WorldWideScience

Sample records for dryden flight research

  1. Dryden Flight Research Center Chemical Pharmacy Program

    Science.gov (United States)

    Davis, Bette

    1997-01-01

    The Dryden Flight Research Center (DFRC) Chemical Pharmacy "Crib" is a chemical sharing system which loans chemicals to users, rather than issuing them or having each individual organization or group purchasing the chemicals. This cooperative system of sharing chemicals eliminates multiple ownership of the same chemicals and also eliminates stockpiles. Chemical management duties are eliminated for each of the participating organizations. The chemical storage issues, hazards and responsibilities are eliminated. The system also ensures safe storage of chemicals and proper disposal practices. The purpose of this program is to reduce the total releases and transfers of toxic chemicals. The initial cost of the program to DFRC was $585,000. A savings of $69,000 per year has been estimated for the Center. This savings includes the reduced costs in purchasing, disposal and chemical inventory/storage responsibilities. DFRC has chemicals stored in 47 buildings and at 289 locations. When the program is fully implemented throughout the Center, there will be three chemical locations at this facility. The benefits of this program are the elimination of chemical management duties; elimination of the hazard associated with chemical storage; elimination of stockpiles; assurance of safe storage; assurance of proper disposal practices; assurance of a safer workplace; and more accurate emissions reports.

  2. Thermal Testing Facilities and Efforts at Dryden Flight Research Center

    Science.gov (United States)

    Holguin, Andrew; Kostyk, Christopher B.

    2010-01-01

    This presentation provides the thermal testing panel discussion with an overview of the thermal test facilities at the Dryden Flight Research Center (DFRC) as well as highlights from the thermal test efforts of the past year. This presentation is a little more in-depth than the corresponding material in the center overview presentation.

  3. Six Decades of Flight Research: Dryden Flight Research Center, 1946 - 2006 [DVD

    Science.gov (United States)

    Fisher, David F.; Parcel, Steve

    2007-01-01

    This DVD contains an introduction by Center Director Kevin Peterson, two videos on the history of NASA Dryden Flight Research Center and a bibliography of NASA Dryden Flight Research Center publications from 1946 through 2006. The NASA Dryden 60th Anniversary Summary Documentary video is narrated by Michael Dorn and give a brief history of Dryden. The Six Decades of Flight Research at NASA Dryden lasts approximately 75 minutes and is broken up in six decades: 1. The Early X-Plane Era; 2. The X-15 Era; 3. The Lifting Body Era; 4. The Space Shuttle Era; 5. The High Alpha and Thrust Vectoring Era; and 6. The technology Demonstration Era. The bibliography provides citations for NASA Technical Reports and Conference Papers, Tech Briefs, Contractor Reports, UCLA Flight Systems Research Center publications and Dryden videos. Finally, a link is provided to the NASA Dryden Gallery that features video clips and photos of the many unique aircraft flown at NASA Dryden and its predecessor organizations.

  4. Dryden Flight Research Center Critical Chain Project Management Implementation

    Science.gov (United States)

    Hines, Dennis O.

    2012-01-01

    In Fiscal Year 2011 Dryden Flight Research Center (DFRC) implemented a new project management system called Critical Chain Project Management (CCPM). Recent NASA audits have found that the Dryden workforce is strained under increasing project demand and that multi-tasking has been carried to a whole new level at Dryden. It is very common to have an individual work on 10 different projects during a single pay period. Employee surveys taken at Dryden have identified work/life balance as the number one issue concerning employees. Further feedback from the employees indicated that project planning is the area needing the most improvement. In addition, employees have been encouraged to become more innovative, improve job skills, and seek ways to improve overall job efficiency. In order to deal with these challenges, DFRC management decided to adopt the CCPM system that is specifically designed to operate in a resource constrained multi-project environment. This paper will discuss in detail the rationale behind the selection of CCPM and the goals that will be achieved through this implementation. The paper will show how DFRC is tailoring the CCPM system to the flight research environment as well as laying out the implementation strategy. Results of the ongoing implementation will be discussed as well as change management challenges and organizational cultural changes. Finally this paper will present some recommendations on how this system could be used by selected NASA projects or centers.

  5. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  6. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    Science.gov (United States)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  7. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  8. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    Science.gov (United States)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  9. Design of a Mission Data Storage and Retrieval System for NASA Dryden Flight Research Center

    Science.gov (United States)

    Lux, Jessica; Downing, Bob; Sheldon, Jack

    2007-01-01

    The Western Aeronautical Test Range (WATR) at the NASA Dryden Flight Research Center (DFRC) employs the WATR Integrated Next Generation System (WINGS) for the processing and display of aeronautical flight data. This report discusses the post-mission segment of the WINGS architecture. A team designed and implemented a system for the near- and long-term storage and distribution of mission data for flight projects at DFRC, providing the user with intelligent access to data. Discussed are the legacy system, an industry survey, system operational concept, high-level system features, and initial design efforts.

  10. Heat Stress Equation Development and Usage for Dryden Flight Research Center (DFRC)

    Science.gov (United States)

    Houtas, Franzeska; Teets, Edward H., Jr.

    2012-01-01

    Heat Stress Indices are equations that integrate some or all variables (e.g. temperature, relative humidity, wind speed), directly or indirectly, to produce a number for thermal stress on humans for a particular environment. There are a large number of equations that have been developed which range from simple equations that may ignore basic factors (e.g. wind effects on thermal loading, fixed contribution from solar heating) to complex equations that attempt to incorporate all variables. Each equation is evaluated for a particular use, as well as considering the ease of use and reliability of the results. The meteorology group at the Dryden Flight Research Center has utilized and enhanced the American College of Sports Medicine equation to represent the specific environment of the Mojave Desert. The Dryden WBGT Heat Stress equation has been vetted and implemented as an automated notification to the entire facility for the safety of all personnel and visitors.

  11. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    Science.gov (United States)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  12. Investigation of seismicity and related effects at NASA Ames-Dryden Flight Research Facility, Computer Center, Edwards, California

    Science.gov (United States)

    Cousineau, R. D.; Crook, R., Jr.; Leeds, D. J.

    1985-01-01

    This report discusses a geological and seismological investigation of the NASA Ames-Dryden Flight Research Facility site at Edwards, California. Results are presented as seismic design criteria, with design values of the pertinent ground motion parameters, probability of recurrence, and recommended analogous time-history accelerograms with their corresponding spectra. The recommendations apply specifically to the Dryden site and should not be extrapolated to other sites with varying foundation and geologic conditions or different seismic environments.

  13. Dryden Aeronautical Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...

  14. Reliability Block Diagram (RBD) Analysis of NASA Dryden Flight Research Center (DFRC) Flight Termination System and Power Supply

    Science.gov (United States)

    Morehouse, Dennis V.

    2006-01-01

    In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.

  15. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  16. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    Science.gov (United States)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  17. Sonic Boom Research at NASA Dryden: Objectives and Flight Results from the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) Project

    Science.gov (United States)

    Moes, Timothy R.

    2009-01-01

    The principal objective of the Supersonics Project is to develop and validate multidisciplinary physics-based predictive design, analysis and optimization capabilities for supersonic vehicles. For aircraft, the focus will be on eliminating the efficiency, environmental and performance barriers to practical supersonic flight. Previous flight projects found that a shaped sonic boom could propagate all the way to the ground (F-5 SSBD experiment) and validated design tools for forebody shape modifications (F-5 SSBD and Quiet Spike experiments). The current project, Lift and Nozzle Change Effects on Tail Shock (LaNCETS) seeks to obtain flight data to develop and validate design tools for low-boom tail shock modifications. Attempts will be made to alter the shock structure of NASA's NF-15B TN/837 by changing the lift distribution by biasing the canard positions, changing the plume shape by under- and over-expanding the nozzles, and changing the plume shape using thrust vectoring. Additional efforts will measure resulting shocks with a probing aircraft (F-15B TN/836) and use the results to validate and update predictive tools. Preliminary flight results are presented and are available to provide truth data for developing and validating the CFD tools required to design low-boom supersonic aircraft.

  18. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  19. Flight Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The testbed served as a full-scale vehicle to test and validate adaptive flight control research addressing technical challenges involved with reducing risk to enable safe flight in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  20. Integrated flight propulsion control research results using the NASA F-15 HIDEC Flight Research Facility

    Science.gov (United States)

    Stewart, James F.

    1992-01-01

    Over the last two decades, NASA has conducted several flight research experiments in integrated flight propulsion control. Benefits have included increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. These flight programs were flown at NASA Dryden Flight Research Facility. This paper presents the basic concepts for control integration, examples of implementation, and benefits of integrated flight propulsion control systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real time, onboard optimization of engine, inlet, and flight control variables; a self repairing flight control system; and an engines only control concept for emergency control. The flight research programs and the resulting benefits are described for the F-15 research.

  1. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    Science.gov (United States)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  2. Flight Research Building (Hangar)

    Data.gov (United States)

    Federal Laboratory Consortium — The NASA Glenn Flight Research Building is located at the NASA Glenn Research Center with aircraft access to Cleveland Hopkins International Airport. The facility is...

  3. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    Science.gov (United States)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  4. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  5. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  6. Bob Meyer (right), acting deputy director of NASA Dryden, shakes hands with Les Bordelon, executive

    Science.gov (United States)

    2002-01-01

    Bob Meyer (on the right), acting deputy director of NASA's Dryden Flight Research Center, Edwards, California, shakes hands with Les Bordelon, executive director of Edwards Air Force Base. The handshake represents Dryden's acceptance of an Air Force C-20A delivered from Ramstein Air Base, Germany. The aircraft will be modified to carry equipment and experiments in support of both NASA and U.S. Air Force projects. The joint use of this aircraft is a result of the NASA Dryden/Edwards Air Force Base Alliance which shares some resources as cost-cutting measures.

  7. Update on Piloted and Un-Piloted Aircraft at NASA Dryden

    Science.gov (United States)

    DelFrate, John H.

    2007-01-01

    This viewgraph presentation reviews the NASA Dryden Flight Research Center's (DFRC) environment for testing of experimental aircraft. Included are a satellite view of the Dryden locale, and a summary of the capabilities at DFRC. It reviews the capabilites of High Altitude Platform (HAP) testing; Gulfstream III (1.)Unmanned Aerial Vehicle (UAV) synthetic aperture radar (SAR) (2) Precision Trajectory Capability Global Hawk (ACTD); ER-2; Ikhana (Predator B);

  8. Digital flight control research

    Science.gov (United States)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  9. A biased historical perspective of women in the engineering field at Dryden from 1946 to November 1992

    Science.gov (United States)

    Powers, Sheryll Goecke

    1994-02-01

    Being a woman in engineering, and in particular, being the woman with the dubious distinction of having the most years at Dryden, gives the author a long-term perspective on the women who worked in the engineering field and their working environment. The working environment for the women was influenced by two main factors. One factor was the Dryden's growth of 14 persons (2 of them women) at the end of 1946 to the present size. The other factor was the need for programming knowledge when the digital computers came into use. Women have been involved with flight research at Dryden since the days of the first transonic and supersonic airplanes. This paper uses available records, along with memory, to document the number of women in engineering at Dryden, to comment about observed trends, and to make personal observations.

  10. An Indispensable Ingredient: Flight Research and Aircraft Design

    Science.gov (United States)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  11. Dust Climatology of the NASA Dryden Flight Research Center (DFRC) in Lancaster, California, USA

    OpenAIRE

    Ashok K. Pokharel; Michael L. Kaplan

    2017-01-01

    Abstract: A 15-year (1997–2011) climatology of dust events at the NASA DFRC in Lancaster, California, USA, was performed to evaluate how the extratropical systems were associated with dust storms over this region. For this study, we collected meteorological data for Edwards Air Force Base (EAFB) in Lancaster, California, which is very close to NASA DFRC, from wunderground.com, National Centers for Environmental Prediction (NCEP)/North American Regional Reanalysis (NARR), NCEP/Hydro-meteorolog...

  12. Dust Climatology of the NASA Dryden Flight Research Center (DFRC in Lancaster, California, USA

    Directory of Open Access Journals (Sweden)

    Ashok K. Pokharel

    2017-02-01

    Full Text Available Abstract: A 15-year (1997–2011 climatology of dust events at the NASA DFRC in Lancaster, California, USA, was performed to evaluate how the extratropical systems were associated with dust storms over this region. For this study, we collected meteorological data for Edwards Air Force Base (EAFB in Lancaster, California, which is very close to NASA DFRC, from wunderground.com, National Centers for Environmental Prediction (NCEP/North American Regional Reanalysis (NARR, NCEP/Hydro-meteorological Prediction Center/National Weather Service (NWS, and Unisys analyses. We find that the dust events were associated with the development of a deep convective boundary layer, turbulence kinetic energy (TKE ≥3 J/kg, a deep unstable lapse rate layer, a wind speed above the frictional threshold wind speed necessary to ablate dust from the surface (≥7.3 m/s, a presence of a cold trough above the deep planetary boundary layer (PBL, a strong cyclonic jet, an influx of vertical sensible heat from the surrounding area, and a low volumetric soil moisture fraction <0.3. The annual mean number of dust events, their mean duration, and the unit duration per number of event for each visibility range, when binned as <11.2 km, <8 km, <4.8 km, <1.6 km, and <1 km were calculated. The visibility range values were positively correlated with the annual mean number of dust events, duration of dust events, and the ratio of duration of dust events. The percentage of the dust events by season shows that most of the dust events occurred in autumn (44.7%, followed by spring (38.3%, and equally in summer and winter with these seasons each accounting for 8.5% of events. This study also shows that the summer had the highest percentage (10% of the lowest visibility condition (<1 km followed by autumn (2%. Neither of the other two seasons—winter and spring—experienced such a low visibility condition during the entire dust events over 15 years. Winter had the highest visibility (<11.2 km percentage, which was 67% followed by spring (55%. Wind speed increasing to a value within the range of 3.6–11 m/s was typically associated with the dust events.

  13. Dust Climatology of the NASA Dryden Flight Research Center (DFRC) in Lancaster, California, USA

    National Research Council Canada - National Science Library

    Pokharel, Ashok; Kaplan, Michael

    2017-01-01

    ... data for Edwards Air Force Base (EAFB) in Lancaster, California, which is very close to NASA DFRC, from wunderground.com, National Centers for Environmental Prediction (NCEP)/North American Regio...

  14. Former Dryden pilot and NASA astronaut Neil Armstrong

    Science.gov (United States)

    1991-01-01

    Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8

  15. Thermal-structural test facilities at NASA Dryden

    Science.gov (United States)

    Deangelis, V. Michael; Anderson, Karl F.

    1992-01-01

    The National Aero-Space Plane (NASP) has renewed interest in hypersonic flight and hot-structures technology development for both the airframe and engine. The NASA Dryden Thermostructures Research Facility is a unique national facility that was designed to conduct thermal-mechanical tests on aircraft and aircraft components by simulating the flight thermal environment in the laboratory. The layout of the facility is presented, which includes descriptions of the high-bay test area, the instrumentation laboratories, the mechanical loading systems, and the state-of-the-art closed-loop thermal control system. The hot-structures test capability of the facility is emphasized by the Mach-3 thermal simulation conducted on the YF-12 airplane. The Liquid-Hydrogen Structural Test Facility, which is presently in the design phase, will provide the capability of thermally testing structures containing hydrogen.

  16. Taxi Arrival of Second SR-71 to Dryden

    Science.gov (United States)

    1990-01-01

    One of two initial U.S. Air Force SR-71A reconnaissance aircraft that was retired from operational service and loaned to NASA for high-speed research programs taxis in to the ramp on its arrival at NASA's Ames-Dryden Flight Research Facility (later Dryden Flight Research Center), Edwards, California in March 1990. Data from the SR-71 high speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the

  17. A History of Suction-Type Laminar Flow Control with Emphasis on Flight Research

    Science.gov (United States)

    Braslow, Albert L.

    1999-01-01

    Laminar-flow control is an area of aeronautical research that has a long history at NASA's Langley Research Center, Dryden Flight Research Center, their predecessor organizations, and elsewhere. In this monograph, the author, who spent much of his career at Langley working with this research, presents a history of that portion of laminar-flow technology known as active laminar-flow control, which employs suction of a small quantity of air through airplane surfaces. This important technique offers the potential for significant reduction in drag and, thereby, for large increases in range or reductions in fuel usage for aircraft. For transport aircraft, the reductions in fuel consumed as a result of laminar-flow control may equal 30 percent of present consumption. Given such potential, it is obvious that active laminar-flow control with suction is an important technology. In this study, the author covers the early history of the subject and brings the story all the way to the mid-1990s with an emphasis on flight research, much of which has occurred at Dryden. This is an important monograph that not only encapsulates a lot of history in a brief compass but also does so in language that is accessible to non-technical readers. NASA is publishing it in a format that will enable it to reach the wide audience the subject deserves.

  18. Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an

    Science.gov (United States)

    1967-01-01

    Aerial Survey of Ames Research Center - Flight Simulation Complex' Flight simulators create an authentic aircraft environment by generating the appropriate physical cues that provide the sensations of flight.

  19. Rapid development of the X-31 simulation to support flight-testing

    Science.gov (United States)

    Mackall, Dale; Norlin, Kenneth; Cohen, Dorothea; Kellogg, Gary; Schilling, Lawrence; Sheen, John

    1992-01-01

    The X-31 Enhanced Fighter Maneuverability Program has been recognized to form the International Test Organization, with the NASA Dryden Flight Research Facility (NASA-Dryden) as the responsible test organization. The two X-31 research aircraft and engineering support personnel were colocated at NASA-Dryden, with flight test operations beginning in Apr. 1992. Therefore, rapid development of a hardware-in-the-loop simulation was needed to support the flight test operations at NASA-Dryden, and to perform verification and validation of flight control software. The X-31 simulation system requirements, distributed simulation system architecture, simulation components math models to the visual system, and the advanced capabilities the X-31 simulation provides. In addition, unique software tools and the methods used to rapidly develop this simulation system will be highlighted.

  20. Development of a low-aspect ratio fin for flight research experiments

    Science.gov (United States)

    Richwine, David M.; Delfrate, John H.

    1994-01-01

    A second-generation flight test fixture, developed at NASA Dryden Flight Research Center, offers a generic testbed for aerodynamic and fluid mechanics research. The new fixture, a low-aspect ratio vertical fin shape mounted on the centerline of an F-15B aircraft lower fuselage, is designed for flight research at Mach numbers up to 2.0. The new fixture is a composite structure with a modular configuration and removable components for functional flexibility. This report describes the multidisciplinary design and analysis approach used to develop the fixture. The approach integrates conservative assumptions with simple analysis techniques to minimize the time and cost associated with its development. Presented are the principal disciplines required for this effort, which include aerodynamics, structures, stability, and operational considerations. In addition, preliminary results from the first phase of flight testing are presented. Acceptable directional stability and flow quality are documented and show agreement with predictions. Future envelope expansion activities will minimize current limitations so that the fixture can be used for a wide variety of high-speed aerodynamic and fluid mechanics research experiments.

  1. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    Science.gov (United States)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  2. NASA/RAE cooperation on a knowlede based flight status monitor

    Science.gov (United States)

    Butler, G. F.; Duke, E. L.

    1989-01-01

    As part of a US/UK cooperative aeronautical research pragram, a joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on Knowledge Based Systems was established. Under the agreement, a Flight Status Monitor Knowledge base developed at Ames-Dryden was implemented using the real-time IKBS toolkit, MUSE, which was developed in the UK under RAE sponsorship. The Flight Status Monitor is designed to provide on-line aid to the flight test engineer in the interpretation of system health and status by storing expert knowledge of system behavior in an easily accessible form. The background to the cooperation is described and the details of the Flight Status Monitor, the MUSE implementation are presented.

  3. Vision Research for Flight Simulation. Final Report.

    Science.gov (United States)

    Richards, Whitman, Ed.; Dismukes, Key, Ed.

    Based on a workshop on vision research issues in flight-training simulators held in June 1980, this report focuses on approaches for the conduct of research on what visual information is needed for simulation and how it can best be presented. An introduction gives an overview of the workshop and describes the contents of the report. Section 1…

  4. Analysis of the Dryden Wet Bulb GLobe Temperature Algorithm for White Sands Missile Range

    Science.gov (United States)

    LaQuay, Ryan Matthew

    2011-01-01

    In locations where workforce is exposed to high relative humidity and light winds, heat stress is a significant concern. Such is the case at the White Sands Missile Range in New Mexico. Heat stress is depicted by the wet bulb globe temperature, which is the official measurement used by the American Conference of Governmental Industrial Hygienists. The wet bulb globe temperature is measured by an instrument which was designed to be portable and needing routine maintenance. As an alternative form for measuring the wet bulb globe temperature, algorithms have been created to calculate the wet bulb globe temperature from basic meteorological observations. The algorithms are location dependent; therefore a specific algorithm is usually not suitable for multiple locations. Due to climatology similarities, the algorithm developed for use at the Dryden Flight Research Center was applied to data from the White Sands Missile Range. A study was performed that compared a wet bulb globe instrument to data from two Surface Atmospheric Measurement Systems that was applied to the Dryden wet bulb globe temperature algorithm. The period of study was from June to September of2009, with focus being applied from 0900 to 1800, local time. Analysis showed that the algorithm worked well, with a few exceptions. The algorithm becomes less accurate to the measurement when the dew point temperature is over 10 Celsius. Cloud cover also has a significant effect on the measured wet bulb globe temperature. The algorithm does not show red and black heat stress flags well due to shorter time scales of such events. The results of this study show that it is plausible that the Dryden Flight Research wet bulb globe temperature algorithm is compatible with the White Sands Missile Range, except for when there are increased dew point temperatures and cloud cover or precipitation. During such occasions, the wet bulb globe temperature instrument would be the preferred method of measurement. Out of the 30

  5. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  6. Former Dryden pilot and NASA astronaut Neil Armstrong being inducted into the Aerospace Walk of Hono

    Science.gov (United States)

    1991-01-01

    Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8

  7. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  8. Technology research for digital flight control

    Science.gov (United States)

    Carestia, R. A.

    1983-01-01

    The use of advanced digital systems for flight control and guidance for a specific mission is investigated. The research areas include advanced electronic system architectures, tests with the global positioning system (GPS) in a helicopter, and advanced integrated systems concept for rotorcraft. Emphasis is on a search and rescue mission, differential global positioning systems to provide a data base of performance information for navigation, and a study to determine the present usage and trends of microcomputers and microcomputer components in the avionics industries.

  9. Intersatellite communications optoelectronics research at the Goddard Space Flight Center

    Science.gov (United States)

    Krainak, Michael A.

    1992-01-01

    A review is presented of current optoelectronics research and development at the NASA Goddard Space Flight Center for high-power, high-bandwidth laser transmitters; high-bandwidth, high-sensitivity optical receivers; pointing, acquisition, and tracking components; and experimental and theoretical system modeling at the NASA Goddard Space Flight Center. Program hardware and space flight opportunities are presented.

  10. Development and flight test of an experimental maneuver autopilot for a highly maneuverable aircraft

    Science.gov (United States)

    Duke, Eugene L.; Jones, Frank P.; Roncoli, Ralph B.

    1986-01-01

    This report presents the development of an experimental flight test maneuver autopilot (FTMAP) for a highly maneuverable aircraft. The essence of this technique is the application of an autopilot to provide precise control during required flight test maneuvers. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of NASA Ames Research Center. The FTMAP is designed to increase the quantity and quality of data obtained in test flight. The technique was developed and demonstrated on the highly maneuverable aircraft technology (HiMAT) vehicle. This report describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  11. Development of a flight test maneuver autopilot for a highly maneuverable aircraft

    Science.gov (United States)

    Duke, E. L.; Jones, F. P.; Roncoli, R. B.

    1983-01-01

    This paper details the development of a flight test maneuver autopilot for a highly maneuverable aircraft. This newly developed flight test technique is being applied at the Dryden Flight Research Facility of the NASA Ames Research Center. The flight test maneuver autopilot (FTMAP) is designed to increase the quantity and quality of the data obtained in flight test. The vehicle with which it is being used is the highly maneuverable aircraft technology (HiMAT) vehicle. This paper describes the HiMAT vehicle systems, maneuver requirements, FTMAP development process, and flight results.

  12. Description of the primary flight display and flight guidance system logic in the NASA B-737 transport systems research vehicle

    Science.gov (United States)

    Knox, Charles E.

    1990-01-01

    A primary flight display format was integrated with the flight guidance and control system logic in support of various flight tests conducted with the NASA Transport Systems Research Vehicle B-737-100 airplane. The functional operation of the flight guidance mode control panel and the corresponding primary flight display formats are presented.

  13. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  14. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  15. Research in digital adaptive flight controllers

    Science.gov (United States)

    Kaufman, H.

    1976-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Both explicit controllers which directly utilize parameter identification and implicit controllers which do not require identification were considered. Extensive analytical and simulation efforts resulted in the recommendation of two explicit digital adaptive flight controllers. Interface weighted least squares estimation procedures with control logic were developed using either optimal regulator theory or with control logic based upon single stage performance indices.

  16. Flying qualities criteria and flight control design

    Science.gov (United States)

    Berry, D. T.

    1981-01-01

    Despite the application of sophisticated design methodology, newly introduced aircraft continue to suffer from basic flying qualities deficiencies. Two recent meetings, the DOD/NASA Workshop on Highly Augmented Aircraft Criteria and the NASA Dryden Flight Research Center/Air Force Flight Test Center/AIAA Pilot Induced Oscillation Workshop, addressed this problem. An overview of these meetings is provided from the point of view of the relationship between flying qualities criteria and flight control system design. Among the items discussed are flying qualities criteria development, the role of simulation, and communication between flying qualities specialists and control system designers.

  17. Aerodynamics Research Revolutionizes Truck Design

    Science.gov (United States)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  18. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    Science.gov (United States)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  19. Multi-Vehicle Cooperative Control Research at the NASA Armstrong Flight Research Center, 2000-2014

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    A brief introductory overview of multi-vehicle cooperative control research conducted at the NASA Armstrong Flight Research Center from 2000 - 2014. Both flight research projects and paper studies are included. Since 2000, AFRC has been almost continuously pursuing research in the areas of formation flight for drag reduction and automated cooperative trajectories. An overview of results is given, including flight experiments done on the FA-18 and with the C-17. Other multi-vehicle cooperative research is discussed, including small UAV swarming projects and automated aerial refueling.

  20. Civil helicopter flight research. [for CH-53 helicopter

    Science.gov (United States)

    Snyder, W. J.; Schoultz, M. B.

    1976-01-01

    The paper presents a description of the NASA CH-53 Civil Helicopter Research Aircraft and discusses preliminary results of the aircraft flight research performed to evaluate factors and requirements for future helicopter transport operations. The CH-53 equipped with a 16-seat airline-type cabin and instrumented for flight research studies in noise, vibration, handling qualities, passenger acceptance, fuel utilization, terminal area maneuvers, and gust response. Predicted fuel usage for typical short-haul missions is compared with actual fuel use. Pilot ratings for an IFR handling quality task for three levels of stability augmentation are presented, and the effects of internal noise, vibration, and motion on passenger acceptance are discussed. Future planned CH-53 flight research within the Civil Helicopter Technology Program is discussed.

  1. Simulation and experimental research on line throwing rocket with flight

    Institute of Scientific and Technical Information of China (English)

    Wen-bin GU; Ming LU; Jian-qing LIU; Qin-xing DONG; Zhen-xiong WANG; Jiang-hai CHEN

    2014-01-01

    The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane’s method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basically agreed with the test data, which shows that the flight motion of the line throwing rocket can be predicted by the dynamic model. A theoretical model and guide for the further research on the disturbance of rope and the guidance, flight control of line throwing rocket are provided by the dynamic modeling.

  2. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  3. The 1991 research and technology report, Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald (Editor); Ottenstein, Howard (Editor); Montgomery, Harry (Editor); Truszkowski, Walter (Editor); Frost, Kenneth (Editor); Sullivan, Walter (Editor); Boyle, Charles (Editor)

    1991-01-01

    The 1991 Research and Technology Report for Goddard Space Flight Center is presented. Research covered areas such as (1) earth sciences including upper atmosphere, lower atmosphere, oceans, hydrology, and global studies; (2) space sciences including solar studies, planetary studies, Astro-1, gamma ray investigations, and astrophysics; (3) flight projects; (4) engineering including robotics, mechanical engineering, electronics, imaging and optics, thermal and cryogenic studies, and balloons; and (5) ground systems, networks, and communications including data and networks, TDRSS, mission planning and scheduling, and software development and test.

  4. Flight assessment of a large supersonic drone aircraft for research use

    Science.gov (United States)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  5. Rationality and pluralism: the selected works of Windy Dryden

    OpenAIRE

    Dryden, Windy

    2013-01-01

    Leading psychologist, lecturer, and author Windy Dryden has compiled his most valuable writings on Rational Emotive Behaviour Therapy from the last thirty five years. This collection reveals the thinking, concepts and practical experience that have made Dryden one of the most respected and cited REBT authorities of our time. Dryden has authored or edited over 195 books and established Europe's first Masters in REBT. While his primary allegiance remains with REBT, he has published extensively ...

  6. Two NASA Dryden F/A-18's land on the Edwards Air Force Base runway after completion of an Autonomous

    Science.gov (United States)

    2001-01-01

    Two NASA Dryden F/A-18's land on the Edwards Air Force Base runway after completion of an Autonomous Formation Flight (AFF) mission. The goal of the AFF project is to demonstrate sustained 10 percent fuel savings by the trailing aircraft during cruise flight. Data suggests savings as high as 15 percent are achievable.

  7. A web service based tool to plan atmospheric research flights

    Directory of Open Access Journals (Sweden)

    M. Rautenhaus

    2011-09-01

    Full Text Available We present a web service based tool for the planning of atmospheric research flights. The tool provides online access to horizontal maps and vertical cross-sections of numerical weather prediction data and in particular allows the interactive design of a flight route in direct relation to the predictions. It thereby fills a crucial gap in the set of currently available tools for using data from numerical atmospheric models for research flight planning. A distinct feature of the tool is its lightweight, web service based architecture, requiring only commodity hardware and a basic Internet connection for deployment. Access to visualisations of prediction data is achieved by using an extended version of the Open Geospatial Consortium Web Map Service (WMS standard, a technology that has gained increased attention in meteorology in recent years. With the WMS approach, we avoid the transfer of large forecast model output datasets while enabling on-demand generated visualisations of the predictions at campaign sites with limited Internet bandwidth. Usage of the Web Map Service standard also enables access to third-party sources of georeferenced data. We have implemented the software using the open-source programming language Python. In the present article, we describe the architecture of the tool. As an example application, we discuss a case study research flight planned for the scenario of the 2010 Eyjafjalla volcano eruption. Usage and implementation details are provided as Supplement.

  8. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  9. Two Rebt Therapists and One Client: Windy Dryden Transcript

    OpenAIRE

    Dryden, Windy

    2010-01-01

    In the summer of 1994, two of the most published authors in the field of Rational Emotive Behavior Therapy (REBT), Albert Ellis and Windy Dryden, each saw the same client. The transcript of Windy Dryden is presented with slight modifications to protect the confidentiality of the client and those in the client’s life.

  10. A Meta-Analysis of the Flight Simulator Training Research

    Science.gov (United States)

    1990-08-01

    some tasks. These results are inconsistent with findings from a recenu review of the flight simulation evaluation literature by Pfeiffer and Horsy ...1987), There are several obvious differences between the Pfeiffer and Horsy (1987) review and this review that help to explain theme contradictory...findings. First, Pfieffer and Horsy used as their research effect size metric, a transfer effectiveness ratio (see also Hays & Singer, 1989, pp. 133-134

  11. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  12. The oculometer - A new approach to flight management research.

    Science.gov (United States)

    Spady, A. A., Jr.; Waller, M. C.

    1973-01-01

    For the first time researchers have an operational, nonintrusive instrument for determining a pilot's eye-point-of-regard without encumbering the pilot or introducing other artifacts into the simulation of flight experience. The instrument (the oculometer developed for NASA by Honeywell, Inc.) produces data in a form appropriate for online monitoring and rapid analysis using state-of-the-art display and computer technology. The type and accuracy of data obtained and the potential use of the oculometer as a research and training tool will be discussed.

  13. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  14. Solar-powered Gossamer Penguin in flight

    Science.gov (United States)

    1979-01-01

    Gossamer Penguin in flight above Rogers Dry Lakebed at Edwards, California, showing the solar panel perpendicular to the wing and facing the sun. Background The first flight of a solar-powered aircraft took place on November 4, 1974, when the remotely controlled Sunrise II, designed by Robert J. Boucher of AstroFlight, Inc., flew following a launch from a catapult. Following this event, AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) took on a more ambitious project to design a human-piloted, solar-powered aircraft. The firm initially took the human-powered Gossamer Albatross II and scaled it down to three-quarters of its previous size for solar-powered flight with a human pilot controlling it. This was more easily done because in early 1980 the Gossamer Albatross had participated in a flight research program at NASA Dryden in a program conducted jointly by the Langley and Dryden research centers. Some of the flights were conducted using a small electric motor for power. Gossamer Penguin The scaled-down aircraft was designated the Gossamer Penguin. It had a 71-foot wingspan compared with the 96-foot span of the Gossamer Albatross. Weighing only 68 pounds without a pilot, it had a low power requirement and thus was an excellent test bed for solar power. AstroFlight, Inc., of Venice, Calif., provided the power plant for the Gossamer Penguin, an Astro-40 electric motor. Robert Boucher, designer of the Sunrise II, served as a key consultant for both this aircraft and the Solar Challenger. The power source for the initial flights of the Gossamer Penguin consisted of 28 nickel-cadmium batteries, replaced for the solar-powered flights by a panel of 3,920 solar cells capable of producing 541 Watts of power. The battery-powered flights took place at Shafter Airport near Bakersfield, Calif. Dr. Paul MacCready's son Marshall, who was 13 years old and weighed roughly 80 pounds, served as the initial pilot for these flights to

  15. Solar-powered Gossamer Penguin in flight

    Science.gov (United States)

    1979-01-01

    Gossamer Penguin in flight above Rogers Dry Lakebed at Edwards, California, showing the solar panel perpendicular to the wing and facing the sun. Background The first flight of a solar-powered aircraft took place on November 4, 1974, when the remotely controlled Sunrise II, designed by Robert J. Boucher of AstroFlight, Inc., flew following a launch from a catapult. Following this event, AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) took on a more ambitious project to design a human-piloted, solar-powered aircraft. The firm initially took the human-powered Gossamer Albatross II and scaled it down to three-quarters of its previous size for solar-powered flight with a human pilot controlling it. This was more easily done because in early 1980 the Gossamer Albatross had participated in a flight research program at NASA Dryden in a program conducted jointly by the Langley and Dryden research centers. Some of the flights were conducted using a small electric motor for power. Gossamer Penguin The scaled-down aircraft was designated the Gossamer Penguin. It had a 71-foot wingspan compared with the 96-foot span of the Gossamer Albatross. Weighing only 68 pounds without a pilot, it had a low power requirement and thus was an excellent test bed for solar power. AstroFlight, Inc., of Venice, Calif., provided the power plant for the Gossamer Penguin, an Astro-40 electric motor. Robert Boucher, designer of the Sunrise II, served as a key consultant for both this aircraft and the Solar Challenger. The power source for the initial flights of the Gossamer Penguin consisted of 28 nickel-cadmium batteries, replaced for the solar-powered flights by a panel of 3,920 solar cells capable of producing 541 Watts of power. The battery-powered flights took place at Shafter Airport near Bakersfield, Calif. Dr. Paul MacCready's son Marshall, who was 13 years old and weighed roughly 80 pounds, served as the initial pilot for these flights to

  16. Eclipse - tow flight closeup and release

    Science.gov (United States)

    1998-01-01

    This clip, running 15 seconds in length, shows the QF-106 'Delta Dart' gear down, with the tow rope secured to the attachment point above the aircraft nose. First there is a view looking back from the C-141A, then looking forward from the nose of the QF-106, and finally a shot of the aircraft being released from the tow rope. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate a reusable tow launch vehicle concept developed by KST. Kelly Space and Technology hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed

  17. Inverse time-of-flight spectrometer for beam plasma research

    Energy Technology Data Exchange (ETDEWEB)

    Yushkov, Yu. G., E-mail: yuyushkov@gmail.com; Zolotukhin, D. B.; Tyunkov, A. V. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Oks, E. M. [Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Ave., Tomsk 634050 (Russian Federation); Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation); Savkin, K. P. [Institute of High Current Electronics SB RAS, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  18. The Southwest Research Institute's SWUIS-A digital imaging system was installed on the instrument pa

    Science.gov (United States)

    2002-01-01

    The Southwest Research Institute's SWUIS-A digital imaging system, including a sophisticated Xybion camera and associated control equipment, was installed on the instrument panel of a NASA Dryden F/A-18B for a series of astronomy flights to search for tiny vulcanoids (asteroids) that may be circling between the orbit of Mercury and the sun.

  19. An Overview of Flight Test Results for a Formation Flight Autopilot

    Science.gov (United States)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  20. Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing

    Science.gov (United States)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2005-01-01

    The adaptation of a proven wind tunnel test technique, known as Videogrammetry, to flight testing of full-scale vehicles is presented. A description is presented of the technique used at NASA's Dryden Flight Research Center for the measurement of the change in wing twist and deflection of an F/A-18 research aircraft as a function of both time and aerodynamic load. Requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the flight-testing technique and differences compared to wind tunnel testing are given. Measurement and operational comparisons to an older in-flight system known as the Flight Deflection Measurement System (FDMS) are presented.

  1. DAST Being Calibrated for Flight in Hangar

    Science.gov (United States)

    1982-01-01

    DAST-2, a modified BQM-34 Firebee II drone, undergoes calibration in a hangar at the NASA Dryden Flight Research Center. After the crash of the first DAST vehicle, project personnel fitted a second Firebee II (serial # 72-1558) with the rebuilt ARW-1 (ARW-1R) wing. The DAST-2 made a captive flight aboard the B-52 on October 29, 1982, followed by a free flight on November 3, 1982. During January and February of 1983, three launch attempts from the B-52 had to be aborted due to various problems. Following this, the project changed the launch aircraft to a DC-130A. Two captive flights occurred in May 1983. The first launch attempt from the DC-130 took place on June 1, 1983. The mothership released the DAST-2, but the recovery system immediately fired without being commanded. The parachute then disconnected from the vehicle, and the DAST-2 crashed into a farm field near Harper Dry Lake. Wags called this the 'Alfalfa Field Impact Test.' These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and

  2. Flow and structure deformation research of a composite glider in flight conditions

    OpenAIRE

    Bakunowicz, Jerzy; Boden, Fritz; Groot, Klaus de; Meyer, Jörg Brüne; Meyer, Ralf; Rzucidło, Paweł; Smusz, Robert; Szewczyk, Mariusz; Szumski, Marek

    2015-01-01

    The gliders exemplify a rare subject of flight test campaigns other than standard certification trials. Therefore, not many examples of research activities may be found worldwide. Nevertheless, the gliders neither have advanced flight controls, nor cruise hypersonic, flight testing might encounter barriers to break. The paper presents one of international measurement campaigns performed within the AIM² (Advanced In-Flight Measurement Techniques 2), the collaborative project co-funded by the E...

  3. Research requirements for a real-time flight measurements and data analysis system for subsonic transport high-lift research

    Science.gov (United States)

    Whitehead, Julia H.; Harris, Franklin K.; Lytle, Carroll D.

    1993-01-01

    A multiphased research program to obtain detailed flow characteristics on a multielement high-lift flap system is being conducted on the Transport Systems Research Vehicle (B737-100 aircraft) at NASA Langley Research Center. Upcoming flight tests have required the development of a highly capable and flexible flight measurement and data analysis instrumentation system. This instrumentation system will be more comprehensive than any of the systems used on previous high-lift flight experiment at NASA Langley. The system will provide the researcher near-real-time information for decision making needed to modify a flight test in order to further examine unexpected flow conditions. This paper presents the research requirements and instrumentation design concept for an upcoming flight experiment for the subsonic transport high-lift research program. The flight experiment objectives, the measurement requirements, the data acquisition system, and the onboard data analysis and display capabilities are described.

