WorldWideScience

Sample records for dry tropical forest

  1. Tropical savannas and dry forests.

    Science.gov (United States)

    Pennington, R Toby; Lehmann, Caroline E R; Rowland, Lucy M

    2018-05-07

    In the tropics, research, conservation and public attention focus on rain forests, but this neglects that half of the global tropics have a seasonally dry climate. These regions are home to dry forests and savannas (Figures 1 and 2), and are the focus of this Primer. The attention given to rain forests is understandable. Their high species diversity, sheer stature and luxuriance thrill biologists today as much as they did the first explorers in the Age of Discovery. Although dry forest and savanna may make less of a first impression, they support a fascinating diversity of plant strategies to cope with stress and disturbance including fire, drought and herbivory. Savannas played a fundamental role in human evolution, and across Africa and India they support iconic megafauna. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Abiotic factors influencing tropical dry forests regeneration

    Directory of Open Access Journals (Sweden)

    Ceccon Eliane

    2006-01-01

    Full Text Available Tropical dry forests represent nearly half the tropical forests in the world and are the ecosystems registering the greatest deterioration from the anthropogenic exploitation of the land. This paper presents a review on the dynamics of tropical dry forests regeneration and the main abiotic factors influencing this regeneration, such as seasonal nature, soil fertility and humidity, and natural and anthropic disturbances. The main purpose is to clearly understand an important part of TDF succession dynamics.

  3. FLORULA URBAN FRAGMENT OF TROPICAL DRY FOREST

    Directory of Open Access Journals (Sweden)

    Willington Barranco-Pérez

    2016-01-01

    Full Text Available The aim of this study was to record the composition of plant species in an urban fragment of tropical dry forest of secondary regeneration (bs-T to generate information that can be used in the planning and management of green spaces in the city of Santa Marta. Transects of 2 x 50 m were established equivalent to 0.1 ha and all species were counted >1.0 cm DBH (Diameter at Breast Height: 1.3m. 100 species of angiosperms were recorded of which 47% have herbaceous habit. The number of species recorded in this study represents 39.6% of the species reported for the hills of Santa Marta and 3.8% for the dry forests of Colombia. It is suggested to isolate this type of secondary formations of any intervention and contemplate the reintroduction of individuals and conservation strategies.

  4. Forest structure in low diversity tropical forests: a study of Hawaiian wet and dry forests

    Science.gov (United States)

    R. Ostertag; F. Inman-Narahari; S. Cordell; C.P. Giardina; L. Sack

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai‘i Island. We compared the species...

  5. Tropical dry forest recovery : processes and causes of change

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.

    2009-01-01

    Seasonally dry areas are one of the preferred zones for human inhabitance in the tropics. Large forest areas are converted to other land uses and many are covered by secondary forests that grow naturally after cessation of disturbance. Surprisingly, secondary succession in these strongly seasonal

  6. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  7. Propagation of dry tropical forest trees in Mexico

    Science.gov (United States)

    Martha A. Cervantes Sanchez

    2002-01-01

    There is a distinct lack of technical information on the propagation of native tree species from the dry tropical forest ecosystem in Mexico. This ecosystem has come under heavy human pressures to obtain several products such as specialty woods for fuel, posts for fences and construction, forage, edible fruits, stakes for horticulture crops, and medicinal products. The...

  8. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  9. Deforestation trends of tropical dry forests in central Brazil

    Science.gov (United States)

    Bianchi, Carlos A.; Haig, Susan M.

    2013-01-01

    Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.

  10. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil

  11. Light Diffusion in the Tropical Dry Forest of Costa Rica

    Science.gov (United States)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  12. Pan tropical biomass equations for Mexico's dry forests

    Directory of Open Access Journals (Sweden)

    José Návar

    2014-12-01

    Full Text Available This study reports a set of robust regional M-tree allometric equations for Mexico's tropical dry forests and their application to a forest inventory dataset for the States of Durango and Sinaloa, Mexico. Calculated M data from 15 reported equations were fitted, applied and validated for regional and global models. Proposed theoretical models, empirically derived equations, as well as global and local reported equations were fitted and applied to calculated M-tree data using wood specific gravity, diameter at breast height, and top height as exogenous variables. Empirically-derived, computer-based equations assessed the M-tree evaluations slightly better than the theoretical, the global and the local models. However, the theoretical models projected compatible M-tree values and deserve further attention once wood specific gravity data are collected in the field. Using the best fit equation, mean M plot density values of 30, 41 and 35 Mg ha-1 were estimated from 57 plots (1,600 m² each, 217 plots (1,000 m² each and 166 plots (1,000 m² each in the tropical dry forests of the States of Durango, Tiniaquis and Vado Hondo (Sinaloa, respectively. The large sample size, the richness of the tested allometric models, the economic and ecological importance of this data-source, and the spatial coverage of these equations made this dataset uniquely useful for biomass, charcoal, and other bio-energy estimations, as well as for understanding the inherent heterogeneity of the stand-structure in dynamic tropical forest environments.

  13. Recovery of Biomass Following Shifting Cultivation in Dry Tropical Forests of the Yucatan

    OpenAIRE

    Read, L; Lawrence, Deborah; Foster, David Russell

    2003-01-01

    Land-use change in the tropics is creating secondary forest at an unprecedented rate. In the tropical Americas, mature dry tropical forest is rapidly being converted to secondary forest during the fallow period of shifting cultivation. This study addresses changes in forest biomass during forest recovery following shifting cultivation of maize (corn) in the Southern Yucatan Peninsular Region (SYPR), Mexico. We sampled stems .1 cm diameter at breast height at 36 study sites in t...

  14. Towards restoration of Hawaiian tropical dry forests: the Kaupulehu outplanting programme

    Science.gov (United States)

    Susan Cordell; Moana McClellan; Yvonne Yarber Carter; Lisa J. Hadway

    2008-01-01

    Hawaiian tropical dry forests contain diverse assemblages of woody canopy species, including many endemic and endangered species that warrant conservation attention before completely disappearing. Today, tropical dry forests in Hawaii are not viable ecosystems. Poor land use practices, fragmentation, non-native plant invasions, and inadequate native vegetation...

  15. Estimating forest carbon stocks in tropical dry forests of Zimbabwe ...

    African Journals Online (AJOL)

    Estimation and mapping of forest dendrometric characteristics such as carbon stocks using remote sensing techniques is fundamental for improved understanding of the role of forests in the carbon cycle and climate change. In this study, we tested whether and to what extent spectral transforms, i.e. vegetation indices ...

  16. Persistent Soil Seed Banks for Natural Rehabilitation of Dry Tropical Forests in Northern Ethiopia

    OpenAIRE

    Gebrehiwot, K.; Heyn, M.; Reubens, B.; Hermy, M.; Muys, B.

    2007-01-01

    Dry tropical forests are threatened world-wide by conversion to grazing land, secondary forest, savannah or arable land. In Ethiopia, natural dry forest cover has been decreasing at an alarming rate over the last decennia and has reached a critical level. Efforts like the rehabilitation of dry forests to curb this ecological degradation, need a stronger scientific basis than currently available. The aim of the present research was to test the hypothesis whether soil seed banks can contribute ...

  17. Modeling seasonal surface temperature variations in secondary tropical dry forests

    Science.gov (United States)

    Cao, Sen; Sanchez-Azofeifa, Arturo

    2017-10-01

    Secondary tropical dry forests (TDFs) provide important ecosystem services such as carbon sequestration, biodiversity conservation, and nutrient cycle regulation. However, their biogeophysical processes at the canopy-atmosphere interface remain unknown, limiting our understanding of how this endangered ecosystem influences, and responds to the ongoing global warming. To facilitate future development of conservation policies, this study characterized the seasonal land surface temperature (LST) behavior of three successional stages (early, intermediate, and late) of a TDF, at the Santa Rosa National Park (SRNP), Costa Rica. A total of 38 Landsat-8 Thermal Infrared Sensor (TIRS) data and the Surface Reflectance (SR) product were utilized to model LST time series from July 2013 to July 2016 using a radiative transfer equation (RTE) algorithm. We further related the LST time series to seven vegetation indices which reflect different properties of TDFs, and soil moisture data obtained from a Wireless Sensor Network (WSN). Results showed that the LST in the dry season was 15-20 K higher than in the wet season at SRNP. We found that the early successional stages were about 6-8 K warmer than the intermediate successional stages and were 9-10 K warmer than the late successional stages in the middle of the dry season; meanwhile, a minimum LST difference (0-1 K) was observed at the end of the wet season. Leaf phenology and canopy architecture explained most LST variations in both dry and wet seasons. However, our analysis revealed that it is precipitation that ultimately determines the LST variations through both biogeochemical (leaf phenology) and biogeophysical processes (evapotranspiration) of the plants. Results of this study could help physiological modeling studies in secondary TDFs.

  18. Forest composition modifies litter dynamics and decomposition in regenerating tropical dry forest.

    Science.gov (United States)

    Schilling, Erik M; Waring, Bonnie G; Schilling, Jonathan S; Powers, Jennifer S

    2016-09-01

    We investigated how forest composition, litter quality, and rainfall interact to affect leaf litter decomposition across three successional tropical dry forests in Costa Rica. We monitored litter stocks and bulk litter turnover in 18 plots that exhibit substantial variation in soil characteristics, tree community structure, fungal communities (including forests dominated by ecto- or arbuscular mycorrhizal host trees), and forest age. Simultaneously, we decomposed three standard litter substrates over a 6-month period spanning an unusually intense drought. Decay rates of standard substrates depended on the interaction between litter identity and forest type. Decomposition rates were correlated with tree and soil fungal community composition as well as soil fertility, but these relationships differed among litter types. In low fertility soils dominated by ectomycorrhizal oak trees, bulk litter turnover rates were low, regardless of soil moisture. By contrast, in higher fertility soils that supported mostly arbuscular mycorrhizal trees, bulk litter decay rates were strongly dependent on seasonal water availability. Both measures of decomposition increased with forest age, as did the frequency of termite-mediated wood decay. Taken together, our results demonstrate that soils and forest age exert strong control over decomposition dynamics in these tropical dry forests, either directly through effects on microclimate and nutrients, or indirectly by affecting tree and microbial community composition and traits, such as litter quality.

  19. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    OpenAIRE

    J. I. Nirmal Kumar,; Kanti Patel,; Rohit Bhoi Kumar

    2011-01-01

    Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (≥ 3.0 cm DBH); 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The fo...

  20. Emergence of nutrient limitation in tropical dry forests: hypotheses from simulation models

    Science.gov (United States)

    Medvigy, D.; Waring, B. G.; Xu, X.; Trierweiler, A.; Werden, L. K.; Wang, G.; Zhu, Q.; Powers, J. S.

    2017-12-01

    It is unclear to what extent tropical dry forest productivity may be limited by nutrients. Direct assessment of nutrient limitation through fertilization experiments has been rare, and paradigms pertaining to other ecosystems may not extend to tropical dry forests. For example, because dry tropical forests have a lower water supply than moist tropical forests, dry forests can have lower decomposition rates, higher soil carbon and nitrogen concentrations, and a more open nitrogen cycle than moist forests. We used a mechanistic, numerical model to generate hypotheses about nutrient limitation in tropical dry forests. The model dynamically couples ED2 (vegetation dynamics), MEND (biogeochemistry), and N-COM (plant-microbe competition for nutrients). Here, the MEND-component of the model has been extended to include nitrogen (N) and phosphorus (P) cycles. We focus on simulation of sixteen 25m x 25m plots in Costa Rica where a fertilization experiment has been underway since 2015. Baseline simulations are characterized by both nitrogen and phosphorus limitation of vegetation. Fertilization with N and P increased vegetation biomass, with N fertilization having a somewhat stronger effect. Nutrient limitation was also sensitive to climate and was more pronounced during drought periods. Overflow respiration was identified as a key process that mitigated nutrient limitation. These results suggest that, despite often having richer soils than tropical moist forests, tropical dry forests can also become nutrient-limited. If the climate becomes drier in the next century, as is expected for Central America, drier soils may decrease microbial activity and exacerbate nutrient limitation. The importance of overflow respiration underscores the need for appropriate treatment of microbial dynamics in ecosystem models. Ongoing and new nutrient fertilization experiments will present opportunities for testing whether, and how, nutrient limitation may indeed be emerging in tropical dry

  1. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Science.gov (United States)

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  2. Modeling carbon stocks in a secondary tropical dry forest in the Yucatan Peninsula, Mexico

    Science.gov (United States)

    Zhaohua Dai; Richard A. Birdsey; Kristofer D. Johnson; Juan Manuel Dupuy; Jose Luis Hernandez-Stefanoni; Karen. Richardson

    2014-01-01

    The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using...

  3. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Directory of Open Access Journals (Sweden)

    Sandeep Pulla

    Full Text Available We examined the roles of lithology, topography, vegetation and fire in generating local-scale (<1 km2 soil spatial variability in a seasonally dry tropical forest (SDTF in southern India. For this, we mapped soil (available nutrients, Al, total C, pH, moisture and texture in the top 10 cm, rock outcrops, topography, all native woody plants ≥1 cm diameter at breast height (DBH, and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(--N nor NH4(+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief.

  4. SRTM-DEM and Landsat ETM+ data for mapping tropical dry forest cover and biodiversity assessment in Nicaragua

    Science.gov (United States)

    S.E. Sesnie; S.E. Hagell; S.M. Otterstrom; C.L. Chambers; B.G. Dickson

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but has received far less attention than forest in wet tropical areas. Land use change threatens to greatly reduce the extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentation may further endanger arboreal mammals that play...

  5. SRTM-DEM AND LANDSAT ETM+ DATA FOR MAPPING TROPICAL DRY FOREST COVER AND BIODIVERSITY ASSESSMENT IN NICARAGUA

    OpenAIRE

    Brett G. Dickson; Carol L. Chambers; Sarah M. Otterstrom; Suzanne E. Hagell; Steven E. Sesnie

    2008-01-01

    Tropical dry and deciduous forest comprises as much as 42% of the world’s tropical forests, but hasreceived far less attention than forest in wet tropical areas. Land use change threatens to greatly reducethe extent of dry forest that is known to contain high levels of plant and animal diversity. Forest fragmentationmay further endanger arboreal mammals that play principal role in the dispersal of large seeded fruits, plantcommunity assembly and diversity in these systems. Data on the spatial...

  6. Succesional change and resilience of a very dry tropical deciduous forest following shifting agriculture

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.; Bongers, F.J.J.M.; Pérez-García, E.; Meave, J.

    2008-01-01

    We analyzed successional patterns in a very dry tropical deciduous forest by using 15 plots differing in age after abandonment and contrasted them to secondary successions elsewhere in the tropics. We used multivariate ordination and nonlinear models to examine changes in composition and structure

  7. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest

    NARCIS (Netherlands)

    Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E.

    2009-01-01

    Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1-5 yr

  8. Estimating the opportunity costs of activities that cause degradation in tropical dry forest: Implications for REDD +

    NARCIS (Netherlands)

    Borrego, Armonia; Skutsch, Margaret

    2014-01-01

    The viability of national REDD + programs will depend in part on whether funds generated from sales of carbon credits are sufficient to cover the opportunity costs (OC) of forgone uses of the forest. We present the results of a study in which OC were estimated in dry tropical forest, in western

  9. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  10. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought

  11. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  12. Analyzing the edge effects in a Brazilian seasonally dry tropical forest.

    Science.gov (United States)

    Arruda, D M; Eisenlohr, P V

    2016-02-01

    Due to the deciduous nature of dry forests (widely known as seasonally dry tropical forests) they are subject to microclimatic conditions not experienced in other forest formations. Close examinations of the theory of edge effects in dry forests are still rare and a number of questions arise in terms of this topic. In light of this situation we examined a fragment of the dry forest to respond to the following questions: (I) Are there differences in canopy cover along the edge-interior gradient during the dry season? (II) How does the microclimate (air temperature, soil temperature, and relative humidity) vary along that gradient? (III) How does the microclimate influence tree species richness, evenness and abundance along that gradient? (IV) Are certain tree species more dominant closer to the forest edges? Regressions were performed to address these questions. Their coefficients did not significantly vary from zero. Apparently, the uniform openness of the forest canopy caused a homogeneous internal microclimate, without significant differentiation in habitats that would allow modifications in biotic variables tested. We conclude that the processes of edge effect commonly seen in humid forests, not was shared with the dry forest assessed.

  13. Disentangling the environmental heterogeneity, floristic distinctiveness and current threats of tropical dry forests in Colombia

    Science.gov (United States)

    González-M, Roy; García, Hernando; Isaacs, Paola; Cuadros, Hermes; López-Camacho, René; Rodríguez, Nelly; Pérez, Karen; Mijares, Francisco; Castaño-Naranjo, Alejandro; Jurado, Rubén; Idárraga-Piedrahíta, Álvaro; Rojas, Alicia; