WorldWideScience

Sample records for drying cycle loveday

  1. Effect of wetting-drying cycles on soil desiccation cracking behaviour

    Directory of Open Access Journals (Sweden)

    Tang Chao-Sheng

    2016-01-01

    Full Text Available Better understanding the desiccation cracking process is essential in analysing drought effects on soil hydraulic and mechanical properties through consideration of the atmosphere-ground interaction. Laboratory tests were conducted to investigate the consequence of wetting-drying cycles on the initiation and propagation characteristics of desiccation cracks on soil surface. Initially saturated slurry specimens were prepared and subjected to five subsequent wetting-drying cycles. Image processing technique was employed to quantitatively analyze the morphology characteristics of crack patterns formed during each drying path. The results show that the desiccation cracking behaviour of soil is significantly affected by the wetting-drying cycles. Before the third wetting-drying cycle is reached, the surface crack ratio and the average crack width increases while the average clod area decreases with increasing the number of wetting-drying cycles. The number of intersections and crack segments per unit area reaches the peak values after the second wetting-drying cycle. After the third wetting-drying cycle is reached, the effect of increasing wetting-drying cycles on crack patterns is insignificant. Moreover, it is observed that the applied wetting-drying cycles are accompanied by a continual reconstruction of soil structure. The initial homogenous slurry structure is completely replaced with aggregated structure after the third cycles, and a significant increase in the inter-aggregate porosity can be observed.

  2. Damage Features of Altered Rock Subjected to Drying-Wetting Cycles

    Directory of Open Access Journals (Sweden)

    Zhe Qin

    2018-01-01

    Full Text Available An abandoned open pit was used as a tailing pond for a concentrating mill, with the height of the water surface subject to cyclic fluctuation. The effects of drying and wetting cycles on the mechanical parameters of pit rock were tested. Interactions of the hydrochemical environment, due to the dissolution of tailings, and drying and wetting cycles caused degradation of mechanical properties in the rock. It was found that uniaxial compressive strength and elastic modulus decreased as the number of dry/wet cycles increased. The quantitative relationship between the mechanical parameters and the number of dry/wet cycles was indicated by an exponential function. In addition to uniaxial testing, cohesion and the internal friction angle were determined through triaxial testing. The shear strength index deteriorated under the drying and wetting cycles. The hydrochemical environment also negatively affected the mechanical parameters. Potential effects between drying and wetting cycles and slope displacement were analyzed by on-site monitoring. The results show that the displacement increased because of the drying and wetting cycles, which may lead to sudden failure of the slope.

  3. Dry Air Cooler Modeling for Supercritical Carbon Dioxide Brayton Cycle Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-07-28

    Modeling for commercially available and cost effective dry air coolers such as those manufactured by Harsco Industries has been implemented in the Argonne National Laboratory Plant Dynamics Code for system level dynamic analysis of supercritical carbon dioxide (sCO2) Brayton cycles. The modeling can now be utilized to optimize and simulate sCO2 Brayton cycles with dry air cooling whereby heat is rejected directly to the atmospheric heat sink without the need for cooling towers that require makeup water for evaporative losses. It has sometimes been stated that a benefit of the sCO2 Brayton cycle is that it enables dry air cooling implying that the Rankine steam cycle does not. A preliminary and simple examination of a Rankine superheated steam cycle and an air-cooled condenser indicates that dry air cooling can be utilized with both cycles provided that the cycle conditions are selected appropriately

  4. Wet–dry cycles impact DOM retention in subsurface soils

    Directory of Open Access Journals (Sweden)

    Y. Olshansky

    2018-02-01

    Full Text Available Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet–dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet–dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet–dry treatment before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment. Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR and near-edge X-ray absorption fine structure (NEXAFS spectroscopic analyses revealed that wet–dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet–dry cycles in affecting sorption reactions of DOM to a complex soil

  5. Wet-dry cycles impact DOM retention in subsurface soils

    Science.gov (United States)

    Olshansky, Yaniv; Root, Robert A.; Chorover, Jon

    2018-02-01

    Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet-dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet-dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet-dry treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet-dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet-dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In the soil

  6. Nitrogen cycling under alternate wetting and drying cycles in Arkansas rice

    Science.gov (United States)

    Alternate wetting and drying (AWD) cycles offer potential savings in water use for paddy rice production while reducing both greenhouse gas emissions and lowering grain arsenic content. In a three-year (2011-2013) field study near Stuttgart, AR, one-third of a field previously grown to soybean was b...

  7. Physical Properties of Sandy Soil Affected by Soil Conditioner Under Wetting and Drying cycles

    Directory of Open Access Journals (Sweden)

    M.I. Choudhary

    1998-06-01

    Full Text Available Information on the effectiveness of soil conditioners over a prolonged period is scarce. A laboratory experiment was undertaken to evaluate the effectiveness of a polyacrylamide (Broadleaf P4 soil conditioner on the physical properties of sandy soil subjected to wetting and drying cycles. Four concentrations of Broadleaf P4 0, 0.2, 0.4, and 0.6% on dry weight basis were uniformly mixed with a calcareous sandy soil. Addition of Broadleaf P4 to sandy soil increased the water holding capacity, decreased the bulk density, and increased the porosity and void ratio at 0 and 16 wetting and drying cycles. The coefficient of linear extensibility increased considerably with increasing concentrations of the polymer. The addition of polymer at 0 and 16 cycles increased considerably the retention and availability of water in sandy soil. Saturated hydraulic conductivity decreased with increasing concentrations of Broadleaf P4 whereas unsaturated hydraulic conductivity at 0 and 16 cycles showed an increase with increasing soil moisture contents. After I6 wetting and drying cycles, the capacity of the soil to hold water was lost on average by 15.8% when compared to the 0 wetting and drying cycle. The effectiveness of the soil conditioner on bulk density, coefficient of linear extensibility, available water and saturated hydraulic conductivity was reduced on average by 14.1, 24.5, 21.l and 53.7% respectively. The significant changes in soil properties between 0 and 16 cycles suggested that the effectiveness of the conditioner decreased with the application of wetting and drying cycles. However, its effect was still considerable when compared to untreated soil under laboratory conditions.

  8. Electric Resistance Tests on Compacted Clay Material under Dynamic Load Coupled with Dry-Wet Cycling

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2018-01-01

    Full Text Available The study of compacted clay material under dynamic load coupled with dry-wet cycling is one of the most important areas in the field of transportation. In this paper, experiments in terms of compacted clay under dynamic load coupled with dry-wet cycling are performed, and synchronous resistivity tests are also conducted. According to the test results, the influences of cumulative plastic strain, dry-wet cycles, and amplitudes on the soil resistivity are analyzed. Then a new damage factor based on resistivity is proposed to evaluate the long-term performance of compacted clay material. The result of research shows that the evolution of the soil resistivity can be divided into two stages, which has a contrary tendency with that of cumulative plastic strain. The dry-wet cycles and amplitudes have a significant effect on the damage of the compacted soil, which indicates that the dry-wet cycling of compacted soil materials should not be ignored in road engineering, especially in rainy and humid areas.

  9. Role of wetting and drying cycles in formation and growth of soil aggregates

    Science.gov (United States)

    Ghezzehei, T. A.; Lopez, J. P.

    2009-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. In response to the various processes that occur within it, soil structure evolves continuously at multiple spatial and temporal scales. We hypothesize that the rhythm of the evolution is controlled by wetting and drying cycles. Here, we will present a mathematical description of the role of wetting and drying cycles in the formation and stabilization of soil aggregates with emphasis on two important roles of wetting and drying cycles: (1) transport and deposition of organic and inorganic cementing agents at the most effective locations, (2) chemical and physical alteration of cementing agents during desiccation and the resultant semi-permanent bonding (or bond hardening). Our results demonstrate that size and strength of aggregates are determined by particle size, degree of dryness, number of wetting-drying cycles, as well as concentration and solubility of dissolved and/or colloidal cementing agents. These results are in general agreement with experimental observations obtained from the literature.

  10. Nutritional responses to soil drying and rewetting cycles under partial root-zone drying irrigation

    DEFF Research Database (Denmark)

    Wang, Yaosheng; Jensen, Christian Richardt; Liu, Fulai

    2017-01-01

    signaling that regulates stomatal aperture. PRI induced soil DRW cycles and more soil water dynamics in the root zone enhance soil nutrient mineralization process and thus increase the bioavailability of soil nutrients, resulting in improved nitrogen (N) and phosphorus (P) uptake, in which soil microbial...... processes play a key role. Studies investigating how soil DRW cycles and water dynamics under PRI on nutrient transport in soil solution, soil microbe mediated P transformation, interactions between phytohormones and nutrient uptake, root morphological and architectural traits for nutrient acquisition......Abstract Repeated soil drying and rewetting (DRW) cycles occur in rainfed and irrigated agriculture. The intensity and frequency of DRW cycles regulate both microbial physiology and soil physical processes, hereby affecting the mineralization and immobilization of soil nutrients...

  11. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle.

    Science.gov (United States)

    Straller, Georg; Lee, Geoffrey

    2017-10-30

    Spray-freeze-drying was used to produce shrivelled, partially-collapsed microparticles of pure proteins that may be suitable for use in a ballistic injector. Various modifications of the freeze drying cycle were examined for their effects on collapse of the pure protein microparticles. The use of annealing at a shelf temperature of up to +10°C resulted in no visible particle shrinkage. This was because of the high T g ' of the pure protein. Inclusion of trehalose or sucrose led to particle shrinkage because of the plasticizing effects of the disaccharides on the protein. Only by extending the duration of primary drying from 240 to 2745min at shelf temperatures in the range -12 to -8°C were shrivelled, wrinkled particles of bSA and bCA of reduced porosity obtained. Manipulation of the freeze-drying cycle used for SFD can therefore be used to modify particle morphology and increase particle density. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Prawisudha, Pandji; Prabowo, Bayu; Budiman, Bentang Arief

    2015-01-01

    Highlights: • Novel integrated drying, gasification and combined cycle for empty fruit bunch. • Application of enhanced process integration to achieve high total energy efficiency. • The technology covers exergy recovery and process integration. • High overall energy efficiency can be achieved (about 44% including drying). - Abstract: A high-energy-efficient process for empty fruit bunch drying with integration to gasification and combined cycle processes is proposed. The enhancement is due to greater exergy recovery and more efficient process integration. Basically, the energy/heat involved in a single process is recovered as much as possible, leading to minimization of exergy destruction. In addition, the unrecoverable energy/heat is utilized for other processes through process integration. During drying, a fluidized bed dryer with superheated steam is used as the main evaporator. Exergy recovery is performed through exergy elevation via compression and effective heat coupling in a dryer and heat exchangers. The dried empty fruit bunches are gasified in a fluidized bed gasifier using air as the fluidizing gas. Furthermore, the produced syngas is utilized as fuel in the combined cycle module. From process analysis, the proposed integrated processes can achieve a relatively high energy efficiency. Compared to a standalone drying process employing exergy recovery, the proposed integrated drying can reduce consumed energy by about 1/3. In addition, the overall integrated processes can reach a total power generation efficiency of about 44%

  13. Effect of wet and dry cycles on dissolution of relatively insoluble particles containing Pu

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Eidson, A.F.; Wong, V.A.

    1987-01-01

    Dissolution of gross alpha emitter radioactivity from particles composed of mixed uranium and plutonium oxides or of plutonium dioxide continually immersed in solvent typically display at least a two-phase dissolution pattern. Rapid dissolution of a small fraction of the total particulate mass is followed by much slower dissolution for the majority of the particulate mass. In this study, respirable particles of (U, Pu)O 2 and PuO 2 were subjected to dissolution using an alternate wetting and drying cycle. Particles were continuously immersed in solvent for 4 d and then dried in air for 3 d. This cycle was repeated weekly for 7 wk. Four solvents were used to represent a range of potential environmental conditions and a fifth solvent was used for comparison to other continuous immersion studies. In contrast to dissolution studies involving continuous immersion over periods of two or more weeks that exhibit a three-phase dissolution process, the alternate wet-dry cycling resulted in repetition of the first two phases of the dissolution pattern for each cycle. This led to significantly enhanced dissolution of both particulate materials. The enhancement in total dissolution ranged from two to ten times larger during each wet-dry cycle compared to studies involving continuous immersion. The results indicate a potential need to re-evaluate environmental models of actinide element bioavailability for particulate materials released to environments where wet-dry cycling may be routine, i.e. intermittent rainfall in an otherwise arid climate or in stream beds with intermittent flow

  14. Shrinkage stress in concrete under dry-wet cycles: an example with concrete column

    Science.gov (United States)

    Gao, Yuan; Zhang, Jun; Luosun, Yiming

    2014-02-01

    This paper focuses on the simulation of shrinkage stress in concrete structures under dry-wet environments. In the modeling, an integrative model for autogenous and drying shrinkage predictions of concrete under dry-wet cycles is introduced first. Second, a model taking both cement hydration and moisture diffusion into account synchronously is used to calculate the distribution of interior humidity in concrete. Using the above two models, the distributions of shrinkage strain and stress in concrete columns made by normal and high strength concrete respectively under dry-wet cycles are calculated. The model results show that shrinkage gradient along the radial direction of the column from the center to outer surface increases with age as the outer circumference suffers to dry. The maximum and minimum shrinkage occur at the outer surface and the center of the column, respectively, under drying condition. As wetting starts, the shrinkage strain decreases with increase of interior humidity. The closer to the wetting face, the higher the humidity and the lower the shrinkage strain, as well as the lower the shrinkage stress. As results of the dry-wet cycles acting on the outer circumference of the column, cyclic stress status is developed within the area close to the outer surface of the column. The depth of the influencing zone of dry-wet cyclic action is influenced by concrete strength and dry-wet regime. For low strength concrete, relatively deeper influencing zone is expected compared with that of high strength concrete. The models are verified by concrete-steel composite ring tests and a good agreement between model and test results is found.

  15. The microstructure of self-healed PVA ECC under wet and dry cycles

    Directory of Open Access Journals (Sweden)

    Jia Huan Yu

    2010-06-01

    Full Text Available Self-healing of ECC (Engineered Cementitious Composites subjected to cyclic wetting and drying regimes is investigated in this paper. ECC structures subjected to outdoor environmental conditions such as wind and rain runoff can be simulated by accelerated test method of wetting and drying cycles. Uniaxial tensile tests of ECC M45 and ECC 2.8FA specimen are conducted respectively. It is found that crack width of ECC 2.8FA is around 10 μm with increased amount of fly ash, while the crack width of ECC M45 is around 100 μm. New insights about the microstructure and chemical composition analysis of ECC specimens initially cracked to 2% strain and then self-healed under wet-dry cycles are presented.

  16. Effects of arbuscular mycorrhizal fungi and soil nutrient addition on the growth of Phragmites australis under different drying-rewetting cycles.

    Science.gov (United States)

    Liang, Jin-Feng; An, Jing; Gao, Jun-Qin; Zhang, Xiao-Ya; Yu, Fei-Hai

    2018-01-01

    The frequency of soil drying-rewetting cycles is predicted to increase under future global climate change, and arbuscular mycorrhizal fungi (AMF) are symbiotic with most plants. However, it remains unknown how AMF affect plant growth under different frequencies of soil drying-rewetting cycles. We subjected a clonal wetland plant Phragmites australis to three frequencies of drying-rewetting cycles (1, 2, or 4 cycles), two nutrient treatments (with or without), and two AMF treatments (with or without) for 64 days. AMF promoted the growth of P. australis, especially in the 2 cycles of the drying-rewetting treatment. AMF had a significant positive effect on leaf mass and number of ramets in the 2 cycles of the drying-rewetting treatment with nutrient addition. In the 2 cycles of drying-rewetting treatment without nutrient addition, AMF increased leaf area and decreased belowground to aboveground biomass ratio. These results indicate that AMF may assist P. australis in coping with medium frequency of drying-rewetting cycles, and provide theoretical guidance for predicting how wetland plants respond to future global climate change.

  17. Effect of drying-wetting cycles on leaching behavior of cement solidified lead-contaminated soil.

    Science.gov (United States)

    Li, Jiang-Shan; Xue, Qiang; Wang, Ping; Li, Zhen-Ze; Liu, Lei

    2014-12-01

    Lead contaminated soil was treated by different concentration of ordinary Portland cement (OPC). Solidified cylindrical samples were dried at 40°C in oven for 48 h subsequent to 24h of immersing in different solution for one drying-wetting. 10 cycles were conducted on specimens. The changes in mass loss of specimens, as well as leaching concentration and pH of filtered leachates were studied after each cycle. Results indicated that drying-wetting cycles could accelerate the leaching and deterioration of solidified specimens. The cumulative leached lead with acetic acid (pH=2.88) in this study was 109, 83 and 71 mg respectively for solidified specimens of cement-to-dry soil (C/Sd) ratios 0.2, 0.3 and 0.4, compared to 37, 30, and 25mg for a semi-dynamic leaching test. With the increase of cycle times, the cumulative mass loss of specimens increased linearly, but pH of filtered leachates decreased. The leachability and deterioration of solidified specimens increased with acidity of solution. Increases of C/Sd clearly reduced the leachability and deterioration behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Soil aggregate formation: the role of wetting-drying cycles in the genesis of interparticle bonding

    Science.gov (United States)

    Albalasmeh, Ammar; Ghezzehei, Teamrat

    2013-04-01

    Soil structure influences many soil properties including aeration, water retention, drainage, bulk density, and resistance to erosion and indirectly influences most biological and chemical processes that occur in and around soil. In nature, soil is continually exposed to wetting (e.g., rainfall and diffusive flow) and drying (e.g., evaporation, diffusive flow and plant uptake). These natural wetting and drying cycles of soils are physical events that profoundly affect the development of soil structure, aggregate stability, carbon (C) flux and mineralization. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We found that aggregates of sand and silt particles can be formed by subjecting loose particles to wetting-drying cycles in the presence of dilute solutions of organic matter that mimic root or microbial exudates. Moreover, majority of the organic matter was deposited in the contact region between the sand particles, where the water accumulates during drying. The model predictions and aggregate stability measurements are supported by scanning electron micrographs that clearly show the process of aggregate formation.

  19. Conceptual Modeling of the Influence of Wetting and Drying Cycles on Soil Aggregation and Stabilization

    Science.gov (United States)

    Albalasmeh, A. A.; Ghezzehei, T.

    2011-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. The interaction of environmental and biotic agents influences the physical condition of the soil, particularly through soil structural evolution. Wetting and drying cycles are important environmental processes known to enhance aggregation, while clay minerals, sesquioxides and soil organic matter (SOM) are the soil solids most involved in soil structural development. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We will present results of the effect of particle size, number of wetting and drying cycles, viscosity, molecule length and concentration of suspended and/or dissolved cementing agents on soil aggregation and stabilization.

  20. Core characteristics of fast reactor cycle with simple dry pyrochemical processing

    International Nuclear Information System (INIS)

    Ikegami, Tetsuo

    2008-01-01

    Fast reactor core concept and core nuclear characteristics are studied for the application of the simple dry pyrochemical processing for fast reactor mixed oxide spent fuels, that is, the Compound Process Fuel Cycle, large FR core with of loaded fuels are recycled by the simple dry pyrochemical processing. Results of the core nuclear analyses show that it is possible to recycle FR spent fuel once and to have 1.01 of breeding ratio without radial blanket region. The comparison is made among three kinds of recycle fuels, LWR UO 2 spent fuel, LWR MOX spent fuel, and FR spent fuel. The recycle fuels reach an equilibrium state after recycles regardless of their starting heavy metal compositions, and the recycled FR fuel has the lowest radio-activity and the same level of heat generation among the recycle fuels. Therefore, the compound process fuel cycle has flexibility to recycle both LWR spent fuel and FR spent fuel. The concept has a possibility of enhancement of nuclear non-proliferation and process simplification of fuel cycle. (author)

  1. Soil structure restoration by wet/dry cycles assessed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Pires, L.F. [Univ. of Sao Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, Sao Paulo (Brazil)

    2005-07-01

    Some studies have shown that soil structures can be restored through the sequence of wetting and drying cycles. These cycles causes changes in the soil pore system, which is very important to agriculture, because directly affect plant growth by root penetration, retention and movement of water and gases. The aim of this study was to follow by gamma-ray computed tomography (CT) the effect of soil wetting/drying process on the soil structure repairing of samples collected in cylinders. A first-generation tomograph with an {sup 241}Am source and a 7.62 x 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. Image analysis and tomographic unit profiles show that CT can provide an insight to sample structure restoration, which helps to have a better comprehension of soil physical hydraulic phenomena. (author)

  2. Soil structure restoration by wet/dry cycles assessed by computed tomography

    International Nuclear Information System (INIS)

    Pires, L.F.

    2005-01-01

    Some studies have shown that soil structures can be restored through the sequence of wetting and drying cycles. These cycles causes changes in the soil pore system, which is very important to agriculture, because directly affect plant growth by root penetration, retention and movement of water and gases. The aim of this study was to follow by gamma-ray computed tomography (CT) the effect of soil wetting/drying process on the soil structure repairing of samples collected in cylinders. A first-generation tomograph with an 241 Am source and a 7.62 x 7.62 cm NaI(Tl) scintillation crystal detector coupled to a photomultiplier tube was employed. Image analysis and tomographic unit profiles show that CT can provide an insight to sample structure restoration, which helps to have a better comprehension of soil physical hydraulic phenomena. (author)

  3. Implementation of a dry process fuel cycle model into the DYMOND code

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Jeong, Chang Joon; Choi, Hang Bok

    2004-01-01

    For the analysis of a dry process fuel cycle, new modules were implemented into the fuel cycle analysis code DYMOND, which was developed by the Argonne National Laboratory. The modifications were made to the energy demand prediction model, a Canada Deuterium Uranium (CANDU) reactor, direct use of spent Pressurized Water Reactor (PWR) fuel in CANDU reactors (DUPIC) fuel cycle model, the fuel cycle calculation module, and the input/output modules. The performance of the modified DYMOND code was assessed for the postulated once-through fuel cycle models including both the PWR and CANDU reactor. This paper presents modifications of the DYMOND code and the results of sample calculations for the PWR once-through and DUPIC fuel cycles

  4. Do drying and rewetting cycles modulate effects of sulfadiazine spiked manure in soil?

    Science.gov (United States)

    Jechalke, Sven; Radl, Viviane; Schloter, Michael; Heuer, Holger; Smalla, Kornelia

    2016-05-01

    Naturally occurring drying-rewetting events in soil have been shown to affect the dissipation of veterinary antibiotics entering soil by manure fertilization. However, knowledge of effects on the soil microbial community structure and resistome is scarce. Here, consequences of drying-rewetting cycles on effects of sulfadiazine (SDZ) in soil planted with Dactylis glomerata L. were investigated in microcosms. Manure containing SDZ or not was applied to the pregrown grass and incubated for 56 days in a climate chamber. Water was either added daily or reduced during two drying events of 7 days, each followed by a recovery phase. Total community DNA was analyzed to reveal the effects on the bacterial community structure and on the abundance of sul1, sul2, intI1 ,intI2, qacE+qacEΔ1, traN and korB genes relative to 16S rRNA genes. 16S rRNA gene-based DGGE fingerprints indicated that drying-rewetting cycles modulated the effects of SDZ on the bacterial community structure in the soil. Furthermore, the SDZ treatment increased the relative abundance of sulfonamide resistance and integrase genes compared to the control. However, this increase was not different between moisture regimes, indicating that drying-rewetting had only a negligible effect on the selection of the resistome by SDZ in the manured soil. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Wet-dry cycles effect on ash water repellency. A laboratory experiment.

    Science.gov (United States)

    Pereira, Paulo; Cerdà, Artemi; Oliva, Marc; Mataix, Jorge; Jordán, Antonio

    2014-05-01

    In the immediate period after the fire, the ash layer has a strong influence on soil hydrological processes, as runoff, infiltration and erosion. Ash is very dynamic in the space and time. Until the first rainfall periods, ash is (re)distributed by the wind. After it can cover the soil surface, infiltrate or transported to other areas by water transport (Pereira et al., 2013a, b). This will have strong implications on nutrient redistribution and vegetation recovery. Ash layer may affect soil water repellency in different ways, depending on fire severity, soil properties and vegetation. Ash produced at low temperatures after low-severity burning is usually hydrophobic (Bodi et al., 2011, 2012). Wet-dry cycles have implications on ash physical and chemical properties, changing their effects in space and time. The aim of this study is to analyse the effects of fire temperature and severity on ash water repellency. Pinus sylvestris needles were collected in a Lithuania forest in Dzukija National Park (53º 54' N and 24º 22' E), transported to laboratory and washed with deionized water to remove soil particles and other residues. Needle samples were dried during 24 hours and exposed to different temperatures: 200, 300, 400 and 500 ºC, during 2 hours. Ash colour was analysed according to the Munsell Soil Color charts. Ash was black (10 YR 2/1) at 200 ºC, very dark grey (10YR 3/1) at 300 ºC, gray (10YR 5/1) at 400 ºC and light gray (10YR 7/1) at 500 ºC. Ten samples of ash released after each treatment were placed in plastic dishes (50 mm in diameter) in an amount enough to form a 5 mm thick layer, and ash water repellency was measured according to the Water Drop Penetration Test. Later, ash was carefully wetted with 15 ml of deionized water and placed in an oven during 4 days (96 hours), as in Bodí et al. (2012). This procedure was repeated 5 times in order to observe the effects of wet-dry cycles in ash water repellency. The results showed significant differences

  6. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    Science.gov (United States)

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment. © 2015 John Wiley & Sons Ltd.

  7. Surface Corrosion and Microstructure Degradation of Calcium Sulfoaluminate Cement Subjected to Wet-Dry Cycles in Sulfate Solution

    Directory of Open Access Journals (Sweden)

    Wuman Zhang

    2017-01-01

    Full Text Available The hydration products of calcium sulfoaluminate (CSA cement are different from those of Portland cement. The degradation of CSA cement subjected to wet-dry cycles in sulfate solution was studied in this paper. The surface corrosion was recorded and the microstructures were examined by scanning electron microscopy (SEM. The results show that SO42-, Na+, Mg2+, and Cl− have an effect on the stability of ettringite. In the initial period of sulfate attack, salt crystallization is the main factor leading to the degradation of CSA cement specimens. The decomposition and the carbonation of ettringite will cause long-term degradation of CSA cement specimens under wet-dry cycles in sulfate solution. The surface spalling and microstructure degradation increase significantly with the increase of wet-dry cycles, sulfate concentration, and water to cement ratio. Magnesium sulfate and sodium chloride reduce the degradation when the concentration of sulfate ions is a constant value.

  8. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy.

    Science.gov (United States)

    Rappaz, Benjamin; Cano, Elena; Colomb, Tristan; Kühn, Jonas; Depeursinge, Christian; Simanis, Viesturs; Magistretti, Pierre J; Marquet, Pierre

    2009-01-01

    Digital holography microscopy (DHM) is an optical technique which provides phase images yielding quantitative information about cell structure and cellular dynamics. Furthermore, the quantitative phase images allow the derivation of other parameters, including dry mass production, density, and spatial distribution. We have applied DHM to study the dry mass production rate and the dry mass surface density in wild-type and mutant fission yeast cells. Our study demonstrates the applicability of DHM as a tool for label-free quantitative analysis of the cell cycle and opens the possibility for its use in high-throughput screening.

  9. Mitigation of Prion Infectivity and Conversion Capacity by a Simulated Natural Process—Repeated Cycles of Drying and Wetting

    Science.gov (United States)

    Yuan, Qi; Eckland, Thomas; Telling, Glenn; Bartz, Jason; Bartelt-Hunt, Shannon

    2015-01-01

    Prions enter the environment from infected hosts, bind to a wide range of soil and soil minerals, and remain highly infectious. Environmental sources of prions almost certainly contribute to the transmission of chronic wasting disease in cervids and scrapie in sheep and goats. While much is known about the introduction of prions into the environment and their interaction with soil, relatively little is known about prion degradation and inactivation by natural environmental processes. In this study, we examined the effect of repeated cycles of drying and wetting on prion fitness and determined that 10 cycles of repeated drying and wetting could reduce PrPSc abundance, PMCA amplification efficiency and extend the incubation period of disease. Importantly, prions bound to soil were more susceptible to inactivation by repeated cycles of drying and wetting compared to unbound prions, a result which may be due to conformational changes in soil-bound PrPSc or consolidation of the bonding between PrPSc and soil. This novel finding demonstrates that naturally-occurring environmental process can degrade prions. PMID:25665187

  10. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    Science.gov (United States)

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.

  11. Behaviour of slag HPC submitted to immersion-drying cycles

    Directory of Open Access Journals (Sweden)

    Rabah Chaid

    2016-04-01

    Full Text Available This article is part of a summary of the work developed in conjunction with the Laboratory of Civil Engineering and Mechanical Engineering from INSA Rennes and Research Unit: Materials, Processes and Environment, University of Boumerdes. One of the objectives was indeed to promote, through studies of variants, the use of local cementitious additions in the formulation of high performance concretes (HPC. The binding contribution of mineral additions to the physical, mechanical and durability of concrete was evaluated by an experimental methodology to subjugate their original granular and pozzolanic effect. The results show that the contribution of couple cement -slag intensification of the matrix is higher than that obtained when the cement is not substituted by addition. Therefore, a significant improvement in performance of concretes was observed, despite the adverse action immersion cycles - drying maintained for 365 days.

  12. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  13. Fast freeze-drying cycle design and optimization using a PAT based on the measurement of product temperature.

    Science.gov (United States)

    Bosca, Serena; Barresi, Antonello A; Fissore, Davide

    2013-10-01

    This paper is focused on the use of an innovative Process Analytical Technology for the fast design and optimization of freeze-drying cycles for pharmaceuticals. The tool is based on a soft-sensor, a device that uses the experimental measure of product temperature during freeze-drying, a mathematical model of the process, and the Extended Kalman Filter algorithm to estimate the sublimation flux, the residual amount of ice in the vial, and some model parameters (heat and mass transfer coefficients). The accuracy of the estimations provided by the soft-sensor has been shown using as test case aqueous solutions containing different excipients (sucrose, polyvinylpyrrolidone), processed at various operating conditions, pointing out that the soft-sensor allows a fast estimation of model parameters and product dynamics without involving expensive hardware or time consuming analysis. The possibility of using the soft-sensor to calculate in-line (or off-line) the design space of the primary drying phase is here presented and discussed. Results evidences that by this way, it is possible to identify the values of the heating fluid temperature that maintain product temperature below the limit value, as well as the operating conditions that maximize the sublimation flux. Various experiments have been carried out to test the effectiveness of the proposed approach for a fast design of the cycle, evidencing that drying time can be significantly reduced, without impairing product quality. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Modelling of chloride penetration in concrete under wet/dry cycle

    Directory of Open Access Journals (Sweden)

    Hong Sung-In

    2017-01-01

    Full Text Available This present study concerns modelling of chloride penetration in partially saturated concrete. To mimic the intermittent exposure of sea water to concrete, varying environmental conditions for relative humidity and chloride concentration were considered. As for the moisture distribution in concrete, statistical permeability model based on pore size distribution was used to represent influence of material properties on moisture transport. Then, a combined chloride diffusion and convection was modelled in variation of moisture level in concrete. As a result, smaller relative wet duration induces higher rate of chloride penetration due to enhanced moisture permeability from the surface, and also higher concentration gradient near the surface of concrete due to repeated wet/dry cycle. This implies that only diffusion analysis on chloride induced corrosion in concrete structure may underestimate the serviceability in given material performance.

  15. Future needs for dry or peak shaved dry/wet cooling and significance to nuclear power plants. Final report

    International Nuclear Information System (INIS)

    Clukey, H.V.; McNelly, M.J.; Mitchell, R.C.

    1976-02-01

    U.S. requirements for uncommitted nuclear installations in water scarce areas that might require dry cooling tower systems are minimal through the year 2000 (6 to 23 GWe). In these areas it appears that peak-shaved dry/wet cooling systems are more attractive than all-dry tower cooling unless water costs were to approach the high level of several cents per gallon. The differential cooling system evaluated cost of peak-shaved dry/wet cooling systems above wet towers is typically $20 to $30/kWe for steam turbines; whereas, dry towers can represent an incremental burden of as much as $80/kWe. Gas turbine (Brayton Cycle) systems show similar benefits from an evaporative heat sink to those for steam turbine cycles--lower cooling system evaluated costs for peak-shaved dry/wet cooling systems than for conventional wet towers. These cooling system cost differentials do not reflect total costs for Brayton Cycle gas turbine plants. Together these added costs and uncertainties may substantially exceed the dollar incentives available for development of the Brayton Cycle for power generation needs for water deficient sites

  16. Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland

    OpenAIRE

    Schimel, JP; Wetterstedt, JAM; Holden, PA; Trumbore, SE

    2011-01-01

    We measured the 14 C and 13 C signatures of CO 2 respired from surface and deep soils released through multiple dry/rewetting cycles in laboratory incubations. The C respired from surface soils included components fixed before and after the 1960s. However, that respired from deep soils was derived from organic matter with a mean turnover time estimated in the range of 650-850 years. This reinforces previous research suggesting that a substantial amount of deep soil C is chemically labile b...

  17. Nuclear closed-cycle gas turbine (HTGR-GT): dry cooled commercial power plant studies

    International Nuclear Information System (INIS)

    McDonald, C.F.; Boland, C.R.

    1979-11-01

    Combining the modern and proven power conversion system of the closed-cycle gas turbine (CCGT) with an advanced high-temperature gas-cooled reactor (HTGR) results in a power plant well suited to projected utility needs into the 21st century. The gas turbine HTGR (HTGR-GT) power plant benefits are consistent with national energy goals, and the high power conversion efficiency potential satisfies increasingly important resource conservation demands. Established technology bases for the HTGR-GT are outlined, together with the extensive design and development program necessary to commercialize the nuclear CCGT plant for utility service in the 1990s. This paper outlines the most recent design studies by General Atomic for a dry-cooled commercial plant of 800 to 1200 MW(e) power, based on both non-intercooled and intercooled cycles, and discusses various primary system aspects. Details are given of the reactor turbine system (RTS) and on integrating the major power conversion components in the prestressed concrete reactor vessel

  18. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Kai [School of Ocean and Earth Science, Tongji University, Shanghai, 200092 (China); State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China); Yang, Shouye, E-mail: syyang@tongji.edu.cn [State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China); Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061 (China); Lian, Ergang [School of Ocean and Earth Science, Tongji University, Shanghai, 200092 (China); State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China); Li, Chao [State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China); Yang, Chengfan; Wei, Hailun [School of Ocean and Earth Science, Tongji University, Shanghai, 200092 (China); State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092 (China)

    2016-08-15

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter “deuterium excess” (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. - Highlights: • Stable H-O isotopes indicate the Changjiang river water cycle in dry seasons. • The isotopic parameter “d-excess” reveals the origins of

  19. Three Gorges Dam alters the Changjiang (Yangtze) river water cycle in the dry seasons: Evidence from H-O isotopes

    International Nuclear Information System (INIS)

    Deng, Kai; Yang, Shouye; Lian, Ergang; Li, Chao; Yang, Chengfan; Wei, Hailun

    2016-01-01

    As the largest hydropower project in the world, the Three Gorges Dam (TGD) has attracted great concerns in terms of its impact on the Changjiang (Yangtze) River and coastal marine environments. In this study, we measured or collected the H-O isotopic data of river water, groundwater and precipitation in the mid-lower Changjiang catchment during the dry seasons of recent years. The aim was to investigate the changes of river water cycle in response to the impoundment of the TGD. Isotopic evidences suggested that the mid-lower Changjiang river water was ultimately derived from precipitation, but dominated by the mixing of different water masses with variable sources and isotopic signals as well. The isotopic parameter “deuterium excess” (d-excess) yielded large fluctuations along the mid-lower mainstream during the initial stage of the TGD impoundment, which was inherited from the upstream water with inhomogeneous isotopic signals. However, as the reservoir water level rising to the present stage, small variability of d-excess was observed along the mid-lower mainstream. This discrepancy could be explained that the TGD impoundment had significantly altered the water cycle downstream the dam, with the rising water level increasing the residence time and enhancing the mixing of reservoir water derived from upstream. This eventually resulted in the homogenization of reservoir water, and thus small fluctuations of d-excess downstream the dam after the quasi-normal stage (2008 to present). We infer that the retention effect of large reservoirs has greatly buffered the d-excess natural variability of water cycle in large river systems. Nevertheless, more research attention has to be paid to the damming effect on the water cycle in the river, estuarine and coastal areas, especially during the dry seasons. - Highlights: • Stable H-O isotopes indicate the Changjiang river water cycle in dry seasons. • The isotopic parameter “d-excess” reveals the origins of

  20. Tribal Militias: An Effective Tool to Counter Al-Qaida and Its Affiliates?

    Science.gov (United States)

    2014-11-01

    Qaida al-yawm al-thalatha’” (“Last Tuesday the Yemeni Army Throws the Abyan Tribal Com- mittee into the Front Lines of a Fight against Al-Qaida”), Al...article/16483. 165. Loveday Morris , “To Retake Cities, Iraq Turns to Sunni Tribes,” The Washington Post, January 30, 2014, available from...Tribune (Springfield, VA), January 19, 2014, available from www. worldtribune.com; and Loveday Morris , “Interview with Prime Minister Nouri Al-Maliki

  1. Analysis of mechano-sorptive effect in oscillatory drying of beech timber

    Directory of Open Access Journals (Sweden)

    Milić Goran

    2016-01-01

    Full Text Available The paper shows results of analysis of influences of oscillating parameters of drying on measuring wood moisture content in the kiln, rate and quality of drying. For this analysis, we used a conventional drying cycle, a cycle with oscillating equilibrium moisture content (EMC, and a cycle with oscillating temperatures. A special software tool was created for managing the oscillations. It was shown that oscillations of EMC and temperatures result in cyclic changes in wood MC, but also in the additional inaccuracies of MC measurements in the kiln. The drying process of the cycle with oscillating EMC lasted somewhat shorter than the other two cycles. Drying quality was the same or better in the cycles with oscillations as compared to the conventionally dried cycle, and the smaller tensions in the wood confirmed the activation of the additional mechano-sorptive effect during cyclic changes of MC in surface layers. [Projekat Ministarstva nauke Republike Srbije, br. TR 31041 i br. TR 37008

  2. Fabrication of ultrahigh density metal-cell-metal crossbar memory devices with only two cycles of lithography and dry-etch procedures

    KAUST Repository

    Zong, Baoyu; Goh, J. Y.; Guo, Zaibing; Luo, Ping; Wang, Chenchen; Qiu, Jinjun; Ho, Pin; Chen, Yunjie; Zhang, Mingsheng; Han, Guchang

    2013-01-01

    A novel approach to the fabrication of metal-cell-metal trilayer memory devices was demonstrated by using only two cycles of lithography and dry-etch procedures. The fabricated ultrahigh density crossbar devices can be scaled down to ≤70 nm in half

  3. Self-protection in dry recycle technologies

    International Nuclear Information System (INIS)

    Hannum, W.H.; Wade, D.; Stanford, G.

    1995-01-01

    In response to the INFCE conclusions, the U.S. undertook development of a new dry fuel cycle. Dry recycle processes have been demonstrated to be feasible. Safeguarding such fuel cycles will be dramatically simpler than the PUREX fuel cycle. At every step of the processes, the materials meet the open-quotes spent-fuel standard.close quotes The scale is compatible with collocation of power reactors and their recycle facility, eliminating off-site transportation and storage of plutonium-bearing materials. Material diverted either covertly or overtly would be difficult (relative to material available by other means) to process into weapons feedstock

  4. [Effects of drying and wetting cycles induced by tides on net ecosystem exchange of CO2 over a salt marsh in the Yellow River Delta, China.

    Science.gov (United States)

    He, Wen Jun; Han, Guang Xuan; Xu, Yan Ning; Zhang, Xi Tao; Wang, An Dong; Che, Chun Guang; Sun, Bao Yu; Zhang, Xiao Shuai

    2018-01-01

    As a unique hydrological characteristic, the tidal action can strongly affect carbon balance in a salt marsh despite their short duration. Using the eddy covariance technique, we measured the net ecosystem CO 2 exchange (NEE) and its environmental factors and tidal change over a salt marsh in the Yellow River Delta. It aimed to investigate the effect of tidal process and drying and wetting cycles induced by tides on NEE. The results showed that the tidal process promoted the daytime CO 2 uptake, but it didn't clearly affect the nighttime CO 2 release. Tidal inundation was a major factor influencing daytime NEE. The diurnal change of NEE showed a distinct U-shaped curve on both drought and wet stages, but not with substantial variation in its amplitude during the drought stage. The drying and wetting cycles enhanced the absorption of daytime CO 2 . Under drought stage, the mean of the maximum photosynthetic rate (A max ), apparent quantum yield (α) and ecosystem respiration (R eco ) were higher than those in wet stage. In addition, the drying and wetting cycles suppressed the nighttime CO 2 release from the salt marsh but increased its temperature sensitivity.

  5. Effect of Rare Earth on Corrosion Products and Impedance Behavior of AZ91 Magnesium Alloy Under Dry-wet Cycles

    Directory of Open Access Journals (Sweden)

    ZHAO Xi

    2017-04-01

    Full Text Available The effect of mischmetal of lanthanum and cerium on the composition and structure of the corrosion products on the surface of AZ91 Mg alloy in deicing salt solution under dry-wet cycles was investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD and energy dispersive spectrometer (EDS. The results show that the corrosion products of AZ91 Mg alloy without mischmetal addition (La,Ce are mainly composed of Mg(OH2, MgO, CaCO3 and Mg6Al2CO3(OH16·4H2O; and (La,CeAlO3 can be found in the products of AZ91 with mischmetal addition, meanwhile dense layer occurs in the corrosion products. Electrochemical impedance spectroscopy (EIS measurements show that the charge transfer resistance of AZ91 alloy with mischmetal addition tested in the same dry-wet cycles is much higher than that of AZ91 alloy, the addition of mischmetal helps to reduce the dispersing effect of impedance spectroscopy, indicating that the corrosion resistance of AZ91 Mg alloy and the stability of corrosion product films can be improved by mischmetal of La and Ce.

  6. PWR-to-PWR fuel cycle model using dry process

    International Nuclear Information System (INIS)

    Iqbal, M.; Jeong, Chang Joon; Rho, Gyu Hong

    2002-03-01

    PWR-to-PWR fuel cycle model has been developed to recycle the spent fuel using the dry fabrication process. Two types of fuels were considered; first fuel was based on low initial enrichment with low discharge burnup and second one was based on more initial enrichment with high discharge burnup in PWR. For recycling calculations, the HELIOS code was used, in which all of the available fission products were considered. The decay of 10 years was applied for reuse of the spent fuel. Sensitivity analysis for the fresh feed material enrichment has also been carried out. If enrichment of the mixing material is increased the saving of uranium reserves would be decreased. The uranium saving of low burned fuel increased from 4.2% to 7.4% in fifth recycling step for 5 wt% to 19.00wt% mixing material enrichment. While for high burned fuel, there was no uranium saving, which implies that higher uranium enrichment required than 5 wt%. For mixing of 15 wt% enriched fuel, the required mixing is about 21.0% and 37.0% of total fuel volume for low and high burned fuel, respectively. With multiple recycling, reductions in waste for low and high burned fuel became 80% and 60%, for first recycling, respectively. In this way, waste can be reduced more and the cost of the waste disposal reduction can provide the economic balance

  7. Dry process potentials

    International Nuclear Information System (INIS)

    Faugeras, P.

    1997-01-01

    Various dry processes have been studied and more or less developed in order particularly to reduce the waste quantities but none of them had replaced the PUREX process, for reasons departing to policy errors, un-appropriate demonstration examples or too late development, although realistic and efficient dry processes such as a fluoride selective volatility based processes have been demonstrated in France (CLOVIS, ATILA) and would be ten times cheaper than the PUREX process. Dry processes could regain interest in case of a nuclear revival (following global warming fears) or thermal wastes over-production. In the near future, dry processes could be introduced in complement to the PUREX process, especially at the end of the process cycle, for a more efficient recycling and safer storage (inactivation)

  8. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis

    Directory of Open Access Journals (Sweden)

    David S. Ross

    2016-07-01

    Full Text Available The endoergic nature of protein and nucleic acid assembly in aqueous media presents two questions that are fundamental to the understanding of life’s origins: (i how did the polymers arise in an aqueous prebiotic world; and (ii once formed in some manner, how were they sufficiently persistent to engage in further chemistry. We propose here a quantitative resolution of these issues that evolved from recent accounts in which RNA-like polymers were produced in evaporation/rehydration cycles. The equilibrium Nm + Nn ↔ Nm+n + H2O is endoergic by about 3.3 kcal/mol for polynucleotide formation, and the system thus lies far to the left in the starting solutions. Kinetic simulations of the evaporation showed that simple Le Châtelier’s principle shifts were insufficient, but the introduction of oligomer-stabilizing factors of 5–10 kcal/mol both moved the process to the right and respectively boosted and retarded the elongation and hydrolysis rates. Molecular crowding and excluded volume effects in present-day cells yield stabilizing factors of that order, and we argue here that the crowded conditions in the evaporites generate similar effects. Oligomer formation is thus energetically preferred in those settings, but the process is thwarted in each evaporation step as diffusion becomes rate limiting. Rehydration dissipates disordered oligomer clusters in the evaporites, however, and subsequent dry/wet cycling accordingly “ratchets up” the system to an ultimate population of kinetically trappedthermodynamically preferred biopolymers.

  9. Fabrication of ultrahigh density metal-cell-metal crossbar memory devices with only two cycles of lithography and dry-etch procedures

    KAUST Repository

    Zong, Baoyu

    2013-05-20

    A novel approach to the fabrication of metal-cell-metal trilayer memory devices was demonstrated by using only two cycles of lithography and dry-etch procedures. The fabricated ultrahigh density crossbar devices can be scaled down to ≤70 nm in half-pitch without alignment issues. Depending on the different dry-etch mechanisms in transferring high and low density nanopatterns, suitable dry-etch angles and methods are studied for the transfer of high density nanopatterns. Some novel process methods have also been developed to eliminate the sidewall and other conversion obstacles for obtaining high density of uniform metallic nanopatterns. With these methods, ultrahigh density trilayer crossbar devices (∼2 × 1010 bit cm-2-kilobit electronic memory), which are composed of built-in practical magnetoresistive nanocells, have been achieved. This scalable process that we have developed provides the relevant industries with a cheap means to commercially fabricate three-dimensional high density metal-cell-metal nanodevices. © 2013 IOP Publishing Ltd.

  10. Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding

    Directory of Open Access Journals (Sweden)

    C. Estop-Aragonés

    2013-01-01

    generation and consumption of electron acceptors in the solid phase or other mechanisms. In contrast to flooding, dry-wet cycles negatively affect methane production on a seasonal scale, but this impact might strongly depend on drying intensity and on the peat matrix, of which structure and physical properties influence moisture content.

  11. To What Degree Thermal Cycles Affect Chalk Strength

    DEFF Research Database (Denmark)

    Livada, Tijana; Nermoen, Anders; Korsnes, Reidar Inger

    triaxial cell experiments. For dry rock, no significant effects of temperature cycling was found on average tensile strength, however the range of the tensile failure stress is doubled for the samples exposed to 50 temperature cycles, as opposed to those to none. For water saturated cores, the temperature......Chalk reservoirs could potentially undergo destabilization as the result of repeated cold water injection into a hot reservoir during water flooding. Preliminary results of an ongoing study are presented in this paper, which compare the impact of temperature cycling on mechanical behavior on dry...... and water saturated chalk. Sixty disks of dry Kansas chalk exposed to different number of temperature cycles were tested for tensile strength using a Brazilian test. Changes in elastic properties as function of number of temperature cycles of the same chalk, but now saturated in water, were studied using...

  12. Investment opportunity : the FPL low-cost solar dry kiln

    Science.gov (United States)

    George B. Harpole

    1988-01-01

    Two equations are presented that may be used to estimate a maximum investment limit and working capital requirements for the FPL low-cost solar dry kiln systems. The equations require data for drying cycle time, green lumber cost, and kiln-dried lumber costs. Results are intended to provide a preliminary estimate.

  13. Carbon behavior in the cyclic operation of dry desulfurization process for oxy-fuel integrated gasification combined cycle power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2016-01-01

    Highlights: • Power plant with semi-closed gas turbine and O_2–CO_2 coal gasifier was studied. • Dry gas sulfur removal sorbent was improved for durability to carbon deposition. • The improved sorbent showed very low amount of deposited carbon during operation. • The sorbent is regenerable to be used repeatedly in the cyclic operation. • The sorbent exhibited high sulfur-removal performance in the cyclic operation. - Abstract: The dry sulfur-removal process is essential to provide suitable syngas treatment for the oxy-fuel integrated gasification combined cycle power generation plant. It is required that the dry sulfur-removal process to be durable to the carbon deposition due to syngas containing high concentration of carbon monoxide in addition to achieve sufficient performance for sulfur removal. Zinc ferrite sorbent is the most promising candidate for the dry sulfur-removal process. The sorbent was improved to enhance durability to the carbon deposition by modifying preparation. The improved sorbent was prepared from sulfates as the raw materials of zinc ferrite, while the former sorbent was using nitrates as the raw materials. The improved sorbent as well as the former sorbent were evaluated on the performance and carbon deposition tendency in oxy-fuel syngas condition in a fixed bed reactor at elevated pressure and temperature. The results expressed that the improved sorbent has higher desulfurization performance and durability to carbon deposition in the condition expected for cyclic operation of the sulfur-removal process in comparison with the former sorbent. The improved sorbent possessed the superior desulfurization performance as well as the capability for inhibit carbon deposition in the oxy-fuel syngas conditions. The results confirmed the enhanced feasibility of the dry sulfur-removal process by utilizing the improved sorbent.

  14. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.

    Science.gov (United States)

    Bosca, Serena; Barresi, Antonello A; Fissore, Davide

    2013-07-15

    This paper deals with the determination of dried cake resistance in a freeze-drying process using the Smart Soft Sensor, a process analytical technology recently proposed by the authors to monitor the primary drying stage of a freeze-drying process. This sensor uses the measurement of product temperature, a mathematical model of the process, and the Kalman filter algorithm to estimate the residual amount of ice in the vial as a function of time, as well as the coefficient of heat transfer between the shelf and the product and the resistance of the dried cake to vapor flow. It does not require expensive (additional) hardware in a freeze-dryer, provided that thermocouples are available. At first, the effect of the insertion of the thermocouple in a vial on the structure of the product is investigated by means of experimental tests, comparing both sublimation rate and cake structure in vials with and without thermocouple. This is required to assess that the temperature measured by the thermocouple is the same of the product in the non-monitored vials, at least in a non-GMP environment, or when controlled nucleation methods are used. Then, results about cake resistance obtained in an extended experimental campaign with aqueous solutions containing different excipients (sucrose, mannitol and polyvinylpyrrolidone), processed in various operating conditions, are presented, with the goal to point out the accuracy of the proposed methodology. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effect of Adding Sugarcane Bagasse and Filter Cake and Wetting and Drying Cycles on Pre-Compaction Stress of Soil

    Directory of Open Access Journals (Sweden)

    Z Nemati

    2018-03-01

    Full Text Available Introduction The compaction of soil by agricultural equipment has become a matter of increasing concern because compaction of arable lands may reduce crop growth and yield, and it also has environmental impacts. In nature, soils could be compacted due to its own weights, external loads and internal forces as a result of wetting and drying processes. Soil compaction in sugarcane fields usually occurs due to mechanized harvesting operations by using heavy machinery in wet soils. Adding plant residues to the soil can improve soil structure. To improve soil physical quality of sugarcane fields, it might be suggested to add the bagasse and filter cake, which are the by-products of the sugar industry, to the soils. When a soil has been compacted by field traffic or has settled owing to natural forces, a threshold stress is believed to exist such that loadings inducing lower than the threshold cause little additional compaction, whilst loadings inducing greater stresses than the threshold cause much additional compaction. This threshold is called pre-compaction stress (σpc. The σpc is considered as an index of soil compactibility, the maximum pressure a soil has experienced in the past (i.e. soil management history, and the maximum major principal stress a soil can resist without major plastic deformation and compaction. Therefore, the main objective of this study was to investigate the effects of wetting and drying cycles, soil water content, residues type and percent on stress at compaction threshold (σpc. Materials and Methods In this research, the effect of adding sugarcane residues (i.e., bagasse and filter cake with two different rates (1 and 2% on pre-compaction stress (σpc in a silty clay loam soil which was prepared at two relative water contents of 0.9PL (PL= plastic limit, moist and 1.1PL (wet with or without wetting and drying cycles. This study was conducted using a factorial experiment in a completely randomized design with three

  16. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. H.; Chol, W. K.; Kim, G. N.; Moon, J. K.

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants

  17. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K.W.; Won, H.J.; Jung, C.H.; Chol, W.K.; Kim, G.N.; Moon, J.K

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants.

  18. Rainfall and wet and dry cycle's impact on ash thickness. A laboratory experiment

    Science.gov (United States)

    Pereira, Paulo; Keestra, Saskia; Peters, Piet; Cerdà, Artemi

    2016-04-01

    Ash is the most important and effective soil protection in the immediate period after the fire (Cerda and Doerr, 2008; Pereira et al., 2015a). This protection can last for days or weeks depending on the fire severity, topography of the burned area and post-fire meteorological conditions. In the initial period after the fire, ash is easily transported by wind. However after the first rainfalls, ash is eroded, or bind in soil surface (Pereira et al., 2013, 2015a). Ash thickness has implications on soil protection. The soil protection against the erosion and the ash capacity to retain water increases with the ash thickness (Bodi et al., 2014). Ash cover is very important after fire because store water and releases into soil a large amount of nutrients, fundamental to vegetation recuperation (Pereira et al., 2014). Despite the importance of ash thickness in post fire environments, little information is available about the effects of rainfall and wet and dry cycle's effects on ash thickness. This work aims to fill this gap. The objective of this study is to investigate the impacts of rainfall and wet and dry cycles in the ash thickness of two different under laboratory conditions. Litter from Oak (Quercus robur) and Spruce (Picea abis) were collected to and exposed during 2 hours to produce ash at 200 and 400 C. Subsequently a layer of 15 mm ash was spread on soil surface in small boxes (24x32 cm) and then subjected to rainfall simulation. Boxes were placed at a 17% of inclination and a rainfall intensity of 55 mm/h during 40 minutes was applied. After the rainfall simulation the plots were stored in an Oven at the temperature of 25 C during four days, in order to identify the effects of wet and dry cycles (Bodi et al., 2013). Ash thickness was measured after the first rainfall (AFR), before the second rainfall (BSR) - after the dry period of 4 days - and after the second rainfall (ASR). In each box a grid with 57 points was designed in order to analyse ash thickness

  19. Fuel cycle studies

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Programs are being conducted in the following areas: advanced solvent extraction techniques, accident consequences, fuel cycles for nonproliferation, pyrochemical and dry processes, waste encapsulation, radionuclide transport in geologic media, hull treatment, and analytical support for LWBR

  20. Analysis of the use of waste heat obtained from coal-fired units in Organic Rankine Cycles and for brown coal drying

    International Nuclear Information System (INIS)

    Łukowicz, Henryk; Kochaniewicz, Andrzej

    2012-01-01

    The ever-increasing restrictions on greenhouse gas emissions have created a need for new energy technologies. One way to meet these new requirements is to optimise the efficiency of power units. This paper presents two energy technologies that, if used, will increase the efficiency of electricity generation. One of the most effective ways to improve the efficiency of brown coal-fired units is by drying the coal that is fed into the boiler. Here, we describe a technology that uses the waste heat obtained from exhaust gases. This paper also presents an analysis of the feasibility of and potential for using waste heat obtained from exhaust gases to feed Organic Rankine Cycles (ORCs). Several low-temperature working fluids were considered, which were selected based on properties that were best suited for these types of cycles. The impact of these working fluids on the efficiency and capacity of the ORC was also examined. The calculations for ORCs fed with waste heat obtained from exhaust gases from hard coal- and brown coal-fired boilers were compared. -- Highlights: ► We describe a technology that uses the waste heat obtained from exhaust gases. ► The impact of using different working fluids with a low boiling point is examined. ► We describe integrating the ORC with the power unit. ► The use of waste heat from boiler exhaust gases to dry brown coal is proposed. ► We demonstrate a possible increase in power unit efficiency.

