WorldWideScience

Sample records for dry tropical forest

  1. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  2. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  3. Tropical dry forest recovery : processes and causes of change

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.

    2009-01-01

    Seasonally dry areas are one of the preferred zones for human inhabitance in the tropics. Large forest areas are converted to other land uses and many are covered by secondary forests that grow naturally after cessation of disturbance. Surprisingly, secondary succession in these strongly seasonal an

  4. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  5. Low Carbon Costs of Nitrogen Fixation in Tropical Dry Forests

    Science.gov (United States)

    Gei, M. G.; Powers, J. S.

    2015-12-01

    Legume tree species with the ability to fix nitrogen (N) are highly diverse and widespread across tropical forests but in particular in the dry tropics. Their ecological success in lower latitudes has been called a "paradox": soil N in the tropics is thought to be high, while acquiring N through fixation incurs high energetic costs. However, the long held assumptions that N fixation is limited by photosynthate and that N fixation penalizes plant productivity have rarely been tested, particularly in legume tree species. We show results from three different experiments where we grew eleven species of tropical dry forest legumes. We quantified plant biomass and N fixation using nodulation and the 15N natural isotope abundance (Ndfa or nitrogen derived from fixation). These data show little evidence for costs of N fixation in seedlings grown under different soil fertility, light regimes, and with different microbial communities. Seedling productivity did not incur major costs because of N fixation: indeed, the average slope between Ndfa and biomass was positive (range in slopes: -0.03 to 0.3). Moreover, foliar N, which varied among species, was tightly constrained and not correlated with Ndfa. This finding implies that legume species have a target N that does not change depending on N acquisition strategies. The process of N fixation in tropical legumes may be more carbon efficient than previously thought. This view is more consistent with the hyperabundance of members of this family in tropical ecosystems.

  6. Deforestation trends of tropical dry forests in central Brazil

    Science.gov (United States)

    Bianchi, Carlos A.; Haig, Susan M.

    2013-01-01

    Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.

  7. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil co

  8. Biological Nitrogen Fixation In Tropical Dry Forests Of Costa Rica

    Science.gov (United States)

    Gei, M. G.; Powers, J. S.

    2012-12-01

    Evidence suggests that tropical dry forests (TDF) are not nitrogen (N) deficient. This evidence includes: high losses of gaseous nitrogen during the rainy season, high ecosystem soil N stocks and high N concentrations in leaves and litterfall. Its been commonly hypothesized that biological nitrogen fixation is responsible for the high availability of N in tropical soils. However, the magnitude of this flux has rarely if ever been measured in tropical dry forests. Because of the high cost of fixing N and the ubiquity of N fixing legume trees in the TDF, at the individual tree level symbiotic fixation should be a strategy down-regulated by the plant. Our main goal was to determine the rates of and controls over symbiotic N fixation. We hypothesized that legume tree species employ a facultative strategy of nitrogen fixation and that this process responds to changes in light availability, soil moisture and nutrient supply. We tested this hypothesis both on naturally established trees in a forest and under controlled conditions in a shade house by estimating the quantities of N fixed annually using the 15N natural abundance method, counting nodules, and quantifying (field) or manipulating (shade house) the variation in important environmental variables (soil nutrients, soil moisture, and light). We found that in both in our shade house experiment and in the forest, nodulation varied among different legume species. For both settings, the 15N natural abundance approach successfully detected differences in nitrogen fixation among species. The legume species that we studied were able to regulate fixation depending on the environmental conditions. They showed to have different strategies of nitrogen fixation that follow a gradient of facultative to obligate fixation. Our data suggest that there exists a continuum of nitrogen fixation strategies among species. Any efforts to define tropical legume trees as a functional group need to incorporate this variation.

  9. Satellite observations of the role and impacts of dry season climate limitations on tropical forest fates

    Science.gov (United States)

    Huete, A. R.; Restrepo-Coupe, N.; Wu, J.; Devadas, R.; Guan, K.; Liu, Y.; Ratana, P.; Sun, Q.; Schaaf, C.; Saleska, S. R.

    2015-12-01

    Climate change scenarios projected for the 21st century predict drying of the Amazon, greening of monsoon tropical Asia and no change in the tropics of Australia. Dry season variability is increasing with complex associated forest responses and feedbacks as they become exposed to longer and/or more intense dry seasons. The functional response of tropical forests to dry seasonal periods is thus crucial to forest resilience, as forests may respond with either enhanced photosynthesis (due to more sunlight) or may dry down with greater susceptibility to fires and release of greenhouse gases and severe public health haze alerts. In this study, we use multiple satellite remote sensing datasets representing forest canopy states, environmental drivers (light and water status), and disturbance (fires), along with in situ flux tower measures of photosynthesis to assess whole ecosystem patterns and test mechanisms of forest- dry season climate interactions. We compare photosynthesis patterns and dry season responses of Asia-Oceania tropical forests with neotropical forests to better understand forest resilience to climate change and human impacts. In contrast to the neotropics, human activities in monsoon tropical Asia have resulted in intensive transformations of tropical forests. We find forest disturbance exerts a strong influence on tropical forest functioning and a partial loss or degradation of tropical forests can reverse dry seasonal responses with substantial impacts on carbon fluxes. Neotropical forests displayed large variations in dry season forest responses due to spatially variable dry season lengths and magnitude, whereas most of monsoon Asia tropical forests lacked well-defined dry seasons, yet were highly sensitive to shorter term, intense drought events that impacted severely upon the disturbed forests. Our results highlight the interactions among rainfall, radiation and forest health with the relative importance of each factor varying with the

  10. Spatial variability of soils in a seasonally dry tropical forest

    Science.gov (United States)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  11. Effect of Extreme Drought on Tropical Dry Forests

    Science.gov (United States)

    Castro, Saulo; Sanchez-Azofeifa, Arturo; Sato, Hiromitsu; Cowling, Sharon; Vega-Araya, Mauricio

    2017-04-01

    Tropical dry forests (TDFs) hold a strong economic and cultural connection to human development in the Neotropics. Historically, TDFs not only represent a source of agricultural and urban land but also an important source of goods and ecosystem services for the communities that live around them. Such is the close connection of TDFs to human activity that they are considered the most heavily utilized and disturbed ecosystem in the world. However, TDF have been largely understudied and represent only a fraction of research devoted to globally tropical ecosystems. Thus we lack the framework to properly project how predicted increases in drought events due to climate change will impact TDFs and human society which depend on its services. Our study aims to show the effect of extreme drought on water, food security, and tropical dry forest productivity in the Guanacaste province of Costa Rica. Two pre-ENSO years (2013-2014) and an ENSO year (2015) were compared. The 2013 and 2014 pre-ENSO years were classified as a normal precipitation (1470 mm) and drought year (1027mm), respectively. The 2015 ENSO year was classified as a severe drought (654mm), with amplified effects resulting by the drought experienced during the previous (2014) growing cycle. Effects of the ENSO drought on agriculture and livestock sectors in the province included losses of US13million and US6.5million, respectively. Crop land losses equaled 2,118 hectares and 11,718 hectares were affected. Hydroelectricity generation decreased by 10% and potable water shortages were observed. The Agriculture and Livestock Ministry (MAG) and the National Emergency Commission (CNE) distributed animal feed and supplies to 4,000 farmers affected by the extreme droughts. Eddy covariance flux measurements were used to identify productivity changes during the extreme drought. Changes in phenologic stages and the transitions between CO2 sink to source during mid-growing cycle were observed. Drought significantly delayed

  12. Modeling multiple resource limitation in tropical dry forests

    Science.gov (United States)

    Medvigy, D.; Xu, X.; Zarakas, C.

    2015-12-01

    Tropical dry forests (TDFs) are characterized by a long dry season when little rain falls. At the same time, many neotropical soils are highly weathered and relatively nutrient poor. Because TDFs are often subject to both water and nutrient constraints, the question of how they will respond to environmental perturbations is both complex and highly interesting. Models, our basic tools for projecting ecosystem responses to global change, can be used to address this question. However, few models have been specifically parameterized for TDFs. Here, we present a new version of the Ecosystem Demography 2 (ED2) model that includes a new parameterization of TDFs. In particular, we focus on the model's framework for representing limitation by multiple resources (carbon, water, nitrogen, and phosphorus). Plant functional types are represented in terms of a dichotomy between "acquisitive" and "conservative" resource acquisition strategies. Depending on their resource acquisition strategy and basic stoichiometry, plants can dynamically adjust their allocation to organs (leaves, stem, roots), symbionts (e.g. N2-fixing bacteria), and mycorrhizal fungi. Several case studies are used to investigate how resource acquisition strategies affect ecosystem responses to environmental perturbations. Results are described in terms of the basic setting (e.g., rich vs. poor soils; longer vs. shorter dry season), and well as the type and magnitude of environmental perturbation (e.g., changes in precipitation or temperature; changes in nitrogen deposition). Implications for ecosystem structure and functioning are discussed.

  13. Quantifying tropical dry forest type and succession: substantial improvement with LiDAR

    Science.gov (United States)

    Sebastian Martinuzzi; William A. Gould; Lee A. Vierling; Andrew T. Hudak; Ross F. Nelson; Jeffrey S. Evans

    2012-01-01

    Improved technologies are needed to advance our knowledge of the biophysical and human factors influencing tropical dry forests, one of the world’s most threatened ecosystems. We evaluated the use of light detection and ranging (LiDAR) data to address two major needs in remote sensing of tropical dry forests, i.e., classification of forest types and delineation of...

  14. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  15. Trait Variation Along a Forest Successional Gradient in Dry Tropical Forest, Florida Keys

    Science.gov (United States)

    Subedi, S.; Ross, M. S.

    2016-12-01

    In most part of South Florida tropical dry forests, the early colonized trees on disturbed uplands are mostly deciduous species cable of surviving for several years after establishment. However, trees in mature forests are generally characterized by a suite of evergreen species, most of which are completely absent in younger stands even in seedling stage. This complete transition from one functional group to another in the course of stand development suggests a distinct change in the underlying environment during the course of succession. Such change in hammock functional groups as a function of the changing environmental drivers during succession in tropical dry forests is unknown and addressing this question may help to understand which drivers of change act as filters that select for and against particular groups of species and traits. In this study, we evaluate number of important functional traits (specific leaf area, wood density, leaf d13C, leaf N:P ratio, and architectural traits such as height, crown dimensions, diameter at breast height) for woody plant species occurring along a successional gradient across three ecological scales, community, species, and individual. A significant change in the overall trait distribution across the successional gradient is found. Intraspecific trait variation within the community is increased with increase in forest age. Most of these traits have shown correlation with stand age and showed preference to a certain environment. Stand age is the most important variable explaining the distribution of community characteristics. It is found that early successional forest are mostly shaped by environmental driven processes, and as forest get older and structurally more complex, they are increasingly shaped by competitively driven processes leading to limiting similarity. This study has shown that the patterns of trait shift can be predictable and can be used to characterize habitats and stage of forest succession in dry tropical

  16. Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales

    Science.gov (United States)

    Powers, Jennifer; Becklund, Kristen; Gei, Maria; Iyengar, Siddarth; Meyer, Rebecca; O'Connell, Christine; Schilling, Erik; Smith, Christina; Waring, Bonnie; Werden, Leland

    2015-06-01

    Humans have more than doubled inputs of reactive nitrogen globally and greatly accelerated the biogeochemical cycles of phosphorus and metals. However, the impacts of increased element mobility on tropical ecosystems remain poorly quantified, particularly for the vast tropical dry forest biome. Tropical dry forests are characterized by marked seasonality, relatively little precipitation, and high heterogeneity in plant functional diversity and soil chemistry. For these reasons, increased nutrient deposition may affect tropical dry forests differently than wet tropical or temperate forests. Here we review studies that investigated how nutrient availability affects ecosystem and community processes from the microsite to ecosystem scales in tropical dry forests. The effects of N and P addition on ecosystem carbon cycling and plant and microbial dynamics depend on forest successional stage, soil parent material and rainfall regime. Responses may depend on whether overall productivity is N- versus P-limited, although data to test this hypothesis are limited. These results highlight the many important gaps in our understanding of tropical dry forest responses to global change. Large-scale experiments are required to resolve these uncertainties.

  17. Nutrient addition effects on tropical dry forests: a mini-review from microbial to ecosystem scales

    Directory of Open Access Journals (Sweden)

    Jennifer S. Powers

    2015-06-01

    Full Text Available Humans have more than doubled inputs of reactive nitrogen globally and greatly accelerated the biogeochemical cycles of phosphorus and metals. However, the impacts of increased element mobility on tropical ecosystems remain poorly quantified, particularly for the vast tropical dry forest biome. Tropical dry forests are characterized by marked seasonality, relatively little precipitation, and high heterogeneity in plant functional diversity and soil chemistry. For these reasons, increased nutrient deposition may affect tropical dry forests differently than wet tropical or temperate forests. Here we review studies that investigated how nutrient availability affects ecosystem and community processes from the microsite to ecosystem scales in tropical dry forests. The effects of N and P addition on ecosystem carbon cycling and plant and microbial dynamics depend on forest successional stage, soil parent material and rainfall regime. Responses may depend on whether overall productivity is N- versus P-limited, although data to test this hypothesis are limited. These results highlight the many important gaps in our understanding of tropical dry forest responses to global change. Large-scale experiments are required to resolve these uncertainties.

  18. Diversity, structure and regeneration of the seasonally dry tropical forest of Yucatán Península, Mexico.

    OpenAIRE

    Hernández-Ramírez, Angélica María; García-Méndez, Socorro

    2015-01-01

    Seasonally dry tropical forests are considered as the most endangered ecosystem in lowland tropics. The aim of this study was to characterize the floristic composition, richness, diversity, structure and regeneration of a seasonally dry tropical forest landscape constituted by mature forest, secondary forest and seasonally inundated forest located in the Northeastern part of the Yucatán Península, Mexico. We used the Gentry’s standard inventory plot methodology (0.1 ha per forest type in 2007...

  19. Ant Foraging As an Indicator of Tropical Dry Forest Restoration.

    Science.gov (United States)

    Hernández-Flores, J; Osorio-Beristain, M; Martínez-Garza, C

    2016-08-01

    Variation in foraging behavior may indicate differences in food availability and allow assessment of restoration actions. Ants are prominent bioindicators used in assessing ecological responses to disturbance. However, behavioral data have been poorly incorporated as an index. The foraging performance of red harvester ants was quantified in order to evaluate the success of a restoration ecology experiment in the tropical dry forest of Sierra de Huautla, Morelos, in central Mexico. Foraging performance by granivorous, Pogonomyrmex barbatus, ants was diminished after 6 and 8 years of cattle grazing and wood harvest were excluded as part of a restoration experiment in a highly degraded biome. Despite investing more time in foraging, ant colonies in exclusion plots showed lower foraging success and acquired less seed biomass than colonies in control plots. In line with the predictions of optimal foraging theory, in restored plots where ant foraging performance was poor, ants harvested a higher diversity of seeds. Reduced foraging success and increased harvest of non-preferred foods in exclusion plots were likely due to the growth of herbaceous vegetation, which impedes travel by foragers. Moreover, by 8 years of exclusion, 37% of nests in exclusion plots had disappeared compared to 0% of nests in control plots. Ants' foraging success and behavior were sensitive to changes in habitat quality due to the plant successional process triggered by a restoration intervention. This study spotlights on the utility of animal foraging behavior in the evaluation of habitat restoration programs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. SRTM-DEM and Landsat ETM+ data for mapping tropical dry forest cover and biodiversity assessment in Nicaragua

    Science.gov (United States)

    S.E. Sesnie; S.E. Hagell; S.M. Otterstrom; C.L. Chambers; B.G. Dickson

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but has received far less attention than forest in wet tropical areas. Land use change threatens to greatly reduce the extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentation may further endanger arboreal mammals that play...

  1. Succesional change and resilience of a very dry tropical deciduous forest following shifting agriculture

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.; Bongers, F.J.J.M.; Pérez-García, E.; Meave, J.

    2008-01-01

    We analyzed successional patterns in a very dry tropical deciduous forest by using 15 plots differing in age after abandonment and contrasted them to secondary successions elsewhere in the tropics. We used multivariate ordination and nonlinear models to examine changes in composition and structure a

  2. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest

    NARCIS (Netherlands)

    Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E.

    2009-01-01

    Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1-5 yr af

  3. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought resp

  4. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  5. Estimating the opportunity costs of activities that cause degradation in tropical dry forest: Implications for REDD +

    NARCIS (Netherlands)

    Borrego, Armonia; Skutsch, Margaret

    2014-01-01

    The viability of national REDD + programs will depend in part on whether funds generated from sales of carbon credits are sufficient to cover the opportunity costs (OC) of forgone uses of the forest. We present the results of a study in which OC were estimated in dry tropical forest, in western Mexi

  6. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  7. Analyzing the edge effects in a Brazilian seasonally dry tropical forest

    Directory of Open Access Journals (Sweden)

    D. M. Arruda

    Full Text Available Abstract Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I Are there differences in canopy cover along the edge-interior gradient during the dry season? (II How does the microclimate (air temperature, soil temperature, and relative humidity vary along that gradient? (III How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  8. Mapping Clearances in Tropical Dry Forests Using Breakpoints, Trend, and Seasonal Components from MODIS Time Series: Does Forest Type Matter?

    Directory of Open Access Journals (Sweden)

    Kenneth Grogan

    2016-08-01

    Full Text Available Tropical environments present a unique challenge for optical time series analysis, primarily owing to fragmented data availability, persistent cloud cover and atmospheric aerosols. Additionally, little is known of whether the performance of time series change detection is affected by diverse forest types found in tropical dry regions. In this paper, we develop a methodology for mapping forest clearing in Southeast Asia using a study region characterised by heterogeneous forest types. Moderate Resolution Imaging Spectroradiometer (MODIS time series are decomposed using Breaks For Additive Season and Trend (BFAST and breakpoints, trend, and seasonal components are combined in a binomial probability model to distinguish between cleared and stable forest. We found that the addition of seasonality and trend information improves the change model performance compared to using breakpoints alone. We also demonstrate the value of considering forest type in disturbance mapping in comparison to the more common approach that combines all forest types into a single generalised forest class. By taking a generalised forest approach, there is less control over the error distribution in each forest type. Dry-deciduous and evergreen forests are especially sensitive to error imbalances using a generalised forest model i.e., clearances were underestimated in evergreen forest, and overestimated in dry-deciduous forest. This suggests that forest type needs to be considered in time series change mapping, especially in heterogeneous forest regions. Our approach builds towards improving large-area monitoring of forest-diverse regions such as Southeast Asia. The findings of this study should also be transferable across optical sensors and are therefore relevant for the future availability of dense time series for the tropics at higher spatial resolutions.

  9. Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest

    OpenAIRE

    Cleandson Ferreira Santos; Magno Borges

    2015-01-01

    AbstractINTRODUCTION: This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil.METHODS: Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models.RESULTS: Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition.CO...

  10. Conservative species drive biomass productivity in tropical dry forests

    NARCIS (Netherlands)

    Prado-Junior, Jamir A.; Schiavini, Ivan; Vale, Vagner S.; Sande, van der Masha T.; Lohbeck, Madelon; Poorter, Lourens

    2016-01-01

    Forests account for a substantial part of the terrestrial biomass storage and productivity. To better understand forest productivity, we need to disentangle the processes underlying net biomass change. We tested how above-ground net biomass change and its underlying biomass dynamics (biomass recr

  11. Catastrophic ecosystem shifts in dry tropical forest: evidence, mechanisms and implications for climate change

    Science.gov (United States)

    Lawrence, D.; D'Odorico, P.; Runyan, C.; Diekmann, L.; DeLonge, M. S.; Das, R.; Eaton, J.; Vandecar, K.; Schmook, B.

    2015-12-01

    Tropical dry forests have long been used by humans. Has it been sustainable? Not in the southern Yucatan. Biomass accumulation declines with each cycle of shifting cultivation with implications for both internal recycling of nutrients and external inputs of nutrients. We detail the evidence for a decline in P inputs from biomass burning (aboveground biomass, litter, and coarse woody debris), an increase in leaching losses from deep soils, and a decline in atmospheric inputs of new P from Saharan dust following the transition from mature to secondary forest. Canopy trapping of dust is critical to maintaining P balance in this system. Effective trapping is diminished by changes in the structure of secondary forest--loss of height, leaf area and basal area. Experimental studies show that it is atmospheric transport of dust, not microbial shedding or leaching from live tissues, that explains the difference between throughfall P and P in bulk deposition. Because of net losses in P, uptake of carbon during regrowth is slower with each cycle of shifting cultivation. As much of the tropics has moved beyond a mature forest frontier, the decline in carbon sequestration is likely widespread over both dry and wet forests. The terrestrial carbon sink in the tropics may be declining. The capacity to sequester carbon through afforestation, reforestation and restoration has certainly diminished over time, limiting the effectiveness of such efforts to help mitigate climate change.

  12. Reconstructing the Mexican Tropical Dry Forests via an Autoecological Niche Approach: Reconsidering the Ecosystem Boundaries

    OpenAIRE

    Prieto-Torres, David A.; Rojas-Soto, Octavio R.

    2016-01-01

    We used Ecological Niche Modeling (ENM) of individual species of two taxonomic groups (plants and birds) in order to reconstruct the climatic distribution of Tropical Dry Forests (TDFs) in Mexico and to analyze their boundaries with other terrestrial ecosystems. The reconstruction for TDFs' distribution was analyzed considering the prediction and omission errors based upon the combination of species, obtained from the overlap of individual models (only plants, only birds, and all species comb...

  13. Tree diversity in the tropical dry forest of Bannerghatta National Park in Eastern Ghats, Southern India

    Directory of Open Access Journals (Sweden)

    Gopalakrishna S. Puttakame

    2015-12-01

    Full Text Available Tree species inventories, particularly of poorly known dry deciduous forests, are needed to protect and restore forests in degraded landscapes. A study of forest stand structure, and species diversity and density of trees with girth at breast height (GBH ≥10 cm was conducted in four management zones of Bannerghatta National Park (BNP in the Eastern Ghats of Southern India. We identified 128 tree species belonging to 45 families in 7.9 hectares. However, 44 species were represented by ≤ 2 individuals. Mean diversity values per site for the dry forest of BNP were: tree composition (23.8 ±7.6, plant density (100.69 ± 40.02, species diversity (2.56 ± 0.44 and species richness (10.48 ± 4.05. Tree diversity was not significantly different (P>0.05 across the four management zones in the park. However, the number of tree species identified significantly (P<0.05 increased with increasing number of sampling sites, but majority of the species were captured. Similarly, there were significant variations (p<0.05 between tree diameter class distributions. Juveniles accounted for 87% of the tree population. The structure of the forest was not homogeneous, with sections ranging from poorly structured to highly stratified configurations. The study suggests that there was moderate tree diversity in the tropical dry thorn forest of Bannerghatta National Park, but the forest was relatively young.

  14. Dispersal, isolation and diversification with continued gene flow in an Andean tropical dry forest.

    Science.gov (United States)

    Toby Pennington, R; Lavin, Matt

    2017-07-01

    The Andes are the world's longest mountain chain, and the tropical Andes are the world's richest biodiversity hot spot. The origin of the tropical Andean cordillera is relatively recent because the elevation of the mountains was relatively low (400-2500 m palaeoelevations) only 10 MYA with final uplift being rapid. These final phases of the Andean orogeny are thought to have had a fundamental role in shaping processes of biotic diversification and biogeography, with these effects reaching far from the mountains themselves by changing the course of rivers and deposition of mineral-rich Andean sediments across the massive Amazon basin. In a recent issue of Molecular Ecology, Oswald, Overcast, Mauck, Andersen, and Smith (2017) investigate the biogeography and diversification of bird species in the Andes of Peru and Ecuador. Their study is novel in its focus on tropical dry forests (Figure 1) rather than more mesic biomes such as rain forests, cloud forests and paramos, which tend to be the focus of science and conservation in the Andean hot spot. It is also able to draw powerful conclusions via the first deployment of genomic approaches to a biogeographic question in the threatened dry forests of the New World. © 2017 John Wiley & Sons Ltd.

  15. Impact of livestock on a mosquito community (Diptera: Culicidae in a Brazilian tropical dry forest

    Directory of Open Access Journals (Sweden)

    Cleandson Ferreira Santos

    2015-08-01

    Full Text Available AbstractINTRODUCTION: This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil.METHODS: Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models.RESULTS: Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition.CONCLUSIONS: This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.

  16. Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest.

    Science.gov (United States)

    Santos, Cleandson Ferreira; Borges, Magno

    2015-01-01

    This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil. Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models. Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition. This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.

  17. Forest Structure, Composition and Above Ground Biomass of Tree Community in Tropical Dry Forests of Eastern Ghats, India

    Directory of Open Access Journals (Sweden)

    Sudam Charan SAHU

    2016-03-01

    Full Text Available The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI of 40.72, while Combretaceae had the highest family importance value (FIV of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%, Madhuca indica (7.9%, Mangifera indica (6.9%, Terminalia alata (6.9% and Diospyros melanoxylon (4.4%, warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks scheme.

  18. [Environmental factors associated with habitat preferences by caddisfly larvae in tropical dry forest watersheds (Tolima, Colombia)].

    Science.gov (United States)

    Vásquez-Ramos, Jesús M; Guevara-Cardona, Giovany; Reinoso-Flórez, Gladys

    2014-04-01

    River ecosystems, mainly those draining tropical dry forests, are among the most endangered tropical ecosystems and a major conservation priority in South America, as elsewhere. In this study, we assessed the influence of environmental factors (e.g., precipitation) and riparian vegetation on Trichoptera larval assemblages colonizing four substrates (rock, gravel, sand, and litter) in the Venadillo and Opia watersheds (Tolima, Colombia). In each river, five 20m reaches nested into two 100m segments (one at -550 and another at -250masl), were surveyed for benthic invertebrates in the above mentioned substrates. In addition, water samples were collected for physicochemical analyses and the QBR index ("qualitat del bosc de ribera" or riparian forest quality) was applied in both rivers. A total of 6,282 larvae were collected, belonging to 11 families and 22 genera, representing 73.30% and 43.13% of the Trichoptera fauna reported to Colombia, respectively. The most abundant families were Hydropsychidae (49.86%) and Philopotamidae (25.44%) and the least abundant Odontoceridae (0.16%) and Hydrobiosidae (0.06%). The genera Smicridea, Chimarra, Protoptila, Neotrichia, and Leptonema, were common during dry and rainy seasons. The main factors related to changes in composition, richness, and abundance of larval Trichoptera were seasonality and riparian vegetation, which can influence organic matter supply, availability and stability of substrates, and colonization and population dynamics. Trichoptera assemblages showed no significant differences among substrates. However sampling points located at high elevation and in non-urbanized areas offered the largest variety of substrates and richness. Our results indicate that Trichoptera larvae are an important biotic element in freshwater ecosystems and that they are sensitive to environmental changes. Hence, our study suggests that caddisflies may be used as potential organisms for the biomonitoring of tropical dry forest rivers

  19. Observed effects of an exceptional drought on tree mortality in a tropical dry forest

    Science.gov (United States)

    Medvigy, D.; Vargas, G.; Xu, X.; Smith, C. M.; Becknell, J.; Brodribb, T.; Powers, J. S.

    2016-12-01

    Climate models predict that the coming century will bring reduced rainfall to Neotropical dry forests. It is unknown how tropical dry forest trees will respond to such rainfall reductions. Will there be increased mortality? If so, what will be the dominant mechanism of mortality? Will certain functional groups or size classes be more susceptible to unusually dry conditions and do functional traits underlie these patterns? With these questions in mind, we analyzed the response of trees from 18 Costa Rican tropical dry forest inventory plots and from additional transects to the exceptional 2015 drought that coincided with a strong ENSO event. We compared stand-level mortality rates observed during pre-drought years (2008-2014) and during the drought year of 2015 in the inventory plots. For both inventory plots and transects, we analyzed whether particular functional groups or size classes experienced exceptional mortality after the drought. We found that mortality rates were two to three times higher during the drought than before the drought. In contrast to observations at moist tropical forests, tree size had little influence on mortality. In terms of functional groups, mortality rates of evergreen oaks growing on nutrient-poor soils particularly increased during drought. Legumes seemed less affected by the drought than non-legumes. However, elevated mortality rates were not clearly correlated with commonly-measured traits like wood density or specific leaf area. Instead, hydraulic traits like P50 or turgor loss point may be better predictors of drought-driven mortality. In addition, trees that died during the drought tended to have smaller relative growth rate prior to the drought than trees that survived the drought.

  20. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    Science.gov (United States)

    Waring, Bonnie G.; Powers, Jennifer S.

    2016-10-01

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO2) upon rewetting, the mechanisms underlying the so-called ‘Birch effect’ are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO2 pulses with two soil carbon models: a conventional model assuming first-order decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis-Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.

  1. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest

    Science.gov (United States)

    de Novais, Samuel Matos Antunes; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; de Faria, Maurício Lopes; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969

  2. Microbial Biomass C,N and P in Disturbed Dry Tropical Forest Soils, India

    Institute of Scientific and Technical Information of China (English)

    J.S.SINGH; D.P.SINGH; A.K.KASHYAP

    2010-01-01

    Variations in microbial biomass C(MB-C),N(MB-N)and P(MB-P)along a gradient of different dominant vegetation covers(natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems)in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g-1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period(summer season)and the minimum in wet period(rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant(P mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices(conversion of forest into savanna and grassland)caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites(grassland and savanna)compared to undisturbed forest ecosystems.

  3. Richness of gall-inducing insects in the tropical dry forest (caatinga of Pernambuco

    Directory of Open Access Journals (Sweden)

    Jean Carlos Santos

    2011-03-01

    Full Text Available Diversity of gall-inducing insects in the tropical dry forest (caatinga of Pernambuco. We report on the richness of galling insects in the vegetation of caatinga of Pernambuco state, Brazil. We recorded 64 different types of galls collected primarily from leaves and stems of 48 species of host plants belonging to 17 families and 31 genera. The most common gall morphological types were spheroid and discoid, glabrous, predominantly green and with one chamber. The main gall inducing taxon was the Cecidomyiidae (Diptera. The results of this study contribute to existing knowledge of galling insect and host-plant diversity in caatinga.

  4. Patterns of Loss and Regeneration of Tropical Dry Forest in Madagascar: The Social Institutional Context

    OpenAIRE

    Thomas Elmqvist; Markku Pyykönen; Maria Tengö; Fanambinantsoa Rakotondrasoa; Elisabeth Rabakonandrianina; Chantal Radimilahy

    2007-01-01

    Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000) and covering 5500 km(2), and made a time-series analysis of three distinct large-...

  5. Seasonality of Tropical Dry Forests and its Sensitivity to Climate Change

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Powers, J. S.; Becknell, J. M.

    2013-12-01

    Tropical dry forests (TDFs) are characterized by an annual dry season of 3-6 months duration. Although TDFs account for nearly 42% by area of total tropical vegetation, their representation in current dynamic vegetation models has rarely been challenged by ground-based observations. In this study, we assimilate several unique field datasets and MODIS-derived Leaf Area Index (LAI) into the Ecosystem Demography Model version 2 (ED2). The field measurements were taken at 18 forested stands in Costa Rica including annual tree-level censuses, species-level leaf trait, monthly measurements of stand litterfall and soil properties since 2008. These measurements were used to develop plant functional types (PFTs) suitable for modeling TDFs, especially in terms of their allometry, phenology, and growth rates. The model was then forced with Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections for Central America to quantify the response and sensitivity of vegetation dynamics to different radiative forcing scenarios. We expect that this study will improve our knowledge of TDFs, including their phenology and sensitivity future climate change, and also has implications for TDF carbon dynamics, energy budgets and hydrological cycling.

  6. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    Science.gov (United States)

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  7. Modeling Soil Water in the Caatinga Tropical Dry Forest of Northeastern Brazil

    Science.gov (United States)

    Wright, C.; Wilcox, B.; Souza, E.; Lima, J. R. D. S.; West, J. B.

    2015-12-01

    The Caatinga is a tropical dry forest unique to northeastern Brazil. It has a relatively high degree of endism and supports a population of about 20 million subsistence farmers. However, it is poorly understood, under-researched and often over-looked in regards to other Brazilian ecosystems. It is a highly perturbed system that suffers from deforestation, land use change, and may be threatened by climate change. How these perturbations affect hydrology is unknown, but may have implications for biodiversity and ecosystem services and resiliency. Therefore, understanding key hydrological processes is critical, particularly as related to deforestation. In this study, Hydrus 1D, which is based on van Genuchten parameters to describe the soil water curve and Richard's Equation to describe flow in the vadose zone, was used to model soil moisture in the Caatinga ecosystem. The aim was 1) to compare hydraulic characterization between a forested Caatinga site and a deforested pasture site, 2) to analyze inter-annual variability, and 3) to compare with observed soil moisture data. Hydraulic characterization included hydraulic conductivity, infiltration, water content and pressure head trends. Van Genuchten parameters were derived using the Beerkan method, which is based on soil texture, particle distribution, as well as in-situ small-scale infiltration experiments. Observational data included soil moisture and precipitation logged every half-hour from September 2013 to April 2014 to include the dry season and rainy season. It is expected that the forested Caatinga site will have a higher hydraulic conductivity as well as retain higher soil moisture values. These differences may be amplified during the dry season, as water resources become scarce. Deviations between modeled data and observed data will allow for further hypothesis to be proposed, especially those related to soil water repellency. Hence, these results may indicate difference in soil water dynamics between a

  8. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    Science.gov (United States)

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  9. Ant diversity in Brazilian tropical dry forests across multiple vegetation domains

    Science.gov (United States)

    Figueiredo Silva, Luciana; Mello Souza, Rayana; Solar, Ricardo R. C.; de Siqueira Neves, Frederico

    2017-03-01

    Understanding the environmental drivers of biodiversity persistence and community organization in natural ecosystems is of great importance for planning the conservation of those ecosystems. This comprehension is even more important in severely threatened ecosystems. In this context, we analyzed ant communities in tropical dry forests (TDFs) in Brazil. These forests are embedded within other biomes, such as Cerrado and Caatinga. In this study, we asked whether (i) ant species richness and composition changes between TDFs within different vegetation domains; (ii) whether ant species richness and β-diversity increase north-to-south, possibly related to changes in tree richness and tree density; and (iii) species replacement contributes relatively more to β-diversity than does nestedness. We found that species composition is unique to each TDF within different biomes, and that species richness and β-diversity differ among the vegetation domains, being smaller in the Caatinga. We also found that replacement contributes most to β-diversity, although this contribution is lower in Caatinga than in Cerrado. We show that regional context is the main driver of species diversity, which is likely to be driven by both historical and ecological mechanisms. By analyzing large spatial scale variation in TDF environmental characteristics, we were able to evaluate how ant diversity changes along an environmental gradient. The high levels of species replacement and unique species composition of each region indicates that, to fully conserve TDFs, we need to have various conservation areas distributed across the entire range of vegetation domains in which these forests can be found. Thus, we demonstrate that a landscape-wise planning is urgent and necessary in order to preserve tropical dry forests.

  10. Light habitat, structure, diversity and dynamic of the tropical dry forest

    Directory of Open Access Journals (Sweden)

    Omar Melo-Cruz

    2017-01-01

    Full Text Available Tropical dry forests are complex and fragile ecosystems with high anthropic intervention and restricted reproductive cycles. These have unique richness, structural diversity, physiological and phenological . This research was executed  in the Upper Magdalena Valley, in four forest fragments with different successional stages. In each fragment four permanent plots of 0.25 ha were established and lighting habitat associated with richness, relative abundance and rarity of species. The forest dynamics included the mortality, recruitment and diameter growth for a period of 5.25 years. The species rischness found in the mature riparian forestis higher than that reported in other studies of similar areas in Valle del Cauca and the Atlantic coast.  The values of richness, diversity and rarity species are more evidenced  than the magnitudes found in  drier areas of Tolima. The structure, diversity and dynamics of forests were correlated with the lighting habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. Forests with dense canopy have limited availability of photosynthetically active radiation in understory related low species richness, while illuminated undergrowth are richer and heterogeneous.

  11. SRTM-DEM AND LANDSAT ETM+ DATA FOR MAPPING TROPICAL DRY FOREST COVER AND BIODIVERSITY ASSESSMENT IN NICARAGUA

    Directory of Open Access Journals (Sweden)

    Brett G. Dickson

    2008-08-01

    Full Text Available Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but hasreceived far less attention than forest in wet tropical areas. Land use change threatens to greatly reducethe extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentationmay further endanger arboreal mammals that play principal role in the dispersal of large seeded fruits, plantcommunity assembly and diversity in these systems. Data on the spatial arrangement and extent of dryforest and other land cover types is greatly needed to enhance studies of forest fragmentation effects onanimal populations. To address this issue, we compared two Random Forest decision tree models forland cover classification in a Nicaraguan tropical dry forest landscape with and without the use of terrainvariables derived from Space Shuttle Radar and Topography Mission digital elevation data (SRTM-DEM.Landsat Enhanced Thematic Mapper (ETM+ bands and vegetation indices were the principle source ofspectral variables used. Overall classification accuracy for nine land cover types improved from 82.4% to87.4% once terrain and spectral predictor variables were combined. Error matrix comparisons showedthat class accuracy was significantly greater (z = 2.57, p-value < 0.05 with the inclusion of terrain variables(e.g., slope, elevation and topographic wetness index in decision tree models. Variable importance metricsindicated that a corrected Normalized Difference Vegetation Index (NDVIc and terrain variables improveddiscrimination of forest successional types and wetlands in the study area. Results from this study demonstratethe capability of terrain variables to enhance land cover classification and habitat mapping useful tobiodiversity assessment in tropical dry forest.

  12. Simulating Plant Water Stress and Phenology in Seasonally Dry Tropical Forests: Plant Hydraulics and Trait-Driven Trade-Offs

    Science.gov (United States)

    Xu, X.; Medvigy, D.; Powers, J. S.; Becknell, J. M.

    2014-12-01

    Seasonally dry tropical forests account for over 40% of the forested area in tropical and subtropical regions. Previous studies suggest that seasonal water stress is one main driver of phenology and related vegetation dynamics in seasonally dry tropical forests. Species that coexist in seasonally dry tropical forests have different plant traits, experience different degrees of plant water stress and show distinctive phenological patterns. However, the observed diversity in plant phenology and related vegetation dynamics is poorly represented in current dynamic vegetation models. In this study, we employ a new modeling approach to enhance our model skills in seasonally dry tropical forests. First, we implement a new plant hydraulic module under the framework of a state-of-the-art dynamic vegetation model, Ecosystem Demography 2 (ED2). Second, we link plant water stress with several key coordinated plant traits. Unlike previous models, the updated ED2 does not prescribe leaf phenology (deciduous or evergreen) and plant water stress is not determined by empirical water stress factors or by soil moisture alone. Instead, the model tracks more mechanistic indicators of plant water stress like leaf water potential, accounts for different abilities to tolerate water stress among plant functional types and predicts dry season leaf deciduousness and related vegetation dynamics. The updated model is then tested with in-situ meteorological data and long-term ecological observations. We also perform numerical experiments to explore the possible biases of ignoring the observed diversity in seasonally dry tropical forests. We find that (i) variations of several key plant traits (specific leaf area, wood density, turgor loss point and rooting depth) can account for the observed distinctive phenological patterns as well as inter-annual variations in vegetation growth among species. (ii) Ignoring the trait-driven trade-offs and diversity in seasonality would introduce significant

  13. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes?

    Science.gov (United States)

    Allen, Kara; Dupuy, Juan Manuel; Gei, Maria G.; Hulshof, Catherine; Medvigy, David; Pizano, Camila; Salgado-Negret, Beatriz; Smith, Christina M.; Trierweiler, Annette; Van Bloem, Skip J.; Waring, Bonnie G.; Xu, Xiangtao; Powers, Jennifer S.

    2017-02-01

    Seasonally dry tropical forests (SDTF) are located in regions with alternating wet and dry seasons, with dry seasons that last several months or more. By the end of the 21st century, climate models predict substantial changes in rainfall regimes across these regions, but little is known about how individuals, species, and communities in SDTF will cope with the hotter, drier conditions predicted by climate models. In this review, we explore different rainfall scenarios that may result in ecological drought in SDTF through the lens of two alternative hypotheses: 1) these forests will be sensitive to drought because they are already limited by water and close to climatic thresholds, or 2) they will be resistant/resilient to intra- and inter-annual changes in rainfall because they are adapted to predictable, seasonal drought. In our review of literature that spans microbial to ecosystem processes, a majority of the available studies suggests that increasing frequency and intensity of droughts in SDTF will likely alter species distributions and ecosystem processes. Though we conclude that SDTF will be sensitive to altered rainfall regimes, many gaps in the literature remain. Future research should focus on geographically comparative studies and well-replicated drought experiments that can provide empirical evidence to improve simulation models used to forecast SDTF responses to future climate change at coarser spatial and temporal scales.

  14. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Science.gov (United States)

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although

  15. Biodiversity and functional regeneration during secondary succession in a tropical dry forest: from microorganisms to mammals

    Science.gov (United States)

    do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.

    2015-12-01

    In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.

  16. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    Science.gov (United States)

    Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  17. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    Directory of Open Access Journals (Sweden)

    Christopher Blair

    Full Text Available Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  18. Decomposition of New Woody Inputs as a Dry Tropical Forest Regenerates

    Science.gov (United States)

    Schilling, J. S.; Powers, J. S.; Ayres, A.; Kaffenberger, J. T.

    2015-12-01

    Modeling deadwood dynamics is limited by our empirical understanding of decomposition patterns and drivers. This gap is significant in dry tropical forests (and in the tropics, broadly) where forest regeneration is a management priority but where decision-making lacks resources. Our goal was to track decomposition and its biological drivers in tree boles added to the forest floor of a regenerating dry forest. We cut and then placed logs (~18 cm dia) of eight representative tree species in ground contact at two different sites (n=8, per site). We tracked density loss and element import/export in both sapwood and heartwood each 6 months over two years. We measured initial and final lignin, structural carbohydrates, nitrogen, and extractives. We also quantified insect gallery volumes, and used two residue 'signatures' to determine dominant fungal rot type: 1) dilute alkali solubility (DAS) and lignin:glucan loss. By year 2, mean density losses in sapwood were 11.6 - 44.4% among tree species, excluding one species that decomposed completely. The best predictor of density loss in sapwood was initial pH, but the correlation was negative rather than positive, as has been reported in temperate systems. Decay was consistently more advanced in sapwood than in heartwood, and although extractives were as high as 16.4% in heartwood, trait-density loss correlations were insignificant. Insects contributed little at this stage to density loss (import dynamics broadly resembled those from temperate studies (e.g., Ca gain, P, K loss), there was high spatial variability. This perhaps related to zone line (spalting) complexity, suggesting intense competition among fungi colonizing small territories within the wood. Estimated CO2 fluxes from the test logs ranged from ~25 to 75% of the annual fluxes from litter fall at these sites. Collectively, these results implicate wood decomposition as an important component of dry forest carbon cycling. Emergent patterns from decomposers are also

  19. Effects of an exotic plant invasion on native understory plants in a tropical dry forest.

    Science.gov (United States)

    Prasad, Ayesha E

    2010-06-01

    The dry forests of southern India, which are endangered tropical ecosystems and among the world's most important tiger (Panthera tigris) habitats, are extensively invaded by exotic plants. Yet, experimental studies exploring the impacts of these invasions on native plants in these forests are scarce. Consequently, little is known about associated implications for the long-term conservation of tigers and other biodiversity in these habitats. I studied the impacts of the exotic plant Lantana camara on understory vegetation in a dry-forest tiger habitat in southern India. I compared the richness, composition, and abundance of tree seedlings, herbs, and shrubs and the abundance of grass among plots in which Lantana was cleared or left standing. These plots were distributed across two blocks-livestock free and livestock grazed. Removal of Lantana had an immediate positive effect on herb-shrub richness in the livestock-free block, but had no effect on that of tree seedlings in either livestock block. Tree-seedling and herb-shrub composition differed significantly between Lantana treatment and livestock block, and Lantana removal significantly decreased survival of tree seedlings. Nevertheless, the absence of trees, in any stage between seedling and adult, indicates that Lantana may stall tree regeneration. Lantana removal decreased the abundance of all understory strata, probably because forage plants beneath Lantana are less accessible to herbivores, and plants in Lantana-free open plots experienced greater herbivory. Reduced access to forage in invaded habitats could negatively affect ungulate populations and ultimately compromise the ability of these forests to sustain prey-dependent large carnivores. Additional research focused on understanding and mitigating threats posed by exotic plants may be crucial to the long-term protection of these forests as viable tiger habitats.

  20. Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America

    Science.gov (United States)

    Portillo, C. A.; Cao, G.; Smith, V.

    2015-12-01

    Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.

  1. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    Science.gov (United States)

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some

  2. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  3. Ecology and phytosociology of the tropical dry deciduous forests of Kawal Wildlife Sanctuary, Telangana, India

    Directory of Open Access Journals (Sweden)

    E. Narasimha Murthy

    2015-03-01

    Full Text Available The paper describes the species composition, abundance, density and community structure of the tropical dry deciduous forests of Kawal Wildlife Sanctuary.  Phytosociological analysis was based on the data generated from the 81 sample plots laid at random covering the entire sanctuary area. A total of 177 Angiosperms of species were enumerated from the sampled quadrats.  The species present as per preponderance are herbs 71, trees 55, climbers 33, and shrubs 18.  The species diversity indices indicate the following facts: Shannon-Weiner index as 4.15, Simpson index value as 0.91, Margalef’s species richness index as 5.20, density of trees above 10 cm GBH class as 470 individuals per hectare.  The total basal area of the tree species was 17.7m² ha-1.  These statistics along with the composition of the forest, and information on the diversity of the communities as a whole provided a better insight into the state of the forests in the Kawal Wildlife Sanctuary.  

  4. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community

    DEFF Research Database (Denmark)

    Lasky, Jesse R.; Uriarte, Maria; Muscarella, Robert

    2016-01-01

    among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked...

  5. Bats ecology in the Dry Tropical Forest of Nariño (Colombia and some commentaries about their conservation

    Directory of Open Access Journals (Sweden)

    Christian Cabrera-Ojeda

    2016-05-01

    Full Text Available Tropical dry forests are considered as threatened ecosystems in Colombia, because they are located in areas with intensive human activities. However, the effects of habitat loss on the distribution and abundance of bats in this region are little known. The purpose of this study was to analyze species richness, composition and relative abundance of bats in three vegetation types with different degrees of intervention in the Tropical Dry Forest of Nariño (Mesi: Intervened dry thorn scrub, Mesc: Preserve dry thorn scrub, Bsi: Intervened semideciduous tropical forest, Colombia. We captured bats using 10 mist nets over 24 nights (eight nights in each vegetation type. Nine species were recorded from the capture of 60 specimens. The Mesc had the higher richness (6 species, while the Mesi had the lower richness (4 species. This is probably related with the high degree of human disturbance in the area. Sorensen index (0.33-0.38 indicated that the three populations represent the same community. A. lituratus (Dtsi, A. planirostris (Tsfi and C. perspicillata (Dtsp showed the lower abundance, this condition has been associated with forest in process of regeneration or forest with human intervention. Although the best preserved area is the Mesc, criteria as the low species richness, dominance of the three bat species and the presence of Desmodus rotundus suggest that the degree of human intervention is similar in the three types of vegetation. Therefore it is necessary to establish bat conservation programs and restoration projects in the area.

  6. Mulga, a major tropical dry open forest of Australia: recent insights to carbon and water fluxes

    Science.gov (United States)

    Eamus, Derek; Huete, Alfredo; Cleverly, James; Nolan, Rachael H.; Ma, Xuanlong; Tarin, Tonantzin; Santini, Nadia S.

    2016-12-01

    Mulga, comprised of a complex of closely related Acacia spp., grades from a low open forest to tall shrublands in tropical and sub-tropical arid and semi-arid regions of Australia and experiences warm-to-hot annual temperatures and a pronounced dry season. This short synthesis of current knowledge briefly outlines the causes of the extreme variability in rainfall characteristic of much of central Australia, and then discusses the patterns and drivers of variability in carbon and water fluxes of a central Australian low open Mulga forest. Variation in phenology and the impact of differences in the amount and timing of precipitation on vegetation function are then discussed. We use field observations, with particular emphasis on eddy covariance data, coupled with modelling and remote sensing products to interpret inter-seasonal and inter-annual patterns in the behaviour of this ecosystem. We show that Mulga can vary between periods of near carbon neutrality to periods of being a significant sink or source for carbon, depending on both the amount and timing of rainfall. Further, we demonstrate that Mulga contributed significantly to the 2011 global land sink anomaly, a result ascribed to the exceptional rainfall of 2010/2011. Finally, we compare and contrast the hydraulic traits of three tree species growing close to the Mulga and show how each species uses different combinations of trait strategies (for example, sapwood density, xylem vessel implosion resistance, phenological guild, access to groundwater and Huber value) to co-exist in this semi-arid environment. Understanding the inter-annual variability in functional behaviour of this important arid-zone biome and mechanisms underlying species co-existence will increase our ability to predict trajectories of carbon and water balances for future changing climates.

