gather and analyze empirical observations (data) in order to aid in making design decisions. While science is about discovery, the primary paradigm of engineering and "applied science" is design. Scientists are in the discovery business and want, in general, to understand the natural world rather than to alter it. In contrast, engineers and applied scientists design products, processes, and solutions to problems. That said, statistics, as a discipline, is mostly oriented toward the discovery paradigm. Young engineers come out of their degree programs having taken courses such as "Statistics for Engineers and Scientists" without any clear idea as to how they can use statistical methods to help them design products or processes. Many seem to think that statistics is only useful for demonstrating that a device or process actually does what it was designed to do. Statistics courses emphasize creati...
Robust Decision-making Applied to Model Selection
Energy Technology Data Exchange (ETDEWEB)
Hemez, Francois M. [Los Alamos National Laboratory
2012-08-06
The scientific and engineering communities are relying more and more on numerical models to simulate ever-increasingly complex phenomena. Selecting a model, from among a family of models that meets the simulation requirements, presents a challenge to modern-day analysts. To address this concern, a framework is adopted anchored in info-gap decision theory. The framework proposes to select models by examining the trade-offs between prediction accuracy and sensitivity to epistemic uncertainty. The framework is demonstrated on two structural engineering applications by asking the following question: Which model, of several numerical models, approximates the behavior of a structure when parameters that define each of those models are unknown? One observation is that models that are nominally more accurate are not necessarily more robust, and their accuracy can deteriorate greatly depending upon the assumptions made. It is posited that, as reliance on numerical models increases, establishing robustness will become as important as demonstrating accuracy.
Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.
Biggs, Matthew B; Papin, Jason A
2013-01-01
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.
Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.
Directory of Open Access Journals (Sweden)
Matthew B Biggs
Full Text Available Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.
Projecting Ammonia Dry Deposition Using Passive Samplers and a Bi-Directional Exchange Model
Robarge, W. P.; Walker, J. T.; Austin, R. E.
2011-12-01
Animal agriculture within the United States is known to be a source of ammonia (NH3) emissions. Dry deposition of NH3 to terrestrial ecosystems immediately surrounding large local sources of NH3 emissions (e.g. animal feeding operations) is difficult to measure, and is best estimated via models. Presented here are results for a semi-empirical modeling approach for estimating air-surface exchange fluxes of NH3 downwind of a large poultry facility (~ 3.5 million layers) using a bi-directional air-surface exchange model. The modeling domain is the western section of the Pocosin Lakes National Wildlife Refuge in Tyrrell, Washington, and Hyde Counties of eastern North Carolina in the South Atlantic Coastal Plain physiographic region. Vegetation within the modeling domain is primarily pocosin wetlands, characterized by acid (pH 3.6) peat soils and a thick canopy of shrub vegetation (leatherwood (Cyrilla racemiflora), inkberry (Ilex glabra), wax myrtle (Morella cerifera)). Land surrounding the refuge is primarily used for crop production: ~ 28%, 24%, and 45% agricultural in Tyrell, Hyde, and Washington counties, respectively. Ammonia air-surface exchange (flux) was calculated using a two-layer canopy compensation point model developed by Nemitz et al. (2001. Quart. J. Roy. Met. Soc. 127, 815 - 833.) as implemented by Walker et al. (2008. Atmos. Environ., 42, 3407 - 3418.), in which the competing processes of emission and deposition within the foliage-soil system were taken into account by relating the net canopy-scale NH3 flux to the net emission potential of the canopy (i.e., foliage and soil). Ammonia air concentrations were measured using ALPHA passive samplers (Center for Ecology and Hydrology, Edinburgh) along transects to the north and northeast of the poultry facility at distances of 800, 2000 and 3200 m, respectively. Samplers were deployed in duplicate at each location at a height of 5.8 m from July 2008 to July 2010 weekly during warm months and bi-weekly curing
Designing a Model for development of dry port in Iran by Delphi, Gap analyze and Fuzzy Dematel
Directory of Open Access Journals (Sweden)
2016-03-01
Full Text Available Dry port is a potential solution for better inland seaport capabilities access. Surely, success implementation of dry port related to investigate and define impediments and factors to a close advanced intermodal terminals. In order to find the way of establishing dry port in Iran, interviews and literature review have been carried. We used DEMATEL method toward identifying main capabilities that influence on dry port project implementation, and attained 8 critical variables (road way, rail way, sea ports, structure and infrastructure, process and accomplishment, financial, environment, physical environment, and approved the gap in all of that factors. Then, DELPHI method used to survey interactional effects of essential factors of implementation of dry port in Iran and casual relationship between them. The most common and important factors that effect on dry port implementation classified in 8 variables and suggested a conceptual model. The propose behind the study is to contribute to a better understanding of the way of accomplishment of dry port projects in Iran.
Kilic, Servet; Kulualp, Kadri
2016-01-01
This study compared the endodontic absorbent paper point test (EAPTT) and the phenol red thread test (PRTT) for the assessment of tear production rate in a mouse model of dry eye. Fourteen BALB/c breed female mice were allocated into experimental and control groups of equal number. For 6 wk, the experimental group was kept in dry-eye cabinets, whereas the control group was kept in normal cages under ambient conditions. In both groups, the tear production rate was measured by using EAPTT and PRTT before the study, at study baseline, and at weeks 2, 4, and 6. Tear production at weeks 2, 4, and 6 differed significantly between groups and tests. Evaluating the groups independently in terms of the test technique revealed significant differences in tear production rate between the 2 groups at the same measurement times. Due to their persistent exposure to evaporative stress factors, the tear production rate of the mice in the dry-eye cabinet was consistently lower than that of controls. Unlike PRTT, EAPTT can be readily applied to the small globes of laboratory animals without the need for forceps, thus saving time and effort. In addition, EAPTT was practical and imposed no undue stress on the mice, due to the test material's firmer structure. Therefore, compared with PRTT, EAPTT is safer and more reliable for the diagnosis of dry-eye syndrome in mice.
Adequateness of applying the Zmijewski model on Serbian companies
Directory of Open Access Journals (Sweden)
Pavlović Vladan
2012-12-01
Full Text Available The aim of the paper is to determine the accuracy of the prediction of Zmijewski model in Serbia on the eligible sample. At the same time, the paper identifies model's strengths, weaknesses and limitations of its possible application. Bearing in mind that the economic environment in Serbia is not similar to the United States at the time the model was developed, Zmijewski model is surprisingly accurate in the case of Serbian companies. The accuracy was slightly weaker than the model results in the U.S. in its original form, but much better than the results model gave in the U.S. in the period 1988-1991, and 1992-1999. Model gave also better results in Serbia comparing those in Croatia, even in Croatia model was adjusted.
Applying the Job Characteristics Model to the College Education Experience
Kass, Steven J.; Vodanovich, Stephen J.; Khosravi, Jasmine Y.
2011-01-01
Boredom is one of the most common complaints among university students, with studies suggesting its link to poor grades, drop out, and behavioral problems. Principles borrowed from industrial-organizational psychology may help prevent boredom and enrich the classroom experience. In the current study, we applied the core dimensions of the job…
Ontological Relations and the Capability Maturity Model Applied in Academia
de Oliveira, Jerônimo Moreira; Campoy, Laura Gómez; Vilarino, Lilian
2015-01-01
This work presents a new approach to the discovery, identification and connection of ontological elements within the domain of characterization in learning organizations. In particular, the study can be applied to contexts where organizations require planning, logic, balance, and cognition in knowledge creation scenarios, which is the case for the…
Applying Meta-Analysis to Structural Equation Modeling
Hedges, Larry V.
2016-01-01
Structural equation models play an important role in the social sciences. Consequently, there is an increasing use of meta-analytic methods to combine evidence from studies that estimate the parameters of structural equation models. Two approaches are used to combine evidence from structural equation models: A direct approach that combines…
Shrinkage modeling of concrete reinforced by palm fibres in hot dry environments
Akchiche, Hamida; Kriker, Abdelouahed
2017-02-01
The cement materials, such as concrete and conventional mortar present very little resistance to traction and cracking, these hydraulic materials which induces large withdrawals on materials and cracks in structures. The hot dry environments such as: the Saharan regions of Algeria, Indeed, concrete structures in these regions are very fragile, and present high shrinkage. Strengthening of these materials by fibers can provide technical solutions for improving the mechanical performance. The aim of this study is firstly, to reduce the shrinkage of conventional concrete with its reinforcement with date palm fibers. In fact, Algeria has an extraordinary resources in natural fibers (from Palm, Abaca, Hemp) but without valorization in practical areas, especially in building materials. Secondly, to model the shrinkage behavior of concrete was reinforced by date palm fibers. In the literature, several models for still fiber concrete were founded but few are offers for natural fiber concretes. To do so, a still fiber concretes model of YOUNG - CHERN was used. According to the results, a reduction of shrinkage with reinforcement by date palm fibers was showed. A good ability of molding of shrinkage of date palm reinforced concrete with YOUNG - CHERN Modified model was obtained. In fact, a good correlation between experimental data and the model data was recorded.
Applying XML for designing and interchanging information for multidimensional model
Institute of Scientific and Technical Information of China (English)
Lu Changhui; Deng Su; Zhang Weiming
2005-01-01
In order to exchange and share information among the conceptual models of data warehouse, and to build a solid base for the integration and share of metadata, a new multidimensional concept model is presented based on XML and its DTD is defined, which can perfectly describe various semantic characteristics of multidimensional conceptual model. According to the multidimensional conceptual modeling technique which is based on UML, the mapping algorithm between the multidimensional conceptual model is described based on XML and UML class diagram, and an application base for the wide use of this technique is given.
Applying Functional Modeling for Accident Management of Nuclear Power Plant
Energy Technology Data Exchange (ETDEWEB)
Lind, Morten; Zhang Xinxin [Harbin Engineering University, Harbin (China)
2014-08-15
The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow Modeling is given and a detailed presentation of the foundational means-end concepts is presented and the conditions for proper use in modelling accidents are identified. It is shown that Multilevel Flow Modeling can be used for modelling and reasoning about design basis accidents. Its possible role for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented.
Application of epoxy resin to a solid-foam pelvic model: creating a dry-erase pelvis.
Weaver, Michael J; Brubacher, Jacob W; Vrahas, Mark S
2014-11-01
The value of preoperative planning and templating has been well-established in fracture surgery. We have found that using 3-dimensional (3-D) models in preoperative planning aids in the understanding of anatomy, fracture-reduction techniques, and fixation methods, particularly in pelvic and acetabular fractures. To facilitate the correction of errors and reuse for future cases, we coat pelvic models with dry-erase epoxy resin. Fracture lines and planned implants are drawn onto the models with dry-erase markers. The creation of 3-D planning tools is useful in understanding the anatomy of pelvic and acetabular fractures.
Modeling and Adhesive Tool Wear in Dry Drilling of Aluminum Alloys
Girot, F.; Gutiérrez-Orrantia, M. E.; Calamaz, M.; Coupard, D.
2011-01-01
One of the challenges in aeronautic drilling operations is the elimination of cutting fluids while maintaining the quality of drilled parts. This paper therefore aims to increase the tool life and process quality by working on relationships existing between drilling parameters (cutting speed and feed rate), coatings and tool geometry. In dry drilling, the phenomenon of Built-Up Layer is the predominant damage mechanism. A model fitting the axial force with the cutting parameters and the damage has been developed. The burr thickness and its dispersion decrease with the feed rate. The current diamond coatings which exhibit a strong adhesion to the carbide substrate can limit this adhesive layer phenomenon. A relatively smooth nano-structured coating strongly limits the development of this layer.
Directory of Open Access Journals (Sweden)
Da Chen
2013-01-01
Full Text Available The mechanical properties of cement mortars subjected to wet-dry cyclic sulfate attack were studied by the compression strength test. The results showed that the ultimate compressive strength increased with number of cycles at the initial stage. However, after a certain time, it started to decrease with further increases in the number of cycles. Moreover, the concentration of the sodium sulfate solution proved to be an important factor affecting the ultimate compressive strength. Based on continuum damage mechanics theory, an elastoplastic damage constitutive model is presented to describe the mechanical behavior of cementitious materials under compressive stress. The results obtained agree well with the experimentally observed elastic, plastic, and damage characteristics of cement mortars under compressive stress.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
Upadhyay, Ashwani; Chandramohan, V. P.