  1. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    Science.gov (United States)

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Dry separation technology of transuranic elements

    International Nuclear Information System (INIS)

    Inoue, Tadashi

    1999-01-01

    The separation principle of transuranic elements (TRU) by a dry method, the separation technique of TRU from a high level waste solution and a dry recycle technology of LWR and FBR fuel cycle are explained. The dry method used molten salt and liquid metal. TRU and the rare earth elements in the molten salt (LiCl-KCl, LiCl-KCl/Cd and LiCl-KCl/Bi system) were separated by two methods such as the electrolytic refining and the reduction-extraction method. The former method separated 98% U, Np and Pu, but low Am. The latter method was able to separate more than 99.9% Np and Pu and 99.7% Am. (S.Y.)

  3. Evaluation of a solar-powered organic Rankine cycle using dry organic working fluids

    Directory of Open Access Journals (Sweden)

    Emily Spayde

    2015-12-01

    Full Text Available This paper presents a model to evaluate the performance of a solar-powered organic Rankine cycle (ORC. The system was evaluated in Jackson, MS, using five dry organic working fluids, R218, R227ea, R236ea, R236fa, and RC318. The purpose of this study is to investigate how hourly temperature change affects the electricity production and exergy destruction rates of the solar ORC, and to determine the effect of the working fluid on the proposed system. The system was also evaluated in Tucson, AZ, to investigate the effect of average hourly outdoor temperatures on its performance. The potential of the system to reduce primary energy consumption and carbon dioxide emissions is also investigated. A parametric analysis to determine how temperature and pressure of the organic working fluid, the solar collector area, and the turbine efficiency affect the electricity production is performed. Results show that the ORC produces the most electricity during the middle of the day, when the temperatures are the highest and when the solar collectors have the highest efficiency. Also, R-236ea is the working fluid that shows the best performance of the evaluated fluids. An economic analysis was performed to determine the capital cost available for the proposed system.

  4. Monitoring of corrosion rates of Fe-Cu alloys under wet/dry condition in weakly alkaline environments

    International Nuclear Information System (INIS)

    Kim, Je Kyoung; Nishikata, Atsushi; Tsuru, Tooru

    2002-01-01

    When the steel, containing scrap elements like copper, is used as reinforcing steel bars for concrete, the steel is exposed to alkaline environments. in this study, AC impedance technique has been applied to the monitoring of corrosion rates of iron and several Fe-Cu (0.4, 10wt%) alloys in a wet-dry cycle condition. The wet-dry cycle was conducted by exposure to alternate conditions of 1 hour-immersion in a simulated pH10 concrete solution (Ca(OH) 2 ) containing 0.01M NaCl and 3 hour-drying at 298K and 50%RH. The corrosion rate of the iron is greatly accelerated by the wet-dry cycles. Because the active FeOOH species, which are produced by the oxidation of Fe(II, III)oxide in air during drying, act as very strong oxidants to the corrosion in the wet condition. As the drying progresses, iron shows a large increase in the corrosion rate and a small shift of the corrosion potential to the positive values. This can be explained by acceleration of oxygen transport through the thin electrolyte layer In contrast to iron, the Fe-Cu alloys show low corrosion rates and the high corrosion potentials in whole cycles

  5. Crystallization of Trehalose in Frozen Solutions and its Phase Behavior during Drying

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthi, Prakash; Patapoff, Thomas W.; Suryanarayanan, Raj (Genentech); (UMM)

    2015-02-19

    To study the crystallization of trehalose in frozen solutions and to understand the phase transitions during the entire freeze-drying cycle. Aqueous trehalose solution was cooled to -40 C in a custom-designed sample holder. The frozen solution was warmed to -18 C and annealed, and then dried in the sample chamber of the diffractometer. XRD patterns were continuously collected during cooling, annealing and drying. After cooling, hexagonal ice was the only crystalline phase observed. However, upon annealing, crystallization of trehalose dihydrate was evident. Seeding the frozen solution accelerated the solute crystallization. Thus, phase separation of the lyoprotectant was observed in frozen solutions. During drying, dehydration of trehalose dihydrate yielded a substantially amorphous anhydrous trehalose. Crystallization of trehalose, as trehalose dihydrate, was observed in frozen solutions. The dehydration of the crystalline trehalose dihydrate to substantially amorphous anhydrate occurred during drying. Therefore, analyzing the final lyophile will not reveal crystallization of the lyoprotectant during freeze-drying. The lyoprotectant crystallization can only become evident by continuous monitoring of the system during the entire freeze-drying cycle. In light of the phase separation of trehalose in frozen solutions, its ability to serve as a lyoprotectant warrants further investigation.

  6. Mõtisklus kivirannal : Visby rahvusvaheline heliloojate keskus kui loominguline pelgupaik / Mirjam Tally

    Index Scriptorium Estoniae

    Tally, Mirjam, 1976-

    2008-01-01

    Gotlandi saarel asuvast heliloojate keskusest. Lühiintervjuu hiljuti keskuses töötanud kahe heliloojaga - Lõuna-Koreast pärit, ent Floridas elava Suk-Jun Kim'i ja Lõuna-Aafrikast vabariigist pärit Clare Loveday'ga

  7. Influence of Dry Cleaning on the Electrical Resistance of Screen Printed Conductors on Textiles

    Directory of Open Access Journals (Sweden)

    Kazani Ilda

    2016-09-01

    Full Text Available Electrically conducting inks were screen printed on various textile substrates. The samples were dry cleaned with the usual chemicals in order to investigate the influence of the mechanical treatment on the electrical conductivity. It was found that dry cleaning has a tremendous influence on this electrical conductivity. For several samples, it is observed that the electrical resistance increases with the square of the number of dry cleaning cycles. In order to explain this observation a theoretical model and a numerical simulation have been carried out, by assuming that dry cleaning cycles introduce a crack in the conducting layer. The theoretical analysis and the numerical analysis both confirmed the experimental observations.

  8. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    de la Rosa-Manzano, Edilia; Andrade, José Luis; García-Mendoza, Ernesto; Zotz, Gerhard; Reyes-García, Casandra

    2015-12-01

    Epiphytic orchids from dry forests of Yucatán show considerable photoprotective plasticity during the dry season, which depends on leaf morphology and host tree deciduousness. Nocturnal retention of antheraxanthin and zeaxanthin was detected for the first time in epiphytic orchids. In tropical dry forests, epiphytes experience dramatic changes in light intensity: photosynthetic photon flux density may be up to an order of magnitude higher in the dry season compared to the wet season. To address the seasonal changes of xanthophyll cycle (XC) pigments and photosynthesis that occur throughout the year, leaves of five epiphytic orchid species were studied during the early dry, dry and wet seasons in a deciduous and a semi-deciduous tropical forests at two vertical strata on the host trees (3.5 and 1.5 m height). Differences in XC pigment concentrations and photosynthesis (maximum quantum efficiency of photosystem II; F v/F m) were larger among seasons than between vertical strata in both forests. Antheraxanthin and zeaxanthin retention reflected the stressful conditions of the epiphytic microhabitat, and it is described here in epiphytes for the first time. During the dry season, both XC pigment concentrations and photosystem II heat dissipation of absorbed energy increased in orchids in the deciduous forest, while F v/F m and nocturnal acidification (ΔH(+)) decreased, clearly as a response to excessive light and drought. Concentrations of XC pigments were higher than those in orchids with similar leaf shape in semi-deciduous forest. There, only Encyclia nematocaulon and Lophiaris oerstedii showed somewhat reduced F v/F m. No changes in ΔH(+) and F v/F m were detected in Cohniella ascendens throughout the year. This species, which commonly grows in forests with less open canopies, showed leaf tilting that diminished light interception. Light conditions in the uppermost parts of the canopy probably limit the distribution of epiphytic orchids and the retention of

  9. In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays

    International Nuclear Information System (INIS)

    Yamashita, M.; Konishi, H.; Kozakura, T.; Mizuki, J.; Uchida, H.

    2005-01-01

    Atmospheric corrosion of steel proceeds under thin electrolyte film formed by rain and dew condensation followed by wet and dry cycles. It is said that rust layer formed on steel as a result of atmospheric corrosion strongly affects the corrosion behavior of steel. The effect of environmental corrosiveness on the formation process and structure of the rust layer is, however, not clear to date. In this study, in situ observation of the rusting process of a carbon steel covered with a thin film of Na 2 SO 4 or NaCl solution was performed under a wet/dry repeating condition by X-ray diffraction spectroscopy with white X-rays obtained from synchrotron radiation. The present in situ experiments successfully detected initial process of the rust formation. In the early cycles, the rust constituents were not well crystallized yet, but the presence of Fe(OH) 2 and Fe(OH) 3 was confirmed. In the subsequent cycles, two different solutions resulted in difference in preferential phase of the rust constituents. α-FeOOH was preferentially formed in the case of the Na 2 SO 4 solution film, whereas β-FeOOH appeared only under the NaCl solution film

  10. Hanford spent nuclear fuel cold vacuum drying proof of performance test procedure

    International Nuclear Information System (INIS)

    McCracken, K.J.

    1998-01-01

    This document provides the test procedure for cold testing of the first article skids for the Cold Vacuum Drying (CVD) process at the Facility. The primary objective of this testing is to confirm design choices and provide data for the initial start-up parameters for the process. The current scope of testing in this document includes design verification, drying cycle determination equipment performance testing of the CVD process and MCC components, heat up and cool-down cycle determination, and thermal model validation

  11. Contact angles of water-repellent porous media inferred by tensiometer - TDR probe measurement under controlled wetting and drying cycles

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Kawamoto, Ken; Komatsu, Toshiko

    2013-01-01

    with water, eventually allowing water imbibition. However, the effect of the reduction in CA with soil-water contact time on the water retention function of hydrophobic media is not yet fully understood. In this study, water retention characteristics were measured using a hanging water column apparatus...... retention curves. For both water-repellent VAS and hydrophobized sand samples, the calculated CA–SWRC increased with increasing WR. This was determined from both the water drop penetration time and the initial contact angle (CAi) by the sessile drop method. Calculated CA–SWRC values ranged from 20° to 48......-filled pore distributions under controlled wetting and drying cycles was found on calculating the soil water capacity and pore size density as a function of water potential....

  12. Effect of drying on the desorption of diuron and terbuthylazine from natural soils

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Bernd [Institute for Land Use, Rostock University, Justus-von-Liebig-Weg 6, D-18051 Rostock (Germany)]. E-mail: bernd.lennartz@uni-rostock.de; Louchart, Xavier [Laboratory on Interactions between Soils, Agrosystems and Hydrosystems (LISAH), National Institute for Agricultural Research (INRA), 2 place Viala, 34060 Montpellier Cedex 1 (France)

    2007-03-15

    This work was initiated to study the effects of climate induced soil water status variations which can reach extreme values under natural conditions on the sorption process of hydrophobic organic compounds. Based on the classical slurry batch methodology an approach is developed that allows the fast and careful complete drying of soil suspensions (microwave technique). Classical adsorption experiments were followed by three desorption steps with and without drying cycles. Drying and re-wetting enhanced the sorption-desorption hysteresis and Freundlich adsorption coefficients increased from 5.9 to 16 and 5.2 to 21 over three drying cycles for diuron and terbuthylazine respectively. Assuming the validity of a dual stage adsorption process, model evaluation suggests that drying is as a shrinking-like process leading to conformational changes of the dominant sorbent (soil organic matter) which restrict the intra-micro-particle diffusion. Rewetting only leads to a partial recovery of the diffusional pore space. - Drying of soil samples increased the binding of herbicidal compounds which is interpreted as a reduction of diffusional mass transfer into and out of the soil organic matter.

  13. Effect of drying on the desorption of diuron and terbuthylazine from natural soils

    International Nuclear Information System (INIS)

    Lennartz, Bernd; Louchart, Xavier

    2007-01-01

    This work was initiated to study the effects of climate induced soil water status variations which can reach extreme values under natural conditions on the sorption process of hydrophobic organic compounds. Based on the classical slurry batch methodology an approach is developed that allows the fast and careful complete drying of soil suspensions (microwave technique). Classical adsorption experiments were followed by three desorption steps with and without drying cycles. Drying and re-wetting enhanced the sorption-desorption hysteresis and Freundlich adsorption coefficients increased from 5.9 to 16 and 5.2 to 21 over three drying cycles for diuron and terbuthylazine respectively. Assuming the validity of a dual stage adsorption process, model evaluation suggests that drying is as a shrinking-like process leading to conformational changes of the dominant sorbent (soil organic matter) which restrict the intra-micro-particle diffusion. Rewetting only leads to a partial recovery of the diffusional pore space. - Drying of soil samples increased the binding of herbicidal compounds which is interpreted as a reduction of diffusional mass transfer into and out of the soil organic matter

  14. Effect of drying on the desorption of diuron and terbuthylazine from natural soils.

    Science.gov (United States)

    Lennartz, Bernd; Louchart, Xavier

    2007-03-01

    This work was initiated to study the effects of climate induced soil water status variations which can reach extreme values under natural conditions on the sorption process of hydrophobic organic compounds. Based on the classical slurry batch methodology an approach is developed that allows the fast and careful complete drying of soil suspensions (microwave technique). Classical adsorption experiments were followed by three desorption steps with and without drying cycles. Drying and re-wetting enhanced the sorption-desorption hysteresis and Freundlich adsorption coefficients increased from 5.9 to 16 and 5.2 to 21 over three drying cycles for diuron and terbuthylazine respectively. Assuming the validity of a dual stage adsorption process, model evaluation suggests that drying is as a shrinking-like process leading to conformational changes of the dominant sorbent (soil organic matter) which restrict the intra-micro-particle diffusion. Rewetting only leads to a partial recovery of the diffusional pore space.

  15. Model for heat and mass transfer in freeze-drying of pellets.

    Science.gov (United States)

    Trelea, Ioan Cristian; Passot, Stéphanie; Marin, Michèle; Fonseca, Fernanda

    2009-07-01

    Lyophilizing frozen pellets, and especially spray freeze-drying, have been receiving growing interest. To design efficient and safe freeze-drying cycles, local temperature and moisture content in the product bed have to be known, but both are difficult to measure in the industry. Mathematical modeling of heat and mass transfer helps to determine local freeze-drying conditions and predict effects of operation policy, and equipment and recipe changes on drying time and product quality. Representative pellets situated at different positions in the product slab were considered. One-dimensional transfer in the slab and radial transfer in the pellets were assumed. Coupled heat and vapor transfer equations between the temperature-controlled shelf, the product bulk, the sublimation front inside the pellets, and the chamber were established and solved numerically. The model was validated based on bulk temperature measurement performed at two different locations in the product slab and on partial vapor pressure measurement in the freeze-drying chamber. Fair agreement between measured and calculated values was found. In contrast, a previously developed model for compact product layer was found inadequate in describing freeze-drying of pellets. The developed model represents a good starting basis for studying freeze-drying of pellets. It has to be further improved and validated for a variety of product types and freeze-drying conditions (shelf temperature, total chamber pressure, pellet size, slab thickness, etc.). It could be used to develop freeze-drying cycles based on product quality criteria such as local moisture content and glass transition temperature.

  16. Investigation of pre-drying lignite in an existing Greek power plant

    Directory of Open Access Journals (Sweden)

    Agraniotis Michalis

    2012-01-01

    Full Text Available The application of lignite pre-drying technologies in next generation of lignite power plants by utilizing low pressure steam as a drying medium instead of hot recirculated flue gas - combined with thermal utilization of the vaporized coal moisture - is expected to bring efficiency increase of 2-4 percentage points in future lignite power plants compared with today’s state of the art. The pre-drying concept is of particular importance in Greek boilers firing lignite with a high water and ash content. The combustion of Greek predried lignite has been investigated experimentally and via numerical simulations in our previous research. This study focuses on the potential integration of a lignite pre-drying system in an existing Greek power plant with dry lignite co-firing thermal share of up to 30%. The radiative and convective heat fluxes to the boiler and the overall boiler heat balance is calculated for reference and dry lignite co-firing conditions by an in-house calculation code. The overall plant’s thermal cycle is then simulated using commercial thermal cycle calculation software. The net plant efficiency is in this way determined for reference and dry coal co-firing conditions. According to the simulation results the integration of a pre-drying system and the implementation of dry lignite co-firing may bring an efficiency increase of about 1.5 percentage points in existing Greek boilers. It is therefore considered as an important measure towards improving plant efficiency and reducing specific CO2 emissions in existing plants.

  17. Hydration and dehydration cycles in polymer electrolyte fuel cells operated with wet anode and dry cathode feed: A neutron imaging and modeling study

    Science.gov (United States)

    García-Salaberri, P. A.; Sánchez, D. G.; Boillat, P.; Vera, M.; Friedrich, K. A.

    2017-08-01

    Proper water management plays an essential role in the performance and durability of Polymer Electrolyte Fuel Cells (PEFCs), but it is challenged by the variety of water transport phenomena that take place in these devices. Previous experimental work has shown the existence of fluctuations between low and high current density levels in PEFCs operated with wet hydrogen and dry air feed. The alternation between both performance states is accompanied by strong changes in the high frequency resistance, suggesting a cyclic hydration and dehydration of the membrane. This peculiar scenario is examined here considering liquid water distributions from neutron imaging and predictions from a 3D two-phase non-isothermal model. The results show that the hydration-dehydration cycles are triggered by the periodic condensation and shedding of liquid water at the anode inlet. The input of liquid water humidifies the anode channel and offsets the membrane dry-out induced by the dry air stream, thus leading to the high-performance state. When liquid water is flushed out of the anode channel, the dehydration process takes over, and the cell comes back to the low-performance state. The predicted amplitude of the current oscillations grows with decreasing hydrogen and increasing air flow rates, in agreement with previous experimental data.

  18. Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System

    Directory of Open Access Journals (Sweden)

    Cüneyt Tunçkal

    2018-02-01

    Full Text Available Pineapple (Ananascomosus slices were dried with the aid of a heat pump assisted dryer (HPD. During this process, air velocity was kept constant at 1m/s, while air temperatures were changed as 37°C, 40°C and 43°C. The drying air was also circulated by using an axial fan in a closed cycle and fresh air was not allowed into the system. The drying rate and drying time were significantly influenced by drying temperature. It was observed that drying temperatures had significant effects on the drying rate and drying time. During the conduct of the study, pineapple slices were dried at 37, 40 and 43°C for 465, 360 and 290 min, respectively. The specific moisture extraction ratio (SMER values were observed to change as drying temperatures were changed. The drying rate curves indicated that the whole drying process occurred in the falling rate period. Seven well-known thin-layer models (Lewis, Henderson &Pabis, Logarithmic, Page, Midilli & Kucuk, Weibull and Aghbashlo et al. were employed to make a prediction about drying kinetics through nonlinear regression analysis. The Midilli & Kucuk and Aghbashlo et al. models were consistent with the experimental data. Fick’s second law of diffusion was used to determine the moisture diffusivity coefficient ranging from 3.78×10–9 to 6.57×10-9  m2/s the each of the above mentioned temperatures. The dependence of effective diffusivity coefficient on temperature was defined by means a fan Arrhenius type equation. The activation energy of moisture diffusion was found to be 75.24kJ/mol.   Article History: Received: July 18th 2017; Received: October 27th 2017; Accepted: January 16th 2018; Available online How to Cite This Article: Tunçkal, C., Coşkun, S., Doymaz, I. and Ergun, E. (2018 Determination of Sliced Pineapple Drying Characteristics in A Closed Loop Heat Pump Assisted Drying System. International Journal of Renewable Energy Development, 7(1, 35-41. https://doi.org/10.14710/ijred.7.1.35-41

  19. Effects of superheated steam on the drying of rubberwood

    Directory of Open Access Journals (Sweden)

    Kanokwan Buaphud

    2006-07-01

    Full Text Available Rubberwood drying is the most time and energy consuming step in the processing of wood product. This research studied the effect of superheated steam drying on the drying time required and the physical and mechanical properties of rubberwood after drying. In this study, a cylindrical drying chamber with a length of 1.2 m and a diameter of 0.5 m was constructed and injected with superheated steam. The dimensions of the wood lumber were 1 m × 7.62 cm × 2.54 cm. The wood samples were impinged with alternating cycles of superheated steam and hot air at ratios of 6:1, 4:1 and 1:6 hours until the moisture content was less than 15% dry basis. The conditions inside the chamber were 110ºC and ambient pressure. Continuous superheated steam and continuous hot air were also used for comparisons. The drying rate and the temperature profile for each process were determined.Initial acceptability of the dried wood was conducted using the prong test and visual inspection. Results showed that if the drying rate was too fast, the dried wood did not pass the prong test due to stress buildup. Therefore, an optimum drying condition was developed based on minimizing defects and reducing the drying time. For the optimum condition, the following schedule was carried out: (1 saturated steam at 100ºC was used during the first 4 hours of drying to prevent the wood surface from drying too quickly which would minimize the moisture gradient between the center and wood surface, (2 superheated steam at 105ºC and 110ºC was used in alternating cycle with hot air (80ºC during the main drying stages to rapidly remove the free water and majority of the bound water inside the wood, and (3 hot air was used continuously during the final stages of drying to reduce the relative humidity inside the chamber making it possible for the removal of the residual bound water. This process successfully reduced the drying time to less than 2 days without causing any defects which compared

  20. Preparation and evaluation of freeze-dried Mag3 kits for 99m Tc-labelling

    International Nuclear Information System (INIS)

    El-Mohty, A.A.; El-Ghany, E.A.; El-Kolaly, M.T.; Raieh, M.; EL-Bary, A.A.

    1996-01-01

    The freeze-dried Mag 3 kits were designed for both ligand trans chelation and direct labelling techniques. The solution of Sn-Mag 3 was sterilized by 0.22 μU mill pore filtration and dispensed in a laminar flow hood (1 m I / vial) then, the vials were introduced to the lyophilized. The process of lyophilization was continued for 24 hours. At end of the cycle, the vials were closed under nitrogen. The moisture content of the freeze-dried Mag 3 kits was determined and it was found equal to 0.1% also, the losses of tin (II) during the freeze-drying cycle did not exceed 5%. It was found that the Mag 3 freeze-dried kits were sterile, pyrogen free and does not have any unexpected toxicity. The prepared Mag 3 freeze-dried kits have high radiochemical purity > 97% and high stability for more than 8 h after labelling. The biodistribution shows rapid renal excretion at 15 min post injection. 3 figs., 4 tabs

  1. Tear dynamics in healthy and dry eyes.

    Science.gov (United States)

    Cerretani, Colin F; Radke, C J

    2014-06-01

    Dry-eye disease, an increasingly prevalent ocular-surface disorder, significantly alters tear physiology. Understanding the basic physics of tear dynamics in healthy and dry eyes benefits both diagnosis and treatment of dry eye. We present a physiological-based model to describe tear dynamics during blinking. Tears are compartmentalized over the ocular surface; the blink cycle is divided into three repeating phases. Conservation laws quantify the tear volume and tear osmolarity of each compartment during each blink phase. Lacrimal-supply and tear-evaporation rates are varied to reveal the dependence of tear dynamics on dry-eye conditions, specifically tear osmolarity, tear volume, tear-turnover rate (TTR), and osmotic water flow. Predicted periodic-steady tear-meniscus osmolarity is 309 and 321 mOsM in normal and dry eyes, respectively. Tear osmolarity, volume, and TTR all match available clinical measurements. Osmotic water flow through the cornea and conjunctiva contribute 10 and 50% to the total tear supply in healthy and dry-eye conditions, respectively. TTR in aqueous-deficient dry eye (ADDE) is only half that in evaporative dry eye (EDE). The compartmental periodic-steady tear-dynamics model accurately predicts tear behavior in normal and dry eyes. Inclusion of osmotic water flow is crucial to match measured tear osmolarity. Tear-dynamics predictions corroborate the use of TTR as a clinical discriminator between ADDE and EDE. The proposed model is readily extended to predict the dynamics of aqueous solutes such as drugs or fluorescent tags.

  2. Enhanced cycle stability of micro-sized Si/C anode material with low carbon content fabricated via spray drying and in situ carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dingsheng; Gao, Mingxia, E-mail: gaomx@zju.edu.cn; Pan, Hongge; Liu, Yongfeng; Wang, Junhua; Li, Shouquan; Ge, Hongwei

    2014-08-01

    Highlights: • Micro-sized Si/C composites were fabricated via. spray drying and carbonization. • Multi-morphology carbon was formed in the Si/C composites. • Si/C composite with 5.6 wt.% C provides significant improved cycling stability. • Multi-morphology carbon plays effective role in improving the electrochemical property. • The method provides potential for mass production of superior Si-based anode materials. - Abstract: Micro-sized Si/C composites with in situ introduced carbon of multi-morphology were fabricated via spray drying a suspension of commercial micro-sized Si and citric acid followed by a carbonization. Different ratios of Si to citric acid were used to optimize the composition and structure of the composites and thus the electrochemical performance. Carbon flakes including crooked and flat ones were well dispersed in between the Si particles, forming Si/C composites. Floc-like carbon layers and carbon fragments were also found to cover partially the Si particles. The Si/C composite with a low carbon content of 5.6 wt.% provides an initial reversible capacity of 2700 mA h/g and a capacity of 1860 mA h/g after 60 cycles at a current density of 100 mA/g as anode material for lithium-ion batteries (LIBs), which are much higher than those of pristine Si and the Si/C composites with higher carbon content. The mechanism of the enhancement of electrochemical performance of the micro-sized Si/C composite is discussed. The fabrication method and the structure design of the composites offer valuable potential in developing adaptable Si-based anode materials for industrial applications.

  3. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.

    Science.gov (United States)

    Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie

    2018-07-01

    During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Explore the influence of agglomeration on electrochemical performance of an amorphous MnO2/C composite by controlling drying process

    Science.gov (United States)

    Cui, Mangwei; Kang, Litao; Shi, Mingjie; Xie, Lingli; Wang, Xiaomin; Zhao, Zhe; Yun, Shan; Liang, Wei

    2017-09-01

    Amorphous MnO2/C composite is prepared by a facile redox reaction between potassium permanganate (KMnO4) and commercial black pen ink. Afterwards, two different drying processes, air drying or freeze drying, are employed to adjust the agglomeration state of particles in samples and explore its influence on capacitive performance. Experimental results indicate that the air-dried sample demonstrates much better cycling stability than the freeze-dried one (capacity retention at 5000 cycles: 70.9 vs. 60.7%), probably because of the relatively strong agglomeration between particles in this sample. Nevertheless, strong agglomeration seems to deteriorate the specific capacitance (from 492 down to 440.5 F/g at 1 A/g) due to the decrease of porosity and specific surface area. This study suggests that agglomeration of primary particles plays an important role to balance the specific capacitance and cycling stability for electrode materials.

  5. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth.

    Science.gov (United States)

    Forsythe, Jay G; Yu, Sheng-Sheng; Mamajanov, Irena; Grover, Martha A; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Hud, Nicholas V

    2015-08-17

    Although it is generally accepted that amino acids were present on the prebiotic Earth, the mechanism by which α-amino acids were condensed into polypeptides before the emergence of enzymes remains unsolved. Here, we demonstrate a prebiotically plausible mechanism for peptide (amide) bond formation that is enabled by α-hydroxy acids, which were likely present along with amino acids on the early Earth. Together, α-hydroxy acids and α-amino acids form depsipeptides-oligomers with a combination of ester and amide linkages-in model prebiotic reactions that are driven by wet-cool/dry-hot cycles. Through a combination of ester-amide bond exchange and ester bond hydrolysis, depsipeptides are enriched with amino acids over time. These results support a long-standing hypothesis that peptides might have arisen from ester-based precursors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Determination of carbon-reduction-cycle intermediates in leaves of Arbutus unedo L. suffering depressions in photosynthesis after application of abscisic acid or exposure to dry air.

    Science.gov (United States)

    Loske, D; Raschke, K

    1988-02-01

    Gas exchange and contents of photosynthetic intermediates of leaves of Arbutus unedo L. were determined with the aim of recognizing the mechanisms of inhibition that were responsible for the "midday depression" of photosynthesis following exposure to dry air, and the decline in photosynthetic capacity following application of abscisic acid (ABA). Rapidly killed (<0.1 s) leaf samples were taken when gas analysis showed reduced CO2 assimilation. Determination of the contents of 3-phosphoglyceric acid (PGA), ribulose 1,5-bisphosphate (RuBP), triose phosphates, fructose 1,6-bisphosphate and hexose phosphates in the samples showed that significant variation occurred only in the level of PGA. As a result, the ratio PGA/RuBP decreased with increasing inhibition of photosynthesis, particularly when application of ABA had been the cause. A comparison of metabolite patterns did not bring out qualitative differences that would have indicated that effects of ABA and of dry air had been caused by separate mechanisms. Depression of photosynthesis occurred in the presence of sufficient RuBP which indicated that the carboxylation reaction of the carbon-reduction-cycle was inhibited after application of ABA or exposure to dry air.

  7. Efeitos de ciclos de umedecimento e secagem na reorganização da estrutura microgranular de latossolos Effects of wetting and drying cycles on the reorganization of the microgranular structure of latosols

    Directory of Open Access Journals (Sweden)

    J. H. M. Viana

    2004-02-01

    Full Text Available Um experimento foi realizado em casa de vegetação com o objetivo de examinar as modificações provocadas por ciclos de umedecimento e secagem em amostras de Latossolos com diferentes mineralogias, em agregados integrais ou quando destruídos por moagem. Amostras de terra fina seca ao ar foram passadas em peneira de 1,0 mm e subdivididas em grupos: solo integral não moído e solo moído em almofariz e passado em peneira de 0,105 mm. O solo moído foi ainda subdividido em solo moído puro ou adicionado de ácido húmico purificado. Os materiais foram montados em cilindro de alumínio e submetidos a dez ciclos sucessivos de umedecimento e secagem, realizados por ascensão capilar, seguidos por secagem ao ar, com intervalo de sete dias entre cada ciclo. Após o término dos ciclos, os solos foram impregnados com resina de poliéster, montando-se seções finas para microscopia, as quais foram levadas para observação em microscópio ótico e fotografadas. As imagens obtidas foram digitalizadas, analisadas e quantificadas por meio do programa QUANTIPORO, desenvolvido no Departamento de Solos/Universidade Federal de Viçosa. Os resultados mostraram completa modificação na forma e no padrão da estrutura após a aplicação dos ciclos nos tratamentos que sofreram destruição de agregados por moagem. Essas mudanças foram atribuídas a uma reacomodação dos agregados fragmentados com a retração do plasma, que se seguiu ao processo de secagem. Todos os materiais estudados mostraram uma estrutura bem diferente da estrutura primária original destes solos. Não se observou qualquer tendência à reversão da estrutura após os dez ciclos, demonstrando que outros fatores, além dos físico-químicos e mineralógicos, devem ser invocados para explicar a gênese de microagregados em Latossolos.A greenhouse experiment was conducted to examine the structural modifications engendered by wetting-drying cycles in Latosol samples (Oxisols with different

  8. Experiment Analysis of Concrete’s Mechanical Property Deterioration Suffered Sulfate Attack and Drying-Wetting Cycles

    Directory of Open Access Journals (Sweden)

    Wei Tian

    2017-01-01

    Full Text Available The mechanism of concrete deterioration in sodium sulfate solution is investigated. The macroperformance was characterized via its apparent properties, mass loss, and compressive strength. Changes in ions in the solution at different sulfate attack periods were tested by inductively coupled plasma (ICP. The damage evolution law, as well as analysis of the concrete’s meso- and microstructure, was revealed by scanning electron microscope (SEM and computed tomography (CT scanning equipment. The results show that the characteristics of concrete differed at each sulfate attack period; the drying-wetting cycles generally accelerated the deterioration process of concrete. In the early sulfate attack period, the pore structure of the concrete was filled with sulfate attack products (e.g., ettringite and gypsum, and its mass and strength increased. The pore size and porosity decreased while the CT number increased. As deterioration progressed, the swelling/expansion force of products and the salt crystallization pressure of sulfate crystals acted on the inner wall of the concrete to accumulate damage and accelerate deterioration. The mass and strength of concrete sharply decreased. The number and volume of pores increased, and the pore grew more quickly resulting in initiation and expansion of microcracks while the CT number decreased.

  9. New approaches and potential treatments for dry age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Francisco Max Damico

    2012-02-01

    Full Text Available Emerging treatments for dry age-related macular degeneration (AMD and geographi c atrophy focus on two strategies that target components involved in physiopathological pathways: prevention of photoreceptors and retinal pigment epithelium loss (neuroprotection induction, oxidative damage prevention, and visual cycle modification and suppression of inflammation. Neuroprotective drugs, such as ciliary neurotrophic factor, brimonidine tartrate, tandospirone, and anti-amyloid β antibodies, aim to prevent apoptosis of retinal cells. Oxidative stress and depletion of essential micronutrients are targeted by the Age-Related Eye Disease Study (AREDS formulation. Visual cycle modulators reduce the activity of the photoreceptors and retinal accumulation of toxic fluorophores and lipofuscin. Eyes with dry age-related macular degeneration present chronic inflammation and potential treatments include corticosteroid and complement inhibition. We review the current concepts and rationale of dry age-related macular degeneration treatment that will most likely include a combination of drugs targeting different pathways involved in the development and progression of age-related macular degeneration.

  10. Annotated Bibliography for Drying Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  11. Future directions and cycles for electricity production from geothermal resources

    International Nuclear Information System (INIS)

    Michaelides, Efstathios E.

    2016-01-01

    Graphical abstract: 25% more power may be produced using binary-flashing geothermal cycles. - Highlights: • Power from geothermal power plants is continuously available and “dispatchable.” • The next generation of geothermal will include more binary plants. • Lower temperature geothermal resources will be utilized in the future. • Dry rock resources may produce a high fraction of electricity in several countries. - Abstract: Geothermal power production is economically competitive and capable to produce a high percentage of the electric power demand in several countries. The currently operating geothermal power plants utilize water from an aquifer at relatively higher temperatures and produce power using dry steam, flashing or binary cycles. A glance at the map of the global geothermal resources proves that there is a multitude of sites, where the aquifer temperature is lower. There are also many geothermal resources where a high geothermal gradient exists in the absence of an aquifer. It becomes apparent that the next generation of geothermal power plants will utilize more of the lower-temperature aquifer resources or the dry resources. For such power plants to be economically competitive, modified or new cycles with higher efficiencies must be used. This paper presents two methods to increase the efficiency of the currently used geothermal cycles. The first uses a binary-flashing system to reduce the overall entropy production, thus, producing more electric power from the resource. The second describes a heat extraction system to be used with dry hot-rock resources.

  12. Model for economical analysis of oil and gas deepwater production concepts : Comparisons of life cycle cost of subsea production systems vs. floating structures with dry wellheads.

    OpenAIRE

    Romero Mata, Omar

    2010-01-01

    Master's thesis in Offshore technology The scope of the work was to create a model that will allow the comparison of Life Cycle Costs (LCC) for subsea production systems and floating structures with dry wellheads for the Mexican territorial waters of the Gulf of Mexico. To give validity to the model, an empirical comparison on the resulting recovery factor based on data of the US Gulf of Mexico was included. This comparison is intended to answer ¿Is there a significant diffe...

  13. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  14. Wearable carbon nanotube based dry-electrodes for electrophysiological sensors

    Science.gov (United States)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-05-01

    In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.

  15. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.

    Science.gov (United States)

    Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin

    2014-07-01

    To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.

  16. Future of lignite resources: a life cycle analysis.

    Science.gov (United States)

    Wang, Qingsong; Liu, Wei; Yuan, Xueliang; Zheng, Xiaoning; Zuo, Jian

    2016-12-01

    Lignite is a low-quality energy source which accounts for 13 % of China's coal reserves. It is imperative to improve the quality of lignite for large-scale utilization. To further explore and analyze the influence of various key processes on the environment and economic costs, a lignite drying and compression technology is evaluated using an integrated approach of life cycle assessment and life cycle costs. Results showed that lignite mining, direct air emissions, and electricity consumption have most significant impacts on the environment. An integrated evaluation of life cycle assessment and life cycle costs showed that the most significant contributor to the environmental impacts and economic costs was the lignite mining process. The impact of transportation and wastewater treatment process on the environment and economic costs was small enough to be ignored. Critical factors were identified for reducing the environmental and economic impacts of lignite drying and compression technology. These findings provide useful inputs for both industrial practice and policy making for exploitation, processing, and utilization of lignite resources.

  17. Biomass fueled closed cycle gas turbine with water injection

    Energy Technology Data Exchange (ETDEWEB)

    Bardi, Silvia [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    Direct water injection has been studied for a small scale ({approx} 8 MW fuel input) closed cycle gas turbine coupled to a biomass fueled CFB furnace. Two different working fluids have been considered (helium-water mixture and nitrogen-water mixture). The water injection could take place between the compressor stages, as an intercooler, or after the high pressure compressor, as an aftercooler. Both this options have been studied, varying the relative humidity levels after the injection and the temperatures of the injected water. The effect of water injection on thermodynamic properties of the working fluids has been studied, together with its effect on turbomachinery isentropic efficiency. A sensitivity analysis on turbomachinery efficiency and cycle base pressure has been included. The results from this study have been compared to the performance of a dry closed cycle without water injection. The wet cycle shows an electric efficiency in the range 29-32% with helium-water mixture as working fluid and 30-32% with nitrogen-water mixture as working fluid, while the total efficiency (referring to the fuel LHV) is always higher than 100%. In the non-injected cycle the electric efficiency is 30-35% with helium and 32-36 with nitrogen. The total efficiency in the dry case with two level intercooling and postcooling is 87-89%, while is higher than 100% when only one stage inter- and postcooling is present. Aside from this, the study also includes a sizing of the heat exchangers for the different cycle variations. The heat transfer area is very sensible to the working fluid and to the amount of injected water and it's always higher when a nitrogen-water mixture is used. Compared to the cycle without water injection, by the way, the number of heat exchangers is reduced. This will lead to a lower pressure drop and a simpler plant layout. The total heat transfer area, however, is higher in the wet cycle than in the dry cycle.

  18. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    Energy Technology Data Exchange (ETDEWEB)

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  19. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  20. Modeling of dimensional changes of spent WWER fuel rods during dry storage

    International Nuclear Information System (INIS)

    Aliev, T.; Evdokimov, I.; Likhanskii, V.; Sorokin, A.; Kolesnik, M.; Kozhakin, A.; Zborovskii, V.; Zvir, E.; Ilyin, P.

    2015-01-01

    The engineering model of anisotropic creep is developed to predict the behavior of WWER fuel rods in dry storage of spent fuel. The model considers several deformation mechanisms, the main one being the dislocation creep. The effects of radiation defects accumulation and its partial annealing during storage, as well as work hardening are taken into account. Based on the available experimental data preliminary verification of the developed model is performed. The model adequately describes the data set used. Conditions of experiments conducted up to date are more severe in temperature and stresses than ones in dry storage. It is shown that in dry storage additional deformation mechanisms play an important role. One such mechanism is the creep induced by temperature cycling that occurs during the experiments. Thermal cycles produce internal stresses caused by thermal expansion anisotropy in α-Zr crystallites. This mechanism makes a significant contribution to the experimentally measured strain at stresses characteristic for spent fuel claddings. Additional experimental research is planned to expand the range of Verification Matrix to the prototype conditions for dry storage and to improve prediction accuracy of the model. (author)

  1. Characteristics of Timbers Dried Using Kiln Drying and Radio Frequency-Vacuum Drying Systems

    Directory of Open Access Journals (Sweden)

    Rabidin Zairul Amin

    2017-01-01

    Full Text Available Heavy hardwoods are difficult-to-dry timbers as they are prone to checking and internal stresses when dried using a conventional kiln drying system. These timbers are usually dried naturally to reach 15% to 19% moisture content with an acceptable defects. Besides long drying time, timbers at these moisture contents are not suitable for indoor applications since they will further dry and causing, for example, jointing and lamination failures. Drying to a lower moisture content could only be achieved in artificial drying kilns such as conventional kiln, dehumidification kiln, solar kiln, radio frequency-vacuum, etc. The objective of this study was to evaluate the characteristics of 30 mm and 50 mm thick kekatong (Cynometra spp. timber dried using kiln drying (KD and radio frequency-vacuum drying (RFV system. The investigation involved drying time, moisture content (MC variations between and within boards, drying defects, shrinkage, and drying stress. Drying defects include checks (surface, end, and internal checks and warping (bowing, cuping, spring, and twisting. The results showed that RFV drying time was reduced to 50% compared to the KD. RFV dried boards demonstrated a more uniform MC between and within boards. Shrinkage in width and thickness, as well as tangential/radial and volumetric shrinkages were substantially less in RFV boards. The amount of cupping, bowing and spring were very low and negligible in all drying runs. There was no twisting observed in all drying methods. The number of stress-free RFV board was higher than KD. With proper procedure, the RFV technology could be used for drying heavy hardwoods which are difficult to dry in conventional kilns due to excessive drying times and degradation.

  2. Infrared Drying Parameter Optimization

    Science.gov (United States)

    Jackson, Matthew R.

    control system to ensure that prints continuously dry the same way. In addition to the repeatability study, experimenting with the feasibility of using single pass prints with repeatable performance would also be a worthwhile study. A single print pass will reduce cycle time, and will reduce ink consumption when compared with double pass prints.

  3. The effect of wet-dry weathering on the rate of bedrock river channel erosion by saltating gravel

    Science.gov (United States)

    Inoue, Takuya; Yamaguchi, Satomi; Nelson, Jonathan M.

    2017-01-01

    Previous work has shown that the bedrock erosion rate E because of collisions of saltating bedload can be expressed by E = βqb(1-Pc), where qb is the sediment transport rate, Pc is the extent of alluvial cover, and β is the abrasion coefficient. However, the dependence of the abrasion coefficient on the physical characteristics of the bedrock material is poorly known, and in particular, the effects of wet-dry weathering on the saltation-abrasion bedrock incision has not been specifically characterized. Observation suggests that the typical wet-dry cycling of exposed bedrock in river beds gives rise to cracks and voids that are likely to alter the incision rate of the material when subjected to impacts of moving sediment. In this study, flume experiments are performed to develop an understanding of how wet-dry cycling affects the rock tensile strength and the bedrock erosion rate. To represent the physical effects of weathering, boring cores taken from natural bedrock channel are exposed to artificial wet-dry cycles. The experimental results suggest the following: (1) the abrasion coefficient for fresh bedrock is estimated by β = 1.0 × 10− 4σT− 2(d/ksb)0.5, where σT is the tensile strength, d is the diameter of colliding gravel, and ksb is the hydraulic roughness height of bedrock; (2) the tensile strength of the bedrock decreases exponentially as a result of repeated wet-dry cycles, σT/σT0 = exp (-CTNWa0/σT0), where σT0 is the initial tensile strength, Wa0 is the initial normalized rate of water absorption., N is the number of wet-dry cycles, and CT is a constant; (3) the erosion rate of fresh bedrock depends on the inverse of the square of tensile strength, but the erosion rate of weathered bedrock depends on the − 1.5 power of tensile strength.

  4. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    International Nuclear Information System (INIS)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-01

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO 2 UO 2 and ThO 2 UO 2 -DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future

  5. Dynamic Analysis of the Thorium Fuel Cycle in CANDU Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Chang Joon; Park, Chang Je

    2006-02-15

    The thorium fuel recycle scenarios through the Canada deuterium uranium (CANDU) reactor have been analyzed for two types of thorium fuel: homogeneous ThO{sub 2}UO{sub 2} and ThO{sub 2}UO{sub 2}-DUPIC fuels. The recycling is performed through the dry process fuel technology which has a proliferation resistance. For the once-through fuel cycle model, the existing nuclear power plant construction plan was considered up to 2016, while the nuclear demand growth rate from the year 2016 was assumed to be 0%. After setting up the once-through fuel cycle model, the thorium fuel CANDU reactor was modeled to investigate the fuel cycle parameters. In this analysis, the spent fuel inventory as well as the amount of plutonium, minor actinides and fission products of the multiple recycling fuel cycle were estimated and compared to those of the once-through fuel cycle. From the analysis results, it was found that the closed or partially closed thorium fuel cycle can be constructed through the dry process technology. Also, it is known that both the homogeneous and heterogeneous thorium fuel cycles can reduce the SF accumulation and save the natural uranium resource compared with the once-through cycle. From the material balance view point, the heterogeneous thorium fuel cycle seems to be more feasible. It is recommended, however, the economic analysis should be performed in future.

  6. Dry syngas purification process for coal gas produced in oxy-fuel type integrated gasification combined cycle power generation with carbon dioxide capturing feature.

    Science.gov (United States)

    Kobayashi, Makoto; Akiho, Hiroyuki

    2017-12-01

    Electricity production from coal fuel with minimizing efficiency penalty for the carbon dioxide abatement will bring us sustainable and compatible energy utilization. One of the promising options is oxy-fuel type Integrated Gasification Combined Cycle (oxy-fuel IGCC) power generation that is estimated to achieve thermal efficiency of 44% at lower heating value (LHV) base and provide compressed carbon dioxide (CO 2 ) with concentration of 93 vol%. The proper operation of the plant is established by introducing dry syngas cleaning processes to control halide and sulfur compounds satisfying tolerate contaminants level of gas turbine. To realize the dry process, the bench scale test facility was planned to demonstrate the first-ever halide and sulfur removal with fixed bed reactor using actual syngas from O 2 -CO 2 blown gasifier for the oxy-fuel IGCC power generation. Design parameter for the test facility was required for the candidate sorbents for halide removal and sulfur removal. Breakthrough test was performed on two kinds of halide sorbents at accelerated condition and on honeycomb desulfurization sorbent at varied space velocity condition. The results for the both sorbents for halide and sulfur exhibited sufficient removal within the satisfactory short depth of sorbent bed, as well as superior bed conversion of the impurity removal reaction. These performance evaluation of the candidate sorbents of halide and sulfur removal provided rational and affordable design parameters for the bench scale test facility to demonstrate the dry syngas cleaning process for oxy-fuel IGCC system as the scaled up step of process development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Power generation from a 7700C heat source by means of a main steam cycle, a topping closed gas cycle and a ammonia bottoming cycle

    International Nuclear Information System (INIS)

    Tilliette, Z.P.

    1981-03-01

    For power generation, steam cycles make an efficient use of medium temperature heat sources. They can be adapted to dry cooling, higher power ratings and output increase in winter by addition of an ammonia bottoming cycle. Active development is carried out in this field by 'Electricite de France'. As far as heat sources at higher temperatures are concerned, particularly related to coal-fired or nuclear power plants, a more efficient way of converting energy is at first to expand a hot working fluid through a gas turbine. It is shown in this paper that a satisfactory result, for heat sources of about 770 0 C, is obtained with a topping closed gas cycle of moderate power rating, rejecting its waste heat into the main steam cycle. Attention has to be paid to this gas cycle waste heat recovery and to the coupling of the gas and steam cycles. This concept drastically reduces the importance of new technology components. The use and the significance of an ammonia bottoming cycle in this case are investigated

  8. Dry Refabrication Technology Development of Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Lee, Jung Won; Park, G. I.; Park, C. J.

    2010-04-01

    Key technical data on advanced nuclear fuel cycle technology development for the spent fuel recycling have been produced in this study. In the frame work of DUPIC, dry process oxide products fabrication, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remote modulated welding equipment has been designed and fabricated. In the area of advanced pre-treatment process development, a rotary-type oxidizer and spherical particle fabrication process were developed by using SIMFUEL and off-gas treatment technology and zircalloy tube treatment technology were studied. In the area of the property characteristics of dry process products, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data

  9. Cradle-to-gate life cycle assessment of the dry etching step in the manufacturing of photovoltaic cells

    Directory of Open Access Journals (Sweden)

    Otto Andersen

    2014-11-01

    Full Text Available A new photovoltaic silicon crystalline solar cell dry chemical etching process (DCEP is developed. It is an alternative to the current State-of-the-Art (SoA wet chemical etching process (WCEP, associated with relatively large environmental loadings in the form of high water consumption and emissions of greenhouse gases with high Global Warming Potential (GWP. In order to compare the environmental impacts of DCEP to the corresponding impacts from WCEP, a comparative attributional life cycle assessment (LCA is conducted. From the LCA it can be concluded that the DCEP will lead to 86% reduction in water consumption compared to WCEP (acidic, and 89% reduction compared to WCEP (alkaline. The emissions of greenhouse gases, as expressed by the GWP100 indicator of the etching step, are also reduced with 63% and 20% respectively, when compared with current SoA acidic and alkaline WCEP. The toxicity impacts are also assessed to be lower for the DCEP compared to WCEP technologies, although the uncertainty is relatively high for the applied toxicity indicators. All in all, DCEP can reduce the CO2eq emissions of solar photovoltaic systems production by 5-10%.

  10. Review of the literature for dry reprocessing oxide, metal, and carbide fuel: The AIROX, RAHYD, and CARBOX pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.; Rhee, B.W. [Rockwell International Corp., Canoga Park, CA (United States). Energy Systems Group

    1979-09-30

    The state of the art of dry processing oxide, carbide, and metal fuel has been determined through an extensive literature review. Dry processing in one of the most proliferation resistant fuel reprocessing technologies available to date, and is one of the few which can be exported to other countries. Feasibility has been established for oxide, carbide, and metal fuel on a laboratory scale, and large-scale experiments on oxide and carbide fuel have shown viability of the dry processing concept. A complete dry processing cycle has been demonstrated by multicycle processing-refabrication-reirradiation experiments on oxide fuel. Additional experimental work is necessary to: (1) demonstrate the complete fuel cycle for carbide and metal fuel, (2) optimize dry processing conditions, and (3) establish fission product behavior. Dry process waste management is easier than for an aqueous processing facility since wastes are primarily solids and gases. Waste treatment can be accomplished by techniques which have been, or are being, developed for aqueous plants.

  11. Interim dry fuel storage for magnox reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, N [National Nuclear Corporation, Risley, Warrington (United Kingdom); Ealing, C [GEC Energy Systems Ltd, Whetstone, Leicester (United Kingdom)

    1985-07-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility.

  12. Interim dry fuel storage for magnox reactors

    International Nuclear Information System (INIS)

    Bradley, N.; Ealing, C.

    1985-01-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility

  13. Dry refabrication technology development of spent nuclear fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Lee, J. W.; Song, K. C.

    2012-04-01

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed

  14. Dry refabrication technology development of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Lee, J. W.; Song, K. C.; and others

    2012-04-15

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed.

  15. Fuzzy Rule Suram for Wood Drying

    Science.gov (United States)

    Situmorang, Zakarias

    2017-12-01

    Implemented of fuzzy rule must used a look-up table as defuzzification analysis. Look-up table is the actuator plant to doing the value of fuzzification. Rule suram based of fuzzy logic with variables of weather is temperature ambient and humidity ambient, it implemented for wood drying process. The membership function of variable of state represented in error value and change error with typical map of triangle and map of trapezium. Result of analysis to reach 4 fuzzy rule in 81 conditions to control the output system can be constructed in a number of way of weather and conditions of air. It used to minimum of the consumption of electric energy by heater. One cycle of schedule drying is a serial of condition of chamber to process as use as a wood species.

  16. Reproductive cycles in tropical intertidal gastropods are timed around tidal amplitude cycles.

    Science.gov (United States)

    Collin, Rachel; Kerr, Kecia; Contolini, Gina; Ochoa, Isis

    2017-08-01

    Reproduction in iteroparous marine organisms is often timed with abiotic cycles and may follow lunar, tidal amplitude, or daily cycles. Among intertidal marine invertebrates, decapods are well known to time larval release to coincide with large amplitude nighttime tides, which minimizes the risk of predation. Such bimonthly cycles have been reported for few other intertidal invertebrates. We documented the reproduction of 6 gastropod species from Panama to determine whether they demonstrate reproductive cycles, whether these cycles follow a 2-week cycle, and whether cycles are timed so that larval release occurs during large amplitude tides. Two of the species ( Crepidula cf. marginalis and Nerita scabricosta ) showed nonuniform reproduction, but without clear peaks in timing relative to tidal or lunar cycles. The other 4 species show clear peaks in reproduction occurring every 2 weeks. In 3 of these species ( Cerithideopsis carlifornica var. valida, Littoraria variegata , and Natica chemnitzi ), hatching occurred within 4 days of the maximum amplitude tides. Siphonaria palmata exhibit strong cycles, but reproduction occurred during the neap tides. Strong differences in the intensity of reproduction of Cerithideopsis carlifornica , and in particular, Littoraria variegata , between the larger and smaller spring tides of a lunar month indicate that these species time reproduction with the tidal amplitude cycle rather than the lunar cycle. For those species that reproduce during both the wet and dry seasons, we found that reproductive timing did not differ between seasons despite strong differences in temperature and precipitation. Overall, we found that most (4/6) species have strong reproductive cycles synchronized with the tidal amplitude cycle and that seasonal differences in abiotic factors do not alter these cycles.

  17. Effect of harvest period on foliage production and dry matter distribution in five cassava cultivars during the second plant cycle

    Directory of Open Access Journals (Sweden)

    Edvaldo Sagrilo

    2006-11-01

    Full Text Available The objective of this work was to study the leaf production pattern and dry matter distribution in cassava during the second plant cycle. The completely randomized experimental design with four replications was used, with five cultivars in the main plots and ten harvest times in the sub-plots. Foliage production was affected by plant age, being higher in hot periods. Leaf blades and petioles dry matter content presented a linear increase due to a progressive decrease in the amount of young leaves and ontogenetic factors. The stems provided, temporarily, carbohydrates to the plant re-growth, delaying the availability and use of storage roots dry matter. The dry matter content in the storage roots was lower during the vegetative and higher during rest period. The storage roots diameter increased considerably when the amount of leaves was higher, indicating the importance of leaf area in the cassava plant production.O experimento foi conduzido de outubro de 1997 a maio de 1999, no Noroeste do Paraná, Brasil, com o objetivo de avaliar o padrão de produção de folhas e distribuição de massa seca em 5 cultivares de mandioca, durante o segundo ciclo vegetativo. Utilizou-se o delineamento experimental em blocos casualizados, com 4 repetições, no esquema de parcelas subdivididas, estando as cultivares nas parcelas e as épocas de colheita nas subparcelas. A produção de folhas foi afetada pela idade das plantas, sendo maior nos períodos de temperatura elevada. Os teores de massa seca nos limbos foliares e pecíolos aumentaram linearmente com a idade das plantas, devido à menor proporção de folhas jovens e a fatores ontogênicos inerentes à planta. As hastes proporcionaram, temporariamente, os assimilados necessários para a reestruturação vegetativa das plantas, protelando a disponibilidade e uso dos carboidratos armazenados nas raízes. O teor de massa seca nas raízes foi menor durante o período de crescimento vegetativo e maior

  18. Water level fluctuations in a tropical reservoir: the impact of sediment drying, aquatic macrophyte dieback, and oxygen availability on phosphorus mobilization.

    Science.gov (United States)

    Keitel, Jonas; Zak, Dominik; Hupfer, Michael

    2016-04-01

    Reservoirs in semi-arid areas are subject to water level fluctuations (WLF) that alter biogeochemical processes in the sediment. We hypothesized that wet-dry cycles may cause internal eutrophication in such systems when they affect densely vegetated shallow areas. To assess the impact of WLF on phosphorus (P) mobilization and benthic P cycling of iron-rich sediments, we tested the effects of (i) sediment drying and rewetting, (ii) the impact of organic matter availability in the form of dried Brazilian Waterweed (Egeria densa), and (iii) alternating redox conditions in the surface water. In principle, drying led to increased P release after rewetting both in plant-free and in plant-amended sediments. Highest P mobilization was recorded in plant amendments under oxygen-free conditions. After re-establishment of aerobic conditions, P concentrations in surface water decreased substantially owing to P retention by sediments. In desiccated and re-inundated sediments, P retention decreased by up to 30% compared to constantly inundated sediments. We showed that WLF may trigger biochemical interactions conducive to anaerobic P release. Thereby, E. densa showed high P release and even P uptake that was redox-controlled and superimposed sedimentary P cycling. Macrophytes play an important role in the uptake of P from the water but may be also a significant source of P in wet-dry cycles. We estimated a potential for the abrupt release of soluble reactive phosphorus (SRP) by E. densa of 0.09-0.13 g SRP per m(2) after each wet-dry cycle. Released SRP may exceed critical P limits for eutrophication, provoking usage restrictions. Our results have implications for management of reservoirs in semi-arid regions affected by WLF.

  19. Dry Deposition from Sahara Sources Regions of Western Africa

    Directory of Open Access Journals (Sweden)

    B. Douaiba

    2014-01-01

    Full Text Available Sahara dust storms during March 2004 have attracted much attention from the dust-research community due to their intensity, wide coverage, and endurance. In the present work, the dry deposition mechanisms of mineral dust are analysed during an event on the 3 March 2004 over the Northwest African coast. This particular case was chosen based on the strong dry removal that occurred, rendering it ideal for examining the deposition processes. The simulation of synoptic conditions and dry deposition of four dust particles including clay, small silt, large silt, and sand was performed with Eta model, coupled with a desert dust cycle module. The results have been compared with surface data from weather stations in North Africa, data of dry metals from stations located in Gran Canaria, and various satellite images such as European Organization for the Exploitation of Meteorological Satellites and Moderate Resolution Imaging Spectroradiometer for the period in question.

  20. Characteristics of Timbers Dried Using Kiln Drying and Radio Frequency-Vacuum Drying Systems

    OpenAIRE

    Rabidin Zairul Amin; Seng Gan Kee; Wahab Mohd Jamil Abdul

    2017-01-01

    Heavy hardwoods are difficult-to-dry timbers as they are prone to checking and internal stresses when dried using a conventional kiln drying system. These timbers are usually dried naturally to reach 15% to 19% moisture content with an acceptable defects. Besides long drying time, timbers at these moisture contents are not suitable for indoor applications since they will further dry and causing, for example, jointing and lamination failures. Drying to a lower moisture content could only be ac...

  1. Symbiotic potential: the integration of preheating and dry cooling in cokemaking

    Energy Technology Data Exchange (ETDEWEB)

    Barker, J E [British Carbonization Research Association, England; Bruce, J M; Kemmetmueller, R

    1978-06-01

    The expression closed energy cycle has become popular in the last decade as descriptive of industrial systems in which exhaust heat is recovered from a primary energy-conversion stage and utilized either recuperatively or regeneratively within the overall complex. An old and well-proven means of utilizing the sensible heat of the incandescent coke discharged from coke ovens is known as dry cooling. This is being practiced widely in the USSR and Japan, but not yet to any significant extent in the western world. The waste heat recovered by this system is normally used to raise steam for power generation and process use. A recent advance in the carbonization of coal for the manufacture of metallurgical coke has been the application of the technique of coal drying and preheating as a means of improving both coke quality and oven productivity, and this is usually energized by burning gas as a fuel. An alternative configuration, having practical advantages in relation to efficiency of utilization of recovered energy and to safety in operation, is represented by a combination of coal drying and preheating with dry cooling of the coke. This paper is concerned with the case for this combination and the means whereby it may be effected in practice. The energy cycle of cokemaking would thus be more nearly closed.

  2. Plasma Rich in Growth Factors for the Treatment of Dry Eye after LASIK Surgery.

    Science.gov (United States)

    Sanchez-Avila, Ronald Mauricio; Merayo-Lloves, Jesus; Fernandez, Maria Laura; Rodriguez-Gutierrez, Luis Alberto; Jurado, Nancy; Muruzabal, Francisco; Orive, Gorka; Anitua, Eduardo

    2018-06-08

    The aim of this study was to evaluate the use of plasma rich in growth factors (PRGF) eye drops in patients with dry eye disease after laser-assisted in situ keratomileusis (LASIK) surgery. This is a longitudinal, retrospective, comparative, and descriptive study of 77 eyes of 42 patients with dry eye disease following LASIK surgery. This study was designed to evaluate the efficacy of PRGF treatment compared to conventional therapy (control group). Outcome measures including signs and symptoms of dry eye disease were evaluated before and after treatment. The percentage of change before and after treatment for each clinical variable measured was compared between both groups. There were 1-4 treatment cycles with PRGF eye drops (1 cycle = 6 weeks). Results showed a statistically significant improvement in the Ocular Surface Disease Index (38.12%), visual analogue scale scores for frequency (41.89%) and severity (42.47%), and the Schirmer test scores (88.98%) after PRGF treatment (p eye drops are effective for the improvement of dry eye symptoms in patients who underwent LASIK surgery in comparison to the conventional therapy. The treatment with PRGF is an alternative for patients who suffer from postoperative dry eye. © 2018 S. Karger AG, Basel.

  3. Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models

    Science.gov (United States)

    Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.

    2017-12-01

    It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry

  4. Surface ozone seasonality under global change: Influence from dry deposition and isoprene emissions at northern mid-latitudes

    Science.gov (United States)

    Clifton, O.; Paulot, F.; Fiore, A. M.; Horowitz, L. W.; Malyshev, S.; Shevliakova, E.; Correa, G. J. P.; Lin, M.

    2017-12-01

    Identifying the contributions of nonlinear chemistry and transport to observed surface ozone seasonal cycles over land using global models relies on an accurate representation of ozone uptake by vegetation (dry deposition). It is well established that in the absence of ozone precursor emission changes, a warming climate will increase surface ozone in polluted regions, and that a rise in temperature-dependent isoprene emissions would exacerbate this "climate penalty". However, the influence of changes in ozone dry deposition, expected to evolve with climate and land use, is often overlooked in air quality projections. With a new scheme that represents dry deposition within the NOAA GFDL dynamic vegetation land model (LM3) coupled to the NOAA GFDL atmospheric chemistry-climate model (AM3), we simulate the impact of 21st century climate and land use on ozone dry deposition and isoprene emissions. This dry deposition parameterization is a version of the Wesely scheme, but uses parameters explicitly calculated by LM3 that respond to climate and land use (e.g., stomatal conductance, canopy interception of water, leaf area index). The parameterization includes a nonstomatal deposition dependence on humidity. We evaluate climatological present-day seasonal cycles of ozone deposition velocities and abundances with those observed at northern mid-latitude sites. With a set of 2010s and 2090s decadal simulations under a high climate warming scenario (RCP8.5) and a sensitivity simulation with well-mixed greenhouse gases following RCP8.5 but air pollutants held at 2010 levels (RCP8.5_WMGG), we examine changes in surface ozone seasonal cycles. We build on our previous findings, which indicate that strong reductions in anthropogenic NOx emissions under RCP8.5 cause the surface ozone seasonal cycle over the NE USA to reverse, shifting from a summer peak at present to a winter peak by 2100. Under RCP8.5_WMGG, we parse the separate effects of climate and land use on ozone dry

  5. The Effect of Drying-Wetting Cycle’s Repetition to the Characteristic of Natural and Stabilization Residual Soils Jawa Timur - Indonesia

    Science.gov (United States)

    Muntaha, M.

    2017-11-01

    Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.

  6. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  7. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  8. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Science.gov (United States)

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  9. Serving the fuel cycle: preparing tomorrow's packagings

    International Nuclear Information System (INIS)

    Roland, V.

    2001-01-01

    The main fleet of transport packagings serving today the fuel cycle was born more than 20 years ago. Or was it they? The present paper will show that serving the fuel cycle by preparing tomorrow's logistics is actually an on-going process, rather than a rupture. We shall review the great packagings of the fuel cycle: In the front end, the major actors are the UF 4 , UF 6 , enriched UF 6 , UO 2 powders, fresh fuel packagings. In the back end of the fuel cycle, we find the dry transport casks of the TN-12, TN-17, TN-13, family and also the Excellox wet flasks. In the waste management, a whole fleet of containers, culminating in the TN Gemini, are available or being created. (author)

  10. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    Energy Technology Data Exchange (ETDEWEB)

    Chen Libao [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Xie Xiaohua [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Wang Baofeng [Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang Ke [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie Jingying [Energy Science and Technology Laboratory, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China) and Graduate School of Chinese Academy of Sciences, Beijing 100049 (China)]. E-mail: jyxie@mail.sim.ac.cn

    2006-07-15

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g{sup -1} and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly.

  11. Spherical nanostructured Si/C composite prepared by spray drying technique for lithium ion batteries anode

    International Nuclear Information System (INIS)

    Chen Libao; Xie Xiaohua; Wang Baofeng; Wang Ke; Xie Jingying

    2006-01-01

    Spherical nanostructured Si/C composite was prepared by spray drying technique, followed by heat treatment, in which nanosized silicon and fine graphite particles were homogeneously embedded in carbon matrix pyrolyzed by phenol formaldehyde resin. Cyclic voltammetry tests showed two pairs of redox peaks corresponding to lithiation and delithiation of Si/C composite. The Si/C composite exhibited a reversible capacity of 635 mAh g -1 and good cycle performance used in lithium ion batteries. To improve cycle performance of this Si/C composite further, the carbon-coated Si/C composite was synthesized by the second spray drying and heat treatment processing. The cycle performance of carbon-coated Si/C composite was improved significantly, which was attributed to the formation of stable SEI passivation layers on the outer surface of carbon shell which protected the bared silicon from exposing to electrolyte directly

  12. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    Science.gov (United States)

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  13. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory

    DEFF Research Database (Denmark)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-01-01

    with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer...... to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion...

  14. Safeguards and nonproliferation aspects of a dry fuel recycling technology

    International Nuclear Information System (INIS)

    Pillay, K.K.S.

    1993-01-01

    Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities

  15. Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey.

    Science.gov (United States)

    Jantzen, M; Göpel, A; Beermann, C

    2013-10-01

    Formulations of dietary probiotics have to be robust against process conditions and have to maintain a sufficient survival rate during gastric transit. To increase efficiency of the encapsulation process and the viability of applied bacteria, this study aimed at developing spray drying and encapsulation of Lactobacillus reuteri with whey directly from slurry fermentation. Lactobacillus reuteri was cultivated in watery 20% (w/v) whey solution with or without 0·5% (w/v) yeast extract supplementation in a submerged slurry fermentation. Growth enhancement with supplement was observed. Whey slurry containing c. 10(9)  CFU g(-1) bacteria was directly spray-dried. Cell counts in achieved products decreased by 2 log cycles after drying and 1 log cycle during 4 weeks of storage. Encapsulated bacteria were distinctively released in intestinal milieu. Survival rate of encapsulated bacteria was 32% higher compared with nonencapsulated ones exposed to artificial digestive juice. Probiotic L. reuteri proliferate in slurry fermentation with yeast-supplemented whey and enable a direct spray drying in whey. The resulting microcapsules remain stable during storage and reveal adequate survival in simulated gastric juices and a distinct release in intestinal juices. Exploiting whey as a bacterial substrate and encapsulation matrix within a coupled fermentation and spray-drying process offers an efficient option for industrial production of vital probiotics. © 2013 The Society for Applied Microbiology.

  16. Contrasted response of colloidal, organic and inorganic dissolved phosphorus forms during rewetting of dried riparian soils

    Science.gov (United States)

    Gu, Sen; Gruau, Gérard; Malique, François; Dupas, Rémi; Gascuel-Odoux, Chantal; Petitjean, Patrice; Bouhnik-Le Coz, Martine

    2017-04-01

    Riparian vegetated buffer strip (RVBS) are currently used to protect surface waters from phosphorus (P) emissions because of their ability to retain P-enriched soil particles. However, this protection role may be counterbalanced by the development in these zones of conditions able to trigger the release of highly mobile dissolved or colloidal P forms. Rewetting after drying is one of these conditions. So far, the potential sources of P mobilized during rewetting after drying are not clearly identified, nor are clearly identified the chemical nature of the released dissolved P species, or the role of the soil P speciation on these forms. In this study, two riparian soils (G and K) showing contrasting soil P speciation (65% of inorganic P species in soil G, as against 70% of organic P) were submitted to three successive dry/wet cycles in the laboratory. Conventional colorimetric determination of P concentrations combined with ultrafiltration, and measurements of iron (Fe) and aluminum (Al) and dissolved organic carbon (DOC) contents using ICP-MS and TOC analyzers, respectively, were used to study the response of the different P forms to rewetting after drying and also their release kinetics during soil leaching. For both soils, marked P release peaks were observed at the beginning of each wet cycles, with the organic-rich K soils giving, however, larger peaks than the inorganic one (G soil). For both soils also, concentrations in molybdate reactive P (MRP) remained quite constant throughout each leaching episode, contrary to the molybdate unreactive P (MUP) concentrations which were high immediately after rewetting and then decreased rapidly during leaching. A speciation change was observed from the beginning to the end of all leaching cycles. Colloidal P was found to be a major fraction of the total P immediately after rewetting (up to 50-70%) and then decreased to the end of each wet cycle where most of the eluted P was true dissolved inorganic P. Colloidal

  17. Dry and Semi-Dry Tropical Cyclones

    Science.gov (United States)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  18. Simulation of potential standalone liquid desiccant cooling cycles

    International Nuclear Information System (INIS)

    Das, Rajat Subhra; Jain, Sanjeev

    2015-01-01

    LDCS (Liquid desiccant cooling systems), capable of achieving dehumidification and cooling with low-grade heat input, can be effectively used for treating fresh air in hot and humid regions. These can also be operated using non-concentrating solar collectors. The present study is concerned with the evaluation of various potential liquid desiccant cycles for tropical climatic conditions. Six potential standalone liquid desiccant cycles are identified and analyzed to select the best configuration for achieving thermal comfort. A computer simulation model is developed in EES (Equation Solver) software platform to evaluate the performance of all the cycles at various operating conditions. Aqueous solution of LiCl (lithium chloride) is used as desiccant. Mass and energy balance equations of all the components along with their effectiveness and LiCl property correlation equations are solved simultaneously for given ambient conditions. As the desiccant circuit is a closed loop, no assumptions are made about its concentration and temperature in the algorithm. Supply air conditions, cooling capacity, COP (capacity and coefficient of performance) and CR (circulation rate) per unit cooling capacity and hot water temperature requirement are used as a measure for analyzing the performance of the different cycles. The effect of hot water temperature on the performance of the cycles is evaluated at ARI conditions. The performances of the cycles are also evaluated for cities selected from each of the climatic zone of India that represent typical tropical climates. Although all the cycles are feasible at ARI and hot and dry conditions, only two cycles can achieve the selected indoor conditions in the peak humid conditions. The results would be useful for selecting suitable liquid desiccant cycle for a given climate. - Highlights: • Six potential standalone liquid desiccant cycles identified and analyzed to select best configuration. • A computer simulation model is developed in

  19. Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze-thaw cycles, in the Antarctic Dry Valleys.

    Science.gov (United States)

    Knox, Matthew A; Andriuzzi, Walter S; Buelow, Heather N; Takacs-Vesbach, Cristina; Adams, Byron J; Wall, Diana H

    2017-10-01

    Altered temperature profiles resulting in increased warming and freeze-thaw cycle (FTC) frequency pose great ecological challenges to organisms in alpine and polar ecosystems. We performed a laboratory microcosm experiment to investigate how temperature variability affects soil bacterial cell numbers, and abundance and traits of soil microfauna (the microbivorous nematode Scottnema lindsayae) from McMurdo Dry Valleys, Antarctica. FTCs and constant freezing shifted nematode body size distribution towards large individuals, driven by higher mortality among smaller individuals. FTCs reduced both bacterial and nematode abundance, but bacterial cell numbers also declined under warming, demonstrating decoupled consumer-prey responses. We predict that higher occurrence of FTCs in cold ecosystems will select for large body size within soil microinvertebrates and overall reduce their abundance. In contrast, warm temperatures without FTCs could lead to divergent responses in soil bacteria and their microinvertebrate consumers, potentially affecting energy and nutrient transfer rates in soil food webs of cold ecosystems. © 2017 John Wiley & Sons Ltd/CNRS.

  20. Microalgal drying and cell disruption--recent advances.

    Science.gov (United States)

    Show, Kuan-Yeow; Lee, Duu-Jong; Tay, Joo-Hwa; Lee, Tse-Min; Chang, Jo-Shu

    2015-05-01

    Production of intracellular metabolites or biofuels from algae involves various processing steps, and extensive work on laboratory- and pilot-scale algae cultivation, harvesting and processing has been reported. As algal drying and cell disruption are integral processes of the unit operations, this review examines recent advances in algal drying and disruption for nutrition or biofuel production. Challenges and prospects of the processing are also outlined. Engineering improvements in addressing the challenges of energy efficiency and cost-effective and rigorous techno-economic analyses for a clearer prospect comparison between different processing methods are highlighted. Holistic life cycle assessments need to be conducted in assessing the energy balance and the potential environmental impacts of algal processing. The review aims to provide useful information for future development of efficient and commercially viable algal food products and biofuels production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory.

    Science.gov (United States)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-08-01

    The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO 3 , Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced. Copyright © 2017. Published by Elsevier Ltd.

  2. Gene Expression, Bacteria Viability and Survivability Following Spray Drying of Mycobacterium smegmatis

    Directory of Open Access Journals (Sweden)

    Elizabeth Hunter Lauten

    2010-04-01

    Full Text Available We find that Mycobacterium smegmatis survives spray drying and retains cell viability in accelerated temperature stress (40 °C conditions with a success rate that increases with increasing thermal, osmotic, and nutrient-restriction stresses applied to the mycobacterium prior to spray drying. M.smegmatis that are spray dried during log growth phase, where they suffer little or no nutrient-reduction stress, survive for less than 7 days in the dry powder state at accelerated temperature stress conditions, whereas M. smegmatis that are spray dried during stationary phase, where cells do suffer nutrient reduction, survive for up to 14 days. M. smegmatis that are spray dried from stationary phase, subjected to accelerated temperature stress conditions, regrown to stationary phase, spray dried again, and resubmitted to this same process four consecutive times, display, on the fourth spray drying iteration, an approximate ten-fold increase in stability during accelerated temperature stress testing, surviving up to 105 days. Microarray tests revealed significant differences in genetic expression of M. smegmatis between log phase and stationary phase conditions, between naïve (non spray-dried and multiply cycled dried M. smegmatis (in log and stationary phase, and between M. smegmatis in the dry powder state following a single spray drying operation and after four consecutive spray drying operations. These differences, and other phenotypical differences, point to the carotenoid biosynthetic pathway as a probable pathway contributing to bacteria survival in the spray-dried state and suggests strategies for spray drying that may lead to significantly greater room-temperature stability of mycobacteria, including mycobacterium bovis bacille Calmette-Guerin (BCG, the current TB vaccine.

  3. Drying of α-amylase by spray drying and freeze-drying - a comparative study

    Directory of Open Access Journals (Sweden)

    S. S. de Jesus

    2014-09-01

    Full Text Available This study is aimed at comparing two traditional methods of drying of enzymes and at verifying the efficiency of each one and their advantages and disadvantages. The experiments were performed with a laboratory spray dryer and freeze-dryer using α-amylase as the model enzyme. An experimental design in star revealed that spray drying is mainly influenced by the inlet air temperature and feed flow rate, which were considered to be the main factors influencing the enzymatic activity and water activity; the long period of material exposure to high temperatures causes a partial activity loss. In the experiments of freeze drying, three methods of freezing were used (freezer, acetone and dry ice, and liquid nitrogen and samples subsequently freeze-dried for times ranging between 0-24 hours. The product obtained from the two techniques showed high enzymatic activity and low water activity. For the drying of heat-resistant enzymes, in which the product to be obtained does not have high added value, spray drying may be more economically viable because, in the freeze drying process, the process time can be considered as a limiting factor when choosing a technique.

  4. Ovarian cycle of southern brown howler monkey (Alouatta guariba clamitans) through fecal progestin measurement.

    Science.gov (United States)

    Silvestre, Thiago; Zanetti, Eveline S; Duarte, José M B; Barriento, Fernando G; Hirano, Zelinda M B; Souza, Júlio C; Passos, Fernando C

    2017-01-01

    The ovarian cycle in howler monkeys (genus Alouatta) has beean investigated through several biological parameters (ranging between 16.3 and 29.5 days); however, no data exist concerning the ovarian activity of the southern brown howler monkey (Alouatta guariba clamitans). This study aimed to describe the ovarian cycle of A. g. clamitans by profiling fecal progestin concentrations. Over 20 weeks, fecal samples of eight captive adult females of A. g. clamitans were collected. The collections were made at dawn, 5 days a week, and the samples were frozen immediately following collection. Next, they were dried, pulverized and hormonal metabolites were extracted to determine progestin concentrations by enzyme immunoassay. Of the 758 samples tested, the mean concentration of fecal progestins was 2866.40 ± 470.03 ng/g of dry feces, while the mean concentration at baseline was 814.47 ± 164.36 ng/g of dry feces. Among the eight females, one showed no ovarian cyclicity and three presented periods of probable absence of cyclicity and low progestin concentrations. A mean duration of 16 ± 0.52 days was observed for the 35 cycles studied. The interluteal phase lasted 4 ± 0.37 days on average, with a mean concentration of fecal progestins of 467.98 ± 29.12 ng/g of dry feces, while the luteal phase lasted 11 ± 0.50 days, with a mean concentration of 4283.27 ± 193.31 ng/g of dry feces. Besides describing the characteristics of the ovarian cycle, possible causes for the low concentrations of fecal progestins and periods of absence of cyclicity are also discussed.

  5. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    Science.gov (United States)

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  6. Development of heat pump and infrared-convective dryer and performance analysis for stale bread drying

    International Nuclear Information System (INIS)

    Aktaş, Mustafa; Şevik, Seyfi; Aktekeli, Burak

    2016-01-01

    Highlights: • Investigation of stale bread drying behaviors by developing the HPD and IRD. • New techniques for the HP and IR dryers are proposed and found to be efficient. • Evaluations on potential uses low temperature applications of the dryers were reported. • 35.6% of energy saving was provided by heat recovery device. • The overall system efficiency of HPD was calculated as 13–60%. - Abstract: This experimental study aims to develop a heat pump dryer (HPD) and an infrared dryer (IRD) also the comparative empirical analyses of these two methods and to analyze the drying kinetic of stale bread sliced 15 mm thickness and effectiveness on the drying kinetics of the stale bread of dryers. Dryers have been developed by using different techniques such as heat recovery unit, proportional control (PC) of drying air temperature, simultaneous control of the relative humidity–temperature–air flow rate, water cycle dehumidifier and closed-loop cycle to increase the drying efficiency of industrial drying applications. The highest coefficient of performance of the whole heat pump system (COP_w_s_,_H_P) was calculated as 3.7 and drying efficiencies of the IRD and HPD systems were calculated as 39% and 25%, respectively. When the HPD and IRD systems were compared in terms of drying time and energy consumption, it was observed that the IRD system did not only shortened the drying time up to 69%, but also decreased the energy consumption of the system by 43.2%. Based on the obtained results the effective moisture diffusivity (D_e) was calculated in the range from 8.3 × 10"−"8 to 3.2 × 10"−"7 m"2/s and mass transfer coefficient (h_m) was varied from 1.17 × 10"−"5 to 4.52 × 10"−"5 m/s. It was concluded that both dryers have significant effect in reduction of water content; the relative humidity controlled HPD can be applied efficiently for dryers and the dried stale bread can be reused as bread crumb by food industry.

  7. Psychrophilic dry anaerobic digestion of cow feces and wheat straw: Feasibility studies

    International Nuclear Information System (INIS)

    Massé, Daniel I.; Saady, N.M.C.; Gilbert, Yan

    2015-01-01

    This paper reports a novel psychrophilic dry anaerobic digestion (PDAD) of cow feces (feces) and wheat straw (WS). Three feeding strategies (WS, feces, and feces plus WS) were assessed in pseudo sequential batch reactors (PSBR) during three successive cycles of around 21 days hydraulic retention time (HRT). Average specific methane yields on VS fed (L kg −1 ) of 129 ± 17 (WS only), 164 ± 23 (feces only (10–11% TS)) and 152 ± 6 (a mixture of feces plus WS (16% TS)) were obtained during the last three successive cycles. The average methane production rates on VS fed were 3.5 ± 1.5 and 3.6 ± 1.3 and 4.1 ± 0.4 L kg −1  d −1 for the three feeding strategies, respectively. The successive cycles revealed that the psychrophilic anaerobic digestion of high-solid content of cow feces and wheat straw is a reproducible process, practically feasible, and as efficient as mesophilic dry anaerobic digestion given that a well-adapted inoculum is developed and maintained. - Highlights: • Cow feces and wheat straw (CFWS) psychrophilic dry anaerobic digestion (PDAD). • PDAD of CFWS (TS 16% mass fraction) is feasible and as efficient as mesophilic DAD. • VS OLR 1.5 g kg −1  d −1 produced VS-based SMY of 152 ± 6 L kg −1 • Inoculum adaptation is a prerequisite to a stable PDAD

  8. Full scale experimental study of a small natural draft dry cooling tower for concentrating solar thermal power plant

    International Nuclear Information System (INIS)

    Li, Xiaoxiao; Duniam, Sam; Gurgenci, Hal; Guan, Zhiqiang; Veeraragavan, Anand

    2017-01-01

    Highlights: • A 20 m high natural draft dry cooling tower is designed and tested. • The cooling tower model is refined and validated with the experimental data. • The performance of the cooling tower utilized in a CST power plant is investigated. • Ambient temperature effect on Rankine cycle and Brayton cycle is discussed. - Abstract: Concentrating solar thermal power system can provide low carbon, renewable energy resources in countries or regions with strong solar irradiation. For this kind of power plant which is likely to be located in the arid area, natural draft dry cooling tower is a promising choice. To develop the experimental studies on small cooling tower, a 20 m high natural draft dry cooling tower with fully instrumented measurement system was established by the Queensland Geothermal Energy Centre of Excellence. The performance of this cooling tower was measured with the constant heat input of 600 kW and 840 kW and with ambient temperature ranging from 20 °C to 32 °C. The cooling tower numerical model was refined and validated with the experimental data. The model of 1 MW concentrating solar thermal supercritical CO_2 power cycle was developed and integrated with the cooling tower model. The influences of changing ambient temperature and the performance of the cooling tower on efficiency of the power system were simulated. The differences of the mechanism of the ambient temperature effect on Rankine cycle and supercritical CO_2 Brayton cycle were analysed and discussed.

  9. Dynamic behavior of Rankine cycle system for waste heat recovery of heavy duty diesel engines under driving cycle

    International Nuclear Information System (INIS)

    Xie, Hui; Yang, Can

    2013-01-01

    Highlights: • Waste heat recovery behavior of the RCS during driving cycle was investigated. • Four operating modes were defined to describe the operating process of the RCS under driving cycle. • The operating mode switching is the crucial reason for on-road inefficiency. • The dry and isentropic fluids are superior to the wet ones on the adaptability to unsteady ExGE. • The effects of the vapor parameters on RCT-E and power mode percentage are opposite. - Abstract: The RCS (Rankine cycle system) used to recover the WHE (waste heat energy) from engines has been regarded as one of the most potential ways of achieving higher efficiency. However, it is of great challenge to keep the RCS still in good performance under driving cycle. This paper tries to reveal and explain its on-road inefficiency. The operating process of the RCS under driving cycle was analyzed in advance. Afterwards, four basic operating modes were defined, including startup mode, turbine turning mode, power mode and protection mode. Then, a RCS model was established and operating performances of the RCS under an actual driving cycle were discussed based on this model. The results indicate that the on-road RCS-E (Rankine cycle system efficiency) is as low as 3.63%, which is less than half of the design RCS-E (7.77%) at the rated operating point. Despite the inevitable vapor state fluctuation, it is the operating mode switching during the driving cycle that leads to the on-road inefficiency. Further investigations indicate that the expander safety temperature and its safety margin affected by the working fluids, designed superheat degree and evaporating pressure are the main factors determining the operating mode switching. Finally, the effects of the working fluids, designed superheat degree and evaporating pressure on the operating mode switching and RC (Rankine cycle) efficiencies were profoundly investigated. The study shows that the dry and isentropic fluids are superior to the wet

  10. Highly durable and unidirectionally stooped polymeric nanohairs for gecko-like dry adhesive

    International Nuclear Information System (INIS)

    Im, Hyeon Seong; Kwon, Ki Yoon; Kim, Jong Uk; Kim, Tae-il; Kim, Kwang Su; Yi, Hoon; Jeong, Hoon Eui; Yoo, Pil J; Pang, Changhyun

    2015-01-01

    Gecko-like dry adhesive using high aspect ratio polymeric nanohairs has insuperable limitations, although it has huge potential in many applications. Repeated harsh contacts on a target substrate lead to physical collapse of nanohairs and significant degradation of the adhesion property, because the polymeric nanohairs are quite fragile due to poor mechanical robustness. Herein, we demonstrate a highly robust gecko-like dry adhesive with unidirectionally stooped polymeric nanohairs (diameter 100 nm) with a high aspect ratio (∼9) using an ultrathin metal coating. 100 cycles of repeated adhesion tests with 1 N preloading force did not significantly degrade adhesion or cause collapse of nanohairs. We believe that this approach allows gecko-like dry adhesive to be utilized in many related applications and diverse industry interests. (paper)

  11. Cooling of nuclear power stations with high temperature reactors and helium turbine cycles

    International Nuclear Information System (INIS)

    Foerster, S.; Hewing, G.

    1977-01-01

    On nuclear power stations with high temperature reactors and helium turbine cycles (HTR-single circuits) the residual heat from the energy conversion process in the primary and intermediate coolers is removed from cycled gas, helium. Water, which is circulated for safety reasons through a closed circuit, is used for cooling. The primary and intermediate coolers as well as other cooling equipment of the power plant are installed within the reactor building. The heat from the helium turbine cycle is removed to the environment most effectively by natural draught cooling towers. In this way a net plant efficiency of about 40% is attainable. The low quantities of residual heat thereby produced and the high (in comparison with power stations with steam turbine cycles) cooling agent pressure and cooling water reheat pressure in the circulating coolers enable an economically favourable design of the overall 'cold end' to be expected. In the so-called unit range it is possible to make do with one or two cooling towers. Known techniques and existing operating experience can be used for these dry cooling towers. After-heat removal reactor shutdown is effected by a separate, redundant cooling system with forced air dry coolers. The heat from the cooling process at such locations in the power station is removed to the environment either by a forced air dry cooling installation or by a wet cooling system. (orig.) [de

  12. Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in Coupled Climate-Vegetation Regional Model

    Directory of Open Access Journals (Sweden)

    Flavio Justino

    2016-01-01

    Full Text Available Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly modified under greenhouse warming conditions, with the annual cycle becoming dominant throughout the Amazon basin, increasing differences between the dry and wet seasons. In particular, there are substantial changes in the annual cycle of temperature due to the increase in the temperature of the warmest month, but the lengthening of the dry season is believed to be particularly important for vegetation-climate feedbacks. Harmonic analysis performed to regional climate model simulations yields results that differ from the global climate model that it is forced from, with the regional model being more sensitive to changes in the seasonal cycle.

  13. Effect of paddy drying depth using open-sun drying on drying time ...

    African Journals Online (AJOL)

    The smallholder rice farmers in the Uganda dry their paddy using open-sun drying method. In most cases the paddy is badly dried and has very high fissure levels. Such paddy on milling contributes to low levels of mill recovery and whole grain in the milled rice. This study was therefore done to find a recommendable ...

  14. Study of the flash drying of the residue from soymilk processing - "okara"

    Directory of Open Access Journals (Sweden)

    Regina Kitagawa Grizotto

    2011-09-01

    Full Text Available The objective of this research project was to study the drying of soymilk residue in a pneumatic flash dryer, using response Surface Methodology (RSM, and to evaluate the quality of the dried residue. Soymilk residue, also known as okara, was provided by a Brazilian soymilk factory. RSM showed that for a 120 second drying cycle, the lower the residue moisture contents (y obtained, the higher the recirculation rates (x1, regardless of the air drying temperature (x2, and it could be expressed by the equation y = 7.072 - 7.92x1, with R² = 92,92%. It is possible to obtain okara with 10% of moisture (dwb under the condition x1=1.25, equivalent to RR = 61%, with air drying temperatures ranging from 252 °C to 308 °C. The dried okara obtained through Central Compound Rotational Design (CCRD presented a centesimal composition similar to the okara dried in a tray dryer, known as the original okara. There were significant variations (p < 0.05 in the Emulsifying Capacity (EC, Emulsion Stability (ES and Protein Solubility (PS between the dehydrated residues obtained. It was concluded that the flash drying of okara is technically feasible and that the physicochemical composition of the residue was not altered; on the contrary, the process promoted a positive effect on the technological functional properties.

  15. Plague cycles in two rodent species from China: Dry years might provide context for epizootics in wet years

    Science.gov (United States)

    Eads, David A.; Biggins, Dean E.; Xu, Lei; Liu, Qiyong

    2016-01-01

    Plague, a rodent-associated, flea-borne zoonosis, is one of the most notorious diseases in history. Rates of plague transmission can increase when fleas are abundant. Fleas commonly desiccate and die when reared under dry conditions in laboratories, suggesting fleas will be suppressed during droughts in the wild, thus reducing the rate at which plague spreads among hosts. In contrast, fleas might increase in abundance when precipitation is plentiful, producing epizootic outbreaks during wet years. We tested these hypotheses using a 27-yr data set from two rodents in Inner Mongolia, China: Mongolian gerbils (Meriones unguiculatus) and Daurian ground squirrels (Spermophilus dauricus). For both species of rodents, fleas were most abundant during years preceded by dry growing seasons. For gerbils, the prevalence of plague increased during wet years preceded by dry growing seasons. If precipitation is scarce during the primary growing season, succulent plants decline in abundance and, consequently, herbivorous rodents can suffer declines in body condition. Fleas produce more offspring and better survive when parasitizing food-limited hosts, because starving animals tend to exhibit inefficient behavioral and immunological defenses against fleas. Further, rodent burrows might buffer fleas from xeric conditions aboveground during dry years. After a dry year, fleas might be abundant due to the preceding drought, and if precipitation and succulent plants become more plentiful, rodents could increase in density, thereby creating connectivity that facilitates the spread of plague. Moreover, in wet years, mild temperatures might increase the efficiency at which fleas transmit the plague bacterium, while also helping fleas to survive as they quest among hosts. In this way, dry years could provide context for epizootics of plague in wet years.

  16. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  17. Life cycle analysis on fossil energy ratio of algal biodiesel: effects of nitrogen deficiency and oil extraction technology.

    Science.gov (United States)

    Jian, Hou; Jing, Yang; Peidong, Zhang

    2015-01-01

    Life cycle assessment (LCA) has been widely used to analyze various pathways of biofuel preparation from "cradle to grave." Effects of nitrogen supply for algae cultivation and technology of algal oil extraction on life cycle fossil energy ratio of biodiesel are assessed in this study. Life cycle fossil energy ratio of Chlorella vulgaris based biodiesel is improved by growing algae under nitrogen-limited conditions, while the life cycle fossil energy ratio of biodiesel production from Phaeodactylum tricornutum grown with nitrogen deprivation decreases. Compared to extraction of oil from dried algae, extraction of lipid from wet algae with subcritical cosolvents achieves a 43.83% improvement in fossil energy ratio of algal biodiesel when oilcake drying is not considered. The outcome for sensitivity analysis indicates that the algal oil conversion rate and energy content of algae are found to have the greatest effects on the LCA results of algal biodiesel production, followed by utilization ratio of algal residue, energy demand for algae drying, capacity of water mixing, and productivity of algae.

  18. Isotope studies to determine dry deposition of sulfate to deciduous and coniferous trees: Final draft

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1988-01-01

    Experiments have been conducted at two locations near Oak Ridge, Tennessee, with radioactive 35 S (87 day half-life) to examine the cycling behavior of sulfur in yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and loblolly pine (Pinus taeda) trees. Some findings pertain to methods development for estimating dry deposition of sulfur to forest canopies and the magnitude of sulfur emissions from natural sources (Task II). We will determine through field studies, the internal cycling, storage, and biogenic emission of sulfur, as traced by 35 SO 4 2- , in environments impacted by atmospheric sulfate deposition; and will determine through isotope dilution studies, the contribution of foliar leaching and dry deposition to net throughfall (NTF) sulfate concentrations beneath deciduous and coniferous trees in such environments. 3 refs., 2 figs., 1 tab

  19. Modeling of an industrial drying process by artificial neural networks

    Directory of Open Access Journals (Sweden)

    E. Assidjo

    2008-09-01

    Full Text Available A suitable method is needed to solve the nonquality problem in the grated coconut industry due to the poor control of product humidity during the process. In this study the possibility of using an artificial neural network (ANN, precisely a Multilayer Perceptron, for modeling the drying step of the production of grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this parameter and consequently reduce the proportion of the product that does not meet the humidity specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying.

  20. Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel

    Directory of Open Access Journals (Sweden)

    Mingyue Xu

    2017-01-01

    Full Text Available To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W. from 3.39 mg/g (sun drying. Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels.

  1. Bacterial regrowth potential in alkaline sludges from open-sun and covered sludge drying beds

    Energy Technology Data Exchange (ETDEWEB)

    Alkan, U.; Topac, F.O.; Birden, B.; Baskaya, H.S. [Uludag University, Gorukle (Turkey). Dept. of Environmnetal Engineering

    2007-10-15

    The aim of this study was to compare the regrowth potentials of wastewater sludges dried in two pilot-scale drying processes namely, Open-Sun Sludge Drying Bed (OSDB) and Covered Sludge Drying Bed (CSDB). Quicklime and/or coal fly ash were added to raw sludge samples prior to drying processes in order to enhance bacterial inactivation. Following three drying cycles (March-April, June-July and August-October), sludge samples were taken from the beds for the regrowth experiments. Addition of alkaline materials prevented the regrowth of faecal coliforms in all rewetted samples except for the samples obtained after the rainfall events in OSDB. Rewetting of these samples in the regrowth experiments increased faecal coliform numbers by 3.5-7 log units. In contradiction, the observed bacterial numbers in rewetted alkaline samples from CSDB were below the EPA Class B criterion (2 million MPN g{center_dot} 1) dry sludge). The combination of additional heat from solar collectors, protection from the rain and the unfavourable living conditions owing to alkaline materials appeared to inactivate bacteria more effectively in CSDB and hence eliminated regrowth potential more efficiently.

  2. Microwave wood strand drying: energy consumption, VOC emission and drying quality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.; Du, G.; Zhang, Y. [Tennessee Univ., Knoxville, TN (United States). Dept. of Forestry, Wildlife and Fisheries

    2005-07-01

    The objective of this research was to develop microwave drying technology for wood strand drying for oriented strand board (OSB) manufacturing. The advantages of microwave drying included a reduction in the drying time of wood strands and a reduction in the release of volatile organic compounds (VOC) through a decrease in the thermal degradation of the wood material. Temperature and moisture content changes under different microwave drying conditions were investigated. The effects of microwave drying on VOC emissions were evaluated and analyzed using gas chromatography and mass spectrometry. Microwave power input and the mass of drying materials in the microwave oven were found to have a dominant effect on drying quality. Results indicated that an increase in microwave power input and a decrease in sample weights resulted in high drying temperatures, short drying times and a high drying rate. The effect of microwave drying on the strand surfaces was also investigated. Different strand geometries and initial moisture content resulted in varying warm-up curves, but did not influence final moisture content. VOC emissions were quantified by comparing alpha-pinene concentrations. The microwave drying resulted in lower VOC emissions compared with conventional drying methods. It was concluded that the microwave drying technique provided faster strand drying and reduced energy consumption by up to 50 per cent. In addition, the surface wettability of wood strands dried with microwaves was better than with an industrial rotary drum drier. 12 refs., 3 tabs., 5 figs.

  3. An experimental study on the application of polyalcohol solid-solid phase change materials in solar drying with cross-corrugated solar air collectors

    Science.gov (United States)

    Gao, W. F.; Lin, W. X.; Liu, T.; Li, M.

    2017-11-01

    In this paper, two identical solar driers with the same cross-corrugated solar air collectors and drying chamber were developed, one with phase-change materials (PCMs) and the other without PCMs. These two solar drying systems were tested in typical sunny and cloudy days in Kunming and their thermal performances were analyzed. The experimental results show that the temperature changing is smoother in the collector with the PCMs, which is beneficial for the drying as the useful drying time was prolonged. The same trend was also found in the chamber with the PCMs. The PCMs in solar drying system was found to play a role in temperature regulating. There were several cycles of heat charging-discharging in a cloudy testing day while the temperatures on collectors and in chambers with the polyalcohol PCMs is higher than each phase-change temperature. Nevertheless, there was only one cycle of heat charging-discharging in a sunny testing day. The collector with PCMs has higher daily useful heat gain than the collector without PCMs.

  4. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    Science.gov (United States)

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  5. Dual-objective optimization of organic Rankine cycle (ORC) systems using genetic algorithm: a comparison between basic and recuperative cycles

    Science.gov (United States)

    Hayat, Nasir; Ameen, Muhammad Tahir; Tariq, Muhammad Kashif; Shah, Syed Nadeem Abbas; Naveed, Ahmad

    2017-08-01

    Exploitation of low potential waste thermal energy for useful net power output can be done by manipulating organic Rankine cycle systems. In the current article dual-objectives (η_{th} and SIC) optimization of ORC systems [basic organic Rankine cycle (BORC) and recuperative organic Rankine cycle (RORC)] has been done using non-dominated sorting genetic algorithm (II). Seven organic compounds (R-123, R-1234ze, R-152a, R-21, R-236ea, R-245ca and R-601) have been employed in basic cycle and four dry compounds (R-123, R-236ea, R-245ca and R-601) have been employed in recuperative cycle to investigate the behaviour of two systems and compare their performance. Sensitivity analyses show that recuperation boosts the thermodynamic behaviour of systems but it also raises specific investment cost significantly. R-21, R-245ca and R-601 show attractive performance in BORC whereas R-601 and R-236ea in RORC. RORC, due to higher total investment cost and operation & maintenance costs, has longer payback periods as compared to BORC.

  6. Assessment of the Dry Processed Oxide Fuel in Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2005-09-15

    The neutronic feasibility of the dry process oxide fuel was assessed for the sodium-cooled and lead-cooled fast reactors (SFR and LFR, respectively), which were recommended as Generation-IV (Gen-IV) reactor systems by the Gen-IV international forum. The reactor analysis was performed for the equilibrium fuel cycle of two core configurations: Hybrid BN-600 benchmark core with an enlarged lattice pitch and a modified BN-600 core. The dry process technology assumed in this study is the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic (TRU) enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a fissile self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was {approx}50% and most of the fission products were removed. If the design criteria used in this study is proved to be acceptable through a detailed physics design and thermal hydraulic analysis in the future, it is practically possible to construct an equilibrium fuel cycle of the SFR and LFR systems based on the oxide fuel by utilizing the dry process technology.

  7. Assessment of the Dry Processed Oxide Fuel in Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2005-09-01

    The neutronic feasibility of the dry process oxide fuel was assessed for the sodium-cooled and lead-cooled fast reactors (SFR and LFR, respectively), which were recommended as Generation-IV (Gen-IV) reactor systems by the Gen-IV international forum. The reactor analysis was performed for the equilibrium fuel cycle of two core configurations: Hybrid BN-600 benchmark core with an enlarged lattice pitch and a modified BN-600 core. The dry process technology assumed in this study is the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic (TRU) enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a fissile self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed. If the design criteria used in this study is proved to be acceptable through a detailed physics design and thermal hydraulic analysis in the future, it is practically possible to construct an equilibrium fuel cycle of the SFR and LFR systems based on the oxide fuel by utilizing the dry process technology

  8. Analysis of Drying Process Quality in Conventional Dry-Kilns

    OpenAIRE

    Sedlar Tomislav; Pervan Stjepan

    2010-01-01

    This paper presents testing results of drying quality in a conventional dry kiln. Testing is based on a new methodology that will show the level of success of the drying process management by analyzing the quality of drying process in a conventional dry kiln, using a scientifi cally improved version of the check list in everyday practical applications. A company that specializes in lamel and classic parquet production was chosen so as to verify the new testing methodology. A total of 56 m3 of...

  9. Micro-Spherical Sulfur/Graphene Oxide Composite via Spray Drying for High Performance Lithium Sulfur Batteries

    Science.gov (United States)

    Tian, Yuan; Sun, Zhenghao; Zhang, Yongguang; Yin, Fuxing

    2018-01-01

    An efficient, industry-accepted spray drying method was used to synthesize micro-spherical sulfur/graphene oxide (S/GO) composites as cathode materials within lithium sulfur batteries. The as-designed wrapping of the sulfur-nanoparticles, with wrinkled GO composites, was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The unique morphological design of this material enabled superior discharge capacity and cycling performance, demonstrating a high initial discharge capacity of 1400 mAh g−1 at 0.1 C. The discharge capacity remained at 828 mAh g−1 after 150 cycles. The superior electrochemical performance indicates that the S/GO composite improves electrical conductivity and alleviates the shuttle effect. This study represents the first time such a facile spray drying method has been adopted for lithium sulfur batteries and used in the fabrication of S/GO composites. PMID:29346303

  10. Drying Spirulina with Foam Mat Drying at Medium Temperature

    Directory of Open Access Journals (Sweden)

    Aji Prasetyaningrum

    2012-10-01

    Full Text Available Spirulina is a single cell blue green microalgae (Cyanobacteria containing many Phytonutrients (Beta-carotene, Chlorophyl, Xanthophyl, Phyocianin using as anti-carcinogen in food. Producing dry spirulina by quick drying process at medium temperature is very important to retain the Phytonutrient quality. Currently, the work is still challenging due to the gel formation that block the water diffusion from inside to the surface.  This research studies the performance of foam-mat drying on production of dry spirulina. In this method the spirulina was mixed with foaming agent (glair/egg albumen, popular as white egg at 2.5% by weight at air velocity 2.2 m/sec. Here, the effect of spirulina thickness and operational temperature on drying time and quality (Beta-carotene and color were observed. The drying time was estimated based on the measurement of water content in spirulina versus time. Result showed that the thicker spirulina, the longer drying time. Conversely, the higher operational temperature, faster drying time. At thickness ranging 1-3 mm and operational temperature below 70oC, the quality of spirulina can fit the market requirement

  11. Dry Eye

    Science.gov (United States)

    ... Eye » Facts About Dry Eye Listen Facts About Dry Eye Fact Sheet Blurb The National Eye Institute (NEI) ... and their families search for general information about dry eye. An eye care professional who has examined the ...

  12. Thermodynamic analysis of a simple Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Javanshir, Alireza; Sarunac, Nenad

    2017-01-01

    Thermodynamic performance (thermal efficiency and net power output) of a simple subcritical and supercritical Organic Rankine Cycle (ORC) was analyzed over a range of operating conditions for a number of working fluids to determine the effect of operating parameters on cycle performance and select the best working fluid. The results show that for an ORC operating with a dry working fluid, thermal efficiency decreases with an increase in the turbine inlet temperature (TIT) due to the convergence of the isobaric lines with temperature. The results also show that efficiency of an ORC operating with isentropic working fluids is higher compared to the dry and wet fluids, and working fluids with higher specific heat capacity provide higher cycle net power output. New expressions for thermal efficiency of a subcritical and supercritical simple ORC are proposed. For a subcritical ORC without the superheat, thermal efficiency is expressed as a function of the Figure of Merit (FOM), while for the superheated subcritical ORC thermal efficiency is given in terms of the modified Jacob number. For the supercritical ORC, thermal efficiency is expressed as a function of dimensionless temperature. - Highlights: • Analyzing thermodynamic performance of ORC over a range of operating conditions. • Selecting the best working fluid suitable for a simple ORC. • Proposing new expressions for thermal efficiency of a simple ORC.

  13. Spray Drying Processing: granules production and drying kinetics of droplets

    International Nuclear Information System (INIS)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2013-01-01

    Spray drying is a unit operation very common in many industrial processes. For each particular application, the resulting granulated material must possess determined properties that depend on the conditions in which the spray drying processing has been carried out, and whose dependence must be known in order to optimize the quality of the material obtained. The large number of variables that influence on the processes of matter and energy transfer and on the formation of granular material has required a detailed analysis of the drying process. Over the years there have been many studies on the spray drying processing of all kind of materials and the influence of process variables on the drying kinetics of the granulated material properties obtained. This article lists the most important works published for both the spray drying processing and the drying of individual droplets, as well as studies aimed at modeling the drying kinetics of drops. (Author)

  14. Effects of repeated cycles of starvation and refeeding on lungs of growing rats.

    Science.gov (United States)

    Sahebjami, H; Domino, M

    1992-12-01

    Adult male rats were subjected to four cycles of mild starvation (2 wk) and refeeding (1 wk) and were compared with a fed group. Starvation was induced by giving rats one-third of their measured daily food consumption. During each starvation cycle, rats lost approximately 20% of their body weight. Despite catch-up growth and overall weight gain, starved rats had lower final body weight than fed rats. Lung dry weight and lung volumes were also reduced in the starved group. The mechanical properties of air- and saline-filled lungs did not change significantly with repeated cycles of starvation. Mean linear intercept was similar in the two groups, but alveolar surface area was reduced in the starved rats. Total content of crude connective tissue and concentration per lung dry weight of hydroxyproline and crude connective tissue were reduced in starved rats. We conclude that lung growth is retarded in growing rats subjected to repeated cycles of mild starvation and refeeding, as manifested by smaller lung volume and reduced alveolar surface area. Because alveolar size is unchanged, a reduced number of alveoli is most likely responsible for decreased lung volumes.

  15. Generalized drying curves in conductive/convective paper drying

    Directory of Open Access Journals (Sweden)

    O.C. Motta Lima

    2000-12-01

    Full Text Available This work presents a study related to conductive/convective drying of paper (cellulose sheets over heated surfaces, under natural and forced air conditions. The experimental apparatus consists in a metallic box heated by a thermostatic bath containing an upper surface on which the paper samples (about 1 mm thick are placed. The system is submitted to ambient air under two different conditions: natural convection and forced convection provide by an adjustable blower. The influence of initial paper moisture content, drying (heated surface temperature and air velocity on drying curves behavior is observed under different drying conditions. Hence, these influence is studied through the proposal of generalized drying curves. Those curves are analyzed individually for each air condition exposed above and for both together. A set of equations to fit them is proposed and discussed.

  16. Drying hardwood lumber

    Energy Technology Data Exchange (ETDEWEB)

    Chow, A T

    1988-11-14

    Dried lumber is a high-value-added product, especially when it is of high quality. Lumber damaged during the drying operation can represent substantial lost revenue. It has been demonstrated that dehumidification kilns can improve lumber quality, and reduce energy consumption over conventional drying methods. A summary of the literature on drying hardwood lumber, particularly using heat pump dehumidification, has been prepared to allow the information to be readily accessible to Ontario Hydro personnel who work with customers in the lumber industry. For that purpose, this summary has been prepared from the perspective of the customer, a dry kiln operator. Included are brief descriptions of drying schedules, precautions needed to minimize drying defects in the lumber, and rules-of-thumb for selecting and estimating the capital cost of the drying equipment. A selection of drying schedules and moisture contents of green lumber, a glossary of lumber defects and brief descriptions of the possible preventive measures are also included. 10 refs., 8 figs., 4 tabs.

  17. Drying characteristics of zucchini and empirical modeling of its drying process

    Directory of Open Access Journals (Sweden)

    Naciye Kutlu

    2017-10-01

    Full Text Available The aim of the study was to dry zucchini (Cucurbita pepo by two different methods (convective hot-air (CHD and microwave-assisted drying (MWD. The effect of air temperature (60, 70 and 80°C, microwave (MW power (180, 360, 540 W and sample thickness (5 and 10 mm on some drying characteristics of zucchini were investigated. Thirteen mathematical models available in the literature were fitted to the experimental moisture ratio data. The coefficients of the models were determined by non-linear regression analysis. It was determined that the model that fits the moisture ratio data the best varies at different drying conditions. Increasing drying temperature and MW power and reducing sample thickness improved the drying rate and drying time. Drying in microwave has reduced the drying time by 52-64% for zucchini. It was found that the effective moisture diffusivities increased with increasing temperature and MW power. MWD samples had better rehydration ratios compared to ones dried only in tray drier for 5 mm thickness.  

  18. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    Science.gov (United States)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-01-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  19. Short-Term Effects of Drying-Rewetting and Long-Term Effects of Nutrient Loading on Periphyton N:P Stoichiometry

    Directory of Open Access Journals (Sweden)

    Andres D. Sola

    2018-01-01

    Full Text Available Nitrogen (N and phosphorus (P concentrations and N:P ratios critically influence periphyton productivity and nutrient cycling in aquatic ecosystems. In coastal wetlands, variations in hydrology and water source (fresh or marine influence nutrient availability, but short-term effects of drying and rewetting and long-term effects of nutrient exposure on periphyton nutrient retention are uncertain. An outdoor microcosm experiment simulated short-term exposure to variation in drying-rewetting frequency on periphyton mat nutrient retention. A 13-year dataset from freshwater marshes of the Florida Everglades was examined for the effect of long-term proximity to different N and P sources on mat-forming periphyton nutrient standing stocks and stoichiometry. Field sites were selected from one drainage with shorter hydroperiod and higher connectivity to freshwater anthropogenic nutrient supplies (Taylor Slough/Panhandle, TS/Ph and another drainage with longer hydroperiod and higher connectivity to marine nutrient supplies (Shark River Slough, SRS. Total P, but not total N, increased in periphyton mats exposed to both low and high drying-rewetting frequency with respect to the control mats in our experimental microcosm. In SRS, N:P ratios slightly decreased downstream due to marine nutrient supplies, while TS/Ph increased. Mats exposed to short-term drying-rewetting had higher nutrient retention, similar to nutrient standing stocks from long-term field data. Periphyton mat microbial communities may undergo community shifts upon drying-rewetting and chronic exposure to nutrient loads. Additional work on microbial species composition may further explain how periphyton communities interact with drying-rewetting dynamics to influence nutrient cycling and retention in wetlands.

  20. Assessment of the dry process fuel sodium-cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was {approx}50% and most of the fission products were removed.

  1. Assessment of the dry process fuel sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Choi, Hang Bok

    2004-04-01

    The feasibility of using dry-processed oxide fuel in a Sodium-cooled Fast Reactor (SFR) was analyzed for the equilibrium fuel cycle of two reference cores: Hybrid BN-600 benchmark core with a enlarged lattice pitch and modified BN-600 core. The dry process technology assumed in this study based on the molten-salt process, which was developed by Russian scientists for recycling oxide fuels. The core calculation was performed by the REBUS-3 code and the reactor characteristics such as the transuranic enrichment, breeding ratio, peak linear power, burnup reactivity swing, etc. were calculated for the equilibrium core under a fixed fuel management scheme. The results showed that a self-sustainable breakeven core was achievable without blanket fuels when the fuel volume fraction was ∼50% and most of the fission products were removed

  2. Drying Kinetics Analysis of Seaweed Gracilaria changii using Solar Drying System

    International Nuclear Information System (INIS)

    Mohd Yusof Othman; Ahmad Fudholi; Kamaruzzaman Sopian; Mohd Hafidz Ruslan; Muhammad Yahya

    2012-01-01

    A solar drying system suitable for agricultural and marine products have been designed, constructed and evaluated under Malaysia climatic conditions. The solar drying system has been constructed and evaluated for the drying of seaweed Gracilaria changii. The initial and final moisture content of seaweed are 95 % (wet basis) and 10 % (product basis), respectively. The drying time was about 7 hours at average solar radiation of 593 W/ m 2 and air flow rate of 0.0613 kg/ s. Three different thin-layer drying models were compared with experimental data, during the drying of seaweed using the solar drying system at average temperature and humidity of about 50 degree Celsius and 20 %, respectively. The one with highest R2 and lowest MBE and RMSE was selected to better estimate the drying curves. The study showed that the Page model was better fit to drying seaweed compared to the other models (Newton model, and Henderson and Pabis model). (author)

  3. Process integration of organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2009-01-01

    An organic Rankine cycle (ORC) uses an organic fluid as a working medium within a Rankine cycle power plant. ORC offers advantages over conventional Rankine cycle with water as the working medium, as ORC generates shaft-work from low to medium temperature heat sources with higher thermodynamic efficiency. The dry and the isentropic fluids are most preferred working fluid for the ORC. The basic ORC can be modified by incorporating both regeneration and turbine bleeding to improve its thermal efficiency. In this paper, 16 different organic fluids have been analyzed as a working medium for the basic as well as modified ORCs. A methodology is also proposed for appropriate integration and optimization of an ORC as a cogeneration process with the background process to generate shaft-work. It has been illustrated that the choice of cycle configuration for appropriate integration with the background process depends on the heat rejection profile of the background process (i.e., the shape of the below pinch portion of the process grand composite curve). The benefits of integrating ORC with the background process and the applicability of the proposed methodology have been demonstrated through illustrative examples.

  4. Determination of drying characteristics and quality properties of eggplant in different drying conditions

    Directory of Open Access Journals (Sweden)

    Gözde Bayraktaroglu Urun

    2015-12-01

    Full Text Available Drying is the most traditional process used for preserving eggplant a long time. The aim of this study was to determining drying characteristics and quality properties of eggplant dried by sun drying, hot air convective drying and infrared assisted convective drying. Convective drying and infrared assisted convective were carried out in a convective dryer at three different temperatures(40°, 50°, 60°C and air velocity at 5 m/s.The increasing of temperatures during the drying of eggplant led to a significant reduction of the drying time. However loss of nutrition was observed in eggplant samples dried at higher temperature.The biggest change in colour parameters was observed in samples dried with sun drying.So it was thought that sun drying had a negative effect on quality properties of eggplant samples.

  5. Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices.

    Science.gov (United States)

    Esparza, Eliana; Hadzich, Antonella; Kofer, Waltraud; Mithöfer, Axel; Cosio, Eric G

    2015-08-01

    Maca, Lepidium meyenii Walpers (Brassicaceae), is an annual herbaceous plant native to the high plateaus of the Peruvian central Andes. Its underground storage hypocotyls have been a traditional medicinal agent and dietary staple since pre-Columbian times. Reported properties include energizing and fertility-enhancing effects. Published reports have focused on the benzylalkamides (macamides) present in dry hypocotyls as one of the main bioactive components. Macamides are secondary amides formed by benzylamine and a fatty acid moiety, with varying hydrocarbon chain lengths and degree of unsaturation. Although it has been assumed that they are usually present in fresh undamaged tissues, analyses show them to be essentially absent from them. However, hypocotyls dried by traditional Andean postharvest practices or industrial oven drying contain up to 800μgg(-1) dry wt (2.3μmolg(-1) dry wt) of macamides. In this study, the generation of macamides and their putative precursors were studied during nine-week traditional drying trials at 4200m altitude and in ovens under laboratory conditions. Freeze-thaw cycles in the open field during drying result in tissue maceration and release of free fatty acids from storage and membrane lipids up to levels of 1200μgg(-1) dry wt (4.3μmolg(-1) dry wt). Endogenous metabolism of the isothiocyanates generated from glucosinolate hydrolysis during drying results in maximal benzylamine values of 4300μgg(-1) dry wt (40.2μmolg(-1) dry wt). Pearson correlation coefficients of the accumulation profiles of benzylamine and free fatty acid to that of macamides showed good values of 0.898 and 0.934, respectively, suggesting that both provide sufficient substrate for amide synthesis during the drying process. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué es el ojo seco? ...

  7. Modelling of a DNB mechanism by dry-out of a nucleation site

    International Nuclear Information System (INIS)

    Bricard, P.

    1995-10-01

    This study deals with the modelling of a nucleation site dry-out DNB mechanism which unifies those of Kirby et al. (1967) and Fiori and Bergles (1970). A first model based on a simplified heat balance in the wall at the location of the dry spot is developed and a set of closure relations is proposed. The model is then quantitatively and qualitatively compared to CHF data. In order to support the likelihood of the mechanism, we develop a more elaborated model which couples the unsteady thermal behavior of the wall and the thermal-hydraulics of the fluid described by the different phases of the nucleation cycle. The conditions which enable the boiling crisis to be reached are given

  8. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  9. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Stories Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué es el ojo seco? ...

  10. Drying of building lumber

    Energy Technology Data Exchange (ETDEWEB)

    Washimi, Hiroshi

    1988-08-20

    Dried lumber is classified into air dried and kiln-dried lumber. The water content of kiln-dried lumber is specified by the Japan Agricultural Standards. However, since building lumber varies in such factors as the location where it was growing, species and shape, the standards, though relaxed, are not being observed. In fact, lumbered products which are not ''Kiln-dried'' frequently bear ''kiln-dried lumber'' marks. In an attempt to correct the situation, the Forestry Agency has set up voluntary standards, but problems still remain. The conventional drying method consists of first subjecting the lumber to optimum drying, then letting bending and deformations to freely and fully appear, and follow this with corrective sawing to produce planks straight from end to end. Compared with air dried lumber in terms of moisture content, kiln-dried lumber remains much with same with minimal shrinkage and expansion. For oil-containing resin, such normal treatments as drying by heating, steaming and boiling seem to be quite effective. Kiln drying, which is becoming more and more important with changes in the circulation system, consists of the steaming-drying-heating method and the dehumidizing type drying method. The major factor which determines the drying cost is the number of days required for drying, which depends largely on the kind of lumber and moisture content. The Forestry Angency is promoting production of defoiled lumber. (2 figs, 2 tables)

  11. Single droplet drying for optimal spray drying of enzymes and probiotics

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Perdana, J.A.; Boom, R.M.

    2012-01-01

    Spray drying is a mild and cost-effective convective drying method. It can be applied to stabilise heat sensitive ingredients, such as enzymes and probiotic bacteria, albeit in industrial practice for example freeze drying or freezing are often preferred. The reason is that optimum drying conditions

  12. Role of Biotic and Abiotic Processes on Soil CO2 Dynamics in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Risk, D. A.; Macintyre, C. M.; Lee, C.; Cary, C.; Shanhun, F.; Almond, P. C.

    2016-12-01

    In the harsh conditions of the Antarctic Dry Valleys, microbial activity has been recorded via measurements of soil carbon dioxide (CO2) concentration and surface efflux. However, high temporal resolution studies in the Dry Valleys have also shown that abiotic solubility-driven processes can strongly influence (and perhaps even dominate) the CO2 dynamics in these low flux environments and suggests that biological activity may be lower than previously thought. In this study, we aim to improve our understanding of CO2 dynamics (biotic and abiotic) in Antarctic Dry Valley soils using long-term automated measurements of soil CO2 surface flux and soil profile concentration at several sites, often at sub-diel frequency. We hypothesize that soil CO2 variations are driven primarily by environmental factors affecting CO2 solubility in soil solution, mainly temperature, and that these processes may even overprint biologic production in representative Dry Valley soils. Monitoring of all sites revealed only one likely biotic CO2 production event, lasting three weeks during the Austral summer and reaching fluxes of 0.4 µmol/m2/s. Under more typical low flux conditions (sampling campaigns. Subsurface CO2 monitoring and a lab-controlled Antarctic soil simulation experiment confirmed that abiotic processes are capable of dominating soil CO2 variability. Diel temperature cycles crossing the freezing boundary revealed a dual abiotic cycle of solubility cycling and gas exclusion from ice formation observed only by high temporal frequency measurements (30 min). This work demonstrates a need for a numerical model to partition the dynamic abiotic processes underlying any biotic CO2 production in order to understand potential climate-change induced increases in microbial productivity in terrestrial Antarctica.

  13. Effect of Physical Osmosis Methods on Quality of Tilapia Fillets Processed by Heat Pump Drying

    Directory of Open Access Journals (Sweden)

    Li Min

    2017-06-01

    Full Text Available In order to achieve the influence of different pretreatment methods on heat pump dried tilapia fillets, the effects of trehalose, ultrasound-assisted and freeze-thaw cycle assisted osmotic dehydration on the color, rehydration, texture and Ca2+-ATPase activity were investigated. Tilapia fillets (100 mm length × 50 mm width × 5 mm height were first osmoconcentrated in a trehalose solution combined with 4°C under atmospheric pressure for 1 h, different power of ultrasound and freeze-thawing respectively, then heat pump dried. The results showed that under the same drying method, the comprehensive score of ultrasound in 400 Watt was best, compared to freeze-thaw, the ultrasound pretreatment had a significant (p0.05 effect on the rehydration and texture. However, both of them significantly (p<0.05 affected the quality in comparison to that of osmosis at 4°C. It indicates that suitable ultrasonic pretreatment conditions improve the quality of dried products effectively and the conclusion of this research provides reference for heat pump dried similar products.

  14. Material accountancy measurement techniques in dry-powdered processing of nuclear spent fuels

    International Nuclear Information System (INIS)

    Wolf, S. F.

    1999-01-01

    The paper addresses the development of inductively coupled plasma-mass spectrometry (ICPMS), thermal ionization-mass spectrometry (TIMS), alpha-spectrometry, and gamma spectrometry techniques for in-line analysis of highly irradiated (18 to 64 GWD/T) PWR spent fuels in a dry-powdered processing cycle. The dry-powdered technique for direct elemental and isotopic accountancy assay measurements was implemented without the need for separation of the plutonium, uranium and fission product elements in the bulk powdered process. The analyses allow the determination of fuel burn-up based on the isotopic composition of neodymium and/or cesium. An objective of the program is to develop the ICPMS method for direct fissile nuclear materials accountancy in the dry-powdered processing of spent fuel. The ICPMS measurement system may be applied to the KAERI DUPIC (direct use of spent PWR fuel in CANDU reactors) experiment, and in a near-real-time mode for international safeguards verification and non-proliferation policy concerns

  15. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  16. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process

    DEFF Research Database (Denmark)

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka

    2013-01-01

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate...... the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near......-dried formulations an increase in protein concentration resulted in a shift from ß-mannitol to a-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying...

  17. Drying characteristics and nitrogen loss of biogas digestate during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, C.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    The cost of transporting biogas digestate can be decreased by reducing its water content. However, the digestate emits volatile compounds during drying. This study investigated the drying behaviour and the change of digestate composition. Drying took place in a hybrid solar/waste-heat dryer that used solar energy as well as waste heat from a combined heat and power unit (CHP) and the exhaust air of a microturbine. The experiment involved the use of 60 t of liquid digestate. Climatic conditions were measured inside and outside the drying hall. Dry matter (DM) and organic dry matter (ODM) were also measured on a daily basis. In addition, the energy consumption of waste and solar heat were recorded and related to the quantity of dried feedstock. The total nitrogen, ammonium, phosphate, potassium oxide, magnesium oxide and calcium oxide in the digestate were subjected to chemical analysis before and after the drying process. Losses of nitrogen were calculated. Specific energy consumption depended on the climatic condition. Most of the energy consumption was covered by the waste heat of the CHP. A considerable amount of nitrogen was lost during the drying process.

  18. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  19. Drying properties and quality parameters of dill dried with intermittent and continuous microwave

    OpenAIRE

    Eştürk, Okan

    2012-01-01

    In this study, influence of various microwave-convective air drying applications on drying kinetics, color and sensory quality of dill leaves (Anethum graveolens L.) were investigated. In general, increasing the drying air temperature decreased the drying time, and increased the drying rate. Increasing microwave pulse ratio increased the drying time. Page, Logarithmic, Midilli et al, Wang & Singh and Logistic models were fitted to drying data and the Page model was found to satisfactorily...

  20. What Is Dry Eye?

    Science.gov (United States)

    ... Eye? Dry Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué ... Inside of Your Eyelid Nov 29, 2017 New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  1. Biomass burning emissions in north Australia during the early dry season: an overview of the 2014 SAFIRED campaign

    OpenAIRE

    Mallet, Marc D.; Desservettaz, Maximilien J.; Miljevic, Branka; Milic, Andelija; Ristovski, Zoran D.; Alroe, Joel; Cravigan, Luke T.; Jayaratne, E. Rohan; Paton-Walsh, Clare; Griffith, David W. T.; Wilson, Stephen R.; Kettlewell, Graham; Schoot, Marcel V.; Selleck, Paul; Reisen, Fabienne

    2016-01-01

    The SAFIRED (Savannah Fires in the Early Dry Season) campaign took place from 29th of May, 2014 until the 30th June, 2014 at the Australian Tropical Atmospheric Research Station (ATARS) in the Northern Territory, Australia. The purpose of this campaign was to investigate emissions from fires in the early dry season in northern Australia. Measurements were made of biomass burning aerosols, volatile organic compounds, polycyclic aromatic carbons, greenhouse gases, radon, mercury cycle, and trac...

  2. Quality of dried cauliflower according to the methods and drying parameters

    Directory of Open Access Journals (Sweden)

    Łapczyńska-Kordon Bogusława

    2018-01-01

    Full Text Available The quality of food products is a complex concept. It can be defined in many ways. The common element of most of these definitions is the condition of meeting the requirements of consumers. Quality determines product compliance with the requirements set by the normalized regulations. The paper attempts to determine the optimal method and parameters of cauliflower drying. In addition, a qualitative assessment of the obtained product was made. The results show that the method and parameters of drying significantly affect the quality of the dried cauliflower. Convection drying guarantees higher drought quality with respect to the color of the sample (higher brightness, taste and odor. Of the drying parameters accepted in the experiment, the most positive effect on the tested parameters was recorded using convection drying at a flow rate of 0.2 ms-1 and the least favorable for microwave drying 170 or 210 W.

  3. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    International Nuclear Information System (INIS)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K.

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology

  4. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye? Dry Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué ... Inside of Your Eyelid Nov 29, 2017 New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  5. The effect of freeze-thaw cycles on the hydraulic conductivity of compacted clay

    International Nuclear Information System (INIS)

    Waite, D.; Anderson, L.; Caliendo, J.; McFarland, M.

    1994-01-01

    A study was conducted to investigate the detrimental effects of freeze-thaw on the hydraulic conductivity of compacted clay. The purpose of this study was to determine the effect that molding water content has on the hydraulic conductivity of a compacted clay soil that is subjected to freeze-thaw cycles, and to determine the relationship between the number of freeze-thaw cycles and the hydraulic conductivity of the compacted clay soil. Clay soils compacted and frozen wet of optimum experienced an increase in hydraulic conductivity of approximately 140 fold. The hydraulic conductivity of clay compacted dry of optimum increased ten fold. These results are consistent with recent research which suggests that clay compacted wet of optimum experiences large increases in hydraulic conductivity while the hydraulic conductivity of clay compacted dry of optimum increases to a lesser extent. 12 refs., 9 figs

  6. Comparing the Life Cycle Energy Consumption, Global ...

    Science.gov (United States)

    Managing the water-energy-nutrient nexus for the built environment requires, in part, a full system analysis of energy consumption, global warming and eutrophication potentials of municipal water services. As an example, we evaluated the life cycle energy use, greenhouse gas (GHG) emissions and aqueous nutrient releases of the whole anthropogenic municipal water cycle starting from raw water extraction to wastewater treatment and reuse/discharge for five municipal water and wastewater systems. The assessed options included conventional centralized services and four alternative options following the principles of source-separation and water fit-for-purpose. The comparative life cycle assessment identified that centralized drinking water supply coupled with blackwater energy recovery and on-site greywater treatment and reuse was the most energyand carbon-efficient water service system evaluated, while the conventional (drinking water and sewerage) centralized system ranked as the most energy- and carbon-intensive system. The electricity generated from blackwater and food residuals co-digestion was estimated to offset at least 40% of life cycle energy consumption for water/waste services. The dry composting toilet option demonstrated the lowest life cycle eutrophication potential. The nutrients in wastewater effluent are the dominating contributors for the eutrophication potential for the assessed system configurations. Among the parameters for which variability

  7. Viability of G4 after Spray-Drying and Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Stephenie Wong

    2010-01-01

    Full Text Available Viability of Bifidobacterium pseudocatenulatum G4 following spray-drying and freeze-drying in skim milk was evaluated. After spray-drying, the strain experienced over 99% loss in viability regardless of the air outlet temperature (75 and 85 °C and the heat-adaptation temperature (45 and 65 °C, 30 min. The use of heat-adaptation treatment to improve the thermotolerance of this strain was ineffective. On the other hand, the strain showed a superior survival at 71.65%–82.07% after freeze-drying. Viable populations of 9.319–9.487 log 10 cfu/g were obtained when different combinations of skim milk and sugar were used as cryoprotectant. However, the addition of sugars did not result in increased survival during the freeze-drying process. Hence, 10% (w/v skim milk alone is recommended as a suitable protectant and drying medium for this strain. The residual moisture content obtained was 4.41% ± 0.44%.

  8. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  9. Performance Analysis of an Updraft Tower System for Dry Cooling in Large-Scale Power Plants

    Directory of Open Access Journals (Sweden)

    Haotian Liu

    2017-11-01

    Full Text Available An updraft tower cooling system is assessed for elimination of water use associated with power plant heat rejection. Heat rejected from the power plant condenser is used to warm the air at the base of an updraft tower; buoyancy-driven air flows through a recuperative turbine inside the tower. The secondary loop, which couples the power plant condenser to a heat exchanger at the tower base, can be configured either as a constant-pressure pump cycle or a vapor compression cycle. The novel use of a compressor can elevate the air temperature in the tower base to increases the turbine power recovery and decrease the power plant condensing temperature. The system feasibility is evaluated by comparing the net power needed to operate the system versus alternative dry cooling schemes. A thermodynamic model coupling all system components is developed for parametric studies and system performance evaluation. The model predicts that constant-pressure pump cycle consumes less power than using a compressor; the extra compression power required for temperature lift is much larger than the gain in turbine power output. The updraft tower system with a pumped secondary loop can allow dry cooling with less power plant efficiency penalty compared to air-cooled condensers.

  10. CTC Sentinel. Volume 6, Issue 10

    Science.gov (United States)

    2013-10-01

    and the office of Kenyan President Uhuru Kenyatta.11 Fighting continued into the evening of Tuesday , 6 Daniel Howden, “Terror in Nairobi: The Full...provided Iraq with $1 billion per month starting in 1982. See John Bulloch and Harvey Morris , The Gulf War: Its Origins, History and Consequences (London...Expected,” UN High Commissioner for Refu- gees, September 5, 2013. 25 Biro. 26 Loveday Morris , Joby Warrick and Souad Mekhen- net, “Rival al-Qaeda

  11. Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control

    CSIR Research Space (South Africa)

    Loveday, PW

    1998-09-01

    Full Text Available and labs with practical hands-on experience that will give them valuable experiences upon graduation. Another topic Dr. Rogers has made a priority is the introduction of engineering concepts into the science curriculum in the elementary schools. His belief... vibration modes have the same natural frequency, Manuscript received September 4, 1997; accepted December 18, 1997. P. W. Loveday is with Sensor Systems, Division of Material Science and Technology, CSIR, Pretoria, South Africa (e-mail: ploveday...

  12. Ultrasonic detection of cracks in uniaxial glass fibre rods

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-01-01

    Full Text Available Conference on Computational and Applied Mechanics SACAM06 Cape Town, 16-18 January 2006 �SACAM ULTRASONIC DETECTION OF CRACKS IN UNIAXIAL GLASS FIBRE RODS Derren Wood and Philip Loveday Sensor Science and Technology, CSIR Materials Science... means of detecting internal and/or surface damage in composites which is safe, quick and relatively cost effective. Various ultrasonic techniques have been applied in the past to detect defects in composite media, the most well known being perhaps...

  13. Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems

    International Nuclear Information System (INIS)

    Klein, Sharon J.W.; Rubin, Edward S.

    2013-01-01

    Concentrated solar power (CSP) is unique among intermittent renewable energy options because for the past four years, utility-scale plants have been using an energy storage technology that could allow a CSP plant to operate as a baseload renewable energy generator in the future. No study to-date has directly compared the environmental implications of this technology with more conventional CSP backup energy options. This study compares the life cycle greenhouse gas (GHG) emissions, water consumption, and direct, onsite land use associated with one MW h of electricity production from CSP plants with wet and dry cooling and with three energy backup systems: (1) minimal backup (MB), (2) molten salt thermal energy storage (TES), and (3) a natural gas-fired heat transfer fluid heater (NG). Plants with NG had 4–9 times more life cycle GHG emissions than plants with TES. Plants with TES generally had twice as many life cycle GHG emissions as the MB plants. Dry cooling reduced life cycle water consumption by 71–78% compared to wet cooling. Plants with larger backup capacities had greater life cycle water consumption than plants with smaller backup capacities, and plants with NG had lower direct, onsite life cycle land use than plants with MB or TES. - highlights: • We assess life cycle environmental effects of concentrated solar power (CSP). • We compare CSP with three energy backup technologies and two cooling technologies. • We selected solar field area to minimize energy cost for plants with minimal backup and salt storage. • Life cycle greenhouse gas emissions were 4–9 times lower with thermal energy storage than with fossil fuel backup. • Dry cooling reduced life cycle water use by 71–78% compared to wet cooling

  14. Implications of drying temperature and humidity on the drying kinetics of seaweed

    Science.gov (United States)

    Ali, Majid Khan Majahar; Fudholi, Ahmad; Muthuvalu, M. S.; Sulaiman, Jumat; Yasir, Suhaimi Md

    2017-11-01

    A Low Temperature and Humidity Chamber Test tested in the Solar Energy Laboratory, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia. Experiments are attempted to study the effect of drying air temperature and humidity on the drying kinetics of seaweed Kappaphycus species Striatum besides to develop a model to estimate the drying curves. Simple method using a excel software is used in the analysis of raw data obtained from the drying experiment. The values of the parameters a, n and the constant k for the models are determined using a plot of curve drying models. Three different drying models are compared with experiment data seaweed drying at 30, 40, 50 and 60°C and relative humidity 20, 30 and 40% for seaweed. The higher drying temperatures and low relative humidity effects the moisture content that will be rapidly reduced. The most suitable model is selected to best describe the drying behavior of seaweed. The values of the coefficient of determination (R2), mean bias error (MBE) and root mean square error (RMSE) are used to determine the goodness or the quality of the fit. The Page model is showed a better fit to drying seaweed. The results from this study crucial for solar dryer development on pilot scale in Malaysia.

  15. Environmental and Economic Performance of Commercial-scale Solar Photovoltaic Systems: A Field Study of Complex Energy Systems at the Desert Research Institute (DRI)

    Science.gov (United States)

    Liu, X.

    2014-12-01

    Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases

  16. Global water cycle amplifying at less than the Clausius-Clapeyron rate

    OpenAIRE

    Skliris, Nikolaos; Zika, Jan D.; Nurser, George; Josey, Simon A.; Marsh, Robert

    2016-01-01

    A change in the cycle of water from dry to wet regions of the globe would have far reaching impact on humanity. As air warms, its capacity to hold water increases at the Clausius-Clapeyron rate (CC, approximately 7%?°C?1). Surface ocean salinity observations have suggested the water cycle has amplified at close to CC following recent global warming, a result that was found to be at odds with state-of the art climate models. Here we employ a method based on water mass transformation theory for...

  17. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  18. The influence of lysozyme on mannitol polymorphism in freeze-dried and spray-dried formulations depends on the selection of the drying process.

    Science.gov (United States)

    Grohganz, Holger; Lee, Yan-Ying; Rantanen, Jukka; Yang, Mingshi

    2013-04-15

    Freeze-drying and spray-drying are often applied drying techniques for biopharmaceutical formulations. The formation of different solid forms upon drying is often dependent on the complex interplay between excipient selection and process parameters. The purpose of this study was to investigate the influence of the chosen drying method on the solid state form. Mannitol-lysozyme solutions of 20mg/mL, with the amount of lysozyme varying between 2.5% and 50% (w/w) of total solid content, were freeze-dried and spray-dried, respectively. The resulting solid state of mannitol was analysed by near-infrared spectroscopy in combination with multivariate analysis and further, results were verified with X-ray powder diffraction. It was seen that the prevalence of the mannitol polymorphic form shifted from β-mannitol to δ-mannitol with increasing protein concentration in freeze-dried formulations. In spray-dried formulations an increase in protein concentration resulted in a shift from β-mannitol to α-mannitol. An increase in final drying temperature of the freeze-drying process towards the temperature of the spray-drying process did not lead to significant changes. It can thus be concluded that it is the drying process in itself, rather than the temperature, that leads to the observed solid state changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Determination of pistachio drying behaviour and conditions in a solar drying system

    Energy Technology Data Exchange (ETDEWEB)

    Midilli, Adnan [Karadeniz Technical Univ., Mechanical Engineering Dept., Trabzon (Turkey)

    2001-07-01

    The main object of this study is to determine the drying behaviour and conditions of shelled and unshelled pistachio samples using both solar assisted and open sun drying. For each drying experiment, 100 g each of unshelled and shelled pistachio were used. The least-squares method was applied to find the drying curve equation of pistachio. During the experiments, shelf temperatures, weight loss of pistachio, moisture content of air, and distribution of solar radiation were measured; and presented depending on the drying time. Also, the mass shrinkage ratios of shelled and unshelled pistachio samples were determined, and the experimental uncertainty ratio was calculated as 15-16.5 per cent based on the experimental results. It was deduced that the shelled and unshelled pistachio samples in the solar assisted forced convection dryer were perfectly dried at temperatures of 50{+-}10degC in the time period of 6 h. Whereas, the samples in the open sun drying were not sufficiently dried at temperatures of 28{+-}4degC in the same time period. Hence, it is suggested that the pistachio samples with approximately 29.0 per cent of moisture are dried in the solar assisted convection dryer at 50{+-}10degC of temperature in the time period of approximately 6 h in order to protect from the negative climatic and environmental effects. However, it is not desirable to dry the pistachio samples in the open sun because of greater drying time, dirt, dust and harmful insects. (Author)

  20. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  1. Robustness testing in pharmaceutical freeze-drying: inter-relation of process conditions and product quality attributes studied for a vaccine formulation.

    Science.gov (United States)

    Schneid, Stefan C; Stärtzel, Peter M; Lettner, Patrick; Gieseler, Henning

    2011-01-01

    The recent US Food and Drug Administration (FDA) legislation has introduced the evaluation of the Design Space of critical process parameters in manufacturing processes. In freeze-drying, a "formulation" is expected to be robust when minor deviations of the product temperature do not negatively affect the final product quality attributes. To evaluate "formulation" robustness by investigating the effect of elevated product temperature on product quality using a bacterial vaccine solution. The vaccine solution was characterized by freeze-dry microscopy to determine the critical formulation temperature. A conservative cycle was developed using the SMART™ mode of a Lyostar II freeze dryer. Product temperature was elevated to imitate intermediate and aggressive cycle conditions. The final product was analyzed using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Karl Fischer, and modulated differential scanning calorimetry (MDSC), and the life cell count (LCC) during accelerated stability testing. The cakes processed at intermediate and aggressive conditions displayed larger pores with microcollapse of walls and stronger loss in LCC than the conservatively processed product, especially during stability testing. For all process conditions, a loss of the majority of cells was observed during storage. For freeze-drying of life bacterial vaccine solutions, the product temperature profile during primary drying appeared to be inter-related to product quality attributes.

  2. The corrosion behavior of steel exposed to a DC electric field in the simulated wet-dry cyclic environment

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Nianwei [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Department of Materials Science, Fudan University, Shanghai 200433 (China); Chen, Qimeng [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Junxi, E-mail: zhangjunxi@shiep.edu.cn [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Zhang, Xin; Ni, Qingzhao [Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090 (China); Jiang, Yiming; Li, Jin [Department of Materials Science, Fudan University, Shanghai 200433 (China)

    2017-05-01

    The corrosion of steel exposed under a direct current (DC) electric field during simulated wet-dry cycles was investigated using weight gain, electrochemical tests, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The results show that the steel exposed to a DC electric field exhibits a higher corrosion rate than those exposed under no DC electric field. The higher the DC electric field intensity, the higher the corrosion rate of steel. The XRD and SEM analyses indicate that more γ-FeOOH and cracks appear in the rust formed on steel exposed to the DC electric field. The porous γ-FeOOH, formation and expansion of cracks enhance the transfer of oxygen and corrosion products, thereby accelerating corrosion of steel exposed to DC electric field. - Highlights: • Effect of DC electric field on the corrosion of steel in wet/dry cycles was studied. • DC electric field accelerates the steel corrosion in wet/dry cyclic processes. • More γ-FeOOH is generated on the surface of steel exposed under a DC electric field. • More cracks appear in the rust formed on the steel exposed under a DC electric filed.

  3. The corrosion behavior of steel exposed to a DC electric field in the simulated wet-dry cyclic environment

    International Nuclear Information System (INIS)

    Dai, Nianwei; Chen, Qimeng; Zhang, Junxi; Zhang, Xin; Ni, Qingzhao; Jiang, Yiming; Li, Jin

    2017-01-01

    The corrosion of steel exposed under a direct current (DC) electric field during simulated wet-dry cycles was investigated using weight gain, electrochemical tests, X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The results show that the steel exposed to a DC electric field exhibits a higher corrosion rate than those exposed under no DC electric field. The higher the DC electric field intensity, the higher the corrosion rate of steel. The XRD and SEM analyses indicate that more γ-FeOOH and cracks appear in the rust formed on steel exposed to the DC electric field. The porous γ-FeOOH, formation and expansion of cracks enhance the transfer of oxygen and corrosion products, thereby accelerating corrosion of steel exposed to DC electric field. - Highlights: • Effect of DC electric field on the corrosion of steel in wet/dry cycles was studied. • DC electric field accelerates the steel corrosion in wet/dry cyclic processes. • More γ-FeOOH is generated on the surface of steel exposed under a DC electric field. • More cracks appear in the rust formed on the steel exposed under a DC electric filed.

  4. Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics

    Science.gov (United States)

    İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen

    2018-02-01

    In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.

  5. Investigation of near dry EDM compared with wet and dry EDM processes

    International Nuclear Information System (INIS)

    Gholipoor, Ahad; Baseri, Hamid; Shabgard, Mohammad Reza

    2015-01-01

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  6. Investigation of near dry EDM compared with wet and dry EDM processes

    Energy Technology Data Exchange (ETDEWEB)

    Gholipoor, Ahad [Islamic Azad University of Tabriz, Tabriz (Iran, Islamic Republic of); Baseri, Hamid [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Shabgard, Mohammad Reza [University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2015-05-15

    Material removal rate (MRR), tool wear ratio (TWR) and surface roughness (SR) obtained by near-dry EDM process were compared with wet and dry EDM at three levels of discharge energy in drilling of SPK steel. Surface integrity machined by this process was studied and compared with wet and dry EDM processes, by scanning electron microscopy (SEM). The results showed that at high level of discharge energy, wet EDM has the most MRR, TWR and SR, and dry EDM has the least MRR, TWR and SR, while at low discharge energy levels, near-dry EDM process has the most MRR and the least SR. SEM micrographs showed that the quality of surface obtained by near-dry EDM process is better than others and the machined surfaces by near-dry EDM process have lower micro-cracks and craters, relatively.

  7. The effect of slicing type on drying kinetics and quality of dried carrot

    Directory of Open Access Journals (Sweden)

    M Naghipour zadeh mahani

    2016-04-01

    Full Text Available Introduction: Carrot is one of the most common vegetables used for human nutrition because of its high vitamin and fiber contents. Drying improves the product shelf life without addition of any chemical preservative and reduces both the size of package and the transport cost. Drying also aidsto reduce postharvest losses of fruits and vegetables especially, which can be as high as 70%. Dried carrots are used in dehydrated soups and in the form of powder in pastries and sauces. The main aim of drying agricultural products is decrease the moisture content to a level which allows safe storage over an extended period. Many fruits and vegetables can be sliced before drying.because of different tissue of a fruit or vegetable, cutting them in different direction and shape created different tissue slices. Due to drying is the exiting process of the moisture from internal tissue so different tissue slices caused different drying kinetics. Therefore, the study on effect of cutting parameters on drying is necessary. Materials and Methods: Carrots (Daucus carota L. were purchased from the local market (Kerman, Iran and stored in a refrigerator at 5°C. The initial moisture contents of the Carrot samples were determined by the oven drying method. The sample was dried in an oven at 105±2°C about 24 hours. The carrots cut by 3 models blade at 3 directions. The samples were dried in an oven at 70°C. Moisture content of the carrot slices were determined by weighting of samples during drying. Volume changes because of sample shrinkage were measured by a water displacement method. Rehydration experiment was performed by immersing a weighted amount of dried samples into hot water 50 °C for 30 min. In this study the effect of some cutting parameters was considered on carrot drying and the quality of final drying product. The tests were performed as a completely random design. The effects of carrot thickness at two levels (3 and 6 mm, blade in 3 models (flat blade

  8. Spent fuel drying system test results (second dry-run)

    International Nuclear Information System (INIS)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0

  9. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué ... Your Eyelid Nov 29, 2017 New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  10. Single droplet drying for optimal spray drying of enzymes and probiotics

    OpenAIRE

    Schutyser, M.A.I.; Perdana, J.A.; Boom, R.M.

    2012-01-01

    Spray drying is a mild and cost-effective convective drying method. It can be applied to stabilise heat sensitive ingredients, such as enzymes and probiotic bacteria, albeit in industrial practice for example freeze drying or freezing are often preferred. The reason is that optimum drying conditions and tailored matrix formulations are required to avoid severe heat damage leading to loss in enzyme activity or reduced survival of bacteria. An overview is provided on the use of protective carbo...

  11. Sodium vanadium (III) fluorophosphate/carbon nanotubes composite (NVPF/CNT) prepared by spray-drying: good electrochemical performance thanks to well-dispersed CNT network within NVPF particles

    International Nuclear Information System (INIS)

    Eshraghi, Nicolas; Caes, Sebastien; Mahmoud, Abdelfattah; Cloots, Rudi; Vertruyen, Benedicte; Boschini, Frédéric

    2017-01-01

    Highlights: • Sodium vanadium fluorophosphate Na 3 V 2 (PO 4 ) 2 F 3 was prepared by spray-drying. • Crystallization was optimum after 2 hours at 600 °C in argon. • Addition of carbon nanotubes to the spray drying solution to prepare a composite. • The CNT network inside the Na 3 V 2 (PO 4 ) 2 F 3 particles provides electronic conductivity. • The composite shows good specific capacity, rate capability and cycling stability. - Abstract: We successfully prepared NASICON-type Na 3 V 2 (PO 4 ) 2 F 3 (NVPF) and a Na 3 V 2 (PO 4 ) 2 F 3 /carbon nanotubes (CNT) composite by spray-drying followed by heat treatment in argon for 2 hours at 600 °C. The addition of CNT in the spray-drying solution creates a CNT network within the NVPF particles. After grinding, the smaller NVPF particles remain linked by CNT. Thanks to this conducting network, the composite powder displays competitive electrochemical performance when cycled against lithium in hybrid-ion batteries (2–4.6 V vs. Li + /Li) with specific capacities of 125 mAh g −1 at C/10, 103 mAh g −1 at 1C and 91 mAh g −1 at 4C, together with 97.5% capacity retention at 1C over 100 cycles with coulombic efficiency of 99.4%. These results demonstrate that sodium vanadium (III) fluorophosphate electrode material can be obtained in a time-efficient way using the easily up-scalable spray-drying method.

  12. Total phenolics, antioxidant capacity, colour and drying characteristics of date fruit dried with different methods

    Directory of Open Access Journals (Sweden)

    Gökçen İZLİ

    2016-01-01

    Full Text Available Abstract Date slices were dried with the three drying methods convective (60, 70 and 80 °C, microwave (120 W and freeze drying to determine drying characteristics and to compare the dried fruit quality. All colour parameters changed depending on the drying method and colours closest to the fresh sample were obtained with freeze drying. It is interesting to note that the total phenolic content and antioxidant capacity in each sample rose when looked at in relation to the fresh sample. In particular, microwave-dried samples were recorded as having the highest total phenolic content and the highest antioxidant capacity. To explain the drying kinetics of the date slices, nine thin-layer drying models were also attempted. Based on statistical tests, the model developed by Midilli et al. model was found to be the best model for convective and microwave drying, but the Two Term model was the best for freeze drying. This study shows that microwave drying can produce high quality date slices with the additional advantage of reduced drying times compared to convective and freeze drying.

  13. Microbial ecology of extreme environments: Antarctic dry valley yeasts and growth in substrate limited habitats

    Science.gov (United States)

    Vishniac, H. S.

    1981-01-01

    The multiple stresses temperature, moisture, and for chemoheterotrophs, sources of carbon and energy of the Dry Valley Antarctica soils allow at best depauperate communities, low in species diversity and population density. The nature of community structure, the operation of biogeochemical cycles, the evolution and mechanisms of adaptation to this habitat are of interest in informing speculations upon life on other planets as well as in modeling the limits of gene life. Yeasts of the Cryptococcus vishniacil complex (Basidiobiastomycetes) are investigated, as the only known indigenes of the most hostile, lichen free, parts of the Dry Valleys. Methods were developed for isolating these yeasts (methods which do not exclude the recovery of other microbiota). The definition of the complex was refined and the importance of nitrogen sources was established as well as substrate competition in fitness to the Dry Valley habitats.

  14. System Configuration Management Implementation Procedure for the Cold Vacuum Drying Facility Monitoring and Control System

    International Nuclear Information System (INIS)

    ANGLESEY, M.O.

    2000-01-01

    The purpose of this document is to establish the System Configuration Management Implementation Procedure (SCMIP) for the Cold Vacuum Drying Facility (CVDF) Monitoring and Control System (MCS). This procedure provides configuration management for the process control system. The process control system consists of equipment hardware and software that controls and monitors the instrumentation and equipment associated with the CVDF processes. Refer to SNF-3090, Cold Vacuum Drying Facility Monitoring and Control System Design Description, HNF-3553, Annex B, Safety Analysis Report for the Cold Vacuum Drying Facility, and AP-CM-6-037-00, SNF Project Process Automation Software and Equipment Configuration. This SCMIP identifies and defines the system configuration items in the control system, provides configuration control throughout the system life cycle, provides configuration status accounting, physical protection and control, and verifies the completeness and correctness of these items

  15. Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Reddy, K.R.

    1982-01-01

    15 N studies of various aspects of the nitrogen cycle in a flooded rice ecosystem on Crowley silt loam soil in Louisiana were reviewed to construct a mass balance model of the nitrogen cycle for this system. Nitrogen transformations modeled included 1) net ammonification (0.22 mg NH 4+ -N kg dry soil - 1 day - 1 ). 2) net nitrification (207 mg NO 3- -N kg dry soil - 1 day - 1 ). 3) denitrification (0.37 mg N kg dry soil - 1 day - 1 ), and 4) biological N 2 fixation (0.16 mg N kg dry soil - 1 day - 1 ). Nitrogen inputs included 1) application of fertilizers, 2) incorporation of crop residues, 3) biological N 2 fixation, and 4) deposition. Nitrogen outputs included 1) crop removal, 2) gaseous losses from NH 3 volatilization and simultaneous occurrence of nitrification-denitrification, and 3) leaching and runoff. Mass balance calculations indicated that 33% of the available inorganic nitrogen was recovered by rice, and the remaining nitrogen was lost from the system. Losses of N due to ammonia volatilization were minimal because fertilizer-N was incorporated into the soil. A significant portion of inorganic-N was lost by ammonium diffusion from the anaerobic layer to the aerobic layer in response to a concentration gradient and subsequent nitrification in the aerobic layer followed by nitrate diffusion into the anaerobic layer and denitrification into gaseous end products. Leaching and surface runoff losses were minimal. (orig.)

  16. Closing nuclear fuel cycle with fast reactors: problems and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Shadrin, A.; Dvoeglazov, K.; Ivanov, V. [Bochvar Institute - VNIINM, Moscow (Russian Federation)

    2013-07-01

    The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)

  17. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description. System 47-4

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    2000-01-01

    This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid PandID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water PandID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO

  18. Recent developments in the management of dry age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Buschini E

    2015-04-01

    Full Text Available Elisa Buschini, Antonio M Fea, Carlo A Lavia, Marco Nassisi, Giulia Pignata, Marta Zola, Federico M Grignolo Ospedale Oftalmico, Ophthalmic Section, Department of Clinical Pathophysiology, University of Turin, Turin, Italy Abstract: Dry age-related macular degeneration (AMD, also called geographic atrophy, is characterized by the atrophy of outer retinal layers and retinal pigment epithelium (RPE cells. Dry AMD accounts for 80% of all intermediate and advanced forms of the disease. Although vision loss is mainly due to the neovascular form (75%, dry AMD remains a challenge for ophthalmologists because of the lack of effective therapies. Actual management consists of lifestyle modification, vitamin supplements, and supportive measures in the advanced stages. The Age-Related Eye Disease Study demonstrated a statistically significant protective effect of dietary supplementation of antioxidants (vitamin C, vitamin E, beta-carotene, zinc, and copper on dry AMD progression rate. It was also stated that the consumption of omega-3 polyunsaturated fatty acids, such as docosahexaenoic acid and eicosapentaenoic acid, has protective effects. Other antioxidants, vitamins, and minerals (such as crocetin, curcumin, and vitamins B9, B12, and B6 are under evaluation, but the results are still uncertain. New strategies aim to 1 reduce or block drusen formation, 2 reduce or eliminate inflammation, 3 lower the accumulation of toxic by-products from the visual cycle, 4 reduce or eliminate retinal oxidative stress, 5 improve choroidal perfusion, 6 replace/repair or regenerate lost RPE cells and photoreceptors with stem cell therapy, and 7 develop a target gene therapy. Keywords: dry AMD, geographic atrophy, new AMD therapy

  19. Dry socket

    Science.gov (United States)

    Alveolar osteitis; Alveolitis; Septic socket ... You may be more at risk for dry socket if you: Have poor oral health Have a ... after having a tooth pulled Have had dry socket in the past Drink from a straw after ...

  20. Cassava Sun Drying Performance on Various Surfaces and Drying ...

    African Journals Online (AJOL)

    Traditional processing methods that include ... The traditional sun drying method is very inefficient as the product can take 2-. 3 days to dry. .... using a digital balance (Ohaus Corporation type). The same applied .... preservation and marketing.

  1. Drying kinetics and characteristics of dried gambir leaves using solar heating and silica gel dessicant

    Science.gov (United States)

    Hasibuan, R.; Hidayati, J.; Sundari, R.; Wicaksono, A. S.

    2018-02-01

    A drying combination of solar heating and silica gel dessicant has been applied to dry gambir leaves. The solar energy is captured by a collector to heat the air and the hot air is used to dry gambir leaves in a drying chamber. An exhaust fan in drying chamber assists to draw water molecules from gambir leaves accelerated by silica gel dessicant. This study has investigated the drying kinetics and drying characteristics of gambir leaves drying. In drying operation the air velocity is tuned by a PWM (pulse width modulation) controller to adjust minimum and maximum level, which is based on the rotation speed of the exhaust fan. The results show that the air velocity influenced the drying kinetics and drying characteristics of gambir leaves using solar-dessicant drying at 40 cm distance between exhaust fan and silica gel dessicant.

  2. Nuclear reactor fuel cycle technology with pyroelectrochemical processes

    International Nuclear Information System (INIS)

    Skiba, O.V.; Maershin, A.A.; Bychkov, A.V.; Zhdanov, A.N.; Kislyj, V.A.; Vavilov, S.K.; Babikov, L.G.

    1999-01-01

    A group of dry technologies and processes of vibro-packing granulated fuel in combination with unique properties of vibro-packed FEs make it possible to implement a new comprehensive approach to the fuel cycle with plutonium fuel. Testing of a big number of FEs with vibro-packed U-Pu oxide fuel in the BOR-60 reactor, successful testing of experimental FSAs in the BN-600 rector, reliable operation of the experimental and research complex facilities allow to make the conclusion about a real possibility to develop a safe, economically beneficial U-Pu fuel cycle based on the technologies enumerated above and to use both reactor-grade and weapon-grade plutonium in nuclear reactors with a reliable control and accounting system [ru

  3. Drying kinetics and quality aspects during heat pump drying of onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Nihar Ranjan Sahoo

    2012-10-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 A prototype heat pump dryer has been developed for drying of fruits and vegetables at low temperature and relative humidity to maintain the quality of dried product. Onions, of Nasik red variety were peeled, trimmed and sliced to 2 mm thickness. The onion slices were dried in the heat pump dryer at 35ºC (32 % R.H., 40ºC (26 % R.H., 45ºC (19 % R.H. and 50ºC (15 % R.H.. Samples were also dried in a hot air dryer at 50ºC (52 % R.H. for comparison. The drying rate increased with increase in drying air temperature, associated with reduced R.H., in the heat pump dryer. Drying took place mainly under the falling rate period. The Page equation, resulting in a higher coefficient of determination and lower root mean square error, better described the thin-layer drying of onion slices than the Henderson and Pabis equation. Heat pump drying took less drying time of 360 min and yielded better quality dried product, with higher retention of ascorbic acid and pyruvic acid and lower colour change, as compared to a hot air dryer at the same drying air temperature of 50ºC.

  4. Negative soil moisture-precipitation feedback in dry and wet regions.

    Science.gov (United States)

    Yang, Lingbin; Sun, Guoqing; Zhi, Lu; Zhao, Jianjun

    2018-03-05

    Soil moisture-precipitation (SM-P) feedback significantly influences the terrestrial water and energy cycles. However, the sign of the feedback and the associated physical mechanism have been debated, leaving a research gap regarding global water and climate changes. Based on Koster's framework, we estimate SM-P feedback using satellite remote sensing and ground observation data sets. Methodologically, the sign of the feedback is identified by the correlation between monthly soil moisture and next-month precipitation. The physical mechanism is investigated through coupling precipitation and soil moisture (P-SM), soil moisture ad evapotranspiration (SM-E) and evapotranspiration and precipitation (E-P) correlations. Our results demonstrate that although positive SM-P feedback is predominant over land, non-negligible negative feedback occurs in dry and wet regions. Specifically, 43.75% and 40.16% of the negative feedback occurs in the arid and humid climate zones. Physically, negative SM-P feedback depends on the SM-E correlation. In dry regions, evapotranspiration change is soil moisture limited. In wet regions, evapotranspiration change is energy limited. We conclude that the complex SM-E correlation results in negative SM-P feedback in dry and wet regions, and the cause varies based on the environmental and climatic conditions.

  5. Synergistic fuel cycles of the future

    International Nuclear Information System (INIS)

    Meneley, D.A.; Dastur, A.R.

    1997-01-01

    Good neutron economy is the basis of the fuel cycle flexibility in the CANDU reactor. This paper describes the fuel cycle options available to the CANDU owner with special emphasis on resource conservation and waste management. CANDU fuel cycles with low initial fissile content operate with relatively high conversion ratio. The natural uranium cycle provides over 55 % of energy from the plutonium that is created during fuel life. Resource utilization is over 7 MWd/kg NU. This can be improved by slight enrichment (between 0.9 and 1.2 wt % U235) of the fuel. Resource utilization increases to 11 MWd/kg NU with the Slightly Enriched Uranium cycle. Thorium based cycles in CANDU operate at near-breeder efficiency. Obey provide attractive options when used with natural uranium or separated (reactor grade and weapons grade) plutonium as driver fuels. In the latter case, the energy from the U233 plus the initial plutonium content amounts to 3.4 GW(th).d/kg Pu-fissile. The same utilization is expected from the use of FBR plutonium in a CANDU thorium cycle. Extension of natural resource is achieved by the use of spent fuels in CANDU. The LWR/CANDU Tandem cycle leads to an additional 77 % of energy through the use of reprocessed LWR fuel (which has a fissile content of 1.6 wt %) in CANDU. Dry reprocessing of LWR fuel with the OREOX process (a more safeguardable alternative to the PUREX process) provides an additional 50 % energy. Uranium recovered (RU) from separation of plutonium contained in spent LWR fuel provides an additional 15 MWd/kg RU. CANDU's low fissile requirement provides the possibility, through the use of non-fertile targets, of extracting energy from the minor actinides contained in spent fuel. In addition to the resource utilization advantage described above, there is a corresponding reduction in waste arisings with such cycles. This is especially significant when separated plutonium is available as a fissile resource. (author)

  6. [Conversion methods of freshwater snail tissue dry mass and ash free dry mass].

    Science.gov (United States)

    Zhao, Wei-Hua; Wang, Hai-Jun; Wang, Hong-Zhu; Liu, Xue-Qin

    2009-06-01

    Mollusk biomass is usually expressed as wet mass with shell, but this expression fails to represent real biomass due to the high calcium carbonate content in shells. Tissue dry mass and ash free dry mass are relatively close to real biomass. However, the determination process of these two parameters is very complicated, and thus, it is necessary to establish simple and practical conversion methods for these two parameters. A total of six taxa of freshwater snails (Bellamya sp., Alocinma longicornis, Parafossarulus striatulus, Parafossarulus eximius, Semisulcospira cancellata, and Radix sp.) common in the Yangtze Basin were selected to explore the relations of their five shell dimension parameters, dry and wet mass with shells with their tissue dry mass and ash free dry mass. The regressions of the tissue dry mass and ash free dry mass with the five shell dimension parameters were all exponential (y = ax(b)). Among them, shell width and shell length were more precise (the average percentage error between observed and predicted value being 22.0% and 22.5%, respectively) than the other three parameters in the conversion of dry mass. Wet mass with shell could be directly converted to tissue dry mass and ash free dry mass, with an average percentage error of 21.7%. According to the essence of definition and the errors of conversion, ash free dry mass would be the optimum parameter to express snail biomass.

  7. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology.

  8. Overview of clinical trials for dry age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Wen-Sheng Cheng

    2017-01-01

    Full Text Available The overall goal of treating age-related macular degeneration (AMD is to target the underlying cause of the disease and prevent, or at least slow down, the loss of vision, which requires the preservation of the choroid, retinal pigment epithelium (RPE, and photoreceptors. At present, there is no proven drug treatment for dry AMD; however, the cessation of smoking and treatments based on the age-related eye diseases study vitamin formula combined with a healthy diet are considered the only options for slowing disease progression. A number of pharmaceutical agents are currently under evaluation for the treatment of dry AMD using strategies such as reduction RPE and photoreceptor loss, neuroprotection, visual cycle modulators, suppression of inflammation, prevention of oxidative damage, and choroidal perfusion enhancers. The hope is that some of these therapies will achieve significant improvement to current management and prevent future loss of vision in this devastating eye condition.

  9. COMPARISON BETWEEN WOOD DRYING DEFECT SCORES: SPECIMEN TESTING X ANALYSIS OF KILN-DRIED BOARDS

    Directory of Open Access Journals (Sweden)

    Djeison Cesar Batista

    2015-04-01

    Full Text Available It is important to develop drying technologies for Eucalyptus grandis lumber, which is one of the most planted species of this genus in Brazil and plays an important role as raw material for the wood industry. The general aim of this work was to assess the conventional kiln drying of juvenile wood of three clones of Eucalyptus grandis. The specific aims were to compare the behavior between: i drying defects indicated by tests with wood specimens and conventional kiln-dried boards; and ii physical properties and the drying quality. Five 11-year-old trees of each clone were felled, and only flatsawn boards of the first log were used. Basic density and total shrinkage were determined, and the drying test with wood specimens at 100 °C was carried out. Kiln drying of boards was performed, and initial and final moisture content, moisture gradient in thickness, drying stresses and drying defects were assessed. The defect scoring method was used to verify the behavior between the defects detected by specimen testing and the defects detected in kiln-dried boards. As main results, the drying schedule was too severe for the wood, resulting in a high level of boards with defects. The behavior between the defects in the drying test with specimens and the defects of kiln-dried boards was different, there was no correspondence, according to the defect scoring method.

  10. Effect of surface roughness on drying speed of drying lamellas in ...

    African Journals Online (AJOL)

    Lamellas, which are defined as top layers of multilayer parquet and favourable to wood veneer can be dried in jet ventilated automatic veneer roller dryer due to short drying period. The objective of this study is to determine the effect of surface roughness on the drying speed of the veneer roller dryer. Quercus spp.

  11. Spent fuel drying system test results (first dry-run)

    International Nuclear Information System (INIS)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental

  12. Drying and energy technologies

    CERN Document Server

    Lima, A

    2016-01-01

    This book provides a comprehensive overview of essential topics related to conventional and advanced drying and energy technologies, especially motivated by increased industry and academic interest. The main topics discussed are: theory and applications of drying, emerging topics in drying technology, innovations and trends in drying, thermo-hydro-chemical-mechanical behaviors of porous materials in drying, and drying equipment and energy. Since the topics covered are inter- and multi-disciplinary, the book offers an excellent source of information for engineers, energy specialists, scientists, researchers, graduate students, and leaders of industrial companies. This book is divided into several chapters focusing on the engineering, science and technology applied in essential industrial processes used for raw materials and products.