  4. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    Science.gov (United States)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  5. Operations Research Flight Ground Service Education/Outreach

    Science.gov (United States)

    Smith, Scott M.

    2011-01-01

    This viewgraph presentation describes a nutritional biochemistry assessment of astronauts in preflight, in-flight, and post-flight operations. In-flight collections of blood and urine samples from astronauts to test the effects of Vitamin K, Pro K, Vitamin D, Omega-3 Fatty Acids, Iron, and Sodium in spaceflight is shown. A demonstration of a 1-carbon metabolism pathway that determines the existence of enzymes and polymorphisms is also presented.

  6. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    Science.gov (United States)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  7. Design and Testing of Flight Control Laws on the RASCAL Research Helicopter

    Science.gov (United States)

    Frost, Chad R.; Hindson, William S.; Moralez. Ernesto, III; Tucker, George E.; Dryfoos, James B.

    2001-01-01

    Two unique sets of flight control laws were designed, tested and flown on the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A Black Hawk helicopter. The first set of control laws used a simple rate feedback scheme, intended to facilitate the first flight and subsequent flight qualification of the RASCAL research flight control system. The second set of control laws comprised a more sophisticated model-following architecture. Both sets of flight control laws were developed and tested extensively using desktop-to-flight modeling, analysis, and simulation tools. Flight test data matched the model predicted responses well, providing both evidence and confidence that future flight control development for RASCAL will be efficient and accurate.

  8. Research and technology, fiscal year 1986, Marshall Space Flight Center

    Science.gov (United States)

    1986-01-01

    The Marshall Space Flight Center is continuing its vigorous efforts in space-related research and technology. Extensive activities in advanced studies have led to the approval of the Orbital Maneuvering Vehicle as a new start. Significant progress was made in definition studies of liquid rocket engine systems for future space transportation needs and the conceptualization of advanced laucnch vehicles. The space systems definition studies have brought the Advanced X-ray Astrophysics Facility and Gravity Probe-B to a high degree of maturity. Both are ready for project implementation. Also discussed include significant advances in low gravity sciences, solar terrestrial physics, high energy astrophysics, atmospheric sciences, propulsion systems, and on the critical element of the Space Shuttle Main Engine in particular. The goals of improving the productivity of high-cost repetitive operations on reusable transportation systems, and extending the useful life of such systems are examined. The research and technology highlighted provides a foundation for progress on the Hubble Space Telescope, the Space Station, all elements of the Space Transportation System, and the many other projects assigned to this Center.

  9. Simulation and Flight Evaluation of a Parameter Estimation Input Design Method for Hybrid-Wing-Body Aircraft

    Science.gov (United States)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2010-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will make use of distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. Research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique and validating this technique through simulation and flight test of the X-48B aircraft. The X-48B aircraft is an 8.5 percent-scale hybrid wing body aircraft demonstrator designed by The Boeing Company (Chicago, Illinois, USA), built by Cranfield Aerospace Limited (Cranfield, Bedford, United Kingdom) and flight tested at the National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California, USA). Based on data from flight test maneuvers performed at Dryden Flight Research Center, aerodynamic parameter estimation was performed using linear regression and output error techniques. An input design technique that uses temporal separation for de-correlation of control surfaces is proposed, and simulation and flight test results are compared with the aerodynamic database. This paper will present a method to determine individual control surface aerodynamic derivatives.

  10. DC-8 being pushed out of the Arena Arctica hangar in Kiruna, Sweden for the second flight of the SAG

    Science.gov (United States)

    2000-01-01

    This photo shows NASA's DC-8 being pushed out of the Arena Arctica hangar in Kiruna, Sweden for the second flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE). One of Dryden's high-flying ER-2 Airborne Science aircraft, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, 'Arena Arctica' housed the instrumented aircraft and the scientists. Scientists observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew science collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. 'The collaborative campaign will provide an immense new body of information about the Arctic stratosphere,' said program scientist Dr. Michael Kurylo, NASA Headquarters. 'Our understanding of the Earth's ozone will be greatly enhanced by this research.' NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  11. Real-time flight test analysis and display techniques for the X-29A aircraft

    Science.gov (United States)

    Hicks, John W.; Petersen, Kevin L.

    1989-01-01

    The X-29A advanced technology demonstrator flight envelope expansion program and the subsequent flight research phase gave impetus to the development of several innovative real-time analysis and display techniques. These new techniques produced significant improvements in flight test productivity, flight research capabilities, and flight safety. These techniques include real-time measurement and display of in-flight structural loads, dynamic structural mode frequency and damping, flight control system dynamic stability and control response, aeroperformance drag polars, and aircraft specific excess power. Several of these analysis techniques also provided for direct comparisons of flight-measured results with analytical predictions. The aeroperformance technique was made possible by the concurrent development of a new simplified in-flight net thrust computation method. To achieve these levels of on-line flight test analysis, integration of ground and airborne systems was required. The capability of NASA Ames Research Center, Dryden Flight Research Facility's Western Aeronautical Test Range was a key factor to enable implementation of these methods.

  12. Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs

    Science.gov (United States)

    Turner, Wlat

    2011-01-01

    With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments

  13. Moments of Inertia: Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  14. Moments of Inertia - Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID)

    Science.gov (United States)

    Haro, Helida C.

    2010-01-01

    The objective of this research effort is to determine the most appropriate, cost efficient, and effective method to utilize for finding moments of inertia for the Uninhabited Aerial Vehicle (UAV) Dryden Remotely Operated Integrated Drone (DROID). A moment is a measure of the body's tendency to turn about its center of gravity (CG) and inertia is the resistance of a body to changes in its momentum. Therefore, the moment of inertia (MOI) is a body's resistance to change in rotation about its CG. The inertial characteristics of an UAV have direct consequences on aerodynamics, propulsion, structures, and control. Therefore, it is imperative to determine the precise inertial characteristics of the DROID.

  15. Marshall Space Flight Center Research and Technology Report 2016

    Science.gov (United States)

    Tinker, M. L.; Abney, M. B. (Compiler); Reynolds, D. W. (Compiler); Morris, H. C. (Compiler)

    2017-01-01

    Marshall Space Flight Center is essential to human space exploration and our work is a catalyst for ongoing technological development. As we address the challenges facing human deep space exploration, we advance new technologies and applications here on Earth, expand scientific knowledge and discovery, create new economic opportunities, and continue to lead global space exploration.

  16. Configuration management issues and objectives for a real-time research flight test support facility

    Science.gov (United States)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  17. Design, analysis and control of large transports so that control of engine thrust can be used as a back-up of the primary flight controls. Ph.D. Thesis

    Science.gov (United States)

    Roskam, Jan; Ackers, Deane E.; Gerren, Donna S.

    1995-01-01

    A propulsion controlled aircraft (PCA) system has been developed at NASA Dryden Flight Research Center at Edwards Air Force Base, California, to provide safe, emergency landing capability should the primary flight control system of the aircraft fail. As a result of the successful PCA work being done at NASA Dryden, this project investigated the possibility of incorporating the PCA system as a backup flight control system in the design of a large, ultra-high capacity megatransport in such a way that flight path control using only the engines is not only possible, but meets MIL-Spec Level 1 or Level 2 handling quality requirements. An 800 passenger megatransport aircraft was designed and programmed into the NASA Dryden simulator. Many different analysis methods were used to evaluate the flying qualities of the megatransport while using engine thrust for flight path control, including: (1) Bode and root locus plot analysis to evaluate the frequency and damping ratio response of the megatransport; (2) analysis of actual simulator strip chart recordings to evaluate the time history response of the megatransport; and (3) analysis of Cooper-Harper pilot ratings by two NaSA test pilots.

  18. Using ATCOM to enhance long-range imagery collected by NASA's flight test tracking cameras at Armstrong Flight Research Center

    Science.gov (United States)

    Paolini, Aaron; Tow, David; Kelmelis, Eric

    2014-06-01

    Located at Edwards Air Force Base, Armstrong Flight Research Center (AFRC) is NASA's premier site for aeronautical research and operates some of the most advanced aircraft in the world. As such, flight tests for advanced manned and unmanned aircraft are regularly performed there. All such tests are tracked through advanced electro-optic imaging systems to monitor the flight status in real-time and to archive the data for later analysis. This necessitates the collection of imagery from long-range camera systems of fast moving targets from a significant distance away. Such imagery is severely degraded due to the atmospheric turbulence between the camera and the object of interest. The result is imagery that becomes blurred and suffers a substantial reduction in contrast, causing significant detail in the video to be lost. In this paper, we discuss the image processing techniques located in the ATCOM software, which uses a multi-frame method to compensate for the distortions caused by the turbulence.

  19. A review of critical in-flight events research methodology

    Science.gov (United States)

    Giffin, W. C.; Rockwell, T. H.; Smith, P. E.

    1985-01-01

    Pilot's cognitive responses to critical in-flight events (CIFE's) were investigated, using pilots, who had on the average about 2540 flight hours each, in four experiments: (1) full-mission simulation in a general aviation trainer, (2) paper and pencil CIFE tests, (3) interactive computer-aided scenario testing, and (4) verbal protocols in fault diagnosis tasks. The results of both computer and paper and pencil tests showed only 50 percent efficiency in correct diagnosis of critical events. The efficiency in arriving at a diagnosis was also low: over 20 inquiries were made for 21 percent of the scenarios diagnosed. The information-seeking pattern was random, with frequent retracing over old inquiries. The measures for developing improved cognitive skills for CIFE's are discussed.

  20. An All Electronic, Adaptive, Focusing Schlieren System for Flight Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This is a proposal to develop an electronic, focusing schlieren system for flight research based on electronic cameras and spatial light modulators as dynamic...

  1. Scaled Model Technology for Flight Research of General Aviation Aircraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our proposed future Phase II activities are aimed at developing a scientifically based "tool box" for flight research using scaled models. These tools will be of...

  2. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Science.gov (United States)

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  3. George C. Marshall Space Flight Center Research and Technology Report 2014

    Science.gov (United States)

    Keys, A. S. (Compiler); Tinker, M. L. (Compiler); Sivak, A. D. (Compiler)

    2015-01-01

    Many of NASA's missions would not be possible if it were not for the investments made in research advancements and technology development efforts. The technologies developed at Marshall Space Flight Center contribute to NASA's strategic array of missions through technology development and accomplishments. The scientists, researchers, and technologists of Marshall Space Flight Center who are working these enabling technology efforts are facilitating NASA's ability to fulfill the ambitious goals of innovation, exploration, and discovery.

  4. Flight investigation of piloting techniques and crosswind limitations using a research type crosswind landing gear

    Science.gov (United States)

    Fisher, B. D.; Deal, P. L.; Champine, R. A.; Patton, J. M., Jr.

    1979-01-01

    A research-type crosswind landing gear was tested in a flight program which used a light STOL transport in strong crosswind conditions. The research-type crosswind landing gear used enabled the airplane to land to crosswinds up to a magnitude of 25 to 30 knots. Three modes of landing-gear operation were investigated: preset, automatic, and castor (passive self-alignment). Actual test data and histograms are given for the 195 'visual flight rules' crosswind landings made.

  5. Propulsion Control and Health Management (PCHM) Technology for Flight Test on the C-17 T-1 Aircraft

    Science.gov (United States)

    Simon, Donald L.; Garg, Sanjay; Venti, Michael

    2004-01-01

    The C-I 7 T-l Globemaster III is an Air Force flight research vehicle located at Edwards Air Force Base. NASA Dryden and the C-17 System Program Office have entered into a Memorandum of Agreement to permit NASA the use of the C-I 7 T-I to conduct flight research on a mutually coordinated schedule. The C-17 Propulsion Control and Health Management (PCHM) Working Group was formed in order to foster discussion and coordinate planning amongst the various government agencies conducting PCHM research with a potential need for flight testing, and to communicate to the PCHM community the capabilities of the C-17 T-l aircraft to support such flight testing. This paper documents the output of this Working Group, including a summary of the candidate PCHM technologies identified and their associated benefits relative to NASA goals and objectives.

  6. DAST in Flight Showing Diverging Wingtip Oscillations

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. In this view of DAST-1 (Serial # 72-1557), taken on June 12, 1980, severe wingtip flutter is visible. Moments later, the right wing failed catastrophically and the vehicle crashed near Cuddeback Dry Lake. Before the drone was lost, it had made two captive and two free flights. Its first free flight, on October 2, 1979, was cut short by an uplink receiver failure. The drone was caught in midair by an HH-3 helicopter. The second free flight, on March 12, 1980, was successful, ending in a midair recovery. The third free flight, made on June 12, was to expand the flutter envelope. All of these missions launched from the NASA B-52. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than

  7. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Gilligan, Eric T.; Wall, John H.; Orr, Jeb S.; Miller, Christopher J.; Hanson, Curtis E.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures.

  8. The development of an airborne information management system for flight test

    Science.gov (United States)

    Bever, Glenn A.

    1992-01-01

    An airborne information management system is being developed at the NASA Dryden Flight Research Facility. This system will improve the state of the art in management data acquisition on-board research aircraft. The design centers around highly distributable, high-speed microprocessors that allow data compression, digital filtering, and real-time analysis. This paper describes the areas of applicability, approach to developing the system, potential for trouble areas, and reasons for this development activity. System architecture (including the salient points of what makes it unique), design philosophy, and tradeoff issues are also discussed.

  9. Propulsion controlled aircraft research

    Science.gov (United States)

    Fullerton, C. Gordon

    1993-01-01

    The NASA Dryden Flight Research Facility has been conducting flight, ground simulator, and analytical studies to investigate the use of thrust modulation on multi-engine aircraft for emergency flight control. Two general methods of engine only control have been studied; manual manipulation of the throttles by the pilot, and augmented control where a computer commands thrust levels in response to pilot attitude inputs and aircraft motion feedbacks. This latter method is referred to as the Propulsion Controlled Aircraft (PCA) System. A wide variety of aircraft have been investigated. Simulation studies have included the B720, F-15, B727, B747 and MD-11. A look at manual control has been done in actual flight on the F15, T-38, B747, Lear 25, T-39, MD-11 and PA-30 Aircraft. The only inflight trial of the augmented (PCA) concept has been on an F15, the results of which will be presented below.

  10. Development of a Multi-Disciplinary Aerothermostructural Model Applicable to Hypersonic Flight

    Science.gov (United States)

    Kostyk, Chris; Risch, Tim

    2013-01-01

    The harsh and complex hypersonic flight environment has driven design and analysis improvements for many years. One of the defining characteristics of hypersonic flight is the coupled, multi-disciplinary nature of the dominant physics. In an effect to examine some of the multi-disciplinary problems associated with hypersonic flight engineers at the NASA Dryden Flight Research Center developed a non-linear 6 degrees-of-freedom, full vehicle simulation that includes the necessary model capabilities: aerothermal heating, ablation, and thermal stress solutions. Development of the tool and results for some investigations will be presented. Requirements and improvements for future work will also be reviewed. The results of the work emphasize the need for a coupled, multi-disciplinary analysis to provide accurate

  11. Paresev on lakebed with Mercury astronaut Gus Grissom and Dryden test pilot Milt Thompson

    Science.gov (United States)

    1962-01-01

    NASA Flight Research Center Paresev 1-A with Mercury Astronaut Gus Grissom (left) and NASA test pilot Milton Thompson. Do you suppose they are wondering if all those clouds will mean a canceled flight?

  12. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    Science.gov (United States)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  13. Pathfinder - flight preparation on lakebed

    Science.gov (United States)

    1995-01-01

    AeroVironment, Inc., crew members prepare the Pathfinder solar-powered aircraft for its first flight on Rogers Dry Lake at NASA's Dryden Flight Research Center, Edwards, California, after its configuration was shanged from 8 electric motors to 6. Bob Curtin of AeroVironment is in the foreground of the photo. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  14. Research on flight stability performance of rotor aircraft based on visual servo control method

    Science.gov (United States)

    Yu, Yanan; Chen, Jing

    2016-11-01

    control method based on visual servo feedback is proposed, which is used to improve the attitude of a quad-rotor aircraft and to enhance its flight stability. Ground target images are obtained by a visual platform fixed on aircraft. Scale invariant feature transform (SIFT) algorism is used to extract image feature information. According to the image characteristic analysis, fast motion estimation is completed and used as an input signal of PID flight control system to realize real-time status adjustment in flight process. Imaging tests and simulation results show that the method proposed acts good performance in terms of flight stability compensation and attitude adjustment. The response speed and control precision meets the requirements of actual use, which is able to reduce or even eliminate the influence of environmental disturbance. So the method proposed has certain research value to solve the problem of aircraft's anti-disturbance.

  15. NASA Armstrong Flight Research Center Dynamics and Controls Branch

    Science.gov (United States)

    Jacobson, Steve

    2015-01-01

    NASA Armstrong continues its legacy of exciting work in the area of Dynamics and Control of advanced vehicle concepts. This presentation describes Armstrongs research in control of flexible structures, peak seeking control and adaptive control in the Spring of 2015.

  16. The Sternberg Task as a Workload Metric in Flight Handling Qualities Research

    Science.gov (United States)

    Hemingway, J. C.

    1984-01-01

    The objective of this research was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopers engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to a workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.

  17. Preliminary Design Study of a Hybrid Airship for Flight Research

    Science.gov (United States)

    Browning, R. G. E.

    1981-01-01

    The feasibility of using components from four small helicopters and an airship envelope as the basis for a quad-rotor research aircraft was studied. Preliminary investigations included a review of candidate hardware and various combinations of rotor craft/airship configurations. A selected vehicle was analyzed to assess its structural and performance characteristics.

  18. DC-8 Airborne Laboratory in flight

    Science.gov (United States)

    1998-01-01

    NASA's DC-8 Airborne Science platform shown against a background of a dark blue sky on February 20, 1998. The aircraft is shown from the right rear, slightly above its plane, with the right wing in the foreground and the left wing and horizontal tail in the background. The former airliner is a 'dash-72' model and has a range of 5,400 miles. The craft can stay airborne for 12 hours and has an operational speed range between 300 and 500 knots. The research flights are made at between 500 and 41,000 feet. The aircraft can carry up to 30,000 lbs of research/science payload equipment installed in 15 mission-definable spaces. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  19. Flight-Tested Prototype of BEAM Software

    Science.gov (United States)

    Mackey, Ryan; Tikidjian, Raffi; James, Mark; Wang, David

    2006-01-01

    Researchers at JPL have completed a software prototype of BEAM (Beacon-based Exception Analysis for Multi-missions) and successfully tested its operation in flight onboard a NASA research aircraft. BEAM (see NASA Tech Briefs, Vol. 26, No. 9; and Vol. 27, No. 3) is an ISHM (Integrated Systems Health Management) technology that automatically analyzes sensor data and classifies system behavior as either nominal or anomalous, and further characterizes anomalies according to strength, duration, and affected signals. BEAM (see figure) can be used to monitor a wide variety of physical systems and sensor types in real time. In this series of tests, BEAM monitored the engines of a Dryden Flight Research Center F-18 aircraft, and performed onboard, unattended analysis of 26 engine sensors from engine startup to shutdown. The BEAM algorithm can detect anomalies based solely on the sensor data, which includes but is not limited to sensor failure, performance degradation, incorrect operation such as unplanned engine shutdown or flameout in this example, and major system faults. BEAM was tested on an F-18 simulator, static engine tests, and 25 individual flights totaling approximately 60 hours of flight time. During these tests, BEAM successfully identified planned anomalies (in-flight shutdowns of one engine) as well as minor unplanned anomalies (e.g., transient oil- and fuel-pressure drops), with no false alarms or suspected false-negative results for the period tested. BEAM also detected previously unknown behavior in the F- 18 compressor section during several flights. This result, confirmed by direct analysis of the raw data, serves as a significant test of BEAM's capability.

  20. DAST Mated to B-52 in Flight - Close-up from Below

    Science.gov (United States)

    1977-01-01

    This photo shows a BQM-34 Firebee II drone being carried aloft under the wing of NASA's B-52 mothership during a 1977 research flight. The Firebee/DAST research program ran from 1977 to 1983 at the NASA Dryden Flight Research Center, Edwards, California. This is the original Firebee II wing. Firebee 72-1564 made three captive flights--on November 25, 1975; May 17, 1976; and June 22, 1977--in preparation for the DAST project with modified wings. These were for checkout of the Firebee's systems and the prelaunch procedures. The first two used a DC-130A aircraft as the launch vehicle, while the third used the B-52. A single free flight using this drone occurred on July 28, 1977. The remote (ground) pilot was NASA research pilot Bill Dana. The launch and flight were successful, and the drone was caught in midair by an HH-53 helicopter. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  1. In-flight simulators and fly-by-wirelight demonstrators a historical account of international aeronautical research

    CERN Document Server

    2017-01-01

    This book offers the first complete account of more than sixty years of international research on In-Flight Simulation and related development of electronic and electro-optic flight control system technologies (“Fly-by-Wire” and “Fly-by-Light”). They have provided a versatile and experimental procedure that is of particular importance for verification, optimization, and evaluation of flying qualities and flight safety of manned or unmanned aircraft systems. Extensive coverage is given in the book to both fundamental information related to flight testing and state-of-the-art advances in the design and implementation of electronic and electro-optic flight control systems, which have made In-Flight Simulation possible. Written by experts, the respective chapters clearly show the interdependence between various aeronautical disciplines and in-flight simulation methods. Taken together, they form a truly multidisciplinary book that addresses the needs of not just flight test engineers, but also other aerona...

  2. A Powerful Friendship: Theodore von Karman and Hugh L. Dryden

    Science.gov (United States)

    Gorn, Michael

    2003-01-01

    During their long personal friendship and professional association, Theodore von Karman (1882-1963) and Hugh L. Dryden (1898-1965) exercised a pivotal if somewhat elusive influence over American aeronautics and spaceflight. Both decisive figures in organizing scientists and engineers at home and abroad, both men of undisputed eminence in their technical fields, their range of contacts in government, academia, the armed forces, industry, and professional societies spanned the globe to an extent unparalleled then as now. Moreover, because they coordinated their activities closely, their combined influence far exceeded the sum of each one s individual contributions. This paper illustrates their personal origins as well as the foundations of their friendship, how their relationship became a professional alliance, and their joint impact on the world of aeronautics and astronautics during the twentieth century.

  3. Computer vision research at Marshall Space Flight Center

    Science.gov (United States)

    Vinz, Frank L.

    1990-01-01

    Orbital docking, inspection, and sevicing are operations which have the potential for capability enhancement as well as cost reduction for space operations by the application of computer vision technology. Research at MSFC has been a natural outgrowth of orbital docking simulations for remote manually controlled vehicles such as the Teleoperator Retrieval System and the Orbital Maneuvering Vehicle (OMV). Baseline design of the OMV dictates teleoperator control from a ground station. This necessitates a high data-rate communication network and results in several seconds of time delay. Operational costs and vehicle control difficulties could be alleviated by an autonomous or semi-autonomous control system onboard the OMV which would be based on a computer vision system having capability to recognize video images in real time. A concept under development at MSFC with these attributes is based on syntactic pattern recognition. It uses tree graphs for rapid recognition of binary images of known orbiting target vehicles. This technique and others being investigated at MSFC will be evaluated in realistic conditions by the use of MSFC orbital docking simulators. Computer vision is also being applied at MSFC as part of the supporting development for Work Package One of Space Station Freedom.

  4. Management of Service Projects in Support of Space Flight Research

    Science.gov (United States)

    Love, J.

    2009-01-01

    Goal:To provide human health and performance countermeasures, knowledge, technologies, and tools to enable safe, reliable, and productive human space exploration . [HRP-47051] Specific Objectives: 1) Develop capabilities, necessary countermeasures, and technologies in support of human space exploration, focusing on mitigating the highest risks to human health and performance. 2) Define and improve human spaceflight medical, environmental, and human factors standards. 3) Develop technologies that serve to reduce medical and environmental risks, to reduce human systems resource requirements (mass, volume, power, data, etc.) and to ensure effective human-system integration across exploration systems. 4) Ensure maintenance of Agency core competencies necessary to enable risk reduction in the following areas: A. Space medicine B. Physiological and behavioral effects of long duration spaceflight on the human body C. Space environmental effects, including radiation, on human health and performance D. Space "human factors" [HRP-47051]. Service projects can form integral parts of research-based project-focused programs to provide specialized functions. Traditional/classic project management methodologies and agile approaches are not mutually exclusive paradigms. Agile strategies can be combined with traditional methods and applied in the management of service projects functioning in changing environments. Creative collaborations afford a mechanism for mitigation of constrained resource limitations.

  5. Optoelectronics research for communication programs at the Goddard Space Flight Center

    Science.gov (United States)

    Krainak, Michael A.

    1991-01-01

    Current optoelectronics research and development of high-power, high-bandwidth laser transmitters, high-bandwidth, high-sensitivity optical receivers, pointing, acquisition and tracking components, and experimental and theoretical system modeling at the NASA Goddard Space Flight Center is reviewed. Program hardware and space flight milestones are presented. It is believed that these experiments will pave the way for intersatellite optical communications links for both the NASA Advanced Tracking and Data Relay Satellite System and commercial users in the 21st century.

  6. Trends in sensorimotor research and countermeasures for exploration-class space flights.

    Science.gov (United States)

    Shelhamer, Mark

    2015-01-01

    Research in the area of sensorimotor and neurovestibular function has played an important role in enabling human space flight. This role, however, is changing. One of the key aspects of sensorimotor function relevant to this role will build on its widespread connections with other physiological and psychological systems in the body. The firm knowledge base in this area can provide a strong platform to explore these interactions, which can also provide for the development of effective and efficient countermeasures to the deleterious effects of space flight.

  7. Development of a Dynamically Scaled Generic Transport Model Testbed for Flight Research Experiments

    Science.gov (United States)

    Jordan, Thomas; Langford, William; Belcastro, Christine; Foster, John; Shah, Gautam; Howland, Gregory; Kidd, Reggie

    2004-01-01

    This paper details the design and development of the Airborne Subscale Transport Aircraft Research (AirSTAR) test-bed at NASA Langley Research Center (LaRC). The aircraft is a 5.5% dynamically scaled, remotely piloted, twin-turbine, swept wing, Generic Transport Model (GTM) which will be used to provide an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. The unique design challenges arising from the dimensional, weight, dynamic (inertial), and actuator scaling requirements necessitated by the research community are described along with the specific telemetry and control issues associated with a remotely piloted subscale research aircraft. Development of the necessary operational infrastructure, including operational and safety procedures, test site identification, and research pilots is also discussed. The GTM is a unique vehicle that provides significant research capacity due to its scaling, data gathering, and control characteristics. By combining data from this testbed with full-scale flight and accident data, wind tunnel data, and simulation results, NASA will advance and validate control upset prevention and recovery technologies for transport aircraft, thereby reducing vehicle loss-of-control accidents resulting from adverse and upset conditions.

  8. SR-71 flight

    Science.gov (United States)

    1990-01-01

    The movie clip shown here runs about 13 seconds and shows an air-to-air shot of the front of the SR-71 aircraft and a head-on view of it coming in for a landing. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of

  9. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    Science.gov (United States)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  10. Advanced AFCS developments on the XV-15 tilt rotor research aircraft. [Automatic Flight Control System

    Science.gov (United States)

    Churchill, G. B.; Gerdes, R. M.

    1984-01-01

    The design criteria and control and handling qualities of the Automatic Flight Control System (AFCS), developed in the framework of the XV-15 tilt-rotor research aircraft, are evaluated, differentiating between the stability and control criteria. A technically aggressive SCAS control law was implemented, demonstrating that significant benefits accrue when stability criteria are separated from design criteria; the design analyses for application of the control law are presented, and the limit bandwidth for stabilization in hovering flight is shown to be defined by rotor or control lag functions. Flight tests of the aircraft resulted in a rating of 3 on the Cooper-Harper scale; a possibility of achieving a rating of 2 is expected if the system is applied to the yaw and heave control modes.

  11. DAST in Flight just after Structural Failure of Right Wing

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. This photo, taken 12 June 1980, shows the DAST-1 (Serial #72-1557) immediately after it lost its right wing after suffering severe wing flutter. The vehicle crashed near Cuddeback Dry Lake. The Firebee II was selected for the DAST program because its standard wing could be removed and replaced by a supercritical wing. The project's digital flutter suppression system was intended to allow lighter wing structures, which would translate into better fuel economy for airliners. Because the DAST vehicles were flown intentionally at speeds and altitudes that would cause flutter, the program anticipated that crashes might occur. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for

  12. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  13. Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    Science.gov (United States)

    Stewart, James F.; Shuck, Thomas L.

    1990-01-01

    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included.

  14. A high fidelity video delivery system for real-time flight simulation research

    Science.gov (United States)

    Wilkins, Daniel A.; Roach, Carl C.

    1993-01-01

    The Flight Systems and Simulation Research Laboratory (Simlab) at the NASA Ames Research Center, utilizes an extensive network of video image generation, delivery, processing, and display systems coupled with a large amplitude Vertical Motion Simulator (VMS) to provide a high fidelity visual environment for flight simulation research. This paper will explore the capabilities of the current Simlab video distribution system architecture with a view toward technical solutions implemented to resolve a variety of video interface, switching, and distribution issues common to many simulation facilities. Technical discussions include a modular approach to a video switching and distribution system capable of supporting both coax and fiber optic video signal transmission, video scan conversion and processing techniques for lab observation and recording, adaptation of image generation and display system video interfaces to industry standards, an all raster solution for 'glass cockpit' configurations encompassing Head up, Head-down, and Out-the-Window display systems.

  15. A high fidelity video delivery system for real-time flight simulation research

    Science.gov (United States)

    Wilkins, Daniel A.; Roach, Carl C.

    The Flight Systems and Simulation Research Laboratory (Simlab) at the NASA Ames Research Center, utilizes an extensive network of video image generation, delivery, processing, and display systems coupled with a large amplitude Vertical Motion Simulator (VMS) to provide a high fidelity visual environment for flight simulation research. This paper will explore the capabilities of the current Simlab video distribution system architecture with a view toward technical solutions implemented to resolve a variety of video interface, switching, and distribution issues common to many simulation facilities. Technical discussions include a modular approach to a video switching and distribution system capable of supporting both coax and fiber optic video signal transmission, video scan conversion and processing techniques for lab observation and recording, adaptation of image generation and display system video interfaces to industry standards, an all raster solution for 'glass cockpit' configurations encompassing Head up, Head-down, and Out-the-Window display systems.

  16. Use of ILTV Control Laws for LaNCETS Flight Research

    Science.gov (United States)

    Moua, Cheng

    2010-01-01

    A report discusses the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) test to investigate the effects of lift distribution and nozzle-area ratio changes on tail shock strength of an F-15 aircraft. Specific research objectives are to obtain inflight shock strength for multiple combinations of nozzle-area ratio and lift distribution; compare results with preflight prediction tools; and update predictive tools with flight results. The objectives from a stability and control perspective are to ensure adequate aircraft stability for the changes in lift distribution and plume shape, and ensure manageable transient from engaging and disengaging the ILTV research control laws. In order to change the lift distribution and plume shape of the F-15 aircraft, a decade-old Inner Loop Thrust Vectoring (ILTV) research control law was used. Flight envelope expansion was performed for the test configuration and flight conditions prior to the probing test points. The approach for achieving the research objectives was to utilize the unique capabilities of NASA's NF-15B-837 aircraft to allow the adjustment of the nozzle-area ratio and/or canard positions by engaging the ILTV research control laws. The ILTV control laws provide the ability to add trim command biases to canard positions, nozzle area ratios, and thrust vectoring through the use of datasets. Datasets consist of programmed test inputs (PTIs) that define trims to change the nozzle-area ratio and/or canard positions. The trims are applied as increments to the normally commanded positions. A LaNCETS non-linear, six-degrees-of-freedom simulation capable of realtime pilot-in-the-loop, hardware-in-the-loop, and non-real-time batch support was developed and validated. Prior to first flight, extensive simulation analyses were performed to show adequate stability margins with the changes in lift distribution and plume shape. Additionally, engagement/disengagement transient analysis was also performed to show manageable

  17. An Advanced Fly-By-Wire Flight Control System for the RASCAL Research Rotorcraft: Concept to Reality

    Science.gov (United States)

    Rediess, Nicholas A.; Dones, Fernando; McManus, Bruce L.; Ulmer, Lon; Aiken, Edwin W. (Technical Monitor)

    1995-01-01

    Design features of a new fly-by-wire flight control system for the Rotorcraft-Aircrew Systems Concepts Airborne Laboratory (RASCAL) are described. Using a UH-60A Black Hawk helicopter as a baseline vehicle, the RASCAL will be a flying laboratory capable of supporting the research requirements of major NASA and Army guidance, control, and display research programs. The paper describes the research facility requirements of these pro-rams and the design implementation of the research flight control system (RFCS), with emphasis on safety-of-flight, adaptability to multiple requirements and performance considerations.

  18. Pathfinder on lakebed preparing for test flight

    Science.gov (United States)

    1995-01-01

    Support crew prepare the Pathfinder solar-powered aircraft for a research flight on Rogers Dry Lake at NASA's Dryden Flight Research Center, Edwards, California. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  19. Research and implementation of a shaking seat system for flight simulator

    Science.gov (United States)

    Shi, Xiaolin; Yu, Youzhi; Shen, Weiqun; Song, Zishan

    2006-11-01

    To a helicopter the shaking seat system can simulate the vibration caused by the main rotor, tail rotor, engine, weapon firing, landing, etc. This paper focuses on the research and analysis of the shaking system of a helicopter flight simulator. The vibration model of the seat is built and the system is also developed. According to different flight states of the helicopter the vibration states of the seat are classified based on real measurement data, and the spectra of the vibration are interpolated to model the vibration of the seat. An electro-hydraulic servo system is used to drive the seat to shake along the direction that is parallel to the vertical body axis. The seat is shaken under the instructions at reference height with position close-loop control method, and the control law is PID algorithm. Running parameters of the system are configured by the software. The motional states of the shaking seat are displayed to the user through the visualization software. The main parts of the system and some key technologies of the implementation are also presented in the paper. The system can generate the special vibration environment in the helicopter flight process, and is successfully applied to the flight simulator. So the pilots' immersion feelings are increased.

  20. Investigation of Inner Loop Flight Control Strategies for High-Speed Research

    Science.gov (United States)

    Newman, Brett; Kassem, Ayman

    1999-01-01

    This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.

  1. Researcher's guide to the NASA Ames Flight Simulator for Advanced Aircraft (FSAA)

    Science.gov (United States)

    Sinacori, J. B.; Stapleford, R. L.; Jewell, W. F.; Lehman, J. M.

    1977-01-01

    Performance, limitations, supporting software, and current checkout and operating procedures are presented for the flight simulator, in terms useful to the researcher who intends to use it. Suggestions to help the researcher prepare the experimental plan are also given. The FSAA's central computer, cockpit, and visual and motion systems are addressed individually but their interaction is considered as well. Data required, available options, user responsibilities, and occupancy procedures are given in a form that facilitates the initial communication required with the NASA operations' group.

  2. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    Science.gov (United States)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST

  3. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-05-01

    Full Text Available Geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system on the University of Wyoming King Air research aircraft are used to estimate acceleration effects on static pressure measurement. Using data collected during periods of accelerated flight, comparison of measured pressure with that derived from GNSS/IMU geometric altitude show that errors exceeding 150 Pa can occur which is significant in airspeed and atmospheric air motion determination. A method is developed to predict static pressure errors from analysis of differential pressure measurements from a Rosemount model 858 differential pressure air velocity probe. The method was evaluated with a carefully designed probe towed on connecting tubing behind the aircraft – a "trailing cone" – in steady flight, and shown to have a precision of about ±10 Pa over a wide range of conditions including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, compared to the GNSS/IMU data, this algorithm predicts corrections to a precision of better than ±20 Pa. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are examined.

  4. The 1994 research and technology report at the Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald (Editor); Halem, Milton (Editor); Green, James (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Boyle, Charles (Editor); Truszlowski, Walter (Editor); Sullivan, Walter (Editor); Ottenstein, Howard (Editor)

    1994-01-01

    The breadth of subject material in this 1994 edition of the Research and Technology Report illustrates the broad scope of activities at the Goddard Space Flight Center. The numerous entries dealing with data processing and visualization show the strong emphasis on data and its interpretation. Reports are presented in the following sections: data processing and visualization; space sciences - high energy astronomy, solar system, and new techniques; earth system science - atmospheres, oceans and ice, solid earth, and soils and vegetation; networks, planning, and information systems - mission scheduling and operations, spacecraft operation and status, software engineering, and infrastructure support; engineering and materials - spacecraft subsystems, launch vehicles, thermal control, new mechanisms, and testing and evaluation; and flight projects.

  5. Pathfinder - flight preparation on lakebed at sunrise

    Science.gov (United States)

    1995-01-01

    Crew members prepare the Pathfinder solar-powered aircraft for its first flight on Rogers Dry Lake at NASA's Dryden Flight Research Center, Edwards, California, after its configuration was changed from 8 motors to 6. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  6. MEDES clinical research facility as a tool to prepare ISSA space flights

    Science.gov (United States)

    Maillet, A.; Traon, A. Pavy-Le

    This new multi-disciplinary medical experimentation center provides the ideal scientific, medical and technical environment required for research programs and to prepare international space station Alpha (ISSA) missions, where space and healthcare industries can share their expertise. Different models are available to simulate space flight effects (bed-rest, confinement,…). This is of particular interest for research in Human psychology, physiology, physiopathology and ergonomics, validation of biomedical materials and procedures, testing of drugs, and other healthcare related products. This clinical research facility (CRF) provides valuable services in various fields of Human research requiring healthy volunteers. CRF is widely accessible to national and international, scientific, medical and industrial organisations. Furthermore, users have at their disposal the multi-disciplinary skills of MEDES staff and all MEDES partners on a single site.

  7. An ergonomics based design research method for the arrangement of helicopter flight instrument panels.

    Science.gov (United States)

    Alppay, Cem; Bayazit, Nigan

    2015-11-01

    In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. X-Ray Astronomy Research at the Marshall Space Flight Center

    Science.gov (United States)

    Austin, Robert A.

    1999-01-01

    For at least twenty years, NASA's Marshall Space Flight Center (MSFC) has played a major role in the development of X-ray astronomy in the United States. MSFC scientists and engineers are currently involved in a wide range of programs which will contribute to the growth of X-ray astronomy well into the next century. Areas of activity include calibration of X-ray astronomy instrumentation using Marshall's world-class X-ray Calibration Facility (XRCF), development of high-throughput, replicated X-ray optics, X-ray detector development, balloon-based X-ray astronomy, and analysis of Active Galactic Nuclei (AGNs) and clusters of galaxies. Recent milestones include the successful calibration of NASA's premier X-ray Astronomy Satellite - AXAF (recently renamed Chandra), a balloon flight of a large area (1000 sq cm) micro-strip proportional counter, and work on a hard X-ray (30-100 keV) telescope called HERO, capable of high quality spectroscopy and imaging through the use of grazing incidence optics and an Imaging Gas Scintillation Proportional Counter (IGSPC). In my presentation, I will provide a general overview of our research and facilities. I will conclude with a more detailed discussion of our High Energy Replicated Optics (HERO) program and plans for long duration (>100 days) balloon flights which will take place in the near future.

  9. Teaching healthcare marketing via community research: the LifeFlight project.

    Science.gov (United States)

    Cellucci, Leigh W

    2005-01-01

    Undergraduate students in Healthcare Administration programs may benefit from cooperative learning strategies such as participation in community research. Collaborating with local healthcare facilities on class projects also encourages more active engagement between the academic and practice communities. This purpose of this paper is to briefly describe one collaborative venture undertakenby undergraduates in a Marketing for Healthcare Organizations class and a LifeFlight program at a local hospital. The students carried out a survey of members in the program, conducted a SWOT analysis, and made relevant recommendations. Student evaluations of this experience were positive, as was the hospital's assessment.