2016-06-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Non-classical diffusion model for heat and mass transfer in laser drying
Institute of Scientific and Technical Information of China (English)
Xiulan Huai; Guoxiang Wang; Renqiu Jiang; Bin Li
2004-01-01
A numerical analysis of the laser drying process by employing a generalized, Maxwell-Cattaneo equation to treat both heat and mass transfer was presented. Calculations were performed to illustrate the non-classical transport of heat and moisture. The effect of the heat flux density and the initial moisture content on water removal was also investigated. The results indicate that the nonequilibrium mass diffusion plays an important role during the very early stages of moisture removal, especially at the surface of the medium. Away from the surface, the non-Fickian model shows a delay in the reduction of the moisture content. The calculation resuits also show that the initial moisture content of the medium has a considerable effect on water removal.
Erosion and deposition in depth-averaged models of dense, dry, inclined, granular flows
Jenkins, James T.; Berzi, Diego
2016-11-01
We derive expressions for the rates of erosion and deposition at the interface between a dense, dry, inclined granular flow and an erodible bed. In obtaining these, we assume that the interface between the flowing grains and the bed moves with the speed of a pressure wave in the flow, for deposition, or with the speed of a disturbance through the contacting particles in the bed, for erosion. We employ the expressions for the rates of erosion and deposition to show that after an abrupt change in the angle of inclination of the bed the characteristic time for the motion of the interface is much shorter than the characteristic time of the flow. This eliminates the need for introducing models of erosion and deposition rate in the mass balance; and the instantaneous value of the particle flux is the same function of the instantaneous value of the flow depth as in a steady, uniform flow.
Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh
2015-04-01
Drought is a natural phenomenon that can cause significant environmental, ecological, and socio-economic losses in water scarce regions. Studies of drought under climate change are essential for water resources planning and management. Dry spells and number of consecutive days with precipitation below a certain threshold can be used to identify the severity of hydrological drought. In this study, we analyzed the projected changes of number of dry days in two future periods, 2011-2040 and 2071-2100, for both seasonal and annual time scales in the Lake Urmia Basin. The lake and its wetlands, located in northwestern Iran, have invaluable environmental, social, and economic importance for the region. The lake level has been shrinking dramatically since 1995 and now the water volume is less than 30% of its original. Moreover, frequent dry spells have struck the region and effected the region's water resources and lake ecosystem as in other parts of Iran too. Analyzing future drought and dry spells characteristics in the region is crucial for sustainable water management and lake restoration plans. We used daily projected precipitation from 20 climate models used in the CMIP5 (Coupled Model Inter-comparison Project Phase 5) driven by three representative paths, RCP2.6, RCP4.5, and, RCP8.5. The model outputs were statistically downscaled and validated based on the historical observation period 1980-2010. We defined days with precipitation less than 1 mm as dry days for both observation periods and model projections. The model validation showed that all models underestimated the number of dry days. An ensemble based on the validation results consisting of five models which were in best agreement with observations was used to assess the changes in number of future dry days in Lake Urmia Basin. The entire ensemble showed increase in number of dry days for all seasons. The projected changes in winter and spring were larger than for summer and autumn. All models projected
Applying Model Checking to Industrial-Sized PLC Programs
AUTHOR|(CDS)2079190; Darvas, Daniel; Blanco Vinuela, Enrique; Tournier, Jean-Charles; Bliudze, Simon; Blech, Jan Olaf; Gonzalez Suarez, Victor M
2015-01-01
Programmable logic controllers (PLCs) are embedded computers widely used in industrial control systems. Ensuring that a PLC software complies with its specification is a challenging task. Formal verification has become a recommended practice to ensure the correctness of safety-critical software but is still underused in industry due to the complexity of building and managing formal models of real applications. In this paper, we propose a general methodology to perform automated model checking of complex properties expressed in temporal logics (\\eg CTL, LTL) on PLC programs. This methodology is based on an intermediate model (IM), meant to transform PLC programs written in various standard languages (ST, SFC, etc.) to different modeling languages of verification tools. We present the syntax and semantics of the IM and the transformation rules of the ST and SFC languages to the nuXmv model checker passing through the intermediate model. Finally, two real cases studies of \\CERN PLC programs, written mainly in th...
Applying Functional Modeling for Accident Management of Nucler Power Plant
DEFF Research Database (Denmark)
Lind, Morten; Zhang, Xinxin
2014-01-01
The paper investigates applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...... for information sharing and decision support in accidents beyond design basis is also indicated. A modelling example demonstrating the application of Multilevel Flow Modelling and reasoning for a PWR LOCA is presented....
Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.
Calonne, Neige; Geindreau, Christian; Flin, Frédéric
2014-11-26
Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.
Continuum modeling of projectile impact and penetration in dry granular media
Dunatunga, Sachith; Kamrin, Ken
2017-03-01
Modeling of impact into granular substrates is a topic of growing interest over the last decade. We present a fully continuum approach for this problem, which is shown to capture an array of experimentally observed behavior with regard to the intruder penetration dynamics as well as the flow and stress response of the granular media. The intruder is modeled as a stiff elastic body and the dry granular bulk is modeled using a 'trans-phase' constitutive relation. This relation has an elasto-viscoplastic response with pressure- and rate-sensitive yield behavior given by the μ (I) inertial rheology when the granular free volume is below a critical value. Above this critical value, the material is deemed to separate and is treated as a disconnected, stress-free medium. The Material Point Method is used to implement the impact problem numerically. Validations are conducted against a wide set of experimental data with a common granular material, which allows use of a single model calibration to test the agreement. In particular, continuum simulations of projectile impact with different shaped intruders and different impact energies show good agreement with experiments regarding of time-of-flight, penetration depth, and Poncelet drag force coefficients. Simultaneously, good agreement with experiments is found regarding the response of the granular media during impact, such as the pressure wave propagation process during the initial stage of impact, the flow fields that develop under the moving intruder, and the free-surface dynamics.
Dry deposition model for a microscale aerosol dispersion solver based on the moment method
Šíp, Viktor
2016-01-01
A dry deposition model suitable for use in the moment method has been developed. Contributions from five main processes driving the deposition - Brownian diffusion, interception, impaction, turbulent impaction, and sedimentation - are included in the model. The deposition model was employed in the moment method solver implemented in the OpenFOAM framework. Applicability of the developed expression and the moment method solver was tested on two example problems of particle dispersion in the presence of a vegetation on small scales: a flow through a tree patch in 2D and a flow through a hedgerow in 3D. Comparison with the sectional method showed that the moment method using the developed deposition model is able to reproduce the shape of the particle size distribution well. The relative difference in terms of the third moment of the distribution was below 10\\% in both tested cases, and decreased away from the vegetation. Main source of this difference is a known overprediction of the impaction efficiency. When ...
Geographically Weighted Logistic Regression Applied to Credit Scoring Models
Directory of Open Access Journals (Sweden)
Pedro Henrique Melo Albuquerque
Full Text Available Abstract This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC, granted to clients residing in the Distrito Federal (DF, to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower’s geographic location; to compare the set of models estimated via GWLR with the global model estimated via Logistic Regression, in terms of predictive power and financial losses for the institution; and to verify the viability of using the GWLR technique to develop credit scoring models. The metrics used to compare the models developed via the two techniques were the AICc informational criterion, the accuracy of the models, the percentage of false positives, the sum of the value of false positive debt, and the expected monetary value of portfolio default compared with the monetary value of defaults observed. The models estimated for each region in the DF were distinct in their variables and coefficients (parameters, with it being concluded that credit risk was influenced differently in each region in the study. The Logistic Regression and GWLR methodologies presented very close results, in terms of predictive power and financial losses for the institution, and the study demonstrated viability in using the GWLR technique to develop credit scoring models for the target population in the study.
Applying reliability models to the maintenance of Space Shuttle software
Schneidewind, Norman F.
1992-01-01
Software reliability models provide the software manager with a powerful tool for predicting, controlling, and assessing the reliability of software during maintenance. We show how a reliability model can be effectively employed for reliability prediction and the development of maintenance strategies using the Space Shuttle Primary Avionics Software Subsystem as an example.
Trailing edge noise model applied to wind turbine airfoils
DEFF Research Database (Denmark)
Bertagnolio, Franck
The aim of this work is firstly to provide a quick introduction to the theory of noise generation that are relevant to wind turbine technology with focus on trailing edge noise. Secondly, the socalled TNO trailing edge noise model developed by Parchen [1] is described in more details. The model...
Hydrologic and water quality terminology as applied to modeling
A survey of literature and examination in particular of terminology use in a previous special collection of modeling calibration and validation papers has been conducted to arrive at a list of consistent terminology recommended for writing about hydrologic and water quality model calibration and val...
Applying the General Linear Model to Repeated Measures Problems.
Pohlmann, John T.; McShane, Michael G.
The purpose of this paper is to demonstrate the use of the general linear model (GLM) in problems with repeated measures on a dependent variable. Such problems include pretest-posttest designs, multitrial designs, and groups by trials designs. For each of these designs, a GLM analysis is demonstrated wherein full models are formed and restrictions…
Community Mobilization Model Applied to Support Grandparents Raising Grandchildren
Miller, Jacque; Bruce, Ann; Bundy-Fazioli, Kimberly; Fruhauf, Christine A.
2010-01-01
This article discusses the application of a community mobilization model through a case study of one community's response to address the needs of grandparents raising grandchildren. The community mobilization model presented is one that is replicable in addressing diverse community identified issues. Discussed is the building of the partnerships,…
[Applying multilevel models in evaluation of bioequivalence (I)].
Liu, Qiao-lan; Shen, Zhuo-zhi; Chen, Feng; Li, Xiao-song; Yang, Min
2009-12-01
This study aims to explore the application value of multilevel models for bioequivalence evaluation. Using a real example of 2 x 4 cross-over experimental design in evaluating bioequivalence of antihypertensive drug, this paper explores complex variance components corresponding to criteria statistics in existing methods recommended by FDA but obtained in multilevel models analysis. Results are compared with those from FDA standard Method of Moments, specifically on the feasibility and applicability of multilevel models in directly assessing the bioequivalence (ABE), the population bioequivalence (PBE) and the individual bioequivalence (IBE). When measuring ln (AUC), results from all variance components of the test and reference groups such as total variance (sigma(TT)(2) and sigma(TR)(2)), between-subject variance (sigma(BT)(2) and sigma(BR)(2)) and within-subject variance (sigma(WT)(2) and sigma(WR)(2)) estimated by simple 2-level models are very close to those that using the FDA Method of Moments. In practice, bioequivalence evaluation can be carried out directly by multilevel models, or by FDA criteria, based on variance components estimated from multilevel models. Both approaches produce consistent results. Multilevel models can be used to evaluate bioequivalence in cross-over test design. Compared to FDA methods, this one is more flexible in decomposing total variance into sub components in order to evaluate the ABE, PBE and IBE. Multilevel model provides a new way into the practice of bioequivalence evaluation.
Nonstandard Finite Difference Method Applied to a Linear Pharmacokinetics Model
Directory of Open Access Journals (Sweden)
Oluwaseun Egbelowo
2017-05-01
Full Text Available We extend the nonstandard finite difference method of solution to the study of pharmacokinetic–pharmacodynamic models. Pharmacokinetic (PK models are commonly used to predict drug concentrations that drive controlled intravenous (I.V. transfers (or infusion and oral transfers while pharmacokinetic and pharmacodynamic (PD interaction models are used to provide predictions of drug concentrations affecting the response of these clinical drugs. We structure a nonstandard finite difference (NSFD scheme for the relevant system of equations which models this pharamcokinetic process. We compare the results obtained to standard methods. The scheme is dynamically consistent and reliable in replicating complex dynamic properties of the relevant continuous models for varying step sizes. This study provides assistance in understanding the long-term behavior of the drug in the system, and validation of the efficiency of the nonstandard finite difference scheme as the method of choice.
Trierweiler, A.; Xu, X.; Gei, M. G.; Powers, J. S.; Medvigy, D.