  13. Theoretical and practical aspects of aroma retention in spray drying and freeze drying

    NARCIS (Netherlands)

    Coumans, W.J.; Kerkhof, P.J.A.M.; Bruin, S.

    1994-01-01

    A review with 75 refs. on aroma loss in slab drying, spray drying and freeze drying. For many food products the presence of volatile aroma components is a prime quality feature. Upon drying part of these components may be lost, leading to unbalanced flavor patterns in the reconstituted product. The

  14. Effects of drying temperature on drying kinetics and eurycomanone content of Eurycoma longifolia roots

    Directory of Open Access Journals (Sweden)

    Hada Masayu, I.,

    2017-08-01

    Full Text Available In this study, the effects of temperature on drying kinetics and eurycomanone content of Eurycoma longifolia roots were investigated to determine the optimum temperature for drying of this herb. The roots were subjected to drying temperatures of 40, 50, 60 and 70°C. The drying kinetics data indicated that the drying rate increased with increase in temperature but decreased with time. The drying process took place in the falling rate period. Three established thin layer drying models include Page, Midili and Logarithmic were employed to describe the drying process. The Midili model was found as the best fitting model in representing the process. The quality of the products was evaluated by comparing the content of its active compound, eurycomanone, quantified using an ultra performance liquid chromatography (UPLC. The fastest drying process was achieved at 70°C, but UPLC results showed that the product suffered at 18% reduction in eurycomanone content as compared to the control. Based on the findings of this work, the optimum drying temperature for E. longifolia roots is 60°C.

  15. TG-DSC method applied to drying characteristics of areca inflorescence during drying

    Science.gov (United States)

    Song, Fei; Wang, Hui; Huang, Yulin; Zhang, Yufeng; Chen, Weijun; Zhao, Songlin; Zhang, Ming

    2017-10-01

    In this study, suitability of eight drying models available in literature on defining drying characteristics of areca inflorescence has been examined by non-linear regression analysis using the Statistic Computer Program. The coefficient of determination ( R 2 ) and the reduced chi-square (χ2) are used as indicators to evaluate the best suitable model. According to the results, the Verma et al. model gave the best results for explaining the drying characteristics of areca inflorescence. The drying process could be divided into three periods: rising rate, constant rate and the falling rate period. Fick's second law can describe the moisture transport during the food drying process that takes place in the falling rate period. The values of effective diffusivity during the drying of areca inflorescence ranged from 2.756 × 10-7 to 6.257 × 10-7 m2/s and the activation energy was tested for 35.535 kJ/mol. The heat requirement of areca inflorescence at 40-60 °C was calculated from 50.57 to 60.50 kJ/kg during the drying process.

  16. Rainfall Variability, Wetland Persistence, and Water–Carbon Cycle Coupling in the Upper Zambezi River Basin in Southern Africa

    Directory of Open Access Journals (Sweden)

    Lauren E. L. Lowman

    2018-05-01

    Full Text Available The Upper Zambezi River Basin (UZRB delineates a complex region of topographic, soil and rainfall gradients between the Congo rainforest and the Kalahari Desert. Satellite imagery shows permanent wetlands in low-lying convergence zones where surface–groundwater interactions are vigorous. A dynamic wetland classification based on MODIS Nadir BRDF-Adjusted Reflectance is developed to capture the inter-annual and seasonal changes in areal extent due to groundwater redistribution and rainfall variability. Simulations of the coupled water–carbon cycles of seasonal wetlands show nearly double rates of carbon uptake as compared to dry areas, at increasingly lower water-use efficiencies as the dry season progresses. Thus, wetland extent and persistence into the dry season is key to the UZRB’s carbon sink and water budget. Whereas groundwater recharge governs the expansion of wetlands in the rainy season under large-scale forcing, wetland persistence in April–June (wet–dry transition months is tied to daily morning fog and clouds, and by afternoon land–atmosphere interactions (isolated convection. Rainfall suppression in July–September results from colder temperatures, weaker regional circulations, and reduced instability in the lower troposphere, shutting off moisture recycling in the dry season despite high evapotranspiration rates. The co-organization of precipitation and wetlands reflects land–atmosphere interactions that determine wetland seasonal persistence, and the coupled water and carbon cycles.

  17. Listeria monocytogenes presence during fermentation, drying and storage of Petrovská klobása sausage

    Science.gov (United States)

    Janković, V.; Mitrović, R.; Lakićević, B.; Velebit, B.; Baltić, T.

    2017-09-01

    The majority of human listeriosis cases appear to be caused by consumption of ready-to-eat (RTE) foods contaminated at the time of consumption with high levels of Listeria monocytogenes. Although strategies to prevent growth of L. monocytogenes in RTE products are critical for reducing the incidence of human listeriosis, this pathogen is highly difficult to control in fermented sausage processing environments due to its high tolerance to low pH and high salt concentration. The aims of the present study were to investigate the occurrence, presence and elimination of L. monocytogenes in Petrovská klobása sausage during processing, fermentation, drying and storage. L. monocytogenes, which was detected at the beginning of the production cycle, disappeared before day 30. The pathogen decline was much faster in those sausages which were dried in controlled, industrial conditions than in those dried applying the traditional, household technique.

  18. Usage of Heat Pump Dryer in Food Drying Process and Apple Drying Application

    Directory of Open Access Journals (Sweden)

    Gökhan Gürlek

    2015-12-01

    Full Text Available In Turkey, drying is achieved natural method by spreading out the material on the ground. In this way, there are many disadvantages like low quality and hygienic problems. The resulting loss of food quality in the dried products may have effect negatively trade potential and economical worth. For preventing the deterioration of the materials different types of drying methods have been developed. Low energy consumption applications are important for drying industry besides high product quality. For this purpose, heat pump dryer is gaining importance day by day in drying applications. In this study, the working principle of the heat pump dryer, heat pump types in the drying process and the heat pump dryer performance criteria will be considered. An example of application will be described using obtained results from apple drying operation that is conducted in the heat pump dryer.

  19. Stability of cemented dried water hyacinth used for biosorption of radionuclides under various circumstances

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.M., E-mail: hosamsaleh70@yahoo.com

    2014-03-15

    This paper investigates the influence of frost attack and flooding conditions during disposal on the compressive strength, porosity and durability of cemented waste form contained dried and grinded water hyacinth. This plant was used as a phytoremediating agent to treat liquid waste simulate contaminated with radionuclides. The obtained results showed that an increase in the incorporated dry plants decreases the compressive strength and increases the porosity of the solidified waste form. Raising the number of freeze–thaw cycles was accompanied with noticeable increase in the mass-loss of tested specimens and unsteady trend of compressive strength and consequently the mechanical integrity. The presence and increase of immersion duration per turned positively the mass change and affect in different ways on the solidified waste form. Spectroscopic analyses such as infrared and X-ray as well as microscopic investigation were performed to evaluate the solidified waste form exposed to different undesirable climatic conditions during extending disposal durations. The use of Portland cement as a stabilizer for water hyacinth, following the phytoremediation process, achieves the requirements for durability and strength against the freeze–thaw cycles or flooding in different types of water during prolonged disposal.

  20. Dry Etching

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yeom, Geun Young

    2016-01-01

    generation) to 2,200 × 2,500 mm (eighth generation), and the substrate size is expected to increase further within a few years. This chapter aims to present relevant details on dry etching including the phenomenology, materials to be etched with the different recipes, plasma sources fulfilling the dry...

  1. [Hyperosmolarity: Intracellular effects and implication in dry eye disease].

    Science.gov (United States)

    Warcoin, E; Clouzeau, C; Brignole-Baudouin, F; Baudouin, C

    2016-09-01

    Dry eye disease is a multifactorial disease affecting the lacrimal functional unit and which has a significant impact on the quality of life of patients. This pathology works as a vicious circle at the ocular surface in which hyperosmolarity of the tear film plays a key role. This review intends to describe the different reported intracellular effects induced by hyperosmolarity in cells: alteration of cytoskeleton, cell cycle slowdown, adaptation mechanisms triggered as restoration of cell volume and accumulation of compatible osmolytes, the crucial role of the osmoprotectant factor Nuclear Factor of the Activated T cells-5 (NFAT5), apoptosis, as well as oxidative stress and inflammatory responses caused by this particular condition. Reported effects of hyperosmolarity in the experimental studies specific of dry eye disease concerning ocular surface cells will be described in parallel. Indeed, these data allow to understand a part of the pathophysiology of the disease, and specially the links between tear hyperosmolarity and inflammation of the ocular surface, the second key of the pathology phenomenon. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Ophthalmology/Strabismus Ocular Pathology/Oncology Oculoplastics/Orbit Refractive Management/Intervention Retina/Vitreous Uveitis Focus On ... Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms Causes of ...

  3. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying

    DEFF Research Database (Denmark)

    Pekka Pajander, Jari; Matero, Sanni Elina; Sloth, Jakob

    2015-01-01

    PURPOSE: This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. METHODS: A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet....../particles was monitored using the DRYING KINETICS ANALYZER™ (DKA) with controllable drying conditions mimicking the spray-drying process to estimate the drying kinetics of the lysozyme/mannitol formulations. The mannitol polymorphism and the spatial distribution of lysozyme in the particles were examined using X......-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. RESULTS: XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis...

  4. Evaluation of Pathogen Removal in a Solar Sludge Drying Facility Using Microbial Indicators

    Directory of Open Access Journals (Sweden)

    D. İpek Kurtböke

    2010-02-01

    Full Text Available South East Queensland is one of the fastest growing regions in Australia with a correspondingly rapid increase in sewage production. In response, local councils are investing in more effective and sustainable options for the treatment and reuse of domestic and industrial effluents. A novel, evaporative solar dryer system has been installed on the Sunshine Coast to convert sewage sludge into a drier, usable form of biosolids through solar radiation exposure resulting in decreased moisture concentration and pathogen reduction. Solar-dried biosolids were analyzed for selected pathogenic microbial, metal and organic contaminants at the end of different drying cycles in a collaborative study conducted with the Regional Council. Although fecal coliforms were found to be present, enteroviruses, parasites, E. coli, and Salmonella sp. were not detected in the final product. However, elevated levels of zinc and copper were still present which restricted public use of the biosolids. Dilution of the dried biosolids with green waste as well as composting of the biosolids is likely to lead to the production of an environmentally safe, Class A end-product.

  5. Moonstruck how lunar cycles affect life

    CERN Document Server

    Naylor, Ernest

    2015-01-01

    Throughout history, the influence of the full Moon on humans and animals has featured in folklore and myths. Yet it has become increasingly apparent that many organisms really are influenced indirectly, and in some cases directly, by the lunar cycle. Breeding behaviour among some marine animals has been demonstrated to be controlled by internal circalunar biological clocks, to the point where lunar-daily and lunar-monthly patterns of Moon-generated tides are embedded in their genes. Yet, intriguingly, Moon-related behaviours are also found in dry land and fresh water species living far beyond the influence of any tides. In Moonstruck, Ernest Naylor dismisses the myths concerning the influence of the Moon, but shows through a range of fascinating examples the remarkable real effects that we are now finding through science. He suggests that since the advent of evolution on Earth, which occurred shortly after the formation of the Moon, animals evolved adaptations to the lunar cycle, and considers whether, if Moo...

  6. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer

    International Nuclear Information System (INIS)

    Kaleta, Agnieszka; Górnicki, Krzysztof; Winiczenko, Radosław; Chojnacka, Aneta

    2013-01-01

    Highlights: ► Three new drying models are formulated. ► The developed models are various modifications of the Page model. ► Nineteen models are used to describe the fluidized bed drying of apple. ► The Page model and formulated model is considered as the most appropriate. - Abstract: Three new drying models were formulated. The developed models are various modifications of the Page model. The models were used to describe the drying behaviour of apple (var. Ligol) dried in a fluidized bed dryer. The suitability of new models to describe the drying characteristics were compared to the accuracy of sixteen models available from the literature. The accuracies of the models were measured using the correlation coefficient (R), root mean square error (RMSE), and reduced chi-square (χ 2 ). Three new developed models described the drying characteristics of apple cubes satisfactorily (R > 0.997). The Page model and one of the empirical models formulated by the authors of this study can be considered as the most appropriate (R > 0.9977, RMSE = 0.0094–0.0167, χ 2 = 0.0001–0.0002). The effect of drying air temperature on the drying models parameters were also determined. The shrinkage of apple cubes during drying was measured to assess the changes in quality of dried apples

  7. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves.

    Science.gov (United States)

    Rayaguru, Kalpana; Routray, Winny

    2010-12-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was determined using the coefficient of determination, reduced chi square, and root mean square error. Aroma, colour, and overall acceptability determination of fresh and dried leaves were made using sensory evaluation. Drying of leaves took place mainly under the falling-rate period. The Page equation was found to be best among the proposed models to describe the thin-layer drying of Pandanus leaves with higher coefficient of determination. The effective moisture diffusivity values were also determined. The effect of low RH was prominent during the initial drying when the product was moist. The effect of temperature was prominent in the later part of drying, which acted as a driving force for moisture diffusion and hence the total drying time was reduced. Retention of aromatic compound 2-acetyl-1-pyrroline content was more in low temperature dried samples with higher sensory scores.

  8. Efficacy of hijamat bila shurt (dry cupping) on intensity of pain in dysmenorrhoea-a preliminary study.

    Science.gov (United States)

    Sultana, Arshiya; Ur Rahman, Khaleeq; Farzana, Muzn; Lone, Azad

    2010-10-01

    Waje rehm (Dysmenorrhoea) means painful menstruation. Since ancient times, hijamat bila shurt (Dry cupping) is a method of treatment of for this disease. Therefore, objective of this preliminary study was to evaluate the efficacy of hijamat bila shurt on intensity of pain in waje rehm by using Visual Analogue Scale for pain. It was conducted from May 2009 to July 2010 on 25 patients in National Institute of Unani Medicine, Bangalore. Patients suffering from primary and secondary dysmenorrhoea with regular cycles, age group 12-37years were selected. For dry cupping, two glass cup of medium size were applied below the umbilicus for 15 minutes on day land/or day 2 of the menstrual phase for one cycle and pain intensity was assessed by Visual Analogue Scale score for pain before and after the treatment. The Mean and Standard Error Mean for pain intensity before and after the treatment was 6.48 (0.32) and 2.12 (0.32) respectively with P<0.001, considered significant. Thus, hijamat bila shurt was effective in reducing pain intensity in dysmenorrhoea.

  9. Counter flow induced draft cooling tower option for supercritical carbon dioxide Brayton cycle

    Energy Technology Data Exchange (ETDEWEB)

    Pidaparti, Sandeep R., E-mail: sandeep.pidaparti@gmail.com [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States); Moisseytsev, Anton; Sienicki, James J. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Ranjan, Devesh, E-mail: devesh.ranjan@me.gatech.edu [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA 30332 (United States)

    2015-12-15

    Highlights: • A code was developed to investigate the various aspects of using cooling tower for S-CO{sub 2} Brayton cycles. • Cooling tower option to reject heat is quantitatively compared to the direct water cooling and dry air cooling options. • Optimum water conditions resulting in minimal plant capital cost per unit power consumption are calculated. - Abstract: A simplified qualitative analysis was performed to investigate the possibility of using counter flow induced draft cooling tower option to reject heat from the supercritical carbon dioxide Brayton cycle for advanced fast reactor (AFR)-100 and advanced burner reactor (ABR)-1000 plants. A code was developed to estimate the tower dimensions, power and water consumption, and to perform economic analysis. The code developed was verified against a vendor provided quotation and is used to understand the effect of ambient air and water conditions on the design of cooling tower. The calculations indicated that there exists optimum water conditions for given ambient air conditions which will result in minimum power consumption, thereby increasing the cycle efficiency. A cost-based optimization technique is used to estimate the optimum water conditions which will improve the overall plant economics. A comparison of different cooling options for the S-CO{sub 2} cycle indicated that the cooling tower option is a much more practical and economical option compared to the dry air cooling or direct water cooling options.

  10. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Science.gov (United States)

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  11. Phase Portraits of the Autonomous Duffing Single-Degree-of-Freedom Oscillator with Coulomb Dry Friction

    Directory of Open Access Journals (Sweden)

    Nikola Jakšić

    2014-01-01

    Full Text Available The paper presents phase portraits of the autonomous Duffing single-degree-of-freedom system with Coulomb dry friction in its δ-γ-ε parameter space. The considered nonlinearities of the cubic stiffness (ε and Coulomb dry friction (γ are widely used throughout the literature. It has been shown that there can be more than one sticking region in the phase plane. It has also been shown that an equilibrium point occurs at the critical combinations of values of the parameters γ and ε which gives rise to zero eigenvalue of the linearised system. The unstable limit cycle may appear in the case of negative viscous damping (δ; δ<0.

  12. Development and demonstration of calculation tool for industrial drying processes ''DryPack''; Udvikling og demonstration af beregningsvaerktoej til industrielle toerreprocesser ''DryPack''

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, P.; Weinkauff Kristoffersen, J.; Blazniak Andreasen, M. [Teknologisk Institut, Aarhus (Denmark); Elmegaard, B.; Kaern, M. [Danmarks Tekniske Univ.. DTU Mekanik, Kgs. Lyngby (Denmark); Monrad Andersen, C. [Lokal Energi, Viby J. (Denmark); Grony, K. [SE Big Blue, Kolding (Denmark); Stihoej, A. [Enervision, Kolding (Denmark)

    2013-03-15

    In this project we have developed a calculation tool for calculating energy consumption in different drying processes - primarily drying processes with air. The program can be used to determine the energy consumption of a current drying process, after which it can be calculated how much energy can be saved by various measures. There is also developed a tool for the simulation of a batch drier, which calculates the drying of a batch depending on the time. The programs have demonstrated their usefulness in connection with three cases that are reviewed in the report. In the project measurements on four different dryers have been carried out, and energy consumption is calculated using ''DryPack''. With ''DryPack'' it is possible to find potential savings by optimizing the drying processes. The program package includes utilities for the calculation of moist air: 1) Calculation of the thermodynamic properties of moist air; 2) Device operation with moist air (mixing, heating, cooling and humidification); 3) Calculation of the relative change of the drying time by changing the process parameters; 4) IX-diagram at a temperature above 100 deg. C. (LN)

  13. Assessment of Osmotic Pre-Drying Treatment on Drying Rates of Fresh Tomato Fruits

    Directory of Open Access Journals (Sweden)

    P. A. Idah

    2014-06-01

    Full Text Available The aim of this work is to investigate the influence of osmotic pre-drying treatments on drying rates of tomato (Lycopersiconesculentum at various drying temperatures. Fresh Roma tomato fruit samples were sliced to a thickness of 5 mm and the seeds were removed. Weight of 300 g was measured for each of the three replicates and immersed in a hypertonic solution of sucrose of different concentrations 40 and 60 oBrix each held for osmotic duration of 1 and 2 hours, drained for 10 min and then dried at 50, 60, and 70 oC in a mechanical dryer. Control samples were also weighed 300 g per replicate and dried at 50, 60, and 70 oC without pre-drying treatment. The initial moisture content of fresh tomato used was 94.5% (wb. Moisture loss of each sample was monitored and recorded hourly until the product has reached the desired final moisture content (≤ 7%.The data collected were subjected to statistical analysis of variance (ANOVA and Duncan New Multiple range tests (DNMRT to ascertain the level of significance differences between the individual treatments and their interaction at p ≤ 0.05.The results show that at all the drying temperatures used, the control tomato samples exhibited the fastest drying rate with an average of 35.2 g/hr, samples pre-treated at 40 oBrix has an average drying rate of 26.6 g/hr, while samples pre-treated at 60 oBrix has the slowest drying rate of 25.2 g/hr. It was also revealed that samples subjected to 1 hour osmotic time have faster drying rates than those treated for 2 hours osmotic time.

  14. Well-plate freeze-drying

    DEFF Research Database (Denmark)

    Trnka, Hjalte; Rantanen, Jukka; Grohganz, Holger

    2015-01-01

    Abstract Context: Freeze-drying in presence of excipients is a common practice to stabilize biomacromolecular formulations. The composition of this formulation is known to affect the quality of the final product. Objective: The aim of this study was to evaluate freeze-drying in well-plates as a h......Abstract Context: Freeze-drying in presence of excipients is a common practice to stabilize biomacromolecular formulations. The composition of this formulation is known to affect the quality of the final product. Objective: The aim of this study was to evaluate freeze-drying in well......-plates as a high throughput platform for formulation screening of freeze-dried products. Methods: Model formulations consisting of mannitol, sucrose and bovine serum albumin were freeze-dried in brass well plates, plastic well plates and vials. Physical properties investigated were solid form, residual moisture......, cake collapse and reconstitution time. Results: Samples freeze-dried in well-plates had an acceptable visual cake appearance. Solid form analysis by high throughput X-ray powder diffraction indicated comparable polymorphic outcome independent of the container. The expected increase in moisture level...

  15. Dry well cooling device

    International Nuclear Information System (INIS)

    Suzuki, Hiroyuki.

    1997-01-01

    A plurality of blowing ports with introduction units are disposed to a plurality of ducts in a dry well, and a cooling unit comprising a cooler, a blower and an isolating valve is disposed outside of the dry well. Cooling air and the atmosphere in the dry well are mixed to form a cooling gas and blown into the dry well to control the temperature. Since the cooling unit is disposed outside of the dry well, the maintenance of the cooling unit can be performed even during the plant operation. In addition, since dampers opened/closed depending on the temperature of the atmosphere are disposed to the introduction units for controlling the temperature of the cooling gas, the temperature of the atmosphere in the dry well can be set to a predetermined level rapidly. Since an axial flow blower is used as the blower of the cooling unit, it can be contained in a ventilation cylinder. Then, the atmosphere in the dry well flowing in the ventilation cylinder can be prevented from leaking to the outside. (N.H.)

  16. The response of vegetation to rising CO2 concentrations plays an important role in future changes in the hydrological cycle

    Science.gov (United States)

    Hong, Tao; Dong, Wenjie; Ji, Dong; Dai, Tanlong; Yang, Shili; Wei, Ting

    2018-04-01

    The effects of increasing CO2 concentrations on plant and carbon cycle have been extensively investigated; however, the effects of changes in plants on the hydrological cycle are still not fully understood. Increases in CO2 modify the stomatal conductance and water use of plants, which may have a considerable effect on the hydrological cycle. Using the carbon-climate feedback experiments from CMIP5, we estimated the responses of plants and hydrological cycle to rising CO2 concentrations to double of pre-industrial levels without climate change forcing. The mode results show that rising CO2 concentrations had a significant influence on the hydrological cycle by changing the evaporation and transpiration of plants and soils. The increases in the area covered by plant leaves result in the increases in vegetation evaporation. Besides, the physiological effects of stomatal closure were stronger than the opposite effects of changes in plant structure caused by the increases in LAI (leaf area index), which results in the decrease of transpiration. These two processes lead to overall decreases in evaporation, and then contribute to increases in soil moisture and total runoff. In the dry areas, the stronger increase in LAI caused the stronger increases in vegetation evaporation and then lead to the overall decreases in P - E (precipitation minus evaporation) and soil moisture. However, the soil moisture in sub-arid and wet areas would increase, and this may lead to the soil moisture deficit worse in the future in the dry areas. This study highlights the need to consider the different responses of plants and the hydrological cycle to rising CO2 in dry and wet areas in future water resources management, especially in water-limited areas.

  17. Simple and double microencapsulation of Lactobacillus acidophilus with chitosan using spray drying

    Directory of Open Access Journals (Sweden)

    Isela A. Flores-Belmont

    2015-10-01

    Full Text Available The aim of this study was to evaluate the survival of Lactobacillus acidophilus that had been simple or double spray dried using chitosan to cause microencapsulation and which had been exposed to model gastrointestinal conditions. In addition, the study also determined the physicochemical properties of the powder containing the microencapsulated probiotic.Chitosan-inulin or chitosan-maltodextrin (1:15 or 1:25 solutions were inoculated with 1012 cfu mL-1 of L. acidophilus, for simple microencapsulation. The different solutions were dried using a spray dryer with an inlet air temperature of 130°C and a solution flux of 4.8 g min-1. A two-step process was used for the double microencapsulation. In the first step, the probiotic was added to a gelatin-maltodextrin (1:25 solution and then spray dried; for the second step, the microencapsulated probiotic was added to a chitosan-inulin or chitosan-maltodextrin (1:25 solution and then it was spray dried again.With the simple microencapsulated probiotic, a microbial reduction of 7 log cycles was obtained. With the double microencapsulated probiotic only 3 log reductions were achieved. The double microencapsulated probiotic thus demonstrated greater resistance to simulated gastrointestinal conditions. The powders produced were shown to have water activity values of 0.176 - 0.261 at 25 °C and moisture content of 0.8 – 1.0%, which are characteristic of spray dried products. The bulk density was significantly (p < 0.05 lower (300 kg m-3 for simple than for double (400 kg m-3 microencapsulated probiotic powders. Solubility and dispersibility of the powder microcapsules were better at lower pH values.Double microencapsulation using a process of spray drying is therefore recommended for probiotics, thus exploiting chitosan’s insolubility in water, which can be applied for the of development food products.

  18. Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres

    OpenAIRE

    Sreerangappa, Ramesh; Debecker, Damien P.; 13th European Congress on Catalysis – EuropaCat 2017

    2017-01-01

    Nanostructured NaAlO2 microspheres are produced by one-pot spray dried route, and are characterized by various physico-chemical methods. The obtained solids are composed of spherical aggregates of sodium aluminate with small crystallite size and strong surface basicity. This makes them highly active catalysts in the base-catalyzed synthesis of glycerol carbonate from glycerol and dimethyl carbonate. The catalyst does not leach and showed good reusability up to three cycles.

  19. Electrochemical performance of Li4Mn5O12 nano-crystallites prepared by spray-drying-assisted solid state reactions

    International Nuclear Information System (INIS)

    Jiang, Y.P.; Xie, J.; Cao, G.S.; Zhao, X.B.

    2010-01-01

    Nanosized Li 4 Mn 5 O 12 has been synthesized by a spray-drying-assisted solid state method. The effect of spray drying and drying temperature on the microstructure and electrochemical performance of the final products has been investigated. The microstructure of the products has been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The electrochemical performance of the products has been studied by galvanostatic cycling, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). It has been found that the products prepared with a spray-drying pretreatment of the precursor exhibit a smaller grain size and a narrower size distribution than that prepared without the pretreatment. Among the three samples with a precursor pretreatment, that pretreated at 250 o C shows the best electrochemical performance due to the smallest grain size of below 50 nm and the narrowest size distribution.

  20. MODELLING OF THIN LAYER DRYING KINETICS OF COCOA BEANS DURING ARTIFICIAL AND NATURAL DRYING

    Directory of Open Access Journals (Sweden)

    C.L. HII

    2008-04-01

    Full Text Available Drying experiments were conducted using air-ventilated oven and sun dryer to simulate the artificial and natural drying processes of cocoa beans. The drying data were fitted with several published thin layer drying models. A new model was introduced which is a combination of the Page and two-term drying model. Selection of the best model was investigated by comparing the determination of coefficient (R2, reduced chi-square (2 and root mean square error (RMSE between the experimental and predicted values. The results showed that the new model was found best described the artificial and natural drying kinetics of cocoa under the conditions tested.

  1. Variations in Nutrient Cycling and Meltwater Composition Between Ice-Lidded and Open System Cryoconites

    Science.gov (United States)

    Mass, A.

    2016-12-01

    Cryoconites are small melt pools on the ablation surface of glaciers created by the accumulation of aeolian sediment with a lower albedo than the surrounding ice. While many cryoconites remain open to the surrounding atmosphere, environmental conditions in the McMurdo Dry Valleys of Antarctica often lead to the formation of dense ice lids due to advection from cold winds. These lidded cryoconites are isolated from atmospheric exchange while maintaining subsurface melt in a solid-state greenhouse. The varying conditions for the formation and freeze-thaw cycle of cryoconites lead to a range of biogeochemical processes occurring within the pools. This study analyzed the biochemistry of both open and lidded cryoconite water from six glaciers in the Dry Valleys throughout the initial pulse melt, equilibrium, and refreezing periods in 2013- 2015. Many of the spatial gradients in carbon cycling, solute concentrations, and pH identified for lidded cryoconites exhibited opposite trends for pools in equilibrium with the atmosphere, while temporal gradients were less diverse for open pools.

  2. Analysis on energy consumption of drying process for dried Chinese noodles

    International Nuclear Information System (INIS)

    Wang, Zhenhua; Zhang, Yingquan; Zhang, Bo; Yang, Fuguang; Yu, Xiaolei; Zhao, Bo; Wei, Yimin

    2017-01-01

    Highlights: • Energy analysis of a tunnel dryer for dried Chinese noodles is completed. • Energy saving performance of dryers with different inlet air was compared. • MND was developed and evaluated, and the efficiency and throughput was improved. - Abstract: Drying is an important operation during the production of dried Chinese noodles, and the energy consumption from drying accounts for approximately 60% of the total energy consumption during the manufacturing process. To investigate the energy consumption and throughput of dryers for dried Chinese noodles, experiments were conducted using a new 130-m long tunnel dryer with two lines of noodles (ND) and an old 60-m long tunnel dryer with five lines of noodles (OD). The energy saving effects of a modified new 130-m long tunnel dryer (MND), which was only modified through the inclusion of automatic control for temperature and humidity without any modifications to the oil heater or ND dryer structure, were also compared. The energy saving effect was determined from the enthalpy difference between the inlet and outlet humid air of the ND and MND. Finally, the MND was found to be better than ND in terms of energy efficiency and throughput, and trends for the future of noodle drying were discussed.

  3. Freeze drying method

    International Nuclear Information System (INIS)

    Coppa, N.V.; Stewart, P.; Renzi, E.

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser

  4. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye Health A-Z Symptoms Glasses & Contacts Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye ... Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué ...

  5. A direct estimate of evapotranspiration over the Amazon basin and implications for our understanding of carbon and water cycling

    Science.gov (United States)

    Swann, A. L. S.; Koven, C.; Lombardozzi, D.; Bonan, G. B.

    2017-12-01

    Evapotranspiration (ET) is a critical term in the surface energy budget as well as the water cycle. There are few direct measurements of ET, and thus the magnitude and variability is poorly constrained at large spatial scales. Estimates of the annual cycle of ET over the Amazon are critical because they influence predictions of the seasonal cycle of carbon fluxes, as well as atmospheric dynamics and circulation. We estimate ET for the Amazon basin using a water budget approach, by differencing rainfall, discharge, and time-varying storage from the Gravity Recovery and Climate Experiment. We find that the climatological annual cycle of ET over the Amazon basin upstream of Óbidos shows suppression of ET during the wet season, and higher ET during the dry season, consistent with flux tower based observations in seasonally dry forests. We also find a statistically significant decrease in ET over the time period 2002-2015 of -1.46 mm/yr. Our direct estimate of the seasonal cycle of ET is largely consistent with previous indirect estimates, including energy budget based approaches, an up-scaled station based estimate, and land surface model estimates, but suggests that suppression of ET during the wet season is underestimated by existing products. We further quantify possible contributors to the phasing of the seasonal cycle and downward time trend using land surface models.

  6. Foam-mat drying technology: A review.

    Science.gov (United States)

    Hardy, Z; Jideani, V A

    2017-08-13

    This article reviews various aspects of foam-mat drying such as foam-mat drying processing technique, main additives used for foam-mat drying, foam-mat drying of liquid and solid foods, quality characteristics of foam-mat dried foods, and economic and technical benefits for employing foam-mat drying. Foam-mat drying process is an alternative method that allows the removal of water from liquid materials and pureed materials. In this drying process, a liquid material is converted into foam that is stable by being whipped after adding an edible foaming agent. The stable foam is then spread out in sheet or mat and dried by using hot air (40-90°C) at atmospheric pressure. Methyl cellulose (0.25-2%), egg white (3-20%), maltodextrin (0.5-05%), and gum Arabic (2-9%) are the commonly utilized additives for the foam-mat drying process at the given range, either combined together for their effectiveness or individual effect. The foam-mat drying process is suitable for heat sensitive, viscous, and sticky products that cannot be dried using other forms of drying methods such as spray drying because of the state of product. More interest has developed for foam-mat drying because of the simplicity, cost effectiveness, high speed drying, and improved product quality it provides.

  7. Drying and moisture resorption behaviour of various electrode materials and separators for lithium-ion batteries

    Science.gov (United States)

    Stich, Michael; Pandey, Nisrit; Bund, Andreas

    2017-10-01

    The drying behaviour and water uptake of a variety of commonly used electrode materials (graphite, LiFePO4, LiMn2O4, LiCoO2, Li(NiCoMn)O2) and separators (polyolefin, glass fibre) for lithium-ion batteries (LIBs) are investigated. The drying experiments are carried out using a coulometric Karl Fischer titrator in combination with a vaporiser. This setup leads to a highly sensitive and precise method to quantify water amounts in the microgram range in solid materials. Thereby the mass specific drying behaviour at RT and 120 °C is determined as well as the water resorption of the investigated materials in conditioned air atmosphere (T: 25 °C, RH: 40%). By extracting characteristic water detection rate curves for the investigated materials, a method is developed to predict the water detection beyond the runtime of the experiment. The results help optimising drying procedures of LIB components and thus can save time and costs. It is also shown, that water contaminations in graphite/LiFePO4 coin cells with a LiPF6 based electrolyte lead to a faster capacity fade during cycling and a significant change of the cell impedance.

  8. Fuel cycle model and the cost of a recycling thorium in the CANDU reactor

    International Nuclear Information System (INIS)

    Choi, Hangbok; Park, Chang Je

    2005-01-01

    The dry process fuel technology has a high proliferation-resistance, which allows applications not only to the existing but also to the future nuclear fuel cycle systems. In this study, the homogeneous ThO 2 -UO 2 recycling fuel cycle in a Canada deuterium uranium (CANDU) reactor was assessed for a fuel cycle cost evaluation. A series of parametric calculations were performed for the uranium fraction, enrichment of the initial uranium fuel, and the fission product removal rated of the recycled fuel. The fuel cycle cost was estimated by the levelized lifetime cost model provided by the Organization for Economic Cooperation and Development/Nuclear Energy Agency. Though it is feasible to recycle the homogeneous ThO 2 -UO 2 fuel in the CANDU reactor from the viewpoint of a mass balance, the recycling fuel cycle cost is much higher than the conventional natural uranium fuel cycle cost for most cases due to the high fuel fabrication cost. (author)

  9. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems; Systeme energetiques, TOME 3: cycles avances, systemes innovants a faible impact environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Gicquel, R

    2009-07-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO{sub 2} capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  10. Freeze-drying synthesis of Li3V2(PO4)3/C cathode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Qiao, Y.Q.; Wang, X.L.; Mai, Y.J.; Xia, X.H.; Zhang, J.; Gu, C.D.; Tu, J.P.

    2012-01-01

    Highlights: ► Li 3 V 2 (PO 4 ) 3 /C was synthesized by freeze-drying method. ► A specific capacity of 105.6 mAh g −1 can be obtained at 14.8 C. ► 93.3 mAh g −1 can be delivered at a higher current density of 29.6 C. ► The Li 3 V 2 (PO 4 ) 3 /C electrode shows a good cycling performance. - Abstract: Li 3 V 2 (PO 4 ) 3 /C cathode material was synthesized by using a freeze-drying method followed by carbon-thermal reduction. This as-prepared material has a uniform particle size distribution and a well carbon coating on the surface of Li 3 V 2 (PO 4 ) 3 particles. The Li 3 V 2 (PO 4 ) 3 /C exhibits good electrochemical performance and cycling stability. Between 3.0 and 4.3 V, the composite delivered a reversible capacity of 125.2 mAh g −1 at a charge–discharge rate of 1.48 C (1 C = 133 mA g −1 ) and without obviously capacity fading after 100 cycles. Even at 14.8 C and 29.6 C rates, it can still deliver discharge capacities of 105.6 mAh g −1 and 93.3 mAh g −1 , and the discharge capacities of 84.5 and 60.5 mAh g −1 are sustained after 500 cycles, respectively.

  11. a comparative study of the drying rate constant, drying efficiency

    African Journals Online (AJOL)

    The drying rate constants for the solar dryer and open- air sun dried bitter leaf were 0.8 and ... of cost benefit but the poorest when other considerations ... J. I. Eze, National Centre for Energy Research and Development (NCERD), University of ...

  12. Carrageenan drying with dehumidified air: drying characteristics and product quality

    NARCIS (Netherlands)

    Djaeni, M.; Sasongko, S.B.; Prasetyaningrum, Aji A A.A.; Jin, X.; Boxtel, van A.J.B.

    2012-01-01

    Applying dehumidified air is considered as an option to retain quality in carrageenan drying. This work concerns the effects of operational temperature, air velocity, and carrageenan thickness on the progress of drying and product quality when using dehumidified air. Final product quality and

  13. Microbial nitrogen cycling in Arctic snowpacks

    International Nuclear Information System (INIS)

    Larose, Catherine; Vogel, Timothy M; Dommergue, Aurélien

    2013-01-01

    Arctic snowpacks are often considered as chemical reactors for a variety of chemicals deposited through wet and dry events, but are overlooked as potential sites for microbial metabolism of reactive nitrogen species. The fate of deposited species is critical since warming leads to the transfer of contaminants to snowmelt-fed ecosystems. Here, we examined the role of microorganisms and the potential pathways involved in nitrogen cycling in the snow. Next generation sequencing data were used to follow functional gene abundances and a 16S rRNA (ribosomal ribonucleic acid) gene microarray was used to follow shifts in microbial community structure during a two-month spring-time field study at a high Arctic site, Svalbard, Norway (79° N). We showed that despite the low temperatures and limited water supply, microbial communities inhabiting the snow cover demonstrated dynamic shifts in their functional potential to follow several different pathways of the nitrogen cycle. In addition, microbial specific phylogenetic probes tracked different nitrogen species over time. For example, probes for Roseomonas tracked nitrate concentrations closely and probes for Caulobacter tracked ammonium concentrations after a delay of one week. Nitrogen cycling was also shown to be a dominant process at the base of the snowpack. (letter)

  14. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    Science.gov (United States)

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  15. Through-vial impedance spectroscopy of the mechanisms of annealing in the freeze-drying of maltodextrin: the impact of annealing hold time and temperature on the primary drying rate.

    Science.gov (United States)

    Smith, Geoff; Arshad, Muhammad Sohail; Polygalov, Eugene; Ermolina, Irina

    2014-06-01

    The study aims to investigate the impact of annealing hold time and temperature on the primary drying rate/duration of a 10% (w/v) solution of maltodextrin with an emphasis on how the mechanisms of annealing might be understood from the in-vial measurements of the ice crystal growth and the glass transition. The electrical impedance of the solution within a modified glass vial was recorded between 10 and 10(6) Hz during freeze-drying cycles with varying annealing hold times (1-5 h) and temperatures. Primary drying times decreased by 7%, 27% and 34% (1.1, 4.3 and 5.5 h) with the inclusion of an annealing step at temperatures of -15°C, -10°C and -5°C, respectively. The glass transition was recorded at approximately -16°C during the re-heating and re-cooling steps, which is close to the glass transition (Tg ') reported for 10% (w/v) maltodextrin and therefore indicates that a maximum freeze concentration (∼86%, w/w, from the Gordon-Taylor equation) was achieved during first freezing, with no further ice being formed on annealing. This observation, coupled to the decrease in electrical resistance that was observed during the annealing hold time, suggests that the reduction in the drying time was because of improved connectivity of ice crystals because of Ostwald ripening rather than devitrification. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.

    Science.gov (United States)

    Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V

    2012-10-01

    Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time. Copyright © 2012 Wiley-Liss, Inc.

  17. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  18. Raman mapping of mannitol/lysozyme particles produced via spray drying and single droplet drying.

    Science.gov (United States)

    Pajander, Jari Pekka; Matero, Sanni; Sloth, Jakob; Wan, Feng; Rantanen, Jukka; Yang, Mingshi

    2015-06-01

    This study aimed to investigate the effect of a model protein on the solid state of a commonly used bulk agent in spray-dried formulations. A series of lysozyme/mannitol formulations were spray-dried using a lab-scale spray dryer. Further, the surface temperature of drying droplet/particles was monitored using the DRYING KINETICS ANALYZER™ (DKA) with controllable drying conditions mimicking the spray-drying process to estimate the drying kinetics of the lysozyme/mannitol formulations. The mannitol polymorphism and the spatial distribution of lysozyme in the particles were examined using X-ray powder diffractometry (XRPD) and Raman microscopy. Partial Least Squares Discriminant Analysis was used for analyzing the Raman microscopy data. XRPD results indicated that a mixture of β-mannitol and α-mannitol was produced in the spray-drying process which was supported by the Raman analysis, whereas Raman analysis indicated that a mixture of α-mannitol and δ-mannitol was detected in the single particles from DKA. In addition Raman mapping indicated that the presence of lysozyme seemed to favor the appearance of α-mannitol in the particles from DKA evidenced by close proximity of lysozyme and mannitol in the particles. It suggested that the presence of lysozyme tend to induce metastable solid state forms upon the drying process.

  19. Preliminary design and analysis on nuclear fuel cycle for fission-fusion hybrid spent fuel burner

    International Nuclear Information System (INIS)

    Chen Yan; Wang Minghuang; Jiang Jieqiong

    2012-01-01

    A wet-processing-based fuel cycle and a dry-processing were designed for a fission-fusion hybrid spent fuel burner (FDS-SFB). Mass flow of SFB was preliminarily analyzed. The feasibility analysis of initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing were preliminarily evaluated. The results of mass flow of FDS-SFB demonstrated that the initial loaded fuel inventory, recycle fuel fabrication and spent fuel reprocessing of nuclear fuel cycle of FDS-SFB is preliminarily feasible. (authors)

  20. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.

    Science.gov (United States)

    Fernando, J A K M; Amarasinghe, A D U S

    2016-01-01

    Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%).

  1. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  2. Dry Mouth (Xerostomia)

    Science.gov (United States)

    ... Finding Dental Care Home Health Info Health Topics Dry Mouth Saliva, or spit, is made by the salivary ... help keep teeth strong and fight tooth decay. Dry mouth, also called xerostomia (ZEER-oh-STOH-mee-ah), ...

  3. Energy cost of seed drying

    Directory of Open Access Journals (Sweden)

    Weerachet Jittanit

    2017-11-01

    Full Text Available In this work, the energy costs of drying corn, rice and wheat seeds between 3 drying options were compared. They consisted of 1 two-stage drying by using fluidised bed dryer (FBD in the 1st stage and in-store dryer (ISD in the 2nd stage, 2 single-stage drying by fixed bed dryer (FXD and 3 two-stage drying by using FXD in the 1st  stage and ISD in the 2nd  stage. The drying conditions selected for comparison were proved to be safe for seed viability by the previous studies. The results showed that the drying options 2 and 3 consumed less energy than option 1. However, the benefits from lower energy cost must be weighed against some advantages of using FBD. Furthermore, it appeared that running the burners of FXD and ISD for warming up the ambient air during humid weather condition could shorten drying time significantly with a little higher energy cost.

  4. Infrared pre-drying and dry-dehulling of walnuts for improved processing efficiency and product quality

    Science.gov (United States)

    The walnut industry is faced with an urgent need to improve post-harvest processing efficiency, particularly drying and dehulling operations. This research investigated the feasibility of dry-dehulling and infrared (IR) pre-drying of walnuts for improved processing efficiency and dried product quali...

  5. EVALUATION OF THERMAL EFFICIENCY OF THE TECHNOLOGICAL SCHEME OF APPLE CHIPS AND DRIED FRUITS PRODUCTION

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2014-01-01

    Full Text Available The estimation of thermodynamic perfection of separate technological processes is executed at heat-moisture of handling of fruit and a line of manufacture of fruit apple chips and dried fruits. The technological scheme of a line of processing of fruits and manufactures of fruit chips on the basis of convection and the microwave-dryings suggested resource-saving. The technique is made and results of calculation of thermal expenses for various schemes of manufacture of apple chips are resulted. For the offered scheme material, thermal and power streams on the basis of balance parities of technological processes are certain. The comparative thermal production efficiency of apple chips for a base foreign variant and the offered technological scheme with the closed cycle of use of the heat-carrier and the combined convection-microwave-drying is shown. In this paper we define the thermal and energy flows for the processes of convective drying, pre-microwave drying, hydrothermal treatment and final microwave drying plant material, which are one of the main stages of the production of all kinds of fruit and vegetable concentrates, including fruit apple chips. Resource-saving ways moisture-heat of handling (hydration, blanching, drying, etc. produce raw materials in the production of food concentrates suggested a reduced water flow with a high degree of use of its potential power and microwave sources. To assess the thermal efficiency of the various processes and production schemes used as indicators of thermal efficiency and proposed value of specific heat (kJ / kg given mass productivity per unit of feedstock and translational moisture. The values of the mass fraction of the heat of material flows for the base and the proposed resource-saving production scheme fruit chips, for example, apple, based on a combination of convection-microwave drying each control surface.

  6. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P.G.; Fehrenbach, P.J.; Meneley, D.A.

    1996-04-01

    The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a twoto three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than does conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U.S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or FBR reactors. If the objective of a national fuel-cycle program is the minimization of actinide waste or destruction of long-lived fission products, then studies have shown the superiority of CANDU reactors in meeting this objective. Long-term energy security can be assured either through the thorium cycle or through a CANDU 1 FBR system, in which the FBR would be operated as a 'fuel factory,' providing the fissile material to power a number of lower-cost, high efficiency CANDU reactors. In summary, the CANDU reactor's simple fuel design, high neutron economy, and on

  7. Responses of benthic bacteria to experimental drying in sediments from Mediterranean temporary rivers.

    Science.gov (United States)

    Amalfitano, Stefano; Fazi, Stefano; Zoppini, Annamaria; Barra Caracciolo, Anna; Grenni, Paola; Puddu, Alberto

    2008-02-01

    In the semiarid Mediterranean regions, water scarcity represents a common physiological stress for microbial communities residing in river sediments. However, the effect of drying has not yet adequately been evaluated when analyzing riverine microbiological processes. The bacterial community structure (abundance, biomass, composition) and functioning (carbon production, live cell percentage) were assessed during experimental desiccation in microcosms with sediments from different Mediterranean temporary rivers (Tagliamento, Krathis, Mulargia, Pardiela). Our results showed that the overall responses to drying of the bacterial community were independent from sediment origin and strictly related to water content. During desiccation, a prompt decline (up to 100%) of the initial bacterial carbon production was followed by a slower decrease in abundance and biomass, with an overall reduction of 74% and 78%, respectively. By the end of the experiment, live cells were still abundant but depressed in their main metabolic functions, thus resulting in a drastic increase in the community turnover time. Only 14% of the initial live cell biomass was available in dry sediments to immediately start the reactivation of the aquatic microbial food web after the arrival of new water. Community composition analysis showed a relative increase in alpha- and beta-Proteobacteria, when passing from wet to dry conditions. Our results suggest that the occurrence of drought events could affect carbon cycling through the freshwater microbial compartment, by temporarily limiting microbial mineralization and altering bacterial community structure.

  8. Label-free cell-cycle analysis by high-throughput quantitative phase time-stretch imaging flow cytometry

    Science.gov (United States)

    Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.

    2018-02-01

    Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.

  9. Microbiological studies of irradiated dried mackerel (Cybium guttatum Bloch and Schnieder)

    International Nuclear Information System (INIS)

    Ahmed, M.; Joardar, S.K.; Bhuiya, A.D.; Islam, M.S.

    1985-01-01

    Microbiological studies of sun-dried mackerel fish, Cybium guttatum, were conducted by exposing the fish to doses of gamma-rays from 0.50 to 8.00 kGy at the storage temperatures of 10.20 and 30oC. The reduction of bacterial flora was determined both qualitatively and quantitatively. At 4 kGyone log cycle reduction of bacterial flora was achieved and at 8 kGy the reduction was nearly 2 log cycles. The irradiated samples were stored for two months and viable bacterial counts were taken. Except in a few cases, reduction in viable counts occurred. Bacterial isolates were made and both Mesophiles and Psychrophiles were identified. Micrococcus, Staphylococcus, Corymebacterium and some Bacillus were found to be the prominent groups in mesophiles, while Bacillus dominated in psychrophiles. Staphylococcus was found to be the most dominant bacterial flora in unirradiated samples, but they were highly affected by irradiation

  10. Dry etching for microelectronics

    CERN Document Server

    Powell, RA

    1984-01-01

    This volume collects together for the first time a series of in-depth, critical reviews of important topics in dry etching, such as dry processing of III-V compound semiconductors, dry etching of refractory metal silicides and dry etching aluminium and aluminium alloys. This topical format provides the reader with more specialised information and references than found in a general review article. In addition, it presents a broad perspective which would otherwise have to be gained by reading a large number of individual research papers. An additional important and unique feature of this book

  11. Post-LASIK dry eye

    Science.gov (United States)

    Shtein, Roni M

    2011-01-01

    Laser-assisted in situ keratomileusis (LASIK) is a frequently performed corneal refractive surgery with excellent refractive outcomes. The most common complication of LASIK is dry eyes, with virtually all patients developing some degree of dryness in the immediate postoperative period. Identifying preoperative dry eyes, and conscientious attention and treatment in the perioperative time period, can lead to enhanced patient satisfaction and more accurate visual outcomes. Improved understanding of the development of dry eyes after LASIK will advance our understanding of the complex pathophysiology of dry eye disease. PMID:22174730

  12. FREEZE DRYING PROCESS: A REVIEW

    OpenAIRE

    Soham Shukla

    2011-01-01

    Among the various methods of drying, this article has mentioned only one most important method, “Freeze drying”. This method is mainly used for the drying of thermo labile materials. This method works on the principle of sublimation. This method is divided into 3 steps for its better understanding; these are Freezing, Primary drying, and secondary drying. There are many advantages and disadvantages of this method, but still this is the most useful drying method nowadays.

  13. Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of rosemary leaves

    International Nuclear Information System (INIS)

    Arslan, Derya; Musa Ozcan, M.

    2008-01-01

    Rosemary leaves (Rosmarinus officinalis L., Lamiaceae) were dried by using sun, oven (50 deg. C) and microwave oven (700 W, 2450 MHz) drying methods. Microwave oven drying shortened the drying time more than 99% when compared to the sun and oven drying methods. K, Ca, Na, Mg and P were the most abundant elements in the rosemary samples. The mineral content of oven dried rosemary leaves was higher than that of the sun and microwave dried samples. The logarithmic and Midilli and Kuecuek models were shown to give a good fit to the sun and oven drying. The Page, Modified Page and Midilli and Kuecuek models have shown a better fit to the experimental microwave oven drying data of rosemary leaves. Microwave oven drying revealed optimum colour values. Oven drying resulted in a considerable decrease in the colour quality of the rosemary leaves

  14. Thermal drying of sewage plant sludge and its disposal; El secado termico de fangos de EDAR y su disposicion

    Energy Technology Data Exchange (ETDEWEB)

    Elias, X.

    2002-07-01

    Thermal drying is one more link in the sludge treatment chain. The thickeners transfer the wastes water contaminant to the primary sludge, which contains around 5% of dry matter (DM). Mechanical dehydration brings the proportion of DM up to between 20% and 40%. Thermal drying raises the proportion of DM to between 85% and 95%. These are the solutions that have been adopted in most of the European Union. The next step consists in eliminating the organic fraction, which makes up from 40% to 60% of the DM, from the sludge. This can be done by pyrolysis-gasification or incineration. Although incineration provides the energy needed to dry the sludge and also complies with the Directive that limits the disposal of fermentable matter on dumps, it inevitably leaves behind the inorganic waste presents in the sludge. Vitrification is a simple, complementary technology for making the inorganic fraction inert while allowing it to be valorized. It thus closes the cycle and achieves zero dumping. (Author) 28 refs.

  15. Pecan drying with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Ghate, S.R.; Chhinnan, M.S.

    1983-07-01

    High moisture in-shell pecans were dried by keeping them in direct and indirect contact with silica gel to investigate their drying characteristics. In-shell pecans were also dried with ambient air from a controlled environment chamber and with air dehumidified by silica gel. Direct contact and dehumidified air drying seemed feasible approaches.

  16. PADDY DRYING IN MIXED ADSORPTION DRYER WITH ZEOLITE: DRYING RATE AND TIME ESTIMATION

    Directory of Open Access Journals (Sweden)

    Mochammad Djaeni

    2013-11-01

    Full Text Available Recently, the main problem of the rice stock and distribution in Indonesia is the quality degradation as indicated in unpleasant odor (smelly, stained, yellowness, and high percentage of broken rice. This is due to the low of paddy quality dried by from either direct sunlight or conventional fluidized bed dryer. As a result, the paddy cracks and breaks easily during milling in which causes the storage life being shorter as the enzymatic degradation by germ or fungi occurs. Air dehumidified with zeolite at drying medium temperature is potential to improve the quality of paddy. Zeolite is a material having high affinity to water vapor. In this case, the paddy and zeolite was mixed and fluidized with the air. The air will evaporate water from paddy, and at same time, the zeolite will adsorb water from air. Hence, the humidity of dryer can be kept low in which improves the driving force for drying. This work discusses the effect of presence of zeolite in the dryer, operational drying temperature, air velocity and relative humidity on drying rate of paddy. The results showed that increasing of zeolite as well as operational temperature increased the drying rate. In addition, using the model, the air dehumidification with zeolite and increase of air velocity can speed up drying time significantly at operational temperature below 80oC. This condition is very suitable for paddy drying since the quality degradation can be avoided.

  17. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  18. A review of dry ports

    OpenAIRE

    Violeta Roso; Kent Lumsden

    2010-01-01

    The objective of this article is to present the previous research on the dry port concept and to review the world's existing dry ports, that is freight terminals that use the term ‘dry port’ in their name. Therefore, the purpose of this article is to clarify the concept by showing potential discrepancies or agreements between theory and practice. Starting from a literature review on the dry port concept, this article presents a review of existing dry ports in the world. A number of qualitativ...

  19. A Dynamic Design Space for Primary Drying During Batch Freeze-Drying

    DEFF Research Database (Denmark)

    Mortier, Séverine Thérèse F C; Van Bockstal, Pieter Jan; Nopens, Ingmar

    2016-01-01

    Biopharmaceutical products are emerging within the pharmaceutical industry. However, biopharmaceuticals are often unstable in aqueous solution. Freeze-drying (lyophilisation) is the preferred method to achieve a stable product with an increased shelf-life. During batch freeze-drying, there are only...... two adaptable process variables, i.e. the shelf temperature and the pressure in the drying chamber. The value of both should be optimized, preferably in a dynamic way, to minimise the primary drying time while respecting process and equipment constraints and ensuring end product quality. A mechanistic...... model is used to determine the optimal values for the adaptable variables, hereby accounting for the uncertainty in all involved model parameters. A dynamic Design Space was constructed with a risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation. Even for a risk of failure of 0...

  20. Dry eye syndrome

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000426.htm Dry eye syndrome To use the sharing features on this page, ... second-hand smoke exposure Cold or allergy medicines Dry eye can also be caused by: Heat or ... Symptoms may include: Blurred vision Burning, itching, ...

  1. Inflammation in dry eye.

    Science.gov (United States)

    Stern, Michael E; Pflugfelder, Stephen C

    2004-04-01

    Dry eye is a condition of altered tear composition that results from a diseased or dysfunctional lacrimal functional unit. Evidence suggests that inflammation causes structural alterations and/or functional paralysis of the tear-secreting glands. Changes in tear composition resulting from lacrimal dysfunction, increased evaporation and/or poor clearance have pro-inflammatory effects on the ocular surface. This inflammation is responsible in part for the irritation symptoms, ocular surface epithelial disease, and altered corneal epithelial barrier function in dry eye. Anti-inflammatory therapies for dry eye target one or more of the inflammatory mediators/pathways that have been identified in dry eye.

  2. Blood Feeding Status, Gonotrophic Cycle and Survivorship of Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) Caught in Churches from Merida, Yucatan, Mexico.

    Science.gov (United States)

    Baak-Baak, C M; Ulloa-Garcia, A; Cigarroa-Toledo, N; Tzuc Dzul, J C; Machain-Williams, C; Torres-Chable, O M; Navarro, J C; Garcia-Rejon, J E

    2017-12-01

    Blood-feeding status, gonotrophic cycle, and survival rates of Aedes (Stegmyia) aegypti (L.) was investigated in catholic churches from Merida, Yucatan. Female Ae. aegypti were caught using backpack aspirator during 25 consecutive days in rainy (2015) and dry season (2016). Blood-feeding status was determined by external examination of the abdomen and classified as unfed, fed, and gravid. Daily changes in the parous-nulliparous ratio were recorded, and the gonotrophic cycle length was estimated by a time series analysis. Also, was observed the vitellogenesis to monitoring egg maturity. In total, 408 females Ae. aegypti were caught, and there was a significant difference in the number of females collected per season (Z = -6.729, P ≤ 0.05). A great number was caught in the rainy season (n = 329). In the dry season, 79 females were caught, which the fed females were twice greatest than the unfed. The length of gonotrophic cycle was estimated on the base of a high correlation coefficient value appearing every 4 days in rainy at 26.7 ± 1.22°C, and 3 days in dry season at 29.8 ± 1.47°C. The daily survival rate of the Ae. aegypti population was higher in both seasons, 0.94 and 0.93 for the rainy and dry season, respectively. The minimum time estimated for developing mature eggs after blood feeding was similar in both seasons (3.5 days in rainy versus 3.25 days in dry). The measurement of the vectorial capacity of Ae. aegypti in catholic churches could help to understand the dynamics of transmission of arboviruses in sites with high human aggregation.

  3. Antibacterial effect of citrus press-cakes dried by high speed and far-infrared radiation drying methods

    Science.gov (United States)

    Samarakoon, Kalpa; Senevirathne, Mahinda; Lee, Won-Woo; Kim, Young-Tae; Kim, Jae-Il; Oh, Myung-Cheol

    2012-01-01

    In this study, the antibacterial effect was evaluated to determine the benefits of high speed drying (HSD) and far-infrared radiation drying (FIR) compared to the freeze drying (FD) method. Citrus press-cakes (CPCs) are released as a by-product in the citrus processing industry. Previous studies have shown that the HSD and FIR drying methods are much more economical for drying time and mass drying than those of FD, even though FD is the most qualified drying method. The disk diffusion assay was conducted, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with methanol extracts of the dried CPCs against 11 fish and five food-related pathogenic bacteria. The disk diffusion results indicated that the CPCs dried by HSD, FIR, and FD prevented growth of all tested bacteria almost identically. The MIC and MBC results showed a range from 0.5-8.0 mg/mL and 1.0-16.0 mg/mL respectively. Scanning electron microscopy indicated that the extracts changed the morphology of the bacteria cell wall, leading to destruction. These results suggest that CPCs dried by HSD and FIR showed strong antibacterial activity against pathogenic bacteria and are more useful drying methods than that of the classic FD method in CPCs utilization. PMID:22808341

  4. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots

    International Nuclear Information System (INIS)

    Cetinkaya, N.; Ozyardimci, B.; Denli, E.; Ic, E.

    2006-01-01

    The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5-1.0 kGy for disinfestation and 0.5-5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses (∼1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes

  5. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots

    Energy Technology Data Exchange (ETDEWEB)

    Cetinkaya, N. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey)]. E-mail: nurcet@taek.gov.tr; Ozyardimci, B. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey); Denli, E. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey); Ic, E. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey)

    2006-03-15

    The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5-1.0 kGy for disinfestation and 0.5-5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses ({approx}1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes.

  6. Use of Irradiation to Extend the Shelf Life of Dried White Oyster Mushroom (Pleurotus ostreatus)

    International Nuclear Information System (INIS)

    Idrus Kadir

    2010-01-01

    Irradiation is an alternative technology to extend the shelf life of food-stuffs. White oyster mushroom (Pleurotus ostreatus) which is a perishable food stuff having a short shelf life. Effects of gamma irradiation at the dose of 5 kGy on the quality of dried white oyster mushroom during storage was observed. The objective of the experiment was to improve the hygienic quality and to extend the shelf life of dried white oyster mushroom using irradiation technology. Fresh mushroom was cleaned, sorted, washed, and drained. The mushroom was then dried in two ways, namely: sun drying method and electrical oven drying method. Dried mushroom was vacuum packed in polypropylene (PP) pouch then irradiated at a of dose 5 kGy and an unirradiated control was also applied. The vacuum packed samples was stored at low temperature (18-20 o C) with a relative humidity (RH) of 65-70% and observed periodically every month up to 3 months of storage. The samples were analyzed according to the following parameters i.e, : total bacterial count, total mould and yeast count, moisture content, pH, a w , contents of protein, fat, carbohydrate, carotenoid and organoleptic properties, respectively. The results showed that irradiation at the dose of 5 kGy could eliminate significantly microbial growth 2 log cycle in the samples, while there were no changes in physico-chemical and organoleptic properties up to 3 months of storage, while control samples were still acceptable only up to 2 months of storage. (author)

  7. Determination of the most economical drying schedule and air velocity in softwood drying

    Energy Technology Data Exchange (ETDEWEB)

    Salin, J.G.

    2001-12-01

    Simulation models for conventional softwood drying have been available and have also been used by kiln operators for many years. For instance models for Scots pine and Norway spruce, dried at temperatures below about 80 deg C, are in use in Sweden, Finland and Norway. These models predict drying rates as a function of climate (schedule) and air velocity. The models thus give a direct basis for calculation of instantaneous energy demand for moisture evaporation and ventilation. There is further a direct relationship between the air velocity in the space between the board layers in the kiln stack and the electrical power demand by the circulation fans. Finally, the smaller energy consumption associated with heat losses through kiln walls and the accumulated heat in timber etc. can be estimated with sufficient accuracy. Instantaneous energy costs can thus be calculated for each part of a drying schedule. Capital costs associated with kiln investment and maintenance, personnel, insurance etc can be accounted for as an hourly cost, which is basically independent of whether timber is dried fast or slowly. A slow drying process thus accumulates more capital costs per m 3 timber. In this way it is possible to calculate the total instantaneous drying cost (Euro/m{sup 3}/h or Euro/m3/MC%) and the overall total cost (Euro or Euro/m{sup 3}). Some results obtained with a simulation model equipped with such a cost calculation are presented in the paper. A rapidly increasing drying cost is seen when the final MC is lowered. By minimising the instantaneous cost, an optimal drying schedule can be determined for a given fixed air velocity. Finally an optimal air velocity - constant or varying - can be found in the same way.

  8. An Origin of Life in Cycling Hot Spring Pools: Emerging Evidence from Chemistry, Geology and Computational Studies

    Science.gov (United States)

    Deamer, D. W.; Damer, B. F.; Van Kranendonk, M. J.; Djokic, T.

    2017-07-01

    New evidence for an origin of life in a hot spring setting on land is supported by three studies: chemical (polymerization in wet-dry cycles), geological (stromatolites in a 3.48 Ga geothermal field) and computational (verifying the kinetic trap).

  9. Market opportunities for solar drying

    International Nuclear Information System (INIS)

    Voskens, R.G.J.H.; Out, P.G.; Schulte, B.

    2000-01-01

    One of the most promising applications for solar heating is the drying of agricultural products. The drying of agricultural products requires large quantities of low temperature air, in many cases, on a year-round basis. Low cost air-based collectors can provide heated air at solar collection efficiencies of 30 to 70%. In 1998/1999 a study was commissioned to better understand the technical and economic potential for solar drying of agricultural products in the world. The practical potential for solar drying was then determined for 59 crops and 22 regions. The world market for solar drying can be divided into three market segments: 1) mechanical drying T 50 deg. C; 3) sun drying. The most promising market for solar drying is generally market segment 1. For this segment the potential amount of energy displaced by solar is in between 216 770 PJ (World-wide). For Western Europe this potential is estimated between 23 88 PJ and for Eastern Europe between 7 and 13 PJ. A different market introduction strategy is required for each market segment. A total of 13 combinations of crops and regions are selected that appear to have the highest practical potential for solar drying. In the Netherlands a programme of activities was carried out by Ecofys and other organisations, to identify and develop the market potential for solar (assisted) drying of agricultural products. A promotional campaign for the use of renewable energy in the (promising) flower bulb sector is planned on a short-term basis to speed up market developments. It can be concluded that there is a large market for solar drying in the World as well as in Europe. (au)

  10. The secondary drying and the fate of organic solvents for spray dried dispersion drug product.

    Science.gov (United States)

    Hsieh, Daniel S; Yue, Hongfei; Nicholson, Sarah J; Roberts, Daniel; Schild, Richard; Gamble, John F; Lindrud, Mark

    2015-05-01

    To understand the mechanisms of secondary drying of spray-dried dispersion (SDD) drug product and establish a model to describe the fate of organic solvents in such a product. The experimental approach includes characterization of the SDD particles, drying studies of SDD using an integrated weighing balance and mass spectrometer, and the subsequent generation of the drying curve. The theoretical approach includes the establishment of a Fickian diffusion model. The kinetics of solvent removal during secondary drying from the lab scale to a bench scale follows Fickian diffusion model. Excellent agreement is obtained between the experimental data and the prediction from the modeling. The diffusion process is dependent upon temperature. The key to a successful scale up of the secondary drying is to control the drying temperature. The fate of primary solvents including methanol and acetone, and their potential impurity such as benzene can be described by the Fickian diffusion model. A mathematical relationship based upon the ratio of diffusion coefficient was established to predict the benzene concentration from the fate of the primary solvent during the secondary drying process.

  11. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Rafaela da S. A.; Fontes, Gladson S., E-mail: rafaaelaandrade@hotmail.com, E-mail: gsfontes@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Saldanha, Pedro L. C., E-mail: saldanha@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  12. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    International Nuclear Information System (INIS)

    Freitas, Rafaela da S. A.; Fontes, Gladson S.; Saldanha, Pedro L. C.

    2017-01-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  13. The dry and adiabatic fluid cooler as an alternative to cooling towers: an experimental view.

    OpenAIRE

    Lucas Miralles, Manuel; Martínez Beltrán, Pedro Juan; Ruiz Ramírez, Javier; Sánchez Kaiser, Antonio; Zamora Parra, Blas; Viedma Robles, Antonio

    2011-01-01

    Energy and environmental implications of a refrigeration cycle are largely conditioned by the choice of condensing system. Conventional solutions transfer heat to water, and recirculated through cooling towers or to atmospheric air through a dry condenser. While the use of cooling towers means less energy consumption due to lower pressure in the condenser, a number of environmental implications are questioning their installation. Mainly, it represents an emission of chemicals or microorganism...

  14. The antisickling effects of dried fish (tilapia) And dried prawn ...

    African Journals Online (AJOL)

    The antisickling effect of dried fish (Tilapia) and dried prawn (Astacus red) were investigated to ascertain the ability of the extracts of these samples to inhibit polymerisation of sickle cell haemoglobin (HbS), improve the Fe 2+/Fe 3+ ratio and lower the activity of lactate dehydrogenase (LDH) in blood plasma. The samples ...

  15. Dry Mouth (Xerostomia)

    Science.gov (United States)

    ... mouth Trouble chewing, swallowing, tasting, or speaking A burning feeling in the mouth A dry feeling in the throat Cracked lips ... Food and Drug Administration provides information on dry mouth and offers advice for ... Syndrome Clinic NIDCR Sjogren’s Syndrome Clinic develops new therapies ...

  16. Drying of Agricultural Products Using Long Wave Infrared Radiation(Part 2). Drying of Welsh Onion

    International Nuclear Information System (INIS)

    Itoh, K.; Han, C.S.

    1995-01-01

    The investigation was carried out to clarify the intermittent drying characteristics for welsh onion use of long-wave infrared radiation. When compared with two other methods: use of air and vacuum freezing, this method showed significantly high rate of drying. The experiments were carried out analyzing the influence of different lengths of the welsh onion, different rate of radiation and different temperature of the airflow. The obtained results were as follows: 1. The rate of drying increases as the length of welsh onion decrease and the rate of radiation increase. 2. The airflow, temperature does not influence to the rate of drying. 3. The increasing of the drying time considerably aggravate the quality the dried welsh onion

  17. The Effect of Temperature and Drying Method on Drying Time and Color Quality of Mint

    Directory of Open Access Journals (Sweden)

    H Bahmanpour

    2017-10-01

    Full Text Available Introduction Mint (Mentha spicata L. cbelongs to the Lamiaceae family, is an herbaceous, perennial, aromatic and medicinal plant that cultivated for its essential oils and spices. Since the essential oil is extracted from dried plant, choosing the appropriate drying method is essential for gaining high quality essential oil.Vacuum drying technology is an alternative to conventional drying methods and reported by many authors as an efficient method for improving the drying quality especially color characteristics. On the other side, solar dryers are also useful for saving time and energy. In this study the effect of two method of dryings including vacuum-infrared versus solar at three different conventional temperatures (30, 40 and 50°C on mint plant is evaluated while factorial experiment with randomized complete block is applied. Drying time as well as color characteristics areconsidered for evaluation of each method of drying. Materials and Methods Factorial experiment with randomized complete block was applied in order to evaluate the effect of drying methods (vacuum-infrared versus solar and temperature (30, 40 and 50°C on drying time and color characteristics of mint. The initially moisture content of mint leaves measured according to the standard ASABE S358.2 during 24 hours inside an oven at 104 °C. Drying the samples continued until the moisture content (which real time measured reached to 10% wet basis. The components of a vacuum dryer consisted of a cylindrical vacuum chamber (0.335 m3 and a vacuum pump (piston version. The temperature of the chamber was controlled using three infrared bulbs using on-off controller. Temperature and weight of the products registered real time using a data acquisition system. The components of a solar dryer were consisting of a solar collector and a temperature control system which was turning the exhaust fan on and off in order to maintain the specific temperature. A date acquisition system was

  18. Dry Bean Morpho-Physiological Responses to Gradual Weed Biomass Accumulation

    Directory of Open Access Journals (Sweden)

    Hossein GHAMARI

    2013-02-01

    Full Text Available Field study was carried out in 2011 in west of Iran to assess responses of dry bean (Phaseolus vulgaris L. morpho-physiological traits to gradual weed biomass accumulation. The treatments consisted of two different periods of weed interference, which weeds either infested the plots or removed for an increasing duration of time (0, 10, 20, 30, 40, 50 days after crop emergence. Relative dominance and relative importance of weed species fluctuated over the crop cycle. As the duration of weed interference was increased, a declining trend of crop growth rate (CGR was observed. When weeds were allowed to compete with crop throughout the crop cycle, maximum value of CGR was decreased from 25.57 g m-2 days in full season weed free treatment to 16.78 g m-2 days in full season weed infested treatment. Effect of treatments on leaf area index (LAI was significant. Weed removal increased LAI but it could not significantly affect this trait, at the early of growing season. Weed interference caused a significant reduction on number of branches. The minimum number of branches was registered in full season weed infested treatment (2.58 branches per plant, while the maximum one was observed in the full season weed free treatment (4.25 branches per plant. Weed competition severely reduced crop yield. At 10 and 20 days after crop emergence, weed infestation could not significantly affect the yield. A negative relationship between weeds’ dry matter accumulation and LAI as well as number of branches was observed which signify the vulnerability of these morpho-physiological traits to weed competition.

  19. Model-based optimization of the primary drying step during freeze-drying

    DEFF Research Database (Denmark)

    Mortier, Séverine Thérèse F.C.; Van Bockstal, Pieter-Jan; Nopens, Ingmar

    2015-01-01

    Since large molecules are considered the key driver for growth of the pharmaceutical industry, the focus of the pharmaceutical industry is shifting from small molecules to biopharmaceuticals: around 50% of the approved biopharmaceuticals are freeze-dried products. Therefore, freeze- drying is an ...

  20. Psychrophilic dry anaerobic digestion of dairy cow feces: Long-term operation

    Energy Technology Data Exchange (ETDEWEB)

    Massé, Daniel I., E-mail: Daniel.masse@agr.gc.ca; Cata Saady, Noori M.

    2015-02-15

    Highlights: • Psychrophilic dry anaerobic digestion (PDAD) of cow feces (CF) is feasible. • PDAD of CF is as efficient as mesophilic and thermophilic AD at TCL 21 days. • CF (13–16% TS at OLR 5.0 g TCOD{sub fed} kg{sup −1} inoculum d{sup −1}) yielded 222 ± 27 {sub N}L CH{sub 4} kg{sup −1} VS fed. - Abstract: This paper reports experimental results which demonstrate psychrophilic dry anaerobic digestion of cow feces during long-term operation in sequence batch reactor. Cow feces (13–16% total solids) has been anaerobically digested in 12 successive cycles (252 days) at 21 days treatment cycle length (TCL) and temperature of 20 °C using psychrotrophic anaerobic mixed culture. An average specific methane yield (SMY) of 184.9 ± 24.0, 189.9 ± 27.3, and 222 ± 27.7 {sub N}L CH{sub 4} kg{sup −1} of VS fed has been achieved at an organic loading rate of 3.0, 4.0, and 5.0 g TCOD kg{sup −1} inoculum d{sup −1} and TCL of 21 days, respectively. The corresponding substrate to inoculum ratio (SIR) was 0.39 ± 0.06, 0.48 ± .02, 0.53 ± 0.05, respectively. Average methane production rate of 10 ± 1.4 {sub N}L CH{sub 4} kg{sup −1} VS fed d{sup −1} has been obtained. The low concentration of volatile fatty acids indicated that hydrolysis was the reaction limiting step.

  1. Thermo-economic analysis and selection of working fluid for solar organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Concentrating solar power plant with organic Rankine cycle. • Thermo-economic analysis of solar organic Rankine cycle. • Performance evaluation for different working fluids. • Comparison diagram to select appropriate working fluid. - Graphical Abstract: Display Omitted - Abstract: Organic Rankine cycle (ORC), powered by line-focusing concentrating solar collectors (parabolic trough collector and linear Fresnel reflector), is a promising option for modular scale. ORC based power block, with dry working fluids, offers higher design and part-load efficiencies compared to steam Rankine cycle (SRC) in small-medium scale, with temperature sources up to 400 °C. However, the cost of ORC power block is higher compared to the SRC power block. Similarly, parabolic trough collector (PTC) system has higher optical efficiency and higher cost compared to linear Fresnel reflector (LFR) system. The thermodynamic efficiencies and power block costs also vary with working fluids of the Rankine cycle. In this paper, thermo-economic comparisons of organic Rankine and steam Rankine cycles powered by line-focusing concentrating solar collectors are reported. A simple selection methodology, based on thermo-economic analysis, and a comparison diagram for working fluids of power generating cycles are also proposed. Concentrating solar power plants with any collector technology and any power generating cycle can be compared using the proposed methodology.

  2. Scalable organic solvent free supercritical fluid spray drying process for producing dry protein formulations.

    Science.gov (United States)

    Nuchuchua, O; Every, H A; Hofland, G W; Jiskoot, W

    2014-11-01

    In this study, we evaluated the influence of supercritical carbon dioxide (scCO2) spray drying conditions, in the absence of organic solvent, on the ability to produce dry protein/trehalose formulations at 1:10 and 1:4 (w/w) ratios. When using a 4L drying vessel, we found that decreasing the solution flow rate and solution volume, or increasing the scCO2 flow rate resulted in a significant reduction in the residual water content in dried products (Karl Fischer titration). The best conditions were then used to evaluate the ability to scale the scCO2 spray drying process from 4L to 10L chamber. The ratio of scCO2 and solution flow rate was kept constant. The products on both scales exhibited similar residual moisture contents, particle morphologies (SEM), and glass transition temperatures (DSC). After reconstitution, the lysozyme activity (enzymatic assay) and structure (circular dichroism, HP-SEC) were fully preserved, but the sub-visible particle content was slightly increased (flow imaging microscopy, nanoparticle tracking analysis). Furthermore, the drying condition was applicable to other proteins resulting in products of similar quality as the lysozyme formulations. In conclusion, we established scCO2 spray drying processing conditions for protein formulations without an organic solvent that holds promise for the industrial production of dry protein formulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The influence of the dried blood spot drying time on the recoveries of six immunosuppressants

    Directory of Open Access Journals (Sweden)

    Remco A. Koster

    2015-10-01

    Full Text Available Investigation of the drying time of dried blood spots (DBS is currently not included in DBS validations. The influence of the DBS drying time on the recovery of tacrolimus, ascomycin, sirolimus, everolimus, cyclosporin A and temsirolimus was evaluated by measuring DBS with a fixed blood volume at a hematocrit range between 0.1 and 0.6 L/L at 3, 24 and 48 hours of drying time. Results showed that the recovery of sirolimus, everolimus, temsirolimus and cyclosporin A was influenced by the DBS drying time, while the recovery of tacrolimus and ascomycin was not. A drying time of at least 24 hours is advised in order to stabilize hematocrit and concentration related recovery effects of sirolimus, everolimus, temsirolimus and cyclosporin A.

  4. Spray Drying of Honey: The Effect of Drying Agents on Powder Properties

    Directory of Open Access Journals (Sweden)

    Samborska Katarzyna

    2015-06-01

    Full Text Available The aim of this study was to investigate the possibility of honey spray drying with addition of maltodextrin and gum Arabic as drying agents. The influence of the concentration of the solution subjected to drying, the type and content of the drying agents upon the physical properties of obtained powders was examined. An attempt was undertaken to obtain powder with a honey content of more than 50% d.b. Spray drying of multifloral honey with the addition of maltodextrin and gum Arabic was carried out at inlet air temperature of 180°C, feed rate of 1 mL/s and rotational speed of a disc atomizer of 39,000 rpm. The properties of obtained powders were quantified in terms of moisture content, bulk density, Hausner ratio, apparent density, hygroscopicity and wettability. Using gum Arabic it was possible to obtain a product with a higher content of honey (67% solids than in the case of maltodextrin (50% d.b.. However, the powders obtained with gum Arabic were characterised by worse physical properties: higher hygroscopicity and cohesion, and longer wetting time.

  5. Results on Technical and Consultants Service Meetings on Lessons Learned from Operating Experience in Wet and Dry Spent Fuel Storage

    International Nuclear Information System (INIS)

    White, B.; Zou, X.

    2015-01-01

    Spent fuel storage has been and will continue to be a vital portion of the nuclear fuel cycle, regardless of whether a member state has an open or closed nuclear fuel cycle. After removal from the reactor core, spent fuel cools in the spent fuel pool, prior to placement in dry storage or offsite transport for disposal or reprocessing. Additionally, the inventory of spent fuel at many reactors worldwide has or will reach the storage capacity of the spent fuel pool; some facilities are alleviating their need for additional storage capacity by utilizing dry cask storage. While there are numerous differences between wet and dry storage; when done properly both are safe and secure. The nuclear community shares lessons learned worldwide to gain knowledge from one another’s good practices as well as events. Sharing these experiences should minimize the number of incidents worldwide and increase public confidence in the nuclear industry. Over the past 60 years, there have been numerous experiences storing spent fuel, in both wet and dry mediums, that when shared effectively would improve operations and minimize events. These lessons learned will also serve to inform countries, who are new entrants into the nuclear power community, on designs and operations to avoid and include as best practices. The International Atomic Energy Agency convened a technical and several consultants’ meetings to gather these experiences and produce a technical document (TECDOC) to share spent fuel storage lessons learned among member states. This paper will discuss the status of the TECDOC and briefly discuss some lessons learned contained therein. (author)

  6. Drying and heat decomposition of biomass during the production of biochar

    Science.gov (United States)

    Lyubov, V. K.; Popova, E. I.

    2017-11-01

    The process of wood torrefaction provides an opportunity to combine properties of biofuel and steam coal. Different degrees of biofuel heat treating leads to varied outcomes and varied biochar heating value. Therefore, the torrefaction process requires optimal operation that ensures the highest heating value of biochar with the lowest energy loss. In this paper we present the experimental results of drying cycle and thermal decomposition of particles of spruce stem wood and hydrolytic lignin in argon under various temperature conditions and basic material humidity as well as changes in the morphological structure of the biomass and its grain size composition during the torrefaction.

  7. Modeling of convective drying kinetics of Pistachio kernels in a fixed bed drying system

    Directory of Open Access Journals (Sweden)

    Balbay Asım

    2013-01-01

    Full Text Available Drying kinetics of Pistachio kernels (PKs with initial moisture content of 32.4% (w.b was investigated as a function of drying conditions in a fixed bed drying system. The drying experiments were carried out at different temperatures of drying air (40, 60 and 80°C and air velocities (0.05, 0.075 and 0.1 m/s. Several experiments were performed in terms of mass of PKs (15g and 30g using a constant air velocity of 0.075 m/s. The fit quality of models was evaluated using the determination coefficient (R2, sum square error (SSE and root mean square error (RMSE. Among the selected models, the Midilli et al model was found to be the best models for describing the drying behavior of PKs. The activation energies were calculated as 29.2 kJ/mol and effective diffusivity values were calculated between 1.38 and 4.94x10-10 m2/s depending on air temperatures.

  8. Solar drying of uruguayan red gum

    Directory of Open Access Journals (Sweden)

    Andrés Ono

    2011-04-01

    Full Text Available he use of solar energy as an alternative to non-renewable energy sources has been widely researched in the last decades. Compared to air drying, solar drying kilns can better control the drying process, resulting in a higher quality of the dry wood and lower final wood moisture content values. Investment and running costs for a solar drying kiln are lower than those of a conventional kiln. Moreover, the solar drying process can be advantageous for drying hardwoods which are traditionally considered difficult to dry such as eucalyptus wood of medium and high density (Red gums, known in Spanish as “Eucaliptos colorados”. The solar drying kiln naturally incorporates a daily high relative humidity period that can be similar to a conditioning or steaming step, although at a lower temperature.This results in fewer defects due to the drying process.A pilot scale 2.5 m3 semi-greenhouse type solar wood drying kiln was constructed at LATU (Uruguay Technological Laboratory in Montevideo, Uruguay. The operating conditions and the results from two drying runs are presented. Two species of red gum (Eucalyptus tereticornis Sm., ADD 870 kg/m3, and Eucalyptus camaldulensis Dehnh., ADD 800 kg/m3 were dried from initial average moisture contents (WMC of around 60% down to 10.0% and 12.7% in 108 days and 76 days, respectively. Boards were provided by the Grupo Forestal San Gregorio from trees harvested at Tacuarembo and Paysandu Departments from cattle shelter forests 60 and 70 years old.Mean volume shrinkage was 18% for E. tereticornis, and 16% for E. camaldulensis, and the level of defects was moderate. Residual stresses and moisture content gradients were observed for both species. Final moisture content values were similar compared to those obtained in conventional drying kilns but with longer drying periods and lower operating costs. This would make the solar drying process attractive to small and medium sized forest products industries in a small country

  9. Effect of drying conditions on drying kinetics and quality of aromatic Pandanus amaryllifolius leaves

    OpenAIRE

    Rayaguru, Kalpana; Routray, Winny

    2010-01-01

    Pandanus amaryllifolius is a plant with aromatic leaves, which impart the characteristic flavour of aromatic rice. The quality of aromatic Pandanus leaves dried at low temperature (35 °C) and low RH (27%) in a heat pump dryer was evaluated and compared with those obtained from hot air drying at 45 °C. Thin-layer drying kinetics has been studied for both the conditions. To determine the kinetic parameters, the drying data were fitted to various semi-theoretical models. The goodness of fit was ...

  10. COMPARISON BETWEEN WOOD DRYING DEFECT SCORES: SPECIMEN TESTING X ANALYSIS OF KILN-DRIED BOARDS

    OpenAIRE

    Djeison Cesar Batista; Márcio Pereira da Rocha; Ricardo Jorge Klitzke

    2015-01-01

    It is important to develop drying technologies for Eucalyptus grandis lumber, which is one of the most planted species of this genus in Brazil and plays an important role as raw material for the wood industry. The general aim of this work was to assess the conventional kiln drying of juvenile wood of three clones of Eucalyptus grandis. The specific aims were to compare the behavior between: i) drying defects indicated by tests with wood specimens and conventional kiln-dried boards; and ii) ph...

  11. Semi-Dried Fruits and Vegetables

    Directory of Open Access Journals (Sweden)

    Gamze Uysal Seçkin

    2015-12-01

    Full Text Available Since ancient times, the preservation of fruit and vegetables is an ancient method of drying. Sun drying method has been used more widely. In general, consumer-ready products are dried fruits, while the dried vegetables are the foods subjected to the rehydration processes such as boiling, heating and baking before consumption. In recent years, new products with high eating quality have been attempted to achieve without losing characteristic of raw material. With the improving of food technology, using developed methods (pH reduction with reducing aw, slight heating, preservatives use etc. as protective agent, and using a combination of a low rate as an alternative to traditional food preservation process, products have been obtained without changing original characteristics of food. ‘Semi-dried 'or 'medium moist 'products with little difference between the taste and texture of the product with a damp have gained importance in recent years in terms of consumer preferences. Vegetables or fruits, which have water activity levels between 0.50 and 0.95 and the moisture content of between 26% and 60%, are called 'medium moist fruit or vegetables'. Two different manufacturing process to obtain a semi-dried or intermediate moisture products are applied. First, fully dried fruits and vegetables to be rehydrated with water are brought to the desired level of their moisture content. Second, in the first drying process, when the product moisture content is reduced to the desired level, the drying process is finished. The semi-dried products are preferred by consumers because they have a softer texture in terms of eating quality and like fresh products texture.

  12. Investigation of influence of drying agent movement on the drying process effectiveness in the gravitational shelf dryer

    Directory of Open Access Journals (Sweden)

    N. O. Artyukhova

    2017-12-01

    Full Text Available The article stands for a research of the drying process efficiency of various approaches of reciprocal movement organization of drying agent and disperse material. It focuses on the results of shelf dryer investigation. The test condition was as follows: backflow of the drying agent and disperse material movement; backflow of the drying agent and disperse material movement with the drying agent recirculation; backflow of the drying agent and disperse material movement with the bypassing of drying agent and it’s putting on separate stage of gravitational shelf dryer. The influence of the drying agent movement organization on the characteristics of disperse material and drying agent, energy costs for this process and its efficiency is shown. The recommendations of usage of represented approaches of flows movement organization depending on the desired final moisture of the material as well as its physical and chemical properties are given. The proposed ways of reciprocal flows movement organization allow to reduce the costs of drying agent heating or to increase the efficiency of moisture removal at constant energy consumption.

  13. Drying of restructured chips made from the old stalks of Asparagus officinalis: impact of different drying methods.

    Science.gov (United States)

    Liu, Zhenbin; Zhang, Min; Wang, Yuchuan

    2016-06-01

    Old stalks of Asparagus officinalis, which account for one third of the total length of each spear, are always discarded as waste. To make full use of the resource, a kind of restructured Asparagus officinalis chip was made. The effects of pulse-spouted microwave-assisted vacuum drying (PSMVD), microwave-assisted vacuum drying (MVD) and vacuum drying (VD) on texture, color and other quality parameters of restructured chips were then studied to obtain high-quality dried chips. Results indicated that the drying time was significantly affected by drying methods, and PSMVD had much better drying uniformity than MVD. The expansion ratio and crispness of chips increased with increasing microwave power and vacuum degree. The browning reaction of samples in VD was more serious, which was confirmed by the results of color test and electronic nose. The PSMVD drying method showed much better drying uniformity than MVD. The dried chips obtained by PSMVD showed optimal quality and were more readily accepted by consumers. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Nitrous oxide fluxes and nitrogen cycling along a pasturechronosequence in Central Amazonia, Brazil

    Science.gov (United States)

    B. Wick; E. Veldkamp; W. Z. de Mello; M. Keller; P. Crill

    2005-01-01

    We studied nitrous oxide (N2O) fluxes and soil nitrogen (N) cycling following forest conversion to pasture in the central Amazon near Santarém, Pará, Brazil. Two undisturbed forest sites and 27 pasture sites of 0.5 to 60 years were sampled once each during wet and dry seasons. In addition to soil-atmosphere fluxes of N...

  15. Impingement drying for preparing dried apple pomace flour and its fortification in bakery and meat products.

    Science.gov (United States)

    Jung, Jooyeoun; Cavender, George; Zhao, Yanyun

    2015-09-01

    This study aimed to evaluate impingement drying (ID) as a rapid drying method to dry wet apple pomace (WAP) and to investigate the fortification of dried apple pomace flour (APF) or WAP in bakery and meat products. ID at ~110 °C reduced the moisture content of apple pomace from 80 % (wet basis) to 4.5 % within 3 h, compared with 24 h to 2.2 % using 40 °C forced-air drying and ~60 h to 2.3 % using freeze drying. Furthermore, ID enhanced the extractable phenolic compounds, allowing for a 58 % increase in total phenolic content (TPC) compared with wet pomace, a 110 % and 83 % higher than TPC in forced-air dried and freeze dried samples, respectively. The 15-20 % APF-fortified cookies were found to be ~44-59 % softer, ~30 % more chewy, and ~14 % moister than those of the control. WAP-fortified meat products had significantly higher dietary fiber content (0.7-1.8 % vs. 0.1-0.2 % in control) and radical scavenging activity than that of the control. These results suggest that impingement drying is a fast and effective method for preparing dried APF with highly retained bioactive compounds, and apple pomace fortified products maintained or even had improved quality.

  16. GCM simulations of cold dry Snowball Earth atmospheres

    Science.gov (United States)

    Voigt, A.; Held, I.; Marotzke, J.

    2009-12-01

    We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We

  17. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    Science.gov (United States)

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Application of high pressure processing to reduce verotoxigenic E. coli in two types of dry-fermented sausage.

    Science.gov (United States)

    Omer, M K; Alvseike, O; Holck, A; Axelsson, L; Prieto, M; Skjerve, E; Heir, E

    2010-12-01

    The effect of high pressure processing (HPP) on the survival of verotoxigenic Escherichia coli (VTEC) in two types of Norwegian type dry-fermented sausages was studied. Two different types of recipes for each sausage type were produced. The sausage batter was inoculated with 6.8 log(10) CFU/g of VTEC O103:H25. After fermentation, drying and maturation, slices of finished sausages were vacuum packed and subjected to two treatment regimes of HPP. One group was treated at 600 MPa for 10 min and another at three cycles of 600 MPa for 200 s per cycle. A generalized linear model split by recipe type showed that these two HPP treatments on standard recipe sausages reduced E. coli by 2.9 log(10) CFU/g and 3.3 log(10) CFU/g, respectively. In the recipe with higher levels of dextrose, sodium chloride and sodium nitrite E. coli reduction was 2.7 log(10) CFU/g in both treatments. The data show that HPP has a potential to make the sausages safer and also that the effect depends somewhat on recipe. Copyright © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  19. Interferometric measurements of dry mass content in nuclei and cytoplasm in the life cycle of antheridial filaments cells of Chara vulgaris L. in their successive developmental stages

    Directory of Open Access Journals (Sweden)

    Hanna Kuran

    2015-01-01

    Full Text Available Interferometric measurements of the nucleus and cytoplasm dry mass during interphase in the successive stages of development of antheridial filaments of Chara vulgaris demonstrated that the dry mass and surface area of cell nuclei double in size in each of the successive generations of the filaments, whereas neither the surface nor the dry mass of the cytoplasm increase in such proportion in the same period. In the successive stages of development of the antheridial filaments the dry mass and surface area of the nuclei and cytoplasm gradually diminish.

  20. Effects of open-air sun drying and pre-treatment on drying characteristics of purslane ( Portulaca oleracea L.)

    Science.gov (United States)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2015-06-01

    Effects of open-air sun drying and pre-treatment on drying characteristic of purslanes ( Portulaca oleracea L.) were investigated. Drying times were determined as 31, 24 and 9 h for natural, salted and blanched, respectively. The higher "L" value and lower "-a/b" ratio values were obtained in natural dried purslane. The Aghbashlo et al. model gave a better fit to drying data.

  1. Designing CAF-adjuvanted dry powder vaccines: Spray drying preserves the adjuvant activity of CAF01

    DEFF Research Database (Denmark)

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis

    2013-01-01

    spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol...... parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray...... drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome...

  2. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui

    2010-02-16

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  3. Stretchable, Adhesion-Tunable Dry Adhesive by Surface Wrinkling

    KAUST Repository

    Jeong, Hoon Eui; Kwak, Moon Kyu; Suh, Kahp Y.

    2010-01-01

    We introduce a simple yet robust method of fabricating a stretchable, adhesion-tunable dry adhesive by combining replica molding and surface wrinkling. By utilizing a thin, wrinkled polydimethyl siloxane (PDMS) sheet with a thickness of 1 mm with built-in micropillars, active, dynamic control of normal and shear adhesion was achieved. Relatively strong normal (∼10.8 N/cm2) and shear adhesion (∼14.7 N/cm2) forces could be obtained for a fully extended (strained) PDMS sheet (prestrain of∼3%), whereas the forces could be rapidly reduced to nearly zero once the prestrain was released (prestrain of ∼0.5%). Moreover, durability tests demonstrated that the adhesion strength in both the normal and shear directions was maintained over more than 100 cycles of attachment and detachment. © 2010 American Chemical Society.

  4. Drying results of K-Basin fuel element 3128W (run 2)

    International Nuclear Information System (INIS)

    Abrefah, J.; Klinger, G.S.; Oliver, B.M.; Marshman, S.C.; MacFarlan, P.J.; Ritter, G.A.; Flament, T.A.

    1998-07-01

    An N-Reactor outer fuel element that had been stored underwater in the Hanford 100 Area K-East Basin was subjected to a combination of low- and high-temperature vacuum drying treatments. These studies are part of a series of tests being conducted by Pacific Northwest National Laboratory on the drying behavior of N-Reactor spent nuclear fuel elements removed from both the K-West and K-East Basins. The drying test series was designed to test fuel elements that ranged from intact to severely damaged. The fuel element discussed in this report was removed from an open K-East canister (3128W) during the first fuel selection campaign conducted in 1995, and has remained in wet storage in the Postirradiation Testing Laboratory (PTL, 327 Building) since that time. Although it was judged to be breached during in-basin (i.e., K-Basin) examinations, visual inspection of this fuel element in the hot cell indicated that it was likely intact. Some scratches on the coating covering the cladding were identified before the furnace test. The drying test was conducted in the Whole Element Furnace Testing System located in G-Cell within the PTL. This test system is composed of three basic systems: the in-cell furnace equipment, the system gas loop, and the analytical instrument package. Element 3128W was subjected to the drying processes based on those proposed under the Integrated Process Strategy, which included a hot drying step. Results of the Pressure Rise and Gas Evolution Tests suggest that most of the free water in the system was released during the extended CVD cycle (68 hr versus 8 hr for the first run). An additional ∼0.34 g of water was released during the subsequent HVD phase, characterized by multiple water release peaks, with a principle peak at ∼180 C. This additional water is attributed to decomposition of a uranium hydrate (UO 4 ·4H 2 O/UO 4 ·2H 2 O) coating that was observed to be covering the surface of the fuel element to a thickness of ∼1.6 mg/cm 2 . A

  5. Performance analysis of an Integrated Solar Combined Cycle using Direct Steam Generation in parabolic trough collectors

    International Nuclear Information System (INIS)

    Montes, M.J.; Rovira, A.; Munoz, M.; Martinez-Val, J.M.

    2011-01-01

    Highlights: → Solar hybridization improves the performance of CCGT in a very hot and dry weather. → The scheme analyzed is a DSG parabolic trough field coupled to the Rankine cycle. → An annual simulation has been carried out for two locations: Almeria and Las Vegas. → Economical analysis shows that this scheme is a cheaper way to exploit solar energy. → For that, solar hybridization must be limited to a small fraction of the CCGT power. - Abstract: The contribution of solar thermal power to improve the performance of gas-fired combined cycles in very hot and dry environmental conditions is analyzed in this work, in order to assess the potential of this technique, and to feature Direct Steam Generation (DSG) as a well suited candidate for achieving very good results in this quest. The particular Integrated Solar Combined Cycle (ISCC) power plant proposed consists of a DSG parabolic trough field coupled to the bottoming steam cycle of a Combined Cycle Gas Turbine (CCGT) power plant. For this analysis, the solar thermal power plant performs in a solar dispatching mode: the gas turbine always operates at full load, only depending on ambient conditions, whereas the steam turbine is somewhat boosted to accommodate the thermal hybridization from the solar field. Although the analysis is aimed to studying such complementary effects in the widest perspective, two relevant examples are given, corresponding to two well-known sites: Almeria (Spain), with a mediterranean climate, and Las Vegas (USA), with a hot and dry climate. The annual simulations show that, although the conventional CCGT power plant works worse in Las Vegas, owing to the higher temperatures, the ISCC system operates better in Las Vegas than in Almeria, because of solar hybridization is especially well coupled to the CCGT power plant in the frequent days with great solar radiation and high temperatures in Las Vegas. The complementary effect will be clearly seen in these cases, because the thermal

  6. Absorption heat cycles. An experimental and theoretical study

    International Nuclear Information System (INIS)

    Abrahamsson, K.

    1993-09-01

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  7. Energy systems. Tome 3: advanced cycles, low environmental impact innovative systems

    International Nuclear Information System (INIS)

    Gicquel, R.

    2009-01-01

    This third tome about energy systems completes the two previous ones by showing up advanced thermodynamical cycles, in particular having a low environmental impact, and by dealing with two other questions linked with the study of systems with a changing regime operation: - the time management of energy, with the use of thermal and pneumatic storage systems and time simulation (schedule for instance) of systems (solar energy type in particular); - the technological dimensioning and non-nominal regime operation studies. Because this last topic is particularly complex, new functionalities have been implemented mainly by using the external classes mechanism, which allows the user to freely personalize his models. This tome is illustrated with about 50 examples of cycles modelled with Thermoptim software. Content: foreword; 1 - generic external classes; 2 - advanced gas turbine cycles; 3 - evaporation-concentration, mechanical steam compression, desalination, hot gas drying; 4 - cryogenic cycles; 5 - electrochemical converters; 6 - global warming, CO 2 capture and sequestration; 7 - future nuclear reactors (coupled to Hirn and Brayton cycles); 8 - thermodynamic solar cycles; 10 - pneumatic and thermal storage; 11 - calculation of thermodynamic solar facilities; 12 - problem of technological dimensioning and non-nominal regime; 13 - exchangers modeling and parameterizing for the dimensioning and the non-nominal regime; 14 - modeling and parameterizing of volumetric compressors; 15 - modeling and parameterizing of turbo-compressors and turbines; 16 - identification methodology of component parameters; 17 - case studies. (J.S.)

  8. Hibiscus sabdariffa L extract drying with different carrier agent: Drying rate evaluation and color analysis

    Science.gov (United States)

    Djaeni, M.; Utari, F. D.; Kumoro, A. C.

    2017-03-01

    The aim of this study was to investigate the effect of different carrier agents on roselle or Hibiscus sabdariffa L.extract drying. Carrier agent was used for reducing stickiness of material and avoiding agglomeration as well as improving stability. The method consisted of two steps involving roselle extraction and drying process. The liquid roselle extract was mixed with carrier agent (maltodextrin-arabic gum) in various composition. The mixture was then dried at different air temperature ranging 40 - 80°C. As a response, moisture content in the extract was observed by gravimetry every 10 minutes during90 minutes. The procedurewas repeated for the drying without carrieragent. The result showed that constant rate of drying with carrier agent was higher up to l.7 times than that of without carrier agent. Based on the color analysis,roselle extract drying with carrier agent also showed reasonable quality.

  9. Investigation Of Infrared Drying Behaviour Of Spinach Leaves Using ANN Methodology And Dried Product Quality

    Directory of Open Access Journals (Sweden)

    Sarimeseli Ayse

    2015-12-01

    Full Text Available Effects of infrared power output and sample mass on drying behaviour, colour parameters, ascorbic acid degradation, rehydration characteristics and some sensory scores of spinach leaves were investigated. Within both of the range of the infrared power outputs, 300–500 W, and sample amounts, 15–60 g, moisture content of the leaves was reduced from 6.0 to 0.1±(0.01 kg water/kg dry base value. It was recorded that drying times of the spinach leaves varied between 3.5–10 min for constant sample amount, and 4–16.5 min for constant power output. Experimental drying data obtained were successfully investigated by using artificial neural network methodology. Some changes were recorded in the quality parameters of the dried leaves, and acceptable sensory scores for the dried leaves were observed in all of the experimental conditions.

  10. Comparative study of two drying techniques used in radioactive source preparation: Freeze-drying and evaporation using hot dry nitrogen jets

    International Nuclear Information System (INIS)

    Branger, T.; Bobin, C.; Iroulart, M.-G.; Lepy, M.-C.; Le Garreres, I.; Morelli, S.; Lacour, D.; Plagnard, J.

    2008-01-01

    Quantitative solid sources are used widely in the field of radionuclide metrology. With the aim to improve the detection efficiency for electrons and x-rays, a comparative study between two source drying techniques has been undertaken at LNE-Laboratoire National Henri Becquerel (LNE-LNHB, France). In this paper, freeze-drying using commercial equipment is compared with a system of drying using hot jets of nitrogen developed at Institute for Reference Materials and Measurements (IRMM, Belgium). In order to characterize the influence of self-absorption, the detection efficiencies for 51 Cr sources have been measured by coincidence counting and photon spectrometry

  11. CANDU fuel cycle options in Korea

    International Nuclear Information System (INIS)

    Boczar, P. G.; Fehrenbach, P. J.; Meneley, D. A.

    1996-01-01

    There are many reasons for countries embarking on a CANDU R program to start with the natural uranium fuel cycle. Simplicity of fuel design, ease of fabrication, and ready availability of natural uranium all help to localize the technology and to reduce reliance on foreign technology. Nonetheless, at some point, the incentives for using natural uranium fuel may be outweighed by the advantages of alternate fuel cycles. The excellent neutron economy, on-line refuelling, and simple fuel-bundle design provide an unsurpassed degree of fuel-cycle flexibility in CANDU reactors. The easiest first step in CANDU fuel-cycle evolution may be the use of slightly enriched uranium (SEU), including recovered uranium from reprocessed LWR spent fuel. Relatively low enrichment (up to 1.2%) will result in a two- to three-fold reduction in the quantity of spent fuel per unit energy production, reductions in fuel-cycle costs, and greater flexibility in the design of new reactors. The CANFLEX (CANDU FLEXible) fuel bundle would be the optimal fuel carrier. A country that has both CANDU and PWR reactors can exploit the natural synergism between these two reactor types to minimize overall waste production, and maximize energy derived from the fuel. This synergism can be exploited through several different fuel cycles. A high burnup CANDU MOX fuel design could be used to utilize plutonium from conventional reprocessing or more advanced reprocessing options (such as co-processing). DUPIC (Direct Use of Spent PWR Fuel In CANDU) represents a recycle option that has a higher degree of proliferation resistance than dose conventional reprocessing, since it uses only dry processes for converting spent PWR fuel into CANDU fuel, without separating the plutonium. Good progress is being made in the current KAERI, AECL, and U. S. Department of State program in demonstrating the technical feasibility of DUPIC. In the longer term, CANDU reactors offer even more dramatic synergistic fuel cycles with PWR or

  12. Excessive Afforestation and Soil Drying on China's Loess Plateau

    Science.gov (United States)

    Zhang, Shuilei; Yang, Dawen; Yang, Yuting; Piao, Shilong; Yang, Hanbo; Lei, Huimin; Fu, Bojie

    2018-03-01

    Afforestation and deforestation as human disturbances to vegetation have profound impacts on ecohydrological processes influencing both water and carbon cycles and ecosystem sustainability. Since 1999, large-scale revegetation activities such as "Grain-to-Green Program" have been implemented across China's Loess Plateau. However, negative ecohydrological consequences, including streamflow decline and soil drying have emerged. Here we estimate the equilibrium vegetation cover over the Loess Plateau based on an ecohydrological model and assess the water balance under the equilibrium and actual vegetation cover over the past decade. Results show that the current vegetation cover (0.48 on average) has already exceeded the climate-defined equilibrium vegetation cover (0.43 on average) in many parts of the Loess Plateau, especially in the middle-to-east regions. This indicates a widespread overplanting, which is found to primarily responsible for soil drying in the area. Additionally, both the equilibrium vegetation cover and soil moisture tend to decrease under future (i.e., 2011-2050) climate scenarios due to declined atmospheric water supply (i.e., precipitation) and increased atmospheric water demand (i.e., potential evapotranspiration). Our findings suggest that further revegetation on the Loess Plateau should be applied with caution. To maintain a sustainable ecohydrological environment in the region, a revegetation threshold is urgently needed to guide future revegetation activities.

  13. Rehydration of freeze-dried and convective dried boletus edulis mushrooms: effect on some quality parameters.

    Science.gov (United States)

    Hernando, I; Sanjuán, N; Pérez-Munuera, I; Mulet, A

    2008-10-01

    Quality of rehydrated products is a key aspect linked to rehydration conditions. To assess the effect of rehydration temperature on some quality parameters, experiments at 20 and 70 degrees C were performed with convective dried and freeze-dried Boletus edulis mushrooms. Rehydration characteristics (through Peleg's parameter, k(1), and equilibrium moisture, W(e)), texture (Kramer), and microstructure (Cryo-Scanning Electron Microscopy) were evaluated. Freeze-dried samples absorbed water more quickly and attained higher W(e) values than convective dried ones. Convective dehydrated samples rehydrated at 20 degrees C showed significantly lower textural values (11.9 +/- 3.3 N/g) than those rehydrated at 70 degrees C (15.7 +/- 1.2 N/g). For the freeze-dried Boletus edulis, the textural values also exhibited significant differences, being 8.2 +/- 1.3 and 10.5 +/- 2.3 N/g for 20 and 70 degrees C, respectively. Freeze-dried samples showed a porous structure that allows rehydration to take place mainly at the extracellular level. This explains the fact that, regardless of temperature, freeze-dried mushrooms absorbed water more quickly and reached higher W(e) values than convective dried ones. Whatever the dehydration technique used, rehydration at 70 degrees C produced a structural damage that hindered water absorption; consequently lower W(e) values and higher textural values were attained than when rehydrating at 20 degrees C.

  14. FINAL REPORT: Transformational electrode drying process

    Energy Technology Data Exchange (ETDEWEB)

    Claus Daniel, C.; Wixom, M.(A123 Systems, Inc.)

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  15. Generalization of drying curves in conductive/convective drying of cellulose

    Directory of Open Access Journals (Sweden)

    M. Stenzel

    2003-03-01

    Full Text Available The objective of this work is to analyze the possibility of applying the drying curves generalization methodology to the conductive/convective hot plate drying of cellulose. The experiments were carried out at different heated plate temperatures and air velocities over the surface of the samples. This kind of approach is very interesting because it permits comparison of the results of different experiments by reducing them to only one set, which can be divided into two groups: the generalized drying curves and the generalized drying rate curves. The experimental apparatus is an attempt to reproduce the operational conditions of conventional paper dryers (ratio of paper/air movement and consists of a metallic box heated by a thermostatic bath containing an upper surface on which the cellulose samples are placed. Sample material is short- and long-fiber cellulose sheets, about 1 mm thick, and ambient air was introduced into the system by a adjustable blower under different conditions. Long-fiber cellulose generalized curves were obtained and analyzed first individually and then together with the short-fiber cellulose results from Motta Lima et al. (2000 a,b. Finally, a set of equations to fit the generalized curves obtained was proposed and discussed.

  16. 7 CFR 58.813 - Dry whey.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry whey. 58.813 Section 58.813 Agriculture... Products Bearing Usda Official Identification § 58.813 Dry whey. The quality requirements for dry whey shall be in accordance with the U.S. Standards for Dry Whey. Supplemental Specifications for Plants...

  17. Variability and trends in dry day frequency and dry event length in the southwestern United States

    Science.gov (United States)

    McCabe, Gregory J.; Legates, David R.; Lins, Harry F.

    2010-01-01

    Daily precipitation from 22 National Weather Service first-order weather stations in the southwestern United States for water years 1951 through 2006 are used to examine variability and trends in the frequency of dry days and dry event length. Dry events with minimum thresholds of 10 and 20 consecutive days of precipitation with less than 2.54 mm are analyzed. For water years and cool seasons (October through March), most sites indicate negative trends in dry event length (i.e., dry event durations are becoming shorter). For the warm season (April through September), most sites also indicate negative trends; however, more sites indicate positive trends in dry event length for the warm season than for water years or cool seasons. The larger number of sites indicating positive trends in dry event length during the warm season is due to a series of dry warm seasons near the end of the 20th century and the beginning of the 21st century. Overall, a large portion of the variability in dry event length is attributable to variability of the El Niño–Southern Oscillation, especially for water years and cool seasons. Our results are consistent with analyses of trends in discharge for sites in the southwestern United States, an increased frequency in El Niño events, and positive trends in precipitation in the southwestern United States.

  18. Drying of Concrete

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Geiker, Mette Rica; Nygaard, Peter Vagn

    2002-01-01

    Estimated and measured relative humidity (RH) change during drying are compared for two concretes, 1: w/c=0.46 and 2: w/(c+0.5fa+2sf)=0.50. The estimations were undertaken by means of the Swedish program TorkaS 1.0. Measurements were performed by RH-sensors type Humi-Guard. Drying of 150 mm thick...... samples from sides at 60% RH and 22 °C took place from 4 to 56 days after casting. At the end of the drying period the measured RH was about 4% lower than the estimated RH at 1/5th depth from the exposed surface for both concretes. In the middle of the samples, the measured RH of concretes 1 and 2 were 2...

  19. Combined control of morphology and polymorph in spray drying of mannitol for dry powder inhalation

    Science.gov (United States)

    Lyu, Feng; Liu, Jing J.; Zhang, Yang; Wang, Xue Z.