  10. Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design

    Science.gov (United States)

    Laughter, Sean A.

    2012-01-01

    The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.

  11. Status of cardiovascular issues related to space flight: Implications for future research directions.

    Science.gov (United States)

    Convertino, Victor A

    2009-10-01

    Compromised cardiovascular performance, occurrence of serious cardiac dysrhythmias, cardiac atrophy, orthostatic intolerance, reduced aerobic capacity, operational impacts of regular physical exercise, and space radiation are risks of space flight to the cardiovascular system identified in the 2007 NASA Human Integrated Research Program. An evidence-based approach to identify the research priorities needed to resolve those cardiovascular risks that could most likely compromise the successful completion of extended-duration space missions is presented. Based on data obtained from astronauts who have flown in space, there is no compelling experimental evidence to support significant occurrence of autonomic or vascular dysfunction, cardiac dysrhythmias, or manifestation of asymptomatic cardiovascular disease. The operational impact of prolonged daily exercise and space radiation needs to be defined. In contrast, data from the literature support the notion that the highest probability of occurrence and operational impact with space flight involving cardiovascular risks to astronaut health, safety and operational performance are reduced orthostatic tolerance and aerobic capacity, the resource cost of effective countermeasures, and the potential effects of space radiation. Future research should focus on these challenges.

  12. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    Science.gov (United States)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  13. Autonomous Airborne Refueling Demonstration: Phase I Flight-Test Results

    Science.gov (United States)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small.

  14. Autonomous Airborne Refueling Demonstration, Phase I Flight-Test Results

    Science.gov (United States)

    Dibley, Ryan P.; Allen, Michael J.; Nabaa, Nassib

    2007-01-01

    The first phase of the Autonomous Airborne Refueling Demonstration (AARD) project was completed on August 30, 2006. The goal of this 15-month effort was to develop and flight-test a system to demonstrate an autonomous refueling engagement using the Navy style hose-and-drogue air-to-air refueling method. The prime contractor for this Defense Advanced Research Projects Agency (DARPA) sponsored program was Sierra Nevada Corporation (SNC), Sparks, Nevada. The responsible flight-test organization was the NASA Dryden Flight Research Center (DFRC), Edwards, California, which also provided the F/A-18 receiver airplane (McDonnell Douglas, now The Boeing Company, Chicago, Illinois). The B-707-300 tanker airplane (The Boeing Company) was contracted through Omega Aerial Refueling Services, Inc., Alexandria, Virginia, and the optical tracking system was contracted through OCTEC Ltd., Bracknell, Berkshire, United Kingdom. Nine research flights were flown, testing the functionality and performance of the system in a stepwise manner, culminating in the plug attempts on the final flight. Relative position keeping was found to be very stable and accurate. The receiver aircraft was capable of following the tanker aircraft through turns while maintaining its relative position. During the last flight, six capture attempts were made, two of which were successful. The four misses demonstrated excellent characteristics, the receiver retreating from the drogue in a controlled, safe, and predictable manner that precluded contact between the drogue and the receiver aircraft. The position of the receiver aircraft when engaged and in position for refueling was found to be 5.5 to 8.5 ft low of the ideal position. The controller inputs to the F/A-18 were found to be extremely small

  15. Microphysical characterization of winter cloud systems during a research flight campaign

    Science.gov (United States)

    Fernández-González, Sergio; Sánchez, José Luis; Valero, Francisco; Gascón, Estíbaliz; Merino, Andrés; Hermida, Lucía; López, Laura; Marcos, José Luis; García-Ortega, Eduardo

    2015-04-01

    The lack of accuracy in the knowledge of cloud microphysics leads to aviation risks, which have caused numerous crashes, mainly owing to aircraft icing (e.g., an EMB-120 crashed in Detroit, Michigan in 1997, and an ATR-72 crashed near Roselawn, Indiana in 1994). Further, this lack is a source of uncertainty in numerical weather forecasting models, since commonly used parameterizations often overestimate ice water content and underestimate supercooled liquid water. This makes the collection of data on cloud microphysical characteristics very useful toward improving the forecasting of icing conditions. Ten research flights were conducted during the winters of 2011/12 and 2012/13. Their goal was to determine dominant microphysical conditions of winter cloud systems traversing the Guadarrama Mountains in the central Iberian Peninsula. The aircraft was a C-212-200, equipped with a Cloud, Aerosol, and Precipitation Spectrometer (CAPS) under the left wing. Data of temperature and Liquid Water Content (LWC), registered by the CAPS probe, were used in the study. Furthermore, we thoroughly analyzed images taken by a Cloud Imaging Probe Grayscale (CIP-GS), capable of measuring hydrometeors between 25 and 1,550 µm in size, and representing them in a 2D image. The various types of hydrometeors observed during these flights are described, along with microphysical processes inferred from the CIP-GS images. ACKNOWLEDGEMENTS S. Fernández-González acknowledges grant support from the FPU program (AP 2010-2093). This study was also supported by grants from GRANIMETRO (CGL2010-15930) and MICROMETEO (IPT-310000-2010-22). The authors thank INTA for the research flights.

  16. In-flight investigation of a rotating cylinder-based structural excitation system for flutter testing

    Science.gov (United States)

    Vernon, Lura

    1993-01-01

    A research excitation system was test flown at the NASA Dryden Flight Research Facility on the two-seat F-16XL aircraft. The excitation system is a wingtip-mounted vane with a rotating slotted cylinder at the trailing edge. As the cylinder rotates during flight, the flow is alternately deflected upward and downward through the slot, resulting in a periodic lift force at twice the cylinder's rotational frequency. Flight testing was conducted to determine the excitation system's effectiveness in the subsonic, transonic, and supersonic flight regimes. Primary research objectives were to determine the system's ability to develop adequate force levels to excite the aircraft's structure and to determine the frequency range over which the system could excite structural modes of the aircraft. In addition, studies were conducted to determine optimal excitation parameters, such as sweep duration, sweep type, and energy levels. The results from the exciter were compared with results from atmospheric turbulence excitation at the same flight conditions. The comparison indicated that the vane with a rotating slotted cylinder provides superior results. The results from the forced excitation were of higher quality and had less variation than the results from atmospheric turbulence. The forced excitation data also invariably yielded higher structural damping values than those from the atmospheric turbulence data.

  17. Incorporation of EGPWS in the NASA Ames Research Center 747-400 Flight Simulator

    Science.gov (United States)

    Sallant, Ghislain; DeGennaro, Robert A.

    2001-01-01

    The NASA Ames Research Center CAE Boeing 747300 flight simulator is used primarily for the study of human factors in aviation safety. The simulator is constantly upgraded to maintain a configuration match to a specific United Airlines aircraft and maintains the highest level of FAA certification to ensure credibility to the results of research programs. United's 747-400 fleet and hence the simulator are transitioning from the older Ground Proximity Warning System (GPWS) to the state-of-the-art Enhanced Ground Proximity Warning System (EGPWS). GPWS was an early attempt to reduce or eliminate Controlled Flight Into Terrain (CFIT). Basic GPWS alerting modes include: excessive descent rate, excessive terrain closure rate, altitude loss after takeoff, unsafe terrain clearance, excessive deviation below glideslope, advisory callouts and windshear alerting. However, since GPWS uses the radar altimeter which looks straight down, ample warning is not always provided. EGPWS retains all of the basic functions of GPWS but adds the ability to look ahead by comparing the aircraft position to an internal database and provide additional alerting and display capabilities. This paper evaluates three methods of incorporating EGPWS in the simulator and describes the implementation and architecture of the preferred option.

  18. A rotor-mounted digital instrumentation system for helicopter blade flight research measurements

    Science.gov (United States)

    Knight, V. H., Jr.; Haywood, W. S., Jr.; Williams, M. L.

    1978-01-01

    A rotor mounted flight instrumentation system developed for helicopter rotor blade research is described. The system utilizes high speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested on an AH-1G helicopter. The system employs microelectronic pulse code modulation (PCM) multiplexer digitizer stations located remotely on the blade and in a hub mounted metal canister. As many as 25 sensors can be remotely digitized by a 2.5 mm thick electronics package mounted on the blade near the tip to reduce blade wiring. The electronics contained in the canister digitizes up to 16 sensors, formats these data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data are transmitted over an RF link to the ground for real time monitoring and to the helicopter fuselage for tape recording. The complete system is powered by batteries located in the canister and requires no slip rings on the rotor shaft.

  19. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    Science.gov (United States)

    Pritchett, Amy R.

    2002-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plugin' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  20. DARPA/USAF/USN J-UCAS X-45A System Demonstration Program: A Review of Flight Test Site Processes and Personnel

    Science.gov (United States)

    Cosentino, Gary B.

    2008-01-01

    The Joint Unmanned Combat Air Systems (J-UCAS) program is a collaborative effort between the Defense Advanced Research Project Agency (DARPA), the US Air Force (USAF) and the US Navy (USN). Together they have reviewed X-45A flight test site processes and personnel as part of a system demonstration program for the UCAV-ATD Flight Test Program. The goal was to provide a disciplined controlled process for system integration and testing and demonstration flight tests. NASA's Dryden Flight Research Center (DFRC) acted as the project manager during this effort and was tasked with the responsibilities of range and ground safety, the provision of flight test support and infrastructure and the monitoring of technical and engineering tasks. DFRC also contributed their engineering knowledge through their contributions in the areas of autonomous ground taxi control development, structural dynamics testing and analysis and the provision of other flight test support including telemetry data, tracking radars, and communications and control support equipment. The Air Force Flight Test Center acted at the Deputy Project Manager in this effort and was responsible for the provision of system safety support and airfield management and air traffic control services, among other supporting roles. The T-33 served as a J-UCAS surrogate aircraft and demonstrated flight characteristics similar to that of the the X-45A. The surrogate served as a significant risk reduction resource providing mission planning verification, range safety mission assessment and team training, among other contributions.

  1. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    Science.gov (United States)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  2. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    Science.gov (United States)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  3. Development of position-sensitive time-of-flight spectrometer for fission fragment research

    CERN Document Server

    Arnold, C W; Meierbachtol, K; Bredeweg, T; Jandel, M; Jorgenson, H J; Laptev, A; Rusev, G; Shields, D W; White, M; Blakeley, R E; Mader, D M; Hecht, A A

    2014-01-01

    A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEterminiation in fission Research (SPIDER) is a $2E-2v$ spectrometer designed to measure the mass of light fission fragments to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with $\\alpha$-particles from $^{229}$Th and its decay chain and $\\alpha$-particles and spontaneous fission fragments from $^{252}$Cf. Each detector module is comprised of a thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times on the order of 70 ns were measured with 200 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for mode...

  4. Wright Brothers Lectureship in Aeronautics: Experience with HiMAT remotely piloted research vehicle - An alternate flight test approach

    Science.gov (United States)

    Deets, D. A.; Brown, L. E.

    1986-01-01

    The highly maneuverable aircraft technology (HiMAT) program explored the various and complex interactions of advanced technologies, such as aeroelastic tailoring, close-coupled canard, and relaxed static stability. A 0.44-subscale remotely piloted research vehicle (RPRV) of a hypothetical fighter airplane was designed and flight-tested to determine the effects of these interactions and to define the design techniques appropriate for advanced fighter technologies. Flexibility and high maneuverability were provided by flight control laws implemented in ground-based computers and telemetered to the vehicle control system during flight tests. The high quality of the flight-measured data and their close correlation with the analytical design modeling proved that the RPRV is a viable and cost-effective tool for developing aerodynamic, structure, and control law requirements for highly maneuverable fighter airplanes of the future.

  5. Development and Flight of the NASA-Ames Research Center Payload on Spacelab-J

    Science.gov (United States)

    Schmidt, Gregory K.; Ball, Sally M.; Stolarik, Thomas M.; Eodice, Michael T.

    1993-01-01

    Spacelab-J was an international Spacelab mission with numerous innovative Japanese and American materials and life science experiments. Two of the Spacelab-J experiments were designed over a period of more than a decade by a team from NASA-Ames Research Center. The Frog Embryology Experiment investigated and is helping to resolve a century-long quandary on the effects of gravity on amphibian development. The Autogenic Feedback Training Experiment, flown on Spacelab-J as part of a multi-mission investigation, studied the effects of Autogenic Feedback Therapy on limiting the effects of Space Motion Sickness on astronauts. Both experiments employed the use of a wide variety of specially designed hardware to achieve the experiment objectives. This paper reviews the development of both experiments, from the initial announcement of opportunity in 1978, through selection on Spacelab-J and subsequent hardware and science procedures development, culminating in the highly successful Spacelab-J flight in September 1992.

  6. F-18 HARV yaw rate expansion flight #125 with Inverted Recovery

    Science.gov (United States)

    1991-01-01

    NASA's Dryden Flight Research Center, Edwards, CA, used an F-18 Hornet fighter aircraft as its High Angle-of-Attack (Alpha) Research Vehicle (HARV) in a three-phased flight research program lasting from April 1987 until September 1996. The aircraft completed 385 research flights and demonstrated stabilized flight at angles of attack between 65 and 70 degrees using thrust vectoring vanes, a research flight control system, and (eventually) forebody strakes (hinged structures on the forward side of the fuselage to provide control by interacting with vortices, generated at high angles of attack, to create side forces). This combination of technologies provided carefree handling of a fighter aircraft in a part of the flight regime that was otherwise very dangerous. Flight research with the HARV increased our understanding of flight at high angles of attack (angle of the wings with respect to the direction in which the aircraft was heading), enabling designers of U.S. fighter aircraft to design airplanes that will fly safely in portions of the flight envelope that pilots previously had to avoid. Flight 125 with the HARV involved yaw rate expansion up to 50 degrees per second (moving the nose to the left or right at that rate). NASA research pilot Ed Schneider was the pilot, and the purpose of the flight was to look at the spin characteristics of the HARV. The sequence in this particular video clip includes the first and second maneuvers in the flight. On the first maneuver, the pilot attempted to achieve a yaw rate of 40 degrees per second and actually went to 47 degrees. The spin was oscillatory in pitch (up and down) and roll (rotating around the longitudinal axis). Recovery was normal. On the second maneuver of the flight in which Schneider tried to achieve a yaw rate of 40 degrees per second, the aircraft overshot to 54 degrees per second during an oscillatory spin. In the course of the recovery, the aircraft rolled after a large sideslip buildup. Moderate aft stick

  7. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    Science.gov (United States)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  8. Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Science.gov (United States)

    Moes, Timothy R.; Whitmore, Stephen A.; Jordan, Frank L., Jr.

    1993-01-01

    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied.

  9. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    Science.gov (United States)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  10. Pathfinder aircraft prepared for flight at dawn on lakebed

    Science.gov (United States)

    1996-01-01

    The Pathfinder solar-powered research aircraft is silhouetted by the morning sun on the bed of Rogers Dry Lake as technicians prepare it for flight. The unique remotely piloted flying wing flew for two hours under control of a ground-based pilot on Nov. 19, 1996, at NASA's Dryden Flight Research Center, Edwards, California, while engineers checked out various aircraft systems. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  11. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-11-01

    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  12. Boreal partners in flight: Working together to build a regional research and monitoring program

    Science.gov (United States)

    Handel, Colleen M.; Bonney, Rick; Pashley, David N.; Cooper, Robert J.; Niles, Larry

    1999-01-01

    Boreal regions of western North America regularly support breeding populations of 130 species of landbirds, including 68 Nearctic-Neotropical migrants. Primary conservation concerns within the region include increased timber harvesting, insect outbreaks, fire suppression, mining, impacts of military training activities, urbanization, and recreational activities. Under auspices of Partners in Flight, biologists, land and resource managers, and conservationists from Alaska and western Canada have combined efforts to develop a regional research and monitoring program for landbirds. An experimental monitoring program has been under way during the past four years to test the relative statistical power and cost-effectiveness of various monitoring methods in Alaska. Joint efforts currently include the Alaska Checklist Project on National Wildlife Refuges, 75 Breeding Bird Surveys along the road system, 122 Off-road Point Count routes, 27 Monitoring Avian Productivity and Survivorship banding sites, and 8 migration banding stations. The ultimate goal is to design a comprehensive monitoring program that is sensitive to changes in population size, survival rates, and productivity, but robust enough to accommodate logistical constraints that arise when working in vast, roadless areas with limited funds and staff. Primary challenges that must be faced to assure the long-term future of such a program are obtaining long-term commitment from resource agencies in the region, integrating this program with other national and regional programs that address those species and habitats that are inadequately monitored by established techniques, and developing cooperative research, monitoring, and management programs at the landscape level.

  13. An experimental evaluation of the Sternberg task as a workload metric for helicopter Flight Handling Qualities (FHQ) research

    Science.gov (United States)

    Hemingway, J. C.

    1984-01-01

    The objective was to determine whether the Sternberg item-recognition task, employed as a secondary task measure of spare mental capacity for flight handling qualities (FHQ) simulation research, could help to differentiate between different flight-control conditions. FHQ evaluations were conducted on the Vertical Motion Simulator at Ames Research Center to investigate different primary flight-control configurations, and selected stability and control augmentation levels for helicopters engaged in low-level flight regimes. The Sternberg task was superimposed upon the primary flight-control task in a balanced experimental design. The results of parametric statistical analysis of Sternberg secondary task data failed to support the continued use of this task as a measure of pilot workload. In addition to the secondary task, subjects provided Cooper-Harper pilot ratings (CHPR) and responded to workload questionnaire. The CHPR data also failed to provide reliable statistical discrimination between FHQ treatment conditions; some insight into the behavior of the secondary task was gained from the workload questionnaire data.

  14. Convective heat transfer measurements from a NACA 0012 airfoil in flight and in the NASA Lewis Icing Research Tunnel

    Science.gov (United States)

    Poinsatte, Philip E.; Van Fossen, G. James; Dewitt, Kenneth J.

    1990-01-01

    Local heat transfer coefficients were measured on a smooth and roughened NACA 0012 airfoil. Heat transfer measurements on the 0.533 m chord airfoil were made both in flight on the NASA Lewis Twin Otter Icing Research Aircraft and in the NASA Icing Research Tunnel (IRT). Roughness was obtained by the attachment of uniform 2 mm diameter hemispheres to the airfoil surface in 4 distinct patterns. Flight data were taken for the smooth and roughened airfoil at various Reynolds numbers based on chord in the range 1.24 to 2.50 x 10 (exp 6) and at various angles of attack up to 4 deg. During these flight tests, the free stream velocity turbulence intensity was found to be very low (less than 0.1 percent). Wind tunnel data were acquired in the Reynolds number range 1.20 to 4.25 x 10 (exp t) and at angles of attack from -4 to 8 deg. The turbulence intensity in the IRT was 0.5 to 0.7 percent with the cloud generating sprays off. A direct comparison was made between the results obtained in flight and in the IRT. The higher level of turbulence in the IRT vs. flight had little effect on the heat transfer for the lower Reynolds numbers but caused a moderate increase in heat transfer at the high Reynolds numbers. Roughness generally increased the heat transfer.

  15. A digital-analog hybrid system and its application to the automatic flight control system simulation research

    Science.gov (United States)

    1981-01-01

    The characteristics of a digital-analog hybrid system composed of a DJS-8 digital computer and a HMJ-200 analog computer are described as well as its applications to simulation research for an automatic flight control system. A hybrid computational example is included to illustrate the application.

  16. From the Bronx to Bengifunda (and Other Lines of Flight): Deterritorializing Purposes and Methods in Science Education Research

    Science.gov (United States)

    Gough, Noel

    2011-01-01

    In this essay I explore a number of questions about purposes and methods in science education research prompted by my reading of Wesley Pitts' ethnographic study of interactions among four students and their teacher in a chemistry classroom in the Bronx, New York City. I commence three "lines of flight" (small acts of Deleuzo-Guattarian…

  17. From the Bronx to Bengifunda (and Other Lines of Flight): Deterritorializing Purposes and Methods in Science Education Research

    Science.gov (United States)

    Gough, Noel

    2011-01-01

    In this essay I explore a number of questions about purposes and methods in science education research prompted by my reading of Wesley Pitts' ethnographic study of interactions among four students and their teacher in a chemistry classroom in the Bronx, New York City. I commence three "lines of flight" (small acts of Deleuzo-Guattarian…

  18. M2-F1 in flight during low-speed car tow

    Science.gov (United States)

    1963-01-01

    The M2-F1 shown in flight during a low-speed car tow runs across the lakebed. Such tests allowed about two minutes to test the vehicle's handling in flight. NASA Flight Research Center (later redesignated the Dryden Flight Research Center) personnel conducted as many as 8 to 14 ground-tow flights in a single day either to test the vehicle in preparation for air tows or to train pilots to fly the vehicle before they undertook air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30

  19. Supporting Research at NASA's Goddard Space Flight Center Through Focused Education and Outreach Programs

    Science.gov (United States)

    Ireton, F.; Closs, J.

    2003-12-01

    NASA research scientists work closely with Science Systems and Applications, Inc. (SSAI) personnel at Goddard Space Flight Center (GSFC) on a large variety of education and public outreach (E/PO) initiatives. This work includes assistance in conceptualizing E/PO plans, then carrying through in the development of materials, publication, cataloging, warehousing, and product distribution. For instance, outreach efforts on the Terra, Aqua, and Aura-still in development-EOS missions, as well as planetary and visualization programs, have been coordinated by SSAI employees. E/PO support includes convening and taking part in sessions at professional meetings and workshops. Also included is the coordination of exhibits at professional meetings such as the AGU, AAAS, AMS and educational meetings such as the National Science Teachers Association. Other E/PO efforts include the development and staffing of booths; arranges for booth space and furnishings; shipping of exhibition materials and products; assembling, stocking, and disassembling of booths. E/PO personnel work with organizations external to NASA such as the Smithsonian museum, Library of Congress, U.S. Geological Survey, and associations or societies such as the AGU, American Chemical Society, and National Science Teachers Association to develop products and programs that enhance NASA mission E/PO efforts or to provide NASA information for use in their programs. At GSFC, E/PO personnel coordinate the efforts of the education and public outreach sub-committees in support of the Space and Earth Sciences Data Analysis (SESDA) contract within the GSFC Earth Sciences Directorate. The committee acts as a forum for improving communication and coordination among related Earth science education projects, and strives to unify the representation of these programs among the science and education communities. To facilitate these goals a Goddard Earth Sciences Directorate Education and Outreach Portal has been developed to provide

  20. Development of an advanced high-speed rotor - Final results from the Advanced Flight Research Rotor program

    Science.gov (United States)

    Jenks, Mark; Haslim, Leonard

    1988-01-01

    The final results of the Advanced Flight Research Rotor (AFRR) study, a NASA sponsored research program, are summarized. First, the results of the initial phase of the AFRR program, consisting of the definition of a conventional rotor with planform and prescribed twist distributions, are briefly reviewed. The mechanism of the calculated performance benefit is then explained, and a detailed analysis of the prescribed twist distribution is presented. Recommendations are made on the practical means of approximating the prescribed twist on the actual rotor.

  1. Hypogravity Research and Educational Parabolic Flight Activities Conducted in Barcelona: a new Hub of Innovation in Europe

    Science.gov (United States)

    Perez-Poch, Antoni; González, Daniel Ventura; López, David

    2016-12-01

    We report on different research and educational activities related to parabolic flights conducted in Barcelona since 2008. We use a CAP10B single-engine aerobatic aircraft flying out of Sabadell Airport and operating in visual flight conditions providing up to 8 seconds of hypogravity for each parabola. Aside from biomedical experiments being conducted, different student teams have flown in parabolic flights in the framework of the international contest `Barcelona Zero-G Challenge', and have published their results in relevant symposiums and scientific journals. The platform can certainly be a good testbed for a proof-of-concept before accessing other microgravity platforms, and has proved to be excellent for motivational student campaigns.

  2. Documenting the NASA Armstrong Flight Research Center Oblate Earth Simulation Equations of Motion and Integration Algorithm

    Science.gov (United States)

    Clarke, R.; Lintereur, L.; Bahm, C.

    2016-01-01

    A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.

  3. Calibration of a TCCON FTS at Armstrong Flight Research Center (AFRC) Using Multiple Airborne Profiles

    Science.gov (United States)

    Hillyard, P. W.; Iraci, L. T.; Podolske, J. R.; Tanaka, T.; Yates, E. L.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Albertson, R. T.; Blake, D. R.; Meinardi, S.; Marrero, J. E.; Yang, M. M.; Beyersdorf, A. J.; Wofsy, S. C.; Pittman, J. V.; Daube, B. C.

    2014-12-01

    Satellite missions including GOSAT, OCO-2 and ASCENDS measure column abundances of greenhouse gases. It is crucial to have calibrated ground-based measurements to which these satellite measurements can compare and refine their retrieval algorithms. To this end, a Fourier Transform Spectrometer has been deployed to the Armstrong Flight Research Center (AFRC) in Edwards, CA as a member of the Total Carbon Column Observing Network (TCCON). This location was selected due to its proximity to a highly reflective lakebed. Such surfaces have proven to be difficult for accurate satellite retrievals. This facility has been in operation since July 2013. The data collected to date at this site will be presented. In order to ensure the validity of the measurements made at this site, multiple vertical profiles have been performed using the Alpha jet, DC-8, and ER-2 as part of the AJAX (ongoing), SEAC4RS (August 2013), and SARP (July 2014) field campaigns. The integrated in-situ vertical profiles for CO2 and CH4 have been analyzed and compared with the TCCON FTS measurements, where good agreement between TCCON data and vertically-integrated aircraft in-situ data has been found.

  4. Plasma Liner Research for MTF at NASA Marshall Space Flight Center

    Science.gov (United States)

    Thio, Y. C. F.; Eskridge, R.; Lee, M.; Martin, A.; Smith, J.; Cassibry, J. T.; Wu, S. T.; Kirkpatrick, R. C.; Knapp, C. E.; Turchi, P. J.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The current research effort at NASA Marshall Space Flight Center (MSFC) in MTF is directed towards exploring the critical physics issues of potential embodiments of MTF for propulsion, especially standoff drivers involving plasma liners for MTF. There are several possible approaches for forming plasma liners. One approach consists of using a spherical array of plasma jets to form a spherical plasma shell imploding towards the center of a magnetized plasma, a compact toroid. Current experimental plan and status to explore the physics of forming a 2-D plasma liner (shell) by merging plasma jets are described. A first-generation coaxial plasma guns (Mark-1) to launch the required plasma jets have been built and tested. Plasma jets have been launched reproducibly with a low jitter, and velocities in excess of 50 km/s for the leading edge of the plasma jet. Some further refinements are being explored for the plasma gun, Successful completion of these single-gun tests will be followed by an experimental exploration of the problems of launching a multiple number of these jets simultaneously to form a cylindrical plasma liner.

  5. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  6. Actions Needed to Ensure Scientific and Technical Information is Adequately Reviewed at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center

    Science.gov (United States)

    2008-01-01

    This audit was initiated in response to a hotline complaint regarding the review, approval, and release of scientific and technical information (STI) at Johnson Space Center. The complainant alleged that Johnson personnel conducting export control reviews of STI were not fully qualified to conduct those reviews and that the reviews often did not occur until after the STI had been publicly released. NASA guidance requires that STI, defined as the results of basic and applied scientific, technical, and related engineering research and development, undergo certain reviews prior to being released outside of NASA or to audiences that include foreign nationals. The process includes technical, national security, export control, copyright, and trade secret (e.g., proprietary data) reviews. The review process was designed to preclude the inappropriate dissemination of sensitive information while ensuring that NASA complies with a requirement of the National Aeronautics and Space Act of 1958 (the Space Act)1 to provide for the widest practicable and appropriate dissemination of information resulting from NASA research activities. We focused our audit on evaluating the STI review process: specifically, determining whether the roles and responsibilities for the review, approval, and release of STI were adequately defined and documented in NASA and Center-level guidance and whether that guidance was effectively implemented at Goddard Space Flight Center, Johnson Space Center, Langley Research Center, and Marshall Space Flight Center. Johnson was included in the review because it was the source of the initial complaint, and Goddard, Langley, and Marshall were included because those Centers consistently produce significant amounts of STI.

  7. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    Directory of Open Access Journals (Sweden)

    Yamina BOUGHARI

    2017-06-01

    Full Text Available In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional Representations features. To validate the controller over the whole aircraft flight envelope, the linear stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were investigated during this research to assess the business aircraft for flight control clearance and certification. The optimized gains provide a very good stability margins as the eigenvalue analysis shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft models are ensured in its entire flight envelope, its robustness is demonstrated with respect to uncertainties due to its mass and center of gravity variations.

  8. Flight Test Results from the Rake Airflow Gage Experiment on the F-15B

    Science.gov (United States)

    Frederick, Michael; Ratnayake, Nalin

    2011-01-01

    The results are described of the Rake Airflow Gage Experiment (RAGE), which was designed and fabricated to support the flight test of a new supersonic inlet design using Dryden's Propulsion Flight Test Fixture (PFTF) and F-15B testbed airplane (see figure). The PFTF is a unique pylon that was developed for flight-testing propulsion-related experiments such as inlets, nozzles, and combustors over a range of subsonic and supersonic flight conditions. The objective of the RAGE program was to quantify the local flowfield at the aerodynamic interface plane of the Channeled Centerbody Inlet Experiment (CCIE). The CCIE is a fixed representation of a conceptual mixed-compression supersonic inlet with a translating biconic centerbody. The primary goal of RAGE was to identify the relationship between free-stream and local Mach number in the low supersonic regime, with emphasis on the identification of the particular free-stream Mach number that produced a local Mach number of 1.5. Measurements of the local flow angularity, total pressure distortion, and dynamic pressure over the interface plane were also desired. The experimental data for the RAGE program were obtained during two separate research flights. During both flights, local flowfield data were obtained during straight and level acceleration segments out to steady-state test points. The data obtained from the two flights showed small variations in Mach number, flow angularity, and dynamic pressure across the interface plane at all flight conditions. The data show that a free-stream Mach number of 1.65 will produce the desired local Mach number of 1.5 for CCIE. The local total pressure distortion over the interface plane at this condition was approximately 1.5%. At this condition, there was an average of nearly 2 of downwash over the interface plane. This small amount of downwash is not expected to adversely affect the performance of the CCIE inlet.

  9. Anesthesia and critical-care delivery in weightlessness: A challenge for research in parabolic flight analogue space surgery studies

    Science.gov (United States)

    Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.

    2010-03-01

    BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic

  10. Dynamically Scaled Modular Aircraft for Flight-Based Aviation Safety Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Area-I, Incorporated personnel have led the design, fabrication, and flight testing of twelve unmanned aircraft and one manned aircraft. Partnered with NASA and...

  11. Research opportunities in loss of red blood cell mass in space flight

    Science.gov (United States)

    Talbot, J. M.; Fisher, K. D.

    1985-01-01

    Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight.

  12. Research on Arrival/Departure Scheduling of Flights on Multirunways Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hang Zhou

    2014-01-01

    Full Text Available Aiming at the phenomenon of a large number of flight delays in the terminal area makes a reasonable scheduling for the approach and departure flights, which will minimize flight delay losses and improve runway utilization. This paper considered factors such as operating conditions and safety interval of multi runways; the maximum throughput and minimum flight delay losses as well as robustness were taken as objective functions; the model of optimization scheduling of approach and departure flights was established. Finally, the genetic algorithm was introduced to solve the model. The results showed that, in the program whose advance is not counted as a loss, its runway throughput is improved by 18.4%, the delay losses are reduced by 85.8%, and the robustness is increased by 20% compared with the results of FCFS (first come first served algorithm, while, compared with the program whose advance is counted as a loss, the runway throughput is improved by 15.16%, flight delay losses are decreased by 75.64%, and the robustness is also increased by 20%. The algorithm can improve the efficiency and reduce delay losses effectively and reduce the workload of controllers, thereby improving economic results.

  13. Earth resources programs at the Langley Research Center. Part 1: Advanced Applications Flight Experiments (AAFE) and microwave remote sensing program

    Science.gov (United States)

    Parker, R. N.

    1972-01-01

    The earth resources activity is comprised of two basic programs as follows: advanced applications flight experiments, and microwave remote sensing. The two programs are in various stages of implementation, extending from experimental investigations within both the AAFE program and the microwave remote sensing program, to multidisciplinary studies and planning. The purpose of this paper is simply to identify the main thrust of the Langley Research Center activity in earth resources.

  14. Aeronautical Research Engineer Milt Thompson computing data

    Science.gov (United States)

    1956-01-01

    Milton O. Thompson was hired as an engineer at the National Advisory Committee for Aeronautics' High-Speed Flight Station (later renamed the National Aeronautics and Space Administration's Dryden Flight Research Center) on March 19, 1956. In 1958 he became a research pilot, but in this photo Milt is working on data from another pilot's research flight. Thompson began flying with the U.S. Navy as a pilot trainee at the age of 19. He subsequently served during World War II, with duty in China and Japan. Following six years of active naval service, he entered the University of Washington, in Seattle, Washington. Milt graduated in 1953 with a Bachelor of Science degree in Engineering. He remained in the Naval Reserves during college, and continued flying--not only naval aircraft but crop dusters and forest-spraying aircraft. After college graduation, Milt became a flight test engineer for the Boeing Aircraft Company in Seattle, where he was employed for two years before coming to the High-Speed Flight Station.

  15. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    Science.gov (United States)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  16. Biospecimen Retrieval from NASA's Rodent Research-1: Maximizing Science Return from Flight Missions

    Science.gov (United States)

    Choi, S. Y.; Chen, Y.- C.; Reyes, A.; Verma, V.; Dinh, M.; Globus, R. K.

    2016-01-01

    Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed to support long duration missions on the International Space Station. After 37 days in microgravity twenty mice were euthanized and frozen on orbit. Upon return to Earth the carcasses were dissected and yielded 32 different types of tissues from each mouse and over 3200 tissue aliquots. Many tissues were distributed to the Space Life and Physical Sciences (SLPS) Biospecimen Sharing Program (BSP) Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). A second round of dissections was performed to collect additional tissues from the remaining carcasses thawed for a second time for additional BSP PIs. Tissues retrieved included vaginal walls, aorta, pelvis, brown adipose tissue, tail, spine and forearms. Although the analyses are still in progress, some of the PIs have reported that the quality of the tissues was acceptable for their study. In a separate experiment we tested the RNA quality of the tissues that were dissected from frozen carcasses that were subjected to euthanasia, freezing, first and second thaw dissections. Timelines simulated the on-orbit RR-1 procedures to assess the quality of the tissues retrieved from the second thaw dissections. We analyzed the RIN values of select tissues including kidney, brain, white adipose tissue (WAT) and brown adipose tissue (BAT). Overall the RIN values from the second thaw were lower compared to those from the first by about a half unit; however, the tissues yielded RNA that are acceptable quality for some quantitative gene expression assays. Interestingly, RIN values of brain tissues were 8.4+/-0.6 and 7.9+/-0.7 from first and second round dissections, respectively (n=5). Kidney and WAT yielded RIN values less than 8 but they can still be used for qPCR. BAT yielded higher quality RNA (8.2+/-0.5) than WAT (5.22+/-0.9), possibly due to the high fat content. Together, these

  17. Research and Implementation of 3D Stereo Visual System for Flight Simulation

    Institute of Scientific and Technical Information of China (English)

    黄安祥; 于恒进; 陈宗基; 李明

    2002-01-01

    In military aircrafl fiight simulation, visual cues require depth sense,stereo sense and large field of view. To satisfy these requirements, we set up a space stereo visual system for flight simulation. This paper discusses the design issues of this visual system, including design principles, system implementations,as well as practical solutions to some key problems.

  18. X-38: Parachute Canister Fired from Plywood Mockup during Flight Termination System Test

    Science.gov (United States)

    1996-01-01

    The canister containing a seven-foot-diameter X-38 Flight Termination System (FTS) parachute is launched safely away from a plywood mockup of the X-38 by a pyrotechnic firing system on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally

  19. X-38: Plywood Mockup of Aft End Used for Flight Termination System Parachute Test

    Science.gov (United States)

    1996-01-01

    This photo shows a plywood mockup of the X-38's aft end, minus vertical stabilizers, mounted on a truck for an economical test of the X-38's Flight Termination System (FTS) on December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The FTS seven-foot diameter parachute was launched safely away from the mockup by a pyrotechnic firing system. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be

  20. X-38: Close-up of Pyrotechnic Firing during Test of Flight Termination System Parachute Deployment

    Science.gov (United States)

    1996-01-01

    In these close-ups, the canister containing the seven-foot-diameter X-38 Flight Termination System (FTS) parachute can be seen launching safely away from an aft-end mockup of the X-38 by a pyrotechnic firing system in December 19, 1996, at NASA Dryden Flight Research Center, Edwards, California. The test was economically accomplished by mounting the mockup of the X-38's aft-end, minus vertical stabilizers, on a truck prior to installation in the X-38. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research

  1. Experimental study of the flight envelope and research of safety requirements for hang-gliders

    Science.gov (United States)

    Laburthe, C.

    1979-01-01

    The flight mechanic computations were computed, providing both the flight envelopes with all sorts of limits and a fairly precise idea of the influence of several parameters, such as pilot's weight, wing settings, aeroelasticity, etc... The particular problem of luffing dives was thoroughly analyzed, and two kinds of causes were exhibited in both the rules of luffing and aeroelastic effects. The general analysis of longitudinal stability showed a strong link with fabric tension, as expected through Nielsen's and Twaites' theory. Fabric tension strongly depending upon aeroelasticity, that parameter was found to be the most effective design one for positive stability. Lateral stability was found to be very similar in all gliders except perhaps the cylindro-conical. The loss of stability happens in roll at low angle of attack, whereas it happens in yaw at high angle. Turning performance was a bit suprising, with a common maximum value of approximately 55 deg of bank angle for a steady turn.

  2. Toward comparing experiment and theory for corroborative research on hingeless rotor stability in forward flight

    Science.gov (United States)

    Gaonkar, G.

    1987-01-01

    For flap lag stability of isolated rotors, experimental and analytical investigations were conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic flow. Forward flight effects on lag regressing mode were emphasized. A soft inplane hingeless rotor with three blades was tested at advance ratios as high as 0.55 and at shaft angles as high as 20 deg. The 1.62 m model rotor was untrimmed with an essentially unrestricted tilt of the tip path plane. In combination with lag natural frequencies, collective pitch settings and flap lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulation, a linear model was developed in substall to predict stability margins with mode identification. To help explain the correlation between theory and data it also predicted substall and stall regions of the rotor disk from equilibrium values. The correlation showed both the strengths and weaknesses of the theory in substall ((angle of attack) equal to or less than 12 deg).

  3. D-558-2 launch and flight

    Science.gov (United States)

    1954-01-01

    This 19-second video clip shows the D-558-2 being dropped from the P2B-1S mothership, flying and landing. Near the end of the clip the wing of the TF-86 video chase aircraft is visible landing on the Rogers Dry Lakebed next to the Skyrocket. The Douglas D-558-2 Skyrocket airplanes were early transonic research airplanes like the X-1, X-4, X-5, and X-92A. Three of these single-seat, swept-wing aircraft flew from 1948 to 1956 in a joint program involving the National Advisory Committee for Aeronautics (NACA); the Navy-Marine Corps; and the Douglas Aircraft Company, Long Beach, California. Flight research was done at the NACA Muroc Flight Test Unit in California, redesignated in 1949 the High-Speed Flight Research Station (HSFRS). The HSFRS is now known as the NASA Dryden Flight Research Center, Edwards, California. The Skyrocket made aviation history when it became the first airplane to fly twice the speed of sound. Douglas Aircraft pilot John F. Martin made the first flight at Muroc Army Airfield (later renamed Edwards Air Force Base) in California on February 4, 1948. The goals of that program were to investigate the characteristics of swept-wing aircraft at transonic and supersonic speeds with particular attention to pitchup (uncommanded rotation of the nose of the airplane upwards) -- a problem prevalent in high-speed service aircraft of that era, particularly at low speeds during takeoff and landing and in tight turns. The three aircraft gathered a great deal of data about pitchup and the coupling of lateral (yaw) and longitudinal (pitch) motions; wing and tail loads, lift, drag, and buffeting characteristics of swept-wing aircraft at transonic and supersonic speeds; and the effects of the rocket exhaust plume on lateral dynamic stability throughout the speed range. (Plume effects were a new experience for aircraft.) The number three aircraft also gathered information about the effects of external stores (bomb shapes, drop tanks) upon the aircraft behavior in

  4. Dryden Fllight Reseach Facility, Edwards, California STA (Shuttle Training Aircraft, Gulf Stream II)

    Science.gov (United States)

    1991-01-01

    Dryden Fllight Reseach Facility, Edwards, California STA (Shuttle Training Aircraft, Gulf Stream II) flys chase as STS-41returns from it's mission to Deploy Ulysses Spacecraft... Discovery's main gear is about to touch down at Edwards Air Foce Base to end a four-day mission in space for it's five-man crew. The vehicle landed at 6:57 a.m. Onboard the spacecraft were Astronauts Richard N. Richards, Robert D Cabana, William M Sheperd, Bruce E. Melnick and Thomas D. Akers.

  5. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing

  6. M2-F1 in flight over lakebed on tow line

    Science.gov (United States)

    1963-01-01

    Following the first M2-F1 airtow flight on 16 August 1963, the Flight Research Center used the vehicle for both research flights and to check out new lifting-body pilots. These included Bruce Peterson, Don Mallick, Fred Haise, and Bill Dana from NASA. Air Force pilots who flew the M2-F1 included Chuck Yeager, Jerry Gentry, Joe Engle, Jim Wood, and Don Sorlie, although Wood, Haise, and Engle only flew on car tows. In the three years between the first and last flights of the M2-F1, it made about 400 car tows and 77 air tows. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and

  7. Centurion solar-powered high-altitude aircraft in flight

    Science.gov (United States)

    1998-01-01

    Since 1980 AeroVironment, Inc. (founded in 1971 by the ultra-light airplane innovator--Dr. Paul MacCready) has been experimenting with solar-powered aircraft, often in conjunction with the NASA Dryden Flight Research Center, Edwards, California. Thus far, AeroVironment, now headquartered in Monrovia, California, has achieved several altitude records with its Solar Challenger, Pathfinder, and Pathfinder-Plus aircraft. It expects to exceed these records with the newer and larger solar-powered Centurion and its successors the Centelios and Helios vehicles, in the NASA Environmental Research Aircraft and Sensor Technology (ERAST) program. The Centurion is a lightweight, solar-powered, remotely piloted flying wing aircraft that is demonstrating the technology of applying solar power for long-duration, high-altitude flight. It is considered to be a prototype technology demonstrator for a future fleet of solar-powered aircraft that could stay airborne for weeks or months on scientific sampling and imaging missions or while serving as telecommunications relay platforms. Although it shares many of the design concepts of the Pathfinder, the Centurion has a wingspan of 206 feet, more than twice the 98-foot span of the original Pathfinder and 70-percent longer than the Pathfinder-Plus' 121-foot span. At the same time, Centurion maintains the 8-foot chord (front to rear distance) of the Pathfinder wing, giving the wing an aspect ratio (length-to-chord) of 26 to 1. Other visible changes from its predecessor include a modified wing airfoil designed for flight at extreme altitude and four underwing pods to support its landing gear and electronic systems (compared with two such pods on the Pathfinder). The flexible wing is primarily fabricated from carbon fiber, graphite epoxy composites, and kevlar. It is built in five sections, a 44-foot-long center section and middle and outer sections just over 40 feet long. All five sections have an identical thickness--12 percent of the chord

  8. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    Science.gov (United States)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  9. Centennial of Flight Educational Outreach

    Science.gov (United States)

    McCarthy, Marianne (Technical Monitor); Miller, Susan (Technical Monitor); Vanderpool, Celia

    2003-01-01

    The Centennial of Flight Education Outreach project worked with community partners to disseminate NASA Education materials and the Centennial of Flight CD-ROM as a vehicle to increase national awareness of NASA's Aerospace Education products, services and programs. The Azimuth Education Foundation and the Ninety Nines, an International Women Pilots Association, Inc. were chartered to conduct education outreach to the formal and informal educational community. The Dryden Education Office supported the development of a training and information distribution program that established a national group of prepared Centennial of Flight Ambassadors, with a mission of community education outreach. These Ambassadors are members of the Ninety Nines and through the Azimuth Foundation, they assisted the AECC on the national level to promote and disseminate Centennial of Flight and other educational products. Our objectives were to explore partnership outreach growth opportunities with consortium efforts between organizations. This project directly responded to the highlights of NASA s Implementation Plan for Education. It was structured to network, involve the community, and provide a solid link to active educators and current students with NASA education information. Licensed female pilots who live and work in local communities across the nation carried the link. This partnership has been extremely gratifying to all of those Ninety-Nines involved, and they eagerly look forward to further work opportunities.

  10. B-52 Launch Aircraft in Flight

    Science.gov (United States)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  11. Technology research for strapdown inertial experiment and digital flight control and guidance

    Science.gov (United States)

    Carestia, R. A.; Cottrell, D. E.

    1985-01-01

    A helicopter flight-test program to evaluate the performance of Honeywell's Tetrad - a strapdown, laser gyro, inertial navitation system is discussed. The results of 34 flights showed a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n.mi., with a standard deviation of 1.48 n.m.; and a modeled mean-position-error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. Tetrad's four-ring laser gyros provided reliable and accurate angular rate sensing during the test program and on sensor failures were detected during the evaluation. Criteria suitable for investigating cockpit systems in rotorcraft were developed. This criteria led to the development of two basic simulators. The first was a standard simulator which could be used to obtain baseline information for studying pilot workload and interactions. The second was an advanced simulator which integrated the RODAAS developed by Honeywell into this simulator. The second area also included surveying the aerospace industry to determine the level of use and impact of microcomputers and related components on avionics systems.

  12. Real-time In-Flight Strain and Deflection Monitoring with Fiber Optic Sensors

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Ko, William L.; Piazza, Anthony

    2008-01-01

    This viewgraph presentation reviews Dryden's efforts to develop in-flight monitoring based on Fiber Optics. One of the motivating factors for this development was the breakup of the Helios aircraft. On Ikhana the use of fiber optics for wing shape sensing is being developed. They are being used to flight validate fiber optic sensor measurements and real-time wing shape sensing predictions on NASA's Ikhana vehicle; validate fiber optic mathematical models and design tools; Assess technical viability and, if applicable, develop methodology and approach to incorporate wing shape measurements within the vehicle flight control system, and develop and flight validate advanced approaches to perform active wing shape control.

  13. Recent estimates of capital flight

    OpenAIRE

    Claessens, Stijn; Naude, David

    1993-01-01

    Researchers and policymakers have in recent years paid considerable attention to the phenomenon of capital flight. Researchers have focused on four questions: What concept should be used to measure capital flight? What figure for capital flight will emerge, using this measure? Can the occurrence and magnitude of capital flight be explained by certain (economic) variables? What policy changes can be useful to reverse capital flight? The authors focus strictly on presenting estimates of capital...

  14. Flight management research utilizing an oculometer. [pilot scanning behavior during simulated approach and landing

    Science.gov (United States)

    Spady, A. A., Jr.; Kurbjun, M. C.

    1978-01-01

    This paper presents an overview of the flight management work being conducted using NASA Langley's oculometer system. Tests have been conducted in a Boeing 737 simulator to investigate pilot scan behavior during approach and landing for simulated IFR, VFR, motion versus no motion, standard versus advanced displays, and as a function of various runway patterns and symbology. Results of each of these studies are discussed. For example, results indicate that for the IFR approaches a difference in pilot scan strategy was noted for the manual versus coupled (autopilot) conditions. Also, during the final part of the approach when the pilot looks out-of-the-window he fixates on his aim or impact point on the runway and holds this point until flare initiation.

  15. Flight management research utilizing an oculometer. [pilot scanning behavior during simulated approach and landing

    Science.gov (United States)

    Spady, A. A., Jr.; Kurbjun, M. C.

    1978-01-01

    This paper presents an overview of the flight management work being conducted using NASA Langley's oculometer system. Tests have been conducted in a Boeing 737 simulator to investigate pilot scan behavior during approach and landing for simulated IFR, VFR, motion versus no motion, standard versus advanced displays, and as a function of various runway patterns and symbology. Results of each of these studies are discussed. For example, results indicate that for the IFR approaches a difference in pilot scan strategy was noted for the manual versus coupled (autopilot) conditions. Also, during the final part of the approach when the pilot looks out-of-the-window he fixates on his aim or impact point on the runway and holds this point until flare initiation.

  16. Parameter identification studies on the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    Science.gov (United States)

    Mckavitt, Thomas P., Jr.

    1990-01-01

    The results of an aircraft parameters identification study conducted on the National Aeronautics and Space Administration/Ames Research Center Advanced Concepts Flight Simulator (ACFS) in conjunction with the Navy-NASA Joint Institute of Aeronautics are given. The ACFS is a commercial airline simulator with a design based on future technology. The simulator is used as a laboratory for human factors research and engineering as applied to the commercial airline industry. Parametric areas examined were engine pressure ratio (EPR), optimum long range cruise Mach number, flap reference speed, and critical take-off speeds. Results were compared with corresponding parameters of the Boeing 757 and 767 aircraft. This comparison identified two areas where improvements can be made: (1) low maximum lift coefficients (on the order of 20-25 percent less than those of a 757); and (2) low optimum cruise Mach numbers. Recommendations were made to those anticipated with the application of future technologies.

  17. Exploratory flight investigation of aircraft response to the wing vortex wake generated by the augmentor wing jet STOL research aircraft

    Science.gov (United States)

    Jacobsen, R. A.; Drinkwater, F. J., III

    1975-01-01

    A brief exploratory flight program was conducted at Ames Research Center to investigate the vortex wake hazard of a powered-lift STOL aircraft. The study was made by flying an instrumented Cessna 210 aircraft into the wake of the augmentor wing jet STOL research aircraft at separation distances from 1 to 4 n.mi. Characteristics of the wake were evaluated in terms of the magnitude of the upset of the probing aircraft. Results indicated that within 1 n.mi. separation the wake could cause rolling moments in excess of roll control power and yawing moments equivalent to rudder control power of the probe aircraft. Subjective evaluations by the pilots of the Cessna 210 aircraft, supported by response measurements, indicated that the upset caused by the wake of the STOL aircraft was comparable to that of a DC-9 in the landing configuration.

  18. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    Science.gov (United States)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-02-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  19. In-flight control and communication architecture of the GLORIA imaging limb sounder on atmospheric research aircraft

    Science.gov (United States)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  20. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    Directory of Open Access Journals (Sweden)

    E. Kretschmer

    2015-02-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA, a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  1. Closeup of research pilot Neil Armstrong operating the Iron Cross Attitude Simulator reaction contro

    Science.gov (United States)

    1956-01-01

    Famed astronaut Neil A. Armstrong, the first man to set foot on the moon during the historic Apollo 11 space mission in July 1969, served for seven years as a research pilot at the NACA-NASA High-Speed Flight Station, now the Dryden Flight Research Center, at Edwards, California, before he entered the space program. Armstrong joined the National Advisory Committee for Aeronautics (NACA) at the Lewis Flight Propulsion Laboratory (later NASA's Lewis Research Center, Cleveland, Ohio, and today the Glenn Research Center) in 1955. Later that year, he transferred to the High-Speed Flight Station at Edwards as an aeronautical research scientist and then as a pilot, a position he held until becoming an astronaut in 1962. He was one of nine NASA astronauts in the second class to be chosen. As a research pilot Armstrong served as project pilot on the F-100A and F-100C aircraft, F-101, and the F-104A. He also flew the X-1B, X-5, F-105, F-106, B-47, KC-135, and Paresev. He left Dryden with a total of over 2450 flying hours. He was a member of the USAF-NASA Dyna-Soar Pilot Consultant Group before the Dyna-Soar project was cancelled, and studied X-20 Dyna-Soar approaches and abort maneuvers through use of the F-102A and F5D jet aircraft. Armstrong was actively engaged in both piloting and engineering aspects of the X-15 program from its inception. He completed the first flight in the aircraft equipped with a new flow-direction sensor (ball nose) and the initial flight in an X-15 equipped with a self-adaptive flight control system. He worked closely with designers and engineers in development of the adaptive system, and made seven flights in the rocket plane from December 1960 until July 1962. During those fights he reached a peak altitude of 207,500 feet in the X-15-3, and a speed of 3,989 mph (Mach 5.74) in the X-15-1. Armstrong has a total of 8 days and 14 hours in space, including 2 hours and 48 minutes walking on the Moon. In March 1966 he was commander of the Gemini 8

  2. In-flight imaging of transverse gas jets injected into transonic and supersonic crossflows: Design and development. M.S. Thesis, Mar. 1993

    Science.gov (United States)

    Wang, Kon-Sheng Charles

    1994-01-01

    The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.

  3. [The effect of space flight on metabolism: the results of biochemical research in rat experiments on the Kosmos biosatellites].

    Science.gov (United States)

    Popova, I A; Grigor'ev, A I

    1992-01-01

    Cosmos biosatellites research program was the unique possibility to study the metabolic features influenced by space flight factors. Based on the existing ideas about relationships between some metabolic responses, the state of metabolism and the systems of its control in the rats flown in space was evaluated to differentiate the processes occurred in microgravity, possibly under effect of this factor and during first postflight hours. The biochemical results of studying the rats exposed to space environments during 7, 14, 18.5 and 19.5 days and sacrificed 4-11 h after landing (Cosmos-782, -936, -1129, -1667, -2044 flight) are used. The major portion of data are in line with understanding that after landing when the microgravity-adapted rats again return to 1-g environments they display an acute stress reaction. A postflight stress reaction is manifested itself in a specific way as compared to adequate and well studied model of acute and chronic stress and dictates subsequent metabolic changes. Postflight together with the acute stressful and progressing readaptation shifts the metabolic signs of previous adaptation to microgravity are shown up. In the absence of engineering feasibility to control or record the state of metabolism inflight it can only presupposed what metabolic status is typical of the animals in space environments and that its development is triggered by a decreased secretion of the biologically active growth hormone. This concept is confirmed by the postflight data.

  4. Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Hale, Joseph P.

    1995-01-01

    A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.

  5. A Few Questions on Flight Control System Research and Design of Near Space Vehicle%关于近空间飞行器飞行控制系统研究设计的几个问题

    Institute of Scientific and Technical Information of China (English)

    姜长生

    2015-01-01

    Several problems on the flight control system design of Near Space Vehicle ( NSV ) are discussed. Firstly, the recent developments and the importance of NSV research are introduced. Then, several important problems for the NSV flight control are discussed, including:1 ) modeling of NSV flight motion control;2 ) robustness of NSV flight attitude control;3 ) integrated coordination control between flight attitude and centre-of-gravity motion;4 ) integrated coordination control between flight and engine control;and 5 ) anti-disturbance of flight control. The corresponding view is given and methods are proposed for solution of the problems. At last, the author’s viewpoints on design principles of NSV flight control system are presented, and the significance of applying integrated coordination control idea in NSV flight control system design is pointed out.

  6. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    Science.gov (United States)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; hide

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  7. Research and development on a sub 100 PICO second time-of-flight system based on silicon avalanche diodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Y.; Hirsch, A.; Hauger, A.; Scharenberg, R.; Tincknell, M. [Purdue Univ., West Lafayette, IN (United States); Rai, G. [Lawrence Berkeley Lab., CA (United States)

    1991-12-31

    Particle identification requires a momentum measurement and a second independent determination either energy loss (dE/dx) or time of flight (TOF). To cover a momentum range from 0.1 GeV/c to 1.5 GeV/c in the STAR detector requires both the dE/dx and TOF techniques. This research is designed to develop the avalanche diode (AVD) detectors for TOF systems and evaluate their performance. The test of a small prototype system would be carried out at Purdue and at accelerator test beam sites. The Purdue group has developed a complete test setup for evaluating the time resolution of the AVD`s which includes fast-slow electronic channels, CAMAC based electronic modules and a temperature controlled environment. The AVDs also need to be tested in a 0.5 tesla magnetic field. The Purdue group would augment this test set up to include a magnetic field.

  8. A Functional Description of a Digital Flight Test System for Navigation and Guidance Research in the Terminal Area

    Science.gov (United States)

    Hegarty, D. M.

    1974-01-01

    A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.

  9. Geohydrology, water quality, and simulation of groundwater flow in the stratified-drift aquifer system in Virgil Creek and Dryden Lake Valleys, Town of Dryden, Tompkins County, New York

    Science.gov (United States)

    Miller, Todd S.; Bugliosi, Edward F.

    2013-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department and the Town of Dryden, New York, began a study of the stratified-drift aquifer system in the Virgil Creek and Dryden Lake Valleys in the Town of Dryden, Tompkins County. The study provided geohydrologic data needed by the town and county to develop a strategy to manage and protect their water resources. In this study area, three extensive confined sand and gravel aquifers (the upper, middle, and lower confined aquifers) compose the stratified-drift aquifer system. The Dryden Lake Valley is a glaciated valley oriented parallel to the direction of ice movement. Erosion by ice extensively widened and deepened the valley, truncated bedrock hillsides, and formed a nearly straight, U-shaped bedrock trough. The maximum thickness of the valley fill in the central part of the valley is about 400 feet (ft). The Virgil Creek Valley in the east part of the study area underwent less severe erosion by ice than the Dryden Lake Valley, and hence, it has a bedrock floor that is several hundred feet higher in altitude than that in the Dryden Lake Valley. The sources and amounts of recharge were difficult to identify in most areas because the confined aquifers are overlain by confining units. However, in the vicinity of the Virgil Creek Dam, the upper confined aquifer crops out at land surface in the floodplain of a gorge eroded by Virgil Creek, and this is where the aquifer receives large amounts of recharge from precipitation that directly falls over the aquifer and from seepage losses from Virgil Creek. The results of streamflow measurements made in Virgil Creek where it flows through the gorge indicated that the stream lost 1.2 cubic feet per second (ft3/s) or 0.78 million gallons per day (Mgal/d) of water in the reach extending from 220 ft downstream from the dam to 1,200 ft upstream from the dam. In the southern part of the study area, large amounts of recharge also replenish the

  10. Prototype-Technology Evaluator and Research Aircraft (PTERA) Flight Test Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  11. SR-71 Research Engineer Marta Bohn-Meyer

    Science.gov (United States)

    1992-01-01

    This 1992 photo shows SR-71 flight engineer Marta Bohn-Meyer in front of one of NASA's SR-71 aircraft on the ramp at the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center), Edwards, California. An aerospace engineer who has been at Dryden since 1979, Bohn-Meyer is the first female crew member ever assigned to fly in the SR-71. Data from the SR-71 program carried out by NASA will be used to aid designers of future supersonic aircraft and propulsion systems. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes

  12. Design of Prototype-Technology Evaluator and Research Aircraft (PTERA) Configuration for Loss of Control Flight Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Area-I team has developed and fabricated the unmanned Prototype-Technology Evaluation and Research Aircraft or PTERA ("ptera" being Greek for wing, or...

  13. AD-1 with research pilot Richard E. Gray

    Science.gov (United States)

    1982-01-01

    Standing in front of the AD-1 Oblique Wing research aircraft is research pilot Richard E. Gray. Richard E. Gray joined National Aeronautics and Space Administration's Johnson Space Center, Houston, Texas, in November 1978, as an aerospace research pilot. In November 1981, Dick joined the NASA's Ames-Dryden Flight Research Facility, Edwards, California, as a research pilot. Dick was a former Co-op at the NASA Flight Research Center (a previous name of the Ames-Dryden Flight Research Facility), serving as an Operations Engineer. At Ames-Dryden, Dick was a pilot for the F-14 Aileron Rudder Interconnect Program, AD-1 Oblique Wing Research Aircraft, F-8 Digital Fly-By-Wire and Pilot Induced Oscillations investigations. He also flew the F-104, T-37, and the F-15. On November 8, 1982, Gray was fatally injured in a T-37 jet aircraft while making a pilot proficiency flight. Dick graduated with a Bachelors degree in Aeronautical Engineering from San Jose State University in 1969. He joined the U.S. Navy in July 1969, becoming a Naval Aviator in January 1971, when he was assigned to F-4 Phantoms at Naval Air Station (NAS) Miramar, California. In 1972, he flew 48 combat missions in Vietnam in F-4s with VF-111 aboard the USS Coral Sea. After making a second cruise in 1973, Dick was assigned to Air Test and Evaluation Squadron Four (VX-4) at NAS Point Mugu, California, as a project pilot on various operational test and evaluation programs. In November 1978, Dick retired from the Navy and joined NASA's Johnson Space Center. At JSC Gray served as chief project pilot on the WB-57F high-altitude research projects and as the prime television chase pilot in a T-38 for the landing portion of the Space Shuttle orbital flight tests. Dick had over 3,000 hours in more than 30 types of aircraft, an airline transport rating, and 252 carrier arrested landings. He was a member of the Society of Experimental Test Pilots serving on the Board of Directors as Southwest Section Technical Adviser in

  14. Matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry in genomics research.

    Directory of Open Access Journals (Sweden)

    Jiannis Ragoussis

    2006-07-01

    Full Text Available The beginning of this millennium has seen dramatic advances in genomic research. Milestones such as the complete sequencing of the human genome and of many other species were achieved and complemented by the systematic discovery of variation at the single nucleotide (SNP and whole segment (copy number polymorphism level. Currently most genomics research efforts are concentrated on the production of whole genome functional annotations, as well as on mapping the epigenome by identifying the methylation status of CpGs, mainly in CpG islands, in different tissues. These recent advances have a major impact on the way genetic research is conducted and have accelerated the discovery of genetic factors contributing to disease. Technology was the critical driving force behind genomics projects: both the combination of Sanger sequencing with high-throughput capillary electrophoresis and the rapid advances in microarray technologies were keys to success. MALDI-TOF MS-based genome analysis represents a relative newcomer in this field. Can it establish itself as a long-term contributor to genetics research, or is it only suitable for niche areas and for laboratories with a passion for mass spectrometry? In this review, we will highlight the potential of MALDI-TOF MS-based tools for resequencing and for epigenetics research applications, as well as for classical complex genetic studies, allele quantification, and quantitative gene expression analysis. We will also identify the current limitations of this approach and attempt to place it in the context of other genome analysis technologies.

  15. Real-Time Simulation Computation System. [for digital flight simulation of research aircraft

    Science.gov (United States)

    Fetter, J. L.

    1981-01-01

    The Real-Time Simulation Computation System, which will provide the flexibility necessary for operation in the research environment at the Ames Research Center is discussed. Designing the system with common subcomponents and using modular construction techniques enhances expandability and maintainability qualities. The 10-MHz series transmission scheme is the basis of the Input/Output Unit System and is the driving force providing the system flexibility. Error checking and detection performed on the transmitted data provide reliability measurements and assurances that accurate data are received at the simulators.

  16. Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR): In-Flight Performance During AIRTOSS-I/II Research Aircaft Campaigns

    Science.gov (United States)

    Smit, Herman G. J.; Rolf, Christian; Kraemer, Martina; Petzold, Andreas; Spelten, Nicole; Rohs, Susanne; Neis, Patrick; Maser, Rolf; Bucholz, Bernhard; Ebert, Volker; Tatrai, David; Bozoki, Zoltan; Finger, Fanny; Klingebiel, Marcus

    2014-05-01

    Water vapour is one of the most important parameters in weather prediction and climate research. Accurate and reliable airborne measurements of water vapour are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. Presently, no airborne water vapour sensor exists that covers the entire range of water vapour content of more than four order of magnitudes between the surface and the UT/LS region with sufficient accuracy and time resolution, not to speak of the technical requirements for quasi-routine operation. In a joint research activity of the European Facility for Airborne Research (EUFAR) programme, funded by the EC in FP7, we have addressed this deficit by the Development and Evaluation of Novel and Compact Hygrometer for Airborne Research (DENCHAR), including the sampling characteristics of different gas/ice inlets. The new instruments using innovative detecting technics based on tuneable diode laser technology combined with absorption spectroscopy (TDLAS) or photoacoustic spectroscopy (PAS): (i) SEALDH based on novel self-calibrating absorption spectroscopy; (ii) WASUL, based on photoacoustic spectroscopy; (iii) commercial WVSS-II, also a TDLAS hygrometer, but using 2f-detection technics. DENCHAR has followed an unique strategy by facilitating new instrumental developments together with conducting extensive testing, both in the laboratory and during in-flight operation. Here, we will present the evaluation of the in-flight performance of the three new hygrometer instruments, which is based on the results obtained during two dedicated research aircraft campaigns (May and September 2013) as part of the AIRTOSS (AIRcraft Towed Sensor Shuttle) experiments. Aboard the Learjet 35A research aircraft the DENCHAR instruments were operated side by side with the well established Fast In-Situ Hygrometer (FISH), which is based on Lyman (alpha) resonance fluorescence detection technics and calibrated to the reference frost point

  17. Production of Reliable Flight Crucial Software: Validation Methods Research for Fault Tolerant Avionics and Control Systems Sub-Working Group Meeting

    Science.gov (United States)

    Dunham, J. R. (Editor); Knight, J. C. (Editor)

    1982-01-01

    The state of the art in the production of crucial software for flight control applications was addressed. The association between reliability metrics and software is considered. Thirteen software development projects are discussed. A short term need for research in the areas of tool development and software fault tolerance was indicated. For the long term, research in format verification or proof methods was recommended. Formal specification and software reliability modeling, were recommended as topics for both short and long term research.

  18. Design and Calibration of a Flowfield Survey Rake for Inlet Flight Research

    Science.gov (United States)

    Flynn, Darin C.; Ratnayake, Nalin A.; Frederick, Michael

    2009-01-01

    Flowfield rake was designed to quantify the flowfield for inlet research underneath NASA DFRC s F-15B airplane. Detailed loads and stress analysis performed using CFD and empirical methods to assure structural integrity. Calibration data were generated through wind tunnel testing of the rake. Calibration algorithm was developed to determine the local Mach and flow angularity at each probe. RAGE was flown November, 2008. Data is currently being analyzed.

  19. 2007 Research and Engineering Annual Report

    Science.gov (United States)

    Stoliker, Patrick; Bowers, Albion; Cruciani, Everlyn

    2008-01-01

    Selected research and technology activities at NASA Dryden Flight Research Center are summarized. These following activities exemplify the Center's varied and productive research efforts: Developing a Requirements Development Guide for an Automatic Ground Collision Avoidance System; Digital Terrain Data Compression and Rendering for Automatic Ground Collision Avoidance Systems; Nonlinear Flutter/Limit Cycle Oscillations Prediction Tool; Nonlinear System Identification Using Orthonormal Bases: Application to Aeroelastic/Aeroservoelastic Systems; Critical Aerodynamic Flow Feature Indicators: Towards Application with the Aerostructures Test Wing; Multidisciplinary Design, Analysis, and Optimization Tool Development Using a Genetic Algorithm; Structural Model Tuning Capability in an Object-Oriented Multidisciplinary Design, Analysis, and Optimization Tool; Extension of Ko Straight-Beam Displacement Theory to the Deformed Shape Predictions of Curved Structures; F-15B with Phoenix Missile and Pylon Assembly--Drag Force Estimation; Mass Property Testing of Phoenix Missile Hypersonic Testbed Hardware; ARMD Hypersonics Project Materials and Structures: Testing of Scramjet Thermal Protection System Concepts; High-Temperature Modal Survey of the Ruddervator Subcomponent Test Article; ARMD Hypersonics Project Materials and Structures: C/SiC Ruddervator Subcomponent Test and Analysis Task; Ground Vibration Testing and Model Correlation of the Phoenix Missile Hypersonic Testbed; Phoenix Missile Hypersonic Testbed: Performance Design and Analysis; Crew Exploration Vehicle Launch Abort System-Pad Abort-1 (PA-1) Flight Test; Testing the Orion (Crew Exploration Vehicle) Launch Abort System-Ascent Abort-1 (AA-1) Flight Test; SOFIA Flight-Test Flutter Prediction Methodology; SOFIA Closed-Door Aerodynamic Analyses; SOFIA Handling Qualities Evaluation for Closed-Door Operations; C-17 Support of IRAC Engine Model Development; Current Capabilities and Future Upgrade Plans of the C-17 Data

  20. Development of an In-Flight Refill Unit for Replenishing Research Animal Drinking Water

    Science.gov (United States)

    Savage, P. D.; Hines, M. I.; Barnes, R.

    1994-01-01

    The Spacelab Life Sciences 2 (SLS-2) mission became NASA's longest duration Shuttle mission, lasting fourteen days, when Columbia landed on 1 Nov. 1993. Located within the Spacelab were a total of 48 laboratory rats which were housed in two Research Animal Holding Facilities (RAHF's) developed by the Space Life Sciences Payloads Office (SLSPO) at Ames Research Center. In order to properly maintain the health and well-being of these important research animals, sufficient quantities of food and water had to be available for the duration of the mission. An inflight Refill Unit was developed by the SLSPO to replenish the animals' drinking water inflight using the Shuttle potable water system in the middeck galley as the source of additional water. The Inflight Refill Unit consists of two major subsystems, a Fluid Pumping Unit (FPU) and a Collapsible Water Reservoir (CWR). The FPU provides the system measurement and controls, pump, water lines, and plumbing necessary to collect water coming into the unit from the potable water system and pump it out and into the RAHF drinking water tanks. The CWR is a Kevlar(trademark) reinforced storage bladder, connected to the FPU, which has a capacity of 6 liters in its expanded volume and functions to store the water collected from the potable water system and allows for the transport of the water back to the Spacelab where it is pumped into each of two RAHFs. Additional components of the FPU system include the inlet and outlet fluid hoses, a power cable for providing 28 volt direct current spacecraft electrical power to the pump within the FPU, a tether system for the unit when in use in Spacelab, and an adapter for mating the unit to the orbiter waste collection system in order to dump excess water after use in Spacelab. This paper will present the design process and development approach for the lnflight Refill Unit, define some of the key design issues which had to be addressed, and summarize the inflight operational performance

  1. CID Aircraft in practice flight above target impact site with wing cutters

    Science.gov (United States)

    1984-01-01

    In this photograph the B-720 is seen making a practice close approach over the prepared impact site. The wing openers, designed to tear open the wings and spill the fuel, are clearly seen on the ground just at the start of the bed of rocks. In a typical aircraft crash, fuel spilled from ruptured fuel tanks forms a fine mist that can be ignited by a number of sources at the crash site. In 1984 the NASA Dryden Flight Research Facility (after 1994 a full-fledged Center again) and the Federal Aviation Administration (FAA) teamed-up in a unique flight experiment called the Controlled Impact Demonstration (CID), to test crash a Boeing 720 aircraft using standard fuel with an additive designed to supress fire. The additive, FM-9, a high-molecular-weight long-chain polymer, when blended with Jet-A fuel had demonstrated the capability to inhibit ignition and flame propagation of the released fuel in simulated crash tests. This anti-misting kerosene (AMK) cannot be introduced directly into a gas turbine engine due to several possible problems such as clogging of filters. The AMK must be restored to almost Jet-A before being introduced into the engine for burning. This restoration is called 'degradation' and was accomplished on the B-720 using a device called a 'degrader.' Each of the four Pratt & Whitney JT3C-7 engines had a 'degrader' built and installed by General Electric (GE) to break down and return the AMK to near Jet-A quality. In addition to the AMK research the NASA Langley Research Center was involved in a structural loads measurement experiment, which included having instrumented dummies filling the seats in the passenger compartment. Before the final flight on December 1, 1984, more than four years of effort passed trying to set-up final impact conditions considered survivable by the FAA. During those years while 14 flights with crews were flown the following major efforts were underway: NASA Dryden developed the remote piloting techniques necessary for the B-720

  2. Extracellular mass transport considerations for space flight research concerning suspended and adherent in vitro cell cultures

    Science.gov (United States)

    Klaus, David M.; Benoit, Michael R.; Nelson, Emily S.; Hammond, Timmothy G.

    2004-01-01

    Conducting biological research in space requires consideration be given to isolating appropriate control parameters. For in vitro cell cultures, numerous environmental factors can adversely affect data interpretation. A biological response attributed to microgravity can, in theory, be explicitly correlated to a specific lack of weight or gravity-driven motion occurring to, within or around a cell. Weight can be broken down to include the formation of hydrostatic gradients, structural load (stress) or physical deformation (strain). Gravitationally induced motion within or near individual cells in a fluid includes sedimentation (or buoyancy) of the cell and associated shear forces, displacement of cytoskeleton or organelles, and factors associated with intra- or extracellular mass transport. Finally, and of particular importance for cell culture experiments, the collective effects of gravity must be considered for the overall system consisting of the cells, their environment and the device in which they are contained. This does not, however, rule out other confounding variables such as launch acceleration, on orbit vibration, transient acceleration impulses or radiation, which can be isolated using onboard centrifuges or vibration isolation techniques. A framework is offered for characterizing specific cause-and-effect relationships for gravity-dependent responses as a function of the above parameters.

  3. Growth hormone secretion during space flight and evaluation of the physiological responses of animals held in the research animal holding facility

    Science.gov (United States)

    Fast, Thomas N.; Grindeland, Richard; Mehler, William; Oyama, Jiro

    1987-01-01

    The spaceflight of the Research Animal Holding Facility (RAHF) on the Space Laboratory 3 (SL 3) provided the opportunity to evaluate the suitability of the RAHF for housing and maintaining experimental animals during spaceflight, and to determine changes in the secretion of growth hormone during spaceflight. Using ground-based studies the following were investigated: the optimum conditions for creating gravitational force on space flight animals; neural pathways that may play a role in the space flight syndrome; and the time course of muscle atrophy due to hypodynamia and hypokenesia in hindlimb-suspended animals and the role of growth hormone in these processes.

  4. Glass-Cockpit Pilot Subjective Ratings of Predictive Information, Collocation, and Mission Status Graphics: An Analysis and Summary of the Future Focus of Flight Deck Research Survey

    Science.gov (United States)

    Bartolone, Anthony; Trujillo, Anna

    2002-01-01

    NASA Langley Research Center has been researching ways to improve flight crew decision aiding for systems management. Our current investigation is how to display a wide variety of aircraft parameters in ways that will improve the flight crew's situation awareness. To accomplish this, new means are being explored that will monitor the overall health of a flight and report the current status of the aircraft and forecast impending problems to the pilots. The initial step in this research was to conduct a survey addressing how current glass-cockpit commercial pilots would value a prediction of the status of critical aircraft systems. We also addressed how this new type of data ought to be conveyed and utilized. Therefore, two other items associated with predictive information were also included in the survey. The first addressed the need for system status, alerts and procedures, and system controls to be more logically grouped together, or collocated, on the flight deck. The second idea called for the survey respondents opinions on the functionality of mission status graphics; a display methodology that groups a variety of parameters onto a single display that can instantaneously convey a complete overview of both an aircraft's system and mission health.

  5. Flight Test Method Research on Pilot Induced Oscillation of Transport Category Airplanes%运输类飞机PIO试飞方法研究

    Institute of Scientific and Technical Information of China (English)

    米毅; 刘庆灵

    2014-01-01

    基于CCAR-25-R4《运输类飞机适航标准》要求,结合FAA咨询通告AC25-7 C《运输类飞机合格审定飞行试验指南》,叙述了驾驶员诱发振荡( PIO)的分类,以及运输类飞机PIO的合格审定试飞要求,分析了PIO试飞方法、试验点的选取原则、试飞评定准则、注意事项和风险规避措施等,可为民用飞机的PIO试飞提供参考。%Based on the CCAR-25-R4 “Airworthiness Standards of Transport Category Airplanes” and FAA ad-visory AC25-7 C “Flight Test Guide for Certification of Transport Category Airplanes”, this paper specifies the re-quirements of airworthiness and the classification of pilot induced oscillation ( PIO) . The paper also gives analysis on the flight test method of PIO and principles of flight test pointsˊselection,the safety procedures during PIO flight test and evaluation criteria. The research can provide guidance for the PIO flight test of the civil airplanes.

  6. Biomedical Analyses of Mice Body Hair Exposed to Long-term Space Flight as a Compliment of Human Research

    Science.gov (United States)

    Mukai, Chiaki

    Introduction: To understand the effect of space environment characterized by microgravity and radiation on protein and mineral metabolisms is important for developing the countermeasures to the adverse effects happening on the astronauts who stay long-term in space. Thus JAXA has started a human research to study the effects of long-term exposure in space flight on gene expression and mineral metabolism by analyzing astronaut's hair grown in space since December 2009 (Experiment nicknamed "HAIR"). Ten human subjects who are the crew of the International Space Station (ISS) will be expected to complete this experiment. Thanks to the tissue sharing program of space-flown mice which is presented and organized by AGI(Italian Space Agency), we can also have an opportunity to analyze rodents samples which will greatly compliment human hair experiment by enable us to conduct more detailed analysis with the expansion of skin analysis which is not include in human experiment. The purpose of this flown-mice experiment is to study the effects of long-term exposure to space environment such as microgravity and space radiation on mineral and protein metabolism, the biological responses to the stress levels, and the initial process of skin carcinogenesis by analyzing hair shaft, its root cells, and skin. Approach and Method In this experiment, we analyzed hair shaft, hair root and skin. Hair samples with skin were taken from 3-month space-flown mice and ground-control mice in the AGI's tissue sharing program in 2009. The sample numbers of space-flown mice and control-mice were three and six, respectively. And they were at the Mice Drawer System (MDS) in ISS and in the laboratory of Geneva University. For the hair shaft, the mineral balance is investi-gated by energy dispersive X-ray spectroscopy (SEM-EDX). For hair root, the extracted RNA undergoes DNA microarray analysis, and will be further examined particular interests of gene-expression by real time Reverse Transcription

  7. Research in Flight Dynamics

    Science.gov (United States)

    1990-06-01

    worked to derive a general coupled thermoviscoplasticity theory that incorporates thermal relaxation. He specialized the theory toward the case of small...HISTORY OF AN AIRCRAFT STEVE LINDEMAN (513) 255-2516 BOB PINNELL (513) 255-2516 TRANSPARENCY DURING BIRD IMPACT FIER 0011 IRDA CONCEPT DEVELOPMENT

  8. Application of variable structure system theory to aircraft flight control. [AV-8A and the Augmentor Wing Jet STOL Research Aircraft

    Science.gov (United States)

    Calise, A. J.; Kadushin, I.; Kramer, F.

    1981-01-01

    The current status of research on the application of variable structure system (VSS) theory to design aircraft flight control systems is summarized. Two aircraft types are currently being investigated: the Augmentor Wing Jet STOL Research Aircraft (AWJSRA), and AV-8A Harrier. The AWJSRA design considers automatic control of longitudinal dynamics during the landing phase. The main task for the AWJSRA is to design an automatic landing system that captures and tracks a localizer beam. The control task for the AV-8A is to track velocity commands in a hovering flight configuration. Much effort was devoted to developing computer programs that are needed to carry out VSS design in a multivariable frame work, and in becoming familiar with the dynamics and control problems associated with the aircraft types under investigation. Numerous VSS design schemes were explored, particularly for the AWJSRA. The approaches that appear best suited for these aircraft types are presented. Examples are given of the numerical results currently being generated.

  9. DC-8 during takeoff in Kiruna, Sweden for the second flight of the SAGE III Ozone Loss and Validatio

    Science.gov (United States)

    2000-01-01

    NASA's DC-8 taking off from the Kiruna, Sweden, runway in January 2000. The weather at this town of 25,000, located north of the Arctic Circle, can be severe. Temperatures drop as low as 50 degrees below zero Fahrenheit. In December 1999, when the SAGE III Ozone Loss and Validation Experiment (SOLVE) deployment began, there were 20 days of darkness. By mid-January 2000, there was 5 hours of daylight, while in mid-February this increased to nine hours per day. The population of Kiruna extended its hospitality to the SOLVE personnel. On January 22, 2000, the town hosted a dinner for the participants and media attending an open house at the Arena Arctica hangar. At the end of the SOLVE deployment, the airborne science team held an open house for the townspeople at the facility. NASA is using a DC-8 aircraft as a flying science laboratory. The platform aircraft, based at NASA's Dryden Flight Research Center, Edwards, Calif., collects data for many experiments in support of scientific projects serving the world scientific community. Included in this community are NASA, federal, state, academic and foreign investigators. Data gathered by the DC-8 at flight altitude and by remote sensing have been used for scientific studies in archeology, ecology, geography, hydrology, meteorology, oceanography, volcanology, atmospheric chemistry, soil science and biology.