2016-12-01
Tropical dry forests (TDFs) have immense functional diversity and face multiple resource constraints (both water and nutrients). Legumes are abundant and exhibit a wide diversity of N2-fixing strategies in TDFs. The abundance and diversity of legumes and their interaction with N2-fixing bacteria may strongly control the coupled carbon-nitrogen cycle in the biome and influence whether TDFs will be particularly vulnerable or uniquely adapted to projected global change. However, the importance of N2-fixation in TDFs and the carbon cost of acquiring N through symbiotic relationships are not fully understood. Here, we use models along with field measurements to examine the role of legumes, nitrogen fixation, and plant-symbiont nutrient exchanges in TDFs. We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs. The new version incorporates plant-mycorrhizae interactions and multiple resource constraints (carbon, nitrogen, phosphorus, and water). We represent legumes and other functional groups found in TDFs with a range of resource acquisition strategies. In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies (e.g. N2-fixing bacteria and mycorrhizal fungi) according to the nutrient limitation status. We test (i) the model's performance against a nutrient gradient of field sites in Costa Rica and (ii) the model's sensitivity to the carbon cost to acquire N through fixation and mycorrhizal relationships. We also report on simulated tree community responses to ongoing field nutrient fertilization experiments. We found that the inclusion of the N2-fixation legume plant functional traits were critical to reproducing community dynamics of Costa Rican field TDF sites and have a large impact on forest biomass. Simulated ecosystem fixation rates matched the magnitude and temporal patterns of field measured fixation. Our results show that symbiotic nitrogen fixation plays an
Directory of Open Access Journals (Sweden)
A. V. Zhuravlev
2015-01-01
Full Text Available Summary. Intensification of drying is a major improvement of the drying equipment and technology. Development and implementation in the industry of high-intensity devices with active hydrodynamic regimes, provides in many cases, higher technical and economic indicators. The use of devices with twisted coolant flow to intensify the process of drying of dispersed materials is both theoretical interest and practical value. The processes of heat and mass transfer in drying machines are largely determined by the hydrodynamic conditions in its internal volume. Given the complexity of the geometry and structure of the velocity field in the balanced twisted-layer, which in general is essentially three-dimensional, it is necessary to decompose the hydrodynamic problem into two parts superposition. From the analysis of the physical picture implies that the path of the current lines of his close family helical curves. Based on the theoretical analysis of heat and mass transfer process of drying seeds of amaranth in the office with a balanced twisted-layer authors developed a mathematical model of it. The structure of the flow of the drying process in the cross-sections of the device. The model is based on the fundamental equations A.V. Lykov, describes a heat moisture transfer in capillary-porous environments in a linear thermodynamic approach, given the method of convective heat supply and the small size of dried seeds of amaranth. These equations describe the dynamic change in the fields of temperature and moisture content in a conjugated heat and mass transfer at the interface solid phase - coolant. Found macrokinetic natural process. The results will be useful for a wide range of professionals involved in drying seeds of amaranth, as well as for calculation and design of modern dryers. On the basis of experimental data and their statistical treatment has been received a mathematical model that adequately describes the process of drying seeds of
A new HBV-model applied to an arctic watershed
Energy Technology Data Exchange (ETDEWEB)
Bruland, O.
1995-12-31
This paper describes the HBV-model, which was developed in the Nordic joint venture project ``Climate change and energy production``. The HBV-model is a precipitation-runoff model made mainly to create runoff forecasts for hydroelectric power plants. The model has been tested in an arctic watershed, the Bayelva drainage basin at Svalbard. The model was calibrated by means of data for the period 1989-1993 and tested on data for the period 1974-1978. For both periods, snow melt, rainfall and glacier melt events are well predicted. The largest disagreement between observed and simulated runoff occurred on warm days with heavy rain. This may be due to the precipitation measurements which may not be representative for such events. Measurements show a larger negative glacier mass balance than the simulated one although the parameters controlling the glacier melt in the model are set high. Glacier mass balance simulations in which the temperature index depends on albedo and radiation are more correct and improve model efficiency. 5 refs., 4 figs., 1 table
Energy Technology Data Exchange (ETDEWEB)
Broden, Henrik; Ramstroem, Erik [TPS Termiska Processer AB, Nykoeping (Sweden)
2005-02-01
Combustion of wet wood fuel at high grate loading requires good control of the burnout position to avoid unacceptably high content of unburnt fuel in the ash. To control the burn-out position, control actions on the grate feeding must be made with sufficient range and anticipation. One way to improve the understanding of the dynamic fuel bed response on changes in control system parameters is mathematical modelling. The research task has been to develop a mathematical model of a drying fuel bed on a moving grate. The model includes a simplified description of drying, pyrolysis and char combustion and also pusher/grate movement and primary air flow/distribution. The objectives of the project have been to establish the most likely mechanism for drying and ignition of a wet fuel bed on a moving grate by the use of mathematical modelling and also to create a tool for simulation of control system step responses. The target group for the project are individuals working in the area of control system development of grate fired boilers. Three different assumptions on drying and ignition front propagation in a bio fuel bed with 50 and 53 % moisture have been modelled: 1. Drying and ignition from an underlying char layer in a co-current primary air flow 2. Drying and ignition from an overlaying char layer in counter-current primary air flow 3. Drying and ignition from both an underlying and overlaying char layer The model with drying and ignition driven by an underlying char layer is the projection, which gives the fastest and time-wise the most similar course to what one normally sees in grate fired boilers. The model with drying and ignition from above is not capable of upholding a stable diffusion controlled burning char layer since too small quantities of heat is transferred into the fuel bed. The model with drying and ignition from both directions results in similar combustion rate as the first model. The similar course of combustion is due to the energy for drying
Manifold learning techniques and model reduction applied to dissipative PDEs
Sonday, Benjamin E; Gear, C William; Kevrekidis, Ioannis G
2010-01-01
We link nonlinear manifold learning techniques for data analysis/compression with model reduction techniques for evolution equations with time scale separation. In particular, we demonstrate a `"nonlinear extension" of the POD-Galerkin approach to obtaining reduced dynamic models of dissipative evolution equations. The approach is illustrated through a reaction-diffusion PDE, and the performance of different simulators on the full and the reduced models is compared. We also discuss the relation of this nonlinear extension with the so-called "nonlinear Galerkin" methods developed in the context of Approximate Inertial Manifolds.
Blue sky catastrophe as applied to modeling of cardiac rhythms
Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.
2015-07-01
A new mathematical model for the electrical activity of the heart is proposed. The model represents a special singularly perturbed three-dimensional system of ordinary differential equations with one fast and two slow variables. A characteristic feature of the system is that its solution performs nonclassical relaxation oscillations and simultaneously undergoes a blue sky catastrophe bifurcation. Both these factors make it possible to achieve a phenomenological proximity between the time dependence of the fast component in the model and an ECG of the human heart.
Simple queueing model applied to the city of Portland
Energy Technology Data Exchange (ETDEWEB)
Simon, P.M.; Nagel, K. [Los Alamos National Lab., NM (United States)]|[Santa Fe Inst., NM (United States)
1998-07-31
The authors present a simple traffic micro-simulation model that models the effects of capacity cut-off, i.e. the effect of queue built-up when demand is exceeding capacity, and queue spillback, i.e. the effect that queues can spill back across intersections when a congested link is filled up. They derive the model`s fundamental diagrams and explain it. The simulation is used to simulate traffic on the emme/2 network of the Portland (Oregon) metropolitan region (20,000 links). Demand is generated by a simplified home-to-work assignment which generates about half a million trips for the AM peak. Route assignment is done by iterative feedback between micro-simulation and router. Relaxation of the route assignment for the above problem can be achieved within about half a day of computing time on a desktop workstation.
Lithospheric structure models applied for locating the Romanian seismic events
Directory of Open Access Journals (Sweden)
V. Oancea
1994-06-01
Full Text Available The paper presents our attempts made for improving the locations obtained for local seismic events, using refined lithospheric structure models. The location program (based on Geiger method supposes a known model. The program is run for some seismic sequences which occurred in different regions, on the Romanian territory, using for each of the sequences three velocity models: 1 7 layers of constant velocity of seismic waves, as an average structure of the lithosphere for the whole territory; 2 site dependent structure (below each station, based on geophysical and geological information on the crust; 3 curves deseribing the dependence of propagation velocities with depth in the lithosphere, characterizing the 7 structural units delineated on the Romanian territory. The results obtained using the different velocity models are compared. Station corrections are computed for each data set. Finally, the locations determined for some quarry blasts are compared with the real ones.
Opto-physiological modeling applied to photoplethysmographic cardiovascular assessment.
Hu, Sijung; Azorin-Peris, Vicente; Zheng, Jia
2013-01-01
This paper presents opto-physiological (OP) modeling and its application in cardiovascular assessment techniques based on photoplethysmography (PPG). Existing contact point measurement techniques, i.e., pulse oximetry probes, are compared with the next generation non-contact and imaging implementations, i.e., non-contact reflection and camera-based PPG. The further development of effective physiological monitoring techniques relies on novel approaches to OP modeling that can better inform the design and development of sensing hardware and applicable signal processing procedures. With the help of finite-element optical simulation, fundamental research into OP modeling of photoplethysmography is being exploited towards the development of engineering solutions for practical biomedical systems. This paper reviews a body of research comprising two OP models that have led to significant progress in the design of transmission mode pulse oximetry probes, and approaches to 3D blood perfusion mapping for the interpretation of cardiovascular performance.
Pressure Sensitive Paint Applied to Flexible Models Project
Schairer, Edward T.; Kushner, Laura Kathryn
2014-01-01
One gap in current pressure-measurement technology is a high-spatial-resolution method for accurately measuring pressures on spatially and temporally varying wind-tunnel models such as Inflatable Aerodynamic Decelerators (IADs), parachutes, and sails. Conventional pressure taps only provide sparse measurements at discrete points and are difficult to integrate with the model structure without altering structural properties. Pressure Sensitive Paint (PSP) provides pressure measurements with high spatial resolution, but its use has been limited to rigid or semi-rigid models. Extending the use of PSP from rigid surfaces to flexible surfaces would allow direct, high-spatial-resolution measurements of the unsteady surface pressure distribution. Once developed, this new capability will be combined with existing stereo photogrammetry methods to simultaneously measure the shape of a dynamically deforming model in a wind tunnel. Presented here are the results and methodology for using PSP on flexible surfaces.
Joint regression analysis and AMMI model applied to oat improvement
Oliveira, A.; Oliveira, T. A.; Mejza, S.
2012-09-01
In our work we present an application of some biometrical methods useful in genotype stability evaluation, namely AMMI model, Joint Regression Analysis (JRA) and multiple comparison tests. A genotype stability analysis of oat (Avena Sativa L.) grain yield was carried out using data of the Portuguese Plant Breeding Board, sample of the 22 different genotypes during the years 2002, 2003 and 2004 in six locations. In Ferreira et al. (2006) the authors state the relevance of the regression models and of the Additive Main Effects and Multiplicative Interactions (AMMI) model, to study and to estimate phenotypic stability effects. As computational techniques we use the Zigzag algorithm to estimate the regression coefficients and the agricolae-package available in R software for AMMI model analysis.
Applying Functional Modeling for Accident Management of Nuclear Power Plant
DEFF Research Database (Denmark)
Lind, Morten; Zhang, Xinxin
2014-01-01
The paper investigate applications of functional modeling for accident management in complex industrial plant with special reference to nuclear power production. Main applications for information sharing among decision makers and decision support are identified. An overview of Multilevel Flow...
Opto-Physiological Modeling Applied to Photoplethysmographic Cardiovascular Assessment
Directory of Open Access Journals (Sweden)
Sijung Hu
2013-01-01
Full Text Available This paper presents opto-physiological (OP modeling and its application in cardiovascular assessment techniques based on photoplethysmography (PPG. Existing contact point measurement techniques, i.e., pulse oximetry probes, are compared with the next generation non-contact and imaging implementations, i.e., non-contact reflection and camera-based PPG. The further development of effective physiological monitoring techniques relies on novel approaches to OP modeling that can better inform the design and development of sensing hardware and applicable signal processing procedures. With the help of finite-element optical simulation, fundamental research into OP modeling of photoplethysmography is being exploited towards the development of engineering solutions for practical biomedical systems. This paper reviews a body of research comprising two OP models that have led to significant progress in the design of transmission mode pulse oximetry probes, and approaches to 3D blood perfusion mapping for the interpretation of cardiovascular performance.
A Model-Based Prognostics Approach Applied to Pneumatic Valves
National Aeronautics and Space Administration — Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain...
A Model-based Prognostics Approach Applied to Pneumatic Valves
National Aeronautics and Space Administration — Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain...
SPH method applied to high speed cutting modelling
LIMIDO, Jérôme; Espinosa, Christine; Salaün, Michel; Lacome, Jean-Luc
2007-01-01
The purpose of this study is to introduce a new approach of high speed cutting numerical modelling. A Lagrangian smoothed particle hydrodynamics (SPH)- based model is arried out using the Ls-Dyna software. SPH is a meshless method, thus large material distortions that occur in the cutting problem are easily managed and SPH contact control permits a "natural" workpiece/chip separation. The developed approach is compared to machining dedicated code results and experimental data. The SPH cutting...
Tensegrity applied to modelling the motion of viruses
Institute of Scientific and Technical Information of China (English)
Cretu Simona-Mariana; Brinzan Gabriela-Catalina
2011-01-01
A considerable number of viruses' structures have been discovered and more are expected to be identified. Different viruses' symmetries can be observed at the nanoscale level. The mechanical models of some viruses realised by scientists are described in this paper, none of which has taken into consideration the internal deformation of subsystems.The authors' models for some viruses' elements are introduced, with rigid and flexible links, which reproduce the movements of viruses including internal deformations of the subunits.
Availability modeling methodology applied to solar power systems
Unione, A.; Burns, E.; Husseiny, A.
1981-01-01
Availability is discussed as a measure for estimating the expected performance for solar- and wind-powered generation systems and for identifying causes of performance loss. Applicable analysis techniques, ranging from simple system models to probabilistic fault tree analysis, are reviewed. A methodology incorporating typical availability models is developed for estimating reliable plant capacity. Examples illustrating the impact of design and configurational differences on the expected capacity of a solar-thermal power plant with a fossil-fired backup unit are given.
A model of provenance applied to biodiversity datasets
Amanqui, Flor K; De Nies, Tom; Dimou, Anastasia; Verborgh, Ruben; Mannens, Erik; Van De Walle, Rik; Moreira, Dilvan
2016-01-01
Nowadays, the Web has become one of the main sources of biodiversity information. An increasing number of biodiversity research institutions add new specimens and their related information to their biological collections and make this information available on the Web. However, mechanisms which are currently available provide insufficient provenance of biodiversity information. In this paper, we propose a new biodiversity provenance model extending the W3C PROV Data Model. Biodiversity data is...
Fleet Replacement Squadron consolidation : a cost model applied.
Maholchic, Robert M.
1991-01-01
The consolidation of Fleet Replacement Squadrons (FRS) represents one method of achieving planned force reductions. This thesis utilizes the Cost of Base Realignment Actions (COBRA) cost model to develop cost estimates for determination of the cost effective site location. The A-6 FRS consolidation is used as a case study. Data were compiled using completed Functional Wing studies as well as local information sources. A comparison between the cost estimates provided by the COBRA cost model fo...
The J3 SCR model applied to resonant converter simulation
Avant, R. L.; Lee, F. C. Y.
1985-01-01
The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.
Applying OGC Standards to Develop a Land Surveying Measurement Model
Directory of Open Access Journals (Sweden)
Ioannis Sofos
2017-02-01
Full Text Available The Open Geospatial Consortium (OGC is committed to developing quality open standards for the global geospatial community, thus enhancing the interoperability of geographic information. In the domain of sensor networks, the Sensor Web Enablement (SWE initiative has been developed to define the necessary context by introducing modeling standards, like ‘Observation & Measurement’ (O&M and services to provide interaction like ‘Sensor Observation Service’ (SOS. Land surveying measurements on the other hand comprise a domain where observation information structures and services have not been aligned to the OGC observation model. In this paper, an OGC-compatible, aligned to the ‘Observation and Measurements’ standard, model for land surveying observations has been developed and discussed. Furthermore, a case study instantiates the above model, and an SOS implementation has been developed based on the 52° North SOS platform. Finally, a visualization schema is used to produce ‘Web Map Service (WMS’ observation maps. Even though there are elements that differentiate this work from classic ‘O&M’ modeling cases, the proposed model and flows are developed in order to provide the benefits of standardizing land surveying measurement data (cost reducing by reusability, higher precision level, data fusion of multiple sources, raw observation spatiotemporal repository access, development of Measurement-Based GIS (MBGIS to the geoinformation community.
Validation of models with constant bias: an applied approach
Directory of Open Access Journals (Sweden)
Salvador Medina-Peralta
2014-06-01
Full Text Available Objective. This paper presents extensions to the statistical validation method based on the procedure of Freese when a model shows constant bias (CB in its predictions and illustrate the method with data from a new mechanistic model that predict weight gain in cattle. Materials and methods. The extensions were the hypothesis tests and maximum anticipated error for the alternative approach, and the confidence interval for a quantile of the distribution of errors. Results. The model evaluated showed CB, once the CB is removed and with a confidence level of 95%, the magnitude of the error does not exceed 0.575 kg. Therefore, the validated model can be used to predict the daily weight gain of cattle, although it will require an adjustment in its structure based on the presence of CB to increase the accuracy of its forecasts. Conclusions. The confidence interval for the 1-α quantile of the distribution of errors after correcting the constant bias, allows determining the top limit for the magnitude of the error of prediction and use it to evaluate the evolution of the model in the forecasting of the system. The confidence interval approach to validate a model is more informative than the hypothesis tests for the same purpose.
A batch modelling approach to monitor a freeze-drying process using in-line Raman spectroscopy.
Sarraguça, Mafalda Cruz; De Beer, Thomas; Vervaet, Chris; Remon, Jean-Paul; Lopes, João Almeida
2010-11-15
Freeze-drying or lyophilisation is a batch wise industrial process used to remove water from solutions, hence stabilizing the solutes for distribution and storage. The objective of the present work was to outline a batch modelling approach to monitor a freeze-drying process in-line and in real-time using Raman spectroscopy. A 5% (w/v) D-mannitol solution was freeze-dried in this study as model. The monitoring of a freeze-drying process using Raman spectroscopy allows following the product behaviour and some process evolution aspects by detecting the changes of the solutes and solvent occurring during the process. Herewith, real-time solid-state characterization of the final product is also possible. The timely spectroscopic measurements allowed the differentiation between batches operated in normal process conditions and batches having deviations from the normal trajectory. Two strategies were employed to develop batch models: partial least squares (PLS) using the unfolded data and parallel factor analysis (PARAFAC). It was shown that both strategies were able to developed batch models using in-line Raman spectroscopy, allowing to monitor the evolution in real-time of new batches. However, the computational effort required to develop the PLS model and to evaluate new batches using this model is significant lower compared to the PARAFAC model. Moreover, PLS scores in the time mode can be computed for new batches, while using PARAFAC only the batch mode scores can be determined for new batches.
Hu, Shihao; Jiang, Haodan; Xia, Zhenhai; Gao, Xiaosheng
2010-09-01
With unique hierarchical fibrillar structures on their feet, gecko lizards can walk on vertical walls or even ceilings. Recent experiments have shown that strong binding along the shear direction and easy lifting in the normal direction can be achieved by forming unidirectional carbon nanotube array with laterally distributed tips similar to gecko's feet. In this study, a multiscale modeling approach was developed to analyze friction and adhesion behaviors of this hierarchical fibrillar system. Vertically aligned carbon nanotube array with laterally distributed segments at the end was simulated by coarse grained molecular dynamics. The effects of the laterally distributed segments on friction and adhesion strengths were analyzed, and further adopted as cohesive laws used in finite element analysis at device scale. The results show that the laterally distributed segments play an essential role in achieving high force anisotropy between normal and shear directions in the adhesives. Finite element analysis reveals a new friction-enhanced adhesion mechanism of the carbon nanotube array, which also exists in gecko adhesive system. The multiscale modeling provides an approach to bridge the microlevel structures of the carbon nanotube array with its macrolevel adhesive behaviors, and the predictions from this modeling give an insight into the mechanisms of gecko-mimicking dry adhesives.
3D MODELS COMPARISON OF COMPLEX SHELL IN UNDERWATER AND DRY ENVIRONMENTS
Directory of Open Access Journals (Sweden)
S. Troisi
2015-04-01
Full Text Available In marine biology the shape, morphology, texture and dimensions of the shells and organisms like sponges and gorgonians are very important parameters. For example, a particular type of gorgonian grows every year only few millimeters; this estimation was conducted without any measurement instrument but it has been provided after successive observational studies, because this organism is very fragile: the contact could compromise its structure and outliving. Non-contact measurement system has to be used to preserve such organisms: the photogrammetry is a method capable to assure high accuracy without contact. Nevertheless, the achievement of a 3D photogrammetric model of complex object (as gorgonians or particular shells is a challenge in normal environments, either with metric camera or with consumer camera. Indeed, the successful of automatic target-less image orientation and the image matching algorithms is strictly correlated to the object texture properties and of camera calibration quality as well. In the underwater scenario, the environment conditions strongly influence the results quality; in particular, water’s turbidity, the presence of suspension, flare and other optical aberrations decrease the image quality reducing the accuracy and increasing the noise on the 3D model. Furthermore, seawater density variability influences its refraction index and consequently the interior orientation camera parameters. For this reason, the camera calibration has to be performed in the same survey conditions. In this paper, a comparison between the 3D models of a Charonia Tritonis shell are carried out through surveys conducted both in dry and underwater environments.
Greenberg, David A.; Shore, Jennifer A.; Page, Fred H.; Dowd, Michael
A three-dimensional, triangular-mesh, finite element model has been adapted to allow for the flooding and drying of intertidal areas. The new algorithm sets velocities in dry areas to zero and removes elements from the computation when they are completely dry. Model tests simulating an idealized sloping beach that includes a tidal pool and a narrow deep channel laterally bounded by shallow drying sides, give qualitatively reasonable results. A simulation of the Quoddy region of the Bay of Fundy also gave good results when calibrated against available observations. This region includes extensive intertidal flats, tidal pools and channels that are blocked at low water by emerging shallows. The model is a clear improvement over a three-dimensional linear model and a fully nonlinear model without the drying routines using the same model grid. The drying model reproduces the tidal elevations with higher accuracy and has more realistic tidal currents.
Dry deposition profile of small particles within a model spruce canopy
Energy Technology Data Exchange (ETDEWEB)
Ould-Dada, Zitouni [Centre for Analytical Research in the Environment, (now EAS T.H. Huxley School), Imperial College of Science Technology and Medicine, Silwood Park, Ascot, SL57TE Berkshire (United Kingdom)
2002-03-08
Data on dry deposition of 0.82 {mu}m MMAD uranium particles to a small scale, 'model' Norway spruce (Picea abies) canopy have been determined by means of wind tunnel experiments. These are presented for both the total canopy and for five horizontal layers within the canopy. The results show a complex pattern of deposition within the canopy. The highest deposition velocity V{sub g} (0.19 cm s{sup -1}) was recorded for the topmost layer within the canopy (i.e. the layer in direct contact with the boundary layer) whereas the lowest V{sub g} (0.02 cm s{sup -1}) occurred at the soil surface. Vertical penetration of depositing aerosol through the canopy was influenced by variations in biomass, wind velocity and turbulence within the canopy. A total canopy V{sub g} of 0.5 cm s{sup -1} was obtained and this is in line with field measurements of V{sub g} reported in literature for both anthropogenic and radionuclide aerosols of similar size ranges. Extrapolation of wind tunnel data to 'real' forest canopies is discussed. The information presented here is of importance in predicting the likely contribution of dry deposition of aerosols to pollutant inputs to forest ecosystems, particularly in the context of radioactive aerosol releases from nuclear installations. The application of the present data may also be appropriate for other pollutant aerosols such as SO{sub 4}, NO{sub 3} and NH{sub 4}, which are characterised by particle sizes in the range used in this study.
Applying artificial vision models to human scene understanding
Directory of Open Access Journals (Sweden)
Elissa Michele Aminoff
2015-02-01
Full Text Available How do we understand the complex patterns of neural responses that underlie scene understanding? Studies of the network of brain regions held to be scene-selective – the parahippocampal/lingual region (PPA, the retrosplenial complex (RSC, and the occipital place area (TOS – have typically focused on single visual dimensions (e.g., size, rather than the high-dimensional feature space in which scenes are likely to be neurally represented. Here we leverage well-specified artificial vision systems to explicate a more complex understanding of how scenes are encoded in this functional network. We correlated similarity matrices within three different scene-spaces arising from: 1 BOLD activity in scene-selective brain regions; 2 behavioral measured judgments of visually-perceived scene similarity; and 3 several different computer vision models. These correlations revealed: 1 models that relied on mid- and high-level scene attributes showed the highest correlations with the patterns of neural activity within the scene-selective network; 2 NEIL and SUN – the models that best accounted for the patterns obtained from PPA and TOS – were different from the GIST model that best accounted for the pattern obtained from RSC; 3 The best performing models outperformed behaviorally-measured judgments of scene similarity in accounting for neural data. One computer vision method – NEIL (Never-Ending-Image-Learner, which incorporates visual features learned as statistical regularities across web-scale numbers of scenes – showed significant correlations with neural activity in all three scene-selective regions and was one of the two models best able to account for variance in the PPA and TOS. We suggest that these results are a promising first step in explicating more fine-grained models of neural scene understanding, including developing a clearer picture of the division of labor among the components of the functional scene-selective brain network.
Agent-Based Modelling applied to 5D model of the HIV infection
Directory of Open Access Journals (Sweden)
Toufik Laroum
2016-12-01
The simplest model was the 3D mathematical model. But the complexity of this phenomenon and the diversity of cells and actors which affect its evolution requires the use of new approaches such as multi-agents approach that we have applied in this paper. The results of our simulator on the 5D model are promising because they are consistent with biological knowledge’s. Therefore, the proposed approach is well appropriate to the study of population dynamics in general and could help to understand and predict the dynamics of HIV infection.
Energy Technology Data Exchange (ETDEWEB)
Maltry, W.; Ziegler, T.; Richter, I.
1997-04-01
The report deals with problems associated with the harnessing of solar energy for drying bulk farm products: technical fundamentals, enthalpy diagrams, models for grain drying, experimental investigations, analysis of drying processes, benefits and applications of drying processes, advances. (HW) [Deutsch] Der Bericht behandelt die Probleme der Solarenergienutzung zur Trockung landwirtschaftlicher Massengueter: - Trocknungstechnische Grundlagen - Enthalpie-Diagramme - Modelle zur Koernertrocknung - experimentelle Untersuchungen - Analyse von Trocknungsprozesse - Nutzen und Verwertbarkeit der Trocknungsprozesse - Fortschritte. (HW)
A Model-based Prognostics Approach Applied to Pneumatic Valves
Directory of Open Access Journals (Sweden)
Matthew J. Daigle
2011-01-01
Full Text Available Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.
A Model-Based Prognostics Approach Applied to Pneumatic Valves
Daigle, Matthew J.; Goebel, Kai
2011-01-01
Within the area of systems health management, the task of prognostics centers on predicting when components will fail. Model-based prognostics exploits domain knowledge of the system, its components, and how they fail by casting the underlying physical phenomena in a physics-based model that is derived from first principles. Uncertainty cannot be avoided in prediction, therefore, algorithms are employed that help in managing these uncertainties. The particle filtering algorithm has become a popular choice for model-based prognostics due to its wide applicability, ease of implementation, and support for uncertainty management. We develop a general model-based prognostics methodology within a robust probabilistic framework using particle filters. As a case study, we consider a pneumatic valve from the Space Shuttle cryogenic refueling system. We develop a detailed physics-based model of the pneumatic valve, and perform comprehensive simulation experiments to illustrate our prognostics approach and evaluate its effectiveness and robustness. The approach is demonstrated using historical pneumatic valve data from the refueling system.
Directory of Open Access Journals (Sweden)
M Rasouli
2012-05-01
Full Text Available Garlic (Allium sativumL. is one of the most important Allium spice. From an economic point of view, the dried garlic slices are valuable products. In this research, garlic slices as a thin layer were dried in a laboratory scale hot-air dryer, under air flow of 1.5 m/s, air temperatures of 50, 60 and 70˚C and slice thicknesses of 2, 3 and 4 mm. The mean values of shrinkage of garlic slices obtained 69.8%. In addition, the effects of the drying variables on the shrinkage of dried garlic were evaluated. The ANOVA results indicated that the air temperature and slice thickness had no significant effect on final shrinkage of dried garlic slices. In order to derive and select the appropriate shrinkage model, four mathematical models were fitted to the experimental data. According to the statistical criteria (R2, SSE & RMSE the best model was found to describe the shrinkage behavior of garlic slice.
Joossen, Cedric; Lanckacker, Ellen; Zakaria, Nadia; Koppen, Carina; Joossens, Jurgen; Cools, Nathalie; De Meester, Ingrid; Lambeir, Anne-Marie; Delputte, Peter; Maes, Louis; Cos, Paul
2016-05-01
The aim of this research was to optimize and validate an animal model for dry eye, adopting clinically relevant evaluation parameters. Dry eye was induced in female Wistar rats by surgical removal of the exorbital lacrimal gland. The clinical manifestations of dry eye were evaluated by tear volume measurements, corneal fluorescein staining, cytokine measurements in tear fluid, MMP-9 mRNA expression and CD3(+) cell infiltration in the conjunctiva. The animal model was validated by treatment with Restasis(®) (4 weeks) and commercial dexamethasone eye drops (2 weeks). Removal of the exorbital lacrimal gland resulted in 50% decrease in tear volume and a gradual increase in corneal fluorescein staining. Elevated levels of TNF-α and IL-1α have been registered in tear fluid together with an increase in CD3(+) cells in the palpebral conjunctiva when compared to control animals. Additionally, an increase in MMP-9 mRNA expression was recorded in conjunctival tissue. Reference treatment with Restasis(®) and dexamethasone eye drops had a positive effect on all evaluation parameters, except on tear volume. This rat dry eye model was validated extensively and judged appropriate for the evaluation of novel compounds and therapeutic preparations for dry eye disease.
Mathematical modeling applied to the left ventricle of heart
Ranjbar, Saeed
2014-01-01
Background: How can mathematics help us to understand the mechanism of the cardiac motion? The best known approach is to take a mathematical model of the fibered structure, insert it into a more-or-less complex model of cardiac architecture, and then study the resulting fibers of activation that propagate through the myocardium. In our paper, we have attempted to create a novel software capable of demonstrate left ventricular (LV) model in normal hearts. Method: Echocardiography was performed on 70 healthy volunteers. Data evaluated included: velocity (radial, longitudinal, rotational and vector point), displacement (longitudinal and rotational), strain rate (longitudinal and circumferential) and strain (radial, longitudinal and circumferential) of all 16 LV myocardial segments. Using these data, force vectors of myocardial samples were estimated by MATLAB software, interfaced in the echocardiograph system. Dynamic orientation contraction (through the cardiac cycle) of every individual myocardial fiber could ...
Applying meta-analysis to structural equation modeling.
Hedges, Larry V
2016-06-01
Structural equation models play an important role in the social sciences. Consequently, there is an increasing use of meta-analytic methods to combine evidence from studies that estimate the parameters of structural equation models. Two approaches are used to combine evidence from structural equation models: A direct approach that combines structural coefficients and an indirect approach that first combines correlation matrices and estimates structural coefficients from the combined correlation matrix. When there is no heterogeneity across studies, direct estimates of structural coefficients from several studies is an appealing approach. Heterogeneity of correlation matrices across studies presents both practical and conceptual problems. An alternative approach to heterogeneity is suggested as an example of how to better handle heterogeneity in this context. Copyright © 2016 John Wiley & Sons, Ltd.
Continuous Molecular Fields Approach Applied to Structure-Activity Modeling
Baskin, Igor I
2013-01-01
The Method of Continuous Molecular Fields is a universal approach to predict various properties of chemical compounds, in which molecules are represented by means of continuous fields (such as electrostatic, steric, electron density functions, etc). The essence of the proposed approach consists in performing statistical analysis of functional molecular data by means of joint application of kernel machine learning methods and special kernels which compare molecules by computing overlap integrals of their molecular fields. This approach is an alternative to traditional methods of building 3D structure-activity and structure-property models based on the use of fixed sets of molecular descriptors. The methodology of the approach is described in this chapter, followed by its application to building regression 3D-QSAR models and conducting virtual screening based on one-class classification models. The main directions of the further development of this approach are outlined at the end of the chapter.
Shrinking core models applied to the sodium silicate production process
Directory of Open Access Journals (Sweden)
Stanković Mirjana S.
2007-01-01
Full Text Available The sodium silicate production process, with the molar ratio SiO2/Na2O = 2, for detergent zeolite 4A production, is based on quartz sand dissolving in NaOH aqueous solution, with a specific molality. It is a complex process performed at high temperature and pressure. It is of vital importance to develop adequate mathematical models, which are able to predict the dynamical response of the process parameters. A few kinetic models were developed within this study, which were adjusted and later compared to experimental results. It was assumed that SiO2 particles are smooth spheres, with uniform diameter. This diameter decreases during dissolving. The influence of particle diameter, working temperature and hydroxide ion molality on the dissolution kinetics was investigated. It was concluded that the developed models are sufficiently correct, in the engineering sense, and can be used for the dynamical prediction of process parameters.
Differential Evolution algorithm applied to FSW model calibration
Idagawa, H. S.; Santos, T. F. A.; Ramirez, A. J.
2014-03-01
Friction Stir Welding (FSW) is a solid state welding process that can be modelled using a Computational Fluid Dynamics (CFD) approach. These models use adjustable parameters to control the heat transfer and the heat input to the weld. These parameters are used to calibrate the model and they are generally determined using the conventional trial and error approach. Since this method is not very efficient, we used the Differential Evolution (DE) algorithm to successfully determine these parameters. In order to improve the success rate and to reduce the computational cost of the method, this work studied different characteristics of the DE algorithm, such as the evolution strategy, the objective function, the mutation scaling factor and the crossover rate. The DE algorithm was tested using a friction stir weld performed on a UNS S32205 Duplex Stainless Steel.
Zhu, Lei; Zhang, Cheng; Chuck, Roy S.
2012-01-01
Purpose To evaluate the effect of the topical steroid, fluorometholone, and the non-steroidal anti-inflammatory drugs (NSAIDs), nepafenac and ketorolac, on inflammatory cytokine expression of the ocular surface in the botulium toxin B-induced murine dry eye model. Methods Topical artificial tears (0.5% carboxymethylcellulose sodium), 0.1% fluorometholone, 0.1% nepafenac, and 0.4% ketorolac were applied 3 times per day in a dry eye mouse model 1 week after intralacrimal botulium toxin B (BTX-B...
Jellium-with-gap model applied to semilocal kinetic functionals
Constantin, Lucian A.; Fabiano, Eduardo; Śmiga, Szymon; Della Sala, Fabio
2017-03-01
We investigate a highly nonlocal generalization of the Lindhard function, given by the jellium-with-gap model. We find a band-gap-dependent gradient expansion of the kinetic energy, which performs noticeably well for large atoms. Using the static linear response theory and the simplest semilocal model for the local band gap, we derive a nonempirical generalized gradient approximation (GGA) of the kinetic energy. This GGA kinetic-energy functional is remarkably accurate for the description of weakly interacting molecular systems within the subsystem formulation of density functional theory.
Combustion and flow modelling applied to the OMV VTE
Larosiliere, Louis M.; Jeng, San-Mou
1990-01-01
A predictive tool for hypergolic bipropellant spray combustion and flow evolution in the OMV VTE (orbital maneuvering vehicle variable thrust engine) is described. It encompasses a computational technique for the gas phase governing equations, a discrete particle method for liquid bipropellant sprays, and constitutive models for combustion chemistry, interphase exchanges, and unlike impinging liquid hypergolic stream interactions. Emphasis is placed on the phenomenological modelling of the hypergolic liquid bipropellant gasification processes. An application to the OMV VTE combustion chamber is given in order to show some of the capabilities and inadequacies of this tool.
A Decision-Making Model Applied to Career Counseling.
Olson, Christine; And Others
1990-01-01
A four-component model for career decision-making counseling relates each component to assessment questions and appropriate intervention strategies. The components are (1) conceptualization (definition of the problem); (2) enlargement of response repertoire (generation of alternatives); (3) identification of discriminative stimuli (consequences of…
Improving Credit Scorecard Modeling Through Applying Text Analysis
Directory of Open Access Journals (Sweden)
Omar Ghailan
2016-04-01
Full Text Available In the credit card scoring and loans management, the prediction of the applicant’s future behavior is an important decision support tool and a key factor in reducing the risk of Loan Default. A lot of data mining and classification approaches have been developed for the credit scoring purpose. For the best of our knowledge, building a credit scorecard by analyzing the textual data in the application form has not been explored so far. This paper proposes a comprehensive credit scorecard model technique that improves credit scorecard modeling though employing textual data analysis. This study uses a sample of loan application forms of a financial institution providing loan services in Yemen, which represents a real-world situation of the credit scoring and loan management. The sample contains a set of Arabic textual data attributes defining the applicants. The credit scoring model based on the text mining pre-processing and logistic regression techniques is proposed and evaluated through a comparison with a group of credit scorecard modeling techniques that use only the numeric attributes in the application form. The results show that adding the textual attributes analysis achieves higher classification effectiveness and outperforms the other traditional numerical data analysis techniques.
Modeling of diffuse molecular gas applied to HD 102065 observations
Nehme, Cyrine; Boulanger, Francois; Forets, Guillaume Pineau des; Gry, Cecile
2008-01-01
Aims. We model a diffuse molecular cloud present along the line of sight to the star HD 102065. We compare our modeling with observations to test our understanding of physical conditions and chemistry in diffuse molecular clouds. Methods. We analyze an extensive set of spectroscopic observations which characterize the diffuse molecular cloud observed toward HD 102065. Absorption observations provide the extinction curve, H2, C I, CO, CH, and CH+ column densities and excitation. These data are complemented by observations of CII, CO and dust emission. Physical conditions are determined using the Meudon PDR model of UV illuminated gas. Results. We find that all observational results, except column densities of CH, CH+ and H2 in its excited (J > 2) levels, are consistent with a cloud model implying a Galactic radiation field (G~0.4 in Draine's unit), a density of 80 cm-3 and a temperature (60-80 K) set by the equilibrium between heating and cooling processes. To account for excited (J >2) H2 levels column densit...