  7. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.; Meave, J.; Poorter, L.; Pérez- García, E.A.; Bongers, F.

    2010-01-01

    The development of forest succession theory has been based on studies in temperate and tropical wet forests. As rates and pathways of succession vary with the environment, advances in successional theory and study approaches are challenged by controversies derived from such variation and by the scar

  8. Effects of forest fragmentation on phenological patterns and reproductive success of the tropical dry forest tree Ceiba aesculifolia.

    Science.gov (United States)

    Herrerías-Diego, Yvonne; Quesada, Mauricio; Stoner, Kathryn E; Lobo, Jorge A

    2006-08-01

    Spatial isolation caused by forest fragmentation and temporal isolation caused by asynchronous flowering of plants have been proposed as important factors that affect the reproduction ofplant populations. In a 4-year study, we determined the effects of forest fragmentation and spatial isolation on flowering phenology and reproductive success of the tropical tree Ceiba aesculifolia ([Kunth] Britton & Rose). We conducted our study in the dry forest of Mexico and compared populations in two habitat conditions based on density and environmental conditions: (1) disturbed habitat (four populations of reproductive individuals/ha surrounded by agriculturalfields or pastures) and (2) undisturbed habitat (three populations of groups of >6 reproductive individuals/ha surrounded by undisturbed mature forest). We compared the following variables within these populations over 4 years: flowering overlap, proportion of individuals with flowers and fruit, total flower production, total fruit production, fruit set, seed production, and seed abortion. Little overlap in flowering occurred among the populations in the two habitat conditions. The flowering period of trees in the disturbed habitat initiated between 15 to 20 days before the flowering period of trees in the undisturbed habitat during 3 years. Flowering of trees in the undisturbed habitat peaked at the end of the flowering period of the trees in the disturbed habitat. The proportion of trees that flowered was greater in the undisturbed habitat. Nevertheless, total flower production was greater in the disturbed habitat and these differences were maintained across 3 years. The proportion of individuals that produced fruit did not differ across habitat conditions but did differ across years. Total fruit production was greater in the disturbed habitat, but fruit set and seed production were the same across years and between habitat conditions. Seed abortion varied over years between habitats. We concluded that forest

  9. Shift from ecosystem P to N limitation at precipitation gradient in tropical dry forests at Yucatan, Mexico

    Science.gov (United States)

    Campo, Julio

    2016-09-01

    The effect of precipitation regime on N and P cycles in tropical forests is poorly understood, despite global climate models project total precipitation reductions during the 21st Century. I investigated the influence of variation in annual precipitation (1240-642 mm yr-1) on N and P intra-system cycling along a precipitation regime gradient at Yucatan including 12 mature, tropical dry forests (TDFs) growing under otherwise similar conditions (similar annual temperature, rainfall seasonality and geological substrate). I analyzed N and P storage and turnover in the forest floor and mineral soil and explored the dependence of these processes and pools on precipitation level. The study findings indicate that with decreasing precipitation the litterfall decreases slightly (10%), while nutrient use efficiency increases by 20% for N, and by 40% for P. Decomposition rate and nutrient release was smallest in the dry extremity of precipitation regime. The difference between N and P turnover times in the forest floor and in organic matter indicates that different nutrients control the ecosystem function across the precipitation gradient. The data from this study reveals a pattern of limitation shifting from P towards N with decreasing annual precipitation. I suggest that the long-term consequences of the expected decrease in precipitation in many tropical dry regions would changes N and P supply could have long-term negative effects on primary productivity and future carbon storage in TDFs.

  10. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Directory of Open Access Journals (Sweden)

    Thomas Elmqvist

    Full Text Available Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000 and covering 5500 km(2, and made a time-series analysis of three distinct large-scale patterns: 1 loss of forest cover, 2 increased forest cover, and 3 stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  11. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Science.gov (United States)

    Elmqvist, Thomas; Pyykönen, Markku; Tengö, Maria; Rakotondrasoa, Fanambinantsoa; Rabakonandrianina, Elisabeth; Radimilahy, Chantal

    2007-05-02

    Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000) and covering 5500 km(2), and made a time-series analysis of three distinct large-scale patterns: 1) loss of forest cover, 2) increased forest cover, and 3) stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  12. Functional Trait Strategies of Trees in Dry and Wet Tropical Forests Are Similar but Differ in Their Consequences for Succession

    Science.gov (United States)

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A.; Poorter, Lourens; Bongers, Frans

    2015-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest

  13. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Directory of Open Access Journals (Sweden)

    Madelon Lohbeck

    Full Text Available Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment and in 17 wet secondary forest sites (<1-25 years after abandonment. We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during

  14. Floral Traits and Pollination Systems in the Caatinga, a Brazilian Tropical Dry Forest

    Science.gov (United States)

    Machado, Isabel Cristina; Lopes, Ariadna Valentina

    2004-01-01

    • Background and aims Pollination is a critical stage in plant reproduction and thus in the maintenance and evolution of species and communities. The Caatinga is the fourth largest ecosystem in Brazil, but despite its great extent and its importance few studies providing ecological information are available, with a notable lack of work focusing on pollination biology. Here, general data are presented regarding the frequency of pollination systems within Caatinga communities, with the aim of characterizing patterns related to floral attributes in order to make possible comparisons with data for plant communities in other tropical areas, and to test ideas about the utility of syndromes. This paper also intends to provide a reference point for further studies on pollination ecology in this threatened ecosystem. • Methods The floral traits and the pollination systems of 147 species were analysed in three areas of Caatinga vegetation in northeastern Brazil, and compared with world-wide studies focusing on the same subject. For each species, floral attributes were recorded as form, size, colour, rewards and pollination units. The species were grouped into 12 guilds according to the main pollinator vector. Analyses of the frequencies of the floral traits and pollination systems were undertaken. • Key Results Nectar and pollen were the most common floral resources and insect pollination was the most frequent, occurring in 69·9 % of the studied species. Of the entomophilous species, 61·7 % were considered to be melittophilous (43·1 % of the total). Vertebrate pollination occurred in 28·1 % of the species (ornithophily in 15·0 % and chiropterophily in 13·1 %), and anemophily was recorded in only 2·0 %. • Conclusions The results indicated that the pollination systems in Caatinga, despite climatic restrictions, are diversified, with a low percentage of generalist flowers, and similar to other tropical dry and wet forest communities, including those with high

  15. Vegetation and Lepidoptera in Seasonally Dry Tropical Forests. Community structure along climate zones, forest succession and seasonality in the Southern Yucatán, Mexico

    NARCIS (Netherlands)

    Essens, T.; Leyequien, E.; Pozo, C.

    2010-01-01

    Seasonally dry tropical forests are worldwide recognized as important ecosystems for biodiversity conservation. Increasing agricultural activities (e.g., slash-and-burn agriculture) leads to a heterogeneous landscape matrix; and as ecological succession takes over in abandoned fields, plant and anim

  16. Mapping tropical dry forest habitats integrating landsat NDVI, Ikonos imagery, and topographic information in the Caribbean island of Mona.

    Science.gov (United States)

    Martinuzzi, Sebastiáin; Gould, William A; Ramos Gonzalez, Olga M; Martinez Robles, Alma; Calle Maldonado, Paulina; Pérez-Buitrago, Néstor; Fumero Caban, José J

    2008-06-01

    Assessing the status of tropical dry forest habitats using remote sensing technologies is one of the research priorities for Neotropical forests. We developed a simple method for mapping vegetation and habitats in a tropical dry forest reserve, Mona Island, Puerto Rico, by integrating the Normalized Difference Vegetation Index (NDVI) from Landsat, topographic information, and high-resolution Ikonos imagery. The method was practical for identifying vegetation types in areas with a great variety of plant communities and complex relief, and can be adapted to other dry forest habitats of the Caribbean Islands. NDVI was useful for identifying the distribution of forests, woodlands, and shrubland, providing a natural representation of the vegetation patterns on the island. The use of Ikonos imagery allowed increasing the number of land cover classes. As a result, sixteen land-cover types were mapped over the 5500 ha area, with a kappa coefficient of accuracy equal to 79%. This map is a central piece for modeling vertebrate species distribution and biodiversity patterns by the Puerto Rico Gap Analysis Project, and it is of great value for assisting research and management actions in the island.

  17. Reconstructing the Mexican Tropical Dry Forests via an Autoecological Niche Approach: Reconsidering the Ecosystem Boundaries.

    Science.gov (United States)

    Prieto-Torres, David A; Rojas-Soto, Octavio R

    2016-01-01

    We used Ecological Niche Modeling (ENM) of individual species of two taxonomic groups (plants and birds) in order to reconstruct the climatic distribution of Tropical Dry Forests (TDFs) in Mexico and to analyze their boundaries with other terrestrial ecosystems. The reconstruction for TDFs' distribution was analyzed considering the prediction and omission errors based upon the combination of species, obtained from the overlap of individual models (only plants, only birds, and all species combined). Two verifications were used: a primary vegetation map and 100 independent TDFs localities. We performed a Principal Component (PCA) and Discriminant Analysis (DA) to evaluate the variation in the environmental variables and ecological overlap among ecosystems. The modeling strategies showed differences in the ecological patterns and prediction areas, where the "all species combined" model (with a threshold of ≥10 species) was the best strategy to use in the TDFs reconstruction. We observed a concordance of 78% with the primary vegetation map and a prediction of 98% of independent locality records. Although PCA and DA tests explained 75.78% and 97.9% of variance observed, respectively, we observed an important overlap among the TDFs with other adjacent ecosystems, confirming the existence of transition zones among them. We successfully modeled the distribution of Mexican TDFs using a number of bioclimatic variables and co-distributed species. This autoecological niche approach suggests the necessity of rethinking the delimitations of ecosystems based on the recognition of transition zones among them in order to understand the real nature of communities and association patterns of species.

  18. INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE) IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS.

    Science.gov (United States)

    Santos, Cleandson Ferreira; Silva, Alex Chavier; Rodrigues, Raquel Andrade; de Jesus, Jamilli Sanndy Ramos; Borges, Magno Augusto Zazá

    2015-01-01

    In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF) fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.

  19. INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS

    Directory of Open Access Journals (Sweden)

    Cleandson Ferreira SANTOS

    2015-06-01

    Full Text Available In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.

  20. Vegetation and Lepidoptera in Seasonally Dry Tropical Forests. Community structure along climate zones, forest succession and seasonality in the Southern Yucatán, Mexico

    OpenAIRE

    Essens, T.; Leyequien, E.; Pozo, C. (Cándido)

    2010-01-01

    Seasonally dry tropical forests are worldwide recognized as important ecosystems for biodiversity conservation. Increasing agricultural activities (e.g., slash-and-burn agriculture) leads to a heterogeneous landscape matrix; and as ecological succession takes over in abandoned fields, plant and animal communities endure shifts in species richness and composition. This book presents the analysis on plant and Lepidoptera (caterpillar) communities and their species turnover along forest successi...

  1. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    Directory of Open Access Journals (Sweden)

    Jorge Omar López-Martínez

    Full Text Available Two main theories have attempted to explain variation in plant species composition (β-diversity. Niche theory proposes that most of the variation is related to environment (environmental filtering, whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning, and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position, whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and

  2. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    Science.gov (United States)

    López-Martínez, Jorge Omar; Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Meave, Jorge Arturo; Gallardo-Cruz, José Alberto

    2013-01-01

    Two main theories have attempted to explain variation in plant species composition (β-diversity). Niche theory proposes that most of the variation is related to environment (environmental filtering), whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning), and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation) vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position), whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and β-diversity patterns and

  3. Inventorying and Monitoring of Tropical Dry Forests Tree Diversity in Jalisco, Mexico Using a Geographical Information System

    Science.gov (United States)

    Efren Hernandez-Alvarez; Dieter R. Pelz; Carlos Rodriguez Franco

    2006-01-01

    Tropical dry forests in Mexico are an outstanding natural resource, due to the large surface area they cover. This ecosystem can be found from Baja California Norte to Chiapas on the eastern coast of the country. On the Gulf of Mexico side it grows from Tamaulipas to Yucatan. This is an ecosystem that is home to a wide diversity of plants, which include 114 tree...

  4. Diversity of Gall-Inducing Insects in a Mexican Tropical Dry Forest: The Importance of Plant Species Richness, Life-Forms, Host Plant Age and Plant Density

    National Research Council Canada - National Science Library

    Pablo Cuevas-Reyes; Mauricio Quesada; Paul Hanson; Rodolfo Dirzo; Ken Oyama

    2004-01-01

    ...) in plant communities. We sampled deciduous and riparian habitats in a tropical dry forest at Chamela-Cuixmala Biosphere Reserve in western Mexico, that differ in phenology and moisture availability...

  5. [Seed germination of four tree species from the tropical dry forest of Valle del Cauca, Colombia].

    Science.gov (United States)

    Vargas Figueroa, Jhon Alexander; Duque Palacio, Olga Lucía; Torres González, Alba Marina

    2015-03-01

    The ecological restoration strategies for highly threatened ecosystems such as the tropical dry forest, depend on the knowledge of limiting factors of biological processes for the different species. Some of these include aspects such as germination and seed longevity of typical species present in those forests. In this study, we evaluated the effect of light and temperature on seed germination of two Fabaceae (Samanea saman and Jacaranda caucana) and two Bignoniaceae (Pithecellobium dulce and Tabebuia rosea) species having potential use in restoration, and we analyzed the seed storage behavior of these species for a three months period. To study the light effect, four levels of light quality on seeds were used (photoperiod of 12 hours of white light, darkness and light enriched in red and far-red, both for an hour each day), and we combined them with three levels of alternated temperatures (20/25, 20/30 and 25/30*C-16/8h). For the storage behavior, two levels of seed moisture content particular for each species were used (low: 3.5-6.1% and high: 8.3-13.8%), with three storage temperatures (20, 5 and -20 degrees C) and two storage times (one and three months). The criterion for germination was radicle emergence which was measured in four replicates per treatment, and was expressed as percentage of germination (PG). There were significant differences in germination of Samanea saman and Jacaranda caucana among light and temperature treatments, with the lowest value in darkness treatments, whereas germination of Pithecellobium dulce and Tabebuia rosea did not differ between treatments (PG>90%). The most suitable temperature regime to promote germination in all species was 25/30 degrees C. These four species showed an orthodox seed storage behavior. We concluded that seeds of R dulce, J. caucana and T. rosea did not have an apparent influence of all light conditions tested in their germination response, which might confer advantages in colonization and establishment

  6. Recovering More than Tree Cover: Herbivores and Herbivory in a Restored Tropical Dry Forest

    Science.gov (United States)

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 –fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites

  7. Searching for putative avian malaria vectors in a Seasonally Dry Tropical Forest in Brazil.

    Science.gov (United States)

    Ferreira, Francisco C; Rodrigues, Raquel A; Sato, Yukita; Borges, Magno A Z; Braga, Érika M

    2016-11-16

    Haemosporidian parasites of the genera Plasmodium and Haemoproteus can have detrimental effects on individual birds and populations. Despite recent investigations into the distribution and richness of these parasites and their vertebrate hosts, little is known about their dipteran vectors. The Neotropics has the highest diversity of mosquitoes in the world, but few studies have tried to identify vectors in this area, hampering the understanding of the ecology of avian malaria in the highly diverse Neotropical environments. Shannon traps and active collection were used to capture 27,110 mosquitoes in a Seasonally Dry Tropical Forest in southeastern Brazil, a highly endangered ecosystem. We screened 17,619 mosquito abdomens from 12 different species and several unidentified specimens of Culex, grouped into 1,913 pools, for the presence of haemosporidians. Two pools (out of 459) of the mosquito Mansonia titillans and one pool (out of 29) of Mansonia pseudotitillans were positive for Plasmodium parasites, with the detection of a new parasite lineage in the former species. Detected Plasmodium lineages were distributed in three different clades within the phylogenetic tree revealing that Mansonia mosquitoes are potential vectors of genetically distant parasites. Two pools of Culex spp. (out of 43) were positive for Plasmodium gallinaceum and closely related lineages. We found a higher abundance of these putative vectors in pasture areas, but they were also distributed in areas at intermediate and late successional stages. One pool of the mosquito Psorophora discrucians (out of 173) was positive for Haemoproteus. The occurrence of different Plasmodium lineages in Mansonia mosquitoes indicates that this genus encompasses potential vectors of avian malaria parasites in Brazil, even though we did not find positive thoraces among the samples tested. Additional evidence is required to assign the role of Mansonia mosquitoes in avian malaria transmission and further studies

  8. Mapping tropical dry forest succession using multiple criteria spectral mixture analysis

    Science.gov (United States)

    Cao, Sen; Yu, Qiuyan; Sanchez-Azofeifa, Arturo; Feng, Jilu; Rivard, Benoit; Gu, Zhujun

    2015-11-01

    Tropical dry forests (TDFs) in the Americas are considered the first frontier of economic development with less than 1% of their total original coverage under protection. Accordingly, accurate estimates of their spatial extent, fragmentation, and degree of regeneration are critical in evaluating the success of current conservation policies. This study focused on a well-protected secondary TDF in Santa Rosa National Park (SRNP) Environmental Monitoring Super Site, Guanacaste, Costa Rica. We used spectral signature analysis of TDF ecosystem succession (early, intermediate, and late successional stages), and its intrinsic variability, to propose a new multiple criteria spectral mixture analysis (MCSMA) method on the shortwave infrared (SWIR) of HyMap image. Unlike most existing iterative mixture analysis (IMA) techniques, MCSMA tries to extract and make use of representative endmembers with spectral and spatial information. MCSMA then considers three criteria that influence the comparative importance of different endmember combinations (endmember models): root mean square error (RMSE); spatial distance (SD); and fraction consistency (FC), to create an evaluation framework to select a best-fit model. The spectral analysis demonstrated that TDFs have a high spectral variability as a result of biomass variability. By adopting two search strategies, the unmixing results showed that our new MCSMA approach had a better performance in root mean square error (early: 0.160/0.159; intermediate: 0.322/0.321; and late: 0.239/0.235); mean absolute error (early: 0.132/0.128; intermediate: 0.254/0.251; and late: 0.191/0.188); and systematic error (early: 0.045/0.055; intermediate: -0.211/-0.214; and late: 0.161/0.160), compared to the multiple endmember spectral mixture analysis (MESMA). This study highlights the importance of SWIR in differentiating successional stages in TDFs. The proposed MCSMA provides a more flexible and generalized means for the best-fit model determination

  9. Vegetation response to rainfall seasonality and interannual variability in tropical dry forests

    Science.gov (United States)

    Feng, X.; Silva Souza, R. M.; Souza, E.; Antonino, A.; Montenegro, S.; Porporato, A. M.

    2015-12-01

    We analyzed the response of tropical dry forests to seasonal and interannual rainfall variability, focusing on the caatinga biome in semi-arid in Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analyzed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) in the period 2000-2014. The seasonal and interannual rainfall statistics were characterized using recently developed metrics describing duration, location, and intensity of wet season and compared them with those of NDVI time series and modelled soil moisture. A model of NDVI was also developed and forced by different rainfall scenarios (combination amount of rainfall and duration of wet season). The results show that the caatinga tends to have a more stable response characterized by longer and less variable growing seasons (of duration 3.1±0.1 months) compared to the rainfall wet seasons (2.0±0.5 months). Even for more extreme rainfall conditions, the ecosystem shows very little sensitivity to duration of wet season in relation to the amount of rainfall, however the duration of wet season is most evident for wetter sites. This ability of the ecosystem in buffering the interannual variability of rainfall is corroborated by the stability of the centroid location of the growing season compared to the wet season for all sites. The maximal biomass production was observed at intermediate levels of seasonality, suggesting a possible interesting trade-off in the effects of intensity (i.e., amount) and duration of the wet season on vegetation growth.

  10. Reconstructing the Mexican Tropical Dry Forests via an Autoecological Niche Approach: Reconsidering the Ecosystem Boundaries.

    Directory of Open Access Journals (Sweden)

    David A Prieto-Torres

    Full Text Available We used Ecological Niche Modeling (ENM of individual species of two taxonomic groups (plants and birds in order to reconstruct the climatic distribution of Tropical Dry Forests (TDFs in Mexico and to analyze their boundaries with other terrestrial ecosystems. The reconstruction for TDFs' distribution was analyzed considering the prediction and omission errors based upon the combination of species, obtained from the overlap of individual models (only plants, only birds, and all species combined. Two verifications were used: a primary vegetation map and 100 independent TDFs localities. We performed a Principal Component (PCA and Discriminant Analysis (DA to evaluate the variation in the environmental variables and ecological overlap among ecosystems. The modeling strategies showed differences in the ecological patterns and prediction areas, where the "all species combined" model (with a threshold of ≥10 species was the best strategy to use in the TDFs reconstruction. We observed a concordance of 78% with the primary vegetation map and a prediction of 98% of independent locality records. Although PCA and DA tests explained 75.78% and 97.9% of variance observed, respectively, we observed an important overlap among the TDFs with other adjacent ecosystems, confirming the existence of transition zones among them. We successfully modeled the distribution of Mexican TDFs using a number of bioclimatic variables and co-distributed species. This autoecological niche approach suggests the necessity of rethinking the delimitations of ecosystems based on the recognition of transition zones among them in order to understand the real nature of communities and association patterns of species.

  11. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Iris Juan-Baeza

    Full Text Available Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae and Ipomoea pauciflora (Convolvulaceae were selected in each plot (N = 110 trees. Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp. was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and

  12. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    Science.gov (United States)

    Juan-Baeza, Iris; Martínez-Garza, Cristina; Del-Val, Ek

    2015-01-01

    Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October) in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae) and Ipomoea pauciflora (Convolvulaceae) were selected in each plot (N = 110 trees). Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp.) was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and disturbed sites

  13. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  14. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    Science.gov (United States)

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained.

  15. Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture-recapture sampling

    Science.gov (United States)

    Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba

    2004-01-01

    Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.

  16. Evaluation of MODIS-LAI products in the tropical dry secondary forest of Mata Seca, Minas Gerais, Brazil

    Science.gov (United States)

    Yamarte Loreto, Payri Alejandra

    Leaf Area Index (LAI) advances scientific knowledge of the role of secondary forests in forest area conservation. MODIS-LAI products provide an alternative, efficient and cost-effective method for measuring LAI in Tropical Dry Forests (TDFs). The performance of MODIS-LAI satellite products in a TDF was studied as a function of successional stages by (1) estimating seasonal LAI variations compared to in situ LAI values (2) using dry season MODIS-LAI products to estimate Woody Area Index (WAI) (3) estimating phenology changes through comparisons to in situ data. The study demonstrates (1) MODIS-LAI product showed agreement with in situ values with increasing successional stage. (2) MODIS-LAI product showed best agreement to in situ WAI values in the intermediate successional stage. (3) TIMESAT analysis indicated that MODIS-LAI products detected start-of-season 1-2 weeks before in situ values and end-of-season 20-30 days after in situ values, indicating that MODIS-LAI product captures canopy leafing, but is not suitable for detecting senescence. Keywords: Leaf Area Index, Validation, MODIS, Woody Area Index, Phenology, Tropical Secondary Forest Succession, Hemispherical Photography, LAI-2000,.

  17. Mapping Clearances in Tropical Dry Forests Using Breakpoints, Trend, and Seasonal Components from MODIS Time Series: Does Forest Type Matter?

    NARCIS (Netherlands)

    Grogan, Kenneth; Pflugmacher, Dirk; Hostert, Patrick; Verbesselt, Jan; Fensholt, Rasmus

    2016-01-01

    Tropical environments present a unique challenge for optical time series analysis, primarily owing to fragmented data availability, persistent cloud cover and atmospheric aerosols. Additionally, little is known of whether the performance of time series change detection is affected by diverse forest

  18. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    Science.gov (United States)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  19. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico

    Directory of Open Access Journals (Sweden)

    Eliane Ceccon

    2009-06-01

    Full Text Available In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest’s capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE. We found a strong seasonality in seed rain (96% of seeds fell in the dry season in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard’s similarity index between E and WE sites was relatively low (0.57. Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%, followed by anemochory (39% and zoochory (13%. In relation to seed density, anemochory was the most frequent dispersal mode (88%. Most species in the zone were categorized as small seeds (92%, and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the

  20. Patterns of plant functional variation and specialization along secondary succession and topography in a tropical dry forest

    Science.gov (United States)

    Sanaphre-Villanueva, Lucía; Dupuy, Juan Manuel; Andrade, José Luis; Reyes-García, Casandra; Jackson, Paula C.; Paz, Horacio

    2017-05-01

    Long-term human disturbance of tropical forests may favor generalist plant species leading to biotic homogenization. We aimed to a) assess if generalist species dominate across different successional ages and topographical positions in a tropical dry forest with a long history of human disturbance, b) to characterize functional traits associated with generalist and specialist species, and c) to assess if a predominance of generalists leads to a homogeneous functional structure across the landscape. We used a multinomial model of relative abundances to classify 118 woody species according to their successional/topographic habitat. Three species were classified as secondary-forest specialists, five as mature-forest specialists, 35 as generalists, and 75 as too rare to classify. According to topography, six species were hill specialists, eight flat-site specialists, 35 generalists, and 70 too rare. Generalists dominated across the landscape. Analysis of 14 functional traits from 65 dominant species indicated that generalists varied from acquisitive strategies of light and water early in succession to conservative strategies in older forests and on hills. Long-term human disturbance may have favored generalist species, but this did not result in functional homogenization. Further analyses considering other functional traits, and temporal and fine-scale microenvironmental variation are needed to better understand community assembly.

  1. Seasonality in the Dung Beetle Community in a Brazilian Tropical Dry Forest: Do Small Changes Make a Difference?

    Science.gov (United States)

    Medina, Anderson Matos; Lopes, Priscila Paixão

    2014-01-01

    Dung beetle (Coleoptera: Scarabaeoidea: Scarabaeinae) activity is influenced by rainfall seasonality. We hypothesized that rainfall might also play a major role in regulating the community structure of this group. In this study, we describe seasonal changes in the richness, composition, and structure of the Scarabaeinae community in a Brazilian tropical dry forest. A fragment of arboreal Caatinga was sampled using baited pitfall traps during the early dry season (EDS), late dry season (LDS), early wet season (EWS), and middle wet season (MWS). We compared the dung beetle community in each season in relationship to species richness, rank-dominance, curves, and composition. We collected 1352 Scarabaeinae individuals , belonging to 15 species. Dichotomius aff. laevicollis Felsche (Coleoptera: Scarabaeidae) was the dominant species, representing 73.89% of the individuals. There were no seasonal changes in the rank dominance curves; all had a single dominant species and a few species with low abundance, typical for arid areas. Estimated richness was highest in MWS, followed by EWS. Dry-season samples (EDS and LDS) had lower richness, with no significant difference between the dry seasons. Although species richness increased as the habitat became wetter, the difference between the wet and dry seasons was small, which differs completely from the findings of other studies in Neotropical dry forests, where almost all species cease activities in the dry season. Species composition changes were found in non-metric multidimensional scaling and sustained by analysis of similarity. All the seasons had pairwise differences in composition, with the exception of EDS and MWS, which indicates that the dung beetle community in this fragment requires more than three months of drought to trigger changes in species composition; this is probably due to small changes in the forest canopy. There was no difference in composition between EDS and MWS. As in other tropical dry forests, although

  2. The potential of using Landsat time-series to extract tropical dry forest phenology

    Science.gov (United States)

    Zhu, X.; Helmer, E.

    2016-12-01

    Vegetation phenology is the timing of seasonal developmental stages in plant life cycles. Due to the persistent cloud cover in tropical regions, current studies often use satellite data with high frequency, such as AVHRR and MODIS, to detect vegetation phenology. However, the spatial resolution of these data is from 250 m to 1 km, which does not have enough spatial details and it is difficult to relate to field observations. To produce maps of phenology at a finer spatial resolution, this study explores the feasibility of using Landsat images to detect tropical forest phenology through reconstructing a high-quality, seasonal time-series of images, and tested it in Mona Island, Puerto Rico. First, an automatic method was applied to detect cloud and cloud shadow, and a spatial interpolator was use to retrieve pixels covered by clouds, shadows, and SLC-off gaps. Second, enhanced vegetation index time-series derived from the reconstructed Landsat images were used to detect 11 phenology variables. Detected phenology is consistent with field investigations, and its spatial pattern is consistent with the rainfall distribution on this island. In addition, we may expect that phenology should correlate with forest biophysical attributes, so 47 plots with field measurement of biophysical attributes were used to indirectly validate the phenology product. Results show that phenology variables can explain a lot of variations in biophysical attributes. This study suggests that Landsat time-series has great potential to detect phenology in tropical areas.

  3. Evaporation and transpiration differences among successional stages of Tropical Dry Forest, Santa Rosa National Park, Costa Rica

    Science.gov (United States)

    Jiménez-Rodríguez, César D.; Calvo-Alvarado, Julio

    2016-04-01

    Seasonal environments in the tropics show strong responses to changes in precipitation regimes. The monthly water availability is the main trigger for ecological responses as flowering, fructification, leaf sprouting and senescence. Among these environments, the tropical dry forests (TDF) depends directly on the soil water availability, defining the forest growing season despite the forest characteristics. However, within the same ecosystem is possible to find differences in the water fluxes due to forest age. The TDF located in Santa Rosa National Park (SRNP) in Costa Rica; shows a particular matrix of secondary forest patches varying in age, structure, and species composition allowing us to evaluate the water fluxes differences among successional stages of TDF. Three permanent plots of 1000.0 m2 were selected from the Tropi-Dry project. Each plot characterized a specific successional stage of this ecosystem varying in forest structure and age. Every location was equipped to measure the hourly soil water content and forest growth, while the meteorological conditions were collected by the meteorological station of the national park. The data was collected from December 2005 to June 2009 however, due to data gaps and quality control the data analysis includes only the hydrological years between 2006 and 2009. The soil water content was measured at three depths in each plot (10, 30 and 40 cm) to determine the real evapotranspiration from the forest. The precipitation along these three years shows strong variations registering 326.5 mm-1yr-1 in the first year up to 3004.0 mm-1yr-1 during the last year, these strong changes are influenced by the ENOS phenomena in the region. Regardless the precipitation amounts the evapotranspiration do not differ strongly on a yearly basis, were 726.7 mm-1yr-1, 675.1 mm-1yr-1 and 751.6 mm-1yr-1 were exported to the atmosphere by the early, intermediate and late stages of TDF secondary forest. The yearly strong differences in

  4. Factors associated with long-term species composition in dry tropical forests of Central India

    Science.gov (United States)

    Agarwala, M.; DeFries, R. S.; Qureshi, Q.; Jhala, Y. V.

    2016-10-01

    The long-term future of species composition in forests depends on regeneration. Many factors can affect regeneration, including human use, environmental conditions, and species’ traits. This study examines the influence of these factors in a tropical deciduous forest of Central India, which is heavily used by local, forest-dependent residents for livestock grazing, fuel-wood extraction, construction and other livelihood needs. We measure size-class proportions (the ratio of abundance of a species at a site in a higher size class to total abundance in both lower and higher size classes) for 39 tree species across 20 transects at different intensities of human use. The size-class proportions for medium to large trees and for small to medium-sized trees were negatively associated with species that are used for local construction, while size class proportions for saplings to small trees were positively associated with those species that are fire resistant and negatively associated with livestock density. Results indicate that grazing and fire prevent non-fire resistant species from reaching reproductive age, which can alter the long term composition and future availability of species that are important for local use and ecosystem services. Management efforts to reduce fire and forest grazing could reverse these impacts on long-term forest composition.

  5. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    Science.gov (United States)

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  6. Patterns of tree growth in relation to environmental variability in the tropical dry deciduous forest at Mudumalai, southern India

    Indian Academy of Sciences (India)

    Cheryl D Nath; H S Dattaraja; H S Suresh; N V Joshi; R Sukumar

    2006-12-01

    Tree diameter growth is sensitive to environmental fluctuations and tropical dry forests experience high seasonal and inter-annual environmental variation. Tree growth rates in a large permanent plot at Mudumalai, southern India, were examined for the influences of rainfall and three intrinsic factors (size, species and growth form) during three 4-year intervals over the period 1988–2000. Most trees had lowest growth during the second interval when rainfall was lowest, and skewness and kurtosis of growth distributions were reduced during this interval. Tree diameter generally explained < 10% of growth variation and had less influence on growth than species identity or time interval. Intraspecific variation was high, yet species identity accounted for up to 16% of growth variation in the community. There were no consistent differences between canopy and understory tree growth rates; however, a few subgroups of species may potentially represent canopy and understory growth guilds. Environmentally-induced temporal variations in growth generally did not reduce the odds of subsequent survival. Growth rates appear to be strongly influenced by species identity and environmental variability in the Mudumalai dry forest. Understanding and predicting vegetation dynamics in the dry tropics thus also requires information on temporal variability in local climate.

  7. Creation of Alternate Stable States in Tropical Dry Forests as a Consequence of Human Disturbance

    Science.gov (United States)

    Van Bloem, S. J.; Whitmire, S. L.; Thaxton, J.

    2015-12-01

    Anthropogenic disturbances in Caribbean subtropical dry forests of the Caribbean lead to either novel species assemblages in post-disturbance forest, or stable degraded grassland states. Among these disturbances are fire and clearing. Short-term responses to both disturbances include sharp increases in nutrient fluxes, shifts in soil moisture availability, and the spread of invasive grass species if seed sources are nearby. In Guánica Forest, Puerto Rico, our studies in sites that were frequently burned and a chronosequence of once-burned sites beginning 30 years ago showed that fire is associated with invasion by exotic grass species and that once invaded, grass dominated sites do not revert to forest. After 30 years, single burn sites were still ≥65% lower in basal area and species richness than native forest. Frequently burned sites had 60-75% lower soil N, 50-65% lower S, and 56-68% lower C, as well as elevated Fe and pH. A single burn in a previously unburned forest elevated NO3 flux ~6-fold for at least the next year. Once dominated by grass, tree seed rain is extremely low (7 seeds/m2/y). Low dispersal rates combined with low germination rates makes forest regeneration unlikely. In contrast, sites that cleared or plowed without grass invasion regain structural characteristics of native forests in approximately 40 years. However, these sites are typically dominated by Leucaena leucocephala, a naturalized tree introduced to the island in the 1700s. The proportion of native-species saplings in the understory of Leucaena-dominated forests increased by 0.85%/yr in stands >35 years old until reaching ~95% in 76 yr old stands, suggesting that Leucaena facilitated the reestablishment of native species. We conclude that when anthropogenic disturbance creates grass-dominated sites, these areas will remain stable degraded states. Leucaena can serve as an alternate pathway to forest restoration, facilitating the return of forest cover with a novel combination of

  8. Plant sexual systems and a review of the breeding system studies in the Caatinga, a Brazilian tropical dry forest.

    Science.gov (United States)

    Machado, Isabel Cristina; Lopes, Ariadna Valentina; Sazima, Marlies

    2006-02-01

    The reproductive biology of a community can provide answers to questions related to the maintenance of the intraspecific pollen flow and reproductive success of populations, sharing and competition for pollinators and also questions on conservation of natural habitats affected by fragmentation processes. This work presents, for the first time, data on the occurrence and frequency of plant sexual systems for Caatinga communities, and a review of the breeding system studies of Caatinga species. The sexual systems of 147 species from 34 families and 91 genera occurring in three Caatinga areas in north-eastern Brazil were analysed and compared with worldwide studies focusing on reproductive biology of different tropical communities. The frequency of hermaphrodite species was 83.0 % (122 species), seven of these (or 4.8 % of the total) being heterostylous. Monoecy occurred in 9.5 % (14) of the species, and andromonoecy in 4.8 % (seven). Only 2.7 % (four) of the species were dioecious. A high percentage of hermaphrodite species was expected and has been reported for other tropical ecosystems. With respect to the breeding system studies with species of the Caatinga, the authors' data for 21 species and an additional 18 species studied by others (n = 39) revealed a high percentage (61.5 %) of obligatory self-incompatibility. Agamospermy was not recorded among the Caatinga studied species. The plant sexual systems in the Caatinga, despite the semi-arid climate, are similar to other tropical dry and wet forest communities, including those with high rainfall levels, except for the much lower percentage of dioecious species. The high frequency of self-incompatible species is similar to that reported for Savanna areas in Brazil, and also for dry (deciduous and semideciduous) and humid tropical forest communities.

  9. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest.

    Science.gov (United States)

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C; Angeles, Guillermo

    2016-02-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different portions of trade-off axes. As predicted, species that maintained carbon capture, hydraulic function and leaf area at higher plant water deficits during drought had low photosynthetic rates, xylem hydraulic conductivity and growth rate under non-limiting water supply. Drought tolerance was associated with more dense leaf, stem and root tissues, whereas rapid resource acquisition was associated with greater stem water storage, larger vessel diameter and larger leaf area per mass invested. We offer evidence that the water exploitation versus drought tolerance trade-off drives species differentiation in the ability of tropical dry forest trees to deal with alternating water-drought pulses. However, we detected no evidence of strong functional differentiation between early and late successional species along the proposed trade-off axes, suggesting that the environmental gradient of water availability across secondary successional habitats in the dry tropics does not filter out physiological strategies of water use among species, at least at the seedling stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Trade-offs between ecosystem services and alternative pathways toward sustainability in a tropical dry forest region

    Directory of Open Access Journals (Sweden)

    Francisco Mora

    2016-12-01

    Full Text Available The design of strategies aimed at sustainable resource management requires an understanding of the trade-offs between the ecosystem services at stake, to determine appropriate ways in which to navigate them. We assess trade-offs between forage production for cattle ranching and the maintenance of carbon stocks or tree diversity in a Mexican tropical dry forest. Trade-offs between pairs of services were assessed by identifying their efficiency frontiers at both site and landscape scales. We also estimated service outcomes under current and hypothetical land-management conditions. We found stark trade-offs between fodder and carbon stocks and between fodder and tree species richness at the site scale. At the landscape scale, the efficiency frontier was concave, with a much less pronounced trade-off in the fodder-species richness case. Our estimates of current service supply levels showed a reduction of 18-21% for C stock and 41-43% for fodder biomass, relative to the maximum feasible values along the efficiency frontier. Choice of the optimum management strategy to reduce such inefficiency depended on deforestation level: secondary forest regeneration was most suitable when deforestation is low, whereas increased fodder productivity in the pastures is best when deforestation is high. Pasture enrichment with forage trees and secondary forest growth are potential management alternatives for achieving sustainability given the range of enabling ecological factors and to balance ecological and social sustainability given the requirements and preferences of local stakeholders. Given that analogous trade-offs are found across the tropics, this work contributes to reconciling tropical forest maintenance and its use for sustainable rural livelihoods.

  11. Molecular phylogenetics and species delimitation of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) throughout the Mexican tropical dry forest.

    Science.gov (United States)

    Blair, Christopher; Méndez de la Cruz, Fausto R; Law, Christopher; Murphy, Robert W

    2015-03-01

    Methods and approaches for accurate species delimitation continue to be a highly controversial subject in the systematics community. Inaccurate assessment of species' limits precludes accurate inference of historical evolutionary processes. Recent evidence suggests that multilocus coalescent methods show promise in delimiting species in cryptic clades. We combine multilocus sequence data with coalescence-based phylogenetics in a hypothesis-testing framework to assess species limits and elucidate the timing of diversification in leaf-toed geckos (Phyllodactylus) of Mexico's dry forests. Tropical deciduous forests (TDF) of the Neotropics are among the planet's most diverse ecosystems. However, in comparison to moist tropical forests, little is known about the mode and tempo of biotic evolution throughout this threatened biome. We find increased speciation and substantial, cryptic molecular diversity originating following the formation of Mexican TDF 30-20million years ago due to orogenesis of the Sierra Madre Occidental and Mexican Volcanic Belt. Phylogenetic results suggest that the Mexican Volcanic Belt, the Rio Fuerte, and Isthmus of Tehuantepec may be important biogeographic barriers. Single- and multilocus coalescent analyses suggest that nearly every sampling locality may be a distinct species. These results suggest unprecedented levels of diversity, a complex evolutionary history, and that the formation and expansion of TDF vegetation in the Miocene may have influenced subsequent cladogenesis of leaf-toed geckos throughout western Mexico.

  12. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Leopoldo Vázquez

    Full Text Available It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha, though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  13. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Science.gov (United States)

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  14. [Chronology of tropical dry forest regeneration in Santa Rosa, Guanacaste, Costa Rica. II. Vegetation in relation to the soil].

    Science.gov (United States)

    Leiva, Jorge A; Rocha, Oscar J; Mata, Rafael; Gutiérrez-Soto, Marco V

    2009-09-01

    Tropical dry forest (TDF) succession was monitored in Santa Rosa, Costa Rica. We analyzed the effect of soil type on forest structure and diversity. Eight seasonally-dry TDF sites located along a successional chrono-sequence (10, 15, 20, 40, 60 and >100 years) were examined in relation to 17 soil pedons and six soil orders. Soils had moderate to high fertility and were classified as Entisols and Vertisols, although Mollisols, Alfisols, Inceptisols and Ultisols were also present. One-hundred and thirty 500 m2 plots were established, 20 plots in secondary and 10 plots in mature TDF sites. Diameter at breast height (dbh) and total tree height were measured for saplings (dbh > or = 1 and trees (dbh > or = 5 cm). With the exception of two sites (40 and 60 years), soil type did not have significant effects on forest structure. However, tree diversity measured with Shannon-Wiener's H' and Fisher's alpha rarefaction curves, showed substantial differences among soil types, which became accentuated in mature forests. This pattern might be explained by non-random distributions of TDF trees, the scale of the study, the plot shape, and the use of systematic sampling designs. Low-fertility sites in general had higher species richness, consistent with idea that more restrictive soils reduce competition among trees and allow co-existence of species with contrasting growth rates. Changes in soil properties along a chrono-sequence of Entisols indicated that trees may experience more severe water stress as succession progresses, which may require adjustments in biomass allocation and phenological behavior of the dominant species. Our results suggest that edaphic specialization is more pronounced in mature TDF forests, and that most TDF trees are generalists in relation to soil type, highly tolerant to site heterogeneity, and show little physiological specializations in response to edaphic heterogeneity.

  15. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests

    Directory of Open Access Journals (Sweden)

    PMS Rodrigues

    Full Text Available AbstractThe aim of this study was to evaluate the ecological niche models (ENMs for three specialist trees (Anadenantheracolubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva in seasonally dry tropical forests (SDTFs in Brazil, considering present and future pessimist scenarios (2080 of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent.We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%, although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity. Long-term multidisciplinary studies are necessary to make reliable predictions of the plant’s adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  16. CLIMATE-TREE GROWTH RELATIONSHIPS OF Mimosa tenuiflora IN SEASONALLY DRY TROPICAL FOREST, BRAZIL

    Directory of Open Access Journals (Sweden)

    Patrícia Póvoa Mattos

    2015-03-01

    Full Text Available Mimosa tenuiflora is a native pioneer tree from the Caatinga used commercially as firewood due to its high calorific value. It is deciduous, its trunk does not reach large diameters and it has good regrowth capacity. This study intended to determine the annual increment in diameter of M. tenuiflora and its correlation with rainfall, as basis for fuel wood management. Disks from the stem base of M. tenuiflora trees were collected in 2008 in Sertânia and Serra Talhada, Pernambuco State, from regrowth of trees coppiced in 2003 and in Limoeiro do Norte, Ceará State, from a plantation established in 2002. The trees have well-defined annual growth rings, highly correlated with annual precipitation and are well-suited for dendrochronological investigations. Forest managers must consider the influence of previous drier years in the wood production when predicting fuel wood harvesting. The high growth correlation with the previous year’s rainfall in regions where the rains start after photoperiodic stimulation indicate the necessity of understanding the growth dynamics of the species under dry forest conditions through additional ecophysiology studies.

  17. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    Science.gov (United States)

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  18. DNA barcode authentication of wood samples of threatened and commercial timber trees within the tropical dry evergreen forest of India.

    Directory of Open Access Journals (Sweden)

    Stalin Nithaniyal

    Full Text Available BACKGROUND: India is rich with biodiversity, which includes a large number of endemic, rare and threatened plant species. Previous studies have used DNA barcoding to inventory species for applications in biodiversity monitoring, conservation impact assessment, monitoring of illegal trading, authentication of traded medicinal plants etc. This is the first tropical dry evergreen forest (TDEF barcode study in the World and the first attempt to assemble a reference barcode library for the trees of India as part of a larger project initiated by this research group. METHODOLOGY/PRINCIPAL FINDINGS: We sampled 429 trees representing 143 tropical dry evergreen forest (TDEF species, which included 16 threatened species. DNA barcoding was completed using rbcL and matK markers. The tiered approach (1st tier rbcL; 2nd tier matK correctly identified 136 out of 143 species (95%. This high level of species resolution was largely due to the fact that the tree species were taxonomically diverse in the TDEF. Ability to resolve taxonomically diverse tree species of TDEF was comparable among the best match method, the phylogenetic method, and the characteristic attribute organization system method. CONCLUSIONS: We demonstrated the utility of the TDEF reference barcode library to authenticate wood samples from timber operations in the TDEF. This pilot research study will enable more comprehensive surveys of the illegal timber trade of threatened species in the TDEF. This TDEF reference barcode library also contains trees that have medicinal properties, which could be used to monitor unsustainable and indiscriminate collection of plants from the wild for their medicinal value.

  19. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community.

    Science.gov (United States)

    Reyes-García, C; Mejia-Chang, M; Griffiths, H

    2012-02-01

    • Vascular epiphytes have developed distinct lifeforms to maximize water uptake and storage, particularly when delivered as pulses of precipitation, dewfall or fog. The seasonally dry forest of Chamela, Mexico, has a community of epiphytic bromeliads with Crassulacean acid metabolism showing diverse morphologies and stratification within the canopy. We hypothesize that niche differentiation may be related to the capacity to use fog and dew effectively to perform photosynthesis and to maintain water status. • Four Tillandsia species with either 'tank' or 'atmospheric' lifeforms were studied using seasonal field data and glasshouse experimentation, and compared on the basis of water use, leaf water δ(18) O, photosynthetic and morphological traits. • The atmospheric species, Tillandsia eistetteri, with narrow leaves and the lowest succulence, was restricted to the upper canopy, but displayed the widest range of physiological responses to pulses of precipitation and fog, and was a fog-catching 'nebulophyte'. The other atmospheric species, Tillandsia intermedia, was highly succulent, restricted to the lower canopy and with a narrower range of physiological responses. Both upper canopy tank species relied on tank water and stomatal closure to avoid desiccation. • Niche differentiation was related to capacity for water storage, dependence on fog or dewfall and physiological plasticity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  20. Structural aspects and floristic similarity among tropical dry forest fragments with different management histories in northern Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Daniel Meira Arruda

    2011-02-01

    Full Text Available In order to produce useful knowledge to the initiatives of protection and management of forest fragments, more specifically for tropical dry forests which suffer with frequent anthropic activities, and due to the lack of specific studies, this article aimed describe the structure and the floristic similarity among three areas of dry forest with different management histories. The study was developed in Capitão Enéas municipality, Northern Minas Gerais, Brazil, where three fragments were evaluated, being one in regeneration for 30 years, another submitted to occasional fire and the third with selective cut in small scale. The sampling was developed through the point quarter method considering all the alive phanerophyte individuals with circumference at breast height (CBH > 15 cm. In the three fragments, 512 individuals, distributed in 60 species, 47 genera, and 23 families were sampled. The most representative families were Fabaceae (26, Anacardiaceae (4, Bignoniaceae (3 and Combretaceae (3. However, fourteen families were represented by only one species. Only eight species were common to all fragments - Myracrodruon urundeuva standed out with 26.9% of all sampled individuals - while a great number of species were exclusive of each fragment. The floristic and structural differences between the fragments are possibly related to the history and intensity of management in each area besides the topography variations and the presence or absence of limestone outcrops. These results show the importance of each fragment, indicating that the loss of anyone would cause negative impacts on the regional flora and consequently to the associated biodiversity.

  1. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    Science.gov (United States)

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live.