    2017-06-01

    The morphology and polymorphism of mannitol particles were controlled during spray drying with the aim of improving the aerosolization properties of inhalable dry powders. The obtained microparticles were characterized using scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction and inhaler testing with a next generation impactor. Mannitol particles of varied α-mannitol content and surface roughness were prepared via spray drying by manipulating the concentration of NH4HCO3 in the feed solution. The bubbles produced by NH4HCO3 led to the formation of spheroid particles with a rough surface. Further, the fine particle fraction was increased by the rough surface of carriers and the high α-mannitol content. Inhalable dry powders with a 29.1 ± 2.4% fine particle fraction were obtained by spray-drying using 5% mannitol (w/v)/2% NH4HCO3 (w/v) as the feed solution, proving that this technique is an effective method to engineer particles for dry powder inhalation.

  20. A study of drying and cleaning methods used in preparation for fluorescent penetrant inspection - Part II

    International Nuclear Information System (INIS)

    Brasche, L.; Lopez, R.; Larson, B.

    2003-01-01

    Fluorescent penetrant inspection is the most widely used method for aerospace components such as critical rotating components of gas turbine engines. Successful use of FPI begins with a clean and dry part, followed by a carefully controlled and applied FPI process, and conscientious inspection by well trained personnel. A variety of cleaning methods are in use for cleaning of titanium and nickel parts with selection based on the soils or contamination to be removed. Cleaning methods may include chemical or mechanical methods with sixteen different types studied as part of this program. Several options also exist for use in drying parts prior to FPI. Samples were generated and exposed to a range of conditions to study the effect of both drying and cleaning methods on the flaw response of FPI. Low cycle fatigue (LCF) cracks were generated in approximately 40 nickel and 40 titanium samples for evaluation of the various cleaning methods. Baseline measurements were made for each of the samples using a photometer to measure sample brightness and a UVA videomicroscope to capture digital images of the FPI indications. Samples were exposed to various contaminants, cleaned and inspected. Brightness measurements and digital images were also taken to compare to the baseline data. A comparison of oven drying to flash dry in preparation for FPI has been completed and will be reported in Part I. Comparison of the effectiveness of various cleaning methods for the contaminants will be presented in Part II. The cleaning and drying studies were completed in cooperation with Delta Airlines using cleaning, drying and FPI processes typical of engine overhaul processes and equipment. The work was completed as part of the Engine Titanium Consortium and included investigators from Honeywell, General Electric, Pratt and Whitney, and Rolls Royce

  1. A study of drying and cleaning methods used in preparation for fluorescent penetrant inspection - Part I

    International Nuclear Information System (INIS)

    Brasche, L.; Lopez, R.; Larson, B.

    2003-01-01

    Fluorescent penetrant inspection is the most widely used method for aerospace components such as critical rotating components of gas turbine engines. Successful use of FPI begins with a clean and dry part, followed by a carefully controlled and applied FPI process, and conscientious inspection by well trained personnel. A variety of cleaning methods are in use for cleaning of titanium and nickel parts with selection based on the soils or contamination to be removed. Cleaning methods may include chemical or mechanical methods with sixteen different types studied as part of this program. Several options also exist for use in drying parts prior to FPI. Samples were generated and exposed to a range of conditions to study the effect of both drying and cleaning methods on the flaw response of FPI. Low cycle fatigue (LCF) cracks were generated in approximately 40 nickel and 40 titanium samples for evaluation of the various cleaning methods. Baseline measurements were made for each of the samples using a photometer to measure sample brightness and a UVA videomicroscope to capture digital images of the FPI indications. Samples were exposed to various contaminants, cleaned and inspected. Brightness measurements and digital images were also taken to compare to the baseline data. A comparison of oven drying to flash dry in preparation for FPI has been completed and will be reported in Part I. Comparison of the effectiveness of various cleaning methods for the contaminants will be presented in Part II. The cleaning and drying studies were completed in cooperation with Delta Airlines using cleaning, drying and FPI processes typical of engine overhaul processes and equipment. The work was completed as part of the Engine Titanium Consortium and included investigators from Honeywell, General Electric, Pratt and Whitney, and Rolls Royce

  2. Dry shrinkage characteristics of buffer materials

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H. [ITC, Tokai, Ibaraki (Japan); Fujita, A.

    1999-03-01

    Generation of cracks due to drying of compressed bentonite was observed by changing the initial water content to obtain shrinkage constants such as shrinkage limit and shrinking rate. As a result, generation of practically no cracks was observed when the initial water content of samples was below 13%. The volume change due to drying increased with the water content in the sample, and the shrinkage constants were found to depend on the initial water content. Further, the one-dimensional compression strength after drying was compared with that before drying in order to clarify the effect of cracks generated by drying on the mechanical strength. As a result, the dry sample with cracks proved to have large one-dimensional compression strength or E{sub 50} compared to wet samples, so that the mechanical strength was kept even after drying. (H. Baba)

  3. Impregnation of leather during "freeze-drying"

    DEFF Research Database (Denmark)

    Storch, Mikkel; Vestergaard Poulsen Sommer, Dorte; Hovmand, Ida

    2016-01-01

    Freeze-drying is a recognized method for the preservation of waterlogged objects. Naturally, freeze-drying has also been used for waterlogged archaeological leather often after treatment with Na2.EDTA and impregnation with PEG; but the treated leather sometimes suffers from “excessive drying......” becoming too stiff and brittle. The aim of this study was to examine the effect of a conventional freeze-drying method against an alternative freeze-drying method that preserves the natural moisture content of the leather. Both new and archaeological waterlogged leather were included in the study...... suggest that the process which takes place within the leather during the freeze-drying in not actual freeze-drying, but rather a sophisticated way of distributing the impregnating agent. The pure ice phase freezes out, but the impregnating agent remains liquid as the temperature does not become low enough...

  4. Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour.

    Science.gov (United States)

    Lenaerts, S; Van Der Borght, M; Callens, A; Van Campenhout, L

    2018-07-15

    Freeze drying represents the current practice to stabilize mealworms, even though it is an energy demanding technique. Therefore, it was examined in the present study whether microwave drying could be a proper alternative. To this end, the impact of both drying techniques on the proximate composition, vitamin B 12 content, fatty acid profile, oxidation status and colour parameters of mealworms was investigated. Furthermore, the influence of the application of vacuum during microwave drying was studied. The different drying technologies resulted in small differences in the proximate composition, while the vitamin B 12 content was only reduced by microwave drying. The fat fraction of freeze dried mealworms showed a higher oxidation status than the fat of microwave dried mealworms. Application of a vacuum during the microwave drying process did not appear to offer advantages. This research shows that for mealworms microwave drying can be a proper alternative to freeze drying. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  6. Fluid flow in drying drops

    NARCIS (Netherlands)

    Gelderblom, Hanneke

    2013-01-01

    When a suspension drop evaporates, it leaves behind a drying stain. Examples of these drying stains encountered in daily life are coffee or tea stains on a table top, mineral rings on glassware that comes out of the dishwasher, or the salt deposits on the streets in winter. Drying stains are also

  7. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO{sub 2} as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m{sup 2} and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase.

  8. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Dry Eye Symptoms Related Ask an Ophthalmologist Answers Can a six-month dissolvable punctal plug be removed ... my eyes dry after LASIK? Jun 19, 2016 Can I be tested whether I close my eyes ...

  9. Impact of dry eye on work productivity.

    Science.gov (United States)

    Yamada, Masakazu; Mizuno, Yoshinobu; Shigeyasu, Chika

    2012-01-01

    The purpose of this study was to evaluate the impact of dry eye on work productivity of office workers, especially in terms of presenteeism. A total of 396 individuals aged ≥20 years (258 men and 138 women, mean age 43.4 ± 13.0 years) were recruited through an online survey. Data from 355 responders who did not have missing values were included in the analysis. They were classified into the following four groups according to the diagnostic status and subjective symptoms of dry eye: a definite dry eye group; a marginal dry eye group; a self-reported dry eye group; and a control group. The impact of dry eye on work productivity was evaluated using the Japanese version of the Work Limitations Questionnaire. The cost of work productivity loss associated with dry eye and the economic benefits of providing treatment for dry eye were also assessed. The degree of work performance loss was 5.65% in the definite dry eye group, 4.37% in the marginal dry eye group, 6.06% in the self-reported dry eye group, and 4.27% in the control group. Productivity in the self-reported dry eye group was significantly lower than that in the control group (P work productivity loss associated with dry eye was estimated to be USD 741 per person. Dry eye impairs work performance among office workers, which may lead to a substantial loss to industry. Management of symptoms of dry eye by providing treatment may contribute to improvement in work productivity.

  10. Dimensional behavior of Ni-YSZ composites during redox cycling

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Larsen, Peter Halvor

    2009-01-01

    The dimensional behavior of Ni-yttria-stabilized zirconia (YSZ) cermets during redox cycling was tested in dilatometry within the temperature range 600-1000 degrees C. The effect Of humidity oil redox stability was investigated at intermediate and low temperatures. We show that both the sintering...... of nickel depending on temperature of the initial reduction and the operating conditions, and the temperature of reoxidation are very important for the size of the dimensional change. Cumulative redox strain (CRS) is shown to be correlated with temperature. Measured maximum CRS after three redox cycles...... varies within 0.25-3.2% dL/L in dry gas and respective temperature range of 600-1000 degrees C. A high degree of redox reversibility was reached at low temperature. however. reversibility is lost at elevated temperatures. We found that at 850 degrees C, 6% steam and a very high p(H2O)/p(H2) ratio...

  11. Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in Coupled Climate-Vegetation Regional Model

    OpenAIRE

    Flavio Justino; Frode Stordal; Edward K. Vizy; Kerry H. Cook; Marcos P. S. Pereira

    2016-01-01

    Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly ...

  12. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: Drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture.

    Science.gov (United States)

    Zielinska, Magdalena; Michalska, Anna

    2016-12-01

    The aim of the study was to evaluate the effect of hot air convective drying (HACD), microwave vacuum drying (MWVD) and their combination (HACD+MWVD) on the drying kinetics, colour, total polyphenols, anthocyanins antioxidant capacity and texture of frozen/thawed blueberries. Drying resulted in reduction of total polyphenols content and antioxidant capacity (69 and 77%, respectively). The highest content of total polyphenols was noted after HACD at 90°C. Lower air temperature and prolonged exposure to oxygen resulted in greater degradation of polyphenols and antioxidant capacity. Drying processes caused a significant decrease (from 70 to 95%) in the content of anthocyanins. The highest content of anthocyanins and the strongest antioxidant capacity was found in blueberries dried using HACD at 90°C+MWVD. Among drying methods, HACD at 90°C+MWVD satisfied significant requirements for dried fruits i.e. short drying time and improved product quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Dry adhesives from carbon nanofibers grown in an open ethanol flame

    Directory of Open Access Journals (Sweden)

    Christian Lutz

    2017-12-01

    Full Text Available Based on magnetic-field-assisted growth of carbon nanofibers in an open ethanol flame we fabricated arrays of carbon nanofibers with different degrees of orientation. Inspired by the dry adhesive system of geckos we investigated the adhesive properties of such carbon nanofiber arrays with ordered and random orientation. AFM-based force spectroscopy revealed that adhesion force and energy rise linear with preload force. Carbon nanofibers oriented by a magnetic field show a 68% higher adhesion (0.66 N/cm2 than the randomly oriented fibers. Endurance tests revealed that the carbon nanofiber arrays withstand 50.000 attachment/detachment cycles without observable wear.

  14. Comparison of postoperative corneal changes between dry eye and non-dry eye in a murine cataract surgery model.

    Science.gov (United States)

    Kwon, Jin Woo; Chung, Yeon Woong; Choi, Jin A; La, Tae Yoon; Jee, Dong Hyun; Cho, Yang Kyung

    2016-01-01

    To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9(th) postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue.

  15. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  16. Practicalization strategic research of FBR cycle

    International Nuclear Information System (INIS)

    2000-01-01

    Practicalization strategic research of FBR cycle consists of two phases such as phase I (FY 1999-2000) and phase II (to FY 2005). In every phase, research and development plants and results are checked and reviewed. The assessment indexes are five development objects such as safety, economical efficiency, resource effective utilization, environmental load decrease and nuclear non-proliferation and technical realization, too. Reactor core, FBR plant system and fuel cycle system are investigated. We selected the research subjects of cooling materials as sodium, heavy metals (lead and lead bismuth alloy), gas (carbon dioxide and helium) and water (boiling water, power water and supercritical pressure water) and fuel types as cladding tube fuel (oxide, nitride and metal) and coated fuel particle (oxide and nitride) for helium gas cooling reactor. In FY1999, the good reactor core and FBR plant system for every cooling materials are studied. Two reprocessing (a wet reprocessing using aqueous solution and a dry method) were selected. In FY 2000, we will investigate effects of throughput, plant concept and cost and evaluate achievement of development objects and then decide the development plan. (S.Y.)

  17. Headspace Moisture Mapping and the Information That Can Be Gained about Freeze-Dried Materials and Processes.

    Science.gov (United States)

    Cook, Isobel A; Ward, Kevin R

    2011-01-01

    Regulatory authorities require proof that lyophilization (freeze drying) cycles have been developed logically and demonstrate uniformity. One measure of uniformity can be consistency of residual water content throughout a batch. In primary drying, heat transfer is effected by gaseous convection and conduction as well as the degree of shelf contact and evenness of heat applied; therefore residual water can be affected by container location, degree of container/tray/shelf contact, radiative heating, packing density, product formulation, and the cycle conditions themselves. In this study we have used frequency modulation spectroscopy (FMS) to create a map of headspace moisture (HSM) for 100% of vials within a number of freeze-dried batches. Karl Fischer (KF)/HSM correlations were investigated in parallel with the moisture mapping studies. A clear, linear relationship was observed between HSM and KF values for vials containing freeze-dried sucrose, implying a relatively straightforward interaction between water and the lyophilized cake for this material. Mannitol demonstrated a more complex correlation, with the interaction of different crystalline forms giving important information on the uniformity of the material produced. It was observed that annealing had a significant impact on the importance of heat transfer by conduction for vials in direct and non-direct contact with the shelf. Moisture mapping of all vials within the freeze dryer enabled further information to be obtained on the relationship of the formulation, process conditions, and equipment geometry on the intra-batch variability in HSM level. The ability of FMS to allow 100% inspection could mean that this method could play an important part in process validation and quality assurance. Lyophilization, also known as freeze drying, is a relatively old technique that has been used in its most basic form for thousands of years (e.g., preservation of fish and meat products). In its more advanced form it is

  18. Dry-air drying at room temperature - a practical pre-treatment method of tree leaves for quantitative analyses of phenolics?

    Science.gov (United States)

    Tegelberg, Riitta; Virjamo, Virpi; Julkunen-Tiitto, Riitta

    2018-03-09

    In ecological experiments, storage of plant material is often needed between harvesting and laboratory analyses when the number of samples is too large for immediate, fresh analyses. Thus, accuracy and comparability of the results call for pre-treatment methods where the chemical composition remains unaltered and large number of samples can be treated efficiently. To study if a fast dry-air drying provides an efficient pre-treatment method for quantitative analyses of phenolics. Dry-air drying of mature leaves was done in a drying room equipped with dehumifier (10% relative humidity, room temperature) and results were compared to freeze-drying or freeze-drying after pre-freezing in liquid nitrogen. The quantities of methanol-soluble phenolics of Betula pendula Roth, Betula pubescens Ehrh., Salix myrsinifolia Salisb., Picea abies L. Karsten and Pinus sylvestris L. were analysed with HPLC and condensed tannins were analysed using the acid-butanol test. In deciduous tree leaves (Betula, Salix), the yield of most of the phenolic compounds was equal or higher in samples dried in dry-air room than the yield from freeze-dried samples. In Picea abies needles, however, dry-air drying caused severe reductions in picein, stilbenes, condensed tannin and (+)-catechin concentrations compared to freeze-drying. In Pinus sylvestris highest yields of neolignans but lowest yields of acetylated flavonoids were obtained from samples freeze-dried after pre-freezing. Results show that dry-air drying provides effective pre-treatment method for quantifying the soluble phenolics for deciduous tree leaves, but when analysing coniferous species, the different responses between structural classes of phenolics should be taken into account. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Technique of solar drying the linden

    International Nuclear Information System (INIS)

    Fonseca Fonseca, Susana; Andión Torres, Ronald; Espinosa Borges, Ruberlando; Torres Ten, Alonso; Arzuaga Machado, Yusnel; Fuentes lombá, Osmay

    2017-01-01

    In Santiago of Cuba exists interest in the utilization of medicinal plants for the manufacture of flowed abstract and Tinturas, and this requires the dry product. At the present time this process is done in houses roofed. This product will be dried at 10 or 12 days. Having in account than in the Center of investigation of Solar Energy was developed a prototype of solar drier, which enables the drying of the anamu with the required quality, in this work is done a study, for the utilization of the aforementioned drier, for the drying of others medicinal plants. It is determine and evaluated experimentally a Procedure of drying of linden in this solar drier. The dry plants were sent to the UBPC La Rosita of medicinal plants, which manifested conformity with the obtained results, showing contentment with the quality of the dry product. (author)

  20. A proposal for an international program to develop dry recycle of spent nuclear fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    1999-01-01

    The dry oxidation-reduction process (called OREOX for Oxidation Reduction of Oxide Fuel) being developed by Korea and Canada, in cooperation with IAEA and the US State Department, is limited to recycle of spent LWR fuel into CANDU reactors (DUPIC). When first conceived and demonstrated via irradiation of test elements by Atomics International in 1965, (the process was called AIROX at that time) a wider range of applications was intended, including recycle of spent LWR fuel into LWRs. Studies sponsored by DOE's Idaho Office in 1992 confirmed the applicability of this technology to regions containing LWR's only, and described the potential advantages of such recycle from an environmental, waste management and economic point of view, as compared to the direct disposal option. Recent analyses conducted by the author indicates that such dry recycle may be one of the few acceptable paths remaining for resolution of the US spent fuel storage dilemma that remains consistent with US non-proliferation policy. It is proposed that a new US program be established to develop AIROX dry recycle for use in the US, and this become part of an international cooperative program, including the current Canadian - Korean program, and possibly including participation of other countries wishing to pursue alternatives to the once through cycle, and wet reprocessing. With shared funding of major project elements, such international cooperation would accelerate the demonstration and commercial deployment of dry recycle technology, as compared to separate and independent programs in each country. (author)

  1. Impact of dry eye on work productivity

    Directory of Open Access Journals (Sweden)

    Yamada M

    2012-10-01

    Full Text Available Masakazu Yamada, Yoshinobu Mizuno, Chika ShigeyasuNational Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, JapanBackground: The purpose of this study was to evaluate the impact of dry eye on work productivity of office workers, especially in terms of presenteeism.Methods: A total of 396 individuals aged ≥20 years (258 men and 138 women, mean age 43.4 ± 13.0 years were recruited through an online survey. Data from 355 responders who did not have missing values were included in the analysis. They were classified into the following four groups according to the diagnostic status and subjective symptoms of dry eye: a definite dry eye group; a marginal dry eye group; a self-reported dry eye group; and a control group. The impact of dry eye on work productivity was evaluated using the Japanese version of the Work Limitations Questionnaire. The cost of work productivity loss associated with dry eye and the economic benefits of providing treatment for dry eye were also assessed.Results: The degree of work performance loss was 5.65% in the definite dry eye group, 4.37% in the marginal dry eye group, 6.06% in the self-reported dry eye group, and 4.27% in the control group. Productivity in the self-reported dry eye group was significantly lower than that in the control group (P < 0.05. The annual cost of work productivity loss associated with dry eye was estimated to be USD 741 per person.Conclusion: Dry eye impairs work performance among office workers, which may lead to a substantial loss to industry. Management of symptoms of dry eye by providing treatment may contribute to improvement in work productivity.Keywords: burden of disease, dry eye, presenteeism, quality of life

  2. A Parameterization of Dry Thermals and Shallow Cumuli for Mesoscale Numerical Weather Prediction

    Science.gov (United States)

    Pergaud, Julien; Masson, Valéry; Malardel, Sylvie; Couvreux, Fleur

    2009-07-01

    For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy DiffusivityMass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCSARM) and conserve a realistic evolution of stratocumulus (EUROCSFIRE).

  3. Aging Impairs Whole-Body Heat Loss in Women under Both Dry and Humid Heat Stress.

    Science.gov (United States)

    Notley, Sean R; Poirier, Martin P; Hardcastle, Stephen G; Flouris, Andreas D; Boulay, Pierre; Sigal, Ronald J; Kenny, Glen P

    2017-11-01

    This study was designed to determine whether age-related impairments in whole-body heat loss, which are known to exist in dry heat, also occur in humid heat in women. To evaluate this possibility, 10 young (25 ± 4 yr) and 10 older (51 ± 7 yr) women matched for body surface area (young, 1.69 ± 0.11; older, 1.76 ± 0.14 m, P = 0.21) and peak oxygen consumption (V˙O2peak) (young, 38.6 ± 4.6; older, 34.8 ± 6.6 mL·kg·min, P = 0.15) performed four 15-min bouts of cycling at a fixed metabolic heat production rate (300 W; equivalent to ~45% V˙O2peak), each separated by a 15-min recovery, in dry (35°C, 20% relative humidity) and humid heat (35°C, 60% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and loss. Total heat loss was lower in humid conditions compared with dry conditions during all exercise bouts in both groups (all P body heat storage in young and older women, respectively (both P body heat storage was 29% and 16% greater in older women compared with young women in dry and humid conditions, respectively (both P < 0.05). Increasing ambient humidity reduces heat loss capacity in young and older women. However, older women display impaired heat loss relative to young women in both dry and humid heat, and may therefore be at greater risk of heat-related injury during light-to-moderate activity.

  4. Accelerating oak air drying by presurfacing

    Science.gov (United States)

    W. T. Simpson; R. C. Baltes

    1972-01-01

    A comparison was made between the air-drying rates of rough and presurfaced northern red oak and white oak. In both species, the presurfaced material was about 1/8 inch thinner than the rough material and dried faster than the rough material. The reduction in drying time depends on the method of analyzing the drying curves, but is slightly less than 10 percent.

  5. Drying kinetics of atemoya pulp

    Directory of Open Access Journals (Sweden)

    Plúvia O. Galdino

    Full Text Available ABSTRACT This study was conducted in order to obtain drying curves of whole atemoya pulp through the foam-mat drying method. The suspension was prepared with whole atemoya pulp mixed with 2% of Emustab® and 2% of Super Liga Neutra® with mixing time of 20 min, and dried in a forced-air oven at different temperatures (60; 70 and 80 °C and thicknesses of the foam layer (0.5, 1.0 and 1.5 cm. The drying rate curves were plotted against the water content ratio and the semi-theoretical models of Henderson & Pabis, Page and Midilli were used. All tested models showed coefficient of determination (R2 above 0.993, and the Midilli model showed the best fit for all conditions. Drying curves were affected by temperature and layer thickness.

  6. Life-cycle energy impacts for adapting an urban water supply system to droughts.

    Science.gov (United States)

    Lam, Ka Leung; Stokes-Draut, Jennifer R; Horvath, Arpad; Lane, Joe L; Kenway, Steven J; Lant, Paul A

    2017-12-15

    In recent years, cities in some water stressed regions have explored alternative water sources such as seawater desalination and potable water recycling in spite of concerns over increasing energy consumption. In this study, we evaluate the current and future life-cycle energy impacts of four alternative water supply strategies introduced during a decade-long drought in South East Queensland (SEQ), Australia. These strategies were: seawater desalination, indirect potable water recycling, network integration, and rainwater tanks. Our work highlights the energy burden of alternative water supply strategies which added approximately 24% life-cycle energy use to the existing supply system (with surface water sources) in SEQ even for a current post-drought low utilisation status. Over half of this additional life-cycle energy use was from the centralised alternative supply strategies. Rainwater tanks contributed an estimated 3% to regional water supply, but added over 10% life-cycle energy use to the existing system. In the future scenario analysis, we compare the life-cycle energy use between "Normal", "Dry", "High water demand" and "Design capacity" scenarios. In the "Normal" scenario, a long-term low utilisation of the desalination system and the water recycling system has greatly reduced the energy burden of these centralised strategies to only 13%. In contrast, higher utilisation in the unlikely "Dry" and "Design capacity" scenarios add 86% and 140% to life-cycle energy use of the existing system respectively. In the "High water demand" scenario, a 20% increase in per capita water use over 20 years "consumes" more energy than is used by the four alternative strategies in the "Normal" scenario. This research provides insight for developing more realistic long-term scenarios to evaluate and compare life-cycle energy impacts of drought-adaptation infrastructure and regional decentralised water sources. Scenario building for life-cycle assessments of water supply

  7. Comparison of postoperative corneal changes between dry eye and non-dry eye in a murine cataract surgery model

    Science.gov (United States)

    Kwon, Jin Woo; Chung, Yeon Woong; Choi, Jin A; La, Tae Yoon; Jee, Dong Hyun; Cho, Yang Kyung

    2016-01-01

    AIM To compare the effects of the surgical insult of cataract surgery on corneal inflammatory infiltration, neovascularization (NV) and lymphangiogenesis (LY) between the dry eye and non-dry eye in murine cataract surgery models. METHODS We established two groups of animals, one with normal eyes (non-dry eye) and the second with induced dry eyes. In both groups, we used surgical insults to mimic human cataract surgery, which consisted of lens extraction, corneal incision and suture. After harvesting of corneas on the 9th postoperative day and immunohistochemical staining, we compared NV, LY and CD11b+ cell infiltration in the corneas. RESULTS Dry eye group had significantly more inflammatory infiltration (21.75%±7.17% vs 3.65%±1.49%; P=0.049). The dry eye group showed significantly more NV (48.21%±4.02% vs 26.24%±6.01%; P=0.016) and greater levels of LY (9.27%±0.48% vs 4.84%±1.15%; P=0.007). In corneas on which no surgery was performed, there was no induction of NV in both the dry and non-dry group, but dry eye group demonstrated more CD11b+ cells infiltration than the non-dry eye group (0.360%±0.160% vs 0.023%±0.006%; P=0.068). Dry eye group showed more NV than non-dry eye group in both topical PBS application and subconjunctival PBS injection (P=0.020 and 0.000, respectively). CONCLUSION In a murine cataract surgery model, preexisting dry eye can induce more postoperative NV, LY, and inflammation in corneal tissue. PMID:26949638

  8. A 22 MW pilot plant with an ammonia bottoming cycle is being tested by Electricite de France

    International Nuclear Information System (INIS)

    Fleury, J.; Bellot, C.

    1989-01-01

    EDF's DER has built a 22 MW ammonia bottoming cycle pilot power plant in Gennevilliers near Paris. This construction marks a turning point in the development of bottoming cycles which was undertaken at EDF in 1970. These cycles could be used in powerful PWR plants. The key feature of this type of plant is its appreciable capacity gain when the temperature of the heat sink drops. Thus, with a heat sink of the dry cooling tower type, low air temperatures in winter can be turned to use to produce more energy when demand is at its highest. At the same time, with dry cooling towers, a tiresome constraint vanishes since the plant location choice does no longer depend on the existence of a water reservoir in the vicinity of the plant. The construction of the pilot plant Cybiam began in 1980. Its steam turbine-generator set was coupled to the French network in March 1986 and its ammonia turbine-generator set in December 1986. The full load was attained on June 4th 1987. The main problems met during its commissioning are described in this paper as well as the first test results. From the economic point of view, the money value of the extra power generated during cold spells is assessed

  9. Modelling the Drying Characteristics and Kinetics of Hot Air-Drying of Unblanched Whole Red Pepper and Blanched Bitter Leaf Slices

    OpenAIRE

    Samuel Enahoro Agarry

    2017-01-01

    The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h a...

  10. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Tips & Prevention News Ask an Ophthalmologist Patient Stories Español Eye Health / Eye Health A-Z Dry Eye ... Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué es el ojo seco? Written By: Kierstan ...

  11. Dry Port Development: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Fatimazahra BENTALEB

    2015-12-01

    Full Text Available Studies on dry ports as nodes in multimodal transport have been expanded to decrease the mounting congestion on seaports. The principal objective of this study is to inspect how dry port researches have been conducted from different perspective. This paper tries to recap the existing researches that aimed to study dry port concept via a systematic review, to present a general overview of the researches on our relevant region and propose a classification for these researches. This paper present a systematic review of dry port that looks to illustrate the progress of researches on this area between 1986 and 2015, collecting researches on dry port concept and analyzing the main characteristics of the dry port development and their contribution to the multimodal transport. The results indicated that most dry port studies considerate the strategic level and concentrate in the Asian continent. Studies regarding other decision levels and continents have to be developed in further researches. Although the existing studies make a contribution in dry port concept, they allow gaps in terms of operational and tactical decision levels considering their limited geographical region.

  12. Hydrological long-term dry and wet periods in the Xijiang River basin, South China

    Directory of Open Access Journals (Sweden)

    T. Fischer

    2013-01-01

    Full Text Available In this study, hydrological long-term dry and wet periods are analyzed for the Xijiang River basin in South China. Daily precipitation data of 118 stations and data on daily discharge at Gaoyao hydrological station at the mouth of the Xijiang River for the period 1961–2007 are used. At a 24-month timescale, the standardized precipitation index (SPI-24 for the six sub-basins of the Xijiang River and the standardized discharge index (SDI-24 for Gaoyao station are applied. The monthly values of the SPI-24 averaged for the Xijiang River basin correlate highly with the monthly values of the SDI-24. Distinct long-term dry and wet sequences can be detected.

    The principal component analysis is applied and shows spatial disparities in dry and wet periods for the six sub-basins. The correlation between the SPI-24 of the six sub-basins and the first principal component score shows that 67% of the variability within the sub-basins can be explained by dry and wet periods in the east of the Xijiang River basin. The spatial dipole conditions (second and third principal component explain spatiotemporal disparities in the variability of dry and wet periods. All sub-basins contribute to hydrological dry periods, while mainly the northeastern sub-basins cause wet periods in the Xijiang River. We can also conclude that long-term dry events are larger in spatial extent and cover all sub-basins while long-term wet events are regional phenomena.

    A spectral analysis is applied for the SPI-24 and the SDI-24. The results show significant peaks in periodicities of 11–14.7 yr, 2.8 yr, 3.4–3.7 yr, and 6.3–7.3 yr. The same periodic cycles can be found in the SPI-24 of the six sub-basins but with some variability in the mean magnitude. A wavelet analysis shows that significant periodicities have been stable over time since the 1980s. Extrapolations of the reconstructed SPI-24 and SDI-24 represent the continuation of observed significant periodicities

  13. Vacuum drying of apples (cv. Golden Delicious): drying characteristics, thermodynamic properties, and mass transfer parameters

    Science.gov (United States)

    Nadi, Fatemeh; Tzempelikos, Dimitrios

    2018-01-01

    In this work, apples of cv. Golden Delicious were cut into slices that were 5 and 7 mm thick and then vacuum dried at 50, 60 and 70 °C and pressure of 0.02 bar. The thin layer model drying kinetics was studied, and mass transfer properties, specifically effective moisture diffusivity and convective mass transfer coefficient, were evaluated using the Fick's equation of diffusion. Also, thermodynamic parameters of the process, i.e. enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG), were determined. Colour properties were evaluated as one of the important indicators of food quality and marketability. Determination of mass transfer parameters and thermodynamic properties of vacuum dried apple slices has not been discussed much in the literature. In conclusion, the Nadi's model fitted best the observed data that represent the drying process. Thermodynamic properties were determined based on the dependence of the drying constant of the Henderson and Pabis model on temperature, and it was concluded that the variation in drying kinetics depends on the energy contribution of the surrounding environment. The enthalpy and entropy diminished, while the Gibbs free energy increased with the increase of the temperature of drying; therefore, it was possible to verify that variation in the diffusion process in the apple during drying depends on energetic contributions of the environment. The obtained results showed that diffusivity increased for 69%, while the mass transfer coefficient increase was even higher, 75%, at the variation of temperature of 20 °C. The increase in the dimensionless Biot number was 20%.

  14. Effects of Drying Methods on the Drying Kinetics and the Essential Oil of Lippia multiflora Moldenke Leaves

    OpenAIRE

    Raymond G. Elenga; Gouollaly Tsiba; J. Goma Maniongui; Jean M. Ouamba; Jean M. Bessière

    2011-01-01

    Lippia multiflora is widespread in Africa and America. Its leaves are consumed as tea and have various medicinal properties. To preserve the flavour and properties, the farmers dry the leaves in shade for six to ten days. The aim of this work on one hand, is to check the soundness of this traditional drying method by comparing its effects with those of the forced convective drying at 40, 45, 50, 55 and 60ºC on the drying kinetics, the composition and content of the Essential Oil (EO) of dried...

  15. Drying/rewetting cycles of the soil under alternate partial root-zone drying irrigation reduce carbon and nitrogen retention in the soil-plant systems of potato

    DEFF Research Database (Denmark)

    Sun, Yanqi; Yan, Fei; Liu, Fulai

    2013-01-01

    for five weeks. For each N rate, the PRD and DI plants received a same amount of water, which allowed re-filling one half of the PRD pots close to full water holding capacity. The results showed that plant dry biomass, plant water use, and water use efficiency were increased with increasing N...... retention in the soil–plant systems of potato. Potato plants were grown in 20 L split-root pots with three N-fertilization rates, viz., 1.4 (N1), 2.5 (N2), and 4 (N3) g N pot−1 soil, respectively. At tuber initiation and earlier tuber bulking stages, the plants were subjected to PRD and DI treatment...

  16. 7 CFR 58.250 - Dry whole milk.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Dry whole milk. 58.250 Section 58.250 Agriculture... Products Bearing Usda Official Identification § 58.250 Dry whole milk. Dry whole milk in commercial bulk... Grades of Dry Whole Milk. Quality requirements for dry whole milk in consumer packages shall be for U.S...

  17. Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet-dry SO2 environment

    International Nuclear Information System (INIS)

    Nishimura, Rokuro; Shiraishi, Daisuke; Maeda, Yasuaki

    2004-01-01

    Hydrogen permeation caused by corrosion under a cyclic wet (2 h)-dry (10 h) SO 2 condition was investigated for a high strength steel of MCM 430 by using an electrochemical technique in addition to the corrosion behavior obtained from weight loss measurement and the determination of corrosion products by using X-ray diffraction method. The hydrogen content converted from hydrogen permeation current density was observed in both wet and dry periods. The origin of proton was estimated to be from (1) the hydrolysis of ferrous ions, (2) the oxidation of ferrous ions and ferrous hydroxide, and (3) hydrolysis of SO 2 and formation of FeSO 4 , but not from the dissociation of H 2 O. With respect to the determination of the corrosion products consisting of inner (adherent) and outer (not adherent) layers, the outer layer is composed of α-FeOOH, amorphous phase and γ-FeOOH, where α-FeOOH increases with the increase in the wet-dry cycle, and amorphous phase shows the reverse trend. The corrosion product in the inner layer is mainly Fe 3 O 4 with them. On the basis of the results obtained, the role of the dry or wet period, the effect of SO 2 and the corrosion process during the cyclic wet-dry periods were discussed

  18. The effect of drying on the nutritional composition of fresh and dried ...

    African Journals Online (AJOL)

    A study was carried out to identify some nutritional properties of Moringa Oeifera leaf and to compare the nutritional qualities of fresh and dried leaves of Moringa Oleifera.Two samples each of fresh and dried Moringa Oeifera leaves were used for the experiment and the mean values in their nutritional qualities compared.

  19. Freeze-dried microarterial allografts

    International Nuclear Information System (INIS)

    Raman, J.; Hargrave, J.C.

    1990-01-01

    Rehydrated freeze-dried microarterial allografts were implanted to bridge arterial defects using New Zealand White rabbits as the experimental model. Segments of artery from the rabbit ear and thigh were harvested and preserved for a minimum of 2 weeks after freeze-drying. These allografts, approximately 1 mm in diameter and ranging from 1.5 to 2.5 cm in length, were rehydrated and then implanted in low-pressure and high-pressure arterial systems. Poor patency was noted in low-pressure systems in both allografts and autografts, tested in 12 rabbits. In the high-pressure arterial systems, allografts that were freeze-dried and reconstituted failed in a group of 10 rabbits with an 8-week patency rate of 30 percent. Gamma irradiation in an effort to reduce infection and antigenicity of grafts after freeze-drying was associated with a patency rate of 10 percent at 8 weeks in this system in another group of 10 rabbits. Postoperative cyclosporin A therapy was associated with a patency rate of 22.2 percent in the high-pressure arterial system in a 9-rabbit group. Control autografts in this system in a group of 10 rabbits showed a 100 percent patency at 8 weeks. Microarterial grafts depend on perfusion pressure of the vascular bed for long-term patency. Rehydrated freeze-dried microarterial allografts do not seem to function well in lengths of 1 to 2.5 cm when implanted in a high-pressure arterial system. Freeze-dried arterial allografts are probably not antigenic

  20. Effects of steam-microwave blanching and different drying processes on drying characteristics and quality attributes of Thunbergia laurifolia Linn. leaves.

    Science.gov (United States)

    Phahom, Traiphop; Phoungchandang, Singhanat; Kerr, William L

    2017-08-01

    Dried Thunbergia laurifolia leaves are usually prepared using tray drying, resulting in products that have lost substantial amounts of bioactive compounds and antioxidant activity. The maturity of the raw material, blanching techniques and drying methods were investigated in order to select the best condition to produce high qualities of dried T. laurifolia leaves. The 1st stage of maturity was selected and steam-microwave blanching (SMB) for 4 min was adequate for blanching leading to the maximum recovery of bioactive compounds. The modified Halsey model was the best desorption isotherm model. A new drying model proposed in this study was the best to fit the drying curves as compared to five common drying models. Moisture diffusivities were increased with the increase of drying temperature when combining SMB and heat pump-dehumidified drying. Microwave heat pump-dehumidified drying (MHPD) provided the shortest drying time, high specific moisture extraction rate (SMER) and could reduce drying time by 67.5% and increase caffeic acid and quercetin by 51.24% and 60.89%, respectively. MHPD was found to be the best drying method and provided the highest antioxidant activity and bioactive compounds content, high SMER and short drying time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Spray drying for processing of nanomaterials

    International Nuclear Information System (INIS)

    Lindeloev, Jesper Saederup; Wahlberg, Michael

    2009-01-01

    Consolidation of nano-particles into micron-sized granules reduces the potential risks associated with handling nano-powders in dry form. Spray drying is a one step granulation technique which can be designed for safe production of free flowing low dusty granules from suspensions of nano-particles. Spray dried granules are well suited for subsequent processing into final products where the superior properties given by the nano-particles are retained. A spray drier with bag filters inside the drying chamber and recycling of drying gas combined with containment valves are proposed as a safe process for granulation of potential hazardous nano-particles.

  2. 21 CFR 160.185 - Dried egg yolks.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dried egg yolks. 160.185 Section 160.185 Food and... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.185 Dried egg yolks. (a) Dried egg yolks, dried yolks is the food prepared by drying egg yolks that conform to...

  3. Photovoltaic assisted solar drying system

    International Nuclear Information System (INIS)

    Ruslan, M.H.; Othman, M.Y.; Baharuddin Yatim; Kamaruzzaman Sopian; Ali, M.I.; Ibarahim, Z.

    2006-01-01

    A photovoltaic assisted solar drying system has been constructed at the Solar Energy Research Park, Universiti Kebangsaan Malaysia. This drying system uses a custom designed parallel flow V-groove type collector. A fan powered by photovoltaic source assists the air flow through the drying system. A funnel with increasing diameter towards the top with ventilator turbine is incorporated into the system to facilitate the air flow during the absence of photovoltaic energy source. This drying system is designed with high efficiency and portability in mind so that it can readily be used at plantation sites where the crops are harvested or produced. A daily mean efficiency about 44% with mean air flow rate 0.16 kgs -1 has been achieved at mean daily radiation intensity of 800 Wm -2 . daily mean temperature of air drying chamber under the above conditions is 46 o C. Study has shown that the air flow and air temperature increase with the increase of solar radiation intensity. On a bright sunny day with instantaneous solar intensity about 600 Wm -2 , the temperature of air entering the drying chamber of 45 o C has been measured. In the absence of photovoltaic or in natural convection flow, the instantaneous efficiency decreased when solar radiation increased. The instantaneous efficiency recorded are 35% and 27% respectively at 570 Wm -2 and 745 Wm -2 of solar radiation. The temperature of drying chamber for the same amount of solar radiation are 42 o C and 48 o C respectively. Thus, the solar dryer shows a great potential for application in drying process of agricultural produce

  4. Dry dock gate stability modelling

    Science.gov (United States)

    Oktoberty; Widiyanto; Sasono, E. J.; Pramono, S.; Wandono, A. T.

    2018-03-01

    The development of marine transportation needs in Indonesia increasingly opens national shipyard business opportunities to provide shipbuilding services to the shipbuilding vessels. That emphasizes the stability of prime. The ship's decking door becomes an integral part of the efficient place and the specification of the use of the asset of its operational ease. This study aims to test the stability of Dry Dock gate with the length of 35.4 meters using Maxsurf and Hydromax in analyzing the calculation were in its assessment using interval per 500 mm length so that it can get detail data toward longitudinal and transverse such as studying Ship planning in general. The test result shows dry dock gate meets IMO standard with ballast construction containing 54% and 68% and using fix ballast can produce GMt 1,924 m, tide height 11,357m. The GMt value indicates dry dick gate can be stable and firmly erect at the base of the mouth dry dock. When empty ballast produces GMt 0.996 which means dry dock date is stable, but can easily be torn down. The condition can be used during dry dock gate treatment.

  5. Dry eyes: etiology and management.

    Science.gov (United States)

    Latkany, Robert

    2008-07-01

    Until recently, the cause of dry eye syndrome was uncertain and the treatment was palliative. Since discovering that dry eyes are caused by inflammation, there has been an abundance of research focusing on anti-inflammatory therapies, other contributing causes, and better diagnostic testing. This review summarizes some of the interesting published research on ocular surface disease over the past year. The definition of dry eye now highlights the omnipresent symptom of blurry vision. The re-evaluation of ocular surface staining, tear meniscus height, and visual change will allow for a better diagnosis and understanding of dry eyes. Punctal plugs, and oral and topical anti-inflammatory use will strengthen our arsenal against ocular surface disease. Major progress has occurred in the past few years in gaining a better understanding of the etiology of dry eye syndrome, which will inevitably lead to more effective therapeutic options.

  6. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  7. Synthesis and characterization of LiFePo4/C cathode material by freeze drying method with PVP

    Directory of Open Access Journals (Sweden)

    Kuzmanović Maja D.

    2014-01-01

    Full Text Available Lithium iron phosphate is a promising cathode material for lithium ion battery application thanks to its good characteristics. Here is presented the freeze drying method for the preparation of carbon coated LiFePO4, where PVP is used as a carbon source. The main advantage of this method is mixing at the atomic level and introducing the carbon source into the precursor solution. The synthesis process can be divided into three stages: freezing of a precursor solution, drying under vacuum until water evaporates and calicination of as-dried powder at slightly reductive atmosphere. Powder X-ray diffraction measurement demonstrated single phase LiFePO4 with crystallite size of 45.8 nm. Morphology and particle size was revealed with scanning electron microscopy and particle size analyzer. Galvanostatic cycling from 2.3 to 4.1 V vs. Li/Li+, shows typical LiFePO4 redox behavior with plateau at 3.4 V. The discharge capacity value obtained at C/10 rate was 154 mAh- 1, with decrease on greater C-rates.

  8. Hydraulic performance of compacted clay liners under simulated daily thermal cycles.

    Science.gov (United States)

    Aldaeef, A A; Rayhani, M T

    2015-10-01

    Compacted clay liners (CCLs) are commonly used as hydraulic barriers in several landfill applications to isolate contaminants from the surrounding environment and minimize the escape of leachate from the landfill. Prior to waste placement in landfills, CCLs are often exposed to temperature fluctuations which can affect the hydraulic performance of the liner. Experimental research was carried out to evaluate the effects of daily thermal cycles on the hydraulic performance of CCLs under simulated landfill conditions. Hydraulic conductivity tests were conducted on different soil specimens after being exposed to various thermal and dehydration cycles. An increase in the CCL hydraulic conductivity of up to one order of magnitude was recorded after 30 thermal cycles for soils with low plasticity index (PI = 9.5%). However, medium (PI = 25%) and high (PI = 37.2%) plasticity soils did not show significant hydraulic deviation due to their self-healing potential. Overlaying the CCL with a cover layer minimized the effects of daily thermal cycles, and maintained stable hydraulic performance in the CCLs even after exposure to 60 thermal cycles. Wet-dry cycles had a significant impact on the hydraulic aspect of low plasticity CCLs. However, medium and high plasticity CCLs maintained constant hydraulic performance throughout the test intervals. The study underscores the importance of protecting the CCL from exposure to atmosphere through covering it by a layer of geomembrane or an interim soil layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effects of Litter and Nutrient Additions on Soil Carbon Cycling in a Tropical Forest

    Science.gov (United States)

    Cusack, D. F.; Halterman, S.; Turner, B. L.; Tanner, E.; Wright, S. J.

    2014-12-01

    Soil carbon (C) dynamics present one of the largest sources of uncertainty in global C cycle models, with tropical forest soils containing some of the largest terrestrial C stocks. Drastic changes in soil C storage and loss are likely to occur if global change alters plant net primary production (NPP) and/or nutrient availability in these ecosystems. We assessed the effects of litter removal and addition, as well as fertilization with nitrogen (N), phosphorus (P), and/or potassium (K), on soil C stocks in a tropical seasonal forest in Panama after ten and sixteen years, respectively. We used a density fractionation scheme to assess manipulation effects on rapidly and slowly cycling pools of C. Soil samples were collected in the wet and dry seasons from 0-5 cm and 5-10 cm depths in 15- 45x45 m plots with litter removal, 2x litter addition, and control (n=5), and from 32- 40x40 m fertilization plots with factorial additions of N, P, and K. We hypothesized that litter addition would increase all soil C fractions, but that the magnitude of the effect on rapidly-cycling C would be dampened by a fertilization effect. Results for the dry season show that the "free light" C fraction, or rapidly cycling soil C pool, was significantly different among the three litter treatments, comprising 5.1 ± 0.9 % of total soil mass in the litter addition plots, 2.7 ± 0.3 % in control plots, and 1.0 ± 0.1 % in litter removal plots at the 0-5cm depth (means ± one standard error, p < 0.05). Bulk soil C results are similar to observed changes in the rapidly cycling C pool for the litter addition and removal. Fertilization treatments on average diminished this C pool size relative to control plots, although there was substantial variability among fertilization treatments. In particular, addition of N and P together did not significantly alter rapidly cycling C pool sizes (4.1 ± 1.2 % of total soil mass) relative to controls (3.5 ± 0.4 %), whereas addition of P alone resulted in

  10. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.

    Science.gov (United States)

    Korang-Yeboah, Maxwell; Srinivasan, Charudharshini; Siddiqui, Akhtar; Awotwe-Otoo, David; Cruz, Celia N; Muhammad, Ashraf

    2018-01-01

    Optical coherence tomography freeze-drying microscopy (OCT-FDM) is a novel technique that allows the three-dimensional imaging of a drug product during the entire lyophilization process. OCT-FDM consists of a single-vial freeze dryer (SVFD) affixed with an optical coherence tomography (OCT) imaging system. Unlike the conventional techniques, such as modulated differential scanning calorimetry (mDSC) and light transmission freeze-drying microscopy, used for predicting the product collapse temperature (Tc), the OCT-FDM approach seeks to mimic the actual product and process conditions during the lyophilization process. However, there is limited understanding on the application of this emerging technique to the design of the lyophilization process. In this study, we investigated the suitability of OCT-FDM technique in designing a lyophilization process. Moreover, we compared the product quality attributes of the resulting lyophilized product manufactured using Tc, a critical process control parameter, as determined by OCT-FDM versus as estimated by mDSC. OCT-FDM analysis revealed the absence of collapse even for the low protein concentration (5 mg/ml) and low solid content formulation (1%w/v) studied. This was confirmed by lab scale lyophilization. In addition, lyophilization cycles designed using Tc values obtained from OCT-FDM were more efficient with higher sublimation rate and mass flux than the conventional cycles, since drying was conducted at higher shelf temperature. Finally, the quality attributes of the products lyophilized using Tc determined by OCT-FDM and mDSC were similar, and product shrinkage and cracks were observed in all the batches of freeze-dried products irrespective of the technique employed in predicting Tc.

  11. Dry Eyes and Glaucoma: Double Trouble

    Science.gov (United States)

    ... Involved News About Us Donate In This Section Dry Eyes and Glaucoma: Double Trouble email Send this article ... eye disease bothers the patient more. What Causes Dry Eye Syndrome? Dry eye can be caused by many ...

  12. DryCardTM — A Low-Cost Dryness Indicator for Dried Products

    Directory of Open Access Journals (Sweden)

    James F. Thompson

    2017-10-01

    Full Text Available Mycotoxin contamination of food and feed is a significant health hazard in humid areas of the world. Fungal development can be halted if the water activity of dried products is kept below 0.65. This preliminary study evaluates the color response and response time of a low-cost humidity indicator that estimates water activity. The DryCardTM has a consistent color response to relative humidity and its response time is fast enough to be used in practical situations for estimating water activity. The card comes with use instructions and it can be reused many times. It is a crucial tool to assist smallholder farmers and traders in ensuring their crops have been adequately dried.

  13. Evaluating energy efficient strategies and product quality for distillers' dried grains with solubles (DDGS) in dry-grind ethanol plants

    Science.gov (United States)

    Lan, Tian

    The drying of distillers dried grains with solubles (DDGS), a coproduct of dry-grind corn processing to ethanol utilizes about 30% of the total energy required for the production of a liter of fuel ethanol. Therefore, improving DDGS drying energy efficiency could have significant impact on the economics of the dry-grind corn-to-ethanol process. Drying process improvements must take account into the effects of various drying strategies on the final quality of DDGS which is primarily utilized as a feed ingredient. Previous studies in the literature have shown that physical and chemical properties of DDGS vary according to the ratio of the two primarily feed streams, wet distillers grains (WDG) and condensed distillers solubles (CDS) which make up DDGS. Extensive research using plant-scale and bench-scale experiments have been conducted on the effect of process variables (ratios of WDG, CDS and DDGS add-back) during drying on the physical and chemical properties of DDGS. However, these investigations did not correlate the product characteristics data to drying efficiency. Additionally, it cannot be clearly determined from the literature on DDGS drying that processes used in the industry are optimized for both product quality and energy efficiency. A bench-scale rotary drum dryer heated by an electrically powered heat gun was used to investigate the effects of WDG, CDS and add-back ratios on both energy efficiency, drying performance and DDGS physical and chemical properties. A two stage drying process with the bench-scale rotary dryer was used to simulate the drying of DDGS using ICM (ICM, Inc., Colwich, KS) dry-grind process technology for DDGS drying which uses two rotary drum dryers in series. Effects of drying process variables, CDS content (0, 10, 20 and 40% by mass) and percent DDGS add-back (0, 20, 40 and 60% by mass) on energy performance and product quality were determined. Sixteen different drying strategies based on drying process variable ratios were

  14. An Old-Growth Definition for Dry and Dry-Mesic Oak-Pine Forests.

    Science.gov (United States)

    David L. White; F. Thomas. Lloyd

    1998-01-01

    Dry and dry-mesic oak-pine forests are widely distributed from New Jersey to Texas, but representative old-growth stands are rare. Historical accounts of composition, along with information from existing old-growth stands, were used to characterize this type. Shortleaf pine and white oak were the most widely distributed trees across all old-growth stands. Shortleaf was...

  15. Continuous and scalable fabrication of bioinspired dry adhesives via a roll-to-roll process with modulated ultraviolet-curable resin.

    Science.gov (United States)

    Yi, Hoon; Hwang, Insol; Lee, Jeong Hyeon; Lee, Dael; Lim, Haneol; Tahk, Dongha; Sung, Minho; Bae, Won-Gyu; Choi, Se-Jin; Kwak, Moon Kyu; Jeong, Hoon Eui

    2014-08-27

    A simple yet scalable strategy for fabricating dry adhesives with mushroom-shaped micropillars is achieved by a combination of the roll-to-roll process and modulated UV-curable elastic poly(urethane acrylate) (e-PUA) resin. The e-PUA combines the major benefits of commercial PUA and poly(dimethylsiloxane) (PDMS). It not only can be cured within a few seconds like commercial PUA but also possesses good mechanical properties comparable to those of PDMS. A roll-type fabrication system equipped with a rollable mold and a UV exposure unit is also developed for the continuous process. By integrating the roll-to-roll process with the e-PUA, dry adhesives with spatulate tips in the form of a thin flexible film can be generated in a highly continuous and scalable manner. The fabricated dry adhesives with mushroom-shaped microstructures exhibit a strong pull-off strength of up to ∼38.7 N cm(-2) on the glass surface as well as high durability without any noticeable degradation. Furthermore, an automated substrate transportation system equipped with the dry adhesives can transport a 300 mm Si wafer over 10,000 repeating cycles with high accuracy.

  16. Clinical efficacy of Trigonella foenum graecum (Fenugreek) and dry cupping therapy on intensity of pain in patients with primary dysmenorrhea.

    Science.gov (United States)

    Inanmdar, Wajida; Sultana, Arshiya; Mubeen, Umraz; Rahman, Khaleequr

    2016-05-25

    To determine the effificacy and safety of fenugreek seed and dry cupping on intensity of pain in primary dysmenorrhea. Sixty patients with primary dysmenorrhea were enrolled in this prospective, open-labeled, randomized, standard-controlled study, conducted in the National Institute of Unani Medicine Hospital between February 2010 and April 2011. In group A (20 cases), 3 g powder of fenugreek seed (3 capsules, 1 g each) was given orally twice daily from day 1 to 3 of menstrual cycle. Group B (20 cases) received the same dose of fenugreek seed as group A along with dry cupping therapy [two 4.2-cm and one 2.5-cm cups (internal diameter)], which was applied below the umbilicus for 15 min on day 1 and day 3 of menstrual cycle for 3 consecutive months. The control group C (20 cases) was given mefenamic acid, 500 mg twice daily, on the same protocol. The reduction in menstrual pain intensity was measured with well validated Visual Analogue Scale and safety of fenugreek seed was evaluated by clinical examination and laboratory investigations. Baseline characteristics and biochemical parameters were comparable and homogenous among all groups (P>0.05). The percentage reduction in lower abdominal pain was 66.89%, 66.49%, and 62.88% in A, B and C groups respectively at the end of the treatment. No adverse drug effects were noticed. The fenugreek seed and dry cupping are effificacious, safe, cost effective, and well tolerated.