Comparison of various modelling approaches applied to cholera case data
CSIR Research Space (South Africa)
Van Den Bergh, F
2008-06-01
Full Text Available The application of a methodology that proposes the use of spectral methods to inform the development of statistical forecasting models for cholera case data is explored in this paper. The seasonal behaviour of the target variable (cholera cases...
Applied Bounded Model Checking for Interlocking System Designs
DEFF Research Database (Denmark)
Haxthausen, Anne Elisabeth; Peleska, Jan; Pinger, Ralf
2014-01-01
of behavioural (operational) semantics. The former checks that the plant model – that is, the software components reflecting the physical components of the interlocking system – has been set up in an adequate way. The latter investigates trains moving through the network, with the objective to uncover potential...
An Analytical Model for Learning: An Applied Approach.
Kassebaum, Peter Arthur
A mediated-learning package, geared toward non-traditional students, was developed for use in the College of Marin's cultural anthropology courses. An analytical model for learning was used in the development of the package, utilizing concepts related to learning objectives, programmed instruction, Gestalt psychology, cognitive psychology, and…
The method of characteristics applied to analyse 2DH models
Sloff, C.J.
1992-01-01
To gain insight into the physical behaviour of 2D hydraulic models (mathematically formulated as a system of partial differential equations), the method of characteristics is used to analyse the propagation of physical meaningful disturbances. These disturbances propagate as wave fronts along bichar
Polarimetric SAR interferometry applied to land ice: modeling
DEFF Research Database (Denmark)
Dall, Jørgen; Papathanassiou, Konstantinos; Skriver, Henning
2004-01-01
This paper introduces a few simple scattering models intended for the application of polarimetric SAR interfer-ometry to land ice. The principal aim is to eliminate the penetration bias hampering ice sheet elevation maps generated with single-channel SAR interferometry. The polarimetric coherent...
Robust model identification applied to type 1diabetes
DEFF Research Database (Denmark)
Finan, Daniel Aaron; Jørgensen, John Bagterp; Poulsen, Niels Kjølstad;
2010-01-01
In many realistic applications, process noise is known to be neither white nor normally distributed. When identifying models in these cases, it may be more effective to minimize a different penalty function than the standard sum of squared errors (as in a least-squares identification method...
Applying an Employee-Motivation Model to Prevent Student Plagiarism.
Malouff, John M.; Sims, Randi L.
1996-01-01
A model based on Vroom's expectancy theory of employee motivation posits that instructors can prevent plagiarism by ensuring that students understand the rules of ethical writing, expect assignments to be manageable and have personal benefits, and expect plagiarism to be difficult and have important personal costs. (SK)
Applying an Employee-Motivation Model to Prevent Student Plagiarism.
Malouff, John M.; Sims, Randi L.
1996-01-01
A model based on Vroom's expectancy theory of employee motivation posits that instructors can prevent plagiarism by ensuring that students understand the rules of ethical writing, expect assignments to be manageable and have personal benefits, and expect plagiarism to be difficult and have important personal costs. (SK)
A comparison of various modelling approaches applied to Cholera ...
African Journals Online (AJOL)
in the ability to assess results objectively via significance testing and other ... The focus in this paper is on the model fitting component, and not on the .... A popular way to gain insight into the dominant frequencies of a signal is to ... may involve noise generated by autoregressive processes, alternative algorithms such as.
Dynamics Model Applied to Pricing Options with Uncertain Volatility
Directory of Open Access Journals (Sweden)
Lorella Fatone
2012-01-01
model is proposed. The data used to test the calibration problem included observations of asset prices over a finite set of (known equispaced discrete time values. Statistical tests were used to estimate the statistical significance of the two parameters of the Black-Scholes model: the volatility and the drift. The effects of these estimates on the option pricing problem were investigated. In particular, the pricing of an option with uncertain volatility in the Black-Scholes framework was revisited, and a statistical significance was associated with the price intervals determined using the Black-Scholes-Barenblatt equations. Numerical experiments involving synthetic and real data were presented. The real data considered were the daily closing values of the S&P500 index and the associated European call and put option prices in the year 2005. The method proposed here for calibrating the Black-Scholes dynamics model could be extended to other science and engineering models that may be expressed in terms of stochastic dynamical systems.
Modular Modelling and Simulation Approach - Applied to Refrigeration Systems
DEFF Research Database (Denmark)
Sørensen, Kresten Kjær; Stoustrup, Jakob
2008-01-01
This paper presents an approach to modelling and simulation of the thermal dynamics of a refrigeration system, specifically a reefer container. A modular approach is used and the objective is to increase the speed and flexibility of the developed simulation environment. The refrigeration system...
A Spatial Lattice Model Applied for Meteorological Visualization and Analysis
Directory of Open Access Journals (Sweden)
Mingyue Lu
2017-03-01
Full Text Available Meteorological information has obvious spatial-temporal characteristics. Although it is meaningful to employ a geographic information system (GIS to visualize and analyze the meteorological information for better identification and forecasting of meteorological weather so as to reduce the meteorological disaster loss, modeling meteorological information based on a GIS is still difficult because meteorological elements generally have no stable shape or clear boundary. To date, there are still few GIS models that can satisfy the requirements of both meteorological visualization and analysis. In this article, a spatial lattice model based on sampling particles is proposed to support both the representation and analysis of meteorological information. In this model, a spatial sampling particle is regarded as the basic element that contains the meteorological information, and the location where the particle is placed with the time mark. The location information is generally represented using a point. As these points can be extended to a surface in two dimensions and a voxel in three dimensions, if these surfaces and voxels can occupy a certain space, then this space can be represented using these spatial sampling particles with their point locations and meteorological information. In this case, the full meteorological space can then be represented by arranging numerous particles with their point locations in a certain structure and resolution, i.e., the spatial lattice model, and extended at a higher resolution when necessary. For practical use, the meteorological space is logically classified into three types of spaces, namely the projection surface space, curved surface space, and stereoscopic space, and application-oriented spatial lattice models with different organization forms of spatial sampling particles are designed to support the representation, inquiry, and analysis of meteorological information within the three types of surfaces. Cases
Applying Transtheoretical Model to Promote Physical Activities Among Women
Pirzadeh, Asiyeh; Mostafavi, Firoozeh; Ghofranipour, Fazllolah; Feizi, Awat
2015-01-01
Background: Physical activity is one of the most important indicators of health in communities but different studies conducted in the provinces of Iran showed that inactivity is prevalent, especially among women. Objectives: Inadequate regular physical activities among women, the importance of education in promoting the physical activities, and lack of studies on the women using transtheoretical model, persuaded us to conduct this study with the aim of determining the application of transtheoretical model in promoting the physical activities among women of Isfahan. Materials and Methods: This research was a quasi-experimental study which was conducted on 141 women residing in Isfahan, Iran. They were randomly divided into case and control groups. In addition to the demographic information, their physical activities and the constructs of the transtheoretical model (stages of change, processes of change, decisional balance, and self-efficacy) were measured at 3 time points; preintervention, 3 months, and 6 months after intervention. Finally, the obtained data were analyzed through t test and repeated measures ANOVA test using SPSS version 16. Results: The results showed that education based on the transtheoretical model significantly increased physical activities in 2 aspects of intensive physical activities and walking, in the case group over the time. Also, a high percentage of people have shown progress during the stages of change, the mean of the constructs of processes of change, as well as pros and cons. On the whole, a significant difference was observed over the time in the case group (P < 0.01). Conclusions: This study showed that interventions based on the transtheoretical model can promote the physical activity behavior among women. PMID:26834796
Stochastic modeling to determine the economic effects of blanket, selective, and no dry cow therapy
Huijps, K.; Hogeveen, H.
2007-01-01
In many countries, blanket dry cow therapy (DCT) is the standard way to dry off cows. Because of concerns about antibiotic resistance, selective DCT is proposed as an alternative. The economic consequences of different types of DCT were studied previously, but variation between input traits and diff
Mathematical Modeling of Microwave-Assisted Convective Heating and Drying of Grapes
This research studied the processing performance and product quality of Thompson seedless grapes dried using microwave-assisted convective hot air drying as well as the effect of blanching and dipping pretreatments. Two pretreatment methods were compared, dipping into 2% ethyl oleate (V/V) and 5% p...
Modelling drug degradation in a spray dried polymer dispersion using a modified Arrhenius equation.
Patterson, Adele; Ferreira, Ana P; Banks, Elizabeth; Skeene, Kirsty; Clarke, Graham; Nicholson, Sarah; Rawlinson-Malone, Clare
2015-01-15
The Pharmaceutical industry is increasingly utilizing amorphous technologies to overcome solubility challenges. A common approach is the use of drug in polymer dispersions to prevent recrystallization of the amorphous drug. Understanding the factors affecting chemical and physical degradation of the drug within these complex systems, e.g., temperature and relative humidity, is an important step in the selection of a lead formulation, and development of appropriate packaging/storage control strategies. The Arrhenius equation has been used as the basis of a number of models to predict the chemical stability of formulated product. In this work, we investigate the increase in chemical degradation seen for one particular spray dried dispersion formulation using hydroxypropyl methylcellulose acetate succinate (HPMC-AS). Samples, prepared using polymers with different substitution levels, were placed on storage for 6 months under a range of different temperature and relative humidity conditions and the degradant level monitored using high-performance liquid chromatography (HPLC). While the data clearly illustrates the impact of temperature and relative humidity on the degradant levels detected, it also highlighted that these terms do not account for all the variability in the data. An extension of the Arrhenius equation to include a term for the polymer chemistry, specifically the degree of succinoyl substitution on the polymer backbone, was shown to improve the fit of the model to the data.
Model-Based PAT for Quality Management in Pharmaceuticals Freeze-Drying: State of the Art
Fissore, Davide
2017-01-01
Model-based process analytical technologies can be used for the in-line control and optimization of a pharmaceuticals freeze-drying process, as well as for the off-line design of the process, i.e., the identification of the optimal operating conditions. This paper aims at presenting the state of the art in this field, focusing, particularly, on three groups of systems, namely, those based on the temperature measurement (i.e., the soft sensor), on the chamber pressure measurement (i.e., the systems based on the test of pressure rise and of pressure decrease), and on the sublimation flux estimate (i.e., the tunable diode laser absorption spectroscopy and the valveless monitoring system). The application of these systems for in-line process optimization (e.g., using a model predictive control algorithm) and to get a true quality by design (e.g., through the off-line calculation of the design space of the process) is presented and discussed. PMID:28224123
Energy Technology Data Exchange (ETDEWEB)
Cummings, R.G.; Morris, G.E.
1979-09-01
An analytical methodology is developed for assessing alternative modes of generating electricity from hot dry rock (HDR) geothermal energy sources. The methodology is used in sensitivity analyses to explore relative system economics. The methodology used a computerized, intertemporal optimization model to determine the profit-maximizing design and management of a unified HDR electric power plant with a given set of geologic, engineering, and financial conditions. By iterating this model on price, a levelized busbar cost of electricity is established. By varying the conditions of development, the sensitivity of both optimal management and busbar cost to these conditions are explored. A plausible set of reference case parameters is established at the outset of the sensitivity analyses. This reference case links a multiple-fracture reservoir system to an organic, binary-fluid conversion cycle. A levelized busbar cost of 43.2 mills/kWh ($1978) was determined for the reference case, which had an assumed geothermal gradient of 40/sup 0/C/km, a design well-flow rate of 75 kg/s, an effective heat transfer area per pair of wells of 1.7 x 10/sup 6/ m/sup 2/, and plant design temperature of 160/sup 0/C. Variations in the presumed geothermal gradient, size of the reservoir, drilling costs, real rates of return, and other system parameters yield minimum busbar costs between -40% and +76% of the reference case busbar cost.
Awalina; Harimawan, A.; Haryani, G. S.; Setiadi, T.
2017-05-01
The Biosorption of cadmium (II) ions on dried biomass of Aphanothece sp.which previously grown in a photobioreactor system with atmospheric carbon dioxide fed input, was studied in a batch system with respect to initial pH, biomass concentration, contact time, and temperature. The biomass exhibited the highest cadmium (II) uptake capacity at 30ºC, initial pH of 8.0±0.2 in 60 minute and initial cadmium (II) ion concentration of 7.76 mg/L. Maximum biosorption capacities were 16.47 mg/g, 54.95 mg/g and 119.05 mg/g at range of initial cadmium (II) 0.96-3.63 mg/L, 1.99-8.10 mg/L and 6.48-54.38 mg/L, respectively. Uptake kinetics follows the pseudo-second order model while equilibrium is best described by Langmuir isotherm model. Isotherms have been used to determine thermodynamic parameter process (free energy change, enthalpy change and entropy change). FTIR analysis of microalgae biomass revealed the presence of amino acids, carboxyl, hydroxyl, sulfhydryl and carbonyl groups, which are responsible for biosorption of metal ions. During repeated sorption/desorption cycles, the ratio of Cd (II) desorption to biosorption decreased from 81% (at first cycle) to only 27% (at the third cycle). Nevertheless, due to its higher biosorption capability than other adsorbent, Aphanothece sp appears to be a good biosorbent for removing metal Cd (II) ions from aqueous phase.