  2. Floristic composition of the dry tropical forest in biological reserve (sanctuary "Los Besotes" and phenology of the dominant arboreal species (Valledupar, Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    Mary Lee Berdugo Lattke

    2015-01-01

    Full Text Available Based on the floristic composition and structural aspects, the formation tropical dry forest of the reserve "Los Besotes" (Valledupar, Cesar; 248 y 1046m of altitude was characterized. In 35 individuals from nine dominant tree species in two forest types, the phenological characteristics were assessed. Seven monitoring were performed along one year according to the scheme of distribution of rainfall. The leaf fall in the forests of Myrcianthes aff. fragrans and Brosimum alicastrum did not exceed 20% regardless of the climatic period (drought or rainy seasons. In others dominant understory species the leaf fall was less than 40%, thus species of the canopy are classified as evergreen while those of the understory as semideciduous. Blooming peaked during the dry season while fruit production peaked during the two rainy seasons. In the forest ofBursera simaruba and Pterocarpus acapulcensis the leaf fall exceeded 60% in the dry season, while in the rainy season was only 30%. The leaf fall increased to 60% in others dominant understory species. Both canopy as well as understory species are deciduous. Blooming was observed during the dry season (December to March, and July, but it is also likely to occur in October; fruit production was observed at the end of the rainy season. In the tropical dry forest formation evergreen plant communities with low values of leaf fall (40% and deciduous communities with values greater than 60% are recognized.

  3. Composition, structure and diversity characterization of dry tropical forest of Chhattisgarh using satellite data

    Institute of Scientific and Technical Information of China (English)

    Tarun Thakur; S.L. Swamy; Ajit Singh Nain

    2014-01-01

    The purpose of this study was to characterize the land use, vegetation structure, and diversity in the Barnowpara Sanctuary, Raipur district, Chhattisgarh, India through the use of satellite remote sensing and GIS. Land cover and vegetation were spatially analyzed by digitally classifying IRS 1D LISS III satellite data using a maximum likelihood algorithm. Later, the variations in structure and diversity in different forest types and classes were quantified by adopting quadratic sampling proce-dures. Nine land-cover types were delineated: teak forest, dense mixed forest, degraded mixed forest, Sal mixed forest, open mixed forest, young teak plantation, grasslands, agriculture, habitation, and water bodies. The classification accuracy for different land-use classes ranged from 71.23%to 100%. The highest accuracy was observed in water bodies and grass-land, followed by habitation and agriculture, teak forest, degraded mixed forest, and dense mixed forest. The accuracy was lower in open mixed forest, and sal mixed forest. Results revealed that density of different forest types varied from 324 to 733 trees ha-1, basal area from 8.13 to 28.87 m2·ha-1 and number of species from 20 to 40. Similarly, the diversity ranged from 1.36 to 2.98, concentration of dominance from 0.06 to 0.49, species richness from 3.88 to 6.86, and beta diversity from 1.29 to 2.21. The sal mixed forest type recorded the highest basal area, diversity was highest in the dense mixed forest, and the teak forest recorded maximum density, which was poor in degraded mixed forests. The study also showed that Normalized Difference Vegetation Index (NDVI) was strongly cor-related to with the Shannon Index and species richness.

  4. Vegetation structure and composition of a tropical dry forest in regeneration in Bataclán (Cali, Colombia

    Directory of Open Access Journals (Sweden)

    Viviana Londoño Lemos

    2015-01-01

    Full Text Available Characterization of long-term vegetation in a tropical dry forest (TDF that is in the process of regeneration permits establishment of patterns of composition, structure and dynamics of plant communities and sheds light on the different stages of plant succession. In this study, the plant community of ecoparque Bataclán, Cali, Colombia was evaluated by determining its structure and composition in two regeneration strategies. One strategy consisted of natural regeneration with bamboo barriers and the other of natural regeneration without bamboo barriers. Three permanent plots of 500 m2 were established in each regeneration strategy (six plots in total. Composition and structure was determined, taking into account all the growth habits, with different sampling methods. We found no significant differences between vegetation structure and composition of the two strategies for forest regeneration. forty-one species belonging to 27 families were recorded (trees and shrubs 58.5 %, herbs 24.4 %, climbers or scandents 14.6 %, epiphytes 2.4 %. The dominant family was Melastomataceae and the dominant species was Miconia prasina. The orchidCatasetum ochraceum and the grass Thrasya petrosa were indicator species for high luminosity. We conclude that the plant community is in an early successional stage, where there is a mixture of planted and naturally regenerated species in the zone, characterized by pioneer species from TDF and other nearby life zones.

  5. Collective action in the management of a tropical dry forest ecosystem: effects of Mexico's property rights regime.

    Science.gov (United States)

    Schroeder, Natalia Mariel; Castillo, Alicia

    2013-04-01

    Dilemmas of natural resources governance have been a central concern for scholars, policy makers, and users. Major debates occur over the implications of property rights for common resources management. After the Mexican Revolution (1910-1917), land was distributed mainly as ejidos conceived as a hereditary but unalienable collective form of property. In 1992, a new Agrarian Law was decreed that allows individual ownership by removing various restrictions over the transfer of land. Scholars have examined the reform mainly focusing on land-tenure changes and environmental fragmentation. This study examines how the new ownership regime is affecting collective decision-making in ejidos located in a tropical dry forest (TDF) ecosystem. Information on decision-making processes before and after the 1992 reform was gathered through 52 interviews conducted in four ejidos selected along a gradient including agricultural, cattle-raising, and TDF use. The new individualized land property system reduced collective action in ejidos but did not trigger it. Collective action responses to the 1992 reform were buffered by self-organization each ejido already had. Heterogeneous users who shared a short history and showed little understanding of TDF and low dependence on its resources seemed to explain why ejidos have not been able to share a sense of community that would shape the construction of institutions for the collective management of forest resources. However, when a resource is scarce and highly valuable such as water the same users showed capacities for undertaking costly co-operative activities.

  6. Collective Action in the Management of a Tropical Dry Forest Ecosystem: Effects of Mexico's Property Rights Regime

    Science.gov (United States)

    Schroeder, Natalia Mariel; Castillo, Alicia

    2013-04-01

    Dilemmas of natural resources governance have been a central concern for scholars, policy makers, and users. Major debates occur over the implications of property rights for common resources management. After the Mexican Revolution (1910-1917), land was distributed mainly as ejidos conceived as a hereditary but unalienable collective form of property. In 1992, a new Agrarian Law was decreed that allows individual ownership by removing various restrictions over the transfer of land. Scholars have examined the reform mainly focusing on land-tenure changes and environmental fragmentation. This study examines how the new ownership regime is affecting collective decision-making in ejidos located in a tropical dry forest (TDF) ecosystem. Information on decision-making processes before and after the 1992 reform was gathered through 52 interviews conducted in four ejidos selected along a gradient including agricultural, cattle-raising, and TDF use. The new individualized land property system reduced collective action in ejidos but did not trigger it. Collective action responses to the 1992 reform were buffered by self-organization each ejido already had. Heterogeneous users who shared a short history and showed little understanding of TDF and low dependence on its resources seemed to explain why ejidos have not been able to share a sense of community that would shape the construction of institutions for the collective management of forest resources. However, when a resource is scarce and highly valuable such as water the same users showed capacities for undertaking costly co-operative activities.

  7. Invasive plant species and their disaster-effects in dry tropical forests and rangelands of Kenya and Tanzania

    Directory of Open Access Journals (Sweden)

    John F. Obiri

    2011-04-01

    Full Text Available Invasive plants are a hazard in the tropical dry forests and rangelands of East Africa. Although often not reported, they have increasingly created disasters that have affected the environment and socio-economic wellbeing of communities inhabiting these dry regions. This paper reports on the key invasives in the drylands of Kenya and Tanzania and their effects, and suggests some disaster risk reduction (DRR strategies. The study was largely based on secondary data analysis and supported by surveys in the affected drylands. The findings show ten key invasive plant species that affect the drylands. Their disaster-effects vary and include: causing the death of livestock by poisoning and destroying livestock foliage, accelerating biodiversity loss via suppression of native plants, to increasing diseases by o#ering a breeding ground for mosquitoes and other insects that carry ailments like nagana and sleeping sickness. The DRR initiatives include (1 having a prudent land use system that discourages activities like unplanned burning of drylands, (2 assessing and monitoring phytosanitary risks associated with introduced plant species, (3 strengthening national and local institutional capacities that enhance invasive species awareness and preparedness for disasters, and (4 enhancing early warning systems related to plant invasion.

  8. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  9. Stress tolerance and ecophysiological ability of an invader and a native species in a seasonally dry tropical forest.

    Science.gov (United States)

    Oliveira, Marciel Teixeira; Matzek, Virginia; Dias Medeiros, Camila; Rivas, Rebeca; Falcão, Hiram Marinho; Santos, Mauro Guida

    2014-01-01

    Ecophysiological traits of Prosopis juliflora (Sw.) DC. and a phylogenetically and ecologically similar native species, Anadenanthera colubrina (Vell.) Brenan, were studied to understand the invasive species' success in caatinga, a seasonally dry tropical forest ecosystem of the Brazilian Northeast. To determine if the invader exhibited a superior resource-capture or a resource-conservative strategy, we measured biophysical and biochemical parameters in both species during dry and wet months over the course of two years. The results show that P. juliflora benefits from a flexible strategy in which it frequently outperforms the native species in resource capture traits under favorable conditions (e.g., photosynthesis), while also showing better stress tolerance (e.g., antioxidant activity) and water-use efficiency in unfavorable conditions. In addition, across both seasons the invasive has the advantage over the native with higher chlorophyll/carotenoids and chlorophyll a/b ratios, percent N, and leaf protein. We conclude that Prosopis juliflora utilizes light, water and nutrients more efficiently than Anadenanthera colubrina, and suffers lower intensity oxidative stress in environments with reduced water availability and high light radiation.

  10. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    Science.gov (United States)

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (Pi) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (Pi) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H2O and -H2O), 2 AMF levels (+AMF and -AMF) and 2Pi levels (+Pi and -Pi). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, Pi or AMF+Pi plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or Pi. After rehydration, those plants submitted to drought with AMF, Pi or AMF+Pi showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or Pi. However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, Pi or AMF+Pi increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Caribbean dry forest networking: an opportunity for conservation

    Science.gov (United States)

    K. Banda-Rodriguez; J. Weintritt; R.T. Pennington

    2016-01-01

    Seasonally dry tropical forest is the most threatened tropical forest in the world. Though its overall plant species diversity is lower than in neighboring biomes such as rain forest, species endemism can be high, and its conservation has often been neglected. Caribbean dry forests face diverse threats including tourism, agriculture, and climate change. The Latin...

  12. The role of arbuscular mycorrhizal fungi on the early-stage restoration of seasonally dry tropical forest in Chamela, Mexico

    Directory of Open Access Journals (Sweden)

    Pilar Huante

    2012-04-01

    Full Text Available It was evaluated the effect of two different sources of local inocula from two contrasting sites (mature forest, pasture of arbuscular mycorrhizae fungi (AMF and a non-mycorrhizal control on the plant growth of six woody species differing in functional characteristics (slow-, intermediate- and fast-growth, when introduced in a seasonally tropical dry forest (STDF converted into abandoned pasture. Six plots (12 X 12m were set as AMF inoculum source. Six replicates of six different species arranged in a Latin Square design were set in each plot. Plant height, cover area and the number of leaves produced by individual plant was measured monthly during the first growing season in each treatment. Species differed in their ability to benefit from AMF and the largest responsiveness in plant height and leaf production was exhibited by the slow-growing species Swietenia humilis, Hintonia latiflora and Cordia alliodora. At the end of the growing season (November, the plant height of the fast growing species Tabebuia donnel-smithii, Ceiba pentandra and Guazuma ulmifolia were not influenced by AMF. However, inocula of AMF increased leaf production of all plant species regardless the functional characteristics of the species, suggesting a better exploitation of above-ground space and generating a light limited environment under the canopy, which contributed to pasture suppression. Inoculation of seedlings planted in abandoned pasture areas is recommended for ecological restoration due to the high responsiveness of seedling growth in most of species. Use of forest inoculum with its higher diversity of AMF could accelerate the ecological restoration of the above and below-ground comunities.

  13. NICHE RELATIONSHIPS OF AN UNGULATE ASSEMBLAGE IN A DRY TROPICAL FOREST

    National Research Council Canada - National Science Library

    S. Bagchi; S. P. Goyal; K. Sankar

    2003-01-01

    ...) from semiarid forests in western India were studied for habitat use and food habits. Habitat use was analyzed by discriminant analysis using 20 variables, and food habits investigated by analyzing undigested plant remains in pellets...

  14. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand.

    Science.gov (United States)

    Ishida, Atsushi; Yamazaki, Jun-Ya; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Nakano, Takashi; Adachi, Minaco; Yoshimura, Kenichi; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Maruta, Emiko; Diloksumpun, Sapit; Puangchit, Ladawan

    2014-01-01

    In tropical dry forests, uppermost-canopy leaves of evergreen trees possess the ability to use water more conservatively compared with drought-deciduous trees, which may result from significant differences in the photoprotective mechanisms between functional types. We examined the seasonal variations in leaf gas exchange, chlorophyll fluorescence and the amounts of photosynthetic pigments within lamina of the uppermost-canopy leaves of three drought-deciduous trees (Vitex peduncularis Wall., Xylia xylocarpa (Roxb.) W. Theob., Shorea siamensis Miq.), a semi-deciduous tree (Irvingia malayana Miq.) and two evergreen trees (Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels) in Thailand. Area-based maximum carbon assimilation rates (Amax) decreased during the dry season, except in S. siamensis. The electron transport rate (ETR) remained unchanged in deciduous trees, but decreased during the dry season in evergreen and semi-deciduous trees. In the principal component analysis, the first axis (Axis 1) accounted for 44.3% of the total variation and distinguished deciduous from evergreen trees. Along Axis 1, evergreen trees were characterized by a high Stern-Volmer non-photochemical quenching coefficient (NPQ), high xanthophyll cycle pigments/chlorophyll and a high de-epoxidation state of the xanthophyll cycle, whereas the deciduous trees were characterized by a high ETR, a high quantum yield of PSII (ΦPSII = (Fm(') -F)/Fm(')) and a high mass-based Amax under high-light conditions. These findings indicate that drought-deciduous trees showing less conservative water use tend to dissipate a large proportion of electron flow through photosynthesis or alternative pathways. In contrast, the evergreens showed more conservative water use, reduced Amax and ETR and enhanced NPQ and xanthophyll cycle pigments/chlorophyll during the dry season, indicating that down-regulated photosynthesis with enhanced thermal dissipation of excess light energy played an important role in

  15. The establishment of Central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico

    Directory of Open Access Journals (Sweden)

    Charlie George Willis

    2014-12-01

    Full Text Available Biogeography and community ecology can mutually illuminate the formation of a regional species pool or biome. We apply phylogenetic methods to a large and diverse plant clade, Malpighiaceae, to characterize the formation of its species pool in Mexico, and its occupancy of the seasonally dry tropical forest (SDTF biome that occurs there. We find that the ~162 species of Mexican Malpighiaceae represent ~33 dispersals from South America beginning in the Eocene and continuing until the Pliocene (~46.4 – 3.8 Myr. Furthermore, dispersal rates between South America and Mexico show a significant six-fold increase during the mid-Miocene (~23.9 Myr. We hypothesize that this increase marked the availability of Central America as an important corridor for Neotropical plant migration. We additionally demonstrate that this high rate of dispersal contributed substantially more to the phylogenetic diversity of Malpighiaceae in Mexico than in situ diversification. Finally, we show that most lineages arrived in Mexico pre-adapted with regard to one key SDTF trait, total annual precipitation. In contrast, these lineages adapted to a second key trait, precipitation seasonality, in situ as mountain building in the region gave rise to the abiotic parameters of extant SDTF. The timing of this in situ adaptation to seasonal precipitation suggests that SDTF likely originated its modern characteristics by the late Oligocene, but was geographically more restricted until its expansion in the mid-Miocene. These results highlight the complex interplay of dispersal, adaptation, and in situ diversification in the formation of tropical biomes. Our results additionally demonstrate that these processes are not static, and their relevance can change markedly over evolutionary time. This has important implications for understanding the origin of SDTF in Mexico, but also for understanding the temporal and spatial origin of biomes and regional species pools more broadly.

  16. The establishment of Central American migratory corridors and the biogeographic origins of seasonally dry tropical forests in Mexico.

    Science.gov (United States)

    Willis, Charles G; Franzone, Brian F; Xi, Zhenxiang; Davis, Charles C

    2014-01-01

    Biogeography and community ecology can mutually illuminate the formation of a regional species pool or biome. Here, we apply phylogenetic methods to a large and diverse plant clade, Malpighiaceae, to characterize the formation of its species pool in Mexico, and its occupancy of the seasonally dry tropical forest (SDTF) biome that occurs there. We find that the ~162 species of Mexican Malpighiaceae represent ~33 dispersals from South America beginning in the Eocene and continuing until the Pliocene (~46.4-3.8 Myr). Furthermore, dispersal rates between South America and Mexico show a significant six-fold increase during the mid-Miocene (~23.9 Myr). We hypothesize that this increase marked the availability of Central America as an important corridor for Neotropical plant migration. We additionally demonstrate that this high rate of dispersal contributed substantially more to the phylogenetic diversity of Malpighiaceae in Mexico than in situ diversification. Finally, we show that most lineages arrived in Mexico pre-adapted with regard to one key SDTF trait, total annual precipitation. In contrast, these lineages adapted to a second key trait, precipitation seasonality, in situ as mountain building in the region gave rise to the abiotic parameters of extant SDTF. The timing of this in situ adaptation to seasonal precipitation suggests that SDTF likely originated its modern characteristics by the late Oligocene, but was geographically more restricted until its expansion in the mid-Miocene. These results highlight the complex interplay of dispersal, adaptation, and in situ diversification in the formation of tropical biomes. Our results additionally demonstrate that these processes are not static, and their relevance can change markedly over evolutionary time. This has important implications for understanding the origin of SDTF in Mexico, but also for understanding the temporal and spatial origin of biomes and regional species pools more broadly.

  17. Morphotype-based characterization of arbuscular mycorrhizal fungal communities in a restored tropical dry forest, Margarita island-Venezuela.

    Science.gov (United States)

    Fajardo, Laurie; Loveral, Milagros; Arrindell, Pauline; Aguilar, Victor Hugo; Hasmy, Zamira; Cuenca, Gisela

    2015-09-01

    The mycorrhizal component of revegetated areas after ecological restoration or rehabilitation in arid and semiarid tropical areas has been scarcely assessed, particularly those made after mining disturbance. We evaluated and compared the presence of arbuscular mycorrhizal fungi of a small area of restored tropical dry forest destroyed by sand extraction, with a non-restored area of similar age, at the peninsula of Macanao, Margarita Island (Venezuela). Our study was undertaken in 2009, four years after planting, and the mycorrhizal status was evaluated in four restored plots (8 x 12.5 m) (two were previously treated with hydrogel (R2 and R2'), and two were left untreated (R1 and R1'), and four non-restored plots of similar size (NR1 and NR1' with graminoid physiognomy with some scattered shrubs; and NR2 and NR2', with a more species rich plant community). Apparently the restoration management promoted higher arbuscular mycorrhizal fungi (AMF) species richness and diversity, particularly in restored soils where the hydrogel was added (R2 treatment). Soil of the NRI treatment (with a higher herbaceous component) showed the highest spore density, compared to samples of soils under the other treatments. Considering species composition, Claroideoglomus etunicatum and Rhizophagus intraradices were found in all treatments; besides, Diversispora spurca and Funnefformis geosporum were only found in non-restored plots, while members of the Gigasporaceae (a family associated with little disturbed sites) were commonly observed in the plots with restored soils. Mycorrhizal colonization was similar in the restored and non-restored areas, being a less sensitive indicator of the ecosystem recovery. The trend of higher richness and diversity of AMF in the restored plot with hydrogel suggests that this management strategy contributes to accelerate the natural regeneration in those ecosystems where water plays an essential role.

  18. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison;

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  19. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest

    Science.gov (United States)

    2017-01-01

    Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4–5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds. PMID:28158320

  20. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure

    Directory of Open Access Journals (Sweden)

    Lizet Solis-Gabriel

    2017-05-01

    Full Text Available Tropical dry forests (TDFs have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.

  1. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales).

    Science.gov (United States)

    De-Nova, J Arturo; Medina, Rosalinda; Montero, Juan Carlos; Weeks, Andrea; Rosell, Julieta A; Olson, Mark E; Eguiarte, Luis E; Magallón, Susana

    2012-01-01

    • Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. • Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. • Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. • The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows.

  2. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    Science.gov (United States)

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models.

  3. Ectomycorrhizal diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica

    Science.gov (United States)

    Desai, Nikhilesh S.; Wilson, Andrew W.; Powers, Jennifer S.; Mueller, Gregory M.; Egerton-Warburton, Louise M.

    2016-12-01

    Most conservation efforts in seasonally dry tropical forests have overlooked less obvious targets for conservation, such as mycorrhizal fungi, that are critical to plant growth and ecosystem structure. We documented the diversity of ectomycorrhizal (EMF) and arbuscular mycorrhizal (AMF) fungal communities in Quercus oleoides (Fagaceae) in Guanacaste province, Costa Rica. Soil cores and sporocarps were collected from regenerating Q. oleoides plots differing in stand age (early vs late regeneration) during the wet season. Sequencing of the nuclear ribosomal ITS region in EMF root tips and sporocarps identified 37 taxa in the Basidiomycota; EMF Ascomycota were uncommon. The EMF community was dominated by one species (Thelephora sp. 1; 70% of soil cores), more than half of all EMF species were found only once in an individual soil core, and there were few conspecific taxa. Most EMF taxa were also restricted to either Early or Late plots. Levels of EMF species richness and diversity, and AMF root colonization were similar between plots. Our results highlight the need for comprehensive spatiotemporal samplings of EMF communities in Q. oleoides to identify and prioritize rare EMF for conservation, and document their genetic and functional diversity.

  4. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest.

    Science.gov (United States)

    Victoriano-Romero, Elizabeth; Valencia-Díaz, Susana; Toledo-Hernández, Víctor Hugo; Flores-Palacios, Alejandro

    2017-01-01

    Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.

  5. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests

    NARCIS (Netherlands)

    Poorter, L.

    2009-01-01

    ¿ Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found

  6. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest.

    Science.gov (United States)

    González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis

    2010-07-01

    Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments.

  7. Does the edge effect influence plant community structure in a tropical dry forest? O efeito de borda influencia a estrutura da comunidade vegetal em uma floresta tropical seca?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.Efeitos de borda são considerados fator-chave na regulação da estrutura de comunidades vegetais em diferentes ecossistemas. Entretanto, apesar dos poucos estudos relacionados, o efeito de borda parece não ser determinante em regiões semiáridas, como a floresta tropical seca brasileira, conhecida como Caatinga. Este estudo testou a hipótese nula de que a comunidade vegetal arbustivo-arbórea não sofre alterações em sua estrutura, riqueza e composição devido ao efeito de borda. Foram instaladas 24 parcelas (20 x 20 m em um fragmento de Caatinga arbórea, sendo 12 parcelas na borda do fragmento e 12 parcelas no seu interior. A riqueza, abundância e composição das espécies não diferiram estatisticamente entre as parcelas de borda e interior. Os resultados deste estudo corroboram um possível padr

  8. Effects of the Heterogeneity of the Landscape and the Abundance of Wasmannia auropunctata on Ground Ant Assemblages in a Colombian Tropical Dry Forest

    Directory of Open Access Journals (Sweden)

    Rafael Achury

    2012-01-01

    Full Text Available To evaluate the response of the ant assemblages to different management practices in the tropical dry forests of southwestern Colombia, 10 sites that conserve forest fragments surrounded by pastures and sugarcane crops were sampled. Tuna-fish baits placed on the ground in the three habitats captured 100 ant species (41 genera. The greatest number of species was found in the forests in contrast with a significant loss of richness and diversity in the productive habitats, the pastures being richer than the cane fields. Species richness was negatively correlated with the abundance of the little fire ant Wasmannia auropunctata. Ant species composition was related to soil temperature and percent ground cover, as well as being partially determined by location and the abundance of W. auropunctata. The forests had a significantly different species composition from the other two habitats, but there were no consistent differences between the pastures and the cane fields.

  9. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation.

    Science.gov (United States)

    Prieto-Torres, David A; Navarro-Sigüenza, Adolfo G; Santiago-Alarcon, Diego; Rojas-Soto, Octavio R

    2016-01-01

    Assuming that co-distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of bird and plant species inhabiting tropical dry forests (TDFs) in Mexico were developed to evaluate future projections of their distribution for the years 2050 and 2070. We used ENM-based predictions and climatic data for two Global Climate Models, considering two Representative Concentration Pathway scenarios (RCP4.5/RCP8.5). We also evaluated the effects of habitat loss and the importance of the Mexican system of protected areas (PAs) on the projected models for a more detailed prediction of TDFs and to identify hot spots that require conservation actions. We identified four major distributional areas: the main one located along the Pacific Coast (from Sonora to Chiapas, including the Cape and Bajío regions, and the Balsas river basin), and three isolated areas: the Yucatán peninsula, central Veracruz, and southern Tamaulipas. When considering the effect of habitat loss, a significant reduction (~61%) of the TDFs predicted area occurred, whereas climate-change models suggested (in comparison with the present distribution model) an increase in area of 3.0-10.0% and 3.0-9.0% for 2050 and 2070, respectively. In future scenarios, TDFs will occupy areas above its current average elevational distribution that are outside of its present geographical range. Our findings show that TDFs may persist in Mexican territory until the middle of the XXI century; however, the challenges about long-term conservation are partially addressed (only 7% unaffected within the Mexican network of PAs) with the current Mexican PAs network. Based on our ENM approach, we suggest that a combination of models of species inhabiting present TDFs and taking into account change scenarios represent an invaluable tool to create new PAs and ecological corridors, as a response to the increasing levels of habitat destruction and the effects of climate change on this ecosystem.

  10. Topographic position, but not slope aspect, drives the dominance of functional strategies of tropical dry forest trees

    Science.gov (United States)

    Méndez-Toribio, M.; Ibarra-Manríquez, G.; Navarrete-Segueda, A.; Paz, H.

    2017-08-01

    In seasonal plant communities, it is recognized that topography-related variation in water availability and solar radiation determine vegetation structure and community composition; however, the effects on functional structure, particularly through changes in resource use strategies of plants are still poorly understood. This study examines the effects of slope aspect and topographic position on functional trait dominance in a tropical dry forest landscape and explores whether strategies for coping with drought (avoidance vs. tolerance) segregate spatially along the water stress gradient created by the interaction of these two topographic factors. The study was conducted in the Balsas river basin in south-central Mexico. Functional traits were evaluated in 63 species of trees (≥ 2.5 cm diameter at breast height) dominant in plots located at three topographic positions (low, medium and high) and on two slope aspects (north and south). Eight leaf and four stem functional traits, relating to the plants’ ability to avoid or tolerate water and temperature stress, were measured. Community-level functional traits were strongly affected by topographic position while only a weak signal was detected by the slope aspect. Contrary to our expectations, attributes associated with drought tolerance predominated on the lower topographic positions of the slopes, (moister and warmer sites), while on the upper parts with drier soil, but cooler air, attributes associated with water stress avoidance dominated. In addition, variation in the dominance of leaf pulvini and trichomes along the topographic gradient suggests environmental filtering by elevated air temperatures and water stress, respectively. Overall, our results suggest that the upper topographic positions that generate a shorter and more fluctuating water-availability window, favor readily-deciduous plants with high levels of water storage in their tissues, traits allowing for a rapid avoid of water stress, whereas on

  11. Maintenance of Leaf Water Potential by Tropical Dry Forest Tree and Liana Species During a Severe Drought

    Science.gov (United States)

    Werden, L. K.; Waring, B. G.; Smith, C. M.; Powers, J. S.

    2015-12-01

    In 2014, tropical dry forest (TDF) ecosystems in northwestern Costa Rica experienced the most severe drought on record since 1950, in which precipitation in the first four months of the rainy season (May-August) was 43% of normal. We used this opportunity to quantify the impact of soil water availability on the maintenance of diurnal leaf water potential (LWP) in a diverse set of tree and liana taxa. Across sites spanning a large soil texture and water potential gradient, we measured pre-dawn (pdLWP) and mid-day leaf water potential (mdLWP) of 79 individuals of 14 tree and 7 liana species both during the peak of the drought (early August), and well after the onset of wet season rains (late September). In addition, we quantified a suite of resource-acquisition related leaf traits for every individual. The maintenance of leaf water potential throughout the day (deltaLWP = mdLWP - pdLWP) varied dramatically among species (Figure 1). During the drought, evergreen species experienced significantly higher drought stress overall (larger deltaLWP) than deciduous species, but trees did not differ from lianas in their responses. The ability of TDF trees or lianas to maintain LWP did not depend on site-specific soil water potential, indicating that soil water retaining characteristics may not be good predictors of overall community responses to drought. We found that TDF tree and liana species have a wide range of responses to severe drought, and future integration of both leaf trait and physiological data (turgor loss point, stomatal conductance) will allow us to determine if specific leaf traits or physiological metrics are good predictors of tree and liana drought responses in TDF.

  12. How Does Dung Beetle (Coleoptera: Scarabaeidae) Diversity Vary Along a Rainy Season in a Tropical Dry Forest?

    Science.gov (United States)

    Novais, Samuel M. A.; Evangelista, Lucas A.; Reis-Júnior, Ronaldo; Neves, Frederico S.

    2016-01-01

    Dung beetle community dynamics are determined by regional rainfall patterns. However, little is known about the temporal dynamics of these communities in tropical dry forests (TDFs). This study was designed to test the following predictions: 1) Peak diversity of dung beetle species occurs early in the wet season, with a decrease in diversity (α and β) and abundance throughout the season; 2) Nestedness is the primary process determining β-diversity, with species sampled in the middle and the end of the wet season representing subsets of the early wet season community. Dung beetles were collected in a TDF in the northern Minas Gerais state, Brazil over three sampling events (December 2009, February and April 2010). We sampled 2,018 dung beetles belonging to 39 species and distributed among 15 genera. Scarabaeinae α-diversity and abundance were highest in December and equivalent between February and April, while β-diversity among plots increased along the wet season. The importance of nestedness and species turnover varies between pairs of sample periods as the main process of temporal β-diversity. Most species collected in the middle and end of the wet season were found in greater abundance in early wet season. Thus, the dung beetle community becomes more homogeneous at the beginning of the wet season, and as the season advances, higher resource scarcity limits population size, which likely results in a smaller foraging range, increasing β-diversity. Our results demonstrate high synchronism between the dung beetle life cycle and seasonality of environmental conditions throughout the wet season in a TDF, where the onset of rains determines adult emergence for most species. PMID:27620555

  13. Mating system, population growth, and management scenario for Kalanchoe pinnata in an invaded seasonally dry tropical forest.

    Science.gov (United States)

    González de León, Salvador; Herrera, Ileana; Guevara, Roger

    2016-07-01

    Ecological invasions are a major issue worldwide, where successful invasion depends on traits that facilitate dispersion, establishment, and population growth. The nonnative succulent plant Kalanchoe pinnata, reported as invasive in some countries, is widespread in remnants of seasonally dry tropical forest on a volcanic outcrop with high conservation value in east-central Mexico where we assessed its mating system and demographic growth and identified management strategies. To understand its local mating system, we conducted hand-pollination treatments, germination, and survival experiments. Based on the experimental data, we constructed a life-stage population matrix, identified the key traits for population growth, weighted the contributions of vegetative and sexual reproduction, and evaluated management scenarios. Hand-pollination treatments had slight effects on fruit and seed setting, as well as on germination. With natural pollination treatment, the successful germination of seeds from only 2/39 fruit suggests occasional effective natural cross-pollination. The ratios of the metrics for self- and cross-pollinated flowers suggest that K. pinnata is partially self-compatible. Most of the pollinated flowers developed into fruit, but the seed germination and seedling survival rates were low. Thus, vegetative propagation and juvenile survival are the main drivers of population growth. Simulations of a virtual K. pinnata population suggest that an intense and sustained weeding campaign will reduce the population within at least 10 years. Synthesis and applications. The study population is partially self-compatible, but sexual reproduction by K. pinnata is limited at the study site, and population growth is supported by vegetative propagation and juvenile survival. Demographic modeling provides key insights and realistic forecasts on invasion process and therefore is useful to design management strategies.

  14. Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Paramesha Mallegowda

    2015-02-01

    Full Text Available Most wildlife habitats and migratory routes are extremely threatened due to increasing demands on forestland and forest resources by burgeoning human population. Corridor landscape in Biligiri Rangaswamy Temple Tiger Reserve (BRT is one among them, subjected to various anthropogenic pressures. Human habitation, intensive farming, coffee plantations, ill-planned infrastructure developments and rapid spreading of invasive plant species Lantana camara, pose a serious threat to wildlife habitat and their migration. Aim of this work is to create detailed NDVI based land change maps and to use them to identify time-series trends in greening and browning in forest corridors in the study area and to identify the drivers that are influencing the observed changes. Over the four decades in BRT, NDVI increased in the core area of the forest and reduced in the fringe areas. The change analysis between 1973 and 2014 shows significant changes; browning due to anthropogenic activities as well as natural processes and greening due to Lantana spread. This indicates that the change processes are complex, involving multiple driving factors, such as socio-economic changes, high population growth, historical forest management practices and policies. Our study suggests that the use of updated and accurate change detection maps will be useful in taking appropriate site specific action-oriented conservation decisions to restore and manage the degraded critical wildlife corridors in human-dominated landscape.

  15. Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation

    OpenAIRE

    Paramesha Mallegowda; Ganesan Rengaian; Jayalakshmi Krishnan; Madhura Niphadkar

    2015-01-01

    Most wildlife habitats and migratory routes are extremely threatened due to increasing demands on forestland and forest resources by burgeoning human population. Corridor landscape in Biligiri Rangaswamy Temple Tiger Reserve (BRT) is one among them, subjected to various anthropogenic pressures. Human habitation, intensive farming, coffee plantations, ill-planned infrastructure developments and rapid spreading of invasive plant species Lantana camara, pose a serious threat to wildlife habitat ...

  16. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    Science.gov (United States)

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  17. Relations between water balance, wood traits and phenological behavior of tree species from a tropical dry forest in Costa Rica--a multifactorial study.

    Science.gov (United States)

    Worbes, Martin; Blanchart, Sofie; Fichtler, Esther

    2013-05-01

    Drought tolerance is a key factor for the establishment and survival of tree species in tropical ecosystems. Specific mechanisms of drought resistance can be grouped into four functional ecotypes based on differences in leaf fall behavior: deciduous, brevi-deciduous, stem succulent and evergreen. To identify the key factors influencing phenology and cambial activity and thus drought tolerance, we tested the stomatal conductance, leaf water potential and stable carbon isotopes in the leaves and wood of 12 species from a tropical dry forest in Costa Rica. With wood anatomical techniques, we further studied seasonal cambial activity and a suite of wood traits related to water transport for each of the functional ecotypes. Using a principal component analysis, we identified two groups of variables that can be related to (i) hydraulic conductivity and (ii) control of transpiration and water loss. Hydraulic conductivity is controlled by vessel size as the limiting variable, water potential as the driving force and wood density as the stabilizing factor of the anatomical structure of an effective water transport system. Stomatal control plays a major role in terms of water loss or saving and is the dominant factor for differences in phenological behavior. Stem succulent species in particular developed a rarely identified but highly effective strategy against drought stress, which makes it a successful pioneer species in tropical dry forests.

  18. Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest.

    Science.gov (United States)

    Fu, Pei-Li; Jiang, Yan-Juan; Wang, Ai-Ying; Brodribb, Tim J; Zhang, Jiao-Lin; Zhu, Shi-Dan; Cao, Kun-Fang

    2012-07-01

    The co-occurring of evergreen and deciduous angiosperm trees in Asian tropical dry forests on karst substrates suggests the existence of different water-use strategies among species. In this study it is hypothesized that the co-occurring evergreen and deciduous trees differ in stem hydraulic traits and leaf water relationships, and there will be correlated evolution in drought tolerance between leaves and stems. A comparison was made of stem hydraulic conductivity, vulnerability curves, wood anatomy, leaf life span, leaf pressure-volume characteristics and photosynthetic capacity of six evergreen and six deciduous tree species co-occurring in a tropical dry karst forest in south-west China. The correlated evolution of leaf and stem traits was examined using both traditional and phylogenetic independent contrasts correlations. It was found that the deciduous trees had higher stem hydraulic efficiency, greater hydraulically weighted vessel diameter (D(h)) and higher mass-based photosynthetic rate (A(m)); while the evergreen species had greater xylem-cavitation resistance, lower leaf turgor-loss point water potential (π(0)) and higher bulk modulus of elasticity. There were evolutionary correlations between leaf life span and stem hydraulic efficiency, A(m), and dry season π(0). Xylem-cavitation resistance was evolutionarily correlated with stem hydraulic efficiency, D(h), as well as dry season π(0). Both wood density and leaf density were closely correlated with leaf water-stress tolerance and A(m). The results reveal the clear distinctions in stem hydraulic traits and leaf water-stress tolerance between the co-occurring evergreen and deciduous angiosperm trees in an Asian dry karst forest. A novel pattern was demonstrated linking leaf longevity with stem hydraulic efficiency and leaf water-stress tolerance. The results show the correlated evolution in drought tolerance between stems and leaves.

  19. Effects of Land Use Change and Seasonality of Precipitation on Soil Nitrogen in a Dry Tropical Forest Area in the Western Llanos of Venezuela

    Science.gov (United States)

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P < 0.05) in OP than in forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen. PMID:25610907

  20. Identity and relationships of the Arboreal Caatinga among other floristic units of seasonally dry tropical forests (SDTFs) of north-eastern and Central Brazil.

    Science.gov (United States)

    Santos, Rubens M; Oliveira-Filho, Ary T; Eisenlohr, Pedro V; Queiroz, Luciano P; Cardoso, Domingos B O S; Rodal, Maria J N

    2012-02-01

    The tree species composition of seasonally dry tropical forests (SDTF) in north-eastern and central Brazil is analyzed to address the following hypotheses: (1) variations in species composition are related to both environment (climate and substrate) and spatial proximity; (2) SDTF floristic units may be recognized based on peculiar composition and environment; and (3) the Arboreal Caatinga, a deciduous forest occurring along the hinterland borders of the Caatinga Domain, is one of these units and its flora is more strongly related to the caatinga vegetation than to outlying forests. The study region is framed by the Brazilian coastline, 50th meridian west and 21st parallel south, including the Caatinga Domain and extensions into the Atlantic Forest and Cerrado Domains. Multivariate and geostatistic analyses were performed on a database containing 16,226 occurrence records of 1332 tree species in 187 georeferenced SDTF areas and respective environmental variables. Tree species composition varied significantly with both environmental variables and spatial proximity. Eight SDTF floristic units were recognized in the region, including the Arboreal Caatinga. In terms of species composition, its tree flora showed a stronger link with that of the Cerrado Dry Forest Enclaves. On the other hand, in terms of species frequency across sample areas, the links were stronger with two other units: Rock Outcrops Caatinga and Agreste and Brejo Dry Forests. There is a role for niche-based control of tree species composition across the SDTFs of the region determined primarily by the availability of ground water across time and secondarily by the amount of soil mineral nutrients. Spatial proximity also contributes significantly to the floristic cohesion of SDTF units suggesting a highly dispersal-limited tree flora. These units should be given the status of eco-regions to help driving the conservation policy regarding the protection of their biodiversity.

  1. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs)

    Science.gov (United States)

    Gonçalves, Gabriela Silva Ribeiro; Cerqueira, Pablo Vieira; Brasil, Leandro Schlemmer; Santos, Marcos Pérsio Dantas

    2017-01-01

    Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition), in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments. PMID:28441412

  2. Chemical composition of the fruit of two species of tropical dry forest in the coastal region of Ecuador as food source for ruminants

    Directory of Open Access Journals (Sweden)

    Henrry Othón Intriago Mendoza

    2015-04-01

    Full Text Available Fodder species of trees in the coastal region of Manabí are an alternative food to cattle, especia-lly between the months of september and december when the pasture gets scarce. To evaluate their nutritional potential was made a compositional analysis of nutritional parameters to the fruits of Prosopis juliflora (Sw. DC. (Algarrobo and Guazuma ulmifolia Lam. (Guasmo. Botanical characters of these trees and compositional analysis results are described. Furthermore, a comparison of these results with those obtained by other authors by con-sidering the values of protein, fat, fiber, ash and moisture is performed. For the environmental conditions of tropical dry forest, the guasmo presents higher contents of protein, fat, ash and fiber carob, although both species are important in the diet of herbivores, especially in dry seasons as providers of usable nutrients favoring animal nutrition

  3. Floristics and biogeography of vegetation in seasonally dry tropical regions

    DEFF Research Database (Denmark)

    Dexter, K.G.; Smart, B.; Baldauf, C.

    2015-01-01

    To provide an inter-continental overview of the floristics and biogeography of drought-adapted tropical vegetation formations, we compiled a dataset of inventory plots in South America (n=93), Africa (n=84), and Asia (n=92) from savannas (subject to fire), seasonally dry tropical forests (not gen...

  4. Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest

    Directory of Open Access Journals (Sweden)

    Wanessa Nepomuceno Ferreira

    2015-09-01

    Full Text Available ABSTRACTIn seasonally dry tropical forests, species carrying attributes of Stress Resistance Syndrome (SRS may have ecological advantages over species demanding high quantities of resources. In such forests, Poincianella bracteosa is abundant, while Libidibia ferrea has low abundance; therefore, we hypothesized that P. bracteosa has characteristics of low-resource species, while L. ferrea has characteristics of high-resource species. To test this hypothesis, we assessed morphological and physiological traits of seedlings of these species under different water regimes (100%, 70%, 40%, and 10% field capacity over 85 days. For most of the studied variables we observed significant decreases with increasing water stress, and these reductions were greater in L. ferrea. As expected, L. ferreamaximized their growth with increased water supply, while P. bracteosa maintained slower growth and had minor adjustments in biomass allocation, characteristics representative of low-resource species that are less sensitive to stress. We observed that specific leaf area, biomass allocation to roots, and root/shoot ratio were higher in L. ferrea, while biomass allocation to leaves and photosynthesis were higher in P. bracteosa. Results suggest that the attributes of SRS can facilitate high abundance of P. bracteosa in dry forest.

  5. Diversified Native Species Restoration for Recovery of Multiple Ecosystem Services in a Highly Disturbed Tropical Dry Forest Landscape of Southwestern Nicaragua

    Science.gov (United States)

    Williams-Guillen, K.; Otterstrom, S.; Perla, C.

    2015-12-01

    Tropical dry forests have been reduced to a fraction of their original extent in the Neotropics due to conversion to agriculture and cattle pasture. While TDF can recover via natural regeneration, resulting forests are dominated by wind-dispersed pioneer species of limited value for frugivorous wildlife. Additionally, passive restoration can be perceived as "abandonment" resulting in neighbors casually invading property to rear livestock and extract timber. In 2007, the NGO Paso Pacífico initiated restoration in a highly degraded tropical dry forest landscape of southwestern Nicaragua; funded by an ex-ante carbon purchase, the project was designed to integrate multiple native tree species known to provide resources used by local wildlife. We restored roughly 400 hectares spanning a rainfall gradient from dry to transitional moist forest, using reforestation (planting 70 species of tree seedlings in degraded pastures on a 4x4 m grid, leaving occurring saplings) and assisted regeneration (clearing vines and competing vegetation from saplings in natural regeneration and strategically managing canopy cover). In just over seven years, mean carbon increased nearly threefold, from to 21.5±5.0 to 57.9±9.6 SE tonnes/ha. Current carbon stocks match those of 20-year-old forests in the area, accumulated in less than a decade. Stem density per 15-m radius plot decreased from 16.3±2.3 to 12.5±0.9 SE, while species richness increased from 3.9±0.4 to 18.4±1.4 SE. Alpha richness of woody stems across plots increased from 36 to 94 species, and over 20 tree species established as a result of natural dispersal and recruitment. We have observed sensitive species such as spider monkeys and parrots foraging in restoration areas. Managed reforestation is a highly effective method for rapidly restoring the functionality of multiple ecosystem services in degraded TDF, particularly when social and political realities force restoration to coexist with human productive activities

  6. Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old-field succession of a tropical dry forest.

    Science.gov (United States)

    Maza-Villalobos, Susana; Poorter, Lourens; Martínez-Ramos, Miguel

    2013-01-01

    The effects of temporal variation of rainfall on secondary succession of tropical dry ecosystems are poorly understood. We studied effects of inter-seasonal and inter-year rainfall variation on the dynamics of regenerative successional communities of a tropical dry forest in Mexico. We emphasized the effects caused by the severe El Niño Southern Oscillation (ENSO) occurred in 2005. We established permanent plots in sites representing a chronosequence of Pasture (abandoned pastures, 0-1 years fallow age), Early (3-5), Intermediate (8-12), and Old-Growth Forest categories (n = 3 per category). In total, 8210 shrubs and trees 10 to 100-cm height were identified, measured, and monitored over four years. Rates of plant recruitment, growth and mortality, and gain and loss of species were quantified per season (dry vs. rainy), year, and successional category, considering whole communities and separating seedlings from sprouts and shrubs from trees. Community rates changed with rainfall variation without almost any effect of successional stage. Mortality and species loss rates peaked during the ENSO year and the following year; however, after two rainy years mortality peaked in the rainy season. Such changes could result from the severe drought in the ENSO year, and of the outbreak of biotic agents during the following rainy years. Growth, recruitment and species gain rates were higher in the rainy season but they were significantly reduced after the ENSO year. Seedlings exhibited higher recruitment and mortality rate than sprouts, and shrubs showed higher recruitment than trees. ENSO strongly impacted both the dynamics and trajectory of succession, creating transient fluctuations in the abundance and species richness of the communities. Overall, there was a net decline in plant and species density in most successional stages along the years. Therefore, strong drought events have critical consequences for regeneration dynamics, delaying the successional process and

  7. Assessing the Effects of Multiple Stressors on the Recruitment of Fruit Harvested Trees in a Tropical Dry Forest, Western Ghats, India

    Science.gov (United States)

    Varghese, Anita; Ticktin, Tamara; Mandle, Lisa; Nath, Snehlata

    2015-01-01

    The harvest of non-timber forest products (NTFPs), together with other sources of anthropogenic disturbance, impact plant populations greatly. Despite this, conservation research on NTFPs typically focuses on harvest alone, ignoring possible confounding effects of other anthropogenic and ecological factors. Disentangling anthropogenic disturbances is critical in regions such as India’s Western Ghats, a biodiversity hotspot with high human density. Identifying strategies that permit both use and conservation of resources is essential to preserving biodiversity while meeting local needs. We assessed the effects of NTFP harvesting (fruit harvest from canopy and lopping of branches for fruit) in combination with other common anthropogenic disturbances (cattle grazing, fire frequency and distance from village), in order to identify which stressors have greater effects on recruitment of three tropical dry forest fruit tree species. Specifically, we assessed the structure of 54 populations of Phyllanthus emblica, P. indofischeri and Terminalia chebula spread across the Nilgiri Biosphere Reserve, Western Ghats to ask: (1) How are populations recruiting? and (2) What anthropogenic disturbance and environmental factors, specifically forest type and elevation, are the most important predictors of recruitment status? We combined participatory research with an information-theoretic model-averaging approach to determine which factors most affect population structure and recruitment status. Our models illustrate that for T. chebula, high fire frequency and high fruit harvest intensity decreased the proportion of saplings, while lopping branches or stems to obtain fruit increased it. For Phyllanthus spp, recruitment was significantly lower in plots with more frequent fire. Indices of recruitment of both species were significantly higher for plots in more open-canopy environments of savanna woodlands than in dry forests. Our research illustrates an approach for identifying which

  8. Assessing the effects of multiple stressors on the recruitment of fruit harvested trees in a tropical dry forest, Western Ghats, India.

    Directory of Open Access Journals (Sweden)

    Anita Varghese

    Full Text Available The harvest of non-timber forest products (NTFPs, together with other sources of anthropogenic disturbance, impact plant populations greatly. Despite this, conservation research on NTFPs typically focuses on harvest alone, ignoring possible confounding effects of other anthropogenic and ecological factors. Disentangling anthropogenic disturbances is critical in regions such as India's Western Ghats, a biodiversity hotspot with high human density. Identifying strategies that permit both use and conservation of resources is essential to preserving biodiversity while meeting local needs. We assessed the effects of NTFP harvesting (fruit harvest from canopy and lopping of branches for fruit in combination with other common anthropogenic disturbances (cattle grazing, fire frequency and distance from village, in order to identify which stressors have greater effects on recruitment of three tropical dry forest fruit tree species. Specifically, we assessed the structure of 54 populations of Phyllanthus emblica, P. indofischeri and Terminalia chebula spread across the Nilgiri Biosphere Reserve, Western Ghats to ask: (1 How are populations recruiting? and (2 What anthropogenic disturbance and environmental factors, specifically forest type and elevation, are the most important predictors of recruitment status? We combined participatory research with an information-theoretic model-averaging approach to determine which factors most affect population structure and recruitment status. Our models illustrate that for T. chebula, high fire frequency and high fruit harvest intensity decreased the proportion of saplings, while lopping branches or stems to obtain fruit increased it. For Phyllanthus spp, recruitment was significantly lower in plots with more frequent fire. Indices of recruitment of both species were significantly higher for plots in more open-canopy environments of savanna woodlands than in dry forests. Our research illustrates an approach for

  9. Assessing the effects of multiple stressors on the recruitment of fruit harvested trees in a tropical dry forest, Western Ghats, India.