  10. Hovering and Transition Flight Tests of a 1/5-Scale Model of a Jet-Powered Vertical-Attitude VTOL Research Airplane

    Science.gov (United States)

    Smith, Charles C., Jr.

    1961-01-01

    An experimental investigation has been made to determine the dynamic stability and control characteristics of a 1/5-scale flying model of a jet-powered vertical-attitude VTOL research airplane in hovering and transition flight. The model was powered with either a hydrogen peroxide rocket motor or a compressed-air jet exhausting through an ejector tube to simulate the turbojet engine of the airplane. The gyroscopic effects of the engine were simulated by a flywheel driven by compressed-air jets. In hovering flight the model was controlled by jet-reaction controls which consisted of a swiveling nozzle on the main jet and a movable nozzle on each wing tip; and in forward flight the model was controlled by elevons and a rudder. If the gyroscopic effects of the jet engine were not represented, the model could be flown satisfactorily in hovering flight without any automatic stabilization devices. When the gyroscopic effects of the jet engine were represented, however, the model could not be controlled without the aid of artificial stabilizing devices because of the gyroscopic coupling of the yawing and pitching motions. The use of pitch and yaw dampers made these motions completely stable and the model could then be controlled very easily. In the transition flight tests, which were performed only with the automatic pitch and yaw dampers operating, it was found that the transition was very easy to perform either with or without the engine gyroscopic effects simulated, although the model had a tendency to fly in a rolled and sideslipped attitude at angles of attack between approximately 25 deg and 45 deg because of static directional instability in this range.

  11. Airborne Research Experience for Educators

    Science.gov (United States)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  12. Paresev in flight with pilot Milt Thompson

    Science.gov (United States)

    1964-01-01

    This movie clip runs 37 seconds in length and begins with a shot from the chase plane of NASA Dryden test pilot Milt Thompson at the controls of the Paresev, then the onboard view from the pilot's seat and finally bringing the Paresev in for a landing on the dry lakebed at Edwards AFB. The Paresev (Paraglider Rescue Vehicle) was an indirect outgrowth of kite-parachute studies by NACA Langley engineer Francis M. Rogallo. In early 1960's the 'Rogallo wing' seemed an excellent means of returning a spacecraft to Earth. The delta wing design was patented by Mr. Rogallo. In May 1961, Robert R. Gilruth, director of the NASA Space Task Group, requested studies of an inflatable Rogallo-type 'Parawing' for spacecraft. Several companies responded; North American Aviation, Downey, California, produced the most acceptable concept and development was contracted to that company. In November 1961 NASA Headquarters launched a paraglider development program, with Langley doing wind tunnel studies and the NASA Flight Research Center supporting the North American test program. The North American concept was a capsule-type vehicle with a stowed 'parawing' that could be deployed and controlled from within for a landing more like an airplane instead of a 'splash down' in the ocean. The logistics became enormous and the price exorbitant, plus NASA pilots and engineers felt some baseline experience like building a vehicle and flying a Parawing should be accomplished first. The Paresev (Paraglider Research Vehicle) was used to gain in-flight experience with four different membranes (wings), and was not used to develop the more complicated inflatable deployment system. The Paresev was designed by Charles Richard, of the Flight Research Center Vehicle and System Dynamics Branch, with the rest of the team being: engineers, Richard Klein, Gary Layton, John Orahood, and Joe Wilson; from the Maintenance and Manufacturing Branch: Frank Fedor, LeRoy Barto; Victor Horton as Project Manager, with

  13. Paresev in flight with pilot Milt Thompson

    Science.gov (United States)

    1964-01-01

    This movie clip runs 37 seconds in length and begins with a shot from the chase plane of NASA Dryden test pilot Milt Thompson at the controls of the Paresev, then the onboard view from the pilot's seat and finally bringing the Paresev in for a landing on the dry lakebed at Edwards AFB. The Paresev (Paraglider Rescue Vehicle) was an indirect outgrowth of kite-parachute studies by NACA Langley engineer Francis M. Rogallo. In early 1960's the 'Rogallo wing' seemed an excellent means of returning a spacecraft to Earth. The delta wing design was patented by Mr. Rogallo. In May 1961, Robert R. Gilruth, director of the NASA Space Task Group, requested studies of an inflatable Rogallo-type 'Parawing' for spacecraft. Several companies responded; North American Aviation, Downey, California, produced the most acceptable concept and development was contracted to that company. In November 1961 NASA Headquarters launched a paraglider development program, with Langley doing wind tunnel studies and the NASA Flight Research Center supporting the North American test program. The North American concept was a capsule-type vehicle with a stowed 'parawing' that could be deployed and controlled from within for a landing more like an airplane instead of a 'splash down' in the ocean. The logistics became enormous and the price exorbitant, plus NASA pilots and engineers felt some baseline experience like building a vehicle and flying a Parawing should be accomplished first. The Paresev (Paraglider Research Vehicle) was used to gain in-flight experience with four different membranes (wings), and was not used to develop the more complicated inflatable deployment system. The Paresev was designed by Charles Richard, of the Flight Research Center Vehicle and System Dynamics Branch, with the rest of the team being: engineers, Richard Klein, Gary Layton, John Orahood, and Joe Wilson; from the Maintenance and Manufacturing Branch: Frank Fedor, LeRoy Barto; Victor Horton as Project Manager, with

  14. 航班计划的优化设计研究%Research on Optimization Design of Flight Plan

    Institute of Scientific and Technical Information of China (English)

    程望斌; 冯彩英; 曾毅; 罗百通; 向灿群

    2016-01-01

    Taking normal operation of the airline and the maximum profit as the goal, combining with the statistical data and the goals and objectives, flight schedule dynamic programming model was established. The greedy algorithm was used to plane the airline's flight plan and the number of aircraft. So as to provide theoretical basis and method support for airline coding system and the optimization of flight plan. The feasibility of the model and algorithm was verified by the data of flight plan of a certain airline.%以航空公司的正常营运和最大收益为目标,结合统计数据和目标要求,建立航班计划动态规划模型,采用贪婪算法对其进行求解,得到航空公司的航班计划、飞机数量的规划,从而为航空公司编制和优化航班计划提供一定的理论依据和方法支持。以某航空公司特定机型的航班计划数据进行实证,验证了该模型和算法的可行性。

  15. Overview of the X-33 Extended Flight Test Range

    Science.gov (United States)

    Mackall, D.; Sakahara, R.; Kremer, S.

    1998-01-01

    On July 1, 1996, the National Aeronautics and Space Administration signed a Cooperative Agreement No. NCC8-115 with Lockheed Martin Skunk Works to develop and flight test the X-33, a scaled version of a reusable launch vehicle. The development of an Extended Test Range, with range instrumentation providing continuous vehicle communications from Edwards Air Force Base Ca. to landing at Malmstrom Air Force Base Montana, was required to flight test the mach 15 vehicle over 950 nautical miles. The cooperative agreement approach makes Lockheed Martin Skunk Works responsible for the X-33 program. When additional Government help was required, Lockheed "subcontracted" to NASA Field Centers for certain work. It was through this mechanism that Dryden Flight Research Center became responsible for the Extended Test Range. The Extended Test Range Requirements come from two main sources: 1) Range Safety and 2) Lockheed Martin Skunk Works. The range safety requirements were the most challenging to define and meet. The X-33 represents a vehicle that launches like a rocket, reenters the atmosphere and lands autonomously like an aircraft. Historically, rockets have been launched over the oceans to allow failed rockets to be destroyed using explosive devices. Such approaches had to be reconsidered for the X-33 flying over land. Numerous range requirements come from Lockheed Martin Skunk Works for interface definitions with the vehicle communication subsystems and the primary ground operations center, defined the Operations Control Center. Another area of considerable interest was the reentry plasma shield that causes "blackout" of the radio frequency signals, such as the range safety commands. Significant work was spent to analyze and model the blackout problem using a cooperative team of experts from across the country. The paper describes the Extended Test Range a, an unique Government/industry team of personnel and range assets was established to resolve design issues and

  16. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  17. Natural Propagation and Habitat Improvement, Washington, Volume IIA, Tumwater Falls and Dryden Dam Fish Passage, 1983 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Unknown Author

    1984-05-01

    This engineering feasibility and predesign report on the Tumwater Falls and Dryden Dam Fish Passage Project provides BPA with information for planning purposes and will serve as a discussion document for interested agencies. Tumwater Falls and Dryden Dams, both on the Wenatchee River, were built in the early 1900's as diversions for hydropower, and irrigation and hydropower, respectively. The present fishway facilities at both sites are inadequate to properly pass the anadromous fish runs in the Wenatchee River. These runs include spring and summer chinook salmon, sockeye salmon, coho salmon and steelhead trout. Predesign level drawings are provided in this report that represent fishway schemes capable of adequately passing present and projected fish runs. The effects of present passage facilities on anadromous fish stocks is addressed both quantitatively and qualitatively. The quantitative treatment assesses losses of adult migrants due to the structures and places an estimated value on those fish. The dollar figure is estimated to be between $391,000 and $701,000 per year for both structures. The qualitative approach to benefits deals with the concept of stock vigor, the need for passage improvements to help ensure the health of the anadromous fish stock. 29 references, 27 figures, 5 tables.

  18. Autonomous Operations Planner: A Flexible Platform for Research in Flight-Deck Support for Airborne Self-Separation

    Science.gov (United States)

    Karr, David A.; Vivona, Robert A.; DePascale, Stephen M.; Wing, David J.

    2012-01-01

    The Autonomous Operations Planner (AOP), developed by NASA, is a flexible and powerful prototype of a flight-deck automation system to support self-separation of aircraft. The AOP incorporates a variety of algorithms to detect and resolve conflicts between the trajectories of its own aircraft and traffic aircraft while meeting route constraints such as required times of arrival and avoiding airspace hazards such as convective weather and restricted airspace. This integrated suite of algorithms provides flight crew support for strategic and tactical conflict resolutions and conflict-free trajectory planning while en route. The AOP has supported an extensive set of experiments covering various conditions and variations on the self-separation concept, yielding insight into the system s design and resolving various challenges encountered in the exploration of the concept. The design of the AOP will enable it to continue to evolve and support experimentation as the self-separation concept is refined.

  19. Miracle Flights

    Science.gov (United States)

    ... her future. Donate Now Make your donation today Saving Lives One Flight At A ... “To improve access to health care by providing financial assistance to low income children for commercial air ...

  20. 75 FR 62591 - Performance Review Board, Senior Executive Service (SES)

    Science.gov (United States)

    2010-10-12

    ... Diversity and Equal Opportunity, NASA Headquarters; Assistant Administrator for Human Capital Management..., Dryden Flight Research Center; Director, Glenn Research Center ; Director, Goddard Space Flight Center..., Marshall Space Flight Center; Director, Stennis Space Center. Senior Executive Committee Chairperson...

  1. 可重构研究用飞行模拟器设计%Design of a reconfigurable research flight simulator

    Institute of Scientific and Technical Information of China (English)

    刘广达; 黄其涛; 韩俊伟

    2011-01-01

    为了降低研究用飞行模拟器重构难度和成本,分析了模拟器最常发生的变更并进行了系统设计.采用面向对象方法构建了系统框架,使用中介者模式和外观模式将飞机模型划分成多个独立、界面清晰的系统模型.根据座舱面板硬件特点提出了基于CAN总线的一对一分布式采集系统,采用层次化策略减少了采集盒与座舱面板的耦合.设计了737系列研究型模拟器并展示了具体实现.应用结果表明,通过现有软件和硬件的复用能够有效减小飞行模拟器变更难度.%Software and hardware of a research flight simulator, which is an important aeronautic experiment device,need to be reconfigured depending on the purpose of the experiment. To reduce the complexity and cost of the reconfiguration, common changes of the flight simulator were analyzed and a system design was given. The design of the software architecture for a reconfignrable flight simulator with object-oriented design principles was discussed,and mediator and facade patterns were adopted to make the system model clear and independent. A one-to-one distributed data acquisition system based on CAN bus and hierarchical division strategy was proposed in order to decouple the panels along with the data acquisition system. The research flight simulator from the Boeing 737 series was designed and shown. Application outcomes indicate that reuse of the software and hardware can save cost and time for changing the subsystem of a flight simulator.

  2. The mechanical power requirements of avian flight

    OpenAIRE

    Askew, G.N.; Ellerby, D.J

    2007-01-01

    A major goal of flight research has been to establish the relationship between the mechanical power requirements of flight and flight speed. This relationship is central to our understanding of the ecology and evolution of bird flight behaviour. Current approaches to determining flight power have relied on a variety of indirect measurements and led to a controversy over the shape of the power–speed relationship and a lack of quantitative agreement between the different techniques. We have use...

  3. M2-F3 In-flight Launch from B-52

    Science.gov (United States)

    1971-01-01

    This photo shows the M2-F3 Lifting Body being launched from NASA's B-52 mothership at the NASA Flight Research Center (FRC--now the Dryden Flight Research Center), Edwards, California. A fleet of lifting bodies flown at the FRC from 1963 to l975 demonstrated the ability of pilots to maneuver and safely land a wingless vehicle designed to fly back to Earth from space and be landed like an aircraft at a pre-determined site. Early flight testing of the M2-F1 and M2-F2 lifting body reentry configurations had validated the concept of piloted lifting body reentry from space. When the M2-F2 crashed on May 10, 1967, valuable information had already been obtained and was contributing to new designs. NASA pilots said the M2-F2 had lateral control problems, so when the M2-F2 was rebuilt at Northrop and redesignated the M2-F3, it was modified with an additional third vertical fin -- centered between the tip fins -- to improve control characteristics. First flight of the M2-F3, with NASA pilot Bill Dana at the controls, was June 2, 1970. The modified vehicle exhibited much better lateral stability and control characteristics than before, and only three glide flights were necessary before the first powered flight on Nov. 25, 1970. Over the next 26 missions, the M2-F3 reached a top speed of l,064 mph (Mach 1.6). Highest altitude reached by vehicle was 7l,500 feet on Dec. 20, 1972, the date of its last flight, with NASA pilot John Manke at the controls. NASA donated The M2-F3 vehicle to the Smithsonian Institute in December 1973. It is currently hanging in the Air and Space Museum along with the X-15 aircraft number 1, which was its hangar partner from 1965 to 1969. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most

  4. Designing Flight Deck Procedures

    Science.gov (United States)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  5. Flight Dynamics Laboratory overview

    Science.gov (United States)

    Sandford, Thaddeus

    1986-01-01

    The Flight Dynamics Laboratory (FDL) is one of four Air Force Wright Aeronautical Laboratories (AFWAL) and part of the Aeronautical Systems Division located at Wright-Patterson AFB, Ohio. The FDL is responsible for the planning and execution of research and development programs in the areas of structures and dynamics, flight controls, vehicle equipment/subsystems, and aeromechanics. Some of the areas being researched in the four FDL divisions are as follows: large space structures (LSS) materials and controls; advanced cockpit designs; bird-strike-tolerant windshields; and hypersonic interceptor system studies. Two of the FDL divisions are actively involved in programs that deal directly with LSS control/structures interaction: the Flight Controls Division and the Structures and Dynamics Division.

  6. Dynamic Flight Simulation of aircraft and its comparison to Flight tests

    Directory of Open Access Journals (Sweden)

    Reza Khaki

    2015-09-01

    Full Text Available Nowadays obtaining data for air vehicles researches and analyses is very expensive and risky through the flight tests. Therefore using flight simulation is usually used for the mentioned researches by aerospace science researchers. In this paper, dynamic flight simulation has been performed by airplane nonlinear equations modelling. In these equations, aerodynamic coefficients and stability derivatives have an important role. Therefore, the stability derivatives for typical aircraft are calculated on various flight conditions by analytical and numerical methods. Flight conditions include of Mach number, altitude, angle of attack, control surfaces and CG position variations. The obtained derivatives are used in the form of look up table for dynamic flight simulation and virtual flight. In order to validate the simulation results, the under investigation maneuvres parameters are recorded during many real flights. The obtained data from flight tests are compared with the outputs of flight simulations. The results indicate that less than 13% differences are found in different parts of the maneuvres.

  7. Flight-Determined Subsonic Longitudinal Stability and Control Derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) with Thrust Vectoring

    Science.gov (United States)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1997-01-01

    The subsonic longitudinal stability and control derivatives of the F-18 High Angle of Attack Research Vehicle (HARV) are extracted from dynamic flight data using a maximum likelihood parameter identification technique. The technique uses the linearized aircraft equations of motion in their continuous/discrete form and accounts for state and measurement noise as well as thrust-vectoring effects. State noise is used to model the uncommanded forcing function caused by unsteady aerodynamics over the aircraft, particularly at high angles of attack. Thrust vectoring was implemented using electrohydraulically-actuated nozzle postexit vanes and a specialized research flight control system. During maneuvers, a control system feature provided independent aerodynamic control surface inputs and independent thrust-vectoring vane inputs, thereby eliminating correlations between the aircraft states and controls. Substantial variations in control excitation and dynamic response were exhibited for maneuvers conducted at different angles of attack. Opposing vane interactions caused most thrust-vectoring inputs to experience some exhaust plume interference and thus reduced effectiveness. The estimated stability and control derivatives are plotted, and a discussion relates them to predicted values and maneuver quality.

  8. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    Science.gov (United States)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  9. Affinity labeling coupled with matrix assistant laser desorption tandem time of flight mass spectrometry for quantitative proteomies research

    Institute of Scientific and Technical Information of China (English)

    MENG Qingfang; ZHANG Yangjun; CAI Yun; QIAN Xiaohong

    2007-01-01

    A relative quantitative method for differential proteomics by cleavable isotope-coded atTmity tag (cICAT)and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-MS) was estab-lished. The accuracy and reproducibility of the method were evaluated by bovine serum albumin (BSA) digest as having a relative standard deviation of less than 30% and good reproducibility. The dynamic range was als0 evaluated by analyzing two mixtures of several standard proteins with dif-ferent concentration. The experimental results showed that in the dynamic range of 1:30, the quantitation error of the method was less than 30%. Although the quantitation error becomes very large when used beyond this range, it does not affect the derivation of information on the differential proteins. All the work provides an alternative method for differential proteomics analysis in biological samples from different origins.

  10. The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hanga

    Science.gov (United States)

    2002-01-01

    The solar-powered Helios Prototype flying wing frames two modified F-15 research aircraft in a hangar at NASA's Dryden flight Research Center, Edwards, California. The elongated 247-foot span lightweight aircraft, resting on its ground maneuvering dolly, stretched almost the full length of the 300-foot long hangar while on display during a visit of NASA Administrator Sean O'Keefe and other NASA officials on Jan. 31, 2002. The unique solar-electric flying wing reached an altitude of 96,863 feet during an almost 17-hour flight near Hawaii on Aug. 13, 2001, a world record for sustained horizontal flight by a non-rocket powered aircraft. Developed by AeroVironment, Inc., under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project, the Helios Prototype is the forerunner of a planned fleet of slow-flying, long duration, high-altitude uninhabited aerial vehicles (UAV) which can serve as 'atmospheric satellites,' performing Earth science missions or functioning as telecommunications relay platforms in the stratosphere.

  11. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    inputs with the outputs provided to instrumentation only. The IFCS was not used to control the airplane. In another stage of the flight test, the Phase I pre-trained neural network was integrated into a Phase III version of the flight control system. The Phase I pretrained neural network provided realtime stability and control derivatives to a Phase III controller that was based on a stochastic optimal feedforward and feedback technique (SOFFT). This combined Phase I/III system was operated together with the research flight-control system (RFCS) of the F-15 ACTIVE during the flight test. The RFCS enables the pilot to switch quickly from the experimental- research flight mode back to the safe conventional mode. These initial IFCS ACP flight tests were completed in April 1999. The Phase I/III flight test milestone was to demonstrate, across a range of subsonic and supersonic flight conditions, that the pre-trained neural network could be used to supply real-time aerodynamic stability and control derivatives to the closed-loop optimal SOFFT flight controller. Additional objectives attained in the flight test included (1) flight qualification of a neural-network-based control system; (2) the use of a combined neural-network/closed-loop optimal flight-control system to obtain level-one handling qualities; and (3) demonstration, through variation of control gains, that different handling qualities can be achieved by setting new target parameters. In addition, data for the Phase-II (on-line-learning) neural network were collected, during the use of stacked-frequency- sweep excitation, for post-flight analysis. Initial analysis of these data showed the potential for future flight tests that will incorporate the real-time identification and on-line learning aspects of the IFCS.

  12. Morphing Flight Control Surface for Advanced Flight Performance Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  13. AFHRL/FT [Air Force Human Resources Laboratory/Flight Training] Capabilities in Undergraduate Pilot Training Simulation Research: Executive Summary.

    Science.gov (United States)

    Matheny, W. G.; And Others

    The document presents a summary description of the Air Force Human Resource Laboratory's Flying Training Division (AFHRL/FT) research capabilities for undergraduate pilot training. One of the research devices investigated is the Advanced Simulator for Undergraduate Pilot Training (ASUPT). The equipment includes the ASUPT, the instrumented T-37…

  14. FLIGHT INFORMATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Check in With Singapore Airlines, Check out With Paypal Singapore Airlines customers in the United States, Singapore and five other Asia Pacific countries and territories can now pay for their flights with PayPal on singaporeair.com. This facility will progressively be made available to the airline’s customers in up to 17 countries, making this the largest collaboration between PayPal and an Asian carrier to date.

  15. F-18 high alpha research vehicle surface pressures - Initial in-flight results and correlation with flow visualization and wind-tunnel data

    Science.gov (United States)

    Fisher, David F.; Banks, Daniel W.; Richwine, David M.

    1990-01-01

    Flight tests with the NASA F-18 high-alpha research vehicle (HARV) have yielded pressure distributions at angles of attack from 10 to 50 deg, at Mach 0.23 to 0.6, at five fuselage forebody stations and three on the leading-edge extensions (LEXs). Correlations are made between these data and both previously obtained HARV flow visualizations and wind tunnel model test results. The general trend is one in which the forebody's maximum suction pressure peaks increase in magnitude, after their first appearance at alpha of about 19 deg, with increasing alpha. LEX pressure-distribution trends involve the inward progression of the maximum suction peaks, an increase in the magnitude of the maximum pressure peaks up to pressure core breakdown, and the decrease and general flattening of the pressure distribution beyond the LEX primary vortex breakdown.

  16. 76 FR 60090 - Performance Review Board, Senior Executive Service (SES)

    Science.gov (United States)

    2011-09-28

    ... Human Capital Management, NASA Headquarters. Chief Financial Officer, NASA Headquarters. Chief... Counsel, NASA Headquarters. Director, Ames Research Center. Director, Dryden Flight Research Center. Director, Glenn Research Center. Director, Goddard Space Flight Center. Director, Johnson Space Center...

  17. Flight management concepts development for fuel conservation

    Science.gov (United States)

    Sorensen, J. A.; Morello, S. A.

    1983-01-01

    It is pointed out that increased airspace congestion will produce increased flight delay unless advanced flight management concepts are developed to compensate. It has been estimated that a 5 percent reduction in delay is approximately equivalent, in terms of direct operating costs, to a 5 percent reduction in drag. The present investigation regarding the development of the required flight management concepts is organized into three sections, related to background, current research, and future effort. In the background section, a summary is provided of past technical effort concerning flight management. The second section is concerned with on-going efforts to integrate flight management with ground-based flight planning, and with an advanced concepts simulator to test the new developments. In the third section, attention is given to research concerning airborne flight management integration with other flight functions.

  18. Continued Research into Characterizing the Preturbulence Environment for Sensor Development, New Hazard Algorithms and Experimental Flight Planning

    Science.gov (United States)

    Kaplan, Michael L.; Lin, Yuh-Lang

    2005-01-01

    The purpose of the research was to develop and test improved hazard algorithms that could result in the development of sensors that are better able to anticipate potentially severe atmospheric turbulence, which affects aircraft safety. The research focused on employing numerical simulation models to develop improved algorithms for the prediction of aviation turbulence. This involved producing both research simulations and real-time simulations of environments predisposed to moderate and severe aviation turbulence. The research resulted in the following fundamental advancements toward the aforementioned goal: 1) very high resolution simulations of turbulent environments indicated how predictive hazard indices could be improved resulting in a candidate hazard index that indicated the potential for improvement over existing operational indices, 2) a real-time turbulence hazard numerical modeling system was improved by correcting deficiencies in its simulation of moist convection and 3) the same real-time predictive system was tested by running the code twice daily and the hazard prediction indices updated and improved. Additionally, a simple validation study was undertaken to determine how well a real time hazard predictive index performed when compared to commercial pilot observations of aviation turbulence. Simple statistical analyses were performed in this validation study indicating potential skill in employing the hazard prediction index to predict regions of varying intensities of aviation turbulence. Data sets from a research numerical model where provided to NASA for use in a large eddy simulation numerical model. A NASA contractor report and several refereed journal articles where prepared and submitted for publication during the course of this research.

  19. Space flight research relevant to health, physical education, and recreation: With particular reference to Skylab's life science experiments

    Science.gov (United States)

    Vanhuss, W. D.; Heusner, W. W.

    1979-01-01

    Data collected in the Skylab program relating to physiological stresses is presented. Included are routine blood measures used in clinical medicine as research type endocrine analyses to investigate the metabolic/endocrine responses to weightlessness. The daily routine of physical exercise, coupled with appropriate dietary intake, sleep, work, and recreation periods were considered essential in maintaining the crew's health and well being.

  20. Conference RSIS (The role of science in the information society) - Contributions to Economic Development - Building 40 S2 - B01 - Mr. John Dryden, Chairman, Deputy Director, Organisation for Economic Cooperation and Development.

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Conference RSIS (The role of science in the information society) - Contributions to Economic Development - Building 40 S2 - B01 - Mr. John Dryden, Chairman, Deputy Director, Organisation for Economic Cooperation and Development.

  1. In-flight Medical Emergencies

    Directory of Open Access Journals (Sweden)

    Amit Chandra

    2013-09-01

    Full Text Available Introduction: Research and data regarding in-flight medical emergencies during commercial air travel are lacking. Although volunteer medical professionals are often called upon to assist, there are no guidelines or best practices to guide their actions. This paper reviews the literature quantifying and categorizing in-flight medical incidents, discusses the unique challenges posed by the in-flight environment, evaluates the legal aspects of volunteering to provide care, and suggests an approach to managing specific conditions at 30,000 feet.Methods: We conducted a MEDLINE search using search terms relevant to aviation medical emergencies and flight physiology. The reference lists of selected articles were reviewed to identify additional studies.Results: While incidence studies were limited by data availability, syncope, gastrointestinal upset, and respiratory complaints were among the most common medical events reported. Chest pain and cardiovascular events were commonly associated with flight diversion.Conclusion: When in-flight medical emergencies occur, volunteer physicians should have knowledge about the most common in-flight medical incidents, know what is available in on-board emergency medical kits, coordinate their therapy with the flight crew and remote resources, and provide care within their scope of practice. [West J Emerg Med. 2013;14(5:499–504.

  2. In-Flight Suppression of a De-Stabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Science.gov (United States)

    Wall, John; VanZwieten, Tannen; Giiligan Eric; Miller, Chris; Hanson, Curtis; Orr, Jeb

    2015-01-01

    Adaptive Augmenting Control (AAC) has been developed for NASA's Space Launch System (SLS) family of launch vehicles and implemented as a baseline part of its flight control system (FCS). To raise the technical readiness level of the SLS AAC algorithm, the Launch Vehicle Adaptive Control (LVAC) flight test program was conducted in which the SLS FCS prototype software was employed to control the pitch axis of Dryden's specially outfitted F/A-18, the Full Scale Advanced Systems Test Bed (FAST). This presentation focuses on a set of special test cases which demonstrate the successful mitigation of the unstable coupling of an F/A-18 airframe structural mode with the SLS FCS.

  3. Thermal stress analysis of the NASA Dryden hypersonic wing test structure

    Science.gov (United States)

    Morris, Glenn

    1990-01-01

    Present interest in hypersonic vehicles has resulted in a renewed interest in thermal stress analysis of airframe structures. While there are numerous texts and papers on thermal stress analysis, practical examples and experience on light gage aircraft structures are fairly limited. A research program has been undertaken at General Dynamics to demonstrate the present state of the art, verify methods of analysis, gain experience in their use, and develop engineering judgement in thermal stress analysis. The approach for this project has been to conduct a series of analyses of this sample problem and compare analysis results with test data. This comparison will give an idea of how to use our present methods of thermal stress analysis, and how accurate we can expect them to be.

  4. National aero-space plane: Flight mechanics

    Science.gov (United States)

    Mciver, Duncan E.; Morrell, Frederick R.

    1990-01-01

    The current status and plans of the U.S. National Aero-Space Plane (NASP) program are reviewed. The goal of the program is to develop technology for single stage, hypersonic vehicles which use airbreathing propulsion to fly directly to orbit. The program features an X-30 flight research vehicle to explore altitude-speed regimes not amenable to ground testing. The decision to build the X-30 is now scheduled for 1993, with the first flight in the late 1990's. The flight mechanics, controls, flight management, and flight test considerations for the X-30 are discussed.

  5. Analysis of the Quality of Parabolic Flight

    Science.gov (United States)

    Lambot, Thomas; Ord, Stephan F.

    2016-01-01

    Parabolic flights allow researchers to conduct several 20 second micro-gravity experiments in the course of a single day. However, the measurement can have large variations over the course of a single parabola, requiring the knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) reviewed the acceleration data of over 400 parabolic flights and investigated the quality of micro-gravity for scientific purposes. It was discovered that a parabolic flight can be segmented into multiple parts of different quality and duration, a fact to be aware of when planning an experiment.

  6. F-18 high alpha research vehicle surface pressures: Initial in-flight results and correlation with flow visualization and wind-tunnel data

    Science.gov (United States)

    Fisher, David F.; Banks, Daniel W.; Richwine, David M.

    1990-01-01

    Pressure distributions measured on the forebody and the leading-edge extensions (LEX's) of the NASA F-18 high alpha research vehicle (HARV) were reported at 10 and 50 degree angles of attack and at Mach 0.20 to 0.60. The results were correlated with HARV flow visualization and 6-percent scale F-18 wind-tunnel-model test results. The general trend in the data from the forebody was for the maximum suction pressure peaks to first appear at an angle of attack (alpha) of approximately 19 degrees and increase in magnitude with angle of attack. The LEX pressure distribution general trend was the inward progression and increase in magnitude of the maximum suction peaks up to vortex core breakdown and then the decrease and general flattening of the pressure distribution beyond that. No significant effect of Mach number was noted for the forebody results. However, a substantial compressibility effect on the LEX's resulted in a significant reduction in vortex-induced suction pressure as Mach number increased. The forebody primary and the LEX secondary vortex separation lines, from surface flow visualization, correlated well with the end of pressure recovery, leeward and windward, respectively, of maximum suction pressure peaks. The flight to wind-tunnel correlations were generally good with some exceptions.

  7. Toward comparing experiment and theory for corroborative research on hingeless rotor stability in forward flight (an experimental and analytical investigation of isolated rotor-flap-lag stability in forward flight)

    Science.gov (United States)

    Gaonkar, G.

    1986-01-01

    For flap-lag stability of isolated rotors, experimental and analytical investigations are conducted in hover and forward flight on the adequacy of a linear quasisteady aerodynamics theory with dynamic inflow. Forward flight effects on lag regressing mode are emphasized. Accordingly, a soft inplane hingeless rotor with three blades is tested at advance ratios as high as 0.55 and at shaft angles as high as 20 degrees. The 1.62 m model rotor is untrimmed with an essentially unrestricted tilt of the tip path plane. In combination with lag natural frequencies, collective pitch settings and flap-lag coupling parameters, the data base comprises nearly 1200 test points (damping and frequency) in forward flight and 200 test points in hover. By computerized symbolic manipulation, a linear analytical model is developed in substall to predict stability margins with mode identificaton. To help explain the correlation between theory and data it also predicts substall and stall regions of the rotor disk from equilibrium values. The correlation shows both the strengthts and weaknesses of the theory in substall.

  8. Successful test flight of an airship

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Researchers with the Balloon Aircraft Research Center (BARC) of the Academy of Opto-electronics, CAS, succeeded in their first test flight of an aeroboat with a flight altitude up to 1,000 meters and an effective payload of 20 kilograms in Shandong on 25 December, 2007.

  9. Airborne Turbulence Detection and Warning ACLAIM Flight Test Results

    Science.gov (United States)

    Hannon, Stephen M.; Bagley, Hal R.; Soreide, Dave C.; Bowdle, David A.; Bogue, Rodney K.; Ehernberger, L. Jack

    1999-01-01

    The Airborne Coherent Lidar for Advanced Inflight Measurements (ACLAIM) is a NASA/Dryden-lead program to develop and demonstrate a 2 micrometers pulsed Doppler lidar for airborne look-ahead turbulence detection and warning. Advanced warning of approaching turbulence can significantly reduce injuries to passengers and crew aboard commercial airliners. The ACLAIM instrument is a key asset to the ongoing Turbulence component of NASA's Aviation Safety Program, aimed at reducing the accident rate aboard commercial airliners by a factor of five over the next ten years and by a factor of ten over the next twenty years. As well, the advanced turbulence warning capability can prevent "unstarts" in the inlet of supersonic aircraft engines by alerting the flight control computer which then adjusts the engine to operate in a less fuel efficient, and more turbulence tolerant, mode. Initial flight tests of the ACLAIM were completed in March and April of 1998. This paper and presentation gives results from these initial flights, with validated demonstration of Doppler lidar wind turbulence detection several kilometers ahead of the aircraft.

  10. Emergency Flight Control Using Only Engine Thrust and Lateral Center-of-Gravity Offset: A First Look

    Science.gov (United States)

    Burcham, Frank W., Jr.; Burken, John; Maine, Trindel A.; Bull, John

    1997-01-01

    Normally, the damage that results in a total loss of the primary flight controls of a jet transport airplane, including all engines on one side, would be catastrophic. In response, NASA Dryden has conceived an emergency flight control system that uses only the thrust of a wing-mounted engine along with a lateral center-of-gravity (CGY) offset from fuel transfer. Initial analysis and simulation studies indicate that such a system works, and recent high-fidelity simulation tests on the MD-11 and B-747 suggest that the system provides enough control for a survivable landing. This paper discusses principles of flight control using only a wing engine thrust and CGY offset, along with the amount of CGY offset capability of some transport airplanes. The paper also presents simulation results of the throttle-only control capability and closed-loop control of ground track using computer-controlled thrust.

  11. Potential flow calculations and preliminary wing design in support of an NLF variable sweep transition flight experiment

    Science.gov (United States)

    Waggoner, E. G.; Phillips, P. S.; Viken, J. K.; Davis, W. H.

    1985-01-01

    NASA Langley and NASA Ames-Dryden have defined a variable-sweep transition-flight experiment utilizing the F-14 aircraft to enhance understanding of the interaction of crossflow and Tollmien-Schlichting instabilities on a laminar-boundary-layer transition. The F-14 wing outer panel will be modified to generate favorable pressure gradients on the upper wing surface over a wide range of flight conditions. Extensive computations have been performed using two-dimensional and three-dimensional transonic analysis codes. Flight-test and computational data are compared and shown to validate the applicability of the three-dimensional codes (WBPPW and TAWFIVE). In addition, results from two preliminary glove designs derived from two different approaches to the design problem are presented. Advantages and disadvantages of each approach are identified, and it is concluded that coupling an analysis code with an automated design procedure yields a powerful code with distinct advantages over a 'cut-and-dry' approach.

  12. Iced Aircraft Flight Data for Flight Simulator Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  13. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    (see Figure 1). The MSFC algorithm design was formulated during the Constellation Program and reached a high maturity level during SLS through simulation-based development and internal and external analytical review. The AAC algorithm design has three summary-level objectives: (1) "Do no harm;" return to baseline control design when not needed, (2) Increase performance; respond to error in ability of vehicle to track command, and (3) Regain stability; respond to undesirable control-structure interaction or other parasitic dynamics. AAC has been successfully implemented as part of the Space Launch System baseline design, including extensive testing in high-fidelity 6-DOF simulations the details of which are described in [1]. The Dryden Flight Research Center's F/A-18 Full-Scale Advanced Systems Testbed (FAST) platform is used to conduct an algorithm flight characterization experiment intended to fully vet the aforementioned design objectives. FAST was specifically designed with this type of test program in mind. The onboard flight control system has full-authority experiment control of ten aerodynamic effectors and two throttles. It has production and research sensor inputs and pilot engage/disengage and real-time configuration of up to eight different experiments on a single flight. It has failure detection and automatic reversion to fail-safe mode. The F/A-18 aircraft has an experiment envelope cleared for full-authority control and maneuvering and exhibits characteristics for robust recovery from unusual attitudes and configurations aided by the presence of a qualified test pilot. The F/A-18 aircraft has relatively high mass and inertia with exceptional performance; the F/A-18 also has a large thrust-to-weight ratio, owing to its military heritage. This enables the simulation of a portion of the ascent trajectory with a high degree of dynamic similarity to a launch vehicle, and the research flight control system can simulate unstable longitudinal dynamics. Parasitic

  14. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  15. Analysis of the longitudinal handling qualities and pilot-induced-oscillation tendencies of the High-Angle-of-Attack Research Vehicle (HARV)

    Science.gov (United States)

    Hess, Ronald A.

    1994-01-01

    The NASA High-Angle-of Attack Research Vehicle (HARV), a modified F-18 aircraft, experienced handling qualities problems in recent flight tests at NASA Dryden Research Center. Foremost in these problems was the tendency of the pilot-aircraft system to exhibit a potentially dangerous phenomenon known as a pilot-induced oscillation (PIO). When they occur, PIO's can severely restrict performance, sharply dimish mission capabilities, and can even result in aircraft loss. A pilot/vehicle analysis was undertaken with the goal of reducing these PIO tendencies and improving the overall vehicle handling qualities with as few changes as possible to the existing feedback/feedforward flight control laws. Utilizing a pair of analytical pilot models developed by the author, a pilot/vehicle analysis of the existing longitudinal flight control system was undertaken. The analysis included prediction of overall handling qualities levels and PIO susceptability. The analysis indicated that improvement in the flight control system was warranted and led to the formulation of a simple control stick command shaping filter. Analysis of the pilot/vehicle system with the shaping filter indicated significant improvements in handling qualities and PIO tendencies could be achieved. A non-real time simulation of the modified control system was undertaken with a realistic, nonlinear model of the current HARV. Special emphasis was placed upon those details of the command filter implementation which could effect safety of flight. The modified system is currently awaiting evaluation in the real-time, pilot-in-the-loop, Dual-Maneuvering-Simulator (DMS) facility at Langley.

  16. The total column of CO2 and CH4 measured with a compact Fourier transform spectrometer at NASA Armstrong Flight Research Center and Railroad Valley, Nevada, USA

    Science.gov (United States)

    Kawakami, S.; Shiomi, K.; Suto, H.; Kuze, A.; Hillyard, P. W.; Tanaka, T.; Podolske, J. R.; Iraci, L. T.; Albertson, R. T.