  17. The tropopause inversion layer in baroclinic life-cycle experiments: the role of diabatic processes

    Directory of Open Access Journals (Sweden)

    D. Kunkel

    2016-01-01

    Full Text Available Recent studies on the formation of a quasi-permanent layer of enhanced static stability above the thermal tropopause revealed the contributions of dynamical and radiative processes. Dry dynamics leads to the evolution of a tropopause inversion layer (TIL, which is, however, too weak compared to observations and thus diabatic contributions are required. In this study we aim to assess the importance of diabatic processes in the understanding of TIL formation at midlatitudes. The non-hydrostatic model COSMO (COnsortium for Small-scale MOdelling is applied in an idealized midlatitude channel configuration to simulate baroclinic life cycles. The effect of individual diabatic processes related to humidity, radiation, and turbulence is studied first to estimate the contribution of each of these processes to the TIL formation in addition to dry dynamics. In a second step these processes are stepwise included in the model to increase the complexity and finally estimate the relative importance of each process. The results suggest that including turbulence leads to a weaker TIL than in a dry reference simulation. In contrast, the TIL evolves stronger when radiation is included but the temporal evolution is still comparable to the reference. Using various cloud schemes in the model shows that latent heat release and consecutive increased vertical motions foster an earlier and stronger appearance of the TIL than in all other life cycles. Furthermore, updrafts moisten the upper troposphere and as such increase the radiative effect from water vapor. Particularly, this process becomes more relevant for maintaining the TIL during later stages of the life cycles. Increased convergence of the vertical wind induced by updrafts and by propagating inertia-gravity waves, which potentially dissipate, further contributes to the enhanced stability of the lower stratosphere. Finally, radiative feedback of ice clouds reaching up to the tropopause is identified to

  18. Neuropathic pain and dry eye.

    Science.gov (United States)

    Galor, Anat; Moein, Hamid-Reza; Lee, Charity; Rodriguez, Adriana; Felix, Elizabeth R; Sarantopoulos, Konstantinos D; Levitt, Roy C

    2018-01-01

    Dry eye is a common, multifactorial disease currently diagnosed by a combination of symptoms and signs. Its epidemiology and clinical presentation have many similarities with neuropathic pain outside the eye. This review highlights the similarities between dry eye and neuropathic pain, focusing on clinical features, somatosensory function, and underlying pathophysiology. Implications of these similarities on the diagnosis and treatment of dry eye are discussed. Published by Elsevier Inc.

  19. Modeling the grazing effect on dry grassland carbon cycling with modified Biome-BGC grazing model

    Science.gov (United States)

    Luo, Geping; Han, Qifei; Li, Chaofan; Yang, Liao

    2014-05-01

    Identifying the factors that determine the carbon source/sink strength of ecosystems is important for reducing uncertainty in the global carbon cycle. Arid grassland ecosystems are a widely distributed biome type in Xinjiang, Northwest China, covering approximately one-fourth the country's land surface. These grasslands are the habitat for many endemic and rare plant and animal species and are also used as pastoral land for livestock. Using the modified Biome-BGC grazing model, we modeled carbon dynamics in Xinjiang for grasslands that varied in grazing intensity. In general, this regional simulation estimated that the grassland ecosystems in Xinjiang acted as a net carbon source, with a value of 0.38 Pg C over the period 1979-2007. There were significant effects of grazing on carbon dynamics. An over-compensatory effect in net primary productivity (NPP) and vegetation carbon (C) stock was observed when grazing intensity was lower than 0.40 head/ha. Grazing resulted in a net carbon source of 23.45 g C m-2 yr-1, which equaled 0.37 Pg in Xinjiang in the last 29 years. In general, grazing decreased vegetation C stock, while an increasing trend was observed with low grazing intensity. The soil C increased significantly (17%) with long-term grazing, while the soil C stock exhibited a steady trend without grazing. These findings have implications for grassland ecosystem management as it relates to carbon sequestration and climate change mitigation, e.g., removal of grazing should be considered in strategies that aim to increase terrestrial carbon sequestrations at local and regional scales. One of the greatest limitations in quantifying the effects of herbivores on carbon cycling is identifying the grazing systems and intensities within a given region. We hope our study emphasizes the need for large-scale assessments of how grazing impacts carbon cycling. Most terrestrial ecosystems in Xinjiang have been affected by disturbances to a greater or lesser extent in the past

  20. Life cycle inventory for palm based plywood: A gate-to-gate case study

    Science.gov (United States)

    Ahmad, Shamim; Sahid, Ismail; Subramaniam, Vijaya; Muhamad, Halimah; Mokhtar, Anis

    2013-11-01

    The oil palm industry heavily relies on the world market. It is essential to ensure that the oil palm industry is ready to meet the demands and expectation of these overseas customers on the environmental performance of the oil palm industry. Malaysia produces 13.9 million tons of oil palm biomass including oil palm trunk (OPT), frond and empty fruits bunches (EFB) annually. OPT felled in some oil palm plantations during replanting is transported to various industries and one such industry is the plywood factories. In order to gauge the environmental performance of the use of OPT as plywood a Life Cycle Assessment (LCA) study was conducted for palm based plywood. LCA is an important tool to assess the environmental performance of a product or process. Life cycle inventory (LCI) is the heart of a LCA study. This LCI study has a gate-to-gate system boundary and the functional unit is 1 m3 palm plywood produced and covers three types of plywood; Moisture Resistance Plywood (MR), Weather Boiling Proof Plywood Grade 1 (WBP Grade 1) at Factory D and Weather Boiling Proof Plywood Grade 2 (WBP Grade 2) at Factory E. Both factories use two different types of drying processes; conventional drying at Factory D and kiln drying at Factory E. This inventory data was collected from two factories (D and E) representing 40% of Malaysia palm plywood industry. The inputs are mainly the raw materials which are the oil palm trunks and tropical wood veneers and the energy from diesel and electricity from grid which is mainly used for the drying process. The other inputs include water, urea formaldehyde, phenol formaldehyde, flour and melamine powder. The outputs are the biomass waste which consists of oil palm trunk off-cut and emission from boiler. Generally, all types of plywood production use almost same materials and processing methods in different quantities. Due to the different process efficiency, Factory D uses less input of raw materials and energy compared to Factory E.

  1. Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha x piperita L.)

    International Nuclear Information System (INIS)

    Arslan, Derya; Ozcan, M. Musa; Menges, Hakan Okyay

    2010-01-01

    Peppermint leaves (Mentha x piperita L.) were dried by using sun, oven (50 deg. C) and microwave oven (700 W) drying methods. Page, Modified page, Midilli and Kuecuek models adequately described the oven, sun and microwave oven drying behaviours of peppermint leaves. The drying process was explicated through the diffusional model in order to obtain effective diffusivity values, which were determined as 3.10 x 10 -12 , 2.68 x 10 -12 and 4.09 x 10 -10 for the sun, oven and microwave oven drying process, respectively. Fresh and dried herbs had high amounts of K, Ca, P, Mg, Fe and Al minerals. Microwave oven drying method leaded to the lowest increase in Ag, Al, B, Na, Mn, Mg and Zn values than the other drying methods. Microwave oven drying shortened the drying time, revealed the highest phenolic content and optimum colour values.

  2. Atmospheric freeze drying assisted by power ultrasound

    International Nuclear Information System (INIS)

    Santacatalina, J V; Cárcel, J A; Garcia-Perez, J V; Mulet, A; Simal, S

    2012-01-01

    Atmospheric freeze drying (AFD) is considered an alternative to vacuum freeze drying to keep the quality of fresh product. AFD allows continuous drying reducing fix and operating costs, but presents, as main disadvantage, a long drying time required. The application of power ultrasound (US) can accelerate AFD process. The main objective of the present study was to evaluate the application of power ultrasound to improve atmospheric freeze drying of carrot. For that purpose, AFD experiments were carried out with carrot cubes (10 mm side) at constant air velocity (2 ms −1 ), temperature (−10°C) and relative humidity (10%) with (20.5 kWm −3 ,USAFD) and without (AFD) ultrasonic application. A diffusion model was used in order to quantify the influence of US in drying kinetics. To evaluate the quality of dry products, rehydration capacity and textural properties were determined. The US application during AFD of carrot involved the increase of drying rate. The effective moisture diffusivity identified in USAFD was 73% higher than in AFD experiments. On the other hand, the rehydration capacity was higher in USAFD than in AFD and the hardness of dried samples did not show significant (p<0.05) differences. Therefore, US application during AFD significantly (p<0.05) sped-up the drying process preserving the quality properties of the dry product.

  3. Update on Clinical Trials in Dry Age-related Macular Degeneration

    Science.gov (United States)

    Taskintuna, Ibrahim; Elsayed, M. E. A. Abdalla; Schatz, Patrik

    2016-01-01

    This review article summarizes the most recent clinical trials for dry age-related macular degeneration (AMD), the most common cause of vision loss in the elderly in developed countries. A literature search through websites https://www.pubmed.org and https://www.clinicaltrials.gov/, both accessed no later than November 04, 2015, was performed. We identified three Phase III clinical trials that were completed over the recent 5 years Age-Related Eye Disease Study 2 (AREDS2), implantable miniature telescope and tandospirone, and several other trials targeting a variety of mechanisms including, oxidative stress, complement inhibition, visual cycle inhibition, retinal and choroidal blood flow, stem cells, gene therapy, and visual rehabilitation. To date, none of the biologically oriented therapies have resulted in improved vision. Vision improvement was reported with an implantable mini telescope. Stem cells therapy holds a potential for vision improvement. The AREDS2 formulas did not add any further reduced risk of progression to advanced AMD, compared to the original AREDS formula. Several recently discovered pathogenetic mechanisms in dry AMD have enabled development of new treatment strategies, and several of these have been tested in recent clinical trials and are currently being tested in ongoing trials. The rapid development and understanding of pathogenesis holds promise for the future. PMID:26957835

  4. Quality of dry chemistry testing.

    Science.gov (United States)

    Nakamura, H; Tatsumi, N

    1999-01-01

    Since the development of the qualitative test paper for urine in 1950s, several kinds of dry-state-reagents and their automated analyzers have been developed. "Dry chemistry" has become to be called since the report on the development of quantitative test paper for serum bilirubin with reflectometer in the end of 1960s and dry chemistry has been world widely known since the presentation on the development of multilayer film reagent for serum biochemical analytes by Eastman Kodak Co at the 10th IFCC Meeting in the end of 1970s. We have reported test menu, results in external quality assessment, merits and demerits, and the future possibilities of dry chemistry.

  5. The role of water ice clouds in the Martian hydrologic cycle

    Science.gov (United States)

    James, Philip B.

    1990-01-01

    A one-dimensional model for the seasonal cycle of water on Mars has been used to investigate the direction of the net annual transport of water on the planet and to study the possible role of water ice clouds, which are included as an independent phase in addition to ground ice and water vapor, in the cycle. The calculated seasonal and spatial patterns of occurrence of water ice clouds are qualitatively similar to the observed polar hoods, suggesting that these polar clouds are, in fact, an important component of water cycle. A residual dry ice in the south acts as a cold trap which, in the absence of sources other than the caps, will ultimately attract the water ice from the north cap; however, in the presence of a source of water in northern midlatitudes during spring, it is possible that the observed distribution of vapor and ice can be in a steady state even if a residual CO2 cap is a permanent feature of the system.

  6. Evaluation of treatment for dry eye with 2-hydroxyestradiol using a dry eye rat model.

    Science.gov (United States)

    Higuchi, Akihiro; Oonishi, Erina; Kawakita, Tetsuya; Tsubota, Kazuo

    2016-01-01

    2-hydroxy estradiol (2-OHE2) is a catechol derivative of 17β -Estradiol (E2) and it is synthesized from E2 catalyzed by cytochrome P4501A1. Previous studies reported that 2-OHE2 is a physiologic antioxidant in lipoproteins, liver microsomes, and the brain. Catechol derivatives show an anti-inflammatory effect through the inhibition of prostaglandin endoperoxide synthase (PGS) activity. Corneal erosion caused by dry eye is related to an increase in oxidative stress and inflammation in ocular surface cells. We investigated the therapeutic effects of 2-OHE2 on corneal damage caused by dry eye. Steroidal radical scavenging activity was confirmed through the electron spin resonance (ESR) method. PGS activity was measured using the COX Fluorescent Activity Assay Kit. To evaluate the effect of 2-OHE2 on the treatment for dry eye, 2-OHE2 was applied as an eye drop experiment using dry eye model rats. 2-OHE2 scavenged tyrosyl radical and possibly suppressed oxidative stress in corneal epithelial cells. In addition, 2-OHE2 inhibited PGS activity, and 2-OHE2 is probably a competitive inhibitor of PGS. Corneal PGS activity was upregulated in the dry eye group. Therefore, 2-OHE2 eye drops improved corneal erosion in dry eye model rats. 2-OHE2 is a candidate for the treatment of dry eye through the suppression of inflammation and oxidative stress in the cornea.

  7. Effect of microwave freeze drying on quality and energy supply in drying of barley grass.

    Science.gov (United States)

    Cao, Xiaohuang; Zhang, Min; Mujumdar, Arun S; Zhong, Qifeng; Wang, Zhushang

    2018-03-01

    Young barley grass leaves are well-known for containing the antioxidant substances flavonoid and chlorophyll. However, low product quality and energy efficiency exist with respect to the dehydration of barley grass leaves. To improve energy supply and the quality of barley grass, microwave heating instead of contact heat was applied for the freeze drying of barley grass at a pilot scale at 1, 1.5 and 2 W g -1 , respectively; After drying, energy supply and quality parameters of color, moisture content, chlorophyll, flavonoids, odors of dried barley grass were determined to evaluate the feasibility of the study. Microwave freeze drying (MFD) allowed a low energy supply and high contents of chlorophyll and flavonoids. A lightness value of 60.0, a green value of -11.5 and an energy supply of 0.61 kW h -1  g -1 were observed in 1.5 W g -1 MFD; whereas drying time (7 h) decreased by 42% compared to contact heating. Maximum content of flavonoid and chlorophyll was 11.7 and 12.8 g kg -1 barley grass. Microwave heating leads to an odor change larger than that for contact heating observed for the freeze drying of barley grass. MFD retains chlorophyll and flavonoids, as well as colors and odors of samples, and also decreases energy consumption in the freeze drying of barley grass. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    Science.gov (United States)

    Joseph, A. T.; va der Velde, R.; O'Neill, P. E.; Kim, E.; Lang, R. H.; Gish, T.

    2012-01-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (T(sub B))'s measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These T(sub B)'s measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly T(sub B)'s could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly T(sub B). Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, h(sub r), on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on T(sub B) simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent h(sub r) parameterization was responsible for the largest error reduction of T(sub B) simulations in the early growth cycle.

  9. Dry mouth and older people.

    Science.gov (United States)

    Thomson, W M

    2015-03-01

    Dry mouth is more common among older people than in any other age group. Appropriate definition and accurate measurement of dry mouth is critical for better understanding, monitoring and treatment of the condition. Xerostomia is the symptom(s) of dry mouth; it can be measured using methods ranging from single questions to multi-item summated rating scales. Low salivary flow (known as salivary gland hypofunction, or SGH) must be determined by measuring that flow. The relationship between SGH and xerostomia is not straightforward, but both conditions are common among older people, and they affect sufferers' day-to-day lives in important ways. The major risk factor for dry mouth is the taking of particular medications, and older people take more of those than any other age group, not only for symptomatic relief of various age-associated chronic diseases, but also in order to reduce the likelihood of complications which may arise from those conditions. The greater the number taken, the greater the associated anticholinergic burden, and the more likely it is that the individual will suffer from dry mouth. Since treating dry mouth is such a challenge for clinicians, there is a need for dentists, doctors and pharmacists to work together to prevent it occurring. © 2015 Australian Dental Association.

  10. Redox Changes During the Cell Cycle in the Embryonic Root Meristem of Arabidopsis thaliana.

    Science.gov (United States)

    de Simone, Ambra; Hubbard, Rachel; de la Torre, Natanael Viñegra; Velappan, Yazhini; Wilson, Michael; Considine, Michael J; Soppe, Wim J J; Foyer, Christine H

    2017-12-20

    The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem. Antioxid. Redox Signal. 27, 1505-1519.

  11. Dry well storage of spent LWBR fuel

    International Nuclear Information System (INIS)

    Christensen, A.B.; Fielding, K.D.

    1985-01-01

    Recently, 50 dry wells were constructed at the Idaho Chemical Processing Plant (ICPP) to temporarily store the Light Water Breeder Reactor (LWBR) fuel. Over 400 dry wells of the same design are projected to be constructed in the next 5 yr at the ICPP to store unreprocessible fuels until a permanent repository becomes available. This summary describes the LWBR fuel storage dry wells and the enhancements made over the Peach Bottom fuel and Fermi blanket dry wells that have been in use for up to 4 yr. Dry well storage at the ICPP has historically been found to be a safe and efficient method of temporary fuel storage. The LWBR dry wells should be more reliable than the original dry wells and provide data not previously available

  12. Persistence and survival of pathogens in dry foods and dry food processing environments

    NARCIS (Netherlands)

    Beuchat, L.; Komitopoulou, E.; Betts, R.; Beckers, H.; Bourdichon, F.; Joosten, H.; Fanning, S.; ter Kuile, B.

    2011-01-01

    Low-moisture foods and food ingredients, i.e., those appearing to be dry or that have been subjected to a drying process, represent important nutritional constituents of human diets. Some of these foods are naturally low in moisture, such as cereals, honey and nuts, whereas others are produced from

  13. OSCILLATING MODE OF TOPINAMBUR TUBERS DRYING

    Directory of Open Access Journals (Sweden)

    A. V. Golubkivich

    2015-01-01

    Full Text Available Specifics of a chemical composition of tubers and green material of a topinambur (Helianthus tuberosus, high efficiency and ecological plasticity, profitability of growing, biotechnological potential of use enable to identify a topinambur as a of high-energy cultures of the future. High moisture of various topinambur parts, features of the mechanism of a heat and mass transfer set a problem of search of the new drying methods promoting to increase dehydration efficiency and produce a quality product. A method of calculation of duration of the oscillating mode of topinambur tubers drying in a dense layer is worked out. The topinambur tubers cut on cubes with the side of 6 mm were taken as object of researches. Researches were conducted in the setting of various drying modes: two experiences at the oscillating mode with height of a material layer of 0.07 m and 0.17 m; and also as a check experiment was material drying at a constant temperature of the drying agent. Duration of the oscillating mode of topinambur tubers drying was calculated on their basis of received curves of changes of moisture content at various modes of drying. Estimate indicators were confirmed with experimental data. Results of determination of duration of the oscillating modes of topinambur tubers drying proved that efficiency of the oscillating modes is 18 percent higher, than at control experiment.

  14. Ultrasound-Assisted Hot Air Drying of Foods

    Science.gov (United States)

    Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique

    This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.

  15. Impact of Dry Eye Disease on Work Productivity, and Patients' Satisfaction With Over-the-Counter Dry Eye Treatments.

    Science.gov (United States)

    Nichols, Kelly K; Bacharach, Jason; Holland, Edward; Kislan, Thomas; Shettle, Lee; Lunacsek, Orsolya; Lennert, Barb; Burk, Caroline; Patel, Vaishali

    2016-06-01

    To assess the effect of dry eye disease on work productivity and performance of non-work-related activities, and patients' satisfaction with over-the-counter (OTC) dry eye treatments. In this prospective, noninterventional, cross-sectional study, conducted at 10 U.S. optometry/ophthalmology practices, 158 symptomatic dry eye patients naïve to prescription medication underwent standard dry eye diagnostic tests and completed Work Productivity and Activity Impairment (WPAI) and Ocular Surface Disease Index (OSDI) questionnaires. Use of OTC dry eye medication, and satisfaction with OTC medication and symptom relief were also assessed. On average, dry eye resulted in loss of 0.36% of work time (∼5 minutes over 7 days) and ∼30% impairment of workplace performance (presenteeism), work productivity, and non-job-related activities. Presenteeism and productivity impairment scores showed significant correlation with OSDI total (r = 0.55) and symptom domain (r = 0.50) scores, but not with dry eye clinical signs. Activity impairment score showed stronger correlation with OSDI total (r = 0.61) and symptom domain (r = 0.53) scores than with clinical signs (r ≤ 0.20). Almost 75% of patients used OTC dry eye medication. Levels of patient satisfaction with OTC medication (64.2%) and symptom relief from OTC (37.3%) were unaffected by administration frequency (≥3 vs. ≤2 times daily). Dry eye causes negligible absenteeism, but markedly reduces workplace and non-job-related performances. Impairment of work performance is more closely linked to dry eye symptoms than to clinical signs. Patients' perceptions of OTC dry eye medication tend to be more positive than their perceptions of symptom relief.

  16. Latest Apple Drying Technologies: A Review

    OpenAIRE

    ÖZDEMİR, Yasin; SAYIN, Emir Olcay; KURULTAY, Şefik

    2009-01-01

    Drying is known as one of the oldest preservation methods and can be applicable to many fruits. Sun drying of apple has been known from ancient times. However, this technique is weather-dependent and has contamination problems such as dust, soil, sand particles and insects. Hot air drying of apples has low energy efficiency and requires longer drying period. The desire to eliminate these problems, prevent quality loss, and achieve fast and effective thermal processing has resulted in an incre...

  17. Effects of Aging in Dry Eye

    Science.gov (United States)

    de Paiva, Cintia S.

    2017-01-01

    Dry eye affects millions of people worldwide and causes eye well recognized risk factors for dry eye. Anatomical and inflammation-induced age-related changes affect all components of the lacrimal gland functional unit, inclusive of lacrimal gland, conjunctiva, meibomian gland and compromise ocular surface health. There is increased evidence that inflammation plays a role in dry eye. This review will summarize the current knowledge about aging and dry eye, inclusive of lessons learned from animal models and promising therapies. PMID:28282314

  18. Dry Mouth Treatment: Tips for Controlling Dry Mouth

    Science.gov (United States)

    ... mouthwashes that contain alcohol because they can be drying. Stop all tobacco use if you smoke or ... also help your condition: Avoid sugary or acidic foods and drinks because they increase your risk of ...

  19. Drying Characteristics and Water-soluble Polysaccharides Evaluation of Kidney Shape Ganoderma lucidum Drying in Air Circulation System

    Science.gov (United States)

    Prasetyo, D. J.; Jatmiko, T. H.; Poeloengasih, C. D.; Kismurtono, M.

    2017-12-01

    In this project, drying kinetic of kidney shape Ganoderma lucidum fruiting body in air circulation system was studied. The drying experiments were conducted at 40, 50 and 60°C with air flow rate of 1.3 ms-1. Samples were weighted periodically until no change in sample weight was recorded, and then the samples were analyzed for its moisture content. Four different thin-layer mathematical models (Newton, Page, Two-term, Midilli) were used and compare to evaluate the drying curves of kidney shape G. lucidum. The water-soluble polysaccharides were evaluated in order to find the best drying temperature condition. The results indicates that Midilli model was the fittest model to describe the characteristic of kidney shape G. lucidum in the air circulation drying system and temperature of 50°C was the best drying condition to get highest value of water-soluble polysaccharides.

  20. Inert carrier drying and coating process

    International Nuclear Information System (INIS)

    1980-01-01

    An inert carrier process is described for drying radioactive (particularly low level) waste material and for incorporating the dry material into a binder matrix from which the dried material will not be leached. Experimental details, and examples of the carrier and binder materials, are given. (U.K.)

  1. Computer optimization of dry and wet/dry cooling tower systems for large fossil and nuclear power plants

    International Nuclear Information System (INIS)

    Choi, M.; Glicksman, L.R.

    1979-02-01

    This study determined the cost of dry cooling compared to the conventional cooling methods. Also, the savings by using wet/dry instead of all-dry cooling were determined. A total optimization was performed for power plants with dry cooling tower systems using metal-finned-tube heat exchangers and surface condensers. The optimization minimizes the power production cost. The program optimizes the design of the heat exchanger and its air and water flow rates. In the base case study, the method of replacing lost capacity assumes the use of gas turbines. As a result of using dry cooling towers in an 800 MWe fossil plant, the incremental costs with the use of high back pressure turbine and conventional turbine over all-wet cooling are 11 and 15%, respectively. For a 1200 MWe nuclear plant, these are 22 and 25%, respectively. Since the method of making up lost capacity depends on the situation of a utility, considerable effort has been placed on testing the effects of using different methods of replacing lost capacity at high ambient temperatures by purchased energy. The results indicate that the optimization is very sensitive to the method of making up lost capacity. It is, therefore, important to do an accurate representation of all possible methods of making up capacity loss when optimizating power plants with dry cooling towers. A solution for the problem of losing generation capability by a power plant due to the use of a dry cooling tower is to supplement the dry tower during the hours of peak ambient temperatures by a wet tower. A separate wet/dry cooling tower system with series tower arrangement was considered in this study, and proved to be an economic choice over all-dry cooling where some water is available but supplies are insufficient for a totally evaporative cooling tower

  2. Combined electrohydrodynamic (EHD) and vacuum freeze drying of shrimp

    International Nuclear Information System (INIS)

    Hu, Yucai; Huang, Qiang; Bai, Yaxiang

    2013-01-01

    To improve the drying qualities of shrimp, a combination of electrohydrodynamic (EHD) and vacuum freeze drying (FD) is examined. The drying rate, the shrinkage, the rehydration ratio, and the sensory properties including the color and trimness of the dried products under different drying methods (including combination drying of EHD and FD, EHD drying and FD drying) are measured. Compared with FD and EHD drying alone, the combined process consumes less drying time, and the product processed by combined drying displays lower shrinkage, higher rehydration rate and better sensory qualities.

  3. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method.

    Science.gov (United States)

    Wojdyło, Aneta; Figiel, Adam; Legua, Pilar; Lech, Krzysztof; Carbonell-Barrachina, Ángel A; Hernández, Francisca

    2016-09-15

    The aim of this study was to determine the effect of different dying methods, such as convective drying (CD: 50, 60, 70 °C), vacuum-microwave drying (VMD: 120, 480, 480-120 W), a combination of convective pre-drying and vacuum-microwave finish drying [(CPD (60 °C)-VMFD (480-120 W)], and freeze-drying (FD) on key quality parameters of dried jujube fruits (cv. "GAL", "MSI", and "PSI"). The parameters studied included bioactive compounds (flavan-3-ols and flavonols, identified by LC-PDA-MS, and vitamin C), antioxidant capacity (ABTS and FRAP), and sensory attributes (e.g. hardness, jujube-ID, and sweetness). The best quality of the dried product (high contents of bioactive compounds and high intensity of key sensory attributes) was found in fruits treated by FD and VMD 480-120 W. The best cultivars were "PSI" and "GAL" from the point of view of bioactive content and sensory quality, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L.) Calyces Extract Dried with Foaming Agent under Different Temperatures.

    Science.gov (United States)

    Djaeni, Mohamad; Kumoro, Andri Cahyo; Sasongko, Setia Budi; Utari, Febiani Dwi

    2018-01-01

    The utilisation of roselle ( Hibiscus sabdariffa L.) calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS). The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  5. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  6. Steam drying compared to drum drying markedly increases early phase rumen fermentability of sugar beet pulp

    DEFF Research Database (Denmark)

    Nielsen, Mette Olaf; Larsen, Kasper; Jensen, Arne Sloth

    2017-01-01

    Freshly pressed and dried sugar beet pulp was sampled from 2 different factories located within a distance of 30 km and on 4 different dates. One factory was equipped with a steam dryer and the other with a drum dryer. A recognized in vitro technique was used to establish, how the drying process...... affected rumen fermentability of the pulp, since fibrous feeds (such as sugar beet pulp) rely on microbial fermentation in the rumen to be digestible to the cow. Steam dried pulp had a remarkable >60% higher fermentability compared to drum dried pulp during the first 12(-15) hours of fermentation...... (such as pectin) and small particles as low as 6.7-13.3 hours. Future feeding trials are needed to establish exactly how much the feeding value is increased in steam dried sugar beet pulp....

  7. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles

    International Nuclear Information System (INIS)

    Crutzen, P.J.; Andreae, M.O.

    1990-01-01

    Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 10 15 grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burning affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50% of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrodenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 10 12 grams)

  8. Effects of afforestation and deforestation on the deposition, cycling and leaching of elements

    DEFF Research Database (Denmark)

    Rasmussen, L.

    1998-01-01

    forest, its input, cycling, turnover, and possible leaching is of crucial interest for forest management. The input of oxidised forms of nitrogen, together with sulphur, contributes to acidification of forest soils, but internal transformation processes, like nitrification, also contribute....... In parallel, changes in land use and management practice have contributed to changes in the cycling of elements and in soil conditions. Afforestation and deforestation can also change atmospheric dry deposition and the processes controlling the mobility of nutrients and acidifying substances. Different types...... of forest management such as choice of tree species, deforestation by clear-felling or selection forest, fertilization, liming, sludge and compost addition, etc. will influence the leaching of nutrients from forest ecosystems. Since nitrogen is assumed to be the most important macronutrient in European...

  9. The prospects for dry fuel storage

    International Nuclear Information System (INIS)

    Harris, G.G.; Elliott, D.

    1994-01-01

    Dry storage of spent nuclear fuels is one method of dealing with radioactive waste. This article reports from a one day seminar on future prospects for dry fuel storage held in November 1993. Dry storage in an inert gas or air environment in vaults or casks, is an alternative to wet storage in water-filled ponds. Both wet and dry storage form part of the Interim Storage option for radioactive waste materials, and form alternatives to reprocessing or direct disposal in a deep repository. It has become clear that a large market for dry fuel storage will exist in the future. It will therefore be necessary to ensure that the various technical, safety, commercial, legislative and political constraints associated with it can be met effectively. (UK)

  10. Nitramine Drying & Fine Grinding Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nitramine Drying and Fine Grinding Facility provides TACOM-ARDEC with a state-of-the-art facility capable of drying and grinding high explosives (e.g., RDX and...

  11. Investigation of orography impact on extreme dry spells over Greece

    Science.gov (United States)

    Oikonomou, C.; Flocas, H.; Manola, I.; Hatzaki, M.; Asimakopoulos, D. N.

    2009-04-01

    Precipitation regime over Greece is controlled by the atmospheric circulation, orography sea surface temperature distribution and land/sea interaction. Previous studies have shown that the precipitation amounts are increased in Western Greece, which is located in the upstream side of the largest mountain range of the central mainland. Furthermore, the longest dry spells were identified in south eastern part of Greece during summer and in northern Greek area during winter. The objective of this study is to investigate the impact of topography on prolonged dry periods over Greece, using the third generation hydrostatic Regional Climate Model RegCM3, which shows a noticeable improvement in the representation of the surface hydrological cycle in mountainous regions. More specifically, an attempt is made to study the distribution of prolonged dry spells during two seasons, summer of 1993 and winter of 1989, over the Greek area, under two different simulation scenarios: the first employs the real orography of the Greek area while in the second one the orography is eliminated, by transforming the models terrain code. Both simulation experiments were conducted with the high spatial resolution of 10 Km, while the MIT-Emanuel Convective Precipitation Scheme was selected for the computation of convective precipitation, as it offers more physical representation of convection compared to the other oldest schemes of RegCM. The model was firstly validated through comparisons of the model outputs with observed precipitation amount data, employing 20 stations over Greece for the two selected seasons. The validation demonstrated that the model can simulate precipitation amount quite well over the Greek area, except for the south Dodecanese Islands, where precipitation is underestimated, and the eastern continental Greece, where the daily precipitation is overestimated. For the identification of the extreme dry spells, the climatic index CDD (Maximum number of consecutive dry days

  12. New Perspectives on Dry Eye Definition and Diagnosis: A Consensus Report by the Asia Dry Eye Society.

    Science.gov (United States)

    Tsubota, Kazuo; Yokoi, Norihiko; Shimazaki, Jun; Watanabe, Hitoshi; Dogru, Murat; Yamada, Masakazu; Kinoshita, Shigeru; Kim, Hyo-Myung; Tchah, Hung-Won; Hyon, Joon Young; Yoon, Kyung-Chul; Seo, Kyoung Yul; Sun, Xuguang; Chen, Wei; Liang, Lingyi; Li, Mingwu; Liu, Zuguo

    2017-01-01

    For the last 20 years, a great amount of evidence has accumulated through epidemiological studies that most of the dry eye disease encountered in daily life, especially in video display terminal (VDT) workers, involves short tear film breakup time (TFBUT) type dry eye, a category characterized by severe symptoms but minimal clinical signs other than short TFBUT. An unstable tear film also affects the visual function, possibly due to the increase of higher order aberrations. Based on the change in the understanding of the types, symptoms, and signs of dry eye disease, the Asia Dry Eye Society agreed to the following definition of dry eye: "Dry eye is a multifactorial disease characterized by unstable tear film causing a variety of symptoms and/or visual impairment, potentially accompanied by ocular surface damage." The definition stresses instability of the tear film as well as the importance of visual impairment, highlighting an essential role for TFBUT assessment. This paper discusses the concept of Tear Film Oriented Therapy (TFOT), which evolved from the definition of dry eye, emphasizing the importance of a stable tear film. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Yield optimization in a cycled trickle-bed reactor: ethanol catalytic oxidation as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Ayude, A.; Haure, P. [INTEMA, CONICET, Mar del Plata (Argentina); Cassanello, M. [Universidad de Buenos Aires, PINMATE, Departamento de Industrias, FCEyN, Buenos Aires (Argentina); Martinez, O. [Departamento de Ingenieria Quimica, FI-UNLP-CINDECA, La Plata (Argentina)

    2012-05-15

    The effect of slow ON-OFF liquid flow modulation on the yield of consecutive reactions is investigated for oxidation of aqueous ethanol solutions using a 0.5 % Pd/Al{sub 2}O{sub 3} commercial catalyst in a laboratory trickle-bed reactor. Experiments with modulated liquid flow rate (MLFR) were performed under the same hydrodynamic conditions (degree of wetting, liquid holdup) as experiments with constant liquid flow rate (CLFR). Thus, the impact of the duration of wet and dry cycles as well as the period can be independently investigated. Depending on cycling conditions, acetaldehyde or acetic acid production is favored with MLFR compared to CLFR. Results suggest both the opportunity and challenge of finding a way to tune the cycling parameters for producing the most appropriate product. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Evaluation of dried salted pork ham and neck quality

    Directory of Open Access Journals (Sweden)

    Simona Kunová

    2015-12-01

    Full Text Available The aim of the present study was analysed chemical and physical parameters of dried salted pork ham and neck. Dry-cured meat is a traditional dry-cured product obtained after 12 - 24 months of ripening under controlled environmental conditions.  Ham and neck was salted by nitrite salt mixture during 1 week. Salted meat products were dried at 4 °C and relative humidity 85% 1 week after salting. The quality of dry-cured meat is influenced by the processing technology, for example length of drying and ripening period. The average moisture of dried salted pork ham was 63.77% and dried salted pork neck was 59.26%. The protein content was 24.87% in dried salted pork ham and significantly lower (20.51% in dried salted pork neck. The value of intramuscular fat in dried salted pork ham was 4.97% and 14.40% in dried salted pork neck. The salt content was 5.39% in dried salted pork ham and 4.83% in dried salted pork neck. The cholesterol content was 1.36 g.kg-1 in dried salted pork ham and significant lower in dried salted pork neck (0.60 g.kg-1. The value of lightness was 44.36 CIE L* in dried salted pork ham and significantly lower in dried salted pork neck (40.74 CIE L*. The pH value was 5.84 in dried salted pork ham and 5.80 in dried salted pork neck. The shear work was 9.99 kg.s-1 in dried salted pork ham and 6.34 in dried salted pork neck. The value of water activity (aw was 0.929 in dried salted pork ham and similar 0.921 in dried salted pork neck. 

  15. 7 CFR 58.248 - Nonfat dry milk.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Nonfat dry milk. 58.248 Section 58.248 Agriculture... Products Bearing Usda Official Identification § 58.248 Nonfat dry milk. (a) Nonfat dry milk in commercial....S. Standard Grade. (b) Regular nonfat dry milk in consumer size packages which bears an official...

  16. Dry mouth during cancer treatment

    Science.gov (United States)

    ... gov/ency/patientinstructions/000032.htm Dry mouth during cancer treatment To use the sharing features on this page, please enable JavaScript. Some cancer treatments and medicines can cause dry mouth. Symptoms you ...

  17. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    International Nuclear Information System (INIS)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-01-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  18. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  19. Convective, vacuum and microwave drying kinetics of mallow leaves and comparison of color and ascorbic acid values of three drying methods

    Directory of Open Access Journals (Sweden)

    Ilknur Alibas

    2014-06-01

    Full Text Available Mallow leaves (Malva sylvestris L. with initial moisture of 5.02±0.003 on dry basis (82.5% on wet basis were dried using three different drying methods, microwave, convective and vacuum. The leaves that weigh 75 g each were dried until their moisture fell down to 0.10±0.005 on dry basis (approximately 9% on wet basis. The following drying levels were used in each of the drying processes: 6.67, 8.67, 10, 11.33 W g-1 microwave power density; 50, 75, 100 and 125 °C for convective drying; and 3, 7 kPa at 50 and 75 °C for vacuum drying. Drying periods ranged from 6-10, 26-150 and 38-130 min. for microwave, convective and vacuum drying, respectively. Effective moisture diffisuvities ranged from 2.04403 10-10-3.63996 10-12 m2 s-1, 1.70182 10-11-1.10084 10-10 m2 s-1 and 1.85599 10-11-5.94559 10-10 m2 s-1 for microwave, convective and vacuum drying, respectively. According to ascorbic acid content and color parameters, the best microwave power density was found 10 W g-1 with a drying period of 6.5 min.

  20. Drying Rate and Product Quality Evaluation of Roselle (Hibiscus sabdariffa L. Calyces Extract Dried with Foaming Agent under Different Temperatures

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2018-01-01

    Full Text Available The utilisation of roselle (Hibiscus sabdariffa L. calyx as a source of anthocyanins has been explored through intensive investigations. Due to its perishable property, the transformation of roselle calyces into dried extract without reducing their quality is highly challenging. The aim of this work was to study the effect of air temperatures and relative humidity on the kinetics and product quality during drying of roselle extract foamed with ovalbumin and glycerol monostearate (GMS. The results showed that foam mat drying increased the drying rate significantly and retained the antioxidant activity and colour of roselle calyces extract. Shorter drying time was achieved when higher air temperature and/or lower relative humidity was used. Foam mat drying produced dried brilliant red roselle calyces extract with better antioxidant activity and colour qualities when compared with nonfoam mat drying. The results showed the potential for retaining the roselle calyces extract quality under suggested drying conditions.

  1. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  2. Reducing life cycle greenhouse gas emissions of corn ethanol by integrating biomass to produce heat and power at ethanol plants

    International Nuclear Information System (INIS)

    Kaliyan, Nalladurai; Morey, R. Vance; Tiffany, Douglas G.

    2011-01-01

    A life-cycle assessment (LCA) of corn ethanol was conducted to determine the reduction in the life-cycle greenhouse gas (GHG) emissions for corn ethanol compared to gasoline by integrating biomass fuels to replace fossil fuels (natural gas and grid electricity) in a U.S. Midwest dry-grind corn ethanol plant producing 0.19 hm 3 y -1 of denatured ethanol. The biomass fuels studied are corn stover and ethanol co-products [dried distillers grains with solubles (DDGS), and syrup (solubles portion of DDGS)]. The biomass conversion technologies/systems considered are process heat (PH) only systems, combined heat and power (CHP) systems, and biomass integrated gasification combined cycle (BIGCC) systems. The life-cycle GHG emission reduction for corn ethanol compared to gasoline is 38.9% for PH with natural gas, 57.7% for PH with corn stover, 79.1% for CHP with corn stover, 78.2% for IGCC with natural gas, 119.0% for BIGCC with corn stover, and 111.4% for BIGCC with syrup and stover. These GHG emission estimates do not include indirect land use change effects. GHG emission reductions for CHP, IGCC, and BIGCC include power sent to the grid which replaces electricity from coal. BIGCC results in greater reductions in GHG emissions than IGCC with natural gas because biomass is substituted for fossil fuels. In addition, underground sequestration of CO 2 gas from the ethanol plant's fermentation tank could further reduce the life-cycle GHG emission for corn ethanol by 32% compared to gasoline.

  3. EVALUATION OF DRY EYES IN DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Anshu Sharma

    2017-12-01

    Full Text Available BACKGROUND According to the National Eye Institute, dry eye is a condition in which the eye does not produce tears properly. It can also involve tears not having the right consistency or evaporating too quickly. Tears are necessary to help maintain moisture on the surface of the eye and for clear vision. Diabetes is often associated with several significant ocular conditions such as retinopathy, refractive changes, cataracts, glaucoma and macular oedema. However, one of the most common ocular complications associated with diabetes is dry eye. The aim of the study is to study the prevalence of dry eyes in diabetes mellitus and to evaluate ocular and other risk factors relevant to diabetic dry eyes. MATERIALS AND METHODS A hospital-based cross-sectional clinical study of 100 diabetic patients who presented to the Department of Ophthalmology, Santosh Medical College and Hospital, Ghaziabad, between January 2016 to June 2017 was conducted. Detailed diabetic history was recorded. Assessment of anterior segment via slit-lamp biomicroscopy was done. The examinations for dry eyes included Schirmer's test, tear breakup time, fluorescein and rose Bengal staining. RESULTS Sixty two (62% diabetic patients had dry eye. The prevalence in type I was 3% and prevalence in type II was 59%. Dry eye prevalence was maximum in those above 40 years of age. Symptoms like reduced corneal sensation (44% and meibomitis (20% were major attributable risk factors. Ocular surface damage was predominantly superficial punctate keratitis. Retinopathy was not statistically associated with the prevalence of dry eyes. CONCLUSION Diabetes and dry eye appears to be a common association. Reduction in the modifiable risk factors of dry eye is essential to reduce its prevalence. No significant statistical correlation was found between retinopathy and dry eyes. However, examination for dry eyes should be an integral part of the assessment of diabetic eye disease.

  4. 21 CFR 73.275 - Dried algae meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dried algae meal. 73.275 Section 73.275 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.275 Dried algae meal. (a) Identity. The color additive dried algae meal is a dried mixture of algae cells (genus Spongiococcum, separated from its culture broth...

  5. Emulsion type dry cleaning system

    International Nuclear Information System (INIS)

    Kohanawa, Osamu; Matsumoto, Hiroyo.

    1988-01-01

    Protective clothing against radioactive contamination used in the radiation controlled areas of nuclear plants has been washed by the same wet washing as used for underwear washing, but recently dry cleaning is getting used in place of wet washing, which generates a large quantity of laundry drain. However, it was required to use wet washing once every five to ten dry cleanings for washing protective clothing, because conventional dry cleaning is less effective in removing water-soluble soils. Therefore, in order to eliminate wet washing, and to decrease the quantity of laundry drains, the emulsion type dry cleaning system capable of removing both oil-soluble and water-soluble soils at a time has been developed. The results of developmental experiments and actual application are presented in this paper. (author)

  6. 21 CFR 160.145 - Dried egg whites.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dried egg whites. 160.145 Section 160.145 Food and... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.145 Dried egg whites. (a) The food dried egg whites, egg white solids, dried egg albumen, egg albumen solids is...

  7. Recent developments in drying of food products

    Science.gov (United States)

    Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Rama Sharath Reddy, Maddela; Reddy, Kancham Reddy Naveen Kumar

    2017-05-01

    Drying is a dehydration process to preserve agricultural products for long period usage. The most common and cheapest method is open sun drying in which the products are simply laid on ground, road, mats, roof, etc. But the open sun drying has some disadvantages like dependent on good weather, contamination by dust, birds and animals consume a considerable quantity, slow drying rate and damages due to strong winds and rain. To overcome these difficulties solar dryers are developed with closed environment for drying agricultural products effectively. To obtain good quality food with reduced energy consumption, selection of appropriate drying process and proper input parameters is essential. In recent years several researchers across the world have developed new drying systems for improving the product quality, increasing the drying rate, decreasing the energy consumption, etc. Some of the new systems are fluidized bed, vibrated fluidized bed, desiccant, microwave, vacuum, freeze, infrared, intermittent, electro hydrodynamic and hybrid dryers. In this review the most recent progress in the field of drying of agricultural food products such as new methods, new products and modeling and optimization techniques has been presented. Challenges and future directions are also highlighted. The review will be useful for new researchers entering into this ever needed and ever growing field of engineering.

  8. Radiation data input for the design of dry or semi-dry U tailings disposal

    International Nuclear Information System (INIS)

    Kvasnicka, J.

    1986-01-01

    Before discussion of design criteria for the handling of dry or semi-dry tailings, it is necessary to obtain an insight into the radiation levels associated with the tailings particles and to study the basic physical properties of dry tailings. This article presents the experimental results of assessing Ra and specific alpha-activity distribution with respect to particle size of the Ranger (RUM) and Nabarlek (QML) uranium mines dry tailings samples. The variation of Rn emanation coefficient versus particle size of dry tailings has also been measured. The nuclear-track detection technique, gamma spectrometry and alpha counting were used for the above measurements. Surface Rn flux from the hypothetical Nabarlek semi-infinite dry tailings pile is 32 Bq m -2 s -1 and the Rn flux for Ranger is 10 Bq m -2 s -1 . The theoretical exposure rates for 1 m above these hypothetical tailings piles are 0.95 microC kg -1 h -1 and 0.28 microC kg -1 h -1 , respectively. The derived air alpha-contamination limits (DAAC) for the tailings dust were calculated to be 1.2 Bq m -3 for workers and 0.034 Bq m -3 for a member of the public. The limit for workers corresponds to the air tailings dust concentration of 0.79 mg m -3 for QML tailings and 2.2 mg m -3 for RUM tailings. The DAAC limit for the public corresponds to the air tailings dust concentration of 0.022 mg m -3 for QML tailings and 0.064 mg m -3 for RUM tailings

  9. Modelling the Drying Characteristics and Kinetics of Hot Air-Drying of Unblanched Whole Red Pepper and Blanched Bitter Leaf Slices

    Directory of Open Access Journals (Sweden)

    Samuel Enahoro Agarry

    2017-01-01

    Full Text Available The objective of this study was to investigate the drying characteristics and kinetics of red pepper and bitter leaf under the influence of different drying temperatures. The drying experiments were carried out at dry bulb temperature of 35, 45, 55 and 75oC, respectively in an oven dryer. The results showed that as drying temperature increased, drying rate also increased and the drying time decreased. It was observed that un-sliced red pepper and sliced bitter leaf would dry within 2.5-12 h and 1.67-7 h, respectively at temperature ranging from 75 to 35oC. The drying of red pepper and bitter leaf was both in the constant and falling rate period. Four semi-empirical mathematical drying models (Newton, Page, Henderson and Pabis, and Logarithmic models were fitted to the experimental drying curves. The models were compared using the coefficient of determination (R^2 and the root mean square error (RMSE. The Page model has shown a better fit to the experimental drying data of red pepper and bitter leaf, respectively as relatively compared to other tested models. Moisture transport during drying was described by the application of Fick’s diffusion model and the effective moisture diffusivity was estimated. The value ranges from 15.69 to 84.79 × 10-9 m2/s and 0.294 to 1.263 × 10-9 m2/s for red pepper and bitter leaf, respectively. The Arrhenius-type relationship describes the temperature dependence of effective moisture diffusivity and was determined to be 37.11 kJ/mol and 32.86 kJ/mol for red pepper and bitter leaf, respectively. A correlation between the drying time and the heat transfer area was also developed.

  10. A drying coefficient for building materials

    DEFF Research Database (Denmark)

    Scheffler, Gregor Albrecht; Plagge, Rudolf

    2009-01-01

    coefficient is defined which can be determined based on measured drying data. The correlation of this coefficient with the water absorption and the vapour diffusion coefficient is analyzed and its additional information content is critically challenged. As result, a drying coefficient has been derived......The drying experiment is an important element of the hygrothermal characterisation of building materials. Contrary to other moisture transport experiments as the vapour diffusion and the water absorption test, it is until now not possible to derive a simple coefficient for the drying. However......, in many cases such a coefficient would be highly appreciated, e.g. in interaction of industry and research or for the distinction and selection of suitable building materials throughout design and practise. This article first highlights the importance of drying experiments for hygrothermal...

  11. Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries

    Science.gov (United States)

    Fresh blueberries were pretreated with pulsed electric fields (PEF) at 2 kV/cm and then dried at 45, 60 and 75 degrees C by conventional hot air or vacuum drying. Drying characteristics and changes in contents of moisture, anthocyanin, total phenolics, vitamin C, and antioxidant activity in the blu...

  12. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    International Nuclear Information System (INIS)

    Rupar, K.; Sanati, M.

    2003-01-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  13. Bipolar mood cycles and lunar tidal cycles.

    Science.gov (United States)

    Wehr, T A

    2018-04-01

    In 17 patients with rapid cycling bipolar disorder, time-series analyses detected synchronies between mood cycles and three lunar cycles that modulate the amplitude of the moon's semi-diurnal gravimetric tides: the 14.8-day spring-neap cycle, the 13.7-day declination cycle and the 206-day cycle of perigee-syzygies ('supermoons'). The analyses also revealed shifts among 1:2, 1:3, 2:3 and other modes of coupling of mood cycles to the two bi-weekly lunar cycles. These shifts appear to be responses to the conflicting demands of the mood cycles' being entrained simultaneously to two different bi-weekly lunar cycles with slightly different periods. Measurements of circadian rhythms in body temperature suggest a biological mechanism through which transits of one of the moon's semi-diurnal gravimetric tides might have driven the patients' bipolar cycles, by periodically entraining the circadian pacemaker to its 24.84-h rhythm and altering the pacemaker's phase-relationship to sleep in a manner that is known to cause switches from depression to mania.

  14. Freeze-drying behaviour of pasteurized whole egg

    International Nuclear Information System (INIS)

    Melike Sakin; Merve Samli; Gizem Kor, A.; Figen Kaymak-Ertekin

    2009-01-01

    Because it provides full nutritional and certain desirable functional attributes, egg products are widely used as ingredients in many food products. Dried egg is especially valuable for being stable, easily mixable and having a long shelf life. It is necessary to know the effects of drying conditions onto the moisture removal behaviour and the functional properties of the powder product, to serve the egg powder as an alternative. An experimental study was conducted to achieve an understanding of the freeze-drying behaviour of pasteurized whole egg having 24% dry solids. In order to determine the moisture removal behaviour; the percent moisture loss (w/w), the average moisture content and the drying rates were obtained, the drying curves were developed and total drying times were determined, also the movement of the dry-wet boundary between the frozen layer and the dry porous layer formed by sublimation of ice crystals were investigated during a complete process. The physical properties of pasteurized whole egg such as; colour, water activity (a w ), the morphological structure (through SEM analysis) and functional properties (foam stability and dissolubility) were determined. The net colour change (ΔE) was about 22, independent of layer thickness. The water activity decreased to 0.22 at the end of drying. The SEM images of freeze-dried and slightly milled egg powder samples at magnification levels of 500 and 1000 showed the porous structure caused by sublimation of ice crystals generated within the egg structure during air blast freezing. The dissolubility and foaming capacity of powder egg were observed to be lower compared to those of pasteurized liquid egg. (author)

  15. Effects of ascorbic acid, salt, lemon juice, and honey on drying kinetics and sensory characteristic of dried mango

    Directory of Open Access Journals (Sweden)

    E. E. Abano

    2013-01-01

    Full Text Available The effects of ascorbic acid, salt solution, lemon juice, and honey pretreatment on the drying kinetics and sensory characteristics were studied. Pretreatments used affected the effective moisture diffusivity and rehydration properties of the dried mangoes. The effective moisture diffusivity values were 2.22 × 10-10 m2/s for ascorbic acid, 1.80 × 10-10 m2/s for salt solution, 2.01 × 10-10 m2/s for lemon juice, 1.93 × 10-10 m2/s for honey pretreated mangoes, and 2.31 × 10-10 m2/s for the control slices. Pretreatments enhanced the drying rate potential of mangoes. Among the thin-layer drying models fitted to the experimental data, the Middil model gave the best fit. The ascorbic acid pretreated samples were the best while the salt solution ones were the poorest with respect to reconstitution capacity. Consumer studies for overall preference for taste, colour, texture, flavour and chewiness of the dried products revealed that there was a higher preference for honey pretreated dried samples followed by the ascorbic acid, control, lemon juice, and salt solution pretreated samples. The results demonstrate that these pretreatments can be applied to enhance the moisture transport during drying and the quality of the dried products.

  16. A full size test rig of dry and dry-wet towers

    International Nuclear Information System (INIS)

    Fesson, J.-P.

    1981-01-01

    In order to test the various systems submitted by French companies, with a view to their application to the 900 MW and 1300 MW nuclear units, the tower is divided into two parts, each permitting the evacuation of an identical thermal charge. The first part includes a cross-current wet zone in which the water flows vertically and the air horizontally, connected to a set of vertical dry batteries. The second part includes bands of packing along the counter-current system, alternating with horizontal dry exchangers [fr

  17. The Challenges of Malaysian Dry Ports Development

    Directory of Open Access Journals (Sweden)

    Jagan Jeevan

    2015-03-01

    Full Text Available This paper examines the functions and challenges of dry ports development in Malaysia through 11 face-to-face interviews with dry port stakeholders. The findings reveal that Malaysian dry ports are developed to accelerate national and international business, to activate intermodalism in the nation, to promote regional economic development and to enhance seaport competitiveness. Malaysian dry ports perform the function of transport and logistics, information processing, seaports and value-added services. Challenges facing Malaysian dry ports include insufficient railway tracks, unorganized container planning on the rail deck, highly dependent on single mode of transportation, poor recognition from the seaport community, and competition from localized seaports. This paper further indicates strategies for coping with these challenges and identifies future opportunities for Malaysian dry ports development.

  18. Dry adhesives with sensing features

    International Nuclear Information System (INIS)

    Krahn, J; Menon, C

    2013-01-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm 2 . (paper)

  19. Dry adhesives with sensing features

    Science.gov (United States)

    Krahn, J.; Menon, C.

    2013-08-01

    Geckos are capable of detecting detachment of their feet. Inspired by this basic observation, a novel functional dry adhesive is proposed, which can be used to measure the instantaneous forces and torques acting on an adhesive pad. Such a novel sensing dry adhesive could potentially be used by climbing robots to quickly realize and respond appropriately to catastrophic detachment conditions. The proposed torque and force sensing dry adhesive was fabricated by mixing Carbon Black (CB) and Polydimethylsiloxane (PDMS) to form a functionalized adhesive with mushroom caps. The addition of CB to PDMS resulted in conductive PDMS which, when under compression, tension or torque, resulted in a change in the resistance across the adhesive patch terminals. The proposed design of the functionalized dry adhesive enables distinguishing an applied torque from a compressive force in a single adhesive pad. A model based on beam theory was used to predict the change in resistance across the terminals as either a torque or compressive force was applied to the adhesive patch. Under a compressive force, the sensing dry adhesive was capable of measuring compression stresses from 0.11 Pa to 20.9 kPa. The torque measured by the adhesive patch ranged from 2.6 to 10 mN m, at which point the dry adhesives became detached. The adhesive strength was 1.75 kPa under an applied preload of 1.65 kPa for an adhesive patch with an adhesive contact area of 7.07 cm2.

  20. Drying Rate of Carbonate of Nickel

    Directory of Open Access Journals (Sweden)

    Ing. Aymara Ricardo-Riverón

    2015-11-01

    Full Text Available In the present work, the drying rate of carbonate of nickel was studied experimentally at the laboratory scale. The values of critical moisture are shown and the graphics: characteristic curve of drying rate and the moisture dependence of the time. Models ware obtained to estimate the slope of the constant - rate period and to the falling - rate period until the equilibrium humidity, in dependence of external factors: drying temperature, initial moisture and the pH of the slurry. The chemical composition of the carbonate didn't exercise effect statistically significant over the drying rate.