    Science.gov (United States)

    Varghese, Anita; Ticktin, Tamara; Mandle, Lisa; Nath, Snehlata

    2015-01-01

    The harvest of non-timber forest products (NTFPs), together with other sources of anthropogenic disturbance, impact plant populations greatly. Despite this, conservation research on NTFPs typically focuses on harvest alone, ignoring possible confounding effects of other anthropogenic and ecological factors. Disentangling anthropogenic disturbances is critical in regions such as India's Western Ghats, a biodiversity hotspot with high human density. Identifying strategies that permit both use and conservation of resources is essential to preserving biodiversity while meeting local needs. We assessed the effects of NTFP harvesting (fruit harvest from canopy and lopping of branches for fruit) in combination with other common anthropogenic disturbances (cattle grazing, fire frequency and distance from village), in order to identify which stressors have greater effects on recruitment of three tropical dry forest fruit tree species. Specifically, we assessed the structure of 54 populations of Phyllanthus emblica, P. indofischeri and Terminalia chebula spread across the Nilgiri Biosphere Reserve, Western Ghats to ask: (1) How are populations recruiting? and (2) What anthropogenic disturbance and environmental factors, specifically forest type and elevation, are the most important predictors of recruitment status? We combined participatory research with an information-theoretic model-averaging approach to determine which factors most affect population structure and recruitment status. Our models illustrate that for T. chebula, high fire frequency and high fruit harvest intensity decreased the proportion of saplings, while lopping branches or stems to obtain fruit increased it. For Phyllanthus spp, recruitment was significantly lower in plots with more frequent fire. Indices of recruitment of both species were significantly higher for plots in more open-canopy environments of savanna woodlands than in dry forests. Our research illustrates an approach for identifying which

  10. Picramnia tumbesina: una nueva Picramniaceae, endémica del bosque seco tropical al occidente de Ecuador Picramnia tumbesina: a new Picramniaceae, endemic to the tropical dry forest in western Ecuador

    Directory of Open Access Journals (Sweden)

    Xavier Cornejo

    2006-06-01

    Full Text Available Se describe Picramnia tumbesina, una nueva especie de árbol dioico, endémico del bosque seco tropical, al occidente del Ecuador. Esta es similar a P. sellowii Planch. subsp. sellowii, pero se distingue por presentar inflorescencias ramifloras, ramas fistulosas, hojas que alcanzan mayor dimensión, con grandes foliolos y pedicelos más largos en las flores pistiladas y frutos.Picramnia tumbesina a new dioecious tree, endemic to tropical dry forest in western Ecuador is described. It is similar to P. sellowii Planch. subsp. sellowii, but differs by having ramiflorous inflorescences, fistulose branches, larger leaflets and leaves, and longer pedicels on the pistillate flowers and fruits.

  11. Interactions among three trophic levels and diversity of parasitoids: a case of top-down processes in Mexican tropical dry forest.

    Science.gov (United States)

    Cuevas-Reyes, Pablo; Quesada, Mauricio; Hanson, Paul; Oyama, Ken

    2007-08-01

    The objective of this study was to analyze the relationship between plant hosts, galling insects, and their parasitoids in a tropical dry forest at Chamela-Cuixmala Biosphere Reserve in western Mexico. In 120 transects of 30 by 5 m (60 in deciduous forest and 60 in riparian habitats), 29 galling insects species were found and represented in the following order: Diptera (Cecidomyiidae, which induced the greatest abundance of galls with 22 species; 76%), Homoptera (Psylloidea, 6.9%; Psyllidae, 6.9%; Triozidae, 3.4%), Hymenoptera (Tanaostigmatidae, 3.4%; which were rare), and one unidentified morphospecies (3.4%). In all cases, there was a great specificity between galling insect species and their host plant species; one galling insect species was associated with one specific plant species. In contrast, there was no specificity between parasitoid species and their host galling insect species. Only 11 species of parasitoids were associated with 29 galling insect species represented in the following families: Torymidae (18.2%), Eurytomidae (18.2%), Eulophidae (18.2%), Eupelmidae (9.1%), Pteromalidae (9.1%), family Braconidae (9.1%), Platygastridae (9.1%), and one unidentified (9.1%). Most parasitoid species parasitized several gall species (Torymus sp.: 51.1%, Eurytoma sp.: 49.7%, Torymoides sp.: 46.9%). Therefore, the effects of variation in plant defenses do not extend to the third trophic level, because a few species of parasitoids can determine the community structure and composition of galling insect species in tropical plants, and instead, top-down processes seem to be regulating trophic interactions of galling insect species in tropical gall communities.

  12. Camerobiid mites (Acariformes: Raphignathina: Camerobiidae inhabiting epiphytic bromeliads and soil litter of tropical dry forest with analysis of setal homology in the genus Neophyllobius

    Directory of Open Access Journals (Sweden)

    Ricardo Paredes-León

    2016-06-01

    Full Text Available A survey of the camerobiid mites living on epiphytic bromeliads and the forest floor of a Mexican tropical dry forest was carried out. We found three new species of the genus Neophyllobius, which are described in this paper; the first two, namely N. cibyci sp. nov. and N. tepoztlanensis sp. nov., were both found inhabiting bromeliads (Tillandsia spp. and living on two tree species (Quercus obtusata and Sapium macrocarpum; the third, N. tescalicola sp. nov., was found in soil and litter under Q. obtusata. These three new species can be differentiated from other species in the genus by a combination of morphological characters in adult females, mainly those setae on femora and genua I. The idiosoma and leg setal ontogeny of a camerobiid mite is presented for the first time in this paper, illustrating chaetotaxic notations and their relative positions in N. cibyci sp. nov. larva, protonymph and adults (female and male, and establishing setal homologies among instars. Setal homology with other species in the cohort Raphignathina is briefly discussed. Additionally, a compilation and an identification key to all known species of camerobiid mites in Mexico is provided.

  13. Land product validation of MODIS derived FPAR product over the tropical dry-forest of Santa Rosa National Park, Guanacaste, Costa Rica.

    Science.gov (United States)

    Sharp, Iain; Sanchez, Arturo

    2017-04-01

    Land-product validation of the MODIS derived FPAR product over the tropical dry-forest of Santa Rosa National Park, Guanacaste, Costa Rica. By Iain Sharp & Dr. Arturo Sanchez-Azofeifa In remote sensing, being able to ensure the accuracy of the satellite data being produced remains an issue; this is especially true for phenological variables such as the Fraction of Photosynthetically Active Radiation (FPAR). FPAR, which is considered an essential climate variable by the Global Terrestrial Observation System (GTOS), utilizes the 400-700 nm wavelength range to quantify the total amount of solar radiation available for photosynthetic use. It is a variable that is strongly influenced by the seasonal, diurnal, and optic properties of vegetation making it an accurate representation of vegetation health. Measurements of ground level FPAR can be completed using flux towers along with a limited number of wireless ground sensors, but due to the finite number and location of these towers, many research initiatives instead use the Moderate resolution Imaging Spectroradiometer (MODIS) FPAR product, which converts Leaf Area Index (LAI) to a FPAR value using Beer's Law. This is done despite there being little consensus on whether this is the best method to use for all ecosystems and vegetation types. One particular ecosystem that has had limited study to determine the accuracy of the MODIS derived FPAR products are the Tropical Dry Forests (TDFs) of Latin America. This ecosystem undergoes drastic seasonal changes from leaf off during the dry season to green-up during the wet seasons. This study aims to test the congruency between the MODIS derived FPAR values and ground-based FPAR values in relation to growing season length, growing season start and end dates, the peak and mean of FPAR values, and overall growth/phenological trends at the Santa Rosa National Park Environmental Monitoring Super Site (SR-EMSS) in Costa Rica and FPAR MODIS products. We derive our FPAR from a Wireless

  14. The future of tropical forests.

    Science.gov (United States)

    Wright, S Joseph

    2010-05-01

    Five anthropogenic drivers--land use change, wood extraction, hunting, atmospheric change, climate change--will largely determine the future of tropical forests. The geographic scope and intensity of these five drivers are in flux. Contemporary land use change includes deforestation (approximately 64,000 km(2) yr(-1) for the entire tropical forest biome) and natural forests regenerating on abandoned land (approximately 21,500 km(2) yr(-1) with just 29% of the biome evaluated). Commercial logging is shifting rapidly from Southeast Asia to Africa and South America, but local fuelwood consumption continues to constitute 71% of all wood production. Pantropical rates of net deforestation are declining even as secondary and logged forests increasingly replace old-growth forests. Hunters reduce frugivore, granivore and browser abundances in most forests. This alters seed dispersal, seed and seedling survival, and hence the species composition and spatial template of plant regeneration. Tropical governments have responded to these local threats by protecting 7% of all land for the strict conservation of nature--a commitment that is only matched poleward of 40 degrees S and 70 degrees N. Protected status often fails to stop hunters and is impotent against atmospheric and climate change. There are increasing reports of stark changes in the structure and dynamics of protected tropical forests. Four broad classes of mechanisms might contribute to these changes. Predictions are developed to distinguish among these mechanisms.

  15. A Student Guide to Tropical Forest Conservation

    Science.gov (United States)

    J. Louise Mastrantonio; John K. Francis

    1997-01-01

    Tropical forests, which circle the globe, are surprisingly diverse, ranging from rain forests to savannas. Tropical forests are disappearing at an alarming rate as they are converted to farmland and other uses. Modern forest management practices can help stem the tide by providing income and valuable products while maintaining forest cover. Puerto Rico has already gone...

  16. Riqueza y diversidad de especies leñosas del bosque tropical caducifolio El Tarimo, Cuenca del Balsas, Guerrero Richness and diversity of woody species in the tropical dry forest of El Tarimo, Cuenca del Balsas, Guerrero

    Directory of Open Access Journals (Sweden)

    Fernando Pineda-García

    2007-06-01

    Full Text Available Se describe la composición florística, la riqueza y la diversidad de especies de un bosque tropical caducifolio en la provincia florística Cuenca del Balsas, México. Se seleccionaron 4 sitios de 1000 m² cada uno, censándose los árboles, arbustos y lianas con d.a.p. >1 cm. En total se registraron 1456 individuos, pertenecientes a 82 especies, 56 géneros y 24 familias. Independientemente del sitio y de la forma de crecimiento, Leguminosae fue la familia con mayor número de especies y de individuos. Los géneros más diversos fueron Bursera (Burseraceae y Cordia (Boraginaceae con 9 y 4 especies, respectivamente. La riqueza entre los sitios varió de 43 a 55 especies y su similitud fue más alta en el nivel de familia que en el de especie. Los árboles fueron la forma de crecimiento con mayor riqueza de especies. Respectoa otros bosques tropicales caducifolios de México y del mundo, los sitios que se estudiaron en este bosque ocupan una posición baja en cuanto a sus valores de riqueza y estructura.Floristic composition, species richness, and diversity of the seasonally dry tropical forest in the floristic province of the Balsas Depression, México, is described. We sampled four 1,000 m² sites and recorded species and dbh of trees, shrubs and lianas >1 cm dbh. Data from 1,456 individuals were recorded, representing 82 species, 56 genera, and 24 families. Independently of site or growth form, Leguminosae was the family with the highest number of species and individuals. Bursera (Burseraceae and Cordia (Boraginaceae were the most speciose genera, with nine and four species, respectively. Species richness among sites ranged from 43-55 species and their similarity was higher at the family level than the species level. Trees had higher numbers of species than shrubs and lianas. Our results indicate that these forests have low values of species richness and structure attributes in relation with other tropical dry forests of Mexico and the world.

  17. Evaluation of Biological and Enzymatic Activity of Soil in a Tropical Dry Forest: Desierto de la Tatacoa (Colombia) with Potential in Mars Terraforming and Other Similar Planets

    Science.gov (United States)

    Moreno Moreno, A. N.

    2009-12-01

    Desierto de la Tatacoa has been determined to be a tropical dry forest bioma, which is located at 3° 13" N 75° 13" W. It has a hot thermal floor with 440 msnm of altitude; it has a daily average of 28° C, and a maximum of 40° C, Its annual rainfall total can be upwards of 1250 mm. Its solar sheen has a daily average of 5.8 hours and its relative humidity is between 60% and 65%. Therefore, the life forms presents are very scant, and in certain places, almost void. It was realized a completely random sampling of soil from its surface down to 6 inches deep, of zones without vegetation and with soils highly loaded by oxides of iron in order to determine the number of microorganisms per gram and its subsequent identification. It was measured the soil basal respiration. Besides, it was determined enzymatic activity (catalase, dehydrogenase, phosphatase and urease). Starting with the obtained results, it is developes an alternative towards the study of soil genesis in Mars in particular, and recommendations for same process in other planets. Although the information found in the experiments already realized in Martian soil they demonstrate that doesnt exist any enzymatic activity, the knowledge of the same topic in the soil is proposed as an alternative to problems like carbonic fixing of the dense Martian atmosphere of CO2, the degradation of inorganic compounds amongst other in order to prepare the substratum for later colonization by some life form.

  18. Ecosystem Services of Tropical Dry Forests: Insights from Long-term Ecological and Social Research on the Pacific Coast of Mexico

    Directory of Open Access Journals (Sweden)

    J. Manuel Maass

    2005-06-01

    Full Text Available In the search for an integrated understanding of the relationships among productive activities, human well-being, and ecosystem functioning, we evaluated the services delivered by a tropical dry forest (TDF ecosystem in the Chamela Region, on the Pacific Coast of Mexico. We synthesized information gathered for the past two decades as part of a long-term ecosystem research study and included social data collected in the past four years using the Millennium Ecosystem Assessment (MA conceptual framework as a guide. Here we identify the four nested spatial scales at which information has been obtained and emphasize one of them through a basin conceptual model. We then articulate the biophysical and socio-economic constraints and drivers determining the delivery of ecosystem services in the Region. We describe the nine most important services, the stakeholders who benefit from those services, and their degree of awareness of such services. We characterize spatial and temporal patterns of the services' delivery as well as trade-offs among services and stakeholders. Finally, we contrast three alternative future scenarios on the delivery of ecosystem services and human well-being. Biophysical and socioeconomic features of the study site strongly influence humanâˆ'ecosystem interactions, the ecosystem services delivered, the possible future trajectories of the ecosystem, and the effect on human well-being. We discuss future research approaches that will set the basis for an integrated understanding of humanâˆ'ecosystem interactions and for constructing sustainable management strategies for the TDF.

  19. Indirect approach for estimation of forest degradation in non-intact dry forest

    DEFF Research Database (Denmark)

    Dons, Klaus; Bhattarai, Sushma; Meilby, Henrik;

    2016-01-01

    Background Implementation of REDD+ requires measurement and monitoring of carbon emissions from forest degradation in developing countries. Dry forests cover about 40 % of the total tropical forest area, are home to large populations, and hence often display high disturbance levels. They are susc......Background Implementation of REDD+ requires measurement and monitoring of carbon emissions from forest degradation in developing countries. Dry forests cover about 40 % of the total tropical forest area, are home to large populations, and hence often display high disturbance levels....... Conclusions Distance to nearest settlement seems promising as proxy variable for estimation of subsistence wood extraction in dry forests in Tanzania. Tweedie GLM provided valid parameters from the over-dispersed continuous biomass loss data with exact zeroes, and observations with zero biomass loss were...

  20. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Science.gov (United States)

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  1. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Hooz A Mendivelso

    Full Text Available A seasonal period of water deficit characterizes tropical dry forests (TDFs. There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  2. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality

    Science.gov (United States)

    Lasky, Jesse R.; Uriarte, María; Muscarella, Robert

    2016-11-01

    Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that

  3. Evidence for coal forest refugia in the seasonally dry Pennsylvanian tropical lowlands of the Illinois Basin, USA

    Directory of Open Access Journals (Sweden)

    Cindy V. Looy

    2014-11-01

    Full Text Available The Moscovian plant macroflora at Cottage Grove southeastern Illinois, USA, is a key example of Pennsylvanian (323–299 Million years ago dryland vegetation. There is currently no palynological data from the same stratigraphic horizons as the plant macrofossils, leaves and other vegetative and reproductive structures, at this locality. Consequently, reconstructions of the standing vegetation at Cottage Grove from these sediments lack the complementary information and a more regional perspective that can be provided by sporomorphs (prepollen, pollen, megaspores and spores. In order to provide this, we have analysed the composition of fossil sporomorph assemblages in two rock samples taken from macrofossil-bearing inter-coal shale at Cottage Grove. Our palynological data differ considerably in composition and in the dominance-diversity profile from the macrofossil vegetation at this locality. Walchian conifers and pteridosperms are common elements in the macroflora, but are absent in the sporomorph assemblages. Reversely, the sporomorph assemblages at Cottage Grove comprise 17 spore taxa (∼16% and ∼63% of the total assemblages that are known from the lycopsid orders Isoetales, Lepidodendrales and Selaginallales, while Cottage Grove’s macrofloral record fails to capture evidence of a considerable population of coal forest lycopsids. We interpret our results as evidence that the Pennsylvanian dryland glacial landscape at Cottage Grove included fragmented populations of wetland plants living in refugia.

  4. Remotely sensed resilience of tropical forests

    Science.gov (United States)

    Verbesselt, Jan; Umlauf, Nikolaus; Hirota, Marina; Holmgren, Milena; van Nes, Egbert H.; Herold, Martin; Zeileis, Achim; Scheffer, Marten

    2016-11-01

    Recent work suggests that episodes of drought and heat can bring forests across climate zones to a threshold for massive tree mortality. As complex systems approach a threshold for collapse they tend to exhibit a loss of resilience, as reflected in declining recovery rates from perturbations. Trees may be no exception, as at the verge of drought-induced death, trees are found to be weakened in multiple ways, affecting their ability to recover from stress. Here we use worldwide time series of satellite images to show that temporal autocorrelation, an indicator of slow recovery rates, rises steeply as mean annual precipitation declines to levels known to be critical for tropical forests. This implies independent support for the idea that such forests may have a tipping point for collapse at drying conditions. Moreover, the demonstration that reduced rates of recovery (slowing down) may be detected from satellite data suggests a novel way to monitor resilience of tropical forests, as well as other ecosystems known to be vulnerable to collapse.

  5. Structural Dynamics of Tropical Moist Forest Gaps

    OpenAIRE

    Hunter, Maria O.; Michael Keller; Douglas Morton; Bruce Cook; Michael Lefsky; Mark Ducey; Scott Saleska; Raimundo Cosme de Oliveira; Juliana Schietti

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered...

  6. Tropical Forests. Global Issues Education Packet.

    Science.gov (United States)

    Holm, Amy E.

    Tropical forests provide the world with many products and an incredible diversity of plant and animal life. These forests also provide watershed areas, soil control, climate regulation, and winter homes for migrating birds from North America. It is believed that about 40% of tropical forests have already been destroyed in the last 20-30 years,…

  7. Long-term effects of habitat fragmentation on mating patterns and gene flow of a tropical dry forest tree, Ceiba aesculifolia (Malvaceae: Bombacoideae).

    Science.gov (United States)

    Quesada, Mauricio; Herrerías-Diego, Yvonne; Lobo, Jorge A; Sánchez-Montoya, Gumersindo; Rosas, Fernando; Aguilar, Ramiro

    2013-06-01

    Tropical forest loss and fragmentation isolate and reduce the size of remnant populations with negative consequences for mating patterns and genetic structure of plant species. In a 4-yr study, we determined the effect of fragmentation on mating patterns and pollen pool genetic structure of the tropical tree Ceiba aesculifolia in two habitat conditions: isolated trees in disturbed areas (≤3 trees/ha), and trees (≥6 trees/ha) in undisturbed mature forest. • Using six allozyme loci, we estimated the outcrossing rate (tm), the mean relatedness of progeny (rp) within and between fruits, the degree of genetic structure of pollen pools (Φft), and the effective number of pollen donors (Nep). • The outcrossing rates reflected a strict self-incompatible species. Relatedness of progeny within fruits was similar for all populations, revealing single sires within fruits. However, relatedness of progeny between fruits within trees was consistently greater for trees in fragmented conditions across 4 yr. We found high levels of genetic structure of pollen pools in all populations with more structure in isolated trees. The effective number of pollen donors was greater for trees in undisturbed forest than in disturbed conditions. • Our study showed that the progeny produced by isolated trees in disturbed habitats are sired by a fraction of the diversity of pollen donors found in conserved forests. The foraging behavior of bats limits the exchange of pollen between trees, causing higher levels of progeny relatedness in isolated trees.

  8. The Tropical managed Forests Observatory: a research network addressing the future of tropical logged forests

    NARCIS (Netherlands)

    Sist, P.; Rutishauser, E.; Pena Claros, M.

    2015-01-01

    While attention on logging in the tropics has been increasing, studies on the long-term effects of silviculture on forest dynamics and ecology remain scare and spatially limited. Indeed, most of our knowledge on tropical forests arises from studies carried out in undisturbed tropical forests. This b

  9. SUSTAINING CARBON SINK POTENTIALS IN TROPICAL FOREST ...

    African Journals Online (AJOL)

    HP

    Key words: Carbon sequestration, tropical forest, deforestation, conservation. INTRODUCTION ... to complex organic molecules which are then used by the whole plant. ..... Disturbances and structural development of natural forest ecosystems.

  10. Gall inducing arthropods from a seasonally dry tropical forest in Serra do Cipó, Brazil Artrópodes indutores de galhas em Floresta Sazonal Tropical Seca da Serra do Cipó, Brasil

    Directory of Open Access Journals (Sweden)

    Marcel Serra Coelho

    2009-01-01

    Full Text Available Highly diverse forms of galling arthropods can be identified in much of southeastern Brazil's vegetation. Three fragments of a Seasonally Dry Tropical Forest (SDTF located in the southern range of the Espinhaço Mountains were selected for study in the first survey of galling organisms in such tropical vegetation. Investigators found 92 distinct gall morphotypes on several organs of 51 host plant species of 19 families. Cecidomyiidae (Diptera was the most prolific gall-inducing species, responsible for the largest proportion of galls (77% observed. Leaves were the most frequently galled plant organ (63%, while the most common gall morphotype was of a spherical shape (30%. The two plant species, Baccharis dracunculifolia (Asteraceae and Celtis brasiliensis (Cannabaceae, presented the highest number of gall morphtypes, displaying an average of 5 gall morphotypes each. This is the first study of gall-inducing arthropods and their host plant species ever undertaken in a Brazilian SDTF ecosystem. Given the intense human pressure on SDTFs, the high richness of galling arthropods, and implied floral host diversity found in this study indicates the need for an increased effort to catalogue the corresponding flora and fauna, observe their intricate associations and further understand the implications of such rich diversity in these stressed and vulnerable ecosystems.Artrópodes indutores de galhas são muito ricos em espécies nas formações vegetais no sudeste do Brasil. Três fragmentos de Floresta Sazonal Tropical Seca (FSTS foram selecionados nas montanhas do sudeste da cadeia do Espinhaço para a primeira pesquisa de organismos indutores de galhas nesse tipo de vegetação. Encontramos 92 morfotipos distintos de galhas em vários órgãos de 51 espécies de plantas hospedeiras pertencentes à 19 famílias. A maioria das galhas (77% foi induzida pela família Cecidomyiidae (Diptera. A folha foi o órgão mais atacado (63%, enquanto o morfotipo mais

  11. Diversity of Encyrtidae (Hymenoptera: Chalcidoidea collected with Malaise traps in the tropical dry forest of San Javier, Sonora, Mexico Diversidad de Encyrtidae (Hymenoptera: Chalcidoidea recolectada con trampas Malaise en el bosque tropical caducifolio de San Javier, Sonora, México

    Directory of Open Access Journals (Sweden)

    José Manuel Rodríguez

    2010-12-01

    Full Text Available Results of a faunistic study of the Encyrtidae family (parasitoid wasps of the tropical dry forest of San Javier, Sonora, Mexico are presented. The study was carried out from November 2003 to October 2004. Collections using Malaise trapping were made during 5 days of every month. A total of 52 species, 27 genera and 2 subfamilies were recorded. The subfamily with the largest number of recorded species was Encyrtinae, with 19 genera and 32 species, followed by Tetracneminae, with 8 genera and 20 species. The genus with the largest number of recorded species was Metaphycus with 10. Species richness was analyzed using parametric models; the best-fitting model was the Logarithmic, which is unbounded. Species had low abundance. Species richness and abundance varied with time, with the highest values recorded in the dry season. The fauna of San Javier was more similar to that of Huautla, Morelos, than to that of Huatulco, Oaxaca, both previously studied.Se presentan los resultados del estudio de la fauna de la familia Encyrtidae (avispas parasitoides en el bosque tropical caducifolio de San Javier, Sonora, México. El estudio se llevó a cabo de noviembre del 2003 a octubre del 2004. Las recolectas se realizaron durante 5 días de cada mes, el método de recolecta fue trampas Malaise. Se registró un total de 52 especies, 27 géneros y 2 subfamilias. La subfamilia con el mayor número de especies fue Encyrtinae, con 19 géneros y 32 especies, seguida por Tetracneminae con 8 géneros y 20 especies. El género con mayor número de especies fue Metaphycus con 10. El valor de la riqueza estimada de especies fue analizado usando los modelos paramétricos, el mejor fue el logarítmico, el cual es indefinido. Las especies no fueron abundantes. La riqueza y abundancia de las especies varió con el tiempo, registrándose el valor más grande durante la temporada de secas. La fauna fue más parecida a la de Huautla, Morelos que a la de Huatulco, Oaxaca, ambas

  12. Soil phosphorus and the ecology of lowland tropical forests

    Science.gov (United States)

    Turner, Ben

    2016-04-01

    In this presentation I will explore the extent to which phosphorus influences the productivity, diversity, and distribution of plant species in tropical forests. I will highlight the range of soils that occur in tropical forests and will argue that pedogenesis and associated phosphorus depletion is a primary driver of forest diversity over long timescales. I will draw on data from a regional-scale network of forest dynamics plots in Panama to show that tree species distributions are determined predominantly as a function of dry season intensity and soil phosphorus availability, and will suggest potential mechanistic explanations for this pattern in relation to phosphorus acquisition. Finally, I will present observational and experimental evidence from Panama to show how phosphorus, nitrogen, and potassium, limit plant productivity and microbial communities on strongly-weathered soils in the lowland tropics.

  13. Interannual variability in the extent and intensity of tropical dry forest deciduousness in the Mexican Yucatan (2000-2016): Drivers and Links to Regional Atmospheric Conditions

    Science.gov (United States)

    Cuba, Nicholas Joseph

    The dry topical forests of the southern Yucatan Peninsula experience multiple natural and anthropogenic disturbances, as well as substantial interannual climate variability that can result in stark interannual differences in vegetation phenology. Dry season deciduousness is a typical response to limit tree water loss during prolonged periods of hot and dry conditions, and this behavior has both direct implications for ecosystem functioning, and the potential to indicate climate conditions when observed using remotely-sensed data. The first research paper of this dissertation advances methods to assess the accuracy of remotely-sensed measurements of canopy conditions using in-situ observations. Linear regression models show the highest correlation (R2 = 0.751) between in-situ canopy gap fraction and Landsat NDWISWIR2. MODIS time series NDWISWIR2 are created for the period March 2000-February 2011, and exhibit stronger correlation with time series of TRMM precipitation data than do MODIS EVI time series (R2= 0.48 vs. R2 = 0.43 in deciduous forest areas). The second paper examines differences between the deciduous phenology of young forest stands and older forest stands. Land-cover maps are overlaid to determine whether forested areas are greater than or less than 22 years old in 2010, and metrics related to deciduous phenology are derived from MODIS EVI2 time series in three years, 2008 to 2011. Statistical tests that compare matched pairs of young (12-22 years) and older (>22 years) forest stand age class samples are used to detect significant differences in metrics related to the intensity and timing of deciduousness. In all three years, younger forests exhibit significantly more intense deciduousness, measured as total seasonal change of EVI2 normalized by annual maximum EVI2 (pshare similar environmental conditions. explores how deciduousness influences the relationship between land-clearing and regional atmospheric conditions. Two sets of bottom-up estimates of

  14. Forensic forest ecology : unraveling the stand history of tropical forests

    NARCIS (Netherlands)

    Vlam, M.

    2014-01-01

    Tropical forests are occasionally hit by intense disturbances like hurricanes or droughts that kill many trees. We found evidence for such intense disturbances in a tree-ring study on tropical forests in Bolivia, Cameroon and Thailand. To reconstruct past disturbances we applied ‘forensic

  15. Forensic forest ecology : unraveling the stand history of tropical forests

    NARCIS (Netherlands)

    Vlam, M.

    2014-01-01

    Tropical forests are occasionally hit by intense disturbances like hurricanes or droughts that kill many trees. We found evidence for such intense disturbances in a tree-ring study on tropical forests in Bolivia, Cameroon and Thailand. To reconstruct past disturbances we applied ‘forensic fore

  16. Hyperspectral Remote Sensing for Tropical Rain Forest

    Directory of Open Access Journals (Sweden)

    Kamaruzaman Jusoff

    2009-01-01

    Full Text Available Problem statement: Sensing, mapping and monitoring the rain forest in forested regions of the world, particularly the tropics, has attracted a great deal of attention in recent years as deforestation and forest degradation account for up to 30% of anthropogenic carbon emissions and are now included in climate change negotiations. Approach: We reviewed the potential for air and spaceborne hyperspectral sensing to identify and map individual tree species measure carbon stocks, specifically Aboveground Biomass (AGB and provide an overview of a range of approaches that have been developed and used to map tropical rain forest across a diverse set of conditions and geographic areas. We provided a summary of air and spaceborne hyperspectral remote sensing measurements relevant to mapping the tropical forest and assess the relative merits and limitations of each. We then provided an overview of modern techniques of mapping the tropical forest based on species discrimination, leaf chlorophyll content, estimating aboveground forest productivity and monitoring forest health. Results: The challenges in hyperspectral Imaging of tropical forests is thrown out to researchers in such field as to come with the latest techniques of image processing and improved mapping resolution leading towards higher precision mapping accuracy. Some research results from an airborne hyperspectral imaging over Bukit Nanas forest reserve was shared implicating high potential of such very high resolution imaging techniques for tropical mixed dipterocarp forest inventory and mapping for species discrimination, aboveground forest productivity, leaf chlorophyll content and carbon mapping. Conclusion/Recommendations: We concluded that while spaceborne hyperspectral remote sensing has often been discounted as inadequate for the task, attempts to map with airborne sensors are still insufficient in tropical developing countries like Malaysia. However, we demonstrated this with a case

  17. Cerambícidos (Coleoptera: Cerambycidae del bosque tropical caducifolio en Santiago Dominguillo, Oaxaca, México Cerambycids (Coleoptera: Cerambycidae from a tropical dry forest in Santiago Dominguillo, Oaxaca, México

    Directory of Open Access Journals (Sweden)

    Felipe A. Noguera

    2012-09-01

    Full Text Available Se presentan los resultados de un estudio sobre la fauna de cerambícidos del bosque tropical caducifolio de Santiago Dominguillo, Oaxaca, México, que se realizó entre noviembre de 1997 y octubre de 1998. Las recolecciones se realizaron durante 5 días de cada mes; los métodos incluyeron trampa de luz, trampa Malaise y directa. Se registraron 97 especies, 64 géneros, 32 tribus y 4 subfamilias. La subfamilia con más especies fue Cerambycinae con 59, seguida por Lamiinae con 36 y Lepturinae y Prioninae, con 1 especie cada una. Las tribus con más géneros y especies fueron Elaphidiini con 9 y 17, Acanthocinini con 8 y 12 y Trachyderini con 7 y 9. Los géneros con más especies fueron Rhopalophora con 6 y Eburia, Aneflomorpha, Stenosphenus y Estoloides con 4. El valor estimado de riqueza fue de 134 especies. El patrón de abundancia mostró pocas especies muy abundantes y la mayoría con pocos individuos. El índice de diversidad fue de H= 3.59. La riqueza y la abundancia variaron con el tiempo, registrándose los valores más altos en la época de lluvias y los más bajos en la de secas. El 46% de las especies registradas son endémicas de México.The results of a study of the fauna of cerambycids of the tropical dry forest of Santiago Dominguillo, Oaxaca, México are presented. The study was carried out between November, 1997 and October, 1998. Collections were carried out during 5 days of every month and the collection methods included light trapping, Malaise trapping and direct collecting. A total of 97 species, 64 genera, 32 tribes and 4 subfamilies were recorded. The subfamily with the greatest number of species was Cerambycinae with 59, followed by Lamiinae with 36 and Lepturinae y Prioninae with 1 respectively. The tribes with the largest number of genera and species were Elaphidiini with 9 and 17, Acanthocinini with 8 and 12, and Trachyderini with 7 and 9 respectively. The genera with most species were Rhopalophora with 6 y Eburia

  18. Effect of fragmentation on the Costa Rican dry forest avifauna

    Science.gov (United States)

    Barrantes, Gilbert; Ocampo, Diego; Ramírez-Fernández, José D.

    2016-01-01

    Deforestation and changes in land use have reduced the tropical dry forest to isolated forest patches in northwestern Costa Rica. We examined the effect of patch area and length of the dry season on nestedness of the entire avian community, forest fragment assemblages, and species occupancy across fragments for the entire native avifauna, and for a subset of forest dependent species. Species richness was independent of both fragment area and distance between fragments. Similarity in bird community composition between patches was related to habitat structure; fragments with similar forest structure have more similar avian assemblages. Size of forest patches influenced nestedness of the bird community and species occupancy, but not nestedness of assemblages across patches in northwestern Costa Rican avifauna. Forest dependent species (species that require large tracts of mature forest) and assemblages of these species were nested within patches ordered by a gradient of seasonality, and only occupancy of species was nested by area of patches. Thus, forest patches with a shorter dry season include more forest dependent species. PMID:27672498

  19. Carbon allocation in a Bornean tropical rainforest without dry seasons.

    Science.gov (United States)

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Saitoh, Taku M; Ohashi, Mizue; Nakagawa, Michiko; Suzuki, Masakazu; Otsuki, Kyoichi; Kumagai, Tomo'omi

    2013-07-01

    To clarify characteristics of carbon (C) allocation in a Bornean tropical rainforest without dry seasons, gross primary production (GPP) and C allocation, i.e., above-ground net primary production (ANPP), aboveground plant respiration (APR), and total below-ground carbon flux (TBCF) for the forest were examined and compared with those from Amazonian tropical rainforests with dry seasons. GPP (30.61 MgC ha(-1) year(-1), eddy covariance measurements; 34.40 MgC ha(-1) year(-1), biometric measurements) was comparable to those for Amazonian rainforests. ANPP (6.76 MgC ha(-1) year(-1)) was comparable to, and APR (8.01 MgC ha(-1) year(-1)) was slightly lower than, their respective values for Amazonian rainforests, even though aboveground biomass was greater at our site. TBCF (19.63 MgC ha(-1) year(-1)) was higher than those for Amazonian forests. The comparable ANPP and higher TBCF were unexpected, since higher water availability would suggest less fine root competition for water, giving higher ANPP and lower TBCF to GPP. Low nutrient availability may explain the comparable ANPP and higher TBCF. These data show that there are variations in C allocation patterns among mature tropical rainforests, and the variations cannot be explained solely by differences in soil water availability.

  20. Functional ecology of tropical forest recovery

    NARCIS (Netherlands)

    Lohbeck, M.W.M.

    2014-01-01

    Electronic abstract of the thesis for the library for the acquisitions department of Wageningen UR library (published as a html file so hyperlinks may be included) In English, one or 2 pages. Functional ecology of tropical forest recovery Currently in the tropics, the area of second

  1. Tropical Forest Gain and Interactions amongst Agents of Forest Change

    Directory of Open Access Journals (Sweden)

    Sean Sloan

    2016-02-01

    Full Text Available The tropical deforestation literature advocates multi-agent enquiry in recognition that key dynamics arise from inter-agent interactions. Studies of tropical forest-cover gain have lagged in this respect. This article explores the roles and key aspects of interactions shaping natural forest regeneration and active reforestation in Eastern Panama since 1990. It employs household surveys of agricultural landholders, interviews with community forest-restoration organisations, archival analysis of plantation reforestation interests, satellite image analysis of forest-cover change, and the consideration of State reforestation policies. Forest-cover gain reflected a convergence of interests and land-use trends amongst agents. Low social and economic costs of sustained interaction and organisation enabled extensive forest-cover gain, but low transaction costs did not. Corporate plantation reforestation rose to the fore of regional forest-cover gain via opportunistic land sales by ranchers and economic subsidies indicative of a State preference for autonomous, self-organising forest-cover gain. This reforestation follows a recent history of neoliberal frontier development in which State-backed loggers and ranchers similarly displaced agriculturalists. Community institutions, long neglected by the State, struggled to coordinate landholders and so effected far less forest-cover gain. National and international commitments to tropical forest restoration risk being similarly characterised as ineffective by a predominance of industrial plantation reforestation without greater State support for community forest management.

  2. Carbon, nitrogen cycling and land cover changes during regrowth in African dry tropical forests: integrating perspectives from field and satellite data across a chronosequence in the Miombo Woodlands of western Tanzania

    Science.gov (United States)

    Mayes, M. T.; Melillo, J. M.; Mustard, J. F.; Neill, C.; Nyadzi, G.

    2015-12-01

    Seasonally dry tropical forests in Africa (SDTFs), such as forests in Miombo Woodlands, are experiencing high rates of deforestation, degradation and regrowth. Increasing proportions of forest are disturbed or composed of young regrowth stands (soil mineral N availability with regrowth; (2) How does N demand for tree leaf production compare to indicators of available mineral N in surface soils from young to mature forest sites; (3) How does canopy structure vary with regrowth and disturbance and scale to Landsat-style satellite data? We established a chronosequence of 18 sites with ages 3 to >40 years since abandonment. At each, we inventoried trees to quantify aboveground tree C stocks, sampled soils to 100 cm to measure C, total and mineral N (NH4+, NO3-), and surveyed canopy cover with point-line transects, spherical densiometer and photometric leaf area measures. We also conducted soil incubations to determine nitrogen mineralization potentials. Tree C stocks ranged from 0.4 ± 0.1 Mg C ha-1 for 3-4 year sites to 27.2 ± 5.2 Mg C ha-1 for 30-40 year sites, and were 44.5 ± 7.4 Mg C ha-1 for mature forest sites. Rates of aboveground tree C stock changes (0.78 - 0.89 Mg C ha-1 yr-1) were comparable to the few published for Miombo forests. However, tree C stocks at 10 - 24 year sites (5.2 ± 1.1 Mg C ha -1) were much lower than those reported in comparable studies. Only sites > 30-40 years had C stocks approaching mature forests. Further analyses will compare N dynamics from leaves and soil across the chronosequence, and relate them to the trends in tree C stocks. We use ground and canopy cover data to test remote sensing characterizations of land cover across disturbed and regrowth sites. Such scaling relationships will allow us to improve remote sensing characterization of land cover in African SDTFs and develop landscape-scale estimates of how forest cover changes affect C, N and water cycling regionally.

  3. Wood Decomposition of Cyrilla racemiflora (Cyrillaceae) in Puerto Rican Dry and Wet Forests: A 13-year Case Study.

    Science.gov (United States)

    Juan A. Torres; Grizelle Gonzalez

    2005-01-01

    We studied the decomposition of Cyrilla racemiflora logs over a 13-yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood-inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs...

  4. The Impacts of Droughts in Tropical Forests.

    Science.gov (United States)

    Corlett, Richard T

    2016-07-01

    Tropical forests exchange more carbon dioxide (CO2) with the atmosphere than any other vegetation type and, thus, form a crucial component of the global carbon cycle. However, the impacts of anthropogenic climate change on drought occurrence and intensity could weaken the tropical forest carbon sink, with resulting feedback to future climates. We urgently need a better understanding of the mechanisms and processes involved to predict future responses of tropical forest carbon sequestration to climate change. Recent progress has been made in the study of drought responses at the molecular, cellular, organ, individual, species, community, and landscape levels. Although understanding of the mechanisms is incomplete, the models used to predict drought impacts could be significantly improved by incorporating existing knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Drought-mortality relationships for tropical forests.

    Science.gov (United States)

    Phillips, Oliver L; van der Heijden, Geertje; Lewis, Simon L; López-González, Gabriela; Aragão, Luiz E O C; Lloyd, Jon; Malhi, Yadvinder; Monteagudo, Abel; Almeida, Samuel; Dávila, Esteban Alvarez; Amaral, Iêda; Andelman, Sandy; Andrade, Ana; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R; Blanc, Lilian; Bonal, Damien; de Oliveira, Atila Cristina Alves; Chao, Kuo-Jung; Cardozo, Nallaret Dávila; da Costa, Lola; Feldpausch, Ted R; Fisher, Joshua B; Fyllas, Nikolaos M; Freitas, Maria Aparecida; Galbraith, David; Gloor, Emanuel; Higuchi, Niro; Honorio, Eurídice; Jiménez, Eliana; Keeling, Helen; Killeen, Tim J; Lovett, Jon C; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Vargas, Percy Núñez; Patiño, Sandra; Peh, Kelvin S-H; Cruz, Antonio Peña; Prieto, Adriana; Quesada, Carlos A; Ramírez, Fredy; Ramírez, Hirma; Rudas, Agustín; Salamão, Rafael; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Slik, J W Ferry; Sonké, Bonaventure; Thomas, Anne Sota; Stropp, Juliana; Taplin, James R D; Vásquez, Rodolfo; Vilanova, Emilio

    2010-08-01

    *The rich ecology of tropical forests is intimately tied to their moisture status. Multi-site syntheses can provide a macro-scale view of these linkages and their susceptibility to changing climates. Here, we report pan-tropical and regional-scale analyses of tree vulnerability to drought. *We assembled available data on tropical forest tree stem mortality before, during, and after recent drought events, from 119 monitoring plots in 10 countries concentrated in Amazonia and Borneo. *In most sites, larger trees are disproportionately at risk. At least within Amazonia, low wood density trees are also at greater risk of drought-associated mortality, independent of size. For comparable drought intensities, trees in Borneo are more vulnerable than trees in the Amazon. There is some evidence for lagged impacts of drought, with mortality rates remaining elevated 2 yr after the meteorological event is over. *These findings indicate that repeated droughts would shift the functional composition of tropical forests toward smaller, denser-wooded trees. At very high drought intensities, the linear relationship between tree mortality and moisture stress apparently breaks down, suggesting the existence of moisture stress thresholds beyond which some tropical forests would suffer catastrophic tree mortality.

  6. Tropical forests and the changing earth system.

    Science.gov (United States)

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  7. Design considerations for tropical forest inventories

    Directory of Open Access Journals (Sweden)

    Ronald Edward McRoberts

    2013-06-01

    Full Text Available Forests contribute substantially to maintaining the global greenhouse gas balance, primarily because among the five economic sectors identified by the United Nations Framework Convention on Climate Change, only the forestry sector has the potential to remove greenhouse gas emissions from the atmosphere. In this context, development of national forest carbon accounting systems, particularly in countries with tropical forests, has emerged as an international priority. Because these systems are often developed as components of or in parallel with national forest inventories, a brief review of statistical issues related to the development of forest ground sampling designs is provided. This overview addresses not only the primary issues of plot configurations and sampling designs, but also to a lesser extent the emerging roles of remote sensing and uncertainty assessment. Basic inventory principles are illustrated for two case studies, the national forest inventory of Brazil with special emphasis on the state of Santa Catarina, and an inventory for Tanzania.

  8. DRY DEPOSITION OF POLLUTANTS TO FORESTS

    Science.gov (United States)

    We report on the results of an extensive field campaign to measure dry deposition of ozone and sulfur dioxide to a sample of forest types in the United States. Measurements were made for full growing seasons over a deciduous forest in Pennsylvania and a mixed deciduous-conifer...

  9. Defaunation affects carbon storage in tropical forests.

    Science.gov (United States)

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage.

  10. Avifauna de la selva baja caducifolia en la cañada del río Sabino, Oaxaca, México Avifauna of the tropical dry forest in the Sabino Canyon, Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Leopoldo Vázquez

    2009-08-01

    Full Text Available Se describe la avifauna de la selva baja caducifolia del cañón del río Sabino, Oaxaca, al sureste de la Reserva de la Biosfera Tehuacán-Cuicatlán y compara la similitud de la avifauna de la Reserva con la de otras regiones con selvas bajas en México. El trabajo se realizó entre junio de 2005 y octubre de 2006, registrando 113 especies pertenecientes a 13 órdenes y 34 familias; 6 especies son muy abundantes, 10 abundantes, 20 comunes, 32 poco comunes y 37 raras; 79 de las especies registradas fueron residentes, 28 visitantes invernales, 2 visitantes de verano, 3 transitorias y 5 residentes con movimientos estacionales; 15 especies son endémicas a México y 23 están dentro de alguna categoría de riesgo. La avifauna estudiada representa una mezcla de especies características de la cuenca del Balsas, las vertientes pacífica y atlántica y los ambientes montanos y áridos del centro de México. Por su composición específica la avifauna estudiada se relacionó con las avifaunas de la cuenca del Balsas. La selva baja del cañón del Sabino es prioritaria para la conservación debido a su riqueza en especies endémicas y a la presencia una colonia reproductora de la guacamaya verde, Ara militaris, especie globalmente amenazada.This study describes the birds of the tropical dry forest in Sabino Canyon, Oaxaca, in the southeastern part of the Tehuacán-Cuicatlán biosphere reserve. Field work was conducted between June 2005 and October 2006. A total of 113 species belonging to 13 orders and 34 families were recorded. Six species were classified as very abundant, 10 as abundant, 20 as common, 32 as uncommon, and 37 as rare; 79 species were permanent residents, 28 were winter visitors, 2 summer visitors, 3 transients, and 5 were local migrants; 15 species were classified as endemic to Mexico, and 23 are threatened. The bird composition of Sabino Canyon mainly resembles the avifauna the Balsas river basin. The avifauna of the tropical dry

  11. Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Application to tropical Africa.

    Science.gov (United States)

    Brown, S; Gaston, G

    1995-01-01

    One of the most important databases needed for estimating emissions of carbon dioxide resulting from changes in the cover, use, and management of tropical forests is the total quantity of biomass per unit area, referred to as biomass density. Forest inventories have been shown to be valuable sources of data for estimating biomass density, but inventories for the tropics are few in number and their quality is poor. This lack of reliable data has been overcome by use of a promising approach that produces geographically referenced estimates by modeling in a geographic information system (GIS). This approach has been used to produce geographically referenced, spatial distributions of potential and actual (circa 1980) aboveground biomass density of all forests types in tropical Africa. Potential and actual biomass density estimates ranged from 33 to 412 Mg ha(-1) (10(6)g ha(-1)) and 20 to 299 Mg ha(-1), respectively, for very dry lowland to moist lowland forests and from 78 to 197 Mg ha(-1) and 37 to 105 Mg ha(-1), respectively, for montane-seasonal to montane-moist forests. Of the 37 countries included in this study, more than half (51%) contained forests that had less than 60% of their potential biomass. Actual biomass density for forest vegetation was lowest in Botswana, Niger, Somalia, and Zimbabwe (about 10 to 15 Mg ha(-1)). Highest estimates for actual biomass density were found in Congo, Equatorial Guinea, Gabon, and Liberia (305 to 344 Mg ha(-1)). Results from this research effort can contribute to reducing uncertainty in the inventory of country-level emission by providing consistent estimates of biomass density at subnational scales that can be used with other similarly scaled databases on change in land cover and use.