    2014-12-01

    The total columns of carbon dioxide (XCO2) and methane (XCH4) were measured with a compact Fourier transform spectrometer (FTS) at NASA Armstrong Flight Research Center (AFRC) and Railroad Valley, Nevada, USA (RRV) during a vicarious calibration campaign in June 2014. The campaign was performed to estimate changes in the radiometric response of the Thermal and Near Infrared Sensor for carbon Observations Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI) aboard Greenhouse gases Observing SATellite (GOSAT). TANSO-FTS measures spectra of radiance scattered by the Earth surface with high- and medium-gain depending on the surface reflectance. At high reflectance areas, such as deserts over north Africa and Australia, TANSO-FTS collects spectra with medium-gain. There was differences on atmospheric pressure and XCO2 retrieved from spectra obtained between high-gain and medium-gain. Because the retrieved products are useful for evaluating the difference of spectral qualities between high- and medium-gain, this work is an attempt to collect validation data for spectra with medium-gain of TANSO-FTS at remote and desert area with a compact and medium-spectral resolution instrument. As a compact FTS, EM27/SUN was used. It was manufactured and newly released on April 1, 2014 by Bruker. It is robust and operable in a high temperature environment. It was housed in a steel box to protect from dust and rain and powered by Solar panels. It can be operated by such a remote and desert area, like a RRV. Over AFRC and RRV, vertical profiles of CO2 and CH4 were measured using the Alpha Jet research aircraft as part of the Alpha Jet Atmospheric eXperiment (AJAX) of ARC, NASA. The values were calibrated to standard gases. To make the results comparable to WMO (World Meteorological Organization) standards, the retrieved XCO2 and XCH4 values are divided by a calibration factor. This values were determined by comparisons with in situ profiles measured by

  17. H/OZ: PFD and Collaborative Flight Control System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Researchers at the Institute for Human and Machine Cognition invented OZ, a primary flight display that provides a single, unified graphic display of critical flight...

  18. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    Science.gov (United States)

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  19. 飞行错觉模拟训练系统的研究与开发%Research and Development of Simulation Training System of Flight Illusion

    Institute of Scientific and Technical Information of China (English)

    程洪书; 赵保明; 张福; 赵高峰

    2012-01-01

    Flight illusion is one of the reasons that cause the severe flight accidents, so a simulation training system of flight illusion is developed with VC++ and ACCESS methods. The system can be used with any flight simulator. And the system sends the training data to system software of simulator such as flight control software. So the whole simulator has a actual environment from the way that the software drive hardware. Pilots flying in simulator can feel the complex illusions which can be took in flying in air. The complex illusions are overturning,rolling,rotating and so on . From the training the pilots can find the methods to counteract the flight illusions. So the cognizing ability of pilots in space can be improved, and so the aviation can be ensured safely and all right.%飞行错觉一直是造成严重飞行事故的主要原因之一,因此采用VC++和ACCESS相结合的方法开发了一套抗飞行错觉模拟训练系统,该系统可以与任何一台飞行模拟器相结合使用,通过网络将需要训练的数据传送给模拟器的飞控等系统软件,由软件驱动硬件,从而使整个模拟器具有一个逼真的环境,飞行员利用模拟器飞行,能体会空中飞行时翻、滚、转等产生的复合错觉,进而找到抗飞行错觉的有效办法,提高飞行员的空间认知能力水平,保障飞行顺利安全.

  20. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    Science.gov (United States)

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  1. Cryogenic fluid management program flight concept definition

    Science.gov (United States)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  2. Re-entry flight clearance

    NARCIS (Netherlands)

    Juliana, S.

    2006-01-01

    The objective of the research was to identify and evaluate promising mathematical techniques for re-entry flight clearance. To fulfil this objective, two mathematical methods were investigated and developed: μ analysis for linear models and interval analysis for both linear and non-linear model

  3. The mechanical power requirements of avian flight.

    Science.gov (United States)

    Askew, G N; Ellerby, D J

    2007-08-22

    A major goal of flight research has been to establish the relationship between the mechanical power requirements of flight and flight speed. This relationship is central to our understanding of the ecology and evolution of bird flight behaviour. Current approaches to determining flight power have relied on a variety of indirect measurements and led to a controversy over the shape of the power-speed relationship and a lack of quantitative agreement between the different techniques. We have used a new approach to determine flight power at a range of speeds based on the performance of the pectoralis muscles. As such, our measurements provide a unique dataset for comparison with other methods. Here we show that in budgerigars (Melopsittacus undulatus) and zebra finches (Taenopygia guttata) power is modulated with flight speed, resulting in U-shaped power-speed relationship. Our measured muscle powers agreed well with a range of powers predicted using an aerodynamic model. Assessing the accuracy of mechanical power calculated using such models is essential as they are the basis for determining flight efficiency when compared to measurements of flight metabolic rate and for predicting minimum power and maximum range speeds, key determinants of optimal flight behaviour in the field.

  4. 弹载飞行控制软件重用技术研究%Research on Software Reuse Technology of Missile Flight Control Sof tware

    Institute of Scientific and Technical Information of China (English)

    刘思思; 刘迪; 卢娥

    2015-01-01

    针对弹载飞行控制软件研制现状,探讨软件重用的目的、意义及技术途径;结合弹载飞行控制软件的组成和设计原则,分析可重用软件应满足的基本条件;提出一种基于领域工程的弹载飞行控制软件重用实施方法;从软件工程化要求、编码要求、软件测试要求和硬件设计要求等方面建立弹载飞行控制软件通用构件库的可重用构件选取标准。最后,用实例说明了弹载飞行控制软件重用的可操作性。%In view of the current status of Missile Flight Control Software ,this paper discusses the purpose and signifi‐cance of software reuse ,introduces the technical approaches of software reuse ;Combined with the composition and design principle of Missile Flight Control Software ,analysis of the basic conditions of software reuse should satisfy ;A kind of software reuse method through domain engineering on Missile Flight Control Software is proposed ;From these aspects , summed up criteria for the selection of Missile Flight Control Software of the general component library of reusable com‐ponents ,including requirements of software engineering ,the developer coding ,software testing and hardware designing . Finally ,an example is used to illustrate the operability of Missile Flight Control Software reuse .

  5. Nonlinear region of attraction analysis for hypersonic flight vehicles’ flight control verification

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2017-05-01

    Full Text Available The stability analysis method based on region of attraction is proposed for the hypersonic flight vehicles’ flight control verification in this article. Current practice for hypersonic flight vehicles’ flight control verification is largely dependent on linear theoretical analysis and nonlinear simulation research. This problem can be improved by the nonlinear stability analysis of flight control system. Firstly, the hypersonic flight vehicles’ flight dynamic model is simplified and fitted by polynomial equation. And then the region of attraction estimation method based on V–s iteration is presented to complete the stability analysis. Finally, with the controller law, the closed-loop system stability is analyzed to verify the effectiveness of the proposed method.

  6. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  7. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Flight Rules General § 91.109 Flight instruction; Simulated instrument flight...

  8. Space Flight Immunodeficiency

    Science.gov (United States)

    Shearer, William T.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) has had sufficient concern for the well-being of astronauts traveling in space to create the National Space Biomedical Research Institute (NSBRI), which is investigating several areas of biomedical research including those of immunology. As part of the Immunology, Infection, and Hematology Team, the co-investigators of the Space Flight Immunodeficiency Project began their research projects on April 1, 1998 and are now just into the second year of work. Two areas of research have been targeted: 1) specific immune (especially antibody) responses and 2) non-specific inflammation and adhesion. More precise knowledge of these two areas of research will help elucidate the potential harmful effects of space travel on the immune system, possibly sufficient to create a secondary state of immunodeficiency in astronauts. The results of these experiments are likely to lead to the delineation of functional alterations in antigen presentation, specific immune memory, cytokine regulation of immune responses, cell to cell interactions, and cell to endothelium interactions.

  9. Immune function during space flight

    Science.gov (United States)

    Sonnenfeld, Gerald; Shearer, William T.

    2002-01-01

    It is very likely that the human immune system will be altered in astronauts exposed to the conditions of long-term space flight: isolation, containment, microgravity, radiation, microbial contamination, sleep disruption, and insufficient nutrition. In human and animal subjects flown in space, there is evidence of immune compromise, reactivation of latent virus infection, and possible development of a premalignant or malignant condition. Moreover, in ground-based space flight model investigations, there is evidence of immune compromise and reactivation of latent virus infection. All of these observations in space flight itself or in ground-based models of space flight have a strong resonance in a wealth of human pathologic conditions involving the immune system where reactivated virus infections and cancer appear as natural consequences. The clinical conditions of Epstein-Barr-driven lymphomas in transplant patients and Kaposi's sarcoma in patients with autoimmune deficiency virus come easily to mind in trying to identify these conditions. With these thoughts in mind, it is highly appropriate, indeed imperative, that careful investigations of human immunity, infection, and cancer be made by space flight researchers.

  10. Ornithopter flight stabilization

    Science.gov (United States)

    Dietl, John M.; Garcia, Ephrahim

    2007-04-01

    The quasi-steady aerodynamics model and the vehicle dynamics model of ornithopter flight are explained, and numerical methods are described to capture limit cycle behavior in ornithopter flight. The Floquet method is used to determine stability in forward flight, and a linear discrete-time state-space model is developed. This is used to calculate stabilizing and disturbance-rejecting controllers.

  11. Flight-determined benefits of integrated flight-propulsion control systems

    Science.gov (United States)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  12. White flight or flight from poverty?

    CERN Document Server

    Jego, C; Jego, Charles; Roehner, Bertrand M.

    2006-01-01

    The phenomenon of White flight is often illustrated by the case of Detroit whose population dropped from 1.80 million to 0.95 million between 1950 and 2000 while at the same time its Black and Hispanic component grew from 30 percent to 85 percent. But is this case really representative? The present paper shows that the phenomenon of White flight is in fact essentially a flight from poverty. As a confirmation, we show that the changes in White or Black populations are highly correlated which means that White flight is always paralleled by Black flight (and Hispanic flight as well). This broader interpretation of White flight accounts not only for the case of northern cities such as Cincinnati, Cleveland or Detroit, but for all population changes at county level, provided the population density is higher than a threshold of about 50 per square-kilometer which corresponds to moderately urbanized areas (as can be found in states like Indiana or Virginia for instance).

  13. Distributed Flight Controls for UAVs Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two novel flight control actuation concepts for UAV applications are proposed for research and development, both of which incorporate shape memory alloy (SMA) wires...

  14. Who dares to join a parabolic flight?

    Science.gov (United States)

    Montag, Christian; Zander, Tina; Schneider, Stefan

    2016-12-01

    Parabolic flights represent an important tool in space research to investigate zero gravity on airplanes. Research on these flights often target psychological and biological processes in humans to investigate if and how we can adapt to this unique environment. This research is costly, hard to conduct and clearly heavily relies on humans participating in experiments in this (unnatural) situation. The present study investigated N =66 participants and N =66 matched control persons to study if participants in such experimental flights differ in terms of their personality traits from non-parabonauts. The main finding of this study demonstrates that parabonauts score significantly lower on harm avoidance, a trait closely linked to being anxious. As anxious humans differ from non-anxious humans in their biology, the present observations need to be taken into account when aiming at the generalizability of psychobiological research findings conducted in zero gravity on parabolic flights.

  15. 737 Windshear Sensor Flight Tests, Orlando

    Science.gov (United States)

    1992-01-01

    NASA Langley Research Center's Boeing 737 test aircraft on the ramp at Orlando International Airport following a day of flight tests evaluating the performance of radar, lidar, and infrared wind shear detection sensors

  16. Technical evaluation report on the Flight Mechanics Panel Symposium on Flight Simulation

    Science.gov (United States)

    Cook, Anthony M.

    1986-01-01

    In recent years, important advances were made in technology both for ground-based and in-flight simulators. There was equally a broadening of the use of flight simulators for research, development, and training purposes. An up-to-date description of the state-of-the-art of technology and engineering was provided for both ground-based and in-flight simulators and their respective roles were placed in context within the aerospace scene.

  17. A flight test facility design for examining digital information transfer

    Science.gov (United States)

    Knox, Charles E.

    1990-01-01

    Information is given in viewgraph form on a flight test facility design for examining digital information transfer. Information is given on aircraft/ground exchange, data link research activities, data link display format, a data link flight test, and the flight test setup.

  18. F-111C Flight Data Reduction and Analysis Procedures

    Science.gov (United States)

    1990-12-01

    Victoria Qantas Airways Limited Australian Airline, Library Ansett Airlines of Australia, Library Hawker de Havilland Aust Pty Ltd, Victoria, Library...MELBOURNE, VICTORIA Flight Mechanics Report 187 F-111C FLIGHT DATA REDUCTION AND ANALYSIS PROCEDURES by y 7 M.I. Cooper J.S. Drobik C.A. Martin...RESEARCH LABORATORY Flight Mechanics Report 187 F-111C FLIGHT DATA REDUCTION AND ANALYSIS PROCEDURES by M. I. COOPER J. S. DROBIK C. A. MARTIN

  19. Research on Auto Flight Path Planning Algorithm of Multiple Unmanned Air Vehicles%多无人机飞行路径自动规划算法研究

    Institute of Scientific and Technical Information of China (English)

    马传焱

    2015-01-01

    The path planning plays an important role in the reconnaissance task of unmanned air vehicle(UAV).Aiming at auto flight path planning algorithm of multi⁃UAV,this paper analyzes the key technologies of modeling and algorithm design.The algorithm uses Voronoi diagram for path planning. Based on the constructed battlefield environment V diagram, the Dijkstra algorithm in graph theory is used for initial path search and optimization.The simulation results show that this algorithm can be used to plan flight path for a typical multi⁃UAV flight task,and adapt to multiple constraint conditions.At last,it is shown that reasonable results of path planning are obtained.%路径规划对无人机完成其侦察作战任务具有重要意义。针对多无人机飞行路径自动规划算法,从模型建立和算法设计2个方面对规划过程中的关键技术进行了详细分析。算法采用构造Voronoi多边形图的方法来进行路径规划。基于构建的战场环境V图,采用图论中的Dijkstra 算法,对V图进行搜索得到初始航路并进行优化。经过分析仿真结果证明,该算法能对典型的多无人机飞行任务进行路径规划,并能满足多种约束条件,获取合理的规划结果。

  20. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to

  1. Microgravity Flight - Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1994-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  2. 航空公司飞行签派员非技术能力研究%Research on the Non-technical Skills of Airline Flight Dispatcher

    Institute of Scientific and Technical Information of China (English)

    赵珊

    2014-01-01

    飞行签派员作为航空公司飞行运行环境中的通信与决策中心,其非技术能力的高低直接影响着航空公司的安全水平与经济效益。本文以民航飞行签派员为研究对象,分别阐述了包括沟通、情景意识、决策等签派员所应具备的六项非技术能力。在此基础上,探讨了各类技能的良性行为表现指标和不良行为表现指标。%As the communication and decision-making center of airline operating environment, the non-technical skills of flight dispatcher's have a direct effect on the safety level and economic benefits for airline. Aviation flight dispatchers were studied in this paper, six non-technical skills that dispatcher should have were detail explained. They were communication, situational awareness, and decision-making, etc. On this basis, the good and bad behavioral performance indicators of the six skills were explored.

  3. Research on Flight Test Method for Evaluating Aircraft Cockpit Design%飞机座舱设计评估的试飞方法研究

    Institute of Scientific and Technical Information of China (English)

    封卫忠

    2014-01-01

    飞行试验是评估飞机座舱设计最好的方法,飞行试验阶段选取的评估方法应能获得全面的、足够的信息和来自用户有价值的反馈。本文在分析国内外用于座舱评估的人机工程标准的基础上,总结了用于座舱设计评估的基本方法和评估内容,介绍了用于座舱评估的工作负荷评价方法。%Flight test is the best method for evaluating aircraft cockpit design.The evaluation method selected during the flight test should obtain comprehensive and adequate information and valuable feedback from user.On the basis of analyzing human engineering standards for cockpit evaluation,the basic method and evaluation content are summarized and the workload evaluation method for cockpit design is introduced.

  4. Cuckoo Search via Levy Flights

    CERN Document Server

    Yang, Xin-She

    2010-01-01

    In this paper, we intend to formulate a new metaheuristic algorithm, called Cuckoo Search (CS), for solving optimization problems. This algorithm is based on the obligate brood parasitic behaviour of some cuckoo species in combination with the Levy flight behaviour of some birds and fruit flies. We validate the proposed algorithm against test functions and then compare its performance with those of genetic algorithms and particle swarm optimization. Finally, we discuss the implication of the results and suggestion for further research.

  5. Flight Standards Automation System -

    Data.gov (United States)

    Department of Transportation — FAVSIS supports Flight Standards Service (AFS) by maintaining their information on entities such as air carriers, air agencies, designated airmen, and check airmen....

  6. ER-2 High Altitude Solar Cell Calibration Flights

    Science.gov (United States)

    Myers, Matthew G.; Piszczor, Michael F.

    2015-01-01

    The first flights of the ER-2 solar cell calibration demonstration were conducted during September-October of 2014. Three flights were performed that not only tested out the equipment and operational procedures, but also demonstrated the capability of this unique facility by conducting the first short-circuit measurements on a variety of test solar cells. Very preliminary results of these first flights were presented at the 2014 Space Photovoltaic Research and Technology (SPRAT) Conference in Cleveland, OH shortly following these first flights. At the 2015 Space Power Workshop, a more detailed description of these first ER-2 flights will be presented, along with the final flight data from some of the test cells that were flown and has now been reduced and corrected for ER-2 atmospheric flight conditions. Plans for ER-2 flights during the summer of 2015 will also be discussed.

  7. X-1 in flight

    Science.gov (United States)

    1947-01-01

    The Bell Aircraft Corporation X-1-1 (#46-062) in flight. The shock wave pattern in the exhaust plume is visible. The X-1 series aircraft were air-launched from a modified Boeing B-29 or a B-50 Superfortress bombers. The X-1-1 was painted a bright orange by Bell Aircraft. It was thought that the aircraft would be more visable to those doing the tracking during a flight. When NACA received the airplanes they were painted white, which was an easier color to find in the skies over Muroc Air Field in California. This particular craft was nicknamed 'Glamorous Glennis' by Chuck Yeager in honor of his wife, and is now on permanent display in the Smithsonian Institution's National Air and Space Museum in Washington, DC. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all

  8. The Propulsive-Only Flight Control Problem

    Science.gov (United States)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  9. Analysis of the Quality of Parabolic Flight

    Science.gov (United States)

    Lambot, Thomas; Ord, Stephan F.

    2016-01-01

    Parabolic flight allows researchers to conduct several micro-gravity experiments, each with up to 20 seconds of micro-gravity, in the course of a single day. However, the quality of the flight environment can vary greatly over the course of a single parabola, thus affecting the experimental results. Researchers therefore require knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) has reviewed the acceleration data for over 400 parabolas and investigated the level of micro-gravity quality. It was discovered that a typical parabola can be segmented into multiple phases with different qualities and durations. The knowledge of the microgravity characteristics within the parabola will prove useful when planning an experiment.

  10. Research On Combat Airplane Maneuvering Flight Path Simulation%作战飞机机动飞行航迹仿真建模研究

    Institute of Scientific and Technical Information of China (English)

    杨莉; 安红

    2011-01-01

    在各类与作战飞机相关的动态仿真系统中,通常会涉及到对飞机飞行姿态和飞行航迹的仿真要求。针对作战飞机通常采用的飞行方式,在大地坐标系下建立了这些常见飞行方式的仿真模型。当飞机机动飞行时会形成比较复杂的航迹,可以将复杂的飞行航迹分解为多个简单的航迹段,每个航迹段为直线飞行或转弯机动。根据这种方式对飞机机动飞行航迹进行了仿真,通过仿真运行给出了一些机动飞行时的航迹仿真结果,验证了机动飞行航迹仿真模型的正确性。%Many dynamic simulation system that relate to combat airplane refer to airplane attitude and flight path. In this paper, the models of combat airplane maneuvering flight path in geographic coordinate system are built. And we made some simulation experiments in several kinds of typical maneuvering fly modes, the simulation results proves simulation model of airplane maneuvering is valid.

  11. Southwest Research Institute astronomer Dan Durda checks the alignment of the SWUIS-A Xybion digital

    Science.gov (United States)

    2002-01-01

    Southwest Research Institute astronomer Dan Durda checks the alignment of the SWUIS-A Xybion digital camera mounted in the rear cockpit of a NASA Dryden F/A-18B before taking off on an astronomy mission to search for small vulcanoids (asteroids) that may be orbiting between the sun and the planet Mercury.

  12. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    Science.gov (United States)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  13. Electromechanical flight control actuator

    Science.gov (United States)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  14. Java for flight software

    Science.gov (United States)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  15. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    Science.gov (United States)

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations.

  16. Introduction: Assessment of aerothermodynamic flight prediction tools through ground and flight experimentation

    Science.gov (United States)

    Schmisseur, John D.; Erbland, Peter

    2012-01-01

    This article provides an introduction and overview to the efforts of NATO Research and Technology Organization Task Group AVT-136, Assessment of Aerothermodynamic Flight Prediction Tools through Ground and Flight Experimentation. During the period of 2006-2010, AVT-136 coordinated international contributions to assess the state-of-the-art and research challenges for the prediction of critical aerothermodynamic flight phenomena based on the extrapolation of ground test and numerical simulation. To achieve this goal, efforts were organized around six scientific topic areas: (1) Noses and leading edges, (2) Shock Interactions and Control Surfaces, (3) Shock Layers and Radiation, (4) Boundary Layer Transition, (5) Gas-Surface Interactions, and (6) Base and Afterbody Flows. A key component of the AVT-136 strategy was comparison of state-of-the-art numerical simulations with data to be acquired from planned flight research programs. Although it was recognized from the onset of AVT-136 activities that reliance on flight research data yet to be collected posed a significant risk, the group concluded the substantial benefit to be derived from comparison of computational simulations with flight data warranted pursuit of such a program of work. Unfortunately, program delays and failures in the flight programs contributing to the AVT-136 effort prevented timely access to flight research data. Despite this setback, most of the scientific topic areas developed by the Task Group made significant progress in the assessment of current capabilities. Additionally, the activities of AVT-136 generated substantial interest within the international scientific research community and the work of the Task Group was prominently featured in a total of six invited sessions in European and American technical conferences. In addition to this overview, reviews of the state-of-the-art and research challenges identified by the six research thrusts of AVT-136 are also included in this special

  17. Flight capacity of Sitophilus zeamais Motschulsky in relation to gender and temperature

    Science.gov (United States)

    The maize weevil, Sitophilus zeamais, is a major pest of stored products worldwide. In this research, we evaluated the flight performance of S. zeamais under various temperatures using a 26-channel computer-monitored flight-mill system to estimate total flight distance (TFD), total flight duration (...

  18. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    Science.gov (United States)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  19. Design, analysis, and control of large transport aircraft utilizing engine thrust as a backup system for the primary flight controls

    Science.gov (United States)

    Gerren, Donna S.

    1993-01-01

    A review of accidents that involved the loss of hydraulic flight control systems serves as an introduction to this project. In each of the accidents--involving transport aircraft such as the DC-10, the C-5A, the L-1011, and the Boeing 747--the flight crew attempted to control the aircraft by means of thrust control. Although these incidents had tragic endings, in the absence of control power due to primary control system failure, control power generated by selective application of engine thrust has proven to be a viable alternative. NASA Dryden has demonstrated the feasibility of controlling an aircraft during level flight, approach, and landing conditions using an augmented throttles-only control system. This system has been successfully flown in the flight test simulator for the B-720 passenger transport and the F-15 air superiority fighter and in actual flight tests for the F-15 aircraft. The Douglas Aircraft Company is developing a similar system for the MD-11 aircraft. The project's ultimate goal is to provide data for the development of thrust control systems for mega-transports (600+ passengers).

  20. United States Navy - Canadian forces solid state flight data recorder/crash position locator experiment on the B-720 controlled impact demonstration

    Science.gov (United States)

    Watters, D. M.

    1986-01-01

    The operation of a radio beacon position locator during and after the remotely controlled transport aircraft is discussed. The radio beacon transmission was actuated and was picked up by the Navy P-3A chase aircraft for a short time, after which reception was lost. The pilot reported that he received a signal on both 121.5 MHz and 243 MHz for a period of approximately 5 seconds. Five minutes after the crash a portable direction finding unit located on the roof of the NASA Dryden Flight Research Facility, 4 miles distant from the crash, was unable to pick up the beacon transmission. The fire crews started fighting the fires approximately 90 seconds after the time of impact. Navy personnel access to the crash site was allowed on the morning of December 2, 1984. Radio beacon locator was found resting top side up, 15 feet forward and 13 feet perpendicular from the tray location the starboard side of the aircraft. An immediate inspection indicated the airfoil suffered moderate fire damage with paint peeling but not intumescing. The visual marker strobe lamp housings were intact but extensively burned such that it was impossible to see if the lamps had survived. The airfoil suffered minor structural damage, with assorted dents, etc. The extended plunger on the ARU-21 release unit indicated that the pyrotechnic deployment system operated. The radio beacon base (tray) suffered some heat and fire damage, and was charred and blackened by smoke. The frangible switch in the nose survived and the switch in the belly was recovered and found to have actuated. It is assumed that this switch fired the ARU-21 squib. There were no other release switches installed in the normally open system in the aircraft.

  1. Research on modeling of flight vehicle design deviations%飞行器设计偏差量建模方法研究

    Institute of Scientific and Technical Information of China (English)

    高显忠; 侯中喜; 刘建霞

    2011-01-01

    It lays an important foundation of analyzing and evaluatiyng the performance and probabilistic design of a flight vehicle that the design variables deviations and modelled and fit into a probability density function ( PDF). For normal distribution limited in fitners and mixed Gamma distribution unable to be fit test data over the whole number axis, the method using mixed Gouss distribution to fit test data into arbitzazy functions was proposed after its rational demonstration,in which the parameters in Gauss mixed distribution was estimated by expectation maximization (EM) algorithm. The general procedure was designed,and the strategy utilizing prior distribution information and controlling incremental number of branches was proposed so as to reduce computational load and ensure the fita ccuracy. Some examples were given to illustrate the effectiveness of the method. Finally,the experiment data of axis angle deviation in an flight vehicle engine was taken as an example to show the feasibility of the proposed method in engineering application.%对设计变量的偏差量进行建模,拟合偏差量服从的概率密度函数,是分析评价飞行器性能和概率设计的重要基础.针对常用分布拟合能力有限,以及混合Gamma分布无法在整个数轴上对试验数据进行拟合的问题,在论证混合Gauss分布拟合任意概率密度函数合理性的基础上,提出了利用混合Gauss分布对试验数据进行拟合,并运用期望极大化算法(EM)估计混合Gauss分布中的参数.设计了通用的拟合试验数据的流程,提出利用先验分布信息的策略和递增的分支数控制策略,以减少运算量,保证拟合精度.通过实例验证了方法的有效性,并结合时某型飞行器发动机轴线偏斜角测试数据建模的问题开展了应用研究,表明该方法在工程应用中具有可行性.

  2. The research of special psychological evaluation technology for the flight personnel after the accident%事故后飞行人员专项心理评估技术的研究

    Institute of Scientific and Technical Information of China (English)

    项瑛; 戚菲; 董淑华; 王煜蕙

    2012-01-01

    目的 通过对事故后飞行人员心理状况进行实证量化研究,形成一套迅速、有效地针对事故后飞行人员的心理评估的专项技术.方法 对580名飞行员实施流行病学调查、创伤后应激反应症状自评以及心理健康评估.结果 通过流行病学调查筛查出事故亲身经历以及自评影响251例;根据心理特将飞行人员聚为三类;PTSD-SS阳性51例,经过临床医师确诊34例,其中有28例属于反应过激型的飞行人员,符合率为82.4%.结论 心理测验评估结果与临床诊断具有较好的一致性,通过三个层次的筛查与验证性研究,形成对事故后飞行人员心理状况的评估的专项技术,对飞行作战训练有着重要的临床意义.%Objective To create a quick and effective psychological evaluation special technology in flight personnel after accident through the quantitative research of accident flight crew psychological situation. Methods The epidemiological survey, post-traumatic stress symptoms self-evaluation and mental health evaluation were performed in 580 pilots. Results Through the epidemiology investigation screening accident experience and self-evaluation affect 251 cases. The pilots were divided into three categories according to the psychological traits. Among 51 cases of positive PTSD-SS, 34 cases were confirmed by clinical physicians. There were 28 cases of overreaction type. The coincidence rate was 82.4% . Conclusion Psychological test evaluation result and clinical diagnosis has good uniformity. Through the three levels screenings and confirmatory study to create a special technology about psychological evaluation for flight personnel after accident has important clinical significance for flight and combat training.

  3. Impact of Vehicle Flexibility on IRVE-II Flight Dynamics

    Science.gov (United States)

    Bose, David M.; Toniolo, Matthew D.; Cheatwood, F. M.; Hughes, Stephen J.; Dillman, Robert A.

    2011-01-01

    The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described.

  4. OpenFlight模型的OpenGL接口研究%Research of Interface of OpenFlight Model into OpenGL Based Systems

    Institute of Scientific and Technical Information of China (English)

    罗丹; 蒋自成; 王跃峰

    2005-01-01

    OpenFlight格式是目前在实时视景仿真领域流行的三维模型文件格式,由于其数据库具有层次化和逻辑性的特点,因而有着广泛的用途.通常OpenFlight模型是专门由Vega、Vega Prime和OpenGL Performer等商业实时视景仿真软件环境来驱动和渲染的.这种视景仿真开发模式开发效率较高,功能也很强大,但是由于这些软件价格昂贵,性能实现不够灵活,且会受到许可证的限制,从而限制了它的应用范围,而利用OpenGL开发可以弥补上述不足.本文提出了一种基于OpenFlight API的OpenFlight模型的OpenGL读取渲染接口,使得OpenFlight模型能够应用在由OpenGL开发的视景仿真系统中.

  5. [The research and application of pretreatment method for matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of filamentous fungi].

    Science.gov (United States)

    Huang, Y F; Chang, Z; Bai, J; Zhu, M; Zhang, M X; Wang, M; Zhang, G; Li, X Y; Tong, Y G; Wang, J L; Lu, X X

    2017-08-08

    Objective: To establish and evaluate the feasibility of a pretreatment method for matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of filamentous fungi developed by the laboratory. Methods: Three hundred and eighty strains of filamentous fungi from January 2014 to December 2016 were recovered and cultured on sabouraud dextrose agar (SDA) plate at 28 ℃ to mature state. Meanwhile, the fungi were cultured in liquid sabouraud medium with a vertical rotation method recommended by Bruker and a horizontal vibration method developed by the laboratory until adequate amount of colonies were observed. For the strains cultured with the three methods, protein was extracted with modified magnetic bead-based extraction method for mass spectrum identification. Results: For 380 fungi strains, it took 3-10 d to culture with SDA culture method, and the ratio of identification of the species and genus was 47% and 81%, respectively; it took 5-7 d to culture with vertical rotation method, and the ratio of identification of the species and genus was 76% and 94%, respectively; it took 1-2 d to culture with horizontal vibration method, and the ratio of identification of the species and genus was 96% and 99%, respectively. For the comparison between horizontal vibration method and SDA culture method comparison, the difference was statistically significant (χ(2)=39.026, Pfilamentous fungi, which can be applied in clinic.

  6. High-performance liquid chromatography-electrospray ionization time-of-flight mass spectrometry analysis of Radix Saposhnikoviae for metabolomic research.

    Science.gov (United States)

    Li, Yue-Yue; Wang, Xin-Xia; Zhao, Liang; Zhang, Hai; Lv, Lei; Zhou, Gui-chen; Chai, Yi-Feng; Zhang, Guo-Qing

    2013-02-01

    In this study, metabolite profiling of Radix Saposhnikoviae from different geographical locations was performed using high-performance liquid chromatography-electrospray ionization time-of-flight mass spectrometry (HPLC-ESI-TOFMS) and multivariate statistical analysis technique. Principle component analysis (PCA) of the data shows that these samples could be roughly separated into three groups: Guan Fangfeng, Kou Fangfeng and Chuan Fangfeng. The potential chemical markers were discovered through the loading plot of PCA. Based on accurate mass measurements and subsequent fragment ions of TOFMS after in-source collision induced dissociation, as well as matching of empirical molecular formulae with those of published components in the in-house chemical library, 10 potential markers, such as 4'-O-glucosyl-5-O-methylvisamminol, cimifugin, prim-O-glucosylcimifugin and 3'-O-angeloylhammaudol, were tentatively identified and partially verified by the available reference standards. The results of this study indicate that it is an effective and novel approach to identify traditional Chinese medicine (TCM) from different sources, and that performing quantity determination of corresponding marker compounds could optimize the quality control of TCM.

  7. Small Body GN and C Research Report: G-SAMPLE - An In-Flight Dynamical Method for Identifying Sample Mass [External Release Version

    Science.gov (United States)

    Carson, John M., III; Bayard, David S.

    2006-01-01

    G-SAMPLE is an in-flight dynamical method for use by sample collection missions to identify the presence and quantity of collected sample material. The G-SAMPLE method implements a maximum-likelihood estimator to identify the collected sample mass, based on onboard force sensor measurements, thruster firings, and a dynamics model of the spacecraft. With G-SAMPLE, sample mass identification becomes a computation rather than an extra hardware requirement; the added cost of cameras or other sensors for sample mass detection is avoided. Realistic simulation examples are provided for a spacecraft configuration with a sample collection device mounted on the end of an extended boom. In one representative example, a 1000 gram sample mass is estimated to within 110 grams (95% confidence) under realistic assumptions of thruster profile error, spacecraft parameter uncertainty, and sensor noise. For convenience to future mission design, an overall sample-mass estimation error budget is developed to approximate the effect of model uncertainty, sensor noise, data rate, and thrust profile error on the expected estimate of collected sample mass.

  8. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  9. NASA develops new digital flight control system

    Science.gov (United States)

    Mewhinney, Michael

    1994-01-01

    This news release reports on the development and testing of a new integrated flight and propulsion automated control system that aerospace engineers at NASA's Ames Research Center have been working on. The system is being tested in the V/STOL (Vertical/Short Takeoff and Landing) Systems Research Aircraft (VSRA).

  10. The dynamics of parabolic flight: flight characteristics and passenger percepts.

    Science.gov (United States)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  11. The dynamics of parabolic flight: flight characteristics and passenger percepts

    Science.gov (United States)

    Karmali, Faisal; Shelhamer, Mark

    2008-01-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30–60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  12. Effects of Music Tempos on Flight Performance

    OpenAIRE

    Kieta, Alexandra R.; Young, John P; Stewart, Derek

    2013-01-01

    To date, research on how listening to music affects performance in high-cognitive demand environments has ranged from those working in information technology to everyday drivers. Some research asserts listening to music does have an effect on human task performance (whether positive or negative) and other research asserts there are no statistically significant effects. This research study focused on how varying music tempos affect pilot performance during certain flight maneuvers. With signif...

  13. Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations in planetary space research.

    Science.gov (United States)

    Riedo, A; Bieler, A; Neuland, M; Tulej, M; Wurz, P

    2013-01-01

    Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility.

  14. Evaluation of Small Unmanned Aircraft Flight Trajectory Accuracy

    Directory of Open Access Journals (Sweden)

    Ramūnas Kikutis

    2014-12-01

    Full Text Available Today small unmanned aircraft are being more widely adapted for practical tasks. These tasks require high reliability and flight path accuracy. For such aircraft we have to deal with the chalenge how to compensate external factors and how to ensure the accuracy of the flight trajectory according to new regulations and standards. In this paper, new regulations for the flights of small unmanned aircraft in Lithuanian air space are discussed. Main factors, which affect errors of the autonomous flight path tracking, are discussed too. The emphasis is on the wind factor and the flight path of Dubbin’s trajectories. Research was performed with mathematical-dynamic model of UAV and it was compared with theoretical calculations. All calculations and experiments were accomplished for the circular part of Dubbin’s paths when the airplane was trimmed for circular trajectory flight in calm conditions. Further, for such flight the wind influence was analysed.

  15. Hypersonic flight testing

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, W.

    1987-01-01

    This presentation is developed for people attending the University of Texas week-long short course in hypersonics. The presentation will be late in the program after the audience has been exposed to computational tehniques and ground test methods. It will attempt to show why we flight test, flight test options, what we learn from flight tests and how we use this information to improve our knowledge of hypersonics. It presupposes that our primary interest is in developing vehicles which will fly in the hypersonic flight region and not in simply developing technology for technology's sake. The material is presented in annotated vugraph form so that the author's comments on each vugraph are on the back of the preceding page. It is hoped that the comments will help reinforce the message on the vugraph.

  16. Flight Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project will develop the Flight System Monitor which will use non-intrusive electrical monitoring (NEMO). The electronic system health of...

  17. 空管系统中飞行数据处理的研究与应用%Research and application of flight data processing in air traffic control system

    Institute of Scientific and Technical Information of China (English)

    赵振宇

    2015-01-01

    In recent years,with the rapid development of China's aviation industry,China has now become a veritable aviation power,but also because of this,air traffic control is facing tremendous pressure.In view of this situation,in order to meet the demand of the healthy development of the aviation industry, China needs to construct and proficient in use of air traffic control system(hereinafter referred to as the air traffic control system),in order to effectively alleviate the pressure of air traffic control,raise the level of traffic control.This paper takes air traffic control system as the research center,and analyzes the research and application of flight data processing in air traffic control system,aiming at providing security for flight safety.%近年来,伴随着我国航空事业的迅猛发展,我国现已成为名副其实的航空大国,也正因如此,空中交通管制面临着巨大压力。鉴于此种情况,为了满足航空事业稳健发展的需求,我国亟需建设并娴熟应用空中交通管制系统(以下简称空管系统),以此有效缓解空中交通管制压力、提升交通管制工作水平。本文以空管系统为研究中心,重点探析空管系统中飞行数据处理的研究与应用,旨在为空中飞行的安全提供保障。

  18. 1999 Flight Mechanics Symposium

    Science.gov (United States)

    Lynch, John P. (Editor)

    1999-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  19. Adaptive structures flight experiments

    Science.gov (United States)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  20. Magnesium and Space Flight.

    Science.gov (United States)

    Smith, Scott M; Zwart, Sara R

    2015-12-08

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions.

  1. Interprofessional Flight Camp.

    Science.gov (United States)

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator.

  2. Upper-Stage Flight Experiment

    Science.gov (United States)

    Anderson, W. E.; Boxwell, R.; Crockett, D. V.; Ross, R.; Lewis, T.; McNeal, C.; Verdarame, K.

    1999-01-01

    For propulsion applications that require that the propellants are storable for long periods, have a high density impulse, and are environmentally clean and non-toxic, the best choice is a combination of high-concentration hydrogen peroxide (High Test Peroxide, or HTP) and a liquid hydrocarbon (LHC) fuel. The HTP/LHC combination is suitable for low-cost launch vehicles, space taxi and space maneuvering vehicles, and kick stages. Orbital Sciences Corporation is under contract with the NASA Marshall Space Flight Center in cooperation with the Air Force Research Lab to design, develop and demonstrate a new low-cost liquid upper stage based on HTP and JP-8. The Upper Stage Flight Experiment (USFE) focuses on key technologies necessary to demonstrate the operation of an inherently simple propulsion system with an innovative, state-of-the-art structure. Two key low-cost vehicle elements will be demonstrated - a 10,000 lbf thrust engine and an integrated composite tank structure. The suborbital flight test of the USFE is scheduled for 2001. Preceding the flight tests are two major series of ground tests at NASA Stennis Space Center and a subscale tank development program to identify compatible composite materials and to verify their compatibility over long periods of time. The ground tests include a thrust chamber development test series and an integrated stage test. This paper summarizes the results from the first phase of the thrust chamber development tests and the results to date from the tank material compatibility tests. Engine and tank configurations that meet the goals of the program are described.

  3. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    Science.gov (United States)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center have developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system. AVRADA's NUH-60A STAR (Systems Testbed for Avionics Research) helicopter was specially modified, in house, for the flight evaluation of the CALAHF system. The near terrain trajectory generation algorithm runs on a multiprocessor flight computer. Global Positioning System (GPS) data are integrated with Inertial Navigation Unit (INU) data in the flight computer to provide a precise navigation solution. The near-terrain trajectory and the aircraft state information are passed to a Silicon Graphics computer to provide the graphical 'pilot centered' guidance, presented on a Honeywell Integrated Helmet And Display Sighting System (IHADSS). The system design, piloted simulation, and initial flight test results are presented.

  4. Research on civil aviation flight crew arranging based on life cycle theory of leadership%基于领导生命周期理论的民航飞行机组搭配问题

    Institute of Scientific and Technical Information of China (English)

    高扬; 王雅萱

    2012-01-01

    In order to reduce flight accidents caused by communication and supervision in cockpit, and arrange civil aviation flight more reasonably, taking pilots' personality into consideration when air operators arrange flight crew is important. The crew arranging and style of captain management were studied through taking the life cycle theory of leadership as the guideline, and combining with sixteen personality factor questionnaire(16PF) test data of captains and first officers. After processing 16PF data by cluster analysis, the extrovert-agreeableness and working-determinism as two personality categories were finally decided. Then captains and first officers were respectively put into high or low score group by these categories, and the detailed meanings of groups are provided. Based on the cluster analysis result the inclination to management of captains and the performance characteristic of different types of first officers were estimated. This research provides recommendations about haw to arrange the flight crew for different personalistic pilots, and recommendations about which style of management is better suited different personal-istic first offices, and more specific training suggestions which improve the cockpit communication and collaboration to first officer be of obedient type. It can prevent unsafety behavior, improve Crew Resource Management( CRM) and flight safety management.%为更合理地调配民航飞行机组、减少因驾驶舱交流和监督不良造成的飞行事故,采取聚类方法分析机长与副驾驶的卡特尔16PF人格特征问卷(16PF)测试数据,结合领导生命周期理论从人格特征角度研究飞行机组搭配和管理方式.经数据分析后将人格特征因子分为外向宜人性和领导决策性两类,根据这两个分类维度分别将机长与副驾驶分为四种类型并给出分类指标和解释,可以判断机长管理方式倾向和不同类型副驾驶的表现特征.对不同管理倾向机长与不

  5. 美国高超声速飞行器转捩装置设计研究综述%Review of Design and Research for Transition Devices of USA Hypersonic Flight Vehicle

    Institute of Scientific and Technical Information of China (English)

    战培国

    2015-01-01

    吸气式高超声速飞行器前体边界层转捩研究是美国高超声速研究计划的重要内容之一。简述美国吸气式高超声速飞行器(X-43)转捩装置设计的背景,阐述转捩装置的设计策略和位置确定原则,介绍美国转捩试验风洞的选择依据和主要风洞,归纳美国风洞试验采用的主要测试技术和研究方法,分析“钻石”型和“斜坡”型转捩装置构型的风洞试验结果。%Research of air-breathing hypersonic lfight vehicle’s forebody boundary layer transition is one of the important content of USA hypersonic research plan. The design background of air-breathing hypersonic flight vehicle(X-43) transition devices was sketched, design strategies and position determination principle of transition devices were stated, the choosing basis and main wind tunnel of USA transition test tunnel were introduced, the main test technologies and research mehtods were concluded, finally analyzed the wind tunnel test results of diamond shape and ramp shape transition devices.

  6. The aerospace energy systems laboratory: Hardware and software implementation

    Science.gov (United States)

    Glover, Richard D.; Oneil-Rood, Nora

    1989-01-01

    For many years NASA Ames Research Center, Dryden Flight Research Facility has employed automation in the servicing of flight critical aircraft batteries. Recently a major upgrade to Dryden's computerized Battery Systems Laboratory was initiated to incorporate distributed processing and a centralized database. The new facility, called the Aerospace Energy Systems Laboratory (AESL), is being mechanized with iAPX86 and iAPX286 hardware running iRMX86. The hardware configuration and software structure for the AESL are described.

  7. Design and analysis of advanced flight planning concepts

    Science.gov (United States)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  8. Capital Flight and Economic Performance

    OpenAIRE

    Beja, Edsel Jr.

    2007-01-01

    Capital flight aggravates resource constraints and contributes to undermine long-term economic growth. Counterfactual calculations on the Philippines suggest that capital flight contributed to lower the quality of long-term economic growth. Sustained capital flight over three decades means that capital flight had a role for the Philippines to lose the opportunities to achieve economic takeoff. Unless decisive policy actions are taken up to address enduring capital flight and manage the macroe...

  9. Long duration flights management

    Science.gov (United States)

    Sosa-Sesma, Sergio; Letrenne, Gérard; Spel, Martin; Charbonnier, Jean-Marc

    Long duration flights (LDF) require a special management to take the best decisions in terms of ballast consumption and instant of separation. As a contrast to short duration flights, where meteorological conditions are relatively well known, for LDF we need to include the meteorological model accuracy in trajectory simulations. Dispersions on the fields of model (wind, temperature and IR fluxes) could make the mission incompatible with safety rules, authorized zones and others flight requirements. Last CNES developments for LDF act on three main axes: 1. Although ECMWF-NCEP forecast allows generating simulations from a 4D point (altitude, latitude, longitude and UT time), result is not statistical, it is determinist. To take into account model dispersion a meteorological NCEP data base was analyzed. A comparison between Analysis (AN) and Forecast (FC) for the same time frame had been done. Result obtained from this work allows implementing wind and temperature dispersions on balloon flight simulator. 2. For IR fluxes, NCEP does not provide ascending IR fluxes in AN mode but only in FC mode. To obtain the IR fluxes for each time frame, satellite images are used. A comparison between FC and satellites measurements had been done. Results obtained from this work allow implementing flux dispersions on balloon flight simulator. 3. An improved cartography containing a vast data base had been included in balloon flight simulator. Mixing these three points with balloon flight dynamics we have obtained two new tools for observing balloon evolution and risk, one of them is called ASTERISK (Statistic Tool for Evaluation of Risk) for calculations and the other one is called OBERISK (Observing Balloon Evolution and Risk) for visualization. Depending on the balloon type (super pressure, zero pressure or MIR) relevant information for the flight manager is different. The goal is to take the best decision according to the global situation to obtain the largest flight duration with

  10. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  11. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  12. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

      In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  13. Flight Guidance System Requirements Specification

    Science.gov (United States)

    Miller, Steven P.; Tribble, Alan C.; Carlson, Timothy M.; Danielson, Eric J.

    2003-01-01

    This report describes a requirements specification written in the RSML-e language for the mode logic of a Flight Guidance System of a typical regional jet aircraft. This model was created as one of the first steps in a five-year project sponsored by the NASA Langley Research Center, Rockwell Collins Inc., and the Critical Systems Research Group of the University of Minnesota to develop new methods and tools to improve the safety of avionics designs. This model will be used to demonstrate the application of a variety of methods and techniques, including safety analysis of system and subsystem requirements, verification of key properties using theorem provers and model checkers, identification of potential sources mode confusion in system designs, partitioning of applications based on the criticality of system hazards, and autogeneration of avionics quality code. While this model is representative of the mode logic of a typical regional jet aircraft, it does not describe an actual or planned product. Several aspects of a full Flight Guidance System, such as recovery from failed sensors, have been omitted, and no claims are made regarding the accuracy or completeness of this specification.

  14. Soviet space flight: the human element.

    Science.gov (United States)

    Garshnek, V

    1989-07-01

    Building on past experience and knowledge, the Soviet manned space flight effort has become broad, comprehensive, and forward-looking. Their long-running space station program has provided the capabilities to investigate long-term effects of microgravity on human physiology and behavior, and test various countermeasures against microgravity-induced physiological deconditioning. Since the beginning of Soviet manned space flight, the biomedical training and preparation of cosmonauts has evolved from a process that increased human tolerance to space flight factors, to a system of interrelated measures to prepare cosmonauts physically and psychologically to live and work in space. Currently, the Soviet Union is constructing a multimodular space station, the Mir. With the emergence of dedicated laboratory modules, the Soviets have begun the transition from small-scale experimental research to large-scale production activities and specialized scientific work in space. In the future, additional laboratory modules will be added, including one dedicated to biomedical research, called the "Medilab." The longest manned space flight to date (326 d) has been completed by the Soviets. The biomedical effects of previous long-duration flights, and perhaps those of still greater length, may contribute important insight into the possibility of extended missions beyond Earth, such as a voyage to Mars.

  15. 2001 Flight Mechanics Symposium

    Science.gov (United States)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  16. Technologies for hypersonic flight

    Science.gov (United States)

    Steinheil, Eckart; Uhse, Wolfgang

    An account is given of the technology readiness requirements of the West German Saenger II air-breathing first-stage, two-stage reusable launcher system. The present, five-year conceptual development phase will give attention to propulsion, aerothermodynamic, materials/structures, and flight guidance technology development requirements. The second, seven-year development phase will involve other West European design establishments and lead to the construction of a demonstration vehicle. Attention is presently given to the air-breathing propulsion system, and to flight-weight structural systems under consideration for both external heating and internal cryogenic tankage requirements.

  17. X-1A in flight with flight data superimposed

    Science.gov (United States)

    1953-01-01

    for heat transfer research while the X-1C was intended as a high-speed armament systems test bed. All of these aircraft like the original X-1s, were launched from a Boeing B-29 or Boeing B-50 'mothership' to take maximum advantage of their limited flying time with a rocket engine. Most launches were made from the JTB-29A (45-21800). The other launch aircraft was EB-50A (46-006). X-1A The Bell X-1A was similar to the Bell X-1, except for having turbo-driven fuel pumps (instead of a system using nitrogen under pressure), a new cockpit canopy, longer fuselage and increased fuel capacity. The X-1A arrived at Edwards Air Force Base, California on January 7, 1953, with the first glide flight being successfully completed by Bell pilot, Jean 'Skip' Ziegler. The airplane also made five powered flights with Ziegler at the controls. The USAF was attempting a Mach 2 flight and USAF test pilot Charles 'Chuck' Yeager was eager. He reached speed of Mach 2.435, at a altitude of 75,000 feet on December 12, 1953, a speed record at the time. But all was not well, the aircraft encountered an inertial coupling phenomenon and went out of control. Once the X-1A had entered the denser atmosphere (35,000 feet) it slowly stabilized and Yeager was able to return to Edwards. The aircraft had experienced high-speed roll-coupling, something aerodynamicists had predicted, but this was the first actual encounter. On August 26, 1954, Major Arthur Murray, USAF test pilot flew the X-1A to an altitude record of 90,440 feet. NACA High-Speed Flight Station received the aircraft in September 1954 and returned it to Bell for the installation of an ejection seat. NACA test pilot Joseph Walker made a familiarization flight on July 20, 1955 followed by another scheduled flight on August 8, 1955. Shortly before launch the X-1A suffered an explosion. The extent of the damage prohibited landing the crippled aircraft. The X-1A was jettisoned into the desert, exploding and burning on impact. Walker and the B-29

  18. Guidelines for Research Planning and Design in Task Analysis

    Science.gov (United States)

    1975-09-01

    Kaplan, Abraham, THE CONDUCT OF INQUIRY, San Francisco: Chandler, 1964. Nagel , Ernest, THE STRUCTURE OF SCIENCE, New York: Harcourt Brace, Inc...Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1966. Selltiz , Claire, et.al., RESEARCH METHODS IN SOCIAL RELATIONS, New York: Holt-Dryden, 1959...ATSH-DET Deputy Commander U.S. Array Institute of Administration Fort Benjamin Harrison, IN 46216 ATTN: EA Dr. Stanley L. Cohen U.S. Array

  19. Research on oblique wing aircraft's flight dynamics model%斜置翼布局飞机的飞行动力学模型研究

    Institute of Scientific and Technical Information of China (English)

    秋路; 高正红; 刘艳

    2015-01-01

    从机理上分析了斜置翼布局飞机的气动耦合及惯性耦合特性;对其六自由度动力学模型进行了建模及纵横耦合线性化;以F-8OWRA(Oblique Wing Research Aircraft)为算例,对其机翼斜置角为45°时的操纵响应特性进行了仿真计算及分析,仿真结果体现了斜置翼布局飞机纵横耦合的运动特性,说明所建立的动力学模型是可靠的.

  20. "In flight catering": feeding critical care patients during aeromedical evacuation.

    Science.gov (United States)

    Turner, S; Ruth, M J; Bruce, D L

    2008-12-01

    The benefits of early enteral nutrition are well recognised but may be incompatible with CCAST evacuation due to the risk of micro-aspiration predisposing to pneumonia. A study has been approved by the Surgeon Generals Research Strategy Group designed to quantify the risks of microaspiration during CCAST flights in order to inform DMA policy with regard to feeding critically ill casualties during flight.

  1. Fighting capital flight in Ethiopia Dawit Tadesse ABSTRACT Keywords

    African Journals Online (AJOL)

    user

    2013-06-01

    Jun 1, 2013 ... purpose of this article capital flight refers to Illegal capital flight, also known as ... that hold external assets are insulated from the effects, while the poor enjoy no such cushion. ... Figure 1.1: Triangulation Research Methodology Model ... Transfer mis-pricing: This is the manipulation of prices of cross-border.

  2. Data Mining Tools Make Flights Safer, More Efficient

    Science.gov (United States)

    2014-01-01

    A small data mining team at Ames Research Center developed a set of algorithms ideal for combing through flight data to find anomalies. Dallas-based Southwest Airlines Co. signed a Space Act Agreement with Ames in 2011 to access the tools, helping the company refine its safety practices, improve its safety reviews, and increase flight efficiencies.

  3. Orlando 737 Windshear Sensor Flight Tests

    Science.gov (United States)

    1992-01-01

    NASA Langley Research Center's 737 'flying laboratory' flight tested three advance warning windshear sensors. The laser beams seen in the photograph were used to align the optical hardware of the infrared (located in front of the windows) and LIDAR (Light Detecting And Ranging) systems. In addition, a microwave doppler radar system is installed in the aircraft nose.

  4. Control Design and Performance Analysis for Autonomous Formation Flight Experimentss

    Science.gov (United States)

    Rice, Caleb Michael

    Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV's) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor.

  5. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-02-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  6. A Trajectory Generation Approach for Payload Directed Flight

    Science.gov (United States)

    Ippolito, Corey A.; Yeh, Yoo-Hsiu

    2009-01-01

    Presently, flight systems designed to perform payload-centric maneuvers require preconstructed procedures and special hand-tuned guidance modes. To enable intelligent maneuvering via strong coupling between the goals of payload-directed flight and the autopilot functions, there exists a need to rethink traditional autopilot design and function. Research into payload directed flight examines sensor and payload-centric autopilot modes, architectures, and algorithms that provide layers of intelligent guidance, navigation and control for flight vehicles to achieve mission goals related to the payload sensors, taking into account various constraints such as the performance limitations of the aircraft, target tracking and estimation, obstacle avoidance, and constraint satisfaction. Payload directed flight requires a methodology for accurate trajectory planning that lets the system anticipate expected return from a suite of onboard sensors. This paper presents an extension to the existing techniques used in the literature to quickly and accurately plan flight trajectories that predict and optimize the expected return of onboard payload sensors.

  7. First Middle East Aircraft Parabolic Flights for ISU Participant Experiments

    Science.gov (United States)

    Pletser, Vladimir; Frischauf, Norbert; Cohen, Dan; Foster, Matthew; Spannagel, Ruven; Szeszko, Adam; Laufer, Rene

    2017-06-01

    Aircraft parabolic flights are widely used throughout the world to create microgravity environment for scientific and technology research, experiment rehearsal for space missions, and for astronaut training before space flights. As part of the Space Studies Program 2016 of the International Space University summer session at the Technion - Israel Institute of Technology, Haifa, Israel, a series of aircraft parabolic flights were organized with a glider in support of departmental activities on `Artificial and Micro-gravity' within the Space Sciences Department. Five flights were organized with manoeuvres including several parabolas with 5 to 6 s of weightlessness, bank turns with acceleration up to 2 g and disorientation inducing manoeuvres. Four demonstration experiments and two experiments proposed by SSP16 participants were performed during the flights by on board operators. This paper reports on the microgravity experiments conducted during these parabolic flights, the first conducted in the Middle East for science and pedagogical experiments.

  8. Space Shuttle flight control system

    Science.gov (United States)

    Klinar, W. J.; Kubiak, E. T.; Peters, W. H.; Saldana, R. L.; Smith, E. E., Jr.; Stegall, H. W.

    1975-01-01

    The Space Shuttle is a control stabilized vehicle with control provided by an all digital, fly-by-wire flight control system. This paper gives a description of the several modes of flight control which correspond to the Shuttle mission phases. These modes are ascent flight control (including open loop first stage steering, the use of four computers operating in parallel and inertial guidance sensors), on-orbit flight control (with a discussion of reaction control, phase plane switching logic, jet selection logic, state estimator logic and OMS thrust vector control), entry flight control and TAEM (terminal area energy management to landing). Also discussed are redundancy management and backup flight control.

  9. Flight Mechanics Symposium 1997

    Science.gov (United States)

    Walls, Donna M. (Editor)

    1997-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium. This symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  10. Overbooking Airline Flights.

    Science.gov (United States)

    Austin, Joe Dan

    1982-01-01

    The problems involved in making reservations for airline flights is discussed in creating a mathematical model designed to maximize an airline's income. One issue not considered in the model is any public relations problem the airline may have. The model does take into account the issue of denied boarding compensation. (MP)

  11. Overbooking Airline Flights.

    Science.gov (United States)

    Austin, Joe Dan

    1982-01-01

    The problems involved in making reservations for airline flights is discussed in creating a mathematical model designed to maximize an airline's income. One issue not considered in the model is any public relations problem the airline may have. The model does take into account the issue of denied boarding compensation. (MP)

  12. OMV In Flight

    Science.gov (United States)

    1988-01-01

    In this 1988 artist's concept, the Orbital Maneuvering Vehicle (OMV), closes in on a satellite. As envisioned by Marshall Space Flight plarners, the OMV would be a remotely-controlled free-flying space tug which would place, rendezvous, dock, and retrieve orbital payloads.

  13. NASA Photo One

    Science.gov (United States)

    Ross, James C.

    2013-01-01

    This is a photographic record of NASA Dryden flight research aircraft, spanning nearly 25 years. The author has served as a Dryden photographer, and now as its chief photographer and airborne photographer. The results are extraordinary images of in-flight aircraft never seen elsewhere, as well as pictures of aircraft from unusual angles on the ground. The collection is the result of the agency required documentation process for its assets.

  14. Correlating Computed and Flight Instructor Assessments of Straight-In Landing Approaches by Novice Pilots on a Flight Simulator

    Science.gov (United States)

    Heath, Bruce E.; Khan, M. Javed; Rossi, Marcia; Ali, Syed Firasat

    2005-01-01

    The rising cost of flight training and the low cost of powerful computers have resulted in increasing use of PC-based flight simulators. This has prompted FAA standards regulating such use and allowing aspects of training on simulators meeting these standards to be substituted for flight time. However, the FAA regulations require an authorized flight instructor as part of the training environment. Thus, while costs associated with flight time have been reduced, the cost associated with the need for a flight instructor still remains. The obvious area of research, therefore, has been to develop intelligent simulators. However, the two main challenges of such attempts have been training strategies and assessment. The research reported in this paper was conducted to evaluate various performance metrics of a straight-in landing approach by 33 novice pilots flying a light single engine aircraft simulation. These metrics were compared to assessments of these flights by two flight instructors to establish a correlation between the two techniques in an attempt to determine a composite performance metric for this flight maneuver.

  15. STS-107 Flight Day 9 Highlights

    Science.gov (United States)

    2003-01-01

    This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists; Ilan Ramon, Payload Specialist) during flight day 9 of the Columbia orbiter's final flight. The primary activities of flight day 9 are spaceborne experiments. The video shows a commercial experiment on roses, a partial view of Africa from Libya to the Horn of Africa through the MEIDEX (Mediterranean Israeli Dust Experiment), and the FAST (Facility for Absorption and Surface Tension) experiment. The STARS (Space Technology and Research Students) international student experiments are shown. The preliminary results of these experiments on the effects of microgravity on silkworms, spiders, crystal growth, fish embryos, carpenter bees, and ants are discussed. The video includes a view of southern Spain and the Mediterranean Sea.

  16. Flight crew fatigue I: objectives and methods.

    Science.gov (United States)

    Gander, P H; Graeber, R C; Connell, L J; Gregory, K B; Miller, D L; Rosekind, M R

    1998-09-01

    In 1980, NASA-Ames Research Center, Moffett Field, CA, initiated a program to assess flight crew fatigue, determine its potential operational consequences, and provide practical countermeasure suggestions. To assess the extent of the problem, crewmembers were monitored before, during, and after commercial short-haul (fixed-wing and helicopter aircraft), overnight cargo, and long-haul operations. A total of 197 volunteers were studied on 94 trip patterns with 1299 flight segments and 2046 h of flying time. The present paper outlines the program and describes the common methodology used in these studies, which are then presented in detail in the four subsequent papers. The sixth paper offers a synthesis of this work, reviewing the major causes of flight crew fatigue and making specific suggestions about ways to manage it in different operations.

  17. Parabolic flight as a spaceflight analog.

    Science.gov (United States)

    Shelhamer, Mark

    2016-06-15

    Ground-based analog facilities have had wide use in mimicking some of the features of spaceflight in a more-controlled and less-expensive manner. One such analog is parabolic flight, in which an aircraft flies repeated parabolic trajectories that provide short-duration periods of free fall (0 g) alternating with high-g pullout or recovery phases. Parabolic flight is unique in being able to provide true 0 g in a ground-based facility. Accordingly, it lends itself well to the investigation of specific areas of human spaceflight that can benefit from this capability, which predominantly includes neurovestibular effects, but also others such as human factors, locomotion, and medical procedures. Applications to research in artificial gravity and to effects likely to occur in upcoming commercial suborbital flights are also possible. Copyright © 2016 the American Physiological Society.

  18. Retrospect of competency researches and prospect of its application for military flight personnel%胜任特征研究及在军事飞行人员中的应用前景

    Institute of Scientific and Technical Information of China (English)

    杨柳; 宋华淼

    2015-01-01

    Objective To review the development of competency in various occupations,and to prospect the application of competency research in the selection,training,assessment.etc.for military flight personnel.Literature resource and selection The related articles published at home and abroad.Literature quotation Fifty-one references are cited.Literature synthesis The widely accepted concept of competency is the potential or the deep personal characteristics that distinguished the persons with outstanding achievements from the others who were with mediocre performance in a work (or organization,culture).The main models of competency are iceberg model,onion model and pyramid model.Since the concept of competency was proposed,it has been widely concerned and deeply researched in many fields of China and abroad for its function in identifying the deep personal characteristics of excellent and general staff's occupation performance.The main research methods are behavioral event interview,questionnaire survey,situational judgment tests,focus group interview and job analysis.The military flight occupation highly requires personnel psychological traits.Related work of competency has been applied and got favorable and pratical results carried out and good actual effect has obtained in this field now.But it still can't compltetly satisfy the actual needs.Study on the competency of military flight personnel can provide theoretical basis of index system for psychological selection,psychological training,annual psychological assessment and daily psychological selfmaintenance.It will actualize the expectation on application of competency models and offer the help to finally establish "selection and placement system","assessment and training system" and "security and protection system".Conclusions For the higher performance fighter aircraft required,researching on competency and building aircraft and occupation orientated traits are signifying much,and the results would play a momentous

  19. Bisphosphonate ISS Flight Experiment

    Science.gov (United States)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; Sibonga, Jean; Keyak, Joyce; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi; Moralez, Gilbert

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control groups suggests significant but incomplete improvement in maintaining BMD using the newer exercise

  20. Speech Recognition Interfaces Improve Flight Safety

    Science.gov (United States)

    2013-01-01

    "Alpha, Golf, November, Echo, Zulu." "Sierra, Alpha, Golf, Echo, Sierra." "Lima, Hotel, Yankee." It looks like some strange word game, but the combinations of words above actually communicate the first three points of a flight plan from Albany, New York to Florence, South Carolina. Spoken by air traffic controllers and pilots, the aviation industry s standard International Civil Aviation Organization phonetic alphabet uses words to represent letters. The first letter of each word in the series is combined to spell waypoints, or reference points, used in flight navigation. The first waypoint above is AGNEZ (alpha for A, golf for G, etc.). The second is SAGES, and the third is LHY. For pilots of general aviation aircraft, the traditional method of entering the letters of each waypoint into a GPS device is a time-consuming process. For each of the 16 waypoints required for the complete flight plan from Albany to Florence, the pilot uses a knob to scroll through each letter of the alphabet. It takes approximately 5 minutes of the pilot s focused attention to complete this particular plan. Entering such a long flight plan into a GPS can pose a safety hazard because it can take the pilot s attention from other critical tasks like scanning gauges or avoiding other aircraft. For more than five decades, NASA has supported research and development in aviation safety, including through its Vehicle Systems Safety Technology (VSST) program, which works to advance safer and more capable flight decks (cockpits) in aircraft. Randy Bailey, a lead aerospace engineer in the VSST program at Langley Research Center, says the technology in cockpits is directly related to flight safety. For example, "GPS navigation systems are wonderful as far as improving a pilot s ability to navigate, but if you can find ways to reduce the draw of the pilot s attention into the cockpit while using the GPS, it could potentially improve safety," he says.

  1. Dynamic flight stability of a bumblebee in forward flight

    Institute of Scientific and Technical Information of China (English)

    Yan Xiong; Mao Sun

    2008-01-01

    The longitudinal dynamic flight stability of a bumblebee in forward flight is studied.The method of computational fluid dynamics is used to compute the aerodynamic derivatives and the techniques of eigenvalue and eigenvector analysis are employed for solving the equations of motion.The primary findings are as the following.The forward flight of the bumblebee is not dynamically stable due to the existence of one(or two)unstable or approximately neutrally stable natural modes of motion.At hovering to medium flight speed[flight speed ue=(0-3.5)m s-1;advance ratio J=0-0.44],the flight is weakly unstable or approximately neutrally stable;at high speed(ue=4.5 m s-1;J=0.57),the flight becomes strongly unstable(initial disturbance double its value in only 3.5 wingbeats).

  2. Automated ISS Flight Utilities

    Science.gov (United States)

    Offermann, Jan Tuzlic

    2016-01-01

    EVADES output. As mentioned above, GEnEVADOSE makes extensive use of ROOT version 6, the data analysis framework developed at the European Organization for Nuclear Research (CERN), and the code is written to the C++11 standard (as are the other projects). My second project is the Automated Mission Reference Exposure Utility (AMREU).Unlike GEnEVADOSE, AMREU is a combination of three frameworks written in both Python and C++, also making use of ROOT (and PyROOT). Run as a combination of daily and weekly cron jobs, these macros query the SRAG database system to determine the active ISS missions, and query minute-by-minute radiation dose information from ISS-TEPC (Tissue Equivalent Proportional Counter), one of the radiation detectors onboard the ISS. Using this information, AMREU creates a corrected data set of daily radiation doses, addressing situations where TEPC may be offline or locked up by correcting doses for days with less than 95% live time (the total amount time the instrument acquires data) by averaging the past 7 days. As not all errors may be automatically detectable, AMREU also allows for manual corrections, checking an updated plaintext file each time it runs. With the corrected data, AMREU generates cumulative dose plots for each mission, and uses a Python script to generate a flight note file (.docx format) containing these plots, as well as information sections to be filled in and modified by the space weather environment officers with information specific to the week. AMREU is set up to run without requiring any user input, and it automatically archives old flight notes and information files for missions that are no longer active. My other projects involve cleaning up a large data set from the Charged Particle Directional Spectrometer (CPDS), joining together many different data sets in order to clean up information in SRAG SQL databases, and developing other automated utilities for displaying information on active solar regions, that may be used by the

  3. NOAA Aircraft Operations Center (AOC) Flight Level Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA AOC WP-3D Research Flight Data is digital data set DSI-6420, archived at the National Climatic Data Center (NCDC). This data set is meteorological data gathered...

  4. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  5. Ordos Takes Flight

    Institute of Scientific and Technical Information of China (English)

    YAN WEI

    2010-01-01

    @@ China's vast hinterland has long conjured up images of rugged mountains and countrysides dotted by villages all but untouched by the hands of time. But after a recent one-hour flight west from Beijing,Anna Chennault,Chair of the Council for International Cooperation (CIC),a Washington,D.C.-based non-profit organization that helps promote development in China,found something altogether different-a city called Ordos.

  6. Spontaneous Flapping Flight

    Science.gov (United States)

    Vandenberghe, Nicolas; Zhang, Jun; Childress, Stephen

    2004-11-01

    As shown in an earlier work [Vandenberghe, et. al. JFM, Vol 506, 147, 2004], a vertically flapping wing can spontaneously move horizontally as a result of symmetry breaking. In the current experimental study, we investigate the dependence of resultant velocity on flapping amplitude. We also describe the forward thrust generation and how the system dynamically selects a Strouhal number by balancing fluid and body forces. We further compare our model system with examples of biological locomotion, such as bird flight and fish swimming.

  7. Simulations of Levy flights

    Energy Technology Data Exchange (ETDEWEB)

    Pantaleo, E; Pascazio, S [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Facchi, P [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy)], E-mail: ester.pantaleo@ba.infn.it

    2009-07-15

    Levy flights, also known as {alpha}-stable Levy processes or heavy-tailed statistics, are becoming a commonly used tool in optics. Nonetheless, the different parametrizations and the absence of any analytic expression for the distribution functions (apart from some exceptions) makes it difficult to efficiently simulate such processes. We review and compare three algorithms for the generation of sequences of symmetric stable Levy random variables.

  8. Flight telerobotic servicer control from the Orbiter

    Science.gov (United States)

    Ward, Texas M.; Harlan, Don L.

    1989-01-01

    The research and work conducted on the development of a testbed for a display and control panel for the Flight Telerobotic Servicer (FTS) are presented. Research was conducted on both software and hardware needed to control the FTS. A breadboard was constructed and placed into a mockup of the aft station of the Orbiter spacecraft. This breadboard concept was then evaluated using a computer graphics representation of the Tinman FTS. Extensive research was conducted on the software requirements and implementation. The hardware selected for the breadboard was 'flight like' and in some cases fit and function evaluated. The breadboard team studied some of the concepts without pursuing in depth their impact on the Orbiter or other missions. Assumptions are made concerning payload integration.

  9. Numerical study of insect free hovering flight

    Science.gov (United States)

    Wu, Di; Yeo, Khoon Seng; Lim, Tee Tai; Fluid lab, Mechanical Engineering, National University of Singapore Team

    2012-11-01

    In this paper we present the computational fluid dynamics study of three-dimensional flow field around a free hovering fruit fly integrated with unsteady FSI analysis and the adaptive flight control system for the first time. The FSI model being specified for fruitfly hovering is achieved by coupling a structural problem based on Newton's second law with a rigorous CFD solver concerning generalized finite difference method. In contrast to the previous hovering flight research, the wing motion employed here is not acquired from experimental data but governed by our proposed control systems. Two types of hovering control strategies i.e. stroke plane adjustment mode and paddling mode are explored, capable of generating the fixed body position and orientation characteristic of hovering flight. Hovering flight associated with multiple wing kinematics and body orientations are shown as well, indicating the means by which fruitfly actually maintains hovering may have considerable freedom and therefore might be influenced by many other factors beyond the physical and aerodynamic requirements. Additionally, both the near- and far-field flow and vortex structure agree well with the results from other researchers, demonstrating the reliability of our current model.

  10. Three-dimensional kinematics of hummingbird flight.

    Science.gov (United States)

    Tobalske, Bret W; Warrick, Douglas R; Clark, Christopher J; Powers, Donald R; Hedrick, Tyson L; Hyder, Gabriel A; Biewener, Andrew A

    2007-07-01

    Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized high-speed (500 Hz) video cameras and measured the three-dimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3 g, N=5) as they flew at velocities of 0-12 m s(-1) in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical stroke-plane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip-span ratio of 93% revealed that they have kinematically ;rigid' wings compared with other avian species.

  11. Pilot Milt Thompson and the M2-F2 Lifting Body

    Science.gov (United States)

    1966-01-01

    Jay L. King, Joseph D. Huxman and Orion D. Billeter assist NASA research pilot Milt Thompson (on the ladder) into the cockpit of the M2-F2 lifting body research aircraft at the NASA Flight Research Center (now the Dryden Flight Research Center). The M2-F2 is attached to a wing pylon under the wing of NASA's B-52 mothership.

  12. Integration of energy management concepts into the flight deck

    Science.gov (United States)

    Morello, S. A.

    1981-01-01

    The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.

  13. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    Science.gov (United States)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  14. Flight Mechanics Project

    Science.gov (United States)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  15. Rocket Flight Path

    Directory of Open Access Journals (Sweden)

    Jamie Waters

    2014-09-01

    Full Text Available This project uses Newton’s Second Law of Motion, Euler’s method, basic physics, and basic calculus to model the flight path of a rocket. From this, one can find the height and velocity at any point from launch to the maximum altitude, or apogee. This can then be compared to the actual values to see if the method of estimation is a plausible. The rocket used for this project is modeled after Bullistic-1 which was launched by the Society of Aeronautics and Rocketry at the University of South Florida.

  16. Research of Flight Control Software Fault-Localization Technology Based on Sober Algorithm%基于 Sober 算法的飞控软件缺陷定位方法研究

    Institute of Scientific and Technical Information of China (English)

    李志敏; 殷蓓蓓; 张萍; 王纪兵; 杨飏

    2015-01-01

    The verification and testing of flight control software is an important means to ensure and improve the reliability of the flight control system .Software fault-localization is a significant link of soft-ware ’ s verification and testing , and its accuracy and timeliness directly affects the reliability of flight con-trol software .In this paper , the characteristics oriented fault-localization of flight control software are ana-lyzed .For the embedded characteristic of flight control software , the flight control software simulation test platform is build .On this basis , using the flight automatic landing control software as the experimental subjects , for its characteristics , a fault-localization method based on Sober algorithm is proposed .Finally simulation verification is implemented , which verifies the feasibility of the fault-localization method .%飞行控制软件(简称飞控软件)验证与测试是保障和提高飞控系统可靠性的重要手段。软件缺陷定位是软件验证与测试过程中的重要环节,其准确性和及时性直接影响了飞控软件的可靠性。本文对面向缺陷定位的飞控软件的特性进行了分析,并针对其嵌入式特性,搭建了飞控软件仿真测试平台。在此基础上,以飞机着陆自动控制软件为实验对象,针对其特性,提出了基于Sober算法的缺陷定位方法,最后进行了仿真验证,证明了缺陷定位方法的可行性。

  17. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  18. A benchmark for fault tolerant flight control evaluation

    Science.gov (United States)

    Smaili, H.; Breeman, J.; Lombaerts, T.; Stroosma, O.

    2013-12-01

    A large transport aircraft simulation benchmark (REconfigurable COntrol for Vehicle Emergency Return - RECOVER) has been developed within the GARTEUR (Group for Aeronautical Research and Technology in Europe) Flight Mechanics Action Group 16 (FM-AG(16)) on Fault Tolerant Control (2004 2008) for the integrated evaluation of fault detection and identification (FDI) and reconfigurable flight control strategies. The benchmark includes a suitable set of assessment criteria and failure cases, based on reconstructed accident scenarios, to assess the potential of new adaptive control strategies to improve aircraft survivability. The application of reconstruction and modeling techniques, based on accident flight data, has resulted in high-fidelity nonlinear aircraft and fault models to evaluate new Fault Tolerant Flight Control (FTFC) concepts and their real-time performance to accommodate in-flight failures.

  19. SSI-ARC Flight Test 3 Data Review

    Science.gov (United States)

    Gong, Chester; Wu, Minghong G.

    2015-01-01

    The "Unmanned Aircraft System (UAS) Integration into the National Airspace System (NAS)" Project conducted flight test program, referred to as Flight Test 3, at Armstrong Flight Research Center from June - August 2015. Four flight test days were dedicated to the NASA Ames-developed Detect and Avoid (DAA) System referred to as Autoresolver. The encounter scenarios, which involved NASA's Ikhana UAS and a manned intruder aircraft, were designed to collect data on DAA system performance in real-world conditions and uncertainties with four different surveillance sensor systems. Resulting flight test data and analysis results will be used to evaluate the DAA system performance (e.g., trajectory prediction accuracy, threat detection) and to add fidelity to simulation models used to inform Minimum Operating Performance Standards (MOPS) for integrating UAS into routine NAS operations.

  20. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a) Flight simulators and flight training devices approved by the Administrator may be used in training...

  1. Evolution of avian flight: muscles and constraints on performance.

    Science.gov (United States)

    Tobalske, Bret W

    2016-09-26

    Competing hypotheses about evolutionary origins of flight are the 'fundamental wing-stroke' and 'directed aerial descent' hypotheses. Support for the fundamental wing-stroke hypothesis is that extant birds use flapping of their wings to climb even before they are able to fly; there are no reported examples of incrementally increasing use of wing movements in gliding transitioning to flapping. An open question is whether locomotor styles must evolve initially for efficiency or if they might instead arrive due to efficacy. The proximal muscles of the avian wing output work and power for flight, and new research is exploring functions of the distal muscles in relation to dynamic changes in wing shape. It will be useful to test the relative contributions of the muscles of the forearm compared with inertial and aerodynamic loading of the wing upon dynamic morphing. Body size has dramatic effects upon flight performance. New research has revealed that mass-specific muscle power declines with increasing body mass among species. This explains the constraints associated with being large. Hummingbirds are the only species that can sustain hovering. Their ability to generate force, work and power appears to be limited by time for activation and deactivation within their wingbeats of high frequency. Most small birds use flap-bounding flight, and this flight style may offer an energetic advantage over continuous flapping during fast flight or during flight into a headwind. The use of flap-bounding during slow flight remains enigmatic. Flap-bounding birds do not appear to be constrained to use their primary flight muscles in a fixed manner. To improve understanding of the functional significance of flap-bounding, the energetic costs and the relative use of alternative styles by a given species in nature merit study.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  2. Atmospheric radiation flight dose rates

    Science.gov (United States)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  3. New Theory of Flight

    Science.gov (United States)

    Hoffman, Johan; Jansson, Johan; Johnson, Claes

    2016-06-01

    We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.

  4. In-Flight System Identification

    Science.gov (United States)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.

  5. F-16XL ship #1 (#849) with Digital Flight Control System (DFCS) in flight over desert

    Science.gov (United States)

    1997-01-01

    An image of the F-16XL #1 during its functional flight check of the Digital Flight Control System (DFCS) on December 16, 1997. The mission was flown by NASA research pilot Dana Purifoy, and lasted 1 hour and 25 minutes. The tests included pilot familiarly, functional check, and handling qualities evaluation maneuvers to a speed of Mach 0.6 and 300 knots. Purifoy completed all the briefed data points with no problems, and reported that the DFCS handled as well, if not better than the analog computer system that it replaced.

  6. Key Performance Indicators for SAS Flights

    OpenAIRE

    Arhall, Johanna; Cox, Emmie

    2013-01-01

    Revenue management is a thoroughly researched field of study and it is widely used in several different industries. The Revenue Management Department at the airline SAS (Scandinavian Airline System) serves to maximise the profit of the company’s flights. At their disposal they have a number of tools, which use KPIs (Key Performance Indicators) as a measurement. The KPIs are used in prognosis to determine future initiatives, and to analyse and verify results. SAS does not know if the KPIs they...

  7. Flight test evaluations of the head-up display and the inertial reference unit of the NAL QSTOL experimental aircraft (Aska) by the NAL B-65 Queen Air research aircraft. Teisoon STOL jikkenkiyo HUD (head up display) oyobi IRU (kansei kijun sochi) no hiko hyoka shiken

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    A head-up display (HUD) and an inertial reference unit (IRU) were developed by the National Aerospace Laboratory (NAL) for the NAL QSTOL (Quiet Short Take Off and Landing) experimental air craft (Aska). In order to evaluate both the performance of the HUD which provides the pilot with landing aid information, and the accuracy and characteristics of the IRU to be used for flight control and measurements, flight tests were conducted on board the B-65 Queen Air research aircraft. The results indicated that the characteristics of the HUD as an approach and landing aid system were good, and also that the IRU was useful as a sensor for flight control and measurements. Furthermore, it was shown that fundamental methods of evaluating the HUD characteristics and the IRU accuracy in actual flight were established for application of the HUD and the IRU to a new aircraft in the future. In addition, possibility of a new technology with landing aid information by means of the HUD was made clear. 21 refs., 48 figs., 14 tabs.

  8. Getting started with Twitter Flight

    CERN Document Server

    Hamshere, Tom

    2013-01-01

    Getting Started with Twitter Flight is written with the intention to educate the readers, helping them learn how to build modular powerful applications with Flight, Twitter's cutting-edge JavaScript framework.This book is for anyone with a foundation in JavaScript who wants to build web applications. Flight is quick and easy to learn, built on technologies you already understand such as the DOM, events, and jQuery.

  9. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    Science.gov (United States)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  10. [From the flight of Iu. A. Gagarin to the contemporary piloted space flights and exploration missions].

    Science.gov (United States)

    Grigor'ev, A I; Potapov, A N

    2011-01-01

    The first human flight to space made by Yu. A. Gagarin on April 12, 1961 was a crucial event in the history of cosmonautics that had a tremendous effect on further progress of the human civilization. Gagarin's flight had been prefaced by long and purposeful biomedical researches with the use of diverse bio-objects flown aboard rockets and artificial satellites. Data of these researches drove to the conclusion on the possibility in principle for humans to fly to space. After a series of early flights and improvements in the medical support system space missions to the Salyut and Mir station gradually extended to record durations. The foundations of this extension were laid by systemic researches in the fields of space biomedicine and allied sciences. The current ISS system of crew medical care has been successful in maintaining health and performance of cosmonauts as well as in providing the conditions for implementation of flight duties and operations with a broad variety of payloads. The ISS abounds in opportunities of realistic trial of concepts and technologies in preparation for crewed exploration missions. At the same, ground-based simulation of a mission to Mars is a venue for realization of scientific and technological experiments in space biomedicine.

  11. Pre-flight safety briefings, mood and information retention.

    Science.gov (United States)

    Tehrani, Morteza; Molesworth, Brett R C

    2015-11-01

    Mood is a moderating factor that is known to affect performance. For airlines, the delivery of the pre-flight safety briefing prior to a commercial flight is not only an opportunity to inform passengers about the safety features on-board the aircraft they are flying, but an opportunity to positively influence their mood, and hence performance in the unlikely event of an emergency. The present research examined whether indeed the pre-flight safety briefing could be used to positively impact passengers' mood. In addition, the present research examined whether the recall of key safety messages contained within the pre-flight safety briefing was influenced by the style of briefing. Eighty-two participants were recruited for the research and divided into three groups; each group exposed to a different pre-flight cabin safety briefing video (standard, humorous, movie theme). Mood was measured prior and post safety briefing. The results revealed that pre-flight safety briefing videos can be used to manipulate passengers' mood. Safety briefings that are humorous or use movie themes to model their briefing were found to positively affect mood. However, there was a trade-off between entertainment and education, the greater the entertainment value, the poorer the retention of key safety messages. The results of the research are discussed from both an applied and theoretical perspective.

  12. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2015-02-01

    Full Text Available In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  13. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Institute of Scientific and Technical Information of China (English)

    Liu Fan; Wang Lixin; Tan Xiangsheng

    2015-01-01

    In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS) equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM) is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric tur-bulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness com-pliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ) rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  14. Joint Institute for Advancement of Flight Sciences

    Science.gov (United States)

    1998-01-01

    The program objectives were defined in the original proposal entitled "Program of Research in Flight Dynamics in the JIAFS at NASA Langley Research Center" which was originated March 20, 1975, and in yearly renewals of the research program dated December 1, 1979 to December 1, 1998. The program included three major topics: 1) Improvement of existing methods and development of new methods for flight and wind tunnel data analysis based on system identification methodology. 2) Application of these methods to flight and wind tunnel data obtained from advanced aircraft. 3) Modeling and control of aircraft, space structures and spacecraft. The principal investigator of the program was Dr. Vladislav Klein, Professor at The George Washington University, Washington, D.C.. Thirty-seven Graduate Research Scholar Assistants, two of them doctoral students, also participated in the program. The results of the research conducted during nineteen years of the total co-operative period were published in 23 NASA technical reports, 2 D.Sc. Dissertations, 14 M.S. Theses and 33 papers. The list of these publications is included. The results were also reported in more than 30 seminar lectures presented at various research establishments world-wide. For contributions to the research supported by the co-operative agreement, three NASA Awards were received: 1) NASA LARC Group Achievement Award, May 30, 1990, to Dr. V. Klein as a member of the X-29 Drop Model Team. 2) NASA Medal for Exceptional Engineering Achievement, March 27, 1992, to Dr. V. Klein for innovative contributions in the development of advanced techniques and computer programs in the field of system identification. 3) NASA LaRC Team Excellence Award, May 7, 1994, to Dr. V. Klein as a member of the X-31 Drop Model Team.

  15. Cibola flight experiment satellite

    Science.gov (United States)

    Davies, P.; Liddle, Doug; Paffett, John; Sweeting, Martin; Curiel, A.; Sun, Wei; Eves, Stuart

    2004-11-01

    In order to achieve an "economy of scale" with respect to payload capacity the major trend in telecommunications satellites is for larger and larger platforms. With these large platforms the level of integration between platform and payload is increasing leading to longer delivery schedules. The typical lifecycle for procurement of these large telecommunications satellites is now 3-6 years depending on the level of non-recurring engineering needed. Surrey Satellite Technology Ltd (SSTL) has designed a low-cost platform aimed at telecommunications and navigation applications. SSTL's Geostationary Minisatellite Platform (GMP) is a new entrant addressing the lower end of the market with payloads up to 250kg requiring less than 1.5 kW power. The British National Space Centre through the MOSAIC Small Satellite Initiative supported the development of GMP. The main design goals for GMP are low-cost for the complete mission including launch and operations and a platform allowing flexible payload accommodation. GMP is specifically designed to allow rapid development and deployment with schedules typically between 1 and 2 years from contract signature to flight readiness. GMP achieves these aims by a modular design where the level of integration between the platform and payload is low. The modular design decomposes the satellite into three major components - the propulsion bay, the avionics bay and the payload module. Both the propulsion and avionics bays are reusable, largely unchanged, and independent of the payload configuration. Such a design means that SSTL or a 3rd party manufacturer can manufacture the payload in parallel to the platform with integration taking place quite late in the schedule. In July 2003 SSTL signed a contract for ESA's first Galileo navigation satellite known as GSTBV2/A. The satellite is based on GMP and ESA plan to launch it into a MEO orbit late in 2005. The second flight of GMP is likely to be in 2006 carrying a geostationary payload

  16. SHEFEX II Flight Instrumentation And Preparation Of Post Flight Analysis

    Science.gov (United States)

    Thiele, Thomas; Siebe, Frank; Gulhan, Ali

    2011-05-01

    A main disadvantage of modern TPS systems for re- entry vehicles is the expensive manufacturing and maintenance process due to the complex geometry of these blunt nose configurations. To reduce the costs and to improve the aerodynamic performance the German Aerospace Center (DLR) is following a different approach using TPS structures consisting of flat ceramic tiles. To test these new sharp edged TPS structures the SHEFEX I flight experiment was designed and successfully performed by DLR in 2005. To further improve the reliability of the sharp edged TPS design at even higher Mach numbers, a second flight experiment SHEFEX II will be performed in September 2011. In comparison to SHEFEX I the second flight experiment has a fully symmetrical shape and will reach a maximum Mach number of about 11. Furthermore the vehicle has an active steering system using four canards to control the flight attitude during re-entry, e.g. roll angle, angle of attack and sideslip. After a successful flight the evaluation of the flight data will be performed using a combination of numerical and experimental tools. The data will be used for the improvement of the present numerical analysis tools and to get a better understanding of the aerothermal behaviour of sharp TPS structures. This paper presents the flight instrumentation of the SHEFEX II TPS. In addition the concept of the post flight analysis is presented.

  17. Microgravity Flight: Accommodating Non-Human Primates

    Science.gov (United States)

    Dalton, Bonnie P.; Searby, Nancy; Ostrach, Louis

    1995-01-01

    Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases. Hardware developed for the SLS-3/Rhesus Project was the result of a joint effort with the French Centre National d'Etudes Spatiales (CNES) and the United States National Aeronautics and Space Administration (NASA) extending over the last decade. The flight hardware design and development required implementation of sufficient automation to insure flight crew and animal bio-isolation and maintenance with minimal impact to crew activities. A variety of hardware of varying functional capabilities was developed to support the scientific objectives of the original 22 combined French and American experiments, along with 5 Russian co-investigations, including musculoskeletal, metabolic, and behavioral studies. Unique elements of the Rhesus Research Facility (RRF) included separation of waste for daily delivery of urine and fecal samples for metabolic studies and a psychomotor test system for behavioral studies along with monitored food measurement. As in untended flights, telemetry measurements would allow monitoring of

  18. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    Science.gov (United States)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  19. The Cibola flight experiment

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Michael Paul [Los Alamos National Laboratory; Nelson, Anthony [Los Alamos National Laboratory; Salazar, Anthony [Los Alamos National Laboratory; Roussel - Dupre, Diane [Los Alamos National Laboratory; Katko, Kim [Los Alamos National Laboratory; Palmer, Joseph [ISE-3; Robinson, Scott [Los Alamos National Laboratory; Wirthlin, Michael [BRIGHAM YOUNG UNIV; Howes, William [BRIGHAM YOUNG UNIV; Richins, Daniel [BRIGHAM YOUNG UNIV

    2009-01-01

    The Cibola Flight Experiment (CFE) is an experimental small satellite carrying a reconfigurable processing instrument developed at the Los Alamos National Laboratory that demonstrates the feasibility of using FPGA-based high-performance computing for sensor processing in the space environment. The CFE satellite was launched on March 8, 2007 in low-earth orbit and has operated extremely well since its deployment. The nine Xilinx Virtex FPGAs used in the payload have been used for several high-throughput sensor processing applications and for single-event upset (SEU) monitoring and mitigation. This paper will describe the CFE system and summarize its operational results. In addition, this paper will describe the results from several SEU detection circuits that were performed on the spacecraft.

  20. Digital flight control systems

    Science.gov (United States)

    Caglayan, A. K.; Vanlandingham, H. F.

    1977-01-01

    The design of stable feedback control laws for sampled-data systems with variable rate sampling was investigated. These types of sampled-data systems arise naturally in digital flight control systems which use digital actuators where it is desirable to decrease the number of control computer output commands in order to save wear and tear of the associated equipment. The design of aircraft control systems which are optimally tolerant of sensor and actuator failures was also studied. Detection of the failed sensor or actuator must be resolved and if the estimate of the state is used in the control law, then it is also desirable to have an estimator which will give the optimal state estimate even under the failed conditions.

  1. Research

    African Journals Online (AJOL)

    A possible strategy to influence students' understanding and perception ... researcher in higher education teaching and learning facilitated the data- ..... B. Qualitative content analysis in nursing research: Concepts, procedures and measures.

  2. 加权 SERVQUAL 模型的航班延误服务补救质量评价研究%A Research on Service Recovery Quality Evaluation in Flight Delay Based on Weighted SERVQUAL Model

    Institute of Scientific and Technical Information of China (English)

    孔祥芬; 王晓贝

    2014-01-01

    In flight delay and service recovery , travelers′main concern is how to get the best compensa-tion.Constructive advice is offered for airlines to improve service quality .A questionnaire survey is con-ducted among passengers using the SERVQUAL evaluation model for flight delays ′service recovery issues and a remedial service quality evaluation of flight delays is done .The results show that the tangibles are the most important part of the five attributes .And the overall results indicate that travelers are not satisfied with their services.Finally, according to these results, conclusions are reached with recommendations for airlines to improve service quality after flight delays .%介绍航班延误和服务质量评价,体现航班延误服务补救质量评价的重要性。通过对旅客的问卷调查,将加权SERVQUAL评价模型应用于航班延误服务补救问题,对航班延误进行服务补救质量评价,最后为航空公司更好地提高航班延误后的服务质量提出了较详细的建议。

  3. 某型尾吊高平尾飞机失速特性试飞方法研究%Research on Flight Test Methods of Stall Characteristics of a Rear-Mount Engine and High Horizontal Tail Civil Airplane

    Institute of Scientific and Technical Information of China (English)

    邹灿东; 王育平; 徐南波; 付琳

    2012-01-01

    某型尾吊高平尾飞机通过安装失速保护系统改善失速特性,满足了适航条例的要求。介绍了失速保护系统的设计,从保障试飞安全的失速试飞准备工作、失速保护系统研制试飞与失速特性验证试飞三个方面研究了安装失速保护系统飞机的失速试飞方法。%Stall characteristics ot a rear-mourn engine airworthiness requirements are met by implementing stall protection system. The design of stall protection system is presented. Stall characteristics flight test methods of airplane with stall protection system are studied, including preparations for the flight test safety before stall flight test, stall protection system development flight test and airworthiness certification test.

  4. Transatlantic flight times and climate change

    Science.gov (United States)

    Williams, Paul

    2016-04-01

    Aircraft do not fly through a vacuum, but through an atmosphere whose meteorological characteristics are changing because of global warming. The impacts of aviation on climate change have long been recognised, but the impacts of climate change on aviation have only recently begun to emerge. These impacts include intensified turbulence (Williams and Joshi 2013) and increased take-off weight restrictions. A forthcoming study (Williams 2016) investigates the influence of climate change on flight routes and journey times. This is achieved by feeding synthetic atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. The focus is on transatlantic flights between London and New York, and how they change when the atmospheric concentration of carbon dioxide is doubled. It is found that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons, causing round-trip journey times to increase. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5h 20m and over 7h 00m, respectively. The early stages of this effect perhaps contributed to a well-publicised British Airways flight from New York to London on 8 January 2015, which took a record time of only 5h 16m because of a strong tailwind from an unusually fast jet stream. Even assuming no future growth in aviation, extrapolation of our results to all transatlantic traffic suggests that aircraft may collectively be airborne for an extra 2,000 hours each year, burning an extra 7.2 million gallons of jet fuel at a cost of US 22 million, and emitting an extra 70 million kg of carbon dioxide. These findings provide further evidence of the two-way interaction between aviation and climate change. References Williams PD (2016) Transatlantic flight times and climate change. Environmental Research Letters, in

  5. Capital flight and political risk

    NARCIS (Netherlands)

    Lensink, R; Hermes, N; Murinde, [No Value

    This paper provides the first serious attempt to examine the relationship between political risk and capital flight for a large set of developing countries. The outcomes of the analysis show that in most cases political risk variables do have a statistically robust relationship to capital flight

  6. Capital flight and political risk

    NARCIS (Netherlands)

    Lensink, R; Hermes, N; Murinde, [No Value

    2000-01-01

    This paper provides the first serious attempt to examine the relationship between political risk and capital flight for a large set of developing countries. The outcomes of the analysis show that in most cases political risk variables do have a statistically robust relationship to capital flight onc

  7. 49 CFR 1552.3 - Flight training.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Flight training. 1552.3 Section 1552.3..., DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY FLIGHT SCHOOLS Flight Training for Aliens and Other Designated Individuals § 1552.3 Flight training. This section describes the procedures a flight school...

  8. Investigation of periodontal tissue during a long space flights

    Science.gov (United States)

    Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina

    Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.

  9. STS-107 Flight Day 8 Highlights

    Science.gov (United States)

    2003-01-01

    This video shows the activities of the STS-107 crew (Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists, Ilan Ramon, Payload Specialist) during flight day 8 of the Columbia orbiter's final flight. The primary activities of flight day 8 are spaceborne experiments. Some background information is given on the SOFBALL (Structure of Flame Balls at Low Lewis-Number) microgravity experiment as footage of the flame balls is shown. The video also shows the MEIDEX (Mediterranean Israeli Dust Experiment) calibrating on the Moon. The six STARS (Space Technology and Research Students) international student experiments are profiled, including experiments on carpenter bees (Liechtenstein), spiders (Australia), silkworms (China), ants (United States), crystal growth (Israel), and fish embryos (Japan). A commercial experiment on roses is also profiled. Astronaut Clark gives a tour of the SpaceHab RDM (Research Double Module), in the space shuttle's payload bay. Astronauts McCool and Ramon take turns on an exercise machine. The video includes a partly cloudy view of the Pacific Ocean.

  10. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    Science.gov (United States)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The multipurpose crew vehicle, Orion, is being designed and built for NASA to handle the rigors of crew launch, sustainment and return from scientific missions beyond Earth orbit. In this role, the Orion vehicle is meant to operate in the space environments like the naturally occurring meteoroid and the artificial orbital debris environments (MMOD) with successful atmospheric reentry at the conclusion of the flight. As a result, Orion's reentry module uses durable porous, ceramic tiles on almost thirty square meters of exposed surfaces to accomplish both of these functions. These durable, non-ablative surfaces maintain their surface profile through atmospheric reentry; thus, they preserve any surface imperfections that occur prior to atmospheric reentry. Furthermore, Orion's launch abort system includes a shroud that protects the thermal protection system while awaiting launch and during ascent. The combination of these design features and a careful pre-flight inspection to identify any manufacturing imperfections results in a high confidence that damage to the thermal protection system identified post-flight is due to the in-flight solid particle environments. These favorable design features of Orion along with the unique flight profile of the first exploration flight test of Orion (EFT-1) have yielded solid particle environment measurements that have never been obtained before this flight.

  11. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    Science.gov (United States)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  12. Application of a sensitivity analysis technique to high-order digital flight control systems

    Science.gov (United States)

    Paduano, James D.; Downing, David R.

    1987-01-01

    A sensitivity analysis technique for multiloop flight control systems is studied. This technique uses the scaled singular values of the return difference matrix as a measure of the relative stability of a control system. It then uses the gradients of these singular values with respect to system and controller parameters to judge sensitivity. The sensitivity analysis technique is first reviewed; then it is extended to include digital systems, through the derivation of singular-value gradient equations. Gradients with respect to parameters which do not appear explicitly as control-system matrix elements are also derived, so that high-order systems can be studied. A complete review of the integrated technique is given by way of a simple example: the inverted pendulum problem. The technique is then demonstrated on the X-29 control laws. Results show linear models of real systems can be analyzed by this sensitivity technique, if it is applied with care. A computer program called SVA was written to accomplish the singular-value sensitivity analysis techniques. Thus computational methods and considerations form an integral part of many of the discussions. A user's guide to the program is included. The SVA is a fully public domain program, running on the NASA/Dryden Elxsi computer.

  13. Perception of stress among aviation flight students

    Science.gov (United States)

    Bhattacharya, Amrita

    There have been many studies related to stress among college students and the purpose of this research was to determine what causes stress among the student pilots enrolled in the Middle Tennessee State University (MTSU) flight program, also to find out what students think could be some possible ways to reduce their stress, and to compare the results with a previous study conducted by South Illinois University. The survey designed by Robertson and Ruiz (2010) was administered to MTSU students so that a comparison could be done between MTSU and SIU, as SIU used the same survey form. Results of the study showed that flight students are exposed to similar stress at both universities, but some of the factors that cause stress are different between MTSU and SIU students.

  14. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  15. Variable acuity remote viewing system flight demonstration

    Science.gov (United States)

    Fisher, R. W.

    1983-01-01

    The Variable Acuity Remote Viewing System (VARVS), originally developed under contract to the Navy (ONR) as a laboratory brassboard, was modified for flight demonstration. The VARVS system was originally conceived as a technique which could circumvent the acuity/field of view/bandwidth tradeoffs that exists in remote viewing to provide a nearly eye limited display in both field of view (160 deg) and resolution (2 min arc) while utilizing conventional TV sensing, transmission, and display equipment. The modifications for flight demonstration consisted of modifying the sensor so it could be installed and flow in a Piper PA20 aircraft, equipped for remote control and modifying the display equipment so it could be integrated with the NASA Research RPB (RPRV) remote control cockpit.

  16. The flight data monitoring method for the flight simulator

    Directory of Open Access Journals (Sweden)

    I.П. Сердюк

    2005-03-01

    Full Text Available  Submitted the monitoring of the flight data method  for a flight simulator, which is based on the analysis of probability density of distribution characteristics of the transport plane crew activity in tasks of the Capitan minimum  confirming at meteominimum that corresponding to 1-st and to 2-nd  ICAO  categories on a flight simulator in conditions of small volume of the experimental data. Complexitie degree of an density function estimation, i.e. number of the decompose members, depending on volume of sample and select with the help of a risk structural minimization method. 

  17. NASA test flights with increased flight stress indices

    Science.gov (United States)

    Smith, I. S., Jr.

    1991-01-01

    This paper presents the objectives, results, and conclusions stemming from a series of six test flights conducted for the National Aeronautics and Space Administration (NASA) by the National Scientific Balloon Facility (NSBF). Results from the test flights indicate that: (1) the current two U.S. balloon films are capable of being flown at significantly increased flight stress index values; (2) payload weights less than the design minimum payload can be reliably flown without fear of structural failure due to increased circumferential stress; and (3) large and rapid decreases in payload weight can be tolerated by current balloons without structural failure.

  18. Piloted Flight Simulator Developed for Icing Effects Training

    Science.gov (United States)

    Ratvasky, Thomas P.

    2005-01-01

    In an effort to expand pilot training methods to avoid icing-related accidents, the NASA Glenn Research Center and Bihrle Applied Research Inc. have developed the Ice Contamination Effects Flight Training Device (ICEFTD). ICEFTD simulates the flight characteristics of the NASA Twin Otter Icing Research Aircraft in a no-ice baseline and in two ice configurations simulating ice-protection-system failures. Key features of the training device are the force feedback in the yoke, the instrument panel and out-the-window graphics, the instructor s workstation, and the portability of the unit.

  19. Rotorcraft flight-propulsion control integration: An eclectic design concept

    Science.gov (United States)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. C. G.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  20. 14 CFR 61.64 - Use of a flight simulator and flight training device.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Use of a flight simulator and flight... Ratings and Pilot Authorizations § 61.64 Use of a flight simulator and flight training device. (a) Use of a flight simulator for the airplane rating. If an applicant uses a flight simulator for training or...

  1. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators, flight training devices..., Aircraft, and Facilities Requirements § 141.41 Flight simulators, flight training devices, and training... that its flight simulators, flight training devices, training aids, and equipment meet the following...

  2. 14 CFR 142.59 - Flight simulators and flight training devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight simulators and flight training... Equipment Requirements § 142.59 Flight simulators and flight training devices. (a) An applicant for, or holder of, a training center certificate must show that each flight simulator and flight training device...

  3. Fiber Optics Deliver Real-Time Structural Monitoring

    Science.gov (United States)

    2013-01-01

    To alter the shape of aircraft wings during flight, researchers at Dryden Flight Research Center worked on a fiber optic sensor system with Austin-based 4DSP LLC. The company has since commercialized a new fiber optic system for monitoring applications in health and medicine, oil and gas, and transportation, increasing company revenues by 60 percent.

  4. Flight control design using a blend of modern nonlinear adaptive and robust techniques

    Science.gov (United States)

    Yang, Xiaolong

    In this dissertation, the modern control techniques of feedback linearization, mu synthesis, and neural network based adaptation are used to design novel control laws for two specific applications: F/A-18 flight control and reusable launch vehicle (an X-33 derivative) entry guidance. For both applications, the performance of the controllers is assessed. As a part of a NASA Dryden program to develop and flight test experimental controllers for an F/A-18 aircraft, a novel method of combining mu synthesis and feedback linearization is developed to design longitudinal and lateral-directional controllers. First of all, the open-loop and closed-loop dynamics of F/A-18 are investigated. The production F/A-18 controller as well as the control distribution mechanism are studied. The open-loop and closed-loop handling qualities of the F/A-18 are evaluated using low order transfer functions. Based on this information, a blend of robust mu synthesis and feedback linearization is used to design controllers for a low dynamic pressure envelope of flight conditions. For both the longitudinal and the lateral-directional axes, a robust linear controller is designed for a trim point in the center of the envelope. Then by including terms to cancel kinematic nonlinearities and variations in the aerodynamic forces and moments over the flight envelope, a complete nonlinear controller is developed. In addition, to compensate for the model uncertainty, linearization error and variations between operating points, neural network based adaptation is added to the designed longitudinal controller. The nonlinear simulations, robustness and handling qualities analysis indicate that the performance is similar to or better than that for the production F/A-18 controllers. When the dynamic pressure is very low, the performance of both the experimental and the production flight controllers is degraded, but Level I handling qualities are still achieved. A new generation of Reusable Launch Vehicles

  5. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  6. Electrical Stimulation of Coleopteran Muscle for Initiating Flight

    Science.gov (United States)

    Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka

    2016-01-01

    Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093

  7. Electrical Stimulation of Coleopteran Muscle for Initiating Flight.

    Directory of Open Access Journals (Sweden)

    Hao Yu Choo

    Full Text Available Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera. A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs, flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%, rapid response time (< 1.0 s, and small variation (< 0.33 s; indicating little habituation. Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.

  8. Biomechanics and biomimetics in insect-inspired flight systems.

    Science.gov (United States)

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  9. On the typography of flight-deck documentation

    Science.gov (United States)

    Degani, Asaf

    1992-01-01

    Many types of paper documentation are employed on the flight-deck. They range from a simple checklist card to a bulky Aircraft Flight Manual (AFM). Some of these documentations have typographical and graphical deficiencies; yet, many cockpit tasks such as conducting checklists, way-point entry, limitations and performance calculations, and many more, require the use of these documents. Moreover, during emergency and abnormal situations, the flight crews' effectiveness in combating the situation is highly dependent on such documentation; accessing and reading procedures has a significant impact on flight safety. Although flight-deck documentation are an important (and sometimes critical) form of display in the modern cockpit, there is a dearth of information on how to effectively design these displays. The object of this report is to provide a summary of the available literature regarding the design and typographical aspects of printed matter. The report attempts 'to bridge' the gap between basic research about typography, and the kind of information needed by designers of flight-deck documentation. The report focuses on typographical factors such as type-faces, character height, use of lower- and upper-case characters, line length, and spacing. Some graphical aspects such as layout, color coding, fonts, and character contrast are also discussed. In addition, several aspects of cockpit reading conditions such as glare, angular alignment, and paper quality are addressed. Finally, a list of recommendations for the graphical design of flight-deck documentation is provided.

  10. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  11. Research

    African Journals Online (AJOL)

    A sequential mixed-methods research design was chosen. This research ... development of the questionnaire used in the second phase of the survey. Quantitative data ... Microsoft Office Excel 2010 spreadsheet, descriptive data analysis was applied .... undergraduate curriculum, and implementation and evaluation thereof,.

  12. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-03-02

    Mar 2, 2015 ... Shared and mutually beneficial resources within international research ... organizations[1-9]. ... facilitate research career paths, but few career models exist in Africa ..... international and local resources to clinical studies locally. The ability of ... investigators were seen as an important asset for the transfer of.

  13. What to Expect During In-Flight Operations

    Science.gov (United States)

    Kosobud, Beth; Perry, Marc; Schwanbeck, Nichole

    2017-01-01

    Executing human research on ISS has to navigate a unique risk environment. NASA planning efforts focus on an investigation's in-flight success but much of the threats to research objectives are not mitigated. A balanced requirement set affords the ability to remain flexible for each subject's data set while protecting the study's integrity across all subjects.

  14. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    Science.gov (United States)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  15. Enclosure enhancement of flight performance

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  16. Bumblebee flight in heavy turbulence

    CERN Document Server

    Engels, T; Schneider, K; Lehmann, F -O; Sesterhenn, J

    2016-01-01

    High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.

  17. Enclosure enhancement of flight performance

    KAUST Repository

    Ghommem, Mehdi

    2014-08-19

    We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  18. Korean Air Excellence in Flight

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Korean Air with a fleet of 119 aircraft, is one of the world's top 20 airlines, and oper-ates almost 400 flights everyday to 90 cities in 33 countries. The airline has about 50 flights per week between the US and Asia from nine US gateways: New York, Los Angeles, Washington,Chicago, Dallas, San Francisco, Atlanta, Anchorage and Honolulu.The carrier is a founding member of SkyTeam, the global airline alliance partnering AeroMexico, Air France, Alitalia, CSA Czech Airlines, Continental Airlines, Delta Air Lines, KLM and Northwest Airlines to provide customers with extensive worldwide destina-tions, flights and services.

  19. Research on Transport Category Airplane Flight Manual and Effectivity Management%运输类飞机飞行手册及其有效性管理研究

    Institute of Scientific and Technical Information of China (English)

    王媛媛

    2015-01-01

    Airplane Flight Manual contains information considered necessary for safely operating the airplane, and is the document essential for the type certificate application.Firstly,This paper introduces the contents and history of airplane flight manual(AFM), and airworthiness regulations which is the development of AFM based on;Secondly,This paper provides definition and presentation about airplane flight manual effectivity according to related specification;Then, analyzing the method for mature type AFM effectivity management. Finally,this paper give three advice about airplane flight manual effectivity management, which is the minimum data unit of effectivity statement,the form of performance data and effectivity management method of appendix and supplement.%飞机飞行手册包含飞机安全运行所必需的资料,是申请型号合格证必须的资料。该文首先介绍了飞机飞行手册内容以及变化历程,并对飞机飞行手册编制依据的适航规章进行概述;其次,依据相关标准给出飞机飞行手册有效性概念和表达方式;然后,分析成熟机型飞机飞行手册有效性管理的方法;最后,在综合上述分析的基础上,从有效性声明的最小数据单元、性能数据的编写形式以及附录与补充有效性管理方式三个方面,对飞机飞行手册有效性管理提出建议。

  20. Research on Human Errors Evaluation Method of Flight Accidents Based on HFACS%基于HFACS的飞行事故人为差错分析方法研究

    Institute of Scientific and Technical Information of China (English)

    魏水先; 孙有朝; 陈迎春

    2014-01-01

    人为差错是飞行事故最主要的致因因素,分析飞行事故中人为差错特点,进一步采取预防措施,对于飞行安全至关重要。分析 HFACS 模型,把 HFACS 模型分解为两部分,包括飞行事故差错模式和差错成因。基于HFACS模型,结合专家主观评分法和灰色系统理论构建了适用于航空飞行事故的人为差错致因分析的综合分析模型。利用专家主观评分法对飞行操纵中的人为差错致因进行分析,利用灰色理论对飞行操纵人为差错的影响要素进行量化排序,并通过实例验证了所提出的方法的有效性。%Human error is the primary cause of the flight accident ,analyzing the characteristics of the hu-man errors in flight accident and take preventive measures is vital for flight safety .Analysis HFACS ,and the HFACS model is decomposed into two parts ,including flight error model and the causes of the error . This article is based on HFACS ,combined with the expert subjective evaluation method and gray system theory to develop a comprehensive analysis model ,which is applicable to analyze the human error in the aviation accident .The effectiveness of the proposed method has been verified by examples .

  1. Flight Training Support Cost Model Research on the Principles of Activity-based Costing%基于作业成本原理的飞行训练保障费用模型

    Institute of Scientific and Technical Information of China (English)

    徐振刚; 陈云翔; 廖东民

    2012-01-01

    Flight training and support cost is an important part of aircraft operation and support cost and is also the emphasis and difficulty of operation and support cost estimation. Combined with the actual working condition of the aviation troops, firstly, this paper uses the basic principle of activity-based costing to divide the operation of the aviation troops flight support phase,and the cost base and cost drivers are obtained. Secondly, in the light of the multiple operations of flight support phase of military aircraft, establishes flight training support costs model on the principle of activity-based costing is established. Lastly, uses examples to illustrate its advantage than other estimation methods.%飞行训练保障费用是飞机使用保障费用中的重要组成部分,也是使用保障费用估算的重点和难点.结合目前航空兵部队实际工作情况,首先利用作业成本法的基本原理,对航空兵部队飞行保障阶段的作业进行划分,得出成本库及成本动因.其次针对军机飞行保障阶段的多种作业,建立基于作业成本法的飞行训练保障费用模型.最后通过算例说明其比其他估算方法所具备的优势.

  2. Do the albatross Lévy flights below the spandrels of St Mark?. Comment on "Liberating Lévy walk research from the shackles of optimal foraging" by A.M. Reynolds

    Science.gov (United States)

    Focardi, Stefano

    2015-09-01

    Because of the strong technological developments and device miniaturization, (the so-called biologging revolution [1]) ecology is currently witnessing important conceptual transformations and a new scientific branch "the movement ecology" is quickly developing [2]. In this context the proposals by Reynolds [3] of a new theoretical approach for the explanation of animal movement, which overrides at once the established paradigms of correlated random walk [4] and the new Lévy flight foraging hypothesis [5] is really welcome.

  3. Developing a Model for Solving the Flight Perturbation Problem

    Directory of Open Access Journals (Sweden)

    Amirreza Nickkar

    2015-02-01

    Full Text Available Purpose: In the aviation and airline industry, crew costs are the second largest direct operating cost next to the fuel costs. But unlike the fuel costs, a considerable portion of the crew costs can be saved through optimized utilization of the internal resources of an airline company. Therefore, solving the flight perturbation scheduling problem, in order to provide an optimized schedule in a comprehensive manner that covered all problem dimensions simultaneously, is very important. In this paper, we defined an integrated recovery model as that which is able to recover aircraft and crew dimensions simultaneously in order to produce more economical solutions and create fewer incompatibilities between the decisions. Design/methodology/approach: Current research is performed based on the development of one of the flight rescheduling models with disruption management approach wherein two solution strategies for flight perturbation problem are presented: Dantzig-Wolfe decomposition and Lagrangian heuristic. Findings: According to the results of this research, Lagrangian heuristic approach for the DW-MP solved the problem optimally in all known cases. Also, this strategy based on the Dantig-Wolfe decomposition manage to produce a solution within an acceptable time (Under 1 Sec. Originality/value: This model will support the decisions of the flight controllers in the operation centers for the airlines. When the flight network faces a problem the flight controllers achieve a set of ranked answers using this model thus, applying crew’s conditions in the proposed model caused this model to be closer to actual conditions.

  4. Into rude air: hummingbird flight performance in variable aerial environments.

    Science.gov (United States)

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  5. The Design Methods Research of Helicopter Flight Quality Based on Dynamic Inversion%基于动态逆的直升机飞行品质设计研究

    Institute of Scientific and Technical Information of China (English)

    曹嘉旻; 高华

    2011-01-01

    Helicopter inherent characteristics make its flight poorer quality, and helicopters use task is asking that it has good flying qualities. This paper adopts dynamic inversion and poles configuration design method of combining the helicopter flying control law, and through the simulation method for inspection, confirmed the sample helicopter flight quality improvement and used the robustness of flight control, which shows that the control law is effective.%直升机的固有特点使其飞行品质较差,而直升机的使用任务却要求它具有良好的飞行品质.本文采用动态逆和极点配置相结合的方法设计直升机飞行控制律,并通过仿真手段进行检验,证实了样例直升机飞行品质提高以及所用飞行控制率的鲁棒性,从而表明本文控制律的有效性.

  6. Technology Research of Real Flight Test on Hinge Moment of Aircraft's Control Surface%飞机舵面铰链力矩飞行实测技术研究

    Institute of Scientific and Technical Information of China (English)

    何发东

    2011-01-01

    测量飞机舵面铰链力矩是飞行试验的一项重要任务.提出了通过测量传力关键件的载荷和利用传力关键件安装的空间位置来测量飞行中舵面铰链力矩的方法.以某型飞机为例,详细描述了如何利用该方法测量舵面铰链力矩的过程.这种方法对飞机舵面铰链力矩的飞行实测有重要的参考价值.%Measuring the hinge moment of aircraft's control surface is a important task for the flight test. Through the measurement of the force transmission key component'load and use of power transmission key-module installation space to measure the hinge moment of control surface in flighting method. To a certain type of aircraft, for example, the process in detail how to use the methods to measure hinge moment of control surface is described. This method of real flight test on hinge moment of aircraft's control surface has important reference value.

  7. Time series analysis methods and applications for flight data

    CERN Document Server

    Zhang, Jianye

    2017-01-01

    This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.

  8. The integrated manual and automatic control of complex flight systems

    Science.gov (United States)

    Schmidt, David K.

    1991-01-01

    Research dealt with the general area of optimal flight control synthesis for manned flight vehicles. The work was generic; no specific vehicle was the focus of study. However, the class of vehicles generally considered were those for which high authority, multivariable control systems might be considered, for the purpose of stabilization and the achievement of optimal handling characteristics. Within this scope, the topics of study included several optimal control synthesis techniques, control-theoretic modeling of the human operator in flight control tasks, and the development of possible handling qualities metrics and/or measures of merit. Basic contributions were made in all these topics, including human operator (pilot) models for multi-loop tasks, optimal output feedback flight control synthesis techniques; experimental validations of the methods developed, and fundamental modeling studies of the air-to-air tracking and flared landing tasks.

  9. Research

    African Journals Online (AJOL)

    raoul

    2012-02-17

    Feb 17, 2012 ... This is an Open Access article distributed under the terms of the Creative ..... However, this system has great potential to negatively affect access to ... Dr. Samuel Yaw Opoku: Defining the Concept and Research Design; ...

  10. Research

    African Journals Online (AJOL)

    abp

    2016-04-26

    Apr 26, 2016 ... Management of biomedical waste in two medical laboratories in Bangui, Central ... Research .... Central African Republic Ministry of Health and corresponding ethics ..... In CAR, the management of BW remains embryonic. It is.

  11. Research

    African Journals Online (AJOL)

    ebutamanya

    2015-08-28

    Aug 28, 2015 ... Ethiopia, 2Bahir Dar Regional Health Research Laboratory Center, Department ... of Public Health, 4Institute of Medical Microbiology and Epidemiology of Infectious .... active ingredient x 10,000 dilution rate of product): 0.1%.

  12. Research

    African Journals Online (AJOL)

    raoul

    2011-03-11

    Mar 11, 2011 ... ... to General Organization of Teaching Hospitals and Institutes, Egypt, 2Department of .... Ethiopia at Max-Burger Research Institute, Leipzig, Germany ... [22] than Croatia (50%), Australia (53%), Thailand (41%), Italy (32.6%), ...

  13. Research

    African Journals Online (AJOL)

    7, No. 1 AJHPE. Research. A comprehensive approach to curriculum evaluation is deemed ... While evaluators are guided by the experiences of using different methods, ..... provided a follow-up in-depth exploration of the quantitative results.

  14. Research

    African Journals Online (AJOL)

    ... community in the design, conduct and/or evaluation of these activities. ... During Phase I of the mixed-methods research design, data were collected by ... A questionnaire survey was administered to all students registered for ... Data analysis.

  15. Research

    African Journals Online (AJOL)

    ebutamanya

    2016-02-03

    Feb 3, 2016 ... Published in partnership with the African Field Epidemiology Network (AFENET). (www.afenet.net) .... What is known about this topic ... India Co-ordinated Research Project. Ministry .... African Journal of Biotechnology. 2005 ...

  16. Research

    African Journals Online (AJOL)

    raoul

    2011-12-06

    Dec 6, 2011 ... Asia indicate a high incidence of Kikuchi lymphadenitis [6]. However ... It is believed that information derived from this study will be of immense value to the attending physician and also form a baseline data for future research.

  17. Research

    African Journals Online (AJOL)

    judicious use of current best evidence in making decisions about the care of individual ... [5] This highlights that teaching research methodology is inclined ... to evidence-based practice in final-year undergraduate physiotherapy students.

  18. Research

    African Journals Online (AJOL)

    curricula to address health systems changes and challenges .... Likert scale questions were used, along with open-ended qualitative questions. ... Clear communicator: Able to communicate important aspects of theory, research findings clearly ...

  19. researchers

    African Journals Online (AJOL)

    levels who is fluent in only Afrikaans and English. Differences in race .... The lack of knowledge of a particular vernacular often places a researcher firmly as an ..... discourse of African American women', Black women in the academy. Promises.

  20. Research

    African Journals Online (AJOL)

    2014-05-06

    May 6, 2014 ... Methods. The researchers used an exploratory, sequential mixed-method design, ... This design is useful to explore a topic, using qualitative ... interview a Delphi questionnaire was used to gather additional quantitative.