Modeling relationship between runoff and soil properties in dry-farming lands, NW Iran
Vaezi, A. R.; Bahrami, H. A.; Sadeghi, S. H. R.; Mahdian, M. H.
2010-04-01
The process of transformation of rainfall into runoff over a catchment is very complex and exhibits both temporal and spatial variability. However, in a semi-arid area this variability is mainly controlled by the physical and chemical properties of the soil surface. Developing an accurate and easily-used model that can appropriately determine the runoff generation value is of strong demand. In this study a simple, an empirically based model developed to explore effect of soil properties on runoff generation. Thirty six dry-farming lands under follow conditions in a semi-arid agricultural zone in Hashtroud, NW Iran were considered to installation of runoff plots. Runoff volume was measured at down part of standard plots under natural rainfall events from March 2005 to March 2007. Results indicated that soils were mainly clay loam having 36.7% sand, 31.6% silt and 32.0% clay, and calcareous with about 13% lime. During a 2-year period, 41 natural rainfall events produced surface runoff at the plots. Runoff was negatively (R2=0.61, pfactors controlling runoff in soils of the semi-arid regions.
Applying the Extended Parallel Process Model to workplace safety messages.
Basil, Michael; Basil, Debra; Deshpande, Sameer; Lavack, Anne M
2013-01-01
The extended parallel process model (EPPM) proposes fear appeals are most effective when they combine threat and efficacy. Three studies conducted in the workplace safety context examine the use of various EPPM factors and their effects, especially multiplicative effects. Study 1 was a content analysis examining the use of EPPM factors in actual workplace safety messages. Study 2 experimentally tested these messages with 212 construction trainees. Study 3 replicated this experiment with 1,802 men across four English-speaking countries-Australia, Canada, the United Kingdom, and the United States. The results of these three studies (1) demonstrate the inconsistent use of EPPM components in real-world work safety communications, (2) support the necessity of self-efficacy for the effective use of threat, (3) show a multiplicative effect where communication effectiveness is maximized when all model components are present (severity, susceptibility, and efficacy), and (4) validate these findings with gory appeals across four English-speaking countries.
Consideration of an applied model of public health program infrastructure.
Lavinghouze, René; Snyder, Kimberly; Rieker, Patricia; Ottoson, Judith
2013-01-01
Systemic infrastructure is key to public health achievements. Individual public health program infrastructure feeds into this larger system. Although program infrastructure is rarely defined, it needs to be operationalized for effective implementation and evaluation. The Ecological Model of Infrastructure (EMI) is one approach to defining program infrastructure. The EMI consists of 5 core (Leadership, Partnerships, State Plans, Engaged Data, and Managed Resources) and 2 supporting (Strategic Understanding and Tactical Action) elements that are enveloped in a program's context. We conducted a literature search across public health programs to determine support for the EMI. Four of the core elements were consistently addressed, and the other EMI elements were intermittently addressed. The EMI provides an initial and partial model for understanding program infrastructure, but additional work is needed to identify evidence-based indicators of infrastructure elements that can be used to measure success and link infrastructure to public health outcomes, capacity, and sustainability.
Applying learning theories and instructional design models for effective instruction.
Khalil, Mohammed K; Elkhider, Ihsan A
2016-06-01
Faculty members in higher education are involved in many instructional design activities without formal training in learning theories and the science of instruction. Learning theories provide the foundation for the selection of instructional strategies and allow for reliable prediction of their effectiveness. To achieve effective learning outcomes, the science of instruction and instructional design models are used to guide the development of instructional design strategies that elicit appropriate cognitive processes. Here, the major learning theories are discussed and selected examples of instructional design models are explained. The main objective of this article is to present the science of learning and instruction as theoretical evidence for the design and delivery of instructional materials. In addition, this article provides a practical framework for implementing those theories in the classroom and laboratory. Copyright © 2016 The American Physiological Society.
Applying Transtheoretical Model to Promote Physical Activities Among Women
2015-01-01
Background: Physical activity is one of the most important indicators of health in communities but different studies conducted in the provinces of Iran showed that inactivity is prevalent, especially among women. Objectives: Inadequate regular physical activities among women, the importance of education in promoting the physical activities, and lack of studies on the women using transtheoretical model, persuaded us to conduct this study with the aim of determining the application of transtheo...
Cellular systems biology profiling applied to cellular models of disease.
Giuliano, Kenneth A; Premkumar, Daniel R; Strock, Christopher J; Johnston, Patricia; Taylor, Lansing
2009-11-01
Building cellular models of disease based on the approach of Cellular Systems Biology (CSB) has the potential to improve the process of creating drugs as part of the continuum from early drug discovery through drug development and clinical trials and diagnostics. This paper focuses on the application of CSB to early drug discovery. We discuss the integration of protein-protein interaction biosensors with other multiplexed, functional biomarkers as an example in using CSB to optimize the identification of quality lead series compounds.
Applying OWA operator to model group behaviors in uncertain QFD
2013-01-01
It is a crucial step to derive the priority order of design requirements (DRs) from customer requirements (CRs) in quality function deployment (QFD). However, it is not straightforward to prioritize DRs due to two types of uncertainties: human subjective perception and user variability. This paper proposes an OWA based group decision-making approach to uncertain QFD with an application to a flexible manufacturing system design. The proposed model performs computations solely based on the orde...
APPLYING LOGISTIC REGRESSION MODEL TO THE EXAMINATION RESULTS DATA
Directory of Open Access Journals (Sweden)
Goutam Saha
2011-01-01
Full Text Available The binary logistic regression model is used to analyze the school examination results(scores of 1002 students. The analysis is performed on the basis of the independent variables viz.gender, medium of instruction, type of schools, category of schools, board of examinations andlocation of schools, where scores or marks are assumed to be dependent variables. The odds ratioanalysis compares the scores obtained in two examinations viz. matriculation and highersecondary.
Structure Modeling and Validation applied to Source Physics Experiments (SPEs)
Larmat, C. S.; Rowe, C. A.; Patton, H. J.
2012-12-01
The U. S. Department of Energy's Source Physics Experiments (SPEs) comprise a series of small chemical explosions used to develop a better understanding of seismic energy generation and wave propagation for low-yield explosions. In particular, we anticipate improved understanding of the processes through which shear waves are generated by the explosion source. Three tests, 100, 1000 and 1000 kg yields respectively, were detonated in the same emplacement hole and recorded on the same networks of ground motion sensors in the granites of Climax Stock at the Nevada National Security Site. We present results for the analysis and modeling of seismic waveforms recorded close-in on five linear geophone lines extending radially from ground zero, having offsets from 100 to 2000 m and station spacing of 100 m. These records exhibit azimuthal variations of P-wave arrival times, and phase velocity, spreading and attenuation properties of high-frequency Rg waves. We construct a 1D seismic body-wave model starting from a refraction analysis of P-waves and adjusting to address time-domain and frequency-domain dispersion measurements of Rg waves between 2 and 9 Hz. The shallowest part of the structure we address using the arrival times recorded by near-field accelerometers residing within 200 m of the shot hole. We additionally perform a 2D modeling study with the Spectral Element Method (SEM) to investigate which structural features are most responsible for the observed variations, in particular anomalously weak amplitude decay in some directions of this topographically complicated locality. We find that a near-surface, thin, weathered layer of varying thickness and low wave speeds plays a major role on the observed waveforms. We anticipate performing full 3D modeling of the seismic near-field through analysis and validation of waveforms on the 5 radial receiver arrays.
Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery
Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.
2010-09-01
Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.
A theoretical intellectual capital model applied to cities
Directory of Open Access Journals (Sweden)
José Luis Alfaro Navarro
2013-06-01
Full Text Available New Management Information Systems (MIS are necessary at local level as the main source of wealth creation. Therefore, tools and approaches that provide a full future vision of any organization should be a strategic priority for economic development. In this line, cities are “centers of knowledge and sources of growth and innovation” and integrated urban development policies are necessary. These policies support communication networks and optimize location structures as strategies that provide opportunities for social and democratic participation for the citizens. This paper proposes a theoretical model to measure and evaluate the cities intellectual capital that allows determine what we must take into account to make cities a source of wealth, prosperity, welfare and future growth. Furthermore, local intellectual capital provides a long run vision. Thus, in this paper we develop and explain how to implement a model to estimate intellectual capital in cities. In this sense, our proposal is to provide a model for measuring and managing intellectual capital using socio-economic indicators for cities. These indicators offer a long term picture supported by a comprehensive strategy for those who occupy the local space, infrastructure for implementation and management of the environment for its development.
Applying fuzzy analytic network process in quality function deployment model
Directory of Open Access Journals (Sweden)
Mohammad Ali Afsharkazemi
2012-08-01
Full Text Available In this paper, we propose an empirical study of QFD implementation when fuzzy numbers are used to handle the uncertainty associated with different components of the proposed model. We implement fuzzy analytical network to find the relative importance of various criteria and using fuzzy numbers we calculate the relative importance of these factors. The proposed model of this paper uses fuzzy matrix and house of quality to study the products development in QFD and also the second phase i.e. part deployment. In most researches, the primary objective is only on CRs to implement the quality function deployment and some other criteria such as production costs, manufacturing costs etc were disregarded. The results of using fuzzy analysis network process based on the QFD model in Daroupat packaging company to develop PVDC show that the most important indexes are being waterproof, resistant pill packages, and production cost. In addition, the PVDC coating is the most important index in terms of company experts’ point of view.
Experiences & Tools from Modeling Instruction Applied to Earth Sciences
Cervenec, J.; Landis, C. E.
2012-12-01
The Framework for K-12 Science Education calls for stronger curricular connections within the sciences, greater depth in understanding, and tasks higher on Bloom's Taxonomy. Understanding atmospheric sciences draws on core knowledge traditionally taught in physics, chemistry, and in some cases, biology. If this core knowledge is not conceptually sound, well retained, and transferable to new settings, understanding the causes and consequences of climate changes become a task in memorizing seemingly disparate facts to a student. Fortunately, experiences and conceptual tools have been developed and refined in the nationwide network of Physics Modeling and Chemistry Modeling teachers to build necessary understanding of conservation of mass, conservation of energy, particulate nature of matter, kinetic molecular theory, and particle model of light. Context-rich experiences are first introduced for students to construct an understanding of these principles and then conceptual tools are deployed for students to resolve misconceptions and deepen their understanding. Using these experiences and conceptual tools takes an investment of instructional time, teacher training, and in some cases, re-envisioning the format of a science classroom. There are few financial barriers to implementation and students gain a greater understanding of the nature of science by going through successive cycles of investigation and refinement of their thinking. This presentation shows how these experiences and tools could be used in an Earth Science course to support students developing conceptually rich understanding of the atmosphere and connections happening within.
Applying Model Checking to Generate Model-Based Integration Tests from Choreography Models
Wieczorek, Sebastian; Kozyura, Vitaly; Roth, Andreas; Leuschel, Michael; Bendisposto, Jens; Plagge, Daniel; Schieferdecker, Ina
Choreography models describe the communication protocols between services. Testing of service choreographies is an important task for the quality assurance of service-based systems as used e.g. in the context of service-oriented architectures (SOA). The formal modeling of service choreographies enables a model-based integration testing (MBIT) approach. We present MBIT methods for our service choreography modeling approach called Message Choreography Models (MCM). For the model-based testing of service choreographies, MCMs are translated into Event-B models and used as input for our test generator which uses the model checker ProB.
Thermal modeling of a vertical dry storage cask for used nuclear fuel
Energy Technology Data Exchange (ETDEWEB)
Li, Jie, E-mail: jieli@anl.gov; Liu, Yung Y., E-mail: yyliu@anl.gov
2016-05-15
Graphical abstract: - Highlights: • Thermal performance of a 3-D vertical dry cask under various conditions has been numerically studied by using ANSYS/FLUENT code. • The simulation was validated by comparing the results against data obtained from the temperature measurements of a commercial cask. • The results indicated that the basket with higher thermal conductivity dissipates decay heat out of the cask more efficiently than that with a lower thermal conductivity (aluminum composite vs. stainless steel). A heavier cooling gas is also helpful to enhance heat transfer via enhanced natural convection (N{sub 2} vs. He). • Coolant release from the fuel canister results in temperature change of the canister external surfaces. The simulation shows that such a change is large enough and detectable, which can provide a mechanism for leak detection by continuously monitoring this temperature change at the top center of the canister surface. • Partial blockage of the cask air inlets affects the temperature profiles marginally for both the fuel canister and those components inside. In contrast, fully blocked air inlets will lead to remarkable increases of the component temperatures. - Abstract: Thermal modeling of temperature profiles of dry casks has been identified as a high-priority item in a U.S. Department of Energy gap analysis. In this work, a three-dimensional model of a vertical dry cask has been constructed for computer simulation by using the ANSYS/FLUENT code. The vertical storage cask contains a welded canister for 32 Pressurized Water Reactor (PWR) used-fuel assemblies with a total decay heat load of 34 kW. To simplify thermal calculations, an effective thermal conductivity model for a 17 × 17 PWR used (or spent)-fuel assembly was developed and used in the simulation of thermal performance. The effects of canister fill gas (helium or nitrogen), internal pressure (1–6 atm), and basket material (stainless steel or aluminum alloy) were studied to
Simple Queueing Model Applied to the City of Portland
Simon, Patrice M.; Esser, Jörg; Nagel, Kai
We use a simple traffic micro-simulation model based on queueing dynamics as introduced by Gawron [IJMPC, 9(3):393, 1998] in order to simulate traffic in Portland/Oregon. Links have a flow capacity, that is, they do not release more vehicles per second than is possible according to their capacity. This leads to queue built-up if demand exceeds capacity. Links also have a storage capacity, which means that once a link is full, vehicles that want to enter the link need to wait. This leads to queue spill-back through the network. The model is compatible with route-plan-based approaches such as TRANSIMS, where each vehicle attempts to follow its pre-computed path. Yet, both the data requirements and the computational requirements are considerably lower than for the full TRANSIMS microsimulation. Indeed, the model uses standard emme/2 network data, and runs about eight times faster than real time with more than 100 000 vehicles simultaneously in the simulation on a single Pentium-type CPU. We derive the model's fundamental diagrams and explain it. The simulation is used to simulate traffic on the emme/2 network of the Portland (Oregon) metropolitan region (20 000 links). Demand is generated by a simplified home-to-work destination assignment which generates about half a million trips for the morning peak. Route assignment is done by iterative feedback between micro-simulation and router. An iterative solution of the route assignment for the above problem can be achieved within about half a day of computing time on a desktop workstation. We compare results with field data and with results of traditional assignment runs by the Portland Metropolitan Planning Organization. Thus, with a model such as this one, it is possible to use a dynamic, activities-based approach to transportation simulation (such as in TRANSIMS) with affordable data and hardware. This should enable systematic research about the coupling of demand generation, route assignment, and micro
Applying the transtheoretical model to health care proxy completion.
Finnell, Deborah S; Wu, Yow-Wu Bill; Jezewski, Mary Ann; Meeker, Mary Ann; Sessanna, Loralee; Lee, Jongwon
2011-01-01
For many, an important health decision is whether or not to document end-of-life wishes using an advance directive (e.g., health care proxy). To date, interventions targeting this health behavior have had little effect on increasing advance directive completion rates. Health behavior models, such as the transtheoretical model (TTM) could be useful for understanding the health decision-making processes used along a continuum, from no intention to complete an advance directive to completing one and discussing it with an appointed advocate. To explore the applicability of the TTM for a previously understudied health behavior-completing a health care proxy (HCP). Four established TTM measures for completing a HCP (stages of change, processes of change, decisional balance, and self-efficacy) were administered to 566 adults with coverage from 1 of 2 health insurance companies. Separate analyses of variance were used to test the relationships between the independent variable (stages of change) and dependent variables (processes of change, decisional balance, self-efficacy scores). Consistent with other TTM research both the experiential and the behavioral processes of change revealed the lowest scores in the precontemplation stage peaking in the preparation stage. The pattern of pros and cons was replicated from previous TTM studies, with the 2 scores crossing over just prior to the preparation stage. Self-efficacy scores incrementally increased across the stages of change with the largest effect evident from the precontemplation to preparation stage. The models developed from this study can be used to guide the development of stage-based interventions for promoting health care proxy completion.
Therapeutic efficacy of fibroblast growth factor 10 in a rabbit model of dry eye.
Zheng, Wenjing; Ma, Mingming; Du, Ergang; Zhang, Zhengwei; Jiang, Kelimu; Gu, Qing; Ke, Bilian
2015-11-01
The aim of the present study was to investigate the therapeutic efficacy of fibroblast growth factor 10 (FGF10) in the promotion of healing, survival and expression of mucin in corneal epithelial cells in a rabbit dry eye model. A total of 12 healthy female New Zealand white rabbits were divided randomly into three groups. The lacrimal glands were injected with saline either alone (normal control group) or with concanavalin A (Con A), with either topical phosphate‑buffered saline (PBS; PBS control group) or 25 µg/ml FGF10 (FGF10 treatment group). Lacrimal gland inflammation, tear function, corneal epithelial cell integrity, cell apoptosis and mucin expression were subsequently assessed. Lacrimal gland tissue biopsies were performed in conjunction with histology and electron microscopy observations. Tear meniscus height (TMH) and tear meniscus area (TMA) were measured using Fourier domain‑optical coherence tomography. Tear membrane break‑up time (TBUT) was also assessed and corneal fluorescein staining was performed. The percentages of apoptotic corneal and conjunctival (Cj) epithelial cells (ECs) were counted using a terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling method. The mRNA expression levels of Muc1 were determined using reverse transcription‑quantitative polymerase chain reaction analyses. The TMH and TMA values of the PBS and treatment groups were found to be significantly reduced, compared with those of the normal control group 3 days after Con A injection. However, the TMH and TMA of the FGF10 treatment group were higher, compared with those of the PBS group 3 and 7 days after treatment, respectively. Furthermore, the FGF10 treatment group exhibited prolonged TBUT, reduced corneal fluorescein staining and repaired epithelial cell ultrastructure7 days after treatment. The percentages of apoptotic corneal‑ and Cj‑ECs in the FGF10 treatment group were significantly reduced, compared with those in the PBS group. FGF10
Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model.
Zuniga-Teran, Adriana A; Orr, Barron J; Gimblett, Randy H; Chalfoun, Nader V; Guertin, David P; Marsh, Stuart E
2017-01-13
Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486) distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation) representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.
Neighborhood Design, Physical Activity, and Wellbeing: Applying the Walkability Model
Directory of Open Access Journals (Sweden)
Adriana A. Zuniga-Teran
2017-01-01
Full Text Available Neighborhood design affects lifestyle physical activity, and ultimately human wellbeing. There are, however, a limited number of studies that examine neighborhood design types. In this research, we examine four types of neighborhood designs: traditional development, suburban development, enclosed community, and cluster housing development, and assess their level of walkability and their effects on physical activity and wellbeing. We examine significant associations through a questionnaire (n = 486 distributed in Tucson, Arizona using the Walkability Model. Among the tested neighborhood design types, traditional development showed significant associations and the highest value for walkability, as well as for each of the two types of walking (recreation and transportation representing physical activity. Suburban development showed significant associations and the highest mean values for mental health and wellbeing. Cluster housing showed significant associations and the highest mean value for social interactions with neighbors and for perceived safety from crime. Enclosed community did not obtain the highest means for any wellbeing benefit. The Walkability Model proved useful in identifying the walkability categories associated with physical activity and perceived crime. For example, the experience category was strongly and inversely associated with perceived crime. This study provides empirical evidence of the importance of including vegetation, particularly trees, throughout neighborhoods in order to increase physical activity and wellbeing. Likewise, the results suggest that regular maintenance is an important strategy to improve mental health and overall wellbeing in cities.
ORGANIZING SCENARIO VARIABLES BY APPLYING THE INTERPRETATIVE STRUCTURAL MODELING (ISM
Directory of Open Access Journals (Sweden)
Daniel Estima de Carvalho
2009-10-01
Full Text Available The scenario building method is a thought mode - taken to effect in an optimized, strategic manner - based on trends and uncertain events, concerning a large variety of potential results that may impact the future of an organization.In this study, the objective is to contribute towards a possible improvement in Godet and Schoemaker´s scenario preparation methods, by employing the Interpretative Structural Modeling (ISM as a tool for the analysis of variables.Given this is an exploratory theme, bibliographical research with tool definition and analysis, examples extraction from literature and a comparison exercise of referred methods, were undertaken.It was verified that ISM may substitute or complement the original tools for the analysis of variables of scenarios per Godet and Schoemaker’s methods, given the fact that it enables an in-depth analysis of relations between variables in a shorter period of time, facilitating both structuring and construction of possible scenarios.Key-words: Strategy. Future studies. Interpretative Structural Modeling.
Weibull distribution for modeling drying of grapes and its application%基于Weibull分布函数的葡萄干燥过程模拟及应用
Institute of Scientific and Technical Information of China (English)
白竣文; 王吉亮; 肖红伟; 巨浩羽; 刘嫣红; 高振江
2013-01-01
为了探究 Weibull 分布函数中各参数的影响因素及其在干燥中的应用，该文以不同干燥方法（气体射流冲击干燥、真空脉动干燥）、干燥温度（50、55、60和65℃）以及烫漂预处理（30、60、90、120 s）的葡萄干燥过程为研究对象，利用Weibull分布函数对其干燥动力学曲线进行模拟并分析。研究结果表明：Weibull分布函数能够很好的模拟葡萄在试验条件下的干燥过程；尺度参数α与干燥温度有关，并且随着干燥温度的升高而降低；形状参数β与干燥方式和物料状态有关，但干燥温度对形状参数β的影响很小。计算了葡萄在干燥过程中的水分扩散系数Dcal在0.2982×10-9~2.7700×10-9 m2/s 之间，并根据阿伦尼乌斯公式计算出热风干燥和真空脉动干燥方法的干燥活化能分别为72.87和61.43 kJ/mol。研究结果为Weibull分布函数在葡萄干燥过程的应用提供参考。%Grapes as a seasonal fruit, have relatively high sugar content and moisture content, and are very sensitive to microbial spoilage during storage. Therefore, grapes once harvested must be consumed or processed into various products within a few weeks in order to reduce economic losses. Drying grapes into raisins is the major processing method in almost all countries where grapes are grown. The knowledge of the drying mechanism is very necessary for heat and moisture transportation efficiency, energy savings and product quality. Several different empirical and semi-empirical drying models were used for describing and predicting drying curves. Some of these models could give a good fit to the drying curves, but the basic idea of process characterization was to consider the process as a ‘‘black box’’--the drying materials and drying conditions were difficult to be related to the parameters of these models used. In this study, the Weibull distribution model was applied to the drying process under different
Luan, Shaohong; Wan, Pengxia; Li, Naiyang; Tang, Jing; Han, Yu; Xiong, Cuiju; Wang, Zhichong
2012-01-01
Background Dry eye is a common disease worldwide, and animal models are critical for the study of it. At present, there is no research about the stability of the extant animal models, which may have negative implications for previous dry eye studies. In this study, we observed the stability of a rabbit dry eye model induced by the topical benzalkonium chloride (BAC) and determined the valid time of this model. Methods and Findings Eighty white rabbits were randomly divided into four groups. One eye from each rabbit was randomly chosen to receive topical 0.1% BAC twice daily for 2 weeks (Group BAC-W2), 3 weeks (Group BAC-W3), 4 weeks (Group BAC-W4), or 5 weeks (Group BAC-W5). Fluorescein staining, Schirmer's tests, and conjunctival impression cytology were performed before BAC treatment (normal) and on days 0, 7, 14 and 21 after BAC removal. The eyeballs were collected at these time points for immunofluorescence staining, hematoxylin and eosin (HE) staining, and electron microscopy. After removing BAC, the signs of dry eye in Group BAC-W2 lasted one week. Compared with normal, there were still significant differences in the results of Schirmer's tests and fluorescein staining in Groups BAC-W3 and BAC-W4 on day 7 (P<0.05) and in Group BAC-W5 on day 14 (P<0.05). Decreases in goblet cell density remained stable in the three experimental groups at all time points (P<0.001). Decreased levels of mucin-5 subtype AC (MUC5AC), along with histopathological and ultrastructural disorders of the cornea and conjunctiva could be observed in Group BAC-W4 and particularly in Group BAC-W5 until day 21. Conclusions A stable rabbit dry eye model was induced by topical 0.1% BAC for 5 weeks, and after BAC removal, the signs of dry eye were sustained for 2 weeks (for the mixed type of dry eye) or for at least 3 weeks (for mucin-deficient dry eye). PMID:22438984