  12. Structural Dynamics of Tropical Moist Forest Gaps

    Science.gov (United States)

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23

  13. Structural Dynamics of Tropical Moist Forest Gaps.

    Directory of Open Access Journals (Sweden)

    Maria O Hunter

    Full Text Available Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down differ from traditional field measurements (bottom up, and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012 at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8% as compared to Ducke Reserve (2.0%. On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1. Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively. At Tapajos, height loss had a much stronger signal

  14. Structural Dynamics of Tropical Moist Forest Gaps.

    Science.gov (United States)

    Hunter, Maria O; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height <10 m. Applying the dynamic definition at both sites, we found over twice as much area in gap at Tapajos National Forest (4.8%) as compared to Ducke Reserve (2.0%). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10% of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6% at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13% and 10%, respectively). At Tapajos, height loss had a much stronger signal (23% versus 6

  15. PARTICIÓN DE MICROHÁBITATS ENTRE ESPECIES DE BUFONIDAE Y LEIUPERIDAE (AMPHIBIA: ANURA EN ÁREAS CON BOSQUE SECO TROPICAL DE LA REGIÓN CARIBE-COLOMBIA Microhábitat Partitioning Between Leiuperidae and Bufonidae Species (Amphibia: Anura in Tropical Dry Forest Areas in Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    ARGELINA BLANCO TORRES

    Full Text Available RESUMEN Se analizó la partición de microhábitats de cinco especies de anuros pertenecientes a las familias Bufonidae (Rhinella marina, R. granulosa, y Leiuperidae (Engystomops pustulosus, Pleurodema brachyops y Pseudopaludicola pusilla en seis localidades del Caribe colombiano con fragmentos de bosque seco tropical y diferentes usos de suelo. Se identificaron 29 microhábitats. Los más usados fueron charco de agua permanente de potreros con árboles (CPPA y potreros inundables sin árboles (PISA. La especie que mayor cantidad de microhábitats utilizó, fue E. pustulosus. No hubo especialistas en el uso de estos ambientes. Se presentaron diferencias en el uso de este recurso a escalas regional y local. La dinámica de uso de los microhábitats estuvo influenciada por las variaciones climáticas del bosque seco tropical. Existió partición de microhábitats como mecanismo de coexistencia en estas especies para época seca y no ocurre en época de lluvias.ABSTRACT We analyzed partitioning of microhábitats by five species of frogs in the families Bufonidae (Rhinella marina, R. granulosa, and Leiuperidae (Engystomops pustulosus, Pleurodema brachyops and Pseudopaludicola pusilla in six different localities of the Colombian Caribean with tropical dry forest fragments and different land uses. We identified 29 types of microhábitats; permanent ponds in pastures with trees (CPPA and flooded pastures without trees (PISA were the most important environmental used. Engystomops pustulosus used the must microhábitats, and none are used by specialist species. Thus, differences in the use of resource on regional and local scales appeared. Dynamics of microhábitat uses was influenced by the climatic variations of the tropical dry forest. Microhábitats distribution as a mechanism of coexistence in these species is implemented for dry season but in rainfall season this mechanism not exists.

  16. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    Science.gov (United States)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  17. What Factors Affect Diversity and Species Composition of Endangered Tumbesian Dry Forests in Southern Ecuador?

    OpenAIRE

    Espinosa Iñiguez, Carlos Ivan; Cabrera, Omar; Luzuriaga, Arantzazu L.; Escudero, Adrián

    2011-01-01

    This paper reports a study on species richness and composition of Tumbesian dry forest communities. We tested two alternative hypotheses about species assemblage processes in tropical dry forests: (1) species assemblage is determined by the filtering effect of environmental conditions and (2) species assemblage is determined by facilitative processes along the gradient of water availability, and thus, species richness and evenness increase as water becomes limited. In addition, we also explor...

  18. Asynchronous response of tropical forest leaf phenology to seasonal and el Nino-driven drought.

    Directory of Open Access Journals (Sweden)

    Stephanie Pau

    Full Text Available The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO. Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (Delta(NDVI between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002-003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST index during 2002-2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited.

  19. Understanding the Role of Typhoons, Fire, and Climate on the Vegetation Dynamics of Tropical Dry Forests: Looking to the Past to Develop Future Management Solutions

    Science.gov (United States)

    2010-04-01

    Gleichenia, Palhinhaea cernua, Cyperaceae , and possibly an increase in spore production by tree ferns with removal of canopy trees. In addition, pollen...rates. Eventually this progression would lead to a lack of forest and the pollen recorded will be dominated by grass, sedge , fewer understory ferns

  20. Ecotoxicology of mercury in tropical forest soils: Impact on earthworms.

    Science.gov (United States)

    Buch, Andressa Cristhy; Brown, George Gardner; Correia, Maria Elizabeth Fernandes; Lourençato, Lúcio Fábio; Silva-Filho, Emmanoel Vieira

    2017-07-01

    Mercury (Hg) is one of the most toxic nonessential trace metals in the environment, with high persistence and bioaccumulation potential, and hence of serious concern to environmental quality and public health. Emitted to the atmosphere, this element can travel long distances, far from emission sources. Hg speciation can lead to Hg contamination of different ecosystem components, as well as biomagnification in trophic food webs. To evaluate the effects of atmospheric Hg deposition in tropical forests, we investigated Hg concentrations in earthworm tissues and soils of two Forest Conservation Units in State of Rio de Janeiro, Brazil. Next, we performed a laboratory study of the biological responses (cast analysis and behavioral, acute, chronic and bioaccumulation ecotoxicological tests) of two earthworms species (Pontoscolex corethrurus and Eisenia andrei) to Hg contamination in tropical artificial soil (TAS) and two natural forest soils (NS) spiked with increasing concentration of HgCl2. Field results showed Hg concentrations up to 13 times higher in earthworm tissues than in forest soils, while in the laboratory Hg accumulation after 91-days of exposure was 25 times greater in spiked-soils with 128mgHgkg(-1) (dry wt) than in control (unspiked) soils. In all the toxicity tests P. corethrurus showed a higher adaptability or resistance to mercury than E. andrei. The role of earthworms as environmental bioremediators was confirmed in this study, showing their ability to greatly bioaccumulate trace metals while reducing Hg availability in feces. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. CARACTERIZAÇÃO FITOGEOGRÁFICA DE GRUPOS BOTÂNICOS DA FLORESTA ESTACIONAL DECIDUAL DA SERRA DO CIPÓ / CHARACTERIZATION PHYTOGEOGRAPHIC FROM GROUPS BOTANICAL OF AN TROPICAL FOREST DRY IN SERRA OF CIPÓ

    Directory of Open Access Journals (Sweden)

    Thamyres Sabrina Gonçalves

    2014-12-01

    Full Text Available Resumo O objetivo desse trabalho é fazer uma revisão acerca da biologia e ocorrência geográfica dos grupos botânicos que ocorrem na vegetação dos afloramentos calcários da Serra do Cipó localizada na porção sul da Cadeia do Espinhaço Meridional no estado de Minas Gerais. Foram levantadas informações bibliográficas acerca da distribuição espacial e aspectos biológicos de famílias, gêneros e espécies encontradas em um levantamento florístico realizado na região. Os resultados da pesquisa mostram que boa parte dos grupos taxonômicos ocorrentes nas florestas tropicais secas são muito pouco pesquisados pela ciência ambiental brasileira. Conclui-se que estudos de revisão acerca da biologia desses grupos e principalmente estudos que caracterizem a distribuição geográfica dessas plantas são uma demanda para a pesquisa científica e em muito podem ajudar na criação de planos de ação para conservação de espécies. Palavras chave: Serra do Espinhaço Meridional, flora, conservação, Matas Secas. Abstract The aim of this paper is to review about the biology and geographical occurrence of botanical groups that occur in the vegetation of limestone outcrops of Serra do Cipo located in the southern portion of the Chain of Southern Espinhaço in Minas Gerais. Bibliographic information about the spatial distribution and biological families, genera and species found in a floristic survey in the region points were raised. The survey results show that most taxa occurring in the dry tropical forests are poorly surveyed by Brazilian environmental science. We conclude that review studies on the biology of these groups and especially studies that characterize the geographic distribution of plants is a demand for scientific research and much can assist in creating action plans for species conservation. Keywords: Serra do Espinhaço Meridional, flora, conservation, dry forest.

  2. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2011-05-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

    1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

    2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

    3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere. The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within amedian −2.7 to 0.9% of the true value. Some of the plot-to-plot variability in

  3. Height-diameter allometry of tropical forest trees

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2010-10-01

    Full Text Available Tropical tree height-diameter (H:D relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical countries. Utilising this database, our objectives were:

      1. to determine if H:D relationships differ by geographic region and forest type (wet to dry forests, including zones of tension where forest and savanna overlap.

      2. to ascertain if the H:D relationship is modulated by climate and/or forest structural characteristics (e.g. stand-level basal area, A.

      3. to develop H:D allometric equations and evaluate biases to reduce error in future local-to-global estimates of tropical forest biomass.

    Annual precipitation coefficient of variation (PV, dry season length (SD, and mean annual air temperature (TA emerged as key drivers of variation in H:D relationships at the pantropical and region scales. Vegetation structure also played a role with trees in forests of a high A being, on average, taller at any given D. After the effects of environment and forest structure are taken into account, two main regional groups can be identified. Forests in Asia, Africa and the Guyana Shield all have, on average, similar H:D relationships, but with trees in the forests of much of the Amazon Basin and tropical Australia typically being shorter at any given D than their counterparts elsewhere.

    The region-environment-structure model with the lowest Akaike's information criterion and lowest deviation estimated stand-level H across all plots to within a median –2.7 to 0.9% of the true value. Some of the plot

  4. issues of tropical forest transformation in ashanti region, ghana

    African Journals Online (AJOL)

    User

    global discourse of tropical deforestation obscures the more complex process that contributes to ... more effective ways of engaging in sustainable tropical forest management in the Ashanti Re- .... Institutional surveys using structured question-.

  5. Dendrochronology in the dry tropics: the Ethiopian case

    NARCIS (Netherlands)

    Wils, T.; Sass-Klaassen, U.; Eshetu, Z.; Bräuning, A.; Gebrenirstos, A.; Couralet, C.; Robertson, I.; Touchan, R.; Koprowski, M.; Conway, D.; Briffa, K.R.; Beeckman, H.

    2011-01-01

    Dendrochronology is developing outside temperate and boreal regions. Over the past decade substantial progress has been made in Mediterranean and wet tropical regions. However, research in dry tropical regions, notably those of sub-Saharan Africa, has remained fragmentary. Here, we try to identify t

  6. Dendrochronology in the dry tropics: the Ethiopian case

    NARCIS (Netherlands)

    Wils, T.; Sass-Klaassen, U.; Eshetu, Z.; Bräuning, A.; Gebrenirstos, A.; Couralet, C.; Robertson, I.; Touchan, R.; Koprowski, M.; Conway, D.; Briffa, K.R.; Beeckman, H.

    2011-01-01

    Dendrochronology is developing outside temperate and boreal regions. Over the past decade substantial progress has been made in Mediterranean and wet tropical regions. However, research in dry tropical regions, notably those of sub-Saharan Africa, has remained fragmentary. Here, we try to identify

  7. Tropical forest transitions: structural changes in forest area, composition and landscape

    NARCIS (Netherlands)

    Wiersum, K.F.

    2014-01-01

    Most studies on tropical forest dynamics focus on the processes of deforestation and forest degradation and its associated ecological impacts; comparatively little attention is given to the emergence of forest transitions. This review gives an overview of forest transitions in the tropics as

  8. Synanthropy and ecological aspects of Muscidae (Diptera in a tropical dry forest ecosystem in Colombia Sinantropía y algunos aspectos de la ecología de Muscidae (Diptera en un ecosistema de bosque seco tropical en Colombia

    Directory of Open Access Journals (Sweden)

    Natalia Uribe-M

    2010-01-01

    Full Text Available The synanthropic index and other ecological aspects of the Muscidae family were evaluated through simultaneous monthly sampling in three different environments (urban, rural and forest using van Someren-Rydon traps baited with human faeces, chicken viscera and decomposing fish and onion. Four traps were set up in each environment (one per bait item for 48 hours per month, with samples taken every 12 hours. A total of 5726 specimens were collected, belonging to 19 species and 13 genera. Brontaea normata (+99,9, Brontaea quadristigma (+96,9, Synthesiomyia nudiseta (+96,5, Ophyra aenescens (+96,2, Musca domestica (+95,7 and Atherigona orientalis (+93,8 had the highest synanthropic indices, showing a marked preference for human environments. The most abundant species were B. normata (24,31%, Biopyrellia bipuncta (20,60% and Pseudoptilolepis nigripoda (15,82%, the latter two showed a preference for uninhabited areas. A total of 11 new records for Colombia were found: Ophyra aenescens, Cyrtoneuropsis pararescita, Morellia basalis, Neomuscina dorsipuncta, Biopyrellia bipuncta, Pseudoptilolepis nigripoda, Neomuscina instabilis, Neomuscina currani, Polietina orbitalis, Neomuscina pictipennis and Cyrtoneuropsis maculipennis. Except for the first four species, the remainder presented negative synantrophy indexes (from minor to major, which would allow to use them as ecological indicators of the disturbance degree of dry forests in Colombia.Se evaluó el índice de sinantropía al igual que otros aspectos ecológicos de la familia Muscidae, mediante muestreos mensuales simultáneos en tres ambientes (urbano, rural y bosque, para lo cual se utilizaron trampas van Someren Rydon cebadas con excremento humano, vísceras de pollo, pescado y cebolla en descomposición. En cada zona se instalaron cuatro trampas (una por atrayente, durante 48 horas cada mes, realizando colectas cada 12 horas. Se colectaron 5726 ejemplares pertenecientes a 19 especies y 13 g

  9. Beetle succession and diversity between clothed sun-exposed and shaded pig carrion in a tropical dry forest landscape in Southern Mexico.

    Science.gov (United States)

    Caballero, Ubaldo; León-Cortés, Jorge L

    2014-12-01

    Over a 31-day period, the decomposition process, beetle diversity and succession on clothed pig (Sus scrofa L.) carcasses were studied in open (agricultural land) and shaded habitat (secondary forest) in Southern Mexico. The decomposition process was categorised into five stages: fresh, bloated, active decay, advanced decay and remains. Except for the bloated stage, the elapsed time for each decomposition stage was similar between open and shaded habitats, all carcasses reached an advanced decay stage in seven days, and the fifth stage (remains) was not recorded in any carcass during the time of this study. A total of 6344 beetles, belonging to 130 species and 21 families, were collected during the entire decomposition process, and abundances increased from fresh to advanced decay stages. Staphylinidae, Scarabaeidae and Histeridae were taxonomically and numerically dominant, accounting for 61% of the species richness and 87% of the total abundance. Similar numbers of species (87 and 88 species for open and shaded habitats, respectively), levels of diversity and proportions (open 49%; shaded 48%) of exclusive species were recorded at each habitat. There were significantly distinct beetle communities between habitats and for each stage of decomposition. An indicator species analysis ("IndVal") identified six species associated to open habitats, 10 species to shaded habitats and eight species to advanced decay stages. In addition, 23 beetle species are cited for the first time in the forensic literature. These results showed that open and shaded habitats both provide suitable habitat conditions for the carrion beetle diversity with significant differences in community structure and identity of the species associated to each habitat. This research provides the first empirical evidence of beetle ecological succession and diversity on carrion in Mexican agro-pastoral landscapes.

  10. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  11. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-07-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  12. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  13. Convergent elevation trends in canopy chemical traits of tropical forests.

    Science.gov (United States)

    Asner, Gregory P; Martin, Roberta E

    2016-06-01

    The functional biogeography of tropical forests is expressed in foliar chemicals that are key physiologically based predictors of plant adaptation to changing environmental conditions including climate. However, understanding the degree to which environmental filters sort the canopy chemical characteristics of forest canopies remains a challenge. Here, we report on the elevation and soil-type dependence of forest canopy chemistry among 75 compositionally and environmentally distinct forests in nine regions, with a total of 7819 individual trees representing 3246 species collected, identified and assayed for foliar traits. We assessed whether there are consistent relationships between canopy chemical traits and both elevation and soil type, and evaluated the general role of phylogeny in mediating patterns of canopy traits within and across communities. Chemical trait variation and partitioning suggested a general model based on four interconnected findings. First, geographic variation at the soil-Order level, expressing broad changes in fertility, underpins major shifts in foliar phosphorus (P) and calcium (Ca). Second, elevation-dependent shifts in average community leaf dry mass per area (LMA), chlorophyll, and carbon allocation (including nonstructural carbohydrates) are most strongly correlated with changes in foliar Ca. Third, chemical diversity within communities is driven by differences between species rather than by plasticity within species. Finally, elevation- and soil-dependent changes in N, LMA and leaf carbon allocation are mediated by canopy compositional turnover, whereas foliar P and Ca are driven more by changes in site conditions than by phylogeny. Our findings have broad implications for understanding the global ecology of humid tropical forests, and their functional responses to changing climate.

  14. Diversity and carbon storage across the tropical forest biome

    Science.gov (United States)

    Sullivan, Martin J. P.; Talbot, Joey; Lewis, Simon L.; Phillips, Oliver L.; Qie, Lan; Begne, Serge K.; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; Ter Steege, Hans; White, Lee J. T.; Affum-Baffoe, Kofi; Aiba, Shin-Ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E. O. C.; Ashton, Peter; Aymard C., Gerardo A.; Baker, Timothy R.; Balinga, Michael; Banin, Lindsay F.; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C.; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J.; Pacheco, Álvaro Cogollo; Comiskey, James A.; Valverde, Fernando Cornejo; Coronado, Eurídice N. Honorio; Dargie, Greta; Davies, Stuart J.; de Canniere, Charles; Djuikouo K., Marie Noel; Doucet, Jean-Louis; Erwin, Terry L.; Espejo, Javier Silva; Ewango, Corneille E. N.; Fauset, Sophie; Feldpausch, Ted R.; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S.; Harris, David J.; Hart, Terese B.; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G. W.; Laurance, William F.; Leal, Miguel E.; Lovejoy, Thomas; Lovett, Jon C.; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Junior, Ben Hur Marimon; Marshall, Andrew R.; Morandi, Paulo S.; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C. Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C.; Poulsen, Axel Dalberg; Poulsen, John R.; Primack, Richard B.; Priyadi, Hari; Quesada, Carlos A.; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P.; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J. W. Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W.; Thomas, Sean C.; Toledo, Marisol; Umunay, Peter M.; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A.; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-01

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

  15. Diversity and carbon storage across the tropical forest biome

    Science.gov (United States)

    Sullivan, Martin J. P.; Talbot, Joey; Lewis, Simon L.; Phillips, Oliver L.; Qie, Lan; Begne, Serge K.; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; ter Steege, Hans; White, Lee J. T.; Affum-Baffoe, Kofi; Aiba, Shin-ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E. O. C.; Ashton, Peter; Aymard C., Gerardo A.; Baker, Timothy R.; Balinga, Michael; Banin, Lindsay F.; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C.; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J.; Pacheco, Álvaro Cogollo; Comiskey, James A.; Valverde, Fernando Cornejo; Coronado, Eurídice N. Honorio; Dargie, Greta; Davies, Stuart J.; De Canniere, Charles; Djuikouo K., Marie Noel; Doucet, Jean-Louis; Erwin, Terry L.; Espejo, Javier Silva; Ewango, Corneille E. N.; Fauset, Sophie; Feldpausch, Ted R.; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S.; Harris, David J.; Hart, Terese B.; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G. W.; Laurance, William F.; Leal, Miguel E.; Lovejoy, Thomas; Lovett, Jon C.; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Junior, Ben Hur Marimon; Marshall, Andrew R.; Morandi, Paulo S.; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C. Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C.; Poulsen, Axel Dalberg; Poulsen, John R.; Primack, Richard B.; Priyadi, Hari; Quesada, Carlos A.; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P.; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J. W. Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W.; Thomas, Sean C.; Toledo, Marisol; Umunay, Peter M.; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A.; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-01

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity. PMID:28094794

  16. Radar remote sensing to support tropical forest management.

    NARCIS (Netherlands)

    Sanden, van der J.J.

    1997-01-01

    This text describes an investigation into the potential of radar remote sensing for application to tropical forest management. The information content of various radar images is compared and assessed with regard to the information requirements of parties involved in tropical forest management at the

  17. Functional traits, drought performance, and the distribution of tree species in tropical forests of Ghana

    NARCIS (Netherlands)

    Amissah, L.

    2014-01-01

      Tropical forests occur along a rainfall gradient where annual amount, the length and intensity of dry season vary and water availability shapes therefore strongly the distribution of tree species. Annual rainfall in West Africa has declined at a rate of 4% per decade, and climate change model

  18. Lacunarity as a texture measure for a tropical forest landscape

    Energy Technology Data Exchange (ETDEWEB)

    Su, Haiping; Krummel, J.

    1996-01-01

    Fragmentation and loss of tropical forest cover alters terrestrial plant and animal population dynamics, reduces biodiversity and carbon storage capacity, and, as a global phenomenon could affect regional and global climate patterns. Lacunarity as a texture measure can offer a simple solution to characterize the texture of tropical forest landscape and determine spatial patterns associated with ecological processes. Lacunarity quantifies the deviation from translational invariance by describing the distribution of gaps within a binary image at multiple scales. As lacunarity increases, the spatial arrangement of tropical forest gaps will also increase. In this study, we used the Spatial Modeler in Imagine as a graphic programming tool to calculate lacunarity indices for a tropical forest landscape in Southern Mexico and Northern Guatemala. Lacunarity indices were derived from classified Landsat MSS images acquired in 1974 and 1984. Random-generated binary images were also used to derive lacunarity indices and compared with the lacunarity of forest patterns derived from the classified MSS images. Tropical forest area declined about 17%, with most of the forest areas converted into pasture/grassland for grazing. During this period, lacunarity increased about 25%. Results of this study suggest that tropical forest fragmentation could be quantified with lacunarity measures. The study also demonstrated that the Spatial Modeler can be useful as a programming tool to quantify spatial patterns of tropical forest landscape by using remotely sensed data.

  19. Community ecology of tropical forest snails: 30 years after Solem

    NARCIS (Netherlands)

    Schilthuizen, M.

    2011-01-01

    Since Solem’s provocative claim in the early 1980s that land snails in tropical forests are neither abundant nor diverse, at least 30 quantitative-ecological papers on tropical land snail communities have appeared. Jointly, these papers have shown that site diversity is, in fact, high in tropical fo

  20. Plant diversity patterns in neotropical dry forests and their conservation implications.

    Science.gov (United States)

    Banda-R, Karina; Delgado-Salinas, Alfonso; Dexter, Kyle G; Linares-Palomino, Reynaldo; Oliveira-Filho, Ary; Prado, Darién; Pullan, Martin; Quintana, Catalina; Riina, Ricarda; Rodríguez M, Gina M; Weintritt, Julia; Acevedo-Rodríguez, Pedro; Adarve, Juan; Álvarez, Esteban; Aranguren B, Anairamiz; Arteaga, Julián Camilo; Aymard, Gerardo; Castaño, Alejandro; Ceballos-Mago, Natalia; Cogollo, Álvaro; Cuadros, Hermes; Delgado, Freddy; Devia, Wilson; Dueñas, Hilda; Fajardo, Laurie; Fernández, Ángel; Fernández, Miller Ángel; Franklin, Janet; Freid, Ethan H; Galetti, Luciano A; Gonto, Reina; González-M, Roy; Graveson, Roger; Helmer, Eileen H; Idárraga, Álvaro; López, René; Marcano-Vega, Humfredo; Martínez, Olga G; Maturo, Hernán M; McDonald, Morag; McLaren, Kurt; Melo, Omar; Mijares, Francisco; Mogni, Virginia; Molina, Diego; Moreno, Natalia Del Pilar; Nassar, Jafet M; Neves, Danilo M; Oakley, Luis J; Oatham, Michael; Olvera-Luna, Alma Rosa; Pezzini, Flávia F; Dominguez, Orlando Joel Reyes; Ríos, María Elvira; Rivera, Orlando; Rodríguez, Nelly; Rojas, Alicia; Särkinen, Tiina; Sánchez, Roberto; Smith, Melvin; Vargas, Carlos; Villanueva, Boris; Pennington, R Toby

    2016-09-23

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale. Copyright © 2016, American Association for the Advancement of Science.

  1. Poverty and corruption compromise tropical forest reserves.

    Science.gov (United States)

    Wright, S Joseph; Sanchez-Azofeifa, G Arturo; Portillo-Quintero, Carlos; Davies, Diane

    2007-07-01

    We used the global fire detection record provided by the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to determine the number of fires detected inside 823 tropical and subtropical moist forest reserves and for contiguous buffer areas 5, 10, and 15 km wide. The ratio of fire detection densities (detections per square kilometer) inside reserves to their contiguous buffer areas provided an index of reserve effectiveness. Fire detection density was significantly lower inside reserves than in paired, contiguous buffer areas but varied by five orders of magnitude among reserves. The buffer: reserve detection ratio varied by up to four orders of magnitude among reserves within a single country, and median values varied by three orders of magnitude among countries. Reserves tended to be least effective at reducing fire frequency in many poorer countries and in countries beset by corruption. Countries with the most successful reserves include Costa Rica, Jamaica, Malaysia, and Taiwan and the Indonesian island of Java. Countries with the most problematic reserves include Cambodia, Guatemala, Paraguay, and Sierra Leone and the Indonesian portion of Borneo. We provide fire detection density for 3964 tropical and subtropical reserves and their buffer areas in the hope that these data will expedite further analyses that might lead to improved management of tropical reserves.

  2. Plant diversity patterns in neotropical dry forests and their conservation implications

    Science.gov (United States)

    K. Banda-R; A. Delgado-Salinas; K. G. Dexter; R. Linares-Palomino; A. Oliveira-Filho; D. Prado; M. Pullan; C. Quintana; R. Riina; G. M. Rodriguez M.; J. Weintritt; P. Acevedo-Rodriguez; J. Adarve; E. Alvarez; A. Aranguren B.; J. C. Arteaga; G. Aymard; A. Castano; N. Ceballos-Mago; A. Cogollo; H. Cuadros; F. Delgado; W. Devia; H. Duenas; L. Fajardo; A. Fernandez; M. A. Fernandez; J. Franklin; E. H. Freid; L. A. Galetti; R. Gonto; R. Gonzalez-M.; R. Graveson; E. H. Helmer; A. Idarraga; R. Lopez; H. Marcano-Vega; O. G. Martinez; H. M. Maturo; M. McDonald; K. McLaren; O. Melo; F. Mijares; V. Mogni; D. Molina; N. d. P. Moreno; J. M. Nassar; D. M. Neves; L. J. Oakley; M. Oatham; A. R. Olvera-Luna; F. F. Pezzini; O. J. R. Dominguez; M. E. Rios; O. Rivera; N. Rodriguez; A. Rojas; T. Sarkinen; R. Sanchez; M. Smith; C. Vargas; B. Villanueva; R. T. Pennington

    2016-01-01

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than...

  3. Fire Regime and Stability of the West African Tropical Forest

    Science.gov (United States)

    Dwomoh, F. K.; Wimberly, M. C.

    2014-12-01

    Ecological discussions concerning alternative stable states theory suggest that tropical forest ecosystems could shift to qualitatively different alternative states upon catastrophic disturbances which exceed forest resilience. In this regard, it is expected that changes in the fire regime facilitated by climate and land use alterations could lead to rapid forest cover loss, creating conditions likely to push tropical forests to tipping points, beyond which forest resilience is lost. However, there is a dearth of empirical examples of fire-driven alternative stable states involving tropical forests. Key among the constraints for this scarcity are the requirements for large scale disturbances and long-term data, both of which are scarce. However, in the West African tropical forest (referred to as the Upper Guinean forest, UGF) a number of protected areas were impacted by large fire events during the 1980s El Niño-driven droughts, providing an opportunity for testing hypotheses concerning alternative stable states in tropical forest ecosystems. This paper aims to demonstrate fire-driven alternative stable states in the deciduous forest zone of the UGF by analyzing fire activity and forest recovery in fire-impacted forest reserves. We analyzed historical Landsat and MODIS imagery to map and quantify vegetation cover change, fire frequency and fire severity patterns. Our analyses suggest that the historic fires in the 1980s were catastrophic enough to remove forest canopy, thereby triggering a landscape-scale alternative stable states. Forest cover declined substantially becoming replaced by a novel ecosystem with low tree density. Our results also indicate the establishment of a positive fire-vegetation feedback effect, such that the new vegetation which displaced severely burned forests is more pyrogenic and maintained through frequent burns. This study expands our knowledge on the vulnerability of tropical forest ecosystems to state transitions in response to fire

  4. Fate of Deposited Nitrogen in Tropical Forests in Southern China

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa

    Tropical forests are generally regarded as naturally nitrogen (N)-rich ecosystems where N availability is in excess of biological demands. These forests are usually characterized by increased soil N cycling rates such as mineralization and nitrification causing loss of N through leaching...... these negative consequences. Thus, an improved understanding of how increased atmospheric N deposition impacts N retention efficiency of tropical forests is needed. However, the fate of deposited N in tropical forest ecosystems and its retention mechanisms remains elusive. This PhD thesis used the stable...... nitrogen (N) isotope 15N to uncover two aspects of N cycling in tropical forests: i) the patterns of ecosystem natural 15N abundance (δ15N) in relation to the 15N signature of deposition N, and its response to increased N deposition; ii) the fate of ambient and increased N deposition in the same forests...

  5. Myiarchus flycatchers are the primary seed dispersers of Bursera longipes in a Mexican dry forest

    OpenAIRE

    R. Carlos Almazán-Núñez; EGUIARTE, LUIS E.; María del Coro Arizmendi; Pablo Corcuera

    2016-01-01

    We evaluated the seed dispersal of Bursera longipes by birds along a successional gradient of tropical dry forest (TDF) in southwestern Mexico. B. longipes is an endemic tree to the TDF in the Balsas basin. The relative abundance of frugivorous birds, their frequency of visits to B. longipes and the number of removed fruits were recorded at three study sites with different stages of forest succession (early, intermediate and mature) characterized by distinct floristic and structural elements....

  6. A contemporary assessment of change in humid tropical forests.

    Science.gov (United States)

    Asner, Gregory P; Rudel, Thomas K; Aide, T Mitchell; Defries, Ruth; Emerson, Ruth

    2009-12-01

    In recent decades the rate and geographic extent of land-use and land-cover change has increased throughout the world's humid tropical forests. The pan-tropical geography of forest change is a challenge to assess, and improved estimates of the human footprint in the tropics are critical to understanding potential changes in biodiversity. We combined recently published and new satellite observations, along with images from Google Earth and a literature review, to estimate the contemporary global extent of deforestation, selective logging, and secondary regrowth in humid tropical forests. Roughly 1.4% of the biome was deforested between 2000 and 2005. As of 2005, about half of the humid tropical forest biome contained 50% or less tree cover. Although not directly comparable to deforestation, geographic estimates of selective logging indicate that at least 20% of the humid tropical forest biome was undergoing some level of timber harvesting between 2000 and 2005. Forest recovery estimates are even less certain, but a compilation of available reports suggests that at least 1.2% of the humid tropical forest biome was in some stage of long-term secondary regrowth in 2000. Nearly 70% of the regrowth reports indicate forest regeneration in hilly, upland, and mountainous environments considered marginal for large-scale agriculture and ranching. Our estimates of the human footprint are conservative because they do not resolve very small-scale deforestation, low-intensity logging, and unreported secondary regrowth, nor do they incorporate other impacts on tropical forest ecosystems, such as fire and hunting. Our results highlight the enormous geographic extent of forest change throughout the humid tropics and the considerable limitations of the science and technology available for such a synthesis.

  7. Impacts of roads and linear clearings on tropical forests.

    Science.gov (United States)

    Laurance, William F; Goosem, Miriam; Laurance, Susan G W

    2009-12-01

    Linear infrastructure such as roads, highways, power lines and gas lines are omnipresent features of human activity and are rapidly expanding in the tropics. Tropical species are especially vulnerable to such infrastructure because they include many ecological specialists that avoid even narrow (forest edges, as well as other species that are susceptible to road kill, predation or hunting by humans near roads. In addition, roads have a major role in opening up forested tropical regions to destructive colonization and exploitation. Here, we synthesize existing research on the impacts of roads and other linear clearings on tropical rainforests, and assert that such impacts are often qualitatively and quantitatively different in tropical forests than in other ecosystems. We also highlight practical measures to reduce the negative impacts of roads and other linear infrastructure on tropical species.

  8. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    Science.gov (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  9. Iron controls over di-nitrogen fixation in karst tropical forest.

    Science.gov (United States)

    Winbourne, Joy B; Brewer, Steven W; Houlton, Benjamin Z

    2017-03-01

    Limestone tropical forests represent a meaningful fraction of the land area in Central America (25%) and Southeast Asia (40%). These ecosystems are marked by high biological diversity, CO2 uptake capacity, and high pH soils, the latter making them fundamentally different from the majority of lowland tropical forest areas in the Amazon and Congo basins. Here, we examine the role of bedrock geology in determining biological nitrogen fixation (BNF) rates in volcanic (low pH) vs. limestone (high pH) tropical forests located in the Maya Mountains of Belize. We experimentally test how BNF in the leaf-litter responds to nitrogen, phosphorus, molybdenum, and iron additions across different parent materials. We find evidence for iron limitation of BNF rates in limestone forests during the wet but not dry season (response ratio 3.2 ± 0.2; P = 0.03). In contrast, BNF in low pH volcanic forest soil was stimulated by the trace-metal molybdenum during the dry season. The parent-material induced patterns of limitation track changes in siderophore activity and iron bioavailability among parent materials. These findings point to a new role for iron in regulating BNF in karst tropical soils, consistent with observations for other high pH systems such as the open ocean and calcareous agricultural ecosystems.

  10. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China.

    Science.gov (United States)

    Lü, Xiao-Tao; Tang, Jian-Wei; Feng, Zhi-Li; Li, Mai-He

    2009-01-01

    Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with > or = 2 cm diameter at breast height (dbh) were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha), 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded) was the most important family in the study forests. The population density, basal area and importance value index (IVI) varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha) accounted for 1.4% of the total community above-ground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales.

  11. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?

    Science.gov (United States)

    Pfeifer, Marion; Lefebvre, Veronique; Turner, Edgar; Cusack, Jeremy; Khoo, MinSheng; Chey, Vun K.; Peni, Maria; Ewers, Robert M.

    2015-04-01

    Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in deadwood across a tropical forest degradation gradient at the landscape scale remains poorly documented. Many carbon stock studies have either focused exclusively on live standing biomass or have been carried out in primary forests that are unaffected by logging, despite the fact that coarse woody debris (deadwood with ≥10 cm diameter) can contain significant portions of a forest’s carbon stock. We used a field-based assessment to quantify how the relative contribution of deadwood to total above-ground carbon stock changes across a disturbance gradient, from unlogged old-growth forest to severely degraded twice-logged forest, to oil palm plantation. We measured in 193 vegetation plots (25 × 25 m), equating to a survey area of >12 ha of tropical humid forest located within the Stability of Altered Forest Ecosystems Project area, in Sabah, Malaysia. Our results indicate that significant amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased exponentially with increasing forest degradation 7-10 years after logging while deadwood accounted for >50% of above-ground carbon stocks in salvage-logged forest stands, more than twice the proportion commonly assumed in the literature. This carbon will be released as decomposition proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia, our findings have important implications for the calculation of current carbon stocks and sources as a result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout the tropics, our data may indicate a significant global challenge to calculating global carbon fluxes, as selectively-logged forests now represent more than one third of all standing tropical humid forests worldwide.

  12. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2017-03-01

    Full Text Available We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the classification of forests by life zones, estimation of carbon density by forest type, assessing carbon storage changes with ecological succession and land use/land cover type, describing the details of the carbon cycle of forests at stand and landscape levels, assessing global land cover by forest type and the complexity of land use change in tropical regions, and assessing the ecological fluxes and storages that contribute to net carbon accumulation in tropical forests. We also review recent work that couples field inventory data, remote sensing technology such as LIDAR, and GIS analysis in order to more accurately determine the role of tropical forests in the global carbon cycle and point out new avenues of carbon research that address the responses of tropical forests to environmental change.

  13. Phyllostomid Bat Occurrence in Successional Stages of Neotropical Dry Forests

    Science.gov (United States)

    Avila-Cabadilla, Luis Daniel; Stoner, Kathryn Elizabeth; Nassar, Jafet M.; Espírito-Santo, Mario M.; Alvarez-Añorve, Mariana Yolotl; Aranguren, Carla I.; Henry, Mickael; González-Carcacía, José A.; Dolabela Falcão, Luiz A.; Sanchez-Azofeifa, Gerardo Arturo

    2014-01-01

    Tropical dry forests (TDFs) are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration), in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late) in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance) and assemblage level (species richness and composition, guild composition). We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1) the distinctive environmental conditions of each region, (2) the specific behavior and ecological requirements of the regional bat species, (3) the composition, structure and phenological patterns of plant assemblages in the different stages, and (4) the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable tool for

  14. Reproductive Phenology of a Seasonally-Dry Dipterocarp Forest in Southern Thailand

    Science.gov (United States)

    Kurten, E.; Bunyavejchewin, S.; Davies, S. J.

    2015-12-01

    Our understanding of the proximate and ultimate factors that shape reproductive phenology in dipterocarp forests comes exclusively from studies of everwet, general flowering forests. This study, for the first time, examines the reproductive phenology of a dipterocarp-dominated forest in a seasonally-dry region in Southeast Asia. We monitored flowering and fruiting monthly for 1344 trees (>300 spp.) in a seasonally-dry forest in Khao Chong, Thailand from 2001-2009, and assessed frequency, duration, seasonality, and synchrony of reproduction. Reproductive phenology of the Khao Chong forest was more similar to tropical forests in other seasonally-dry parts of the tropics than it was to dipterocarp forests in everwet regions of Southeast Asia, despite being more phylogenetically similar to the latter. The Khao Chong forest exhibited annual reproduction, with peak flowering occurring at the end of the dry season, and peak fruiting occurring early in the wet season. The majority of species and individuals also reproduced annually, including some species that are known to be "general flowering" in everwet climates. Short periods of drought appeared to be the cue that initiated flowering in early flowering species, while species flowering later in the dry season may have responded to either drought or low temperature. Over the eight years of our study, we observed a decline in the proportion of individuals reproducing each season. This decline appeared to be associated with a shorter dry season due to a later onset of continuous drought, suggesting that changing climate in the region may have significant impacts on plant reproduction and recruitment.

  15. Above-ground biomass and structure of 260 African tropical forests

    Science.gov (United States)

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  16. Estimating Tropical Forest Structure Using a Terrestrial Lidar

    OpenAIRE

    Michael Palace; Sullivan, Franklin B; Mark Ducey; Christina Herrick

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is...

  17. The arboreal component of a dry forest in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    M. J. N. Rodal

    Full Text Available The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto and to the deciduous thorn woodlands (Caatinga sensu stricto of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8° 35’ - 8° 38’ S and 38° 02’ - 38° 04’ W between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1 a humid forest/dry forest transition; and (2 a deciduous thorn-woodland/ dry forest transition.

  18. Autochthonous white rot fungi from the tropical forest: Potential of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... Autochthonous white rot fungi from the tropical forest: Potential of Cuban ... organo-pollutants structurally similar to lignin (Pointing,. 2001). It has also ..... potentially have a positive action against complex pollution situations.

  19. Persistent drying in the tropics linked to natural forcing

    Science.gov (United States)

    Winter, Amos; Zanchettin, Davide; Kushnir, Yochanan; Black, David; Breitenbach, Sebastian; Cheng, Hai; Miller, Thomas; Haug, Gerald

    2015-04-01

    Climate projections for the future indicate a regional contrast in tropical hydrologic trends between areas that are slated to dry and those that may become wet. While much of the tropical ocean under the Intertropical Convergence Zone (ITCZ) is projected to see an increase in rainfall, a wide area of Central America and surrounding oceans is expected to experience severe drying. Approximately half the world's population lives in the tropics, and future changes in the hydrological cycle will impact not just freshwater supplies but also energy production in areas dependent upon hydroelectric power. It is vital that we understand tropical forcing mechanisms and the eventual hydrological response in order to better assess projected future regional precipitation trends and variability. Paleoclimate proxies are a valuable source of information for this purpose as they provide long time series that pre-date and complement the present, often short instrumental observations. Here we present paleo-precipitation data from a speleothem located in Mesoamerica that reveal large multi-decadal declines in regional precipitation whose onset coincides with clusters of large volcanic eruptions during the 19th and 20th centuries. This reconstruction provides new independent evidence of robust long-lasting volcanic effects on climate and elucidates key aspects of the causal chain of physical processes determining the tropical climate response to global radiative forcing.

  20. Diversidad de avispas parasitoides de la familia Encyrtidae (Hymenoptera: Chalcidoidea del bosque tropical caducifolio en San Buenaventura, Jalisco, México Diversity of parasitoid wasps of the family Encyrtidae (Hymenoptera: Chalcidoidea in the tropical dry forest of San Buenaventura, Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Beatriz Rodríguez-Velez

    2011-09-01

    Full Text Available Se presentan los resultados del estudio de la fauna de avispas parasitoides de la familia Encyrtidae en el bosque tropical caducifolio de San Buenaventura, Jalisco, México. El estudio se llevó a cabo de noviembre de 1996 a octubre de 1997. La recolección se realizó con trampas Malaise durante 5 días de cada mes. Se registró un total de 61 especies, 30 géneros, 13 tribus y 2 subfamilias. El mayor número de géneros y especies fue de la subfamilia Encyrtinae, con 22 géneros y 44 especies, seguida por Tetracneminae con 8 géneros y 17 especies. El género con mayor número de especies fue Metaphycus con 11. Las especies recolectadas no fueron abundantes, y su riqueza y abundancia varió estacionalmente, registrándose los valores más altos durante la temporada de lluvias. La similitud de la fauna de San Buenaventura, Jalisco con la de Huautla, Morelos fue mayor que la encontrada en otras regiones previamente estudiadas de bosque tropical caducifolio (San Javier, Sonora y Huatulco, Oaxaca.Results of a faunistic study of the parasitoid wasps of the family Encyrtidae of the tropical dry forest of San Buenaventura, Jalisco, Mexico are presented. The study was carried out from November 1996 to October 1997. Collecting technique was Malaise trapping. Collections were carried out during 5 days of every month. A total of 61 species, 30 genera, 13 tribes and 2 subfamilies were recorded. The subfamily with the largest number of species was Encyrtinae with 22 genera and 44 species, followed by Tetracneminae with 8 genera and 17 species. The genus with the largest number of species was Metaphycus with 11. Species had low abundance. Species richness and abundance varied with time, with the highest values recorded in the rainy season. The fauna of San Buenaventura, Jalisco was most similar to that of Huautla, Morelos, than to that of San Javier, Sonora and Huatulco, Oaxaca, all of them previously studied.

  1. Asynchronous response of tropical forest leaf phenology to seasonal and el Niño-driven drought.

    Science.gov (United States)

    Pau, Stephanie; Okin, Gregory S; Gillespie, Thomas W

    2010-06-25

    The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO). Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI) from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (Delta(NDVI)) between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002-003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST) index during 2002-2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited.

  2. DIVERSIDAD DE LIBÉLULAS (INSECTA-ODONATA PARA DOS USOS DE SUELO, EN UN BOSQUE SECO TROPICAL DRAGONFLY (INSECTA: ODONATA DIVERSITY IN TWO USE OF SOILS IN A TROPICAL DRY FOREST

    Directory of Open Access Journals (Sweden)

    Mariano Altamiranda Saavedra

    2009-12-01

    Full Text Available Se estimo la diversidad de la fauna de odonatos en el Centro Agropecuario Cotové en Santafé de Antioquia-Colombia. Se utilizó la captura activa con red entomológica. Cada transecto fue orientado de manera perpendicular al cuerpo de agua, con una extensión de 200 m y un ancho de 8 m, aproximadamente. Fueron registradas en total 20 especies de odonatos, distribuidas en 5 familias y 15 géneros. La familia Libellulidae mostró la mayor abundancia y riqueza, con un total de 65 individuos que representan el 53,7% de la abundancia total, y de esta familia se identificaron 12 especies que constituyen el 60% de la comunidad registrada. La diversidad α fue mayor en el bosque en referencia al cultivo; sin embargo, las bajas abundancias registradas destacan la necesidad de un mayor esfuerzo de muestreo en el cultivo, para una mejor estimación de la diversidad γ. La diversidad β fue de 12 especies y el índice de complementariedad registrado fue de 0,6; lo cual indica que la fauna de odonatos es característica y distintiva para cada uso de suelo.Dragonfly diversity was estimated in the Agricultural Center Cotové (Santafé de Antioquia-Colombia. Active capture using an entomological net was used. Each transect was located perpendicular to the water body, for a length of approximately 200 m and a lateral extension of 8 m. Twenty Odonata species were registered, from 5 families and 15 genus. Libellulidae showed the biggest abundance and richness, with 65 specimens that represent 53.7% of the total abundance, and 12 species that represent 60% of the registered community. The α diversity was high in the forest in reference at crop; however, the low abundances register highlight the need for greater sampling effort in cultivating, for a better estimate of γ diversity; the β diversity was of 12 species and the complementary index was of 0.6, it indicates that the Odonata’s fauna is characteristic and distinctive for each use of soil.

  3. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, J.; Zimmerman, Jess K.; Murphy, Lora

    2017-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  4. Andean grasslands are as productive as tropical cloud forests

    NARCIS (Netherlands)

    Oliveras Menor, I.; Girardin, C.; Doughty, C.E.; Cahuana, N.; Arenas, C.E.; Oliver, V.; Huaraca Huasco, W.; Malhi, Y.

    2014-01-01

    We aim to assess net primary productivity (NPP) and carbon cycling in Andean tropical alpine grasslands (puna) and compare it with NPP of tropical montane cloud forests. We ask the following questions: (1) how do NPP and soil respiration of grasslands vary over the seasonal cycle? (2) how do burning

  5. Averting biodiversity collapse in tropical forest protected areas

    Science.gov (United States)

    W.F. Laurance; D.C. Useche; J. Rendeiro; and others NO-VALUE; Ariel Lugo

    2012-01-01

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon1–3. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment...

  6. Ectomycorrhizal fungi in Amazonian tropical forests in Colombia

    NARCIS (Netherlands)

    Vasco Palacios, A.M.

    2016-01-01

    The ectomycorrhizal (EcM) symbiosis was assumed to be restricted to the temperate regions where forests are dominated by EcM host plants, and the tropics were supposed to be dominated by endomycorrhizal fungi. However, evidence of the presence of EcM symbiosis in tropical lowland ecosystems has been

  7. Fine-scale movement decisions of tropical forest birds in a fragmented landscape.

    Science.gov (United States)

    Gillies, Cameron S; Beyer, Hawthorne L; St Clair, Colleen Cassady

    2011-04-01

    The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect such data that reveal how forest birds move in novel landscapes. We collected unprecedented route information about the movement of translocated forest birds from two species in the highly fragmented tropical dry forest of Costa Rica. In this pasture-dominated landscape, forest remains in patches or riparian corridors, with lesser amounts of living fencerows and individual trees or "stepping stones." We used step selection functions to quantify how route choice was influenced by these habitat elements. We found that the amount of risk these birds were willing to take by crossing open habitat was context dependent. The forest-specialist Barred Antshrike (Thamnophilus doliatus) exhibited stronger selection for forested routes when moving in novel landscapes distant from its territory relative to locations closer to its territory. It also selected forested routes when its step originated in forest habitat. It preferred steps ending in stepping stones when the available routes had little forest cover, but avoided them when routes had greater forest cover. The forest-generalist Rufous-naped Wren (Campylorhynchus rufinucha) preferred steps that contained more pasture, but only when starting from non-forest habitats. Our results showed that forested corridors (i.e., riparian corridors) best facilitated the movement of a sensitive forest specialist through this fragmented landscape. They also suggested that stepping stones can be important in highly fragmented forests with little remaining forest cover. We expect that naturally dispersing birds and species with greater forest dependence would exhibit even stronger

  8. Urgent need for warming experiments in tropical forests

    Science.gov (United States)

    Calaveri, Molly A.; Reed, Sasha C.; Smith, W. Kolby; Wood, Tana E.

    2015-01-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  9. Strengthening contrast between precipitation in tropical wet and dry regions

    Science.gov (United States)

    Polson, D.; Hegerl, G. C.

    2017-01-01

    The wet-gets-wetter, dry-gets-drier paradigm (WWDD) is widely used to summarize the expected response of the hydrological cycle to global warming. While some studies find that changes in observations and climate models support the WWDD paradigm, others find that it is more complicated at local scales and over land. This discrepancy is partly explained by differences in model climatologies and by movement of the wet and dry regions. Here we show that by tracking changes in wet and dry regions as they shift over the tropics and vary in models, mean precipitation changes follow the WWDD pattern in observations and models over land and ocean. However, this signal is reduced and disappears in model dry regions, when these factors are not accounted for. Accounting for seasonal and interannual shifts of the regions and climatological differences between models reduces uncertainty in predictions of future precipitation changes and makes these changes detectable earlier.

  10. Landsat Pathfinder tropical forest information management system

    Science.gov (United States)

    Salas, W.; Chomentowski, W.; Harville, J.; Skole, D.; Vellekamp, K.

    1994-01-01

    A Tropical Forest Information Management System_(TFIMS) has been designed to fulfill the needs of HTFIP in such a way that it tracks all aspects of the generation and analysis of the raw satellite data and the derived deforestation dataset. The system is broken down into four components: satellite image selection, processing, data management and archive management. However, as we began to think of how the TFIMS could also be used to make the data readily accessible to all user communities we realized that the initial system was too project oriented and could only be accessed locally. The new system needed development in the areas of data ingest and storage, while at the same time being implemented on a server environment with a network interface accessible via Internet. This paper summarizes the overall design of the existing prototype (version 0) information management system and then presents the design of the new system (version 1). The development of version 1 of the TFIMS is ongoing. There are no current plans for a gradual transition from version 0 to version 1 because the significant changes are in how the data within the HTFIP will be made accessible to the extended community of scientists, policy makers, educators, and students and not in the functionality of the basic system.

  11. Drought Stress Response of Dry Forest Trees of the Brazilian Caatinga

    Science.gov (United States)

    Menezes, R.; Worbes, M.

    2015-12-01

    Martin Worbes and Romulo Menezes In the frame of the "Tropi-Dry" network we studied drought response strategies of six tree species in a Caatinga forest at the Fazenda Tamandua near Patos in Paraiba, NE Brazil. We selected the tree species as representatives of the different phenological ecotypes: evergreen, deciduous and stem succulent. The deciduous group comprised N-fixing as well as non N-fixing Leguminosae. Over an entire vegetation period (dry and wet-season) we monitored their phenological behaviour, photosynthesis rates, stomata conductance and water potential, measured if leaves were present and we estimated seasonal variations in stable carbon and N15 content of the leaves. The major results are: Evergreen species (e.g. Capparis) may compensate low carbon-fixing rates in the wet season with a much longer vegetation period as the deciduous species. Stem succulents (Jatropha) do not fulfill the expectations of being high productive species under drought stress conditions, while the N-fixing Mimosa performed in particular at the end and the beginning of the dry period better than the rest of the investigated species. In general the results may help to understand different strategies of tree species in respect to extended dry periods of at least six months as in our study area and their role in carbon sequestration of tropical dry forests. The variety of observed strategies may contribute to the resilience of the ecosystem tropical dry forests.

  12. Global demand for gold is another threat for tropical forests

    Science.gov (United States)

    Alvarez-Berríos, Nora L.; Aide, T. Mitchell

    2015-01-01

    The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ˜1600 potential gold mining sites between 2001-2006 and 2007-2013. Approximately 1680 km2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007-2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós-Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena-Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ˜32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems, spread well

  13. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  14. Trial by fire : Postfire development of a tropical dipterocarp forest

    NARCIS (Netherlands)

    Nieuwstadt, Mark Geerten Lambertus van

    2002-01-01

    Over the past decades, uncontrolled forest fires have formed an increasing threat for tropical forests, often causing large-scale ecological and economic damage. My research shows that, even though the damage caused by the fire is enormous, a single fire does not cause the complete destruction of a

  15. Restoring biodiversity and forest ecosystem services in degraded tropical landscapes

    Science.gov (United States)

    John A. Parrotta

    2010-01-01

    Over the past century, an estimated 850 million ha of the world’s tropical forests have been lost or severely degraded, with serious impacts on local and regional biodiversity. A significant proportion of these lands were originally cleared of their forest cover for agricultural development or other economic uses. Today, however, they provide few if any environmental...

  16. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of trop

  17. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of trop

  18. Tropical forest conservation versus conversion trade-offs

    NARCIS (Netherlands)

    Mutoko, M.C.; Hein, Lars; Shisanya, Chris A.

    2015-01-01

    Ecosystem services provided by tropical forests are becoming scarcer due to continued deforestation as demand for forest benefits increases with the growing population. There is need for comprehensive valuation of key ecosystem services in order to inform policy and implement better management sy

  19. Beyond equitable data sharing to improve tropical forest management

    NARCIS (Netherlands)

    Ruslandi, A.; Roopsind, A.; Sist, P.; Pena Claros, M.; Thomas, R.; Putz, F.E.

    2014-01-01

    Tropical forest management and policy decisions are hampered by lack of reliable information about forest responses to timber harvesting and other silvicultural interventions. Although the necessary raw data from permanent sample plots (PSPs) mostly exist, the relevant results are generally unavaila

  20. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of

  1. Measurements of trace gases above the tropical forests....

    Science.gov (United States)

    Nicolas-Perea, V.; Monks, P. S.

    2009-04-01

    Measurements of trace gases above the tropical forests; A comparison between ozone levels in the forest and the oil palm plantation areas using the BAe -146 aircraft. The atmospheric composition of Sabah region (Borneo) was sampled using the FAAM BAE-146 instrumented aircraft during July 2008 as part of the OP3 (Oxidant particle photochemical processes above a South East Asia tropical rain forest) project. Tropical forests play an important role in the carbon and energy balance of the Earth (which determine global climate) and are themselves vulnerable to climate change. The tropical biosphere is one of the main sources of reactive trace gas emissions into the global atmosphere, and understanding the role of ozone in these areas is of major importance given the rapid changes in land-use in the tropics. This poster presents preliminary ozone concentrations results collected using the FAAM BAE 146 instrumented aircraft over some of Malaysia most extended oil palm plantations; comparing these with the results recorded when flying over forest areas. Oil palm is becoming one of the most widespread tropical crops; in Malaysia 13% of the land area (4.3Mha) is now oil palm plantations (MPOCP, 2008) compared with 1% in 1974 (FAO, 2005). This poster is expected to show very significant ozone concentrations over the two different landscapes. The set-up of the instruments, the specific sampling sites, as well as the land cover areas will be described.

  2. Nitrogen deposition in tropical forests from deforestation and savanna fires

    Science.gov (United States)

    Chen, Y.; Randerson, J. T.; van der Werf, G.; Morton, D. C.; Kasibhatla, P. S.

    2009-12-01

    Tropical forests account for nearly half of global net primary production (NPP) and may contribute substantially to contemporary and future land carbon (C) sinks. We used satellite-derived estimates of global fire emissions and a chemical transport model to estimate atmospheric nitrogen (N) fluxes from deforestation and savanna fires in tropical ecosystems. N emissions and deposition led to a substantial net transport of N equatorward, from savannas and areas undergoing deforestation to tropical forests. On average, N emissions from fires were equivalent to approximately 28% of biological N fixation (BNF) in savannas (4.8 kg N ha-1 yr-1) and 38% of BNF from ecosystems at the deforestation frontier (9.1 kg N ha-1 yr-1). N deposition occurred in interior tropical forests at a rate equivalent to 4% of their BNF (1.1 kg N ha-1 yr-1). This percentage was highest for African tropical forests in the Congo Basin (16%; 3.7 kg N ha-1 yr-1) owing to equatorward transport from northern and southern savannas. These results suggest that land use change, including deforestation fires, may be enhancing nutrient availability and carbon sequestration in nearby tropical forest ecosystems.

  3. Fate of Deposited Nitrogen in Tropical Forests in Southern China

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa

    as N export in soil water in tropical forests. Total annual atmospheric deposition of N to the forest in the study period was 51 kg N ha-1yr-1. Nitrogen deposition was dominated by NH4-N due to intensive agricultural NH3 emissions in nearby areas. Nitrate dominated leaching loss from the soil......Tropical forests are generally regarded as naturally nitrogen (N)-rich ecosystems where N availability is in excess of biological demands. These forests are usually characterized by increased soil N cycling rates such as mineralization and nitrification causing loss of N through leaching...... and denitrification from the ecosystem. Loss of N, in turn, has many negative consequences, including soil and surface water acidification, plant nutrient imbalances and related adverse effects on biological diversities. Increased atmospheric N deposition that is anticipated for tropical regions may further aggravate...

  4. Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana.

    Science.gov (United States)

    Fauset, Sophie; Baker, Timothy R; Lewis, Simon L; Feldpausch, Ted R; Affum-Baffoe, Kofi; Foli, Ernest G; Hamer, Keith C; Swaine, Michael D

    2012-10-01

    The future of tropical forests under global environmental change is uncertain, with biodiversity and carbon stocks at risk if precipitation regimes alter. Here, we assess changes in plant functional composition and biomass in 19 plots from a variety of forest types during two decades of long-term drought in Ghana. We find a consistent increase in dry forest, deciduous, canopy species with intermediate light demand and a concomitant decrease in wet forest, evergreen, sub-canopy and shade-tolerant species. These changes in composition are accompanied by an increase in above-ground biomass. Our results indicate that by altering composition in favour of drought-tolerant species, the biomass stocks of these forests may be more resilient to longer term drought than short-term studies of severe individual droughts suggest.

  5. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    Science.gov (United States)

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  6. Effects of tropical montane forest disturbance on epiphytic macrolichens

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Angel [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Prieto, Maria, E-mail: maria.prieto@urjc.es [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain); Gonzalez, Yadira [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Aragon, Gregorio [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain)

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for 'shade-adapted lichens', while the richness of 'heliophytic lichens' increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: Black-Right-Pointing-Pointer Tropical montane forest disturbance drastically reduced macrolichen diversity. Black-Right-Pointing-Pointer Species loss was most severe for the 'shade-adapted lichens' because high radiation is harmful to them. Black-Right-Pointing-Pointer In secondary forests lichen diversity of native forests was not regenerated. Black-Right-Pointing-Pointer The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  7. Maintaining ecosystem function and services in logged tropical forests.

    Science.gov (United States)

    Edwards, David P; Tobias, Joseph A; Sheil, Douglas; Meijaard, Erik; Laurance, William F

    2014-09-01

    Vast expanses of tropical forests worldwide are being impacted by selective logging. We evaluate the environmental impacts of such logging and conclude that natural timber-production forests typically retain most of their biodiversity and associated ecosystem functions, as well as their carbon, climatic, and soil-hydrological ecosystem services. Unfortunately, the value of production forests is often overlooked, leaving them vulnerable to further degradation including post-logging clearing, fires, and hunting. Because logged tropical forests are extensive, functionally diverse, and provide many ecosystem services, efforts to expand their role in conservation strategies are urgently needed. Key priorities include improving harvest practices to reduce negative impacts on ecosystem functions and services, and preventing the rapid conversion and loss of logged forests.

  8. Lianas reduce carbon accumulation and storage in tropical forests.

    Science.gov (United States)

    van der Heijden, Geertje M F; Powers, Jennifer S; Schnitzer, Stefan A

    2015-10-27

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.

  9. Diversidad de Cantharidae, Lampyridae, Lycidae, Phengodidae y Telegeusidae (Coleoptera: Elateroidea en un bosque tropical caducifolio de la sierra de San Javier, Sonora, México Diversity of Cantharidae, Lampyridae, Lycidae, Phengodidae and Telegeusidae (Coleoptera: Elateroidea in a tropical dry forest of the Sierra San Javier, Sonora, Mexico

    Directory of Open Access Journals (Sweden)

    Santiago Zaragoza-Caballero

    2009-12-01

    Full Text Available Se presenta un estudio de la diversidad faunística de las familias Cantharidae, Lampyridae, Lycidae, Phengodidae y Telegeusidae (Coleoptera: Elateroidea, presentes en un bosque tropical caducifolio de la sierra de San Javier, Sonora, México, que corresponde al límite boreal de este biotopo en América. La recolección incluyó trampas de atracción luminosa y red entomológica aérea, se realizó en noviembre de 2003, febrero y abril de 2004, y de julio a octubre de ese mismo año, durante 5 días de cada mes. Comprende la época lluviosa (julio-octubre y la temporada seca (noviembre-abril. Se capturó un total de 1 501 individuos que representan 30 especies. La familia más abundante fue Cantharidae con 696 individuos, seguida de Lycidae con 561, Lampyridae con 166, Phengodidae con 66 y Telegeusidae con 12. La más rica en especies fue Lycidae con 12, seguida de Cantharidae con 11, Lampyridae con 3, Phengodidae con 3 y Telegeusidae con 1. Pocas especies fueron abundantes y la mayoría estuvieron representadas por pocos individuos. La abundancia y riqueza específica varió en el tiempo y espacio para cada familia. Se elaboró una curva de acumulación de especies, se calcularon los índices de diversidad de Shannon-Wiener, de equidad (Pielou, de dominancia de Simpson y de similitud (Bray-Curtis.The faunal diversity of the families Cantharidae, Lampyridae, Lycidae, Phengodidae and Telegeusidae (Coleoptera: Elateroidea, was studied in a dry forest in the Sierra de San Javier, Sonora, Mexico. Light trapping and insect nets were utilized in November 2003, February, April, July, August, September and October 2004 for 5 days of each month, including the rainy season (July-October and the dry season (November-April. A total of 1 501 individuals, 30 species, and 15 genera were recorded. The most abundant family was Cantharidae with 696 individuals, followed by Lycidae with 561, Lampyridae with 166, Phengodidae with 66 and Telegeusidae with 12

  10. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  11. The Impact of Dry Saharan Air on Tropical Cyclone Intensification

    Science.gov (United States)

    Braun, Scott A.

    2012-01-01

    The controversial role of the dry Saharan Air Layer (SAL) on tropical storm intensification in the Atlantic will be addressed. The SAL has been argued in previous studies to have potential positive influences on storm development, but most recent studies have argued for a strong suppressing influence on storm intensification as a result of dry air, high stability, increased vertical wind shear, and microphysical impacts of dust. Here, we focus on observations of Hurricane Helene (2006), which occurred during the NASA African Monsoon Multidisciplinary Activities (NAMMA) experiment. Satellite and airborne observations, combined with global meteorological analyses depict the initial environment of Helene as being dominated by the SAL, although with minimal evidence that the SAL air actually penetrated to the core of the disturbance. Over the next several days, the SAL air quickly moved westward and was gradually replaced by a very dry, dust-free layer associated with subsidence. Despite the wrapping of this very dry air around the storm, Helene intensified steadily to a Category 3 hurricane suggesting that the dry air was unable to significantly slow storm intensification. Several uncertainties remain about the role of the SAL in Helene (and in tropical cyclones in general). To better address these uncertainties, NASA will be conducting a three year airborne campaign called the Hurricane and Severe Storm Sentinel (HS3). The HS3 objectives are: To obtain critical measurements in the hurricane environment in order to identify the role of key factors such as large-scale wind systems (troughs, jet streams), Saharan air masses, African Easterly Waves and their embedded critical layers (that help to isolate tropical disturbances from hostile environments). To observe and understand the three-dimensional mesoscale and convective-scale internal structures of tropical disturbances and cyclones and their role in intensity change. The mission objectives will be achieved using

  12. Dry deposition of sulfur to forests in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akira; Sato, Kazuo; Fujita, Shin-ichi [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-12-31

    Dry deposition is an important input process of acidifying compounds to forest ecosystem. However, dry deposition to forest was largely unstudied in Japan, despite the fact that about 70% of the land is covered with forest. To assess the contribution of dry deposition to the total (wet + dry) input of sulfur to forest, we estimated dry deposition velocities and fluxes of sulfur to three different forest stands (cedar [Cryptomeria japonica], pine [Pinus densiflora], and oak [Quercus serrata]) located at Mt. Akagi in Gumma Prefecture, Japan. Micro meteorology above canopies, atmospheric concentrations, and throughfall fluxes were measured from October 1994 to September 1995. Deposition velocities of sulfur dioxide and particulate sulfate were determined by using the inferential method, based on the result of meteorological measurements. Dry deposition fluxes were calculated from the estimated deposition velocities and the result of concentration measurements. Dry deposition fluxes of sulfate for cedar, pine, and oak were estimated at 164 eq/ha/y, 143 eq/ha/y, and 131 eq/ha/y, respectively. The relative contribution of dry deposition ranged from 20% to 22% of the total sulfur deposition. However, these results might be underestimated because estimated fluxes were about 30% lower than observed net throughfall fluxes ([throughfall + stemflow] - precipitation) in cedar and pine forest stands.

  13. Community characteristics of tropical montane evergreen forest and tropical montane dwarf forest in Bawangling National Nature Reserve on Hainan Island, South China

    OpenAIRE

    Wenxing Long; Runguo Zang; Yi Ding

    2011-01-01

    Both tropical montane evergreen forest (TMEF) and tropical montane dwarf forest (TMDF) are typical tropical cloud forests on Hainan Island. To compare community structure and species diversity be-tween these two forest types, we established eight and ten plots (each with 2,500 m2 in area) in TMEF and TMDF, respectively, in Bawangling National Nature Reserve on Hainan Island, South China. We investigated each individual plant with diameter at breast height (DBH) ≥1 cm including trees, shrubs a...

  14. Utilization of geothermal heat in tropical fruit-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  15. Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome

    Science.gov (United States)

    Falcon-Lang, H. J.; Jud, N.A.; John, Nelson W.; DiMichele, W.A.; Chaney, D.S.; Lucas, S.G.

    2011-01-01

    Pennsylvanian fossil forests are known from hundreds of sites across tropical Pangea, but nearly all comprise remains of humid Coal Forests. Here we report a unique occurrence of seasonally dry vegetation, preserved in growth position along >5 km of strike, in the Pennsylvanian (early Kasimovian, Missourian) of New Mexico (United States). Analyses of stump anatomy, diameter, and spatial density, coupled with observations of vascular traces and associated megaflora, show that this was a deciduous, mixed-age, coniferopsid woodland (~100 trees per hectare) with an open canopy. The coniferopsids colonized coastal sabkha facies and show tree rings, confirming growth under seasonally dry conditions. Such woodlands probably served as the source of coniferopsids that replaced Coal Forests farther east in central Pangea during drier climate phases. Thus, the newly discovered woodland helps unravel biome-scale vegetation dynamics and allows calibration of climate models. ?? 2011 Geological Society of America.

  16. Natural events of anoxia and low respiration index in oligotrophic lakes of the Atlantic Tropical Forest

    Science.gov (United States)

    Marotta, H.; Fontes, M. L. S.; Petrucio, M. M.

    2012-08-01

    Hypoxia is a well-recognized condition reducing biodiversity and increasing greenhouse gas emissions in aquatic ecosystems, especially under warmer temperatures of tropical waters. Anoxia is a natural event commonly intensified by human-induced organic inputs in inland waters. Here, we assessed the partial pressure of O2 (pO2) and CO2 (pCO2), and the ratio between them (represented by the respiration index, RI) in two oligotrophic lakes of the Atlantic Tropical Forest, encompassing dry and rainy seasons over 19 months. We formulated the hypothesis that thermal stratification events could be coupled to natural hypoxia in deep waters of both lakes. Our results indicated a persistence of CO2 emissions from these tropical lakes to the atmosphere, on average ± standard error (SE) of 17.4 mg C m-2 h-1 probably subsided by terrestrial C inputs from the forest. Additionally, the thermal stratification during the end of the dry season and the rainy summer was coupled to anoxic events and very low RI in deep waters, and to significantly higher pO2 and RI at the surface (about 20 000 μatm and 1.0, respectively). In contrast, the water mixing during dry seasons at the beginning of the winter was related to a strong destratification in pO2, pCO2 and RI in surface and deep waters, without reaching any anoxic conditions throughout the water column. These findings confirm our hypothesis, suggesting that lakes of the Atlantic Tropical Forest could be dynamic, but especially sensitive to organic inputs. Natural anoxic events indicate that tropical oligotrophic lakes might be highly influenced by human land uses, which increase organic discharges into the watershed.

  17. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Science.gov (United States)

    Mascaro, Joseph; Asner, Gregory P; Knapp, David E; Kennedy-Bowdoin, Ty; Martin, Roberta E; Anderson, Christopher; Higgins, Mark; Chadwick, K Dana

    2014-01-01

    Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag"), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1) when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  18. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Directory of Open Access Journals (Sweden)

    Joseph Mascaro

    Full Text Available Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus. The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag", which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1 when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  19. The structure of tropical forests and sphere packings.

    Science.gov (United States)

    Taubert, Franziska; Jahn, Markus Wilhelm; Dobner, Hans-Jürgen; Wiegand, Thorsten; Huth, Andreas

    2015-12-01

    The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions--fundamental for deriving other forest attributes--to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30-50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests.

  20. Land crabs as key drivers in tropical coastal forest recruitment

    Science.gov (United States)

    Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.

    2009-01-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.

  1. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    Science.gov (United States)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  2. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  3. Climate change, allergy and asthma, and the role of tropical forests.

    Science.gov (United States)

    D'Amato, Gennaro; Vitale, Carolina; Rosario, Nelson; Neto, Herberto Josè Chong; Chong-Silva, Deborah Carla; Mendonça, Francisco; Perini, Josè; Landgraf, Loraine; Solé, Dirceu; Sánchez-Borges, Mario; Ansotegui, Ignacio; D'Amato, Maria

    2017-01-01

    Tropical forests cover less than 10 per cent of all land area (1.8 × 107 km(2)) and over half of the tropical-forest area (1.1 × 107 Km(2)) is represented by humid tropical forests (also called tropical rainforests). The Amazon basin contains the largest rainforest on Earth, almost 5.8 million km(2), and occupies about 40% of South America; more than 60% of the basin is located in Brazil and the rest in Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname and Venezuela. Over the past decade the positive role of tropical rainforests in capturing large amounts of atmospheric carbon dioxide (CO2) has been demonstrated. In response to the increase in atmospheric CO2 concentration, tropical forests act as a global carbon sink. Accumulation of carbon in the tropical terrestrial biosphere strongly contributes to slowing the rate of increase of CO2 into the atmosphere, thus resulting in the reduction of greenhouse gas effect. Tropical rainforests have been estimated to account for 32-36% of terrestrial Net Primary Productivity (NPP) that is the difference between total forest photosynthesis and plant respiration. Tropical rainforests have been acting as a strong carbon sink in this way for decades. However, over the past years, increased concentrations of greenhouse gases, and especially CO2, in the atmosphere have significantly affected the net carbon balance of tropical rainforests, and have warmed the planet substantially driving climate changes through more severe and prolonged heat waves, variability in temperature, increased air pollution, forest fires, droughts, and floods. The role of tropical forests in mitigating climate change is therefore critical. Over the past 30 years almost 600,000 km(2) have been deforested in Brazil alone due to the rapid development of Amazonia, this is the reason why currently the region is one of the 'hotspots' of global environmental change on the planet. Deforestation represents the second largest

  4. Climate and Edaphic Controls on Humid Tropical Forest Tree Height

    Science.gov (United States)

    Yang, Y.; Saatchi, S. S.; Xu, L.

    2014-12-01

    Uncertainty in the magnitude and spatial variations of forest carbon density in tropical regions is due to under sampling of forest structure from inventory plots and the lack of regional allometry to estimate the carbon density from structure. Here we quantify the variation of tropical forest structure by using more than 2.5 million measurements of canopy height from systematic sampling of Geoscience Laser Altimeter System (GLAS) satellite observations between 2004 to 2008 and examine the climate and edaphic variables influencing the variations. We used top canopy height of GLAS footprints (~ 0.25 ha) to grid the statistical mean and 90 percentile of samples at 0.5 degrees to capture the regional variability of large trees in tropics. GLAS heights were also aggregated based on a stratification of tropical regions using soil, elevation, and forest types. Both approaches provided consistent patterns of statistically dominant large trees and the least heterogeneity, both as strong drivers of distribution of high biomass forests. Statistical models accounting for spatial autocorrelation suggest that climate, soil and spatial features together can explain more than 60% of the variations in observed tree height information, while climate-only variables explains about one third of the first-order changes in tree height. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as organic matters, all present independent but statistically significant relationships to tree height variations. The results confirm other landscape and regional studies that soil fertility, geology and climate may jointly control a majority of the regional variations of forest structure in pan-tropics and influencing both biomass stocks and dynamics. Consequently, other factors such as biotic and disturbance regimes, not included in this study, may have less influence on

  5. Understanding Tropical Forest Response to Seasonal and Interannual Variability: The Goldilocks Problem

    Science.gov (United States)

    Baker, I. T.; Berry, J. A.; Harper, A. B.; Denning, A. S.; Lee, J. E.; Joiner, J.; Frankenberg, C.

    2015-12-01

    Quantifying our understanding of tropical forest response to seasonal cycles of precipitation, and variability around the annual mean, is an ongoing problem. A decade ago, computer models were unable to reproduce forest behavior at some forests in tropical South America, with the result that ecophysiological function collapsed and Bowen ratio spiked unrealistially during the dry season. Subsequent work has mitigated this oversensitivity to annual cycles of rainy and dry seasons, with the result that our models may now be under-sensitive to variability around the mean. Hence the Goldilocks metaphor: We have moved our models from an over-sensitive (too hot) position to an under-sensitive (too cold) state, while we desire understanding and an ability to simulate both annual cycles and anomalous conditions (just right). In this research we demonstrate our ability to combine in-situ and spectral datasets with models to converge on a description of biophysical processes that combines robustness to mean annual state with a realistic sensitivity to anomalous drought. We use climatology of annual mean precipitation and dry season character to obtain a Drought Resistance Index (DRI) that, when combined with soil depth data yields an initial estimate of forest drought resilience. Solar-Induced Fluorescence (SIF) observations provide higher-resolution spatiotemporal monitoring of canopy response to anomalous events (such as 2010 drought) that can we use to refine our understanding of ecophysiological stress across temperature and precipitation gradients in tropical South America. We demonstrate that we can maintain fidelity to seasonality of surface flux as observed by eddy covariance flux towers while improving model response to drought events.

  6. Airborne observations reveal elevational gradient in tropical forest isoprene emissions

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Dasa; Guenther, Alex B.; Shilling, John E.; Yu, Haofei; Huang, Maoyi; Zhao, Chun; Yang, Qing; Martin, Scot T.; Artaxo, Paulo; Kim, Saewung; Seco, Roger; Stavrakou, T.; Longo, Karla; Tota, Julio; Augusto Ferreira de Souza, Rodrigo; Vega, Oscar; Liu, Ying; Shrivastava, ManishKumar B.; Alves, Eliane; Cavalcante Dos Santos, Fernando; Leng, Guoyong; Hu, Zhiyuan

    2017-05-23

    Isoprene dominates global non-methane volatile organic compound emissions, and impacts tropospheric chemistry by influencing oxidants and aerosols. Isoprene emission rates vary over several orders of magnitude for different plants, and characterizing this immense biological chemodiversity is a challenge for estimating isoprene emission from tropical forests. Here we present the isoprene emission estimates from aircraft eddy covariance measurements over the Amazonian forest. We report isoprene emission rates that are three times higher than satellite top-down estimates and 35% higher than model predictions. The results reveal strong correlations between observed isoprene emission rates and terrain elevations, which are confirmed by similar correlations between satellite-derived isoprene emissions and terrain elevations. We propose that the elevational gradient in the Amazonian forest isoprene emission capacity is determined by plant species distributions and can substantially explain isoprene emission variability in tropical forests, and use a model to demonstrate the resulting impacts on regional air quality.

  7. Long-term changes in above ground biomass after disturbance in a neotropical dry forest, Hellshire Hills, Jamaica

    DEFF Research Database (Denmark)

    Niño, Milena; McLaren, Kurt P.; Meilby, Henrik

    2014-01-01

    We used data from experimental plots (control, partially cut and clear-cut) established in 1998, in a tropical dry forest (TDF) in Jamaica, to assess changes in above ground biomass (AGB) 10 years after disturbance. The treatments reduced AGB significantly in 1999 (partially cut: 37.6 %, clear-cu...

  8. Patterns and correlates of plant diversity differ between common and rare species in a neotropical dry forest

    NARCIS (Netherlands)

    Tetetla-Rangel, Erika; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Hoekstra, Paul H.

    2017-01-01

    Determining which factors affect species richness is important for conservation theory and practice. However, richness of common and rare species may be affected by different factors. We use an extensive inventory of woody plants from a tropical dry forest landscape in Yucatan, Mexico to assess the

  9. Humus forms in two secondary semi-evergreen tropical forests

    OpenAIRE

    Loranger, Gladys; Ponge, Jean-François; Lavelle,Patrick

    2003-01-01

    International audience; The dynamics and function of humus forms in tropical forests are still poorly understood. Humus profiles in two secondary semi-evergreen woodlands in Guadeloupe (French West Indies) were analysed micromorphologically. The humus forms are described under the canopy of five dominant tree species at two sites: under Pisonia subcordata and Bursera simaruba in a secondary forest on a Leptosol (Rendzina), and under Swietenia macrophylla, Tabebuia heterophylla and B. simaruba...

  10. Tree rings in the tropics: a study on growth and ages of Bolivian rain forest trees

    NARCIS (Netherlands)

    Brienen, Roel Jacobus Wilhelmus

    2005-01-01

    Detailed information on long-term growth rates and ages of tropical rain forest trees is important to obtain a better understanding of the functioning of tropical rain forests. Nevertheless, little is known about long-term growth or ages of tropical forest trees, due to a supposed lack of annual tre

  11. Plant functional traits with particular reference to tropical deciduous forests: A review

    Indian Academy of Sciences (India)

    R K Chaturvedi; A S Raghubanshi; J S Singh

    2011-12-01

    Functional traits (FTs) integrate the ecological and evolutionary history of a species, and can potentially be used to predict its response as well as its influence on ecosystem functioning. Study of inter-specific variation in the FTs of plants aids in classifying species into plant functional types (PFTs) and provides insights into fundamental patterns and trade-offs in plant form and functioning and the effect of changing species composition on ecosystem functions. Specifically, this paper focuses on those FTs that make a species successful in the dry tropical environment. Following a brief overview, we discuss plant FTs that may be particularly relevant to tropical deciduous forests (TDFs). We consider the traits under the following categories: leaf traits, stem and root traits, reproductive traits, and traits particularly relevant to water availability. We compile quantitative information on functional traits of dry tropical forest species. We also discuss trait-based grouping of plants into PFTs. We recognize that there is incomplete knowledge about many FTs and their effects on TDFs and point out the need for further research on PFTs of TDF species, which can enable prediction of the dynamics of these forests in the face of disturbance and global climate change. Correlations between structural and ecophysiological traits and ecosystem functioning should also be established which could make it possible to generate predictions of changes in ecosystem services from changes in functional composition.

  12. A 70-year perspective on tropical forest regeneration.

    Science.gov (United States)

    Abbas, Sawaid; Nichol, Janet E; Fischer, Gunter A

    2016-02-15

    Forested areas of the world decreased by 129 million hectare during the past quarter-century, and only 35 % of remainder is primary forest. Secondary forests are therefore relatively more important for biodiversity conservation, catchment protection, climate control, and the ecological services they provide. Many governments expend large resources on afforestation projects, which may not be supported by objective data on rates and pathways of natural succession in secondary forest. This paper describes a 70-year succession of tropical forest in Hong Kong under different management regimes including afforestation programs, frequent fire, and fire protection. From complete destruction of its forest during the Second World War, forest has established rapidly in areas where a shrub cover was able to colonize. The practice of afforestation as a nursery stage on degraded hillsides, for establishment of forest seedlings by natural invasion is not supported by the evidence, as when the native Pinus massoniana plantations were eliminated by disease during the 1970s, no forest or woody species were seen in the areas affected. In fact there was a reversion to grassland, which persisted there for almost three decades, until recent shrub invasion. The fastest period of forest regeneration, at 10.9% annually between 1989 and 2001, occurred when shrubland edge was greatest and forest was able to colonize across interfluves between linear-shaped riparian shrublands in valley bottoms. After 2001, succession to forest was slower, at 7.8% annually, as forest patches consolidated and edge habitats reduced. Effective forest management policies could include seeding of native shrubs extending linearly from established forest, to maximize edge length between woody species and grasslands, and planting of late successional species in areas where forest pioneers are in decline.

  13. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Science.gov (United States)

    Palace, Michael; Sullivan, Franklin B; Ducey, Mark; Herrick, Christina

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p lidar metrics (r2 = 0.75, p forest structure.

  14. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    Science.gov (United States)

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  15. A high-resolution monitoring network investigating stem growth of tropical forest trees

    Science.gov (United States)

    Hofhansl, F.; De Araujo, A. C.; DeLucia, E. H.

    2015-12-01

    The proportion of carbon (C) allocated to tree stems is an important determinant of the C sink-strength of global forest ecosystems. Understanding the mechanisms controlling stem growth is essential for parameterization of global vegetation models and to accurately predict C sequestration of forest ecosystems. However, we still lack a thorough understanding of intra-annual variations in stem growth of tropical forest ecosystems, which could be especially prone to projected climatic changes. We here present high-resolution data (≤ 6 µm; ≥ 1 min) from a novel monitoring network of wireless devices for automated measurement of expansion and contraction in tree diameter using a membrane potentiometer, as well as point dendrometers on phloem and xylem to analyze diurnal changes in stem growth. Our results indicate that diurnal changes in stem diameter were associated with sap flow and related to seasonal variations in daytime temperature and water availability, such that daily maximum stem growth was positively related to temperature during the wet season but showed the opposite trend during the onset of the dry season. We show that high-resolution monitoring of stem growth of tropical trees is crucial to determine the response to intra-annual climate variation and therefore will be key to accurately predict future responses of tropical aboveground C storage, and should be of special interest for tropical ecosystem research and earth system science.

  16. Energetics and environmental costs of agriculture in a dry tropical region of India

    Science.gov (United States)

    Singh, V. P.; Singh, J. S.

    1992-07-01

    The present article, based on a study of five village ecosystems, assesses the energy efficiency of rain-fed agriculture in a dry tropical environment and the impact of agricultural activity on the surrounding natural ecosystems. Agronomic yield is insufficient to meet the food requirement of the human population, hence 11.5%-49.7% of the required amount of food grains are imported from the market. Energy requirements of five studied agroecosystems are subsidized considerably by the surrounding forest in the form of fodder and firewood. Natural ecosystems supply about 80%-95% of fodder needs and 81%-100% of fuelwood needs. The output-input ratio of agriculture indicated that, on average, 4.1 units of energy are expended to obtain one unit of agronomic energy. Of this, 3.9 units are supplied by the natural ecosystem. In addition, 38% of the extracted firewood is marketed. The illegal felling and lopping of trees result in ever-increasing concentric circles of forest destruction around the villages and together with excessive grazing results in savannization. The forests can be conserved by encouraging fuelwood plantations (0.7 ha/ha cultivated land) and developing village pastures (1.6 ha/ha cultivated land) and reducing the livestock numbers. Agricultural production in the region can be stabilized by introducing improved dry farming techniques such as intercropping, planned rainwater management, and adequate use of fertilizers.

  17. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the matri

  18. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the matri

  19. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

    DEFF Research Database (Denmark)

    Slik, J.W.Ferry; Paoli, Gary; McGuire, Krista

    2013-01-01

    Aim Large trees (d.b.h. ≥ 70 cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore...

  20. Atmospheric oxidation capacity sustained by a tropical forest

    NARCIS (Netherlands)

    Lelieveld, J.; Butler, T.; Crowley, J.N.; Dillon, T.J.; Fischer, H.; Ganzeveld, L.N.; Harder, H.; Lawrence, M.G.; Martinez, M.; Taraborelli, D.; Williams, J.

    2008-01-01

    Terrestrial vegetation, especially tropical rain forest, releases vast quantities of volatile organic compounds (VOCs) to the atmosphere1, 2, 3, which are removed by oxidation reactions and deposition of reaction products4, 5, 6. The oxidation is mainly initiated by hydroxyl radicals (OH), primarily

  1. Canopy dynamics of a tropical rain forest in French Guiana.

    NARCIS (Netherlands)

    Meer, van der P.J.

    1995-01-01

    The canopy dynamics (i.e. the formation and closure of canopy gaps) of a tropical rain forest in French Guiana are described. The formation of canopy gaps is investigated. The difficulties with gap size measurements are studied, and causes and consequences of treefalls and branchfalls are examined.

  2. Scientists Urge Protection of Tropical Forests in Asia

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The nations of tropical Asia should expand the number and size of protected areas within their borders, especially for forest types and ecoregions that are poorly protected in existing reserves,and for the increasingly rare areas that still retain their highly vulnerable megafauna, urges a declaration of more than 300 biologists from about 40 countries and regions.

  3. Canopy dynamics of a tropical rain forest in French Guiana

    NARCIS (Netherlands)

    Meer, van der P.J.

    1995-01-01

    The canopy dynamics (i.e. the formation and closure of canopy gaps) of a tropical rain forest in French Guiana are described. The formation of canopy gaps is investigated. The difficulties with gap size measurements are studied, and causes and consequences of treefalls and branchfalls are

  4. Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests

    Science.gov (United States)

    Justin Paul Ziegler; Chad Hoffman; Michael Battaglia; William Mell

    2017-01-01

    Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures,...

  5. Thresholds of logging intensity to maintain tropical forest biodiversity.

    Science.gov (United States)

    Burivalova, Zuzana; Sekercioğlu, Cağan Hakkı; Koh, Lian Pin

    2014-08-18

    Primary tropical forests are lost at an alarming rate, and much of the remaining forest is being degraded by selective logging. Yet, the impacts of logging on biodiversity remain poorly understood, in part due to the seemingly conflicting findings of case studies: about as many studies have reported increases in biodiversity after selective logging as have reported decreases. Consequently, meta-analytical studies that treat selective logging as a uniform land use tend to conclude that logging has negligible effects on biodiversity. However, selectively logged forests might not all be the same. Through a pantropical meta-analysis and using an information-theoretic approach, we compared and tested alternative hypotheses for key predictors of the richness of tropical forest fauna in logged forest. We found that the species richness of invertebrates, amphibians, and mammals decreases as logging intensity increases and that this effect varies with taxonomic group and continental location. In particular, mammals and amphibians would suffer a halving of species richness at logging intensities of 38 m(3) ha(-1) and 63 m(3) ha(-1), respectively. Birds exhibit an opposing trend as their total species richness increases with logging intensity. An analysis of forest bird species, however, suggests that this pattern is largely due to an influx of habitat generalists into heavily logged areas while forest specialist species decline. Our study provides a quantitative analysis of the nuanced responses of species along a gradient of logging intensity, which could help inform evidence-based sustainable logging practices from the perspective of biodiversity conservation.

  6. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Gustavo R Canale

    Full Text Available Tropical deforestation and forest fragmentation are among the most important biodiversity conservation issues worldwide, yet local extinctions of millions of animal and plant populations stranded in unprotected forest remnants remain poorly explained. Here, we report unprecedented rates of local extinctions of medium to large-bodied mammals in one of the world's most important tropical biodiversity hotspots. We scrutinized 8,846 person-years of local knowledge to derive patch occupancy data for 18 mammal species within 196 forest patches across a 252,669-km(2 study region of the Brazilian Atlantic Forest. We uncovered a staggering rate of local extinctions in the mammal fauna, with only 767 from a possible 3,528 populations still persisting. On average, forest patches retained 3.9 out of 18 potential species occupancies, and geographic ranges had contracted to 0-14.4% of their former distributions, including five large-bodied species that had been extirpated at a regional scale. Forest fragments were highly accessible to hunters and exposed to edge effects and fires, thereby severely diminishing the predictive power of species-area relationships, with the power model explaining only ~9% of the variation in species richness per patch. Hence, conventional species-area curves provided over-optimistic estimates of species persistence in that most forest fragments had lost species at a much faster rate than predicted by habitat loss alone.

  7. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot.

    Science.gov (United States)

    Canale, Gustavo R; Peres, Carlos A; Guidorizzi, Carlos E; Gatto, Cassiano A Ferreira; Kierulff, Maria Cecília M

    2012-01-01

    Tropical deforestation and forest fragmentation are among the most important biodiversity conservation issues worldwide, yet local extinctions of millions of animal and plant populations stranded in unprotected forest remnants remain poorly explained. Here, we report unprecedented rates of local extinctions of medium to large-bodied mammals in one of the world's most important tropical biodiversity hotspots. We scrutinized 8,846 person-years of local knowledge to derive patch occupancy data for 18 mammal species within 196 forest patches across a 252,669-km(2) study region of the Brazilian Atlantic Forest. We uncovered a staggering rate of local extinctions in the mammal fauna, with only 767 from a possible 3,528 populations still persisting. On average, forest patches retained 3.9 out of 18 potential species occupancies, and geographic ranges had contracted to 0-14.4% of their former distributions, including five large-bodied species that had been extirpated at a regional scale. Forest fragments were highly accessible to hunters and exposed to edge effects and fires, thereby severely diminishing the predictive power of species-area relationships, with the power model explaining only ~9% of the variation in species richness per patch. Hence, conventional species-area curves provided over-optimistic estimates of species persistence in that most forest fragments had lost species at a much faster rate than predicted by habitat loss alone.

  8. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest

    NARCIS (Netherlands)

    Gomes, L.G.L.; Oostra, V.; Nijman, V.; Cleef, A.M.; Kappelle, M.

    2008-01-01

    In view of the continued decline in tropical forest cover around the globe, forest restoration has become a key tool in tropical rainforest conservation. One of the main - and least expensive - restoration strategies is natural forest regeneration. By aiding forest seed influx both into disturbed an

  9. Sprinting, climbing and persisting: Light interception and carbon gain in a secondary tropical forest succession

    NARCIS (Netherlands)

    Selaya Garvizú, N.G.

    2007-01-01

    In the tropics human induced forest disturbance, i.e. timber extraction or forest slash and burn for agriculture is leading to an increase of secondary forest area. Therefore, people in the tropics, especially the poor, will rely on secondary forests for good and services. Pioneer trees (short-and l

  10. Molybdenum limitation of asymbiotic nitrogen fixation in tropical forest soils

    Science.gov (United States)

    Barron, Alexander R.; Wurzburger, Nina; Bellenger, Jean Phillipe; Wright, S. Joseph; Kraepiel, Anne M. L.; Hedin, Lars O.

    2009-01-01

    Nitrogen fixation, the biological conversion of di-nitrogen to plant-available ammonium, is the primary natural input of nitrogen to ecosystems, and influences plant growth and carbon exchange at local to global scales. The role of this process in tropical forests is of particular concern, as these ecosystems harbour abundant nitrogen-fixing organisms and represent one third of terrestrial primary production. Here we show that the micronutrient molybdenum, a cofactor in the nitrogen-fixing enzyme nitrogenase, limits nitrogen fixation by free-living heterotrophic bacteria in soils of lowland Panamanian forests. We measured the fixation response to long-term nutrient manipulations in intact forests, and to short-term manipulations in soil microcosms. Nitrogen fixation increased sharply in treatments of molybdenum alone, in micronutrient treatments that included molybdenum by design and in treatments with commercial phosphorus fertilizer, in which molybdenum was a `hidden' contaminant. Fixation did not respond to additions of phosphorus that were not contaminated by molybdenum. Our findings show that molybdenum alone can limit asymbiotic nitrogen fixation in tropical forests and raise new questions about the role of molybdenum and phosphorus in the tropical nitrogen cycle. We suggest that molybdenum limitation may be common in highly weathered acidic soils, and may constrain the ability of some forests to acquire new nitrogen in response to CO2 fertilization.

  11. Forest response to heat waves at the dry timberline

    Science.gov (United States)

    Yakir, D.; Rotenberg, E.; Tatrinov, F.; Ogee, J.; Maseyk, K.

    2012-04-01

    Predictions of climate change consistently indicate continuous warming and drying for the entire Mediterranean basin and other regions during the next century. Investigating forest functioning at the current dry and hot "timberline" has therefore implications for predicting future forest distribution. In such investigations we should consider the forest adjustments to extreme conditions both at the long-term average climate basis, as at the time-scale of episodic extreme events, such as heat waves and droughts. Investigating both aspects in a 45-yr old semi-arid pine forest at the dry timberline (MuSICA) was used to test our understandings of underlying processes, and our ability to account for such differential responses.

  12. Assessing aboveground tropical forest biomass using Google Earth canopy images.

    Science.gov (United States)

    Ploton, Pierre; Pélissier, Raphaël; Proisy, Christophe; Flavenot, Théo; Barbier, Nicolas; Rai, S N; Couteron, Pierre

    2012-04-01

    Reducing Emissions from Deforestation and Forest Degradation (REDD) in efforts to combat climate change requires participating countries to periodically assess their forest resources on a national scale. Such a process is particularly challenging in the tropics because of technical difficulties related to large aboveground forest biomass stocks, restricted availability of affordable, appropriate remote-sensing images, and a lack of accurate forest inventory data. In this paper, we apply the Fourier-based FOTO method of canopy texture analysis to Google Earth's very-high-resolution images of the wet evergreen forests in the Western Ghats of India in order to (1) assess the predictive power of the method on aboveground biomass of tropical forests, (2) test the merits of free Google Earth images relative to their native commercial IKONOS counterparts and (3) highlight further research needs for affordable, accurate regional aboveground biomass estimations. We used the FOTO method to ordinate Fourier spectra of 1436 square canopy images (125 x 125 m) with respect to a canopy grain texture gradient (i.e., a combination of size distribution and spatial pattern of tree crowns), benchmarked against virtual canopy scenes simulated from a set of known forest structure parameters and a 3-D light interception model. We then used 15 1-ha ground plots to demonstrate that both texture gradients provided by Google Earth and IKONOS images strongly correlated with field-observed stand structure parameters such as the density of large trees, total basal area, and aboveground biomass estimated from a regional allometric model. Our results highlight the great potential of the FOTO method applied to Google Earth data for biomass retrieval because the texture-biomass relationship is only subject to 15% relative error, on average, and does not show obvious saturation trends at large biomass values. We also provide the first reliable map of tropical forest aboveground biomass predicted

  13. Mirror image hydrocarbons from Tropical and Boreal forests

    Directory of Open Access Journals (Sweden)

    J. Williams

    2007-01-01

    Full Text Available Monoterpenes, emitted in large quantities by trees to attract pollinators and repel herbivores, can exist in mirror image forms called enantiomers. In this study such enantiomeric pairs have been measured in ambient air over extensive forest ecosystems in South America and northern Europe. For the dominant monoterpene, α-pinene, the (−-form was measured in large excess over the (+-form over the Tropical rainforest, whereas the reverse was observed over the Boreal forest. Interestingly, over the Tropical forest (−-α-pinene did not correlate with its own enantiomer, but correlated well with isoprene. The results indicate a remarkable ecosystem scale enantiomeric fingerprint and a nexus between the biosphere and atmosphere.

  14. Arthropod diversity in a tropical forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe

    2012-01-01

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic...

  15. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    NARCIS (Netherlands)

    Chazdon, R.L.; Broadbent, E.N.; Rozendaal, Danae; Bongers, F.; Jakovac, A.C.; Braga Junqueira, A.; Lohbeck, M.W.M.; Pena Claros, M.; Poorter, L.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We

  16. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    NARCIS (Netherlands)

    Chazdon, R.L.; Broadbent, E.N.; Rozendaal, Danae; Bongers, F.; Jakovac, A.C.; Braga Junqueira, A.; Lohbeck, M.W.M.; Pena Claros, M.; Poorter, L.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We es

  17. Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests

    Science.gov (United States)

    Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso

    2012-01-01

    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic

  18. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  19. WET AND DRY SEASON ECOSYSTEM LEVEL FLUXES OF ISOPRENE AND MONOTERPENES FROM A SOUTHEAST ASIAN SECONDARY FOREST AND RUBBER TREE PLANTATION

    Science.gov (United States)

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment....

  20. Effects of tropical montane forest disturbance on epiphytic macrolichens.

    Science.gov (United States)

    Benítez, Angel; Prieto, María; González, Yadira; Aragón, Gregorio

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for "shade-adapted lichens", while the richness of "heliophytic lichens" increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  2. Short and Long-Term Soil Moisture Effects of Liana Removal in a Seasonally Moist Tropical Forest.

    Directory of Open Access Journals (Sweden)

    Joseph Pignatello Reid

    Full Text Available Lianas (woody vines are particularly abundant in tropical forests, and their abundance is increasing in the neotropics. Lianas can compete intensely with trees for above- and belowground resources, including water. As tropical forests experience longer and more intense dry seasons, competition for water is likely to intensify. However, we lack an understanding of how liana abundance affects soil moisture and hence competition with trees for water in tropical forests. To address this critical knowledge gap, we conducted a large-scale liana removal experiment in a seasonal tropical moist forest in central Panama. We monitored shallow and deep soil moisture over the course of three years to assess the effects of lianas in eight 0.64 ha removal plots and eight control plots. Liana removal caused short-term effects in surface soils. Surface soils (10 cm depth in removal plots dried more slowly during dry periods and accumulated water more slowly after rainfall events. These effects disappeared within four months of the removal treatment. In deeper soils (40 cm depth, liana removal resulted in a multi-year trend towards 5-25% higher soil moisture during the dry seasons with the largest significant effects occurring in the dry season of the third year following treatment. Liana removal did not affect surface soil temperature. Multiple and mutually occurring mechanisms may be responsible for the effects of liana removal on soil moisture, including competition with trees, and altered microclimate, and soil structure. These results indicate that lianas influence hydrologic processes, which may affect tree community dynamics and forest carbon cycling.

  3. Biological Nitrogen Fixation in Two Tropical Forests: Ecosystem-Level Patterns and Effects of Nitrogen Fertilization

    OpenAIRE

    Cusack, Daniela F.; Silver, Whendee; McDowell, William H.

    2009-01-01

    Humid tropical forests are often characterized by large nitrogen (N) pools, and are known to have large potential N losses. Although rarely measured, tropical forests likely maintain considerable biological N fixation (BNF) to balance N losses. We estimated inputs of N via BNF by free-living microbes for two tropical forests in Puerto Rico, and assessed the response to increased N availability using an on-going N fertilization experiment. Nitrogenase activity was measured across forest strata...

  4. Effectiveness of Africa's tropical protected areas for maintaining forest cover.

    Science.gov (United States)

    Bowker, J N; De Vos, A; Ament, J M; Cumming, G S

    2017-06-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forests. Tropical forests house a substantial portion of the world's remaining biodiversity and are heavily affected by anthropogenic activity. We analyzed park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control sites. Although significant geographical variation existed among parks, the majority of African parks had significantly less forest loss within their boundaries (e.g., Mahale Park had 34 times less forest loss within its boundary) than control sites. Accessibility was a significant driver of forest loss. Relatively inaccessible areas had a higher probability (odds ratio >1, p < 0.001) of forest loss but only in ineffective parks, and relatively accessible areas had a higher probability of forest loss but only in effective parks. Smaller parks less effectively prevented forest loss inside park boundaries than larger parks (T = -2.32, p < 0.05), and older parks less effectively prevented forest loss inside park boundaries than younger parks (F2,154 = -4.11, p < 0.001). Our analyses, the first individual and national assessment of park effectiveness across Africa, demonstrated the complexity of factors (such as geographical variation, accessibility, and park size and age) influencing the ability of a park to curb forest loss within its boundaries. © 2016 Society for Conservation Biology.

  5. Estimating Aboveground Forest Carbon Stock of Major Tropical Forest Land Uses Using Airborne Lidar and Field Measurement Data in Central Sumatra

    Science.gov (United States)

    Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.

    2013-12-01

    Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests

  6. Tropical forest loss and its multitrophic effects on insect herbivory.

    Science.gov (United States)

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Lohbeck, Madelon; Tscharntke, Teja; Faria, Deborah

    2016-12-01

    Forest loss threatens biodiversity, but its potential effects on multitrophic ecological interactions are poorly understood. Insect herbivory depends on complex bottom-up (e.g., resource availability and plant antiherbivore defenses) and top-down forces (e.g., abundance of predators and herbivorous), but its determinants in human-altered tropical landscapes are largely unknown. Using structural equation models, we assessed the direct and indirect effects of forest loss on insect herbivory in 40 landscapes (115 ha each) from two regions with contrasting land-use change trajectories in the Brazilian Atlantic rainforest. We considered landscape forest cover as an exogenous predictor and (1) forest structure, (2) abundance of predators (birds and arthropods), and (3) abundance of herbivorous arthropods as endogenous predictors of insect leaf damage. From 12 predicted pathways, 11 were significant and showed that (1) leaf damage increases with forest loss (direct effect); (2) leaf damage increases with forest loss through the simplification of vegetation structure and its associated dominance of herbivorous insects (indirect effect); and further demonstrate (3) a lack of top-down control of herbivores by predators (birds and arthropods). We conclude that forest loss favors insect herbivory by undermining the bottom-up control (presumably reduced plant antiherbivore defense mechanisms) in forests dominated by fast-growing pioneer plant species, and by improving the conditions required for herbivores proliferation. © 2016 by the Ecological Society of America.

  7. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  8. Abiotic Controls on Macroscale Variations of Humid Tropical Forest Height

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2016-06-01

    Full Text Available Spatial variation of tropical forest tree height is a key indicator of ecological processes associated with forest growth and carbon dynamics. Here we examine the macroscale variations of tree height of humid tropical forests across three continents and quantify the climate and edaphic controls on these variations. Forest tree heights are systematically sampled across global humid tropical forests with more than 2.5 million measurements from Geoscience Laser Altimeter System (GLAS satellite observations (2004–2008. We used top canopy height (TCH of GLAS footprints to grid the statistical mean and variance and the 90 percentile height of samples at 0.5 degrees to capture the regional variability of average and large trees globally. We used the spatial regression method (spatial eigenvector mapping-SEVM to evaluate the contributions of climate, soil and topography in explaining and predicting the regional variations of forest height. Statistical models suggest that climate, soil, topography, and spatial contextual information together can explain more than 60% of the observed forest height variation, while climate and soil jointly explain 30% of the height variations. Soil basics, including physical compositions such as clay and sand contents, chemical properties such as PH values and cation-exchange capacity, as well as biological variables such as the depth of organic matter, all present independent but statistically significant relationships to forest height across three continents. We found significant relations between the precipitation and tree height with shorter trees on the average in areas of higher annual water stress, and large trees occurring in areas with low stress and higher annual precipitation but with significant differences across the continents. Our results confirm other landscape and regional studies by showing that soil fertility, topography and climate may jointly control a significant variation of forest height and

  9. A preliminary study on the heat storage fluxes of a tropical seasonal rain forest in Xishuangbanna

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>In order to discuss the values and daily variation characteristics of heat storage fluxes in a tropical seasonal rain forest in Xishuangbanna, the sensible and latent heat storage flux within air column, canopy heat storage flux, energy storage by photosynthesis and ground heat storage above the soil heat flux plate, as well as the ratios of these heat storage fluxes to the net radiation in the cool-dry, hot-dry and rainy season were compared and analyzed based on the observation data of carbon fluxes, meteorological factors and biomass within this tropical seasonal rain forest from January 2003 to December 2004. The findings showed that heat storage terms ranged significantly in the daytime and weakly in the nighttime, and the absolute values of sensible and latent heat storage fluxes were obviously greater than other heat storage terms in all seasons. In addition, the absolute values of total heat storage fluxes reached the peak in the hot-dry season, then were higher in the rainy season, and reached the minimum in the cool-dry season. The ratios of heat storage fluxes to net radiation generally decreased with time in the daytime, moreover, the sensible and latent heat storage dominated a considerable fraction of net radiation, while other heat storage contents occupied a smaller fraction of the net radiation and the peak value was not above 3.5%. In the daytime, the ratios of the total heat storage to net radiation were greater and differences in these ratios were distinct among seasons before 12:00, and then they became lower and differences were small among seasons after 12:00. The energy closure was improved when the storage terms were considered in the energy balance, which indicated that heat storage terms should not been neglected. The energy closure of tropical seasonal rain forest was not very well due to effects of many factors. The results would help us to further understand energy transfer and mass exchange between tropical forest and atmosphere

  10. Experimental evidence for extreme dispersal limitation in tropical forest birds.

    Science.gov (United States)

    Moore, R P; Robinson, W D; Lovette, I J; Robinson, T R

    2008-09-01

    Movements of organisms between habitat remnants can affect metapopulation structure, community assembly dynamics, gene flow and conservation strategy. In the tropical landscapes that support the majority of global biodiversity and where forest fragmentation is accelerating, there is particular urgency to understand how dispersal across habitats mediates the demography, distribution and differentiation of organisms. By employing unique dispersal challenge experiments coupled with exhaustive inventories of birds in a Panamanian lacustrine archipelago, we show that the ability to fly even short distances (birds, and that this variation correlates strongly with species' extinction histories and current distributions across the archipelago. This extreme variation in flight capability indicates that species' persistence in isolated forest remnants will be differentially mediated by their respective dispersal abilities, and that corridors connecting such fragments will be essential for the maintenance of avian diversity in fragmented tropical landscapes.

  11. Drought-related leaf phenology in tropical forests - Insights from a stochastic eco-hydrological approach

    Science.gov (United States)

    Vico, G.; Feng, X.; Dralle, D.; Thompson, S. E.; Manzoni, S.

    2016-12-01

    Drought deciduousness is a common phenological strategy to cope with water shortages during periodic dry spells or during the dry season in tropical forests. On one hand, shedding leaves allows avoiding drought stress, but implies leaf construction costs that evergreen species need to sustain less frequently. On the other hand, maintaining leaves during dry periods requires stable water sources, traits enabling leaves to remain active at low water potential, and carbon stores to sustain respiration costs in periods with little carbon uptake. Which of these strategies is the most competitive ultimately depends on the balance of carbon costs and gains in the long-term. In turn, this balance is affected by the hydro-climatic conditions, in terms of both length of the dry season and random rainfall occurrences during the wet season. To address the question as to which hydro-climatic conditions favor drought-deciduous vs. evergreen leaf habit in tropical forests, we develop a stochastic eco-hydrological framework that provides probability density functions of long-term carbon gain in tropical trees with a range of phenological strategies. From these distributions we compute the long-term mean carbon gain and use it as a measure of fitness and thus reproductive success. Finally, this measure is used to assess which phenological strategies are evolutionarily stable, providing an objective criterion to predict how likely a species with a certain phenological strategy is to invade a community dominated but another strategy. In general, we find that deciduous habit is evolutionary stable in more unpredictable climates for a given total rainfall, and in drier climates. However, a minimum annual rainfall is required for any strategy to have a positive carbon gain.

  12. An Ecologically Based System for Sustainable Agroforestry in Sub-Tropical and Tropical Forests

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    2017-03-01

    Full Text Available Forests in tropical and sub-tropical countries face severe pressures due to a combination of poverty and environment degradation. To be effective, measures to protect these forests must therefore consider both economic and ecological dimensions synergistically. The purpose of this paper was to synthesize our long-term work (1994–2015 on a Ginkgo (Ginkgo biloba L. agroforestry system and demonstrate its potential for achieving both goals, and discuss its wider application in tropical and sub-tropical countries. The performance of various ecological, economic, and social indicators was compared among five Ginkgo agroforestry systems. Two additional indicators, Harmony Degree (HD and Development Degree (DD, were also used to show the integrated performance of these indicators. Ginkgo-Wheat-Peanut (G+W+P and Ginkgo-Rapeseed-Peanut (G+R+P are the best systems when compared to pure and mixed Ginkgo plantations, or pure agricultural crops. Results demonstrate that it is possible to achieve both economic development and environmental protection through implementation of sustainable agroforestry systems in sub-tropical regions.

  13. The Tropical Ecology, Assessment and Monitoring (TEAM) Network: An early warning system for tropical rain forests.

    Science.gov (United States)

    Rovero, Francesco; Ahumada, Jorge

    2017-01-01

    While there are well established early warning systems for a number of natural phenomena (e.g. earthquakes, catastrophic fires, tsunamis), we do not have an early warning system for biodiversity. Yet, we are losing species at an unprecedented rate, and this especially occurs in tropical rainforests, the biologically richest but most eroded biome on earth. Unfortunately, there is a chronic gap in standardized and pan-tropical data in tropical forests, affecting our capacity to monitor changes and anticipate future scenarios. The Tropical Ecology, Assessment and Monitoring (TEAM) Network was established to contribute addressing this issue, as it generates real time data to monitor long-term trends in tropical biodiversity and guide conservation practice. We present the Network and focus primarily on the Terrestrial Vertebrates protocol, that uses systematic camera trapping to detect forest mammals and birds, and secondarily on the Zone of Interaction protocol, that measures changes in the anthroposphere around the core monitoring area. With over 3 million images so far recorded, and managed using advanced information technology, TEAM has created the most important data set on tropical forest mammals globally. We provide examples of site-specific and global analyses that, combined with data on anthropogenic disturbance collected in the larger ecosystem where monitoring sites are, allowed us to understand the drivers of changes of target species and communities in space and time. We discuss the potential of this system as a candidate model towards setting up an early warning system that can effectively anticipate changes in coupled human-natural system, trigger management actions, and hence decrease the gap between research and management responses. In turn, TEAM produces robust biodiversity indicators that meet the requirements set by global policies such as the Aichi Biodiversity Targets. Standardization in data collection and public sharing of data in near real time

  14. Biomass and carbon dynamics of a tropical mountain rain forest in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biometric inventories for 25 years,from 1983 to 2005,indicated that the Jianfengling tropical mountain rain forest in Hainan,China,was either a source or a modest sink of carbon.Overall,this forest was a small carbon sink with an accumulation rate of(0.56±0.22) Mg C ha-1yr-1,integrated from the long-term measurement data of two plots(P9201 and P8302).These findings were similar to those for African and American rain forests((0.62±0.23) Mg C ha-1yr-1).The carbon density varied between(201.43±29.38) Mg C ha-1 and(229.16±39.2) Mg C ha-1,and averaged(214.17±32.42) Mg C ha-1 for plot P9201.Plot P8302,however,varied between(223.95±45.92) Mg C ha-1 and(254.85±48.86) Mg C ha-1,and averaged(243.35±47.64) Mg C ha-1.Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months.Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest.

  15. Tree height integrated into pan-tropical forest biomass estimates

    Directory of Open Access Journals (Sweden)

    T. R. Feldpausch

    2012-03-01

    Full Text Available Above-ground tropical tree biomass and carbon storage estimates commonly ignore tree height. We estimate the effect of incorporating height (H on forest biomass estimates using 37 625 concomitant H and diameter measurements (n = 327 plots and 1816 harvested trees (n = 21 plots tropics-wide to answer the following questions:

    1. For trees of known biomass (from destructive harvests which H-model form and geographic scale (plot, region, and continent most reduces biomass estimate uncertainty?

    2. How much does including H relationship estimates derived in (1 reduce uncertainty in biomass estimates across 327 plots spanning four continents?

    3. What effect does the inclusion of H in biomass estimates have on plot- and continental-scale forest biomass estimates?

    The mean relative error in biomass estimates of the destructively harvested trees was half (mean 0.06 when including H, compared to excluding H (mean 0.13. The power- and Weibull-H asymptotic model provided the greatest reduction in uncertainty, with the regional Weibull-H model preferred because it reduces uncertainty in smaller-diameter classes that contain the bulk of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows errors are reduced from 41.8 Mg ha−1 (range 6.6 to 112.4 to 8.0 Mg ha−1 (−2.5 to 23.0 when including $H$. For all plots, above-ground live biomass was 52.2±17.3 Mg ha−1 lower when including H estimates (13%, with the greatest reductions in estimated biomass in Brazilian Shield forests and relatively no change in the Guyana Shield, central Africa and southeast Asia. We show fundamentally different stand structure across the four forested tropical continents, which affects biomass reductions due to $H

  16. Tropical forest fragmentation limits pollination of a keystone understory herb.

    Science.gov (United States)

    Hadley, Adam S; Frey, Sarah J K; Robinson, W Douglas; Kress, W John; Betts, Matthew G

    2014-08-01

    Loss of native vegetation cover is thought to be a major driver of declines in pollination success worldwide. However, it is not well known whether reducing the fragmentation of remaining vegetation can ameliorate these negative effects. We tested the independent effects of composition vs. configuration on the reproductive success of a keystone tropical forest herb (Heliconia tortuosa). To do this we designed a large-scale mensurative experiment that independently varied connected forest-patch size (configuration) and surrounding amount of forest (composition). In each patch, we tested whether pollen tubes, fruit, and seed set were associated with these landscape variables. We also captured hummingbirds as an indication of pollinator availability in a subset of patches according to the same design. We found evidence for an effect of configuration on seed set of H. tortuosa, but not on other aspects of plant reproduction; proportion of seeds produced increased 40% across the gradient in patch size we observed (0.64 to > 1300 ha), independent of the amount of forest in the surrounding landscape at both local and landscape scales. We also found that the availability of pollinators was dependent upon forest configuration; hummingbird capture rates increased three and one-half times across the patch size gradient, independent of forest amount. Finally, pollinator availability was strongly positively correlated with seed set. We hypothesize that the effects of configuration on plant fitness that we observed are due to reduced pollen quality resulting from altered hummingbird availability and/or movement behavior. Our results suggest that prioritizing larger patches of tropical forest may be particularly important for conservation of this species.

  17. Polarimetric Data for Tropical Forest Monitoring. Studies at the Colombian Amazon

    NARCIS (Netherlands)

    Quiñones Fernández, M.

    2002-01-01

    An urgent need exists for accurate data on the actual tropical forest extent, deforestation, forest structure, regeneration and diversity. The availability of accurate land cover maps and tropical forest type maps, and the possibility to update these maps frequently, is of great importance for the d

  18. Tropical forests and fragmentation: A case of South Garo Hills, Meghalaya, North East India

    Science.gov (United States)

    Ashish Kumar; Bruce Marcot; Rohitkumar Patel

    2017-01-01

    This study presents an ecological assessment of tropical forests at stand and landscape levels to provide knowledge, tools and, indicators to evaluate specific diversity patterns and related ecological processes happening in these tropical forest conditions; and for monitoring landscape changes for managing forest and wildlife resources of Jhum (shifting cultivation)...

  19. The conservation value of small, isolated fragments of lowland tropical rain forest.

    Science.gov (United States)

    Turner, I M; T Corlett, R

    1996-08-01

    Deforestation is occurring at an alarming rate in the lowland tropics. In many tropical regions, rain forest is restricted to small (rainforest species that are on the brink of extinction. In areas with little rain forest remaining, fragments can be the 'seeds' from which to re-establish extensive forest.

  20. Methane emissions and uptake in temperate and tropical forest trees on free-draining soils.

    Science.gov (United States)

    Welch, Bertie; Sayer, Emma; Siegenthaler, Andy; Gauci, Vincent

    2016-04-01

    Forests play an important role in the exchange of radiatively important gases with the atmosphere. Previous studies have shown that in both temperate and tropical wetland forests tree stems are significant sources of methane (CH4), yet little is known about trace greenhouse gas dynamics in free-draining soils that dominate global forested areas. We examined trace gas (CH4 and N2O) fluxes from both soils and tree stems in a lowland tropical forest on free-draining soils in Panama, Central America and from a deciduous woodland in the United Kingdom. The tropical field site was a long-term experimental litter manipulation experiment in the Barro Colorado Nature Monument within the Panama Canal Zone, fluxes were sampled over the dry to wet season transition (March-August) in 2014 and November 2015. Temperate fluxes were sampled at Wytham Woods, Oxfordshire, over 12 months from February 2015 to January 2016. Tree stem samples were collected via syringe from temporary chambers strapped to the trees (as per Siegenthaler et al. (2015)) and the soil fluxes were sampled from permanently installed collars inserted to a 3cm depth. We found that seasonality (precipitation) is a significant driver of changing soil exchange from methane uptake to emission at the Panama sites. Experimental changes to litter quantity only become significant when coupled with seasonal change. Seasonal variability is an important control of the fluxes at out temperate forest site with changes in temperature and soil water content leading to changes in soil and tree stem trace gas fluxes from Wytham Woods. Siegenthaler, A., Welch, B., Pangala, S. R., Peacock, M., and Gauci, V.: Technical Note: Semi-rigid chambers for methane gas flux measurements on tree-stems, Biogeosciences Discuss., 12, 16019-16048, doi:10.5194/bgd-12-16019-2015, 2015.

  1. Rainfall-tuned management facilitates dry forest recovery

    NARCIS (Netherlands)

    Sitters, J.; Holmgren, M.; Stoorvogel, J.J.; López, B.C.

    2012-01-01

    Regeneration of original dry forests and shrublands in degraded arid and semiarid ecosystems can be a slow and difficult process. It has been hypothesized that restoration efforts during periods of increased water availability may potentially trigger shifts back to a high vegetation cover depending

  2. Simulated dry deposition of nitric acid near forest edges

    NARCIS (Netherlands)

    DeJong, JJM; Klaassen, W; Jong, J.J.M. de

    1997-01-01

    Dry deposition is simulated to understand and generalize observations of enhanced deposition of air pollution near forest edges. Nitric acid is taken as an example as its deposition velocity is often assumed to be determined by turbulent transport only. The simulations are based on the micro-meteoro

  3. Geocoding and stereo display of tropical forest multisensor datasets

    Science.gov (United States)

    Welch, R.; Jordan, T. R.; Luvall, J. C.

    1990-01-01

    Concern about the future of tropical forests has led to a demand for geocoded multisensor databases that can be used to assess forest structure, deforestation, thermal response, evapotranspiration, and other parameters linked to climate change. In response to studies being conducted at the Braulino Carrillo National Park, Costa Rica, digital satellite and aircraft images recorded by Landsat TM, SPOT HRV, Thermal Infrared Multispectral Scanner, and Calibrated Airborne Multispectral Scanner sensors were placed in register using the Landsat TM image as the reference map. Despite problems caused by relief, multitemporal datasets, and geometric distortions in the aircraft images, registration was accomplished to within + or - 20 m (+ or - 1 data pixel). A digital elevation model constructed from a multisensor Landsat TM/SPOT stereopair proved useful for generating perspective views of the rugged, forested terrain.

  4. Remotely Sensed Fire Type Classification of the Brazilian Tropical Moist Forest Biome

    Science.gov (United States)

    Kumar, S.; Roy, D. P.

    2012-12-01

    Vegetation fires in the Brazilian Tropical Moist Forest Biome can be broadly classified into three types: i) Deforestation fires, lit to aid deforestation by burning of slashed, piled and dried forest biomass, ii) Maintenance fires, lit on agricultural fields or pasture areas to maintain and clear woody material and to rehabilitate degraded pasture areas, iii) Forest fires, associated with escaped anthropogenic fires or, less frequently, caused by lightning. Information on the incidence and spatial distribution of fire types is important as they have widely varying atmospheric emissions and ecological impacts. Satellite remote sensing offers a practical means of monitoring fires over areas as extensive as the Brazilian Tropical Moist Forest Biome which spans almost 4 million square kilometers. To date, fire type has been inferred based on the geographic context and proximity of satellite active fire detections relative to thematic land cover classes, roads, and forest edges, or by empirical consideration of the active fire detection frequency. In this paper a classification methodology is presented that demonstrates a way to classify the fire type of MODerate Resolution Imaging Spectroradiometer (MODIS) active fire detections. Training and validation fire type data are defined conservatively for MODIS active fire detections using a land cover transition matrix that labels MODIS active fires by consideration of the PRODES 120m land cover for the previous year and the year of fire detection. The training data are used with a random forest classifier and remotely sensed predictor variables including the number of MODIS Aqua and Terra satellite detections, the maximum and median Fire Radiative Power (FRP) [MW km-2], the scaling parameter of the FRP power law distribution, the number of day and night detections, and the fire surrounding "background" surface brightness temperature [K]. In addition, the total rainfall over periods from 1 to 24 months prior to fire

  5. Effect of disturbance on biomass, production and carbon dynamics in moist tropical forest of eastern Nepal

    Directory of Open Access Journals (Sweden)

    Tilak Prasad Gautam

    2016-04-01

    Full Text Available Background: Forest biomass is helpful to assess its productivity and carbon (C sequestration capacity. Several disturbance activities in tropical forests have reduced the biomass and net primary production (NPP leading to climate change. Therefore, an accurate estimation of forest biomass and C cycling in context of disturbances is required for implementing REDD (Reducing Emissions from Deforestation and Forest Degradation policy. Methods: Biomass and NPP of trees and shrubs were estimated by using allometric equations while herbaceous biomass was estimated by harvest method. Fine root biomass was determined from soil monolith. The C stock in vegetation was calculated by multiplying C concentration to dry weight. Results: Total stand biomass (Mg∙ha–1 in undisturbed forest stand (US was 960.4 while in disturbed forest stand (DS it was 449.1. The biomass (Mg∙ha–1 of trees, shrubs and herbs in US was 948.0, 4.4 and 1.4, respectively, while in DS they were 438.4, 6.1 and 1.2, respectively. Total NPP (Mg∙ha–1∙yr–1 was 26.58 (equivalent to 12.26 Mg C∙ha–1∙yr–1 in US and 14.91 (6.88 Mg C∙ha–1∙yr–1 in DS. Total C input into soil through litter plus root turnover was 6.78 and 3.35 Mg∙ha–1∙yr–1 in US and DS, respectively. Conclusions: Several disturbance activities resulted in the significant loss in stand biomass (53 %, NPP (44 %, and C sequestration capacity of tropical forest in eastern Nepal. The net uptake of carbon by the vegetation is far greater than that returned to the soil by the turnover of fine root and litter. Therefore, both stands of present forest act as carbon accumulating systems. Moreover, disturbance reflects higher C emissions which can be reduced by better management. Keywords: Tropical forest, Disturbance, Biomass, Production, Carbon cycling, Nepal

  6. Predicting tree heights for biomass estimates in tropical forests

    Directory of Open Access Journals (Sweden)

    Q. Molto

    2013-05-01

    Full Text Available The recent development of REDD+ mechanisms require reliable estimation of carbon stocks, especially in tropical forests that are particularly threatened by global changes. Even if tree height is a crucial variable to compute the above-ground forest biomass, tree heights are rarely measured in large-scale forest census because it requires consequent extra-effort. Tree height have thus to be predicted thanks to height models. Height and diameter of all trees above 10 cm of diameter were measured in thirty-three half-ha plots and nine one-ha plots throughout the northern French Guiana, an area with substantial climate and environmental gradients. We compared four different model shapes and found that the Michaelis–Menten shape was the most appropriate for the tree biomass prediction. Model parameters values were significantly different from one forest plot to another and neglecting these differences would lead to large errors in biomass estimates. Variables from the forest stand structure explained a sufficient part of the plot-to-plot variations of the height model parameters to affect the AGB predictions. In the forest stands dominated by small trees, the trees were found to have rapid height growth for small diameters. In forest stands dominated by larger trees, the trees were found to have the greatest heights for large diameters. The above-ground biomass estimation uncertainty of the forest plots was reduced by the use of the forest structure-based height model. It demonstrates the feasibility and the importance of height modeling in tropical forest for carbon mapping. Tree height is definitely an important variable for AGB estimations. When the tree heights are not measured in an inventory, they can be predicted with a height-diameter model. This model can account for plot-to plot variations in height-diameter relationship thank to variables describing the plots. The variables describing the stand structure of the plots are efficient for

  7. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China

    Directory of Open Access Journals (Sweden)

    Xiao-Tao Lü

    2009-06-01

    Full Text Available Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with = 2 cm diameter at breast height (dbh were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha, 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded was the most important family in the study forests. The population density, basal area and importance value index (IVI varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha accounted for 1.4% of the total community aboveground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales. Rev. Biol. Trop. 57 (1-2: 211-222. Epub 2009 June 30.Las lianas son componentes importantes de los bosques tropicales y tienen importantes impactos en la diversidad, la estructura y la dinámica de los bosques tropicales. El presente estudio documenta la flora de lianas en una región tropical estacional china. La

  8. Compatibility of timber and non-timber forest product management in natural tropical forests: perspectives, challenges, and opportunities

    NARCIS (Netherlands)

    Guariguata, M.R.; García-Fernández, C.; Shiel, D.; Nasi, R.; Herrero-Jáuregui, C.; Cronkleton, P.; Ingram, V.

    2010-01-01

    Tropical forests could satisfy multiple demands for goods and services both for present and future generations. Yet integrated approaches to natural forest management remain elusive across the tropics. In this paper we examine one combination of uses: selective harvesting of timber and non-timber

  9. Why do forest products become less available? A pan-tropical comparison of drivers of forest-resource degradation

    NARCIS (Netherlands)

    Hermans, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-01-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our

  10. Compatibility of timber and non-timber forest product management in natural tropical forests: perspectives, challenges, and opportunities

    NARCIS (Netherlands)

    Guariguata, M.R.; García-Fernández, C.; Shiel, D.; Nasi, R.; Herrero-Jáuregui, C.; Cronkleton, P.; Ingram, V.

    2010-01-01

    Tropical forests could satisfy multiple demands for goods and services both for present and future generations. Yet integrated approaches to natural forest management remain elusive across the tropics. In this paper we examine one combination of uses: selective harvesting of timber and non-timber fo

  11. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective

    OpenAIRE

    Morris, Rebecca J.

    2010-01-01

    Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also...

  12. Factors Controlling Fluxes of Nitrous Oxide (N-N2O) in AN Upland Tropical Forest (atlantic Forest) - Brazil, Rio de Janeiro

    Science.gov (United States)

    Perry, I.; de Mello, W. Z.; McDowell, W. H.

    2010-12-01

    Atlantic Forest is located along the Brazilian coast and inland to Paraguay and Argentina. It has been largely devastated years ago by anthropogenic activities, such as agriculture and urbanization. Only ten percent of its original area remains (100.000 km2), which is concentrated on high lands. Atlantic Forest is a biodiversity hotspot that receives high nitrogen (N) input through atmospheric deposition in forests of Rio de Janeiro; however, not much is known about the consequences of this N addition. This study has been conducted in the Serra dos Orgaos National Park (SONP - 22.782 km2) located a few kilometers Northeast of Rio de Janeiro Metropolitan Region, Sea Mountain. The forest, characterized as Tropical Moist Forest, is rigorously protected. Vegetation varies along the altitudinal gradient, where the highest peak is at 2,200m asl. Previous studies reported that N atmospheric deposition in SONP varies from 14 to 24 kg ha-1 year-1. The high N deposition on tropical forests increases emission to the atmosphere of N-N2O, a greenhouse gas. There is a lack of N-N2O measurements in tropical forests, mainly in upland tropical forests. We present fluxes of N-N2O from a Brazilian upland tropical forest, and assess the factors controlling N-N2O fluxes. Samples were collected from eight grids (48m2), between 330-451m asl (Subtropical vegetation) and eight grids between 1137-1251m (Montane vegetation), during the dry (July 2008) and wet (Jan-Feb 2009) seasons. Daily, N-N2O (N=372) and soil (N=185) were collected. Nitrous oxide emission was 0,7 (lower altitude) and 0,3 kgN ha-1 year-1 (higher altitude), which is lower than in other upland tropical forests, such as Luquillo Experimental Forest, Puerto Rico, where atmospheric N input (4 kg ha-1 year-1) is not as high as in SONP. Water filled pore space, soil temperature, phosphorus and C:N are the main factors controlling N-N2O fluxes. Manganese was not a good indicator for presence or absence of N-N2O. Higher N-N2O

  13. Indigenous exploitation and management of tropical forest resources: an evolutionary continuum in forest-people interactions.

    NARCIS (Netherlands)

    Wiersum, K.F.

    1997-01-01

    Since the early 1980s several new approaches towards forest management, which include active participation of local communities, have been tried out in many tropical regions. As a result of these efforts recognition has increased about the various ways in which many local communities are already

  14. Detecting tropical forest biomass dynamics from repeated airborne lidar measurements

    Directory of Open Access Journals (Sweden)

    V. Meyer

    2013-08-01

    Full Text Available Reducing uncertainty of terrestrial carbon cycle depends strongly on the accurate estimation of changes of global forest carbon stock. However, this is a challenging problem from either ground surveys or remote sensing techniques in tropical forests. Here, we examine the feasibility of estimating changes of tropical forest biomass from two airborne lidar measurements of forest height acquired about 10 yr apart over Barro Colorado Island (BCI, Panama. We used the forest inventory data from the 50 ha Center for Tropical Forest Science (CTFS plot collected every 5 yr during the study period to calibrate the estimation. We compared two approaches for detecting changes in forest aboveground biomass (AGB: (1 relating changes in lidar height metrics from two sensors directly to changes in ground-estimated biomass; and (2 estimating biomass from each lidar sensor and then computing changes in biomass from the difference of two biomass estimates, using two models, namely one model based on five relative height metrics and the other based only on mean canopy height (MCH. We performed the analysis at different spatial scales from 0.04 ha to 10 ha. Method (1 had large uncertainty in directly detecting biomass changes at scales smaller than 10 ha, but provided detailed information about changes of forest structure. The magnitude of error associated with both the mean biomass stock and mean biomass change declined with increasing spatial scales. Method (2 was accurate at the 1 ha scale to estimate AGB stocks (R2 = 0.7 and RMSEmean = 27.6 Mg ha−1. However, to predict biomass changes, errors became comparable to ground estimates only at a spatial scale of about 10 ha or more. Biomass changes were in the same direction at the spatial scale of 1 ha in 60 to 64% of the subplots, corresponding to p values of respectively 0.1 and 0.033. Large errors in estimating biomass changes from lidar data resulted from the uncertainty in detecting changes at 1 ha from ground

  15. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.

    Science.gov (United States)

    Cusack, Daniela F; Lee, Joseph K; McCleery, Taylor L; LeCroy, Chase S

    2015-12-01

    Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3 (-) ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3 (-) and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3 (-) vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3 (-) would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban-to-rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3 (-) was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3 (-) was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3 (-) seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3 (-) accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N

  16. Accounting for Impacts of Natural Disturbances on Climate Change Mitigation Projects in Tropical Forests (Invited)

    Science.gov (United States)

    Birdsey, R.; Dai, Z.; Hernandez, J.; Johnson, K. D.; Vargas, R.

    2013-12-01

    Most forests in the world are recovering from natural or human-induced disturbances -- the fraction of the world's forests disturbed each year by fire and insects alone is conservatively estimated by FAO to be 2.6%. Natural disturbances are common in many tropical forest areas and have significant impacts on carbon stocks. For example, emissions from wildfires in tropical forests are estimated to exceed 700 TgC yr-1 annually, with significant interannual variability related to global weather cycles. Several lines of evidence point toward long-term climate-induced increases in natural disturbances, with the potential for changing the world's terrestrial ecosystems from a sink to a source of CO2. This raises the important question of whether forests can be an effective part of a climate change mitigation strategy and concurrently, how to account for the effects of disturbances separately from the effects of changes in land use or forest management. Although global and regional studies have made some good progress to quantify the impacts of natural disturbances, it remains a technical challenge to separate or 'factor out' the impacts of natural disturbances from other causes of changes in carbon stocks, such as vegetation regrowth and CO2 fertilization, when developing the accounting and monitoring systems required to support climate change mitigation projects. We tested one approach in the semi-deciduous dry forests of the Yucatan Peninsula of Mexico using the ecosystem process model DNDC. Spatial variability in simulated C stocks reflects variations in stand age, vegetation type, soil characteristics and disturbance. Disturbances that occurred between 1985 and 2010 led to a mean decrease in C stocks of 3.2 Mg C ha-1 in 2012 not including forestland lost to crops and urban land uses. Other approaches may be possible for factoring out specific causes of changes in carbon stocks, but the IPCC has twice determined that none of the currently available alternatives is

  17. Terrestrial Ecosystem Science 2017 ECRP Annual Report: Tropical Forest Response to a Drier Future: Turnover Times of Soil Organic Matter, Roots, Respired CO2, and CH4 Across Moisture Gradients in Time and Space

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Karis J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-30

    The overall goal of my Early Career research is to constrain belowground carbon turnover times for tropical forests across a broad range in moisture regimes. My group is using 14C analysis and modeling to address two major objectives: quantify age and belowground carbon turnover times across tropical forests spanning a moisture gradient from wetlands to dry forest; and identify specific areas for focused model improvement and data needs through site-specific model-data comparison and belowground carbon modeling for tropic forests.

  18. Quantification and identification of lightning damage in tropical forests.

    Science.gov (United States)

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the

  19. Multiple pathways of commodity crop expansion in tropical forest landscapes

    Science.gov (United States)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  20. Predictability of Stemflow in a Species-Rich Tropical Forest

    Science.gov (United States)

    Zimmermann, A.; Zimmermann, B.

    2014-12-01

    Numerous studies investigated the influence of abiotic (meteorological conditions) and biotic factors (tree characteristics) on stemflow generation. Though these studies identified the variables that influence stemflow volumes in simply structured forests, the combination of tree characteristics that allows a robust prediction of stemflow volumes in species-rich forests is not well known. For many hydrological investigations, it would be useful if at least a rough estimate of stemflow volumes can be obtained based on tree characteristics. The need for robust predictions of stemflow motivated us to investigate the relations between tree characteristics and stemflow volumes in a species-rich tropical forest located in central Panama. With a sampling setup consisting of 10 rainfall collectors, 300 throughfall samplers, and 60 stemflow collectors and cumulated data comprising 26 rain events, we derive three main findings. First, stemflow represents a minor hydrological component in the studied 1 ha forest patch (0.98 % of cumulated rainfall). Second, in the studied species-rich forest, single tree characteristics are only weakly related to stemflow volumes. The influence of multiple tree parameters (e.g. crown diameter, presence of large epiphytes, and inclination of branches) and the dependencies among these parameters require a multivariate approach to understand the generation of stemflow. Third, predicting stemflow in species-rich forests based on tree parameters is a difficult task. Although the best model can capture the variation in stemflow to some degree, a critical validation reveals that the model cannot provide robust predictions of stemflow. A reanalysis of data from previous studies in species-rich forests corroborates this finding. Based on these results we discuss several options for quantifying stemflow volumes in species-rich forests.

  1. Toward trait-based mortality models for tropical forests.

    Directory of Open Access Journals (Sweden)

    Mélaine Aubry-Kientz

    Full Text Available Tree mortality in tropical forests is a complex ecological process for which modelling approaches need to be improved to better understand, and then predict, the evolution of tree mortality in response to global change. The mortality model introduced here computes an individual probability of dying for each tree in a community. The mortality model uses the ontogenetic stage of the tree because youngest and oldest trees are more likely to die. Functional traits are integrated as proxies of the ecological strategies of the trees to permit generalization among all species in the community. Data used to parametrize the model were collected at Paracou study site, a tropical rain forest in French Guiana, where 20,408 trees have been censused for 18 years. A Bayesian framework was used to select useful covariates and to estimate the model parameters. This framework was developed to deal with sources of uncertainty, including the complexity of the mortality process itself and the field data, especially historical data for which taxonomic determinations were uncertain. Uncertainty about the functional traits was also considered, to maximize the information they contain. Four functional traits were strong predictors of tree mortality: wood density, maximum height, laminar toughness and stem and branch orientation, which together distinguished the light-demanding, fast-growing trees from slow-growing trees with lower mortality rates. Our modelling approach formalizes a complex ecological problem and offers a relevant mathematical framework for tropical ecologists to process similar uncertain data at the community level.

  2. Cryptic adaptive radiation in tropical forest trees in New Caledonia.

    Science.gov (United States)

    Pillon, Yohan; Hopkins, Helen C F; Rigault, Frédéric; Jaffré, Tanguy; Stacy, Elizabeth A

    2014-04-01

    The causes of the species richness of tropical trees are poorly understood, in particular the roles of ecological factors such as soil composition. The nickel(Ni)-hyperaccumulating tree genus Geissois (Cunoniaceae) from the South-west Pacific was chosen as a model of diversification on different substrates. Here, we investigated the leaf element compositions, spatial distributions and phylogeny of all species of Geissois occurring on New Caledonia. We found that New Caledonian Geissois descended from a single colonist and diversified relatively quickly into 13 species. Species on ultramafic and nonultramafic substrates showed contrasting patterns of leaf element composition and range overlap. Those on nonultramafic substrates were largely sympatric but had distinct leaf element compositions. By contrast, species on ultramafic substrates showed similar leaf element composition, but occurred in many cases exclusively in allopatry. Further, earlier work showed that at least three out of these seven species use different molecules to bind Ni. Geissois qualifies as a cryptic adaptive radiation, and may be the first such example in a lineage of tropical forest trees. Variation in biochemical strategies for coping with both typical and adverse soil conditions may help to explain the diversification and coexistence of tropical forest trees on similar soil types.

  3. Multidimensional remote sensing based mapping of tropical forests and their dynamics

    NARCIS (Netherlands)

    Dutrieux, L.P.

    2016-01-01

    Tropical forests concentrate a large part of the terrestrial biodiversity, provide important resources, and deliver many ecosystem services such as climate regulation, carbon sequestration, and hence climate change mitigation. While in the current context of anthropogenic pressure these forests are

  4. Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model

    Science.gov (United States)

    De Weirdt, M.; Verbeeck, H.; Maignan, F.; Peylin, P.; Poulter, B.; Bonal, D.; Ciais, P.; Steppe, K.

    2012-09-01

    The influence of seasonal phenology on canopy photosynthesis in tropical evergreen forests remains poorly understood, and its representation in global ecosystem models is highly simplified, typically with no seasonal variation of canopy leaf properties taken into account. Including seasonal variation in leaf age and photosynthetic capacity could improve the correspondence of global vegetation model outputs with the wet-dry season CO2 patterns measured at flux tower sites in these forests. We introduced a leaf litterfall dynamics scheme in the global terrestrial ecosystem model ORCHIDEE based on seasonal variations in net primary production (NPP), resulting in higher leaf turnover in periods of high productivity. The modifications in the leaf litterfall scheme induce seasonal variation in leaf age distribution and photosynthetic capacity. We evaluated the results of the modification against seasonal patterns of three long-term in-situ leaf litterfall datasets of evergreen tropical forests in Panama, French Guiana and Brazil. In addition, we evaluated the impact of the model improvements on simulated latent heat (LE) and gross primary productivity (GPP) fluxes for the flux tower sites Guyaflux (French Guiana) and Tapajós (km 67, Brazil). The results show that the introduced seasonal leaf litterfall corresponds well with field inventory leaf litter data and times with its seasonality. Although the simulated litterfall improved substantially by the model modifications, the impact on the modelled fluxes remained limited. The seasonal pattern of GPP improved clearly for the Guyaflux site, but no significant improvement was obtained for the Tapajós site. The seasonal pattern of the modelled latent heat fluxes was hardly changed and remained consistent with the observed fluxes. We conclude that we introduced a realistic and generic litterfall dynamics scheme, but that other processes need to be improved in the model to achieve better simulations of GPP seasonal patterns

  5. Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model

    Directory of Open Access Journals (Sweden)

    M. De Weirdt

    2012-09-01

    Full Text Available The influence of seasonal phenology on canopy photosynthesis in tropical evergreen forests remains poorly understood, and its representation in global ecosystem models is highly simplified, typically with no seasonal variation of canopy leaf properties taken into account. Including seasonal variation in leaf age and photosynthetic capacity could improve the correspondence of global vegetation model outputs with the wet–dry season CO2 patterns measured at flux tower sites in these forests. We introduced a leaf litterfall dynamics scheme in the global terrestrial ecosystem model ORCHIDEE based on seasonal variations in net primary production (NPP, resulting in higher leaf turnover in periods of high productivity. The modifications in the leaf litterfall scheme induce seasonal variation in leaf age distribution and photosynthetic capacity. We evaluated the results of the modification against seasonal patterns of three long-term in-situ leaf litterfall datasets of evergreen tropical forests in Panama, French Guiana and Brazil. In addition, we evaluated the impact of the model improvements on simulated latent heat (LE and gross primary productivity (GPP fluxes for the flux tower sites Guyaflux (French Guiana and Tapajós (km 67, Brazil. The results show that the introduced seasonal leaf litterfall corresponds well with field inventory leaf litter data and times with its seasonality. Although the simulated litterfall improved substantially by the model modifications, the impact on the modelled fluxes remained limited. The seasonal pattern of GPP improved clearly for the Guyaflux site, but no significant improvement was obtained for the Tapajós site. The seasonal pattern of the modelled latent heat fluxes was hardly changed and remained consistent with the observed fluxes. We conclude that we introduced a realistic and generic litterfall dynamics scheme, but that other processes need to be improved in the model to achieve better

  6. Temporal dynamics and leaf trait variability in Neotropical dry forests

    Science.gov (United States)

    Hesketh, Michael Sean

    This thesis explores the variability of leaf traits resulting from changes in season, ecosystem successional stage, and site characteristics. In chapter two, I present a review of the use of remote sensing analysis for the evaluation of Neotropical dry forests. Here, I stress the conclusion, drawn from studies on land cover characterization, biodiversity assessment, and evaluation of forest structural characteristics, that addressing temporal variability in spectral properties is an essential element in the monitoring of these ecosystems. Chapter three describes the effect of wet-dry seasonality on spectral classification of tree and liana species. Highly accurate classification (> 80%) was possible using data from either the wet or dry season. However, this accuracy decreased by a factor of ten when data from the wet season was classified using an algorithm trained on the dry, or vice versa. I also address the potential creation of a spectral taxonomy of species, but found that any clustering based on spectral properties resulted in markedly different arrangements in the wet and dry seasons. In chapter 4, I address the variation present in both physical and spectral leaf traits according to changes in forest successional stage at dry forest sites in Mexico and Costa Rica. I found significant differences in leaf traits between successional stages, but more strongly so in Costa Rica. This variability deceased the accuracy of spectral classification of tree species by a factor of four when classifying data using an algorithm trained on a different successional stage. Chapter 5 shows the influence of seasonality and succession on trait variability in Mexico. Differences in leaf traits between successional stages were found to be greater during the dry season, but were sufficient in both seasons to negatively influence spectral classification of tree species. Throughout this thesis, I show clear and unambiguous evidence of the variability of key physical and spectral

  7. Linking Above- and Belowground Dynamics in Tropical Urban Forests

    Science.gov (United States)

    Atkinson, E. E.; Marin-Spiotta, E.

    2013-12-01

    Secondary forests that emerge after a long history of agriculture can have altered plant community composition and relative abundances of different species. These forests can look and behave differently compared to pre-agricultural forests due changes in primary productivity, resource allocation, and phenology, which can significantly affect processes such as carbon accumulation and nutrient availability. Our research explores how alternative successional trajectories following intensive agricultural use affect linkages among the establishment of novel plant communities, soil nutrient availability and turnover, and soil microbial community composition and function. We hypothesize that different plant species composition due to differing land use legacies and successional trajectories would drive changes in soil microbial community structure and function, affecting soil C and N chemistry and turnover. We conducted this research in the subtropical dry forest life zone of St. Croix, U.S. Virgin Islands where island-wide abandonment of sugarcane resulted in a mosaic of sites in different stages of forest succession. We identified replicate sites with the following post-sugarcane trajectories: 1) natural forest regeneration, 2) low intensity pasture use, followed by reforestation with timber plantation, which are no longer being managed, 3) high intensity pasture use and recent natural forest regeneration, and 4) high intensity pasture use and current active grazing. During 2011-2013, we sampled soils seasonally (0-10 cm) and measured tree species composition. The successional trajectories showed distinct tree species composition. The first two trajectories yielded 40-year old mixed-species secondary forest, dominated by the dry forest tree species Melicoccus bijugatas, Guapira fragrans, Maniklara zapota, and Sideroxylon foetidissimum. The tree species Melicoccus bijugatas primarily drove differences between the first two trajectories (natural forest regeneration vs

  8. Phytoplankton dynamics of a tropical river: A dry and rainy season ...

    African Journals Online (AJOL)

    ... dynamics of a tropical river: A dry and rainy season comparison. ... Qualitative phytoplankton samples were collected by towing 55 ìm mesh plankton net while quantitative samples were obtained by sedimenting a known volume of water ...

  9. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    OpenAIRE

    Chazdon, Robin L; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Pedro H. S. Brancalion; Craven, Dylan; Jarcilene S Almeida-Cortez; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, i...

  10. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Directory of Open Access Journals (Sweden)

    Michael Palace

    Full Text Available Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar. This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs and calculated a series of parameters including entropy, Fast Fourier Transform (FFT, number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m. Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1. We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1. Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included

  11. Estimating Tropical Forest Structure Using a Terrestrial Lidar

    Science.gov (United States)

    Palace, Michael; Sullivan, Franklin B; Ducey, Mark; Herrick, Christina

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m). Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy

  12. Tropical forests are not flat: how mountains affect herbivore diversity.

    Science.gov (United States)

    Rodríguez-Castañeda, Genoveva; Dyer, Lee A; Brehm, Gunnar; Connahs, Heidi; Forkner, Rebecca E; Walla, Thomas R

    2010-11-01

    Ecologists debate whether tropical insect diversity is better explained by higher plant diversity or by host plant species specialization. However, plant-herbivore studies are primarily based in lowland rainforests (RF) thus excluding topographical effects on biodiversity. We examined turnover in Eois (Geometridae) communities across elevation by studying elevational transects in Costa Rica and Ecuador. We found four distinct Eois communities existing across the elevational gradients. Herbivore diversity was highest in montane forests (MF), whereas host plant diversity was highest in lowland RF. This was correlated with higher specialization and species richness of Eois/host plant species we found in MF. Based on these relationships, Neotropical Eois richness was estimated to range from 313 (only lowland RF considered) to 2034 (considering variation with elevation). We conclude that tropical herbivore diversity and diet breadth covary significantly with elevation and urge the inclusion of montane ecosystems in host specialization and arthropod diversity estimates. © 2010 Blackwell Publishing Ltd/CNRS.

  13. Relationships among net primary productivity, nutrients and climate in tropical rain forest: A pan-tropical analysis

    Science.gov (United States)

    Cleveland, Cory C.; Townsend, Alan R.; Taylor, Philip; Alvarez-Clare, Silvia; Bustamante, Mercedes M.C.; Chuyong, George; Dobrowski, Solomon Z.; Grierson, Pauline; Harms, Kyle E.; Houlton, Benjamin Z.; Marklein, Alison; Parton, William; Porder, Stephen; Reed, Sasha C.; Sierra, Carlos A.; Silver, Whendee L.; Tanner, Edmund V.J.; Wieder, William R.

    2011-01-01

    Tropical rain forests play a dominant role in global biosphere-atmosphere CO2 exchange. Although climate and nutrient availability regulate net primary production (NPP) and decomposition in all terrestrial ecosystems, the nature and extent of such controls in tropical forests remain poorly resolved. We conducted a meta-analysis of carbon-nutrient-climate relationships in 113 sites across the tropical forest biome. Our analyses showed that mean annual temperature was the strongest predictor of aboveground NPP (ANPP) across all tropical forests, but this relationship was driven by distinct temperature differences between upland and lowland forests. Within lowland forests (relationships were weak. However, foliar P, foliar nitrogen (N), litter decomposition rate (k), soil N and soil respiration were all directly related with total surface (0–10 cm) soil P concentrations. Our analysis provides some evidence that P availability regulates NPP and other ecosystem processes in lowland tropical forests, but more importantly, underscores the need for a series of large-scale nutrient manipulations – especially in lowland forests – to elucidate the most important nutrient interactions and controls.

  14. Landscape context mediates avian habitat choice in tropical forest restoration.

    Directory of Open Access Journals (Sweden)

    J Leighton Reid

    Full Text Available Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches, and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.

  15. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, J.B.; Cummings, D.L. (Oregon State Univ., Corvallis (United States)); Sanford, R.L. Jr. (Univ. of Denver, CO (United States)); Salcedo, I.H.; Sampaio, E.V.S.B. (Universidade Federal do Pernambuco, Recife (Brazil))

    1993-01-01

    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of deforestation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest ([open quotes]Caatinga[close quotes]) near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was [approx]74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (forests with no history of cultivation had significantly higher concentrations of C and P than second-growth forests. It would likely require a century or more of fallow for reaccumulation to occur. However, current fallow periods in this region are 15 yr or less. 38 refs., 2 figs., 7 tabs.

  16. Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective.

    Science.gov (United States)

    Morris, Rebecca J

    2010-11-27

    Huge areas of diverse tropical forest are lost or degraded every year with dramatic consequences for biodiversity. Deforestation and fragmentation, over-exploitation, invasive species and climate change are the main drivers of tropical forest biodiversity loss. Most studies investigating these threats have focused on changes in species richness or species diversity. However, if we are to understand the absolute and long-term effects of anthropogenic impacts on tropical forests, we should also consider the interactions between species, how those species are organized in networks, and the function that those species perform. I discuss our current knowledge of network structure and ecosystem functioning, highlighting empirical examples of their response to anthropogenic impacts. I consider the future prospects for tropical forest biodiversity, focusing on biodiversity and ecosystem functioning in secondary forest. Finally, I propose directions for future research to help us better understand the effects of anthropogenic impacts on tropical forest biodiversity.

  17. Averting biodiversity collapse in tropical forest protected areas.

    Science.gov (United States)

    Laurance, William F; Useche, D Carolina; Rendeiro, Julio; Kalka, Margareta; Bradshaw, Corey J A; Sloan, Sean P; Laurance, Susan G; Campbell, Mason; Abernethy, Kate; Alvarez, Patricia; Arroyo-Rodriguez, Victor; Ashton, Peter; Benítez-Malvido, Julieta; Blom, Allard; Bobo, Kadiri S; Cannon, Charles H; Cao, Min; Carroll, Richard; Chapman, Colin; Coates, Rosamond; Cords, Marina; Danielsen, Finn; De Dijn, Bart; Dinerstein, Eric; Donnelly, Maureen A; Edwards, David; Edwards, Felicity; Farwig, Nina; Fashing, Peter; Forget, Pierre-Michel; Foster, Mercedes; Gale, George; Harris, David; Harrison, Rhett; Hart, John; Karpanty, Sarah; Kress, W John; Krishnaswamy, Jagdish; Logsdon, Willis; Lovett, Jon; Magnusson, William; Maisels, Fiona; Marshall, Andrew R; McClearn, Deedra; Mudappa, Divya; Nielsen, Martin R; Pearson, Richard; Pitman, Nigel; van der Ploeg, Jan; Plumptre, Andrew; Poulsen, John; Quesada, Mauricio; Rainey, Hugo; Robinson, Douglas; Roetgers, Christiane; Rovero, Francesco; Scatena, Frederick; Schulze, Christian; Sheil, Douglas; Struhsaker, Thomas; Terborgh, John; Thomas, Duncan; Timm, Robert; Urbina-Cardona, J Nicolas; Vasudevan, Karthikeyan; Wright, S Joseph; Arias-G, Juan Carlos; Arroyo, Luzmila; Ashton, Mark; Auzel, Philippe; Babaasa, Dennis; Babweteera, Fred; Baker, Patrick; Banki, Olaf; Bass, Margot; Bila-Isia, Inogwabini; Blake, Stephen; Brockelman, Warren; Brokaw, Nicholas; Brühl, Carsten A; Bunyavejchewin, Sarayudh; Chao, Jung-Tai; Chave, Jerome; Chellam, Ravi; Clark, Connie J; Clavijo, José; Congdon, Robert; Corlett, Richard; Dattaraja, H S; Dave, Chittaranjan; Davies, Glyn; Beisiegel, Beatriz de Mello; da Silva, Rosa de Nazaré Paes; Di Fiore, Anthony; Diesmos, Arvin; Dirzo, Rodolfo; Doran-Sheehy, Diane; Eaton, Mitchell; Emmons, Louise; Estrada, Alejandro; Ewango, Corneille; Fedigan, Linda; Feer, François; Fruth, Barbara; Willis, Jacalyn Giacalone; Goodale, Uromi; Goodman, Steven; Guix, Juan C; Guthiga, Paul; Haber, William; Hamer, Keith; Herbinger, Ilka; Hill, Jane; Huang, Zhongliang; Sun, I Fang; Ickes, Kalan; Itoh, Akira; Ivanauskas, Natália; Jackes, Betsy; Janovec, John; Janzen, Daniel; Jiangming, Mo; Jin, Chen; Jones, Trevor; Justiniano, Hermes; Kalko, Elisabeth; Kasangaki, Aventino; Killeen, Timothy; King, Hen-biau; Klop, Erik; Knott, Cheryl; Koné, Inza; Kudavidanage, Enoka; Ribeiro, José Lahoz da Silva; Lattke, John; Laval, Richard; Lawton, Robert; Leal, Miguel; Leighton, Mark; Lentino, Miguel; Leonel, Cristiane; Lindsell, Jeremy; Ling-Ling, Lee; Linsenmair, K Eduard; Losos, Elizabeth; Lugo, Ariel; Lwanga, Jeremiah; Mack, Andrew L; Martins, Marlucia; McGraw, W Scott; McNab, Roan; Montag, Luciano; Thompson, Jo Myers; Nabe-Nielsen, Jacob; Nakagawa, Michiko; Nepal, Sanjay; Norconk, Marilyn; Novotny, Vojtech; O'Donnell, Sean; Opiang, Muse; Ouboter, Paul; Parker, Kenneth; Parthasarathy, N; Pisciotta, Kátia; Prawiradilaga, Dewi; Pringle, Catherine; Rajathurai, Subaraj; Reichard, Ulrich; Reinartz, Gay; Renton, Katherine; Reynolds, Glen; Reynolds, Vernon; Riley, Erin; Rödel, Mark-Oliver; Rothman, Jessica; Round, Philip; Sakai, Shoko; Sanaiotti, Tania; Savini, Tommaso; Schaab, Gertrud; Seidensticker, John; Siaka, Alhaji; Silman, Miles R; Smith, Thomas B; de Almeida, Samuel Soares; Sodhi, Navjot; Stanford, Craig; Stewart, Kristine; Stokes, Emma; Stoner, Kathryn E; Sukumar, Raman; Surbeck, Martin; Tobler, Mathias; Tscharntke, Teja; Turkalo, Andrea; Umapathy, Govindaswamy; van Weerd, Merlijn; Rivera, Jorge Vega; Venkataraman, Meena; Venn, Linda; Verea, Carlos; de Castilho, Carolina Volkmer; Waltert, Matthias; Wang, Benjamin; Watts, David; Weber, William; West, Paige; Whitacre, David; Whitney, Ken; Wilkie, David; Williams, Stephen; Wright, Debra D; Wright, Patricia; Xiankai, Lu; Yonzon, Pralad; Zamzani, Franky

    2012-09-13

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world’s major tropical regions. Our analysis reveals great variation in reserve ‘health’: about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.

  18. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  19. Network of Environmental Sensors in Tropical Rain Forests

    Science.gov (United States)

    von Randow, C.; Dos Santos, R. D.; Da Rocha, H.

    2010-12-01

    The interaction between the Earth’s atmosphere and the terrestrial biosphere plays a fundamental role in the climate system and in biogeochemical and hydrological cycles, through the exchange of energy and mass (for example, water and carbon), between the vegetation and the atmospheric boundary layer, and the main focus of many environmental studies is to quantify this exchange over several terrestrial biomes. Over natural surfaces like the tropical forests, factors like spatial variations in topography or in the vegetation cover can significantly affect the air flow and pose big challenges for the monitoring of the regional carbon budget of terrestrial biomes. It is hardly possible to understand the air flow and reduce the uncertainties of flux measurements in complex terrains like tropical forests without an approach that recognizes the complexity of the spatial variability of the environmental variables. With this motivation, a partnership involving Microsoft Research, Johns Hopkins University, University of São Paulo and Instituto Nacional de Pesquisas Espaciais (INPE, the Brazilian national institute for space research) has been developing research activities to test the use of prototypes of environmental sensors (geosensors) in the Atlantic coastal and in the Amazonian rain forests in Brazil, forming sensor networks with high spatial and temporal resolution, and to develop software tools for data quality control and integration. The main premise is that the geosensors should have relatively low cost, what enables the formation of monitoring networks with a large number of sensors spatially distributed. A pilot study deployed 200+ sensors over the Atlantic coastal forest in Sao Paulo state, Brazil. Here we present the results from this study, highlighting the current discussions on applications of this type of measurements in studies of biosphere-atmosphere interaction in the tropics. Envisioning a possible wide deployment of geosensors in Amazonia in the

  20. Soil moisture dynamics in an eastern Amazonian tropical forest

    Science.gov (United States)

    Bruno, Rogério D.; da Rocha, Humberto R.; de Freitas, Helber C.; Goulden, Michael L.; Miller, Scott D.

    2006-08-01

    We used frequency-domain reflectometry to make continuous, high-resolution measurements for 22 months of the soil moisture to a depth of 10 m in an Amazonian rain forest. We then used these data to determine how soil moisture varies on diel, seasonal and multi-year timescales, and to better understand the quantitative and mechanistic relationships between soil moisture and forest evapotranspiration. The mean annual precipitation at the site was over 1900 mm. The field capacity was approximately 0.53 m3 m-3 and was nearly uniform with soil depth. Soil moisture decreased at all levels during the dry season, with the minimum of 0.38 m3 m-3 at 3 m beneath the surface. The moisture in the upper 1 m showed a strong diel cycle with daytime depletion due to evapotranspiration. The moisture beneath 1 m declined during both day and night due to the combined effects of evapotranspiration, drainage and a nighttime upward movement of water. The depth of active water withdrawal changed markedly over the year. The upper 2 m of soil supplied 56% of the water used for evapotranspiration in the wet season and 28% of the water used in the dry season. The zone of active water withdrawal extended to a depth of at least 10 m. The day-to-day rates of moisture withdrawal from the upper 10 m of soil during rain-free periods agreed well with simultaneous measurements of whole-forest evapotranspiration made by the eddy covariance technique. The forest at the site was well adapted to the normal cycle of wet and dry seasons, and the dry season had only a small effect on the rates of land-atmosphere water vapour exchange.

  1. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    Science.gov (United States)

    Hosaka, T.; Yamada, T.; Okuda, T.

    2014-02-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests.

  2. Changing gears during succession: shifting functional strategies in young tropical secondary forests.

    Science.gov (United States)

    Craven, Dylan; Hall, Jefferson S; Berlyn, Graeme P; Ashton, Mark S; van Breugel, Michiel

    2015-09-01

    Adaptations to resource availability strongly shape patterns of community composition along successional gradients in environmental conditions. In the present study, we examined the extent to which variation in functional composition explains shifts in trait-based functional strategies in young tropical secondary forests during the most dynamic stage of succession (0-20 years). Functional composition of two size classes in 51 secondary forest plots was determined using community-weighted means of seven functional traits, which were intensively measured on 55 woody plant species (n = 875-1,761 individuals). Along the successional gradient in forest structure, there was a significant and consistent shift in functional strategies from resource acquisition to resource conservation. Leaf toughness and adult plant size increased significantly, while net photosynthetic capacity (A(mass)) decreased significantly during succession. Shifts in functional strategies within size classes for A(mass) and wood density also support the hypothesis that changes in functional composition are shaped by environmental conditions along successional gradients. In general, 'hard' functional traits, e.g., A(mass) and leaf toughness, linked to different facets of plant performance exhibited greater sensitivity to successional changes in forest structure than 'soft' traits, such as leaf mass area and leaf dry matter content. Our results also suggested that stochastic processes related to previous land-use history, dispersal limitation, and abiotic factors explained variation in functional composition beyond that attributed to deterministic shifts in functional strategies. Further data on seed dispersal vectors and distance and landscape configuration are needed to improve current mechanistic models of succession in tropical secondary forests.

  3. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    DEFF Research Database (Denmark)

    Batterman, Sarah A.; Hedin, Lars O.; Van Breugel, Michiel;

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO 2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N 2), but it is unclear whether this functional...... biomass accumulation in tropical forests. Over a 300-year chronosequence in Panama, N 2 -fixing tree species accumulated carbon up to nine times faster per individual than their non-fixing neighbours (greatest difference in youngest forests), and showed species-specific differences in the amount...... tree species across the entire forest age sequence. These findings show that symbiotic N 2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO 2. © 2013 Macmillan...

  4. Interannual variation in rainfall, drought stress and seedling mortality may mediate monodominance in tropical flooded forests.

    Science.gov (United States)

    Lopez, Omar R; Kursar, Thomas A

    2007-11-01

    Flood tolerance is commonly regarded as the main factor explaining low diversity and monodominance in tropical swamps. In this study we examined seedling mortality in relation to seasonality, i.e., flooding versus drought, of the dominant tree species (Prioria copaifera), and three associated species (Pterocarpus officinalis, Carapa guianensis and Pentaclethra macroloba), in seasonally flooded forests (SFF) in Darien, Panama. Seedling mortality differed among species, years and seasons. Prioria seedlings experienced the lowest overall mortality, and after 3 years many more Prioria seedlings remained alive than those of any of the associated species. In general, within species, larger seedlings had greater survival. Seed size, which can vary by close to 2 orders of magnitude in Prioria, had a confounding effect with that of topography. Large-seeded Prioria seedlings experienced 1.5 times greater mortality than small-seeded seedlings, as large-seeded Prioria seedlings were more likely to be located in depressions. This finding suggests that seed size, plant size and topography are important in understanding SFF regeneration. For all species, seedling mortality was consistently greater during the dry season than during flooding. For Prioria, dry season seedling mortality was correlated with drought stress, that is, high mortality during the long El Niño dry season of 1998 and the normal dry season of 2000, but very low dry season mortality during the mild dry season of 1999. Prioria's ability to dominate in seasonally flooded forest of Central America is partly explained by its low drought-related mortality in comparison to associated species.

  5. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2015-07-01

    The elevation of altitudinal treelines is generally believed to occur where low mean temperatures during the growing season limit growth and prevent trees from establishing at higher elevations. Accordingly, treelines should move upslope with increasing global temperatures. Contrary to this prediction, tropical treelines have remained stable over the past several decades despite increasing mean temperatures. The observed stability of tropical treelines, coupled with the drastically different temperature profiles between temperate and tropical treelines, suggests that using mean measures of temperature to predict tropical treeline movements during climate change may be overly simplistic. We hypothesize that frost events at tropical treelines may slow climate driven treeline movement by preventing tree recruitment beyond the established forest canopy. To assess this hypothesis, we measured freezing resistance of four canopy-forming treeline species (Weinmannia fagaroides, Polylepis pauta, Clethra cuneata, and Gynoxys nitida) at two life stages (juvenile and adult) and during two seasons (warm-wet and cold-dry). Freezing resistances were then compared to microclimatic data to determine if freezing events in the grassland matrix above treeline are too harsh for these forest species. Freezing resistance varied among species and life stages from -5.7 degrees C for juveniles of P. pauta to -11.1 degrees C for juveniles of W. fagaroides. Over a four-year period, the lowest temperatures recorded at 10 cm above ground level in the grasslands above treeline and at treeline itself were -8.9 degrees C and -6.8 degrees C, respectively. Juveniles maintained freezing resistances similar to adults during the coldest parts of the year and ontogenetic differences in freezing resistance were only present during the warm season when temperatures did not represent a significant threat to active plant tissue. These findings support the hypothesis that rare extreme freezing events at and

  6. The domestic benefits of tropical forests: a critical review.

    Science.gov (United States)

    Chomitz, K M; Kumari, K

    1998-02-01

    This review focuses on forests in the humid tropics and on two of their potentially most important benefits. These include hydrological benefits, such as erosion control and regulation of stream flows, and non-timber forest products, such as rubber, rattan, fruits, and nuts. The first benefit is motivational. Host countries capture only a small proportion of the global benefits, which stem from biodiversity conservation. Demonstration of palpable local benefits could help to build support for biodiversity-oriented projects. The second benefit is the magnitude of domestic benefits that could influence project financing. Sufficiently large net domestic benefits could justify financing of a project on narrow economic grounds, with biodiversity conservation as a by-product. Overall, it is noted that the quantifiable benefits of forest preservation in providing hydrological services and non-timber forest products are highly variable. These classes of domestic benefits may in general be smaller than popularly supposed. In view of this, the need for financing conservation from the Global Environmental Facility or other global sources is emphasized rather than placing the burden on domestic resources.

  7. Emerging Evidence on the Effectiveness of Tropical Forest Conservation.

    Science.gov (United States)

    Börner, Jan; Baylis, Kathy; Corbera, Esteve; Ezzine-de-Blas, Driss; Ferraro, Paul J; Honey-Rosés, Jordi; Lapeyre, Renaud; Persson, U Martin; Wunder, Sven

    2016-01-01

    The PLOS ONE Collection "Measuring forest conservation effectiveness" brings together a series of studies that evaluate the effectiveness of tropical forest conservation policies and programs with the goal of measuring conservation success and associated co-benefits. This overview piece describes the geographic and methodological scope of these studies, as well as the policy instruments covered in the Collection as of June 2016. Focusing on forest cover change, we systematically compare the conservation effects estimated by the studies and discuss them in the light of previous findings in the literature. Nine studies estimated that annual conservation impacts on forest cover were below one percent, with two exceptions in Mexico and Indonesia. Differences in effect sizes are not only driven by the choice of conservation measures. One key lesson from the studies is the need to move beyond the current scientific focus of estimating average effects of undifferentiated conservation programs. The specific elements of the program design and the implementation context are equally important factors for understanding the effectiveness of conservation programs. Particularly critical will be a better understanding of the causal mechanisms through which conservation programs have impacts. To achieve this understanding we need advances in both theory and methods.

  8. Environmental control of natural gap size distribution in tropical forests

    Science.gov (United States)

    Goulamoussène, Youven; Bedeau, Caroline; Descroix, Laurent; Linguet, Laurent; Hérault, Bruno

    2017-01-01

    Natural disturbances are the dominant form of forest regeneration and dynamics in unmanaged tropical forests. Monitoring the size distribution of treefall gaps is important to better understand and predict the carbon budget in response to land use and other global changes. In this study, we model the size frequency distribution of natural canopy gaps with a discrete power law distribution. We use a Bayesian framework to introduce and test, using Monte Carlo Markov chain and Kuo-Mallick algorithms, the effect of local physical environment on gap size distribution. We apply our methodological framework to an original light detecting and ranging dataset in which natural forest gaps were delineated over 30 000 ha of unmanaged forest. We highlight strong links between gap size distribution and environment, primarily hydrological conditions and topography, with large gaps being more frequent on floodplains and in wind-exposed areas. In the future, we plan to apply our methodological framework on a larger scale using satellite data. Additionally, although gap size distribution variation is clearly under environmental control, variation in gap size distribution in time should be tested against climate variability.

  9. Operational Application of Envisat ASAR in Tropical Production Forest

    Science.gov (United States)

    Raimadoya, M.; Trisasongko, B.

    2003-04-01

    A joint research between European Space Agency (ESA) and Bogor Agricultural University (IPB), Indonesia, has been approved under Envisat AO (AO-ID 869). The research is intended to study the operational application of Advanced Synthetic-Aperture Radar (ASAR) for production forest management in Indonesia. Two test sites in forest plantation area of PT Riau Andalan Pulp and Paper (Riaupulp) in Riau Province, Central Sumatera, Indonesia, have been selected recently for the implementation of this joint research. This paper briefs the recent progress of this two-year research (2002-2004) activity. The main objective is to explore the potential of ASAR image analysis application, including POLINSAR, for better and more efficient operational management of tropical plantation forest and its environment. Several interesting operational applications have been identified for the test sites. First application is vegetative cover classification of Acacias, mixed hardwoods, shrubs, oil palms and bare lands. The second is biomass-related application, which study Envisat data on biomass monitoring related to forest plantation. The third is environmental study particularly for site degradation, including issues on monitoring of water bodies and burn site.

  10. Mapping Successional Stages in a Wet Tropical Forest Using Landsat ETM+ and Forest Inventory Data

    Science.gov (United States)

    Goncalves, Fabio G.; Yatskov, Mikhail; dos Santos, Joao Roberto; Treuhaft, Robert N.; Law, Beverly E.

    2010-01-01

    In this study, we test whether an existing classification technique based on the integration of Landsat ETM+ and forest inventory data enables detailed characterization of successional stages in a wet tropical forest site. The specific objectives were: (1) to map forest age classes across the La Selva Biological Station in Costa Rica; and (2) to quantify uncertainties in the proposed approach in relation to field data and existing vegetation maps. Although significant relationships between vegetation height entropy (a surrogate for forest age) and ETM+ data were detected, the classification scheme tested in this study was not suitable for characterizing spatial variation in age at La Selva, as evidenced by the error matrix and the low Kappa coefficient (12.9%). Factors affecting the performance of the classification at this particular study site include the smooth transition in vegetation structure between intermediate and advanced successional stages, and the low sensitivity of NDVI to variations in vertical structure at high biomass levels.

  11. Mapping Successional Stages in a Wet Tropical Forest Using Landsat ETM+ and Forest Inventory Data

    Science.gov (United States)

    Goncalves, Fabio G.; Yatskov, Mikhail; dos Santos, Joao Roberto; Treuhaft, Robert N.; Law, Beverly E.

    2010-01-01

    In this study, we test whether an existing classification technique based on the integration of Landsat ETM+ and forest inventory data enables detailed characterization of successional stages in a wet tropical forest site. The specific objectives were: (1) to map forest age classes across the La Selva Biological Station in Costa Rica; and (2) to quantify uncertainties in the proposed approach in relation to field data and existing vegetation maps. Although significant relationships between vegetation height entropy (a surrogate for forest age) and ETM+ data were detected, the classification scheme tested in this study was not suitable for characterizing spatial variation in age at La Selva, as evidenced by the error matrix and the low Kappa coefficient (12.9%). Factors affecting the performance of the classification at this particular study site include the smooth transition in vegetation structure between intermediate and advanced successional stages, and the low sensitivity of NDVI to variations in vertical structure at high biomass levels.

  12. Endemic and exotic tropical forests of Réunion Island observed by airborne lidar

    Science.gov (United States)

    Shang, Xiaoxia; Chazette, Patrick; Totems, Julien; Dieudonné, Elsa; Hamonou, Eric; Duflot, Valentin; Strasberg, Dominique; Flores, Olivier; Fournel, Jacques; Tulet, Pierre

    2015-04-01

    Tropical forests are vital ecosystems widely threatened across the globe and yet remain the most difficult forest type to document. They are strongly perturbed by anthropogenic activities, which lead to coexistence of endemic and exotic tree species. We present an experiment performed over Réunion Island in May 2014, on sites ranging from coastal to rain forest, including tropical montane cloud forest as found on the Bélouve plateau. Réunion Island is home to the last remnants of primary tropical forest in the Mascarene archipelago, and still shelters significant biodiversity. Three key ecological parameters have been extracted from the lidar measurements: the canopy height (CH), the forest leaf area index (LAI) and the apparent foliage profile. The mean values of estimated LAI are between ~5 and 8 m2/m2 and the mean CH values are ~15 m for both tropical montane cloud and rain forests. Good agreement is found between Lidar- and MODIS-derived LAI for moderate LAI, but the LAI retrieved from lidar is larger than MODIS on rain forest sites (~8 against ~6 m2/m2 from MODIS). Regarding the characterization of tropical biomes, we show that the rain and montane tropical forests can be well distinguished from the planted forests by the use of the three ecological parameters retrieved, as the endemic and exotic forests can also be well distinguished.

  13. Regeneration in natural and logged tropical rain forest : modelling seed dispersal and regeneration

    NARCIS (Netherlands)

    Ulft, Lambertus Henricus van

    2004-01-01

    Regeneration and disturbance are thought to play key roles in the maintenance of the high tree species diversity in tropical rain forests. Nevertheless, the earliest stages in the regeneration of tropical rain forest trees, from seed production to established seedlings, have received little attenti

  14. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    NARCIS (Netherlands)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; Stahl, Clément; Anderson, Liana O.; Baker, Timothy R.; Becker, Gabriel Sebastian; Beeckman, Hans; Boanerges Souza, Danilo; Botosso, Paulo Cesar; Bowman, David M.J.S.; Bräuning, Achim; Brede, Benjamin; Brown, Foster Irving; Camarero, Jesus Julio; Camargo, Plínio Barbosa; Cardoso, Fernanda C.G.; Carvalho, Fabrício Alvim; Castro, Wendeson; Chagas, Rubens Koloski; Chave, Jérome; Chidumayo, Emmanuel N.; Clark, Deborah A.; Costa, Flavia Regina Capellotto; Couralet, Camille; Silva Mauricio, Da Paulo Henrique; Dalitz, Helmut; Castro, De Vinicius Resende; Freitas Milani, De Jaçanan Eloisa; Oliveira, De Edilson Consuelo; Souza Arruda, De Luciano; Devineau, Jean-Louis; Drew, David M.; Dünisch, Oliver; Durigan, Giselda; Elifuraha, Elisha; Fedele, Marcio; Ferreira Fedele, Ligia; Figueiredo Filho, Afonso; Finger, César Augusto Guimarães; Franco, Augusto César; Freitas Júnior, João Lima; Galvão, Franklin; Gebrekirstos, Aster; Gliniars, Robert; Lima De Alencastro Graça, Paulo Maurício; Griffiths, Anthony D.; Grogan, James; Guan, Kaiyu; Homeier, Jürgen; Kanieski, Maria Raquel; Kho, Lip Khoon; Koenig, Jennifer; Kohler, Sintia Valerio; Krepkowski, Julia; Lemos-filho, José Pires; Lieberman, Diana; Lieberman, Milton Eugene; Lisi, Claudio Sergio; Longhi Santos, Tomaz; López Ayala, José Luis; Maeda, Eduardo Eijji; Malhi, Yadvinder; Maria, Vivian R.B.; Marques, Marcia C.M.; Marques, Renato; Maza Chamba, Hector; Mbwambo, Lawrence; Melgaço, Karina Liana Lisboa; Mendivelso, Hooz Angela; Murphy, Brett P.; O'Brien, Joseph J.; Oberbauer, Steven F.; Okada, Naoki; Pélissier, Raphaël; Prior, Lynda D.; Roig, Fidel Alejandro; Ross, Michael; Rossatto, Davi Rodrigo; Rossi, Vivien; Rowland, Lucy; Rutishauser, Ervan; Santana, Hellen; Schulze, Mark; Selhorst, Diogo; Silva, Williamar Rodrigues; Silveira, Marcos; Spannl, Susanne; Swaine, Michael D.; Toledo, José Julio; Toledo, Marcos Miranda; Toledo, Marisol; Toma, Takeshi; Tomazello Filho, Mario; Valdez Hernández, Juan Ignacio; Verbesselt, Jan; Vieira, Simone Aparecida; Vincent, Grégoire; Volkmer De Castilho, Carolina; Volland, Franziska; Worbes, Martin; Zanon, Magda Lea Bolzan; Aragão, Luiz E.O.C.

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 incl

  15. Damage-controlled logging in managed tropical rain forest in Suriname.

    NARCIS (Netherlands)

    Hendrison, J.

    1990-01-01

    Concern about worldwide deforestation and exploitation of the tropical rain forests has led to friction between national governments, wood industries and timber trade on the one hand, and scientists and environmental organizations on the other. One way to safeguard the tropical rain forests is to av

  16. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    NARCIS (Netherlands)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; Stahl, Clément; Anderson, Liana O.; Baker, Timothy R.; Becker, Gabriel Sebastian; Beeckman, Hans; Boanerges Souza, Danilo; Botosso, Paulo Cesar; Bowman, David M.J.S.; Bräuning, Achim; Brede, Benjamin; Brown, Foster Irving; Camarero, Jesus Julio; Camargo, Plínio Barbosa; Cardoso, Fernanda C.G.; Carvalho, Fabrício Alvim; Castro, Wendeson; Chagas, Rubens Koloski; Chave, Jérome; Chidumayo, Emmanuel N.; Clark, Deborah A.; Costa, Flavia Regina Capellotto; Couralet, Camille; Silva Mauricio, Da Paulo Henrique; Dalitz, Helmut; Castro, De Vinicius Resende; Freitas Milani, De Jaçanan Eloisa; Oliveira, De Edilson Consuelo; Souza Arruda, De Luciano; Devineau, Jean-Louis; Drew, David M.; Dünisch, Oliver; Durigan, Giselda; Elifuraha, Elisha; Fedele, Marcio; Ferreira Fedele, Ligia; Figueiredo Filho, Afonso; Finger, César Augusto Guimarães; Franco, Augusto César; Freitas Júnior, João Lima; Galvão, Franklin; Gebrekirstos, Aster; Gliniars, Robert; Lima De Alencastro Graça, Paulo Maurício; Griffiths, Anthony D.; Grogan, James; Guan, Kaiyu; Homeier, Jürgen; Kanieski, Maria Raquel; Kho, Lip Khoon; Koenig, Jennifer; Kohler, Sintia Valerio; Krepkowski, Julia; Lemos-filho, José Pires; Lieberman, Diana; Lieberman, Milton Eugene; Lisi, Claudio Sergio; Longhi Santos, Tomaz; López Ayala, José Luis; Maeda, Eduardo Eijji; Malhi, Yadvinder; Maria, Vivian R.B.; Marques, Marcia C.M.; Marques, Renato; Maza Chamba, Hector; Mbwambo, Lawrence; Melgaço, Karina Liana Lisboa; Mendivelso, Hooz Angela; Murphy, Brett P.; O'Brien, Joseph J.; Oberbauer, Steven F.; Okada, Naoki; Pélissier, Raphaël; Prior, Lynda D.; Roig, Fidel Alejandro; Ross, Michael; Rossatto, Davi Rodrigo; Rossi, Vivien; Rowland, Lucy; Rutishauser, Ervan; Santana, Hellen; Schulze, Mark; Selhorst, Diogo; Silva, Williamar Rodrigues; Silveira, Marcos; Spannl, Susanne; Swaine, Michael D.; Toledo, José Julio; Toledo, Marcos Miranda; Toledo, Marisol; Toma, Takeshi; Tomazello Filho, Mario; Valdez Hernández, Juan Ignacio; Verbesselt, Jan; Vieira, Simone Aparecida; Vincent, Grégoire; Volkmer De Castilho, Carolina; Volland, Franziska; Worbes, Martin; Zanon, Magda Lea Bolzan; Aragão, Luiz E.O.C.

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68

  17. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Science.gov (United States)

    Lori D. Bothwell; Paul C. Selmants; Christian P. Giardina; Creighton M. Litton

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivityof leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical...

  18. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms.

    NARCIS (Netherlands)

    Schnitzer, S.A.; Bongers, F.

    2011-01-01

    Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, i

  19. Welfare implications of tropical forest conservation: the case of Ruteng Park

    Science.gov (United States)

    David Butry; Subhrendu Pattanayak

    2000-01-01

    In 1993, the Indonesian government established the Ruteng Nature Recreation Park in western Flores. Subsequently, the government banned all timber extraction in and around the park's sub-tropical forest to promote biodiversity and watershed protection. This study quantitatively examines the role that tropical forest conservation has on the development of the local...

  20. Securing tropical forest carbon: the contribution of protected areas to REDD

    DEFF Research Database (Denmark)

    Scharlemann, J.P.W.; Kapos, V.; Campbell, A.;

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate tha...

  1. Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests

    NARCIS (Netherlands)

    Wagner, Fabien H.; Hérault, Bruno; Bonal, Damien; Stahl, Clément; Anderson, Liana O.; Baker, Timothy R.; Becker, Gabriel Sebastian; Beeckman, Hans; Boanerges Souza, Danilo; Botosso, Paulo Cesar; Bowman, David M.J.S.; Bräuning, Achim; Brede, Benjamin; Brown, Foster Irving; Camarero, Jesus Julio; Camargo, Plínio Barbosa; Cardoso, Fernanda C.G.; Carvalho, Fabrício Alvim; Castro, Wendeson; Chagas, Rubens Koloski; Chave, Jérome; Chidumayo, Emmanuel N.; Clark, Deborah A.; Costa, Flavia Regina Capellotto; Couralet, Camille; Silva Mauricio, Da Paulo Henrique; Dalitz, Helmut; Castro, De Vinicius Resende; Freitas Milani, De Jaçanan Eloisa; Oliveira, De Edilson Consuelo; Souza Arruda, De Luciano; Devineau, Jean-Louis; Drew, David M.; Dünisch, Oliver; Durigan, Giselda; Elifuraha, Elisha; Fedele, Marcio; Ferreira Fedele, Ligia; Figueiredo Filho, Afonso; Finger, César Augusto Guimarães; Franco, Augusto César; Freitas Júnior, João Lima; Galvão, Franklin; Gebrekirstos, Aster; Gliniars, Robert; Lima De Alencastro Graça, Paulo Maurício; Griffiths, Anthony D.; Grogan, James; Guan, Kaiyu; Homeier, Jürgen; Kanieski, Maria Raquel; Kho, Lip Khoon; Koenig, Jennifer; Kohler, Sintia Valerio; Krepkowski, Julia; Lemos-filho, José Pires; Lieberman, Diana; Lieberman, Milton Eugene; Lisi, Claudio Sergio; Longhi Santos, Tomaz; López Ayala, José Luis; Maeda, Eduardo Eijji; Malhi, Yadvinder; Maria, Vivian R.B.; Marques, Marcia C.M.; Marques, Renato; Maza Chamba, Hector; Mbwambo, Lawrence; Melgaço, Karina Liana Lisboa; Mendivelso, Hooz Angela; Murphy, Brett P.; O'Brien, Joseph J.; Oberbauer, Steven F.; Okada, Naoki; Pélissier, Raphaël; Prior, Lynda D.; Roig, Fidel Alejandro; Ross, Michael; Rossatto, Davi Rodrigo; Rossi, Vivien; Rowland, Lucy; Rutishauser, Ervan; Santana, Hellen; Schulze, Mark; Selhorst, Diogo; Silva, Williamar Rodrigues; Silveira, Marcos; Spannl, Susanne; Swaine, Michael D.; Toledo, José Julio; Toledo, Marcos Miranda; Toledo, Marisol; Toma, Takeshi; Tomazello Filho, Mario; Valdez Hernández, Juan Ignacio; Verbesselt, Jan; Vieira, Simone Aparecida; Vincent, Grégoire; Volkmer De Castilho, Carolina; Volland, Franziska; Worbes, Martin; Zanon, Magda Lea Bolzan; Aragão, Luiz E.O.C.

    2016-01-01

    The seasonal climate drivers of the carbon cycle in tropical forests remain poorly known, although these forests account for more carbon assimilation and storage than any other terrestrial ecosystem. Based on a unique combination of seasonal pan-tropical data sets from 89 experimental sites (68 incl

  2. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity

    NARCIS (Netherlands)

    Bongers, F.; Poorter, L.; Hawthorne, W.D.; Sheil, D.

    2009-01-01

    The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, sm

  3. Foliar and ecosystem respiration in an old-growth tropical rain forest

    Science.gov (United States)

    Molly A. Cavaleri; Steven F. Oberbauer; Michael G. Ryan

    2008-01-01

    Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI).A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (...

  4. Tropical rain forest conservation and the twin challenges of diversity and rarity.

    Science.gov (United States)

    Hubbell, Stephen P

    2013-09-01

    Data from a global network of large, permanent plots in lowland tropical forests demonstrate (1) that the phenomenon of tropical tree rarity is real and (2) that almost all the species diversity in such forests is due to rare species. Theoretical and empirically based reasoning suggests that many of these rare species are not as geographically widespread as previously thought. These findings suggest that successful strategies for conserving global tree diversity in lowland tropical forests must pay much more attention to the biogeography of rarity, as well as to the impact of climate change on the distribution and abundance of rare species. Because the biogeography of many tropical tree species is poorly known, a high priority should be given to documenting the distribution and abundance of rare tropical tree species, particularly in Amazonia, the largest remaining tropical forested region in the world.

  5. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees

    NARCIS (Netherlands)

    Vlam, M.; Baker, P.J.; Bunyavejchewin, S.; Zuidema, P.A.

    2014-01-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the

  6. Time-dependent effects of climate and drought on tree growth in a Neotropical dry forest: Short-term tolerance vs. long-term sensitivity

    NARCIS (Netherlands)

    Mendivelso, H.A.; Camarero, J.J.; Gutierrez, E.; Zuidema, P.

    2014-01-01

    We analyzed the effects of climate and drought on radial growth using dendrochronology in seven deciduous tree species coexisting in a Bolivian tropical dry forest subjected to seasonal drought. Precipitation, temperature and a multiscalar drought index were related to tree-ring width data at differ

  7. Evidence of old carbon used to grow new fine roots in a tropical forest.

    Science.gov (United States)

    Vargas, Rodrigo; Trumbore, Susan E; Allen, Michael F

    2009-01-01

    In this study, we explore how a hurricane disturbance influenced carbon allocation for the production of new fine roots. Before and after a hurricane, we measured the age of carbon (time since fixation from the atmosphere) in fine root structural tissues using natural abundance radiocarbon (14C) measured by accelerator mass spectrometry. Roots were sampled from five seasonally dry tropical forests ranging in age from 6 yr to a mature forest. Structural carbon in combined live + dead roots picked from soil cores sampled 1 month before the hurricane had mean ages ranging from 4 to 11 yr, whereas live roots alone had ages of 1-2 yr. Structural carbon in new live fine roots produced over a period lasting from 3 wk before the hurricane to 2 months after the event had mean ages of between 2 and 10 yr. Contrary to expectations, our results showed that plants allocate long-lived storage carbon pools to the production of new fine roots after canopy defoliation and root mortality. The age of the carbon allocated for new roots increased with forest age and forest above-ground biomass, suggesting an adaptation of plants to survive and recover from severe disturbances.

  8. Irregular droughts trigger mass flowering in aseasonal tropical forests in asia.

    Science.gov (United States)

    Sakai, Shoko; Harrison, Rhett D; Momose, Kuniyasu; Kuraji, Koichiro; Nagamasu, Hidetoshi; Yasunari, Tetsuzo; Chong, Lucy; Nakashizuka, Tohru

    2006-08-01

    General flowering is a community-wide masting phenomenon, which is thus far documented only in aseasonal tropical forests in Asia. Although the canopy and emergent layers of forests in this region are dominated by species of a single family, Dipterocarpaceae, general flowering involves various plant groups. Studying proximate factors and estimating the flowering patterns of the past and future may aid our understanding of the ecological significance and evolutionary factors behind this phenomenon. Here we show that this phenomenon is most likely triggered by irregular droughts based on 10 years of observations. In the aseasonal forests of SE Asia, droughts tend to occur during transition periods from La Niña to El Niño, which results in an irregular 6-7-yr cycle involving a dry period with several droughts and a wet period without droughts. The magnitude of a flowering event also depends on the timing of droughts associated with the El Niño southern oscillation (ENSO) cycle, with the largest events occurring after an interval of several years with no flowering. Because most plant species can only reproduce successfully during large flowering events, changes in the ENSO cycle resulting from global warming, may have serious ramifications for forest regeneration in this region.

  9. Conservation of tree seeds from tropical dry-lands

    NARCIS (Netherlands)

    Neya, O.

    2006-01-01

    The tropical trees, Azadirachta indica (neem), Lannea microcarpa, Sclerocarya birrea and Khaya senegalensis, are important multipurpose species. Unfortunately, difficult seed storage behaviour limits the utilization of these species in reforestation programs and agroforestry systems. This thesis

  10. Conservation of tree seeds from tropical dry-lands

    NARCIS (Netherlands)

    Neya, O.

    2006-01-01

    The tropical trees, Azadirachta indica (neem), Lannea microcarpa, Sclerocarya birrea and Khaya senegalensis, are important multipurpose species. Unfortunately, difficult seed storage behaviour limits the utilization of these species in reforestation programs and agroforestry systems. This thesis pre

  11. Distinct carbon sources indicate strong differentiation between tropical forest and farmland bird communities.

    Science.gov (United States)

    Ferger, Stefan W; Böhning-Gaese, Katrin; Wilcke, Wolfgang; Oelmann, Yvonne; Schleuning, Matthias

    2013-02-01

    The conversion of forest into farmland has resulted in mosaic landscapes in many parts of the tropics. From a conservation perspective, it is important to know whether tropical farmlands can buffer species loss caused by deforestation and how different functional groups of birds respond to land-use intensification. To test the degree of differentiation between farmland and forest bird communities across feeding guilds, we analyzed stable C and N isotopes in blood and claws of 101 bird species comprising four feeding guilds along a tropical forest-farmland gradient in Kenya. We additionally assessed the importance of farmland insectivores for pest control in C(4) crops by using allometric relationships, C stable isotope ratios and estimates of bird species abundance. Species composition differed strongly between forest and farmland bird communities. Across seasons, forest birds primarily relied on C(3) carbon sources, whereas many farmland birds also assimilated C(4) carbon. While C sources of frugivores and omnivores did not differ between forest and farmland communities, insectivores used more C(4) carbon in the farmland than in the forest. Granivores assimilated more C(4) carbon than all other guilds in the farmland. We estimated that insectivorous farmland birds consumed at least 1,000 kg pest invertebrates km(-2) year(-1). We conclude that tropical forest and farmland understory bird communities are strongly separated and that tropical farmlands cannot compensate forest loss for insectivorous forest understory birds. In tropical farmlands, insectivorous bird species provide a quantitatively important contribution to pest control.

  12. Modeling forest disturbance and recovery in secondary subtropical dry forests of Puerto Rico

    Science.gov (United States)

    Holm, J. A.; Shugart, H. H., Jr.; Van Bloem, S. J.

    2015-12-01

    Because of human pressures, the need to understand and predict the long-term dynamics of subtropical dry forests is urgent. Through modifications to the ZELIG vegetation demographic model, including the development of species- and site-specific parameters and internal modifications, the capability to predict forest change within the Guanica State Forest in Puerto Rico can now be accomplished. One objective was to test the capability of this new model (i.e. ZELIG-TROP) to predict successional patterns of secondary forests across a gradient of abandoned fields currently being reclaimed as forests. Model simulations found that abandoned fields that are on degraded lands have a delayed response to fully recover and reach a mature forest status during the simulated time period; 200 years. The forest recovery trends matched predictions published in other studies, such that attributes involving early resource acquisition (i.e. canopy height, canopy coverage, density) were the fastest to recover, but attributes used for structural development (i.e. biomass, basal area) were relatively slow in recovery. Biomass and basal area, two attributes that tend to increase during later successional stages, are significantly lower during the first 80-100 years of recovery compared to a mature forest, suggesting that the time scale of resilience in subtropical dry forests needs to be partially redefined. A second objective was to investigate the long and short-term effects of increasing hurricane disturbances on vegetation structure and dynamics, due to hurricanes playing an important role in maintaining dry forest structure in Puerto Rico. Hurricane disturbance simulations within ZELIG-TROP predicted that increasing hurricane intensity (i.e. up to 100% increase) did not lead to a large shift in long-term AGB or NPP. However, increased hurricane frequency did lead to a 5-40% decrease in AGB, and 32-50% increase in NPP, depending on the treatment. In addition, the modeling approach used

  13. Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China.

    Science.gov (United States)

    Li, Hongmei; Ma, Youxin; Liu, Wenjie; Liu, Wenjun

    2012-11-01

    Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10 cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH(4) (+)-N and NO(3) (-)-N. However, soil IN pools were dominated by NH(4) (+)-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH(4) (+)-N concentration and decreases NO(3) (-)-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH(4) (+)-N and NO(3) (-)-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH(4) (+)-N and NO(3) (-)-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH(4) (+)-N were measured at the upper slopes of all sites, but NO(3) (-)-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH(4) (+)-N and NO(3) (-)-N concentrations. Options for improved soil management in plantations are discussed.

  14. Germination of Tabebuia heterophylla seeds (Bignoniaceae) from a wet and dry forest of Puerto Rico

    OpenAIRE

    Cordero, Roberto A.; Molano-Flores, Brenda

    2015-01-01

    Seed germination response of the Puerto Rican wet and dry forest populations of Tabebuia heterophylla treo::s was tested using a gradient of osmotic potentials from O to -1.5 MPa. Morphological comparisons were also made from adult specimens. Dry forest tress showed smaller leaves, fiuits, and seeds, and greater specific leaf weigjrt. Dry forest fiuits produced smaller seeds than wá forest fiuits when similar small fiuits were compared. Germination percentage was strongly reduced as osmotic p...

  15. Seed dispersal limitations shift over time in tropical forest restoration.

    Science.gov (United States)

    Reid, J Leighton; Holl, Karen D; Zahawi, Rakan A

    2015-06-01

    Past studies have shown that tropical forest regeneration on degraded farmlands is initially limited by lack of seed dispersal, but few studies have tracked changes in abundance and composition of seed rain past the first few years after land abandonment. We measured seed rain for 12 months in 10 6-9-year-old restoration sites and five mature, reference forests in southern Costa Rica in order to learn (1) if seed rain limitation persists past the first few years of regeneration; (2) how restoration treatments influence seed community structure and composition; and (3) whether seed rain limitation is contingent on landscape context. Each restoration site contained three 0.25-ha treatment plots: (1) a naturally regenerating control, (2) tree islands, and (3) a mixed-species tree plantation. Sites spanned a deforestation gradient with 9-89% forest area within 500 m around the treatment plots. Contrary to previous studies, we found that tree seeds were abundant and ubiquitous across all treatment plots (585.1 ± 142.0 seeds · m(-2) · yr(-1) [mean ± SE]), indicating that lack of seed rain ceased to limit forest regeneration within the first decade of recovery. Pioneer trees and shrubs comprised the vast majority of seeds, but compositional differences between restoration sites and reference forests were driven by rarer, large-seeded species. Large, animal-dispersed tree seeds were more abundant in tree islands (4.6 ± 2.9 seeds · m(-2) · yr(-1)) and plantations (5.8 ± 3.0 seeds · m(-2) · yr(-1)) than control plots (0.2 ± 0.1 seeds · m(-2) · yr(-1)), contributing to greater tree species richness in actively restored plots. Planted tree species accounted for seeds. We found little evidence for landscape forest cover effects on seed rain, consistent with previous studies. We conclude that seed rain limitation shifted from an initial, complete lack of tree seeds to a specific limitation on large-seeded, mature forest species over the first decade. Although total

  16. A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping

    Science.gov (United States)

    Mascaro, Joseph; Asner, Gregory P.; Knapp, David E.; Kennedy-Bowdoin, Ty; Martin, Roberta E.; Anderson, Christopher; Higgins, Mark; Chadwick, K. Dana

    2014-01-01

    Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including—in the latter case—x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called “out-of-bag”), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha−1 when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation. PMID:24489686

  17. Estimating tropical forest structure using discrete return lidar data and a locally trained synthetic forest algorithm

    Science.gov (United States)

    Palace, M. W.; Sullivan, F. B.; Ducey, M.; Czarnecki, C.; Zanin Shimbo, J.; Mota e Silva, J.

    2012-12-01

    Forests are complex ecosystems with diverse species assemblages, crown structures, size class distributions, and historical disturbances. This complexity makes monitoring, understanding and forecasting carbon dynamics difficult. Still, this complexity is also central in carbon cycling of terrestrial vegetation. Lidar data often is used solely to associate plot level biomass measurements with canopy height models. There is much more that may be gleaned from examining the full profile from lidar data. Using discrete return airborne light detection and ranging (lidar) data collected in 2009 by the Tropical Ecology Assessment and Monitoring Network (TEAM), we compared synthetic vegetation profiles to lidar-derived relative vegetation profiles (RVPs) in La Selva, Costa Rica. To accomplish this, we developed RVPs to describe the vertical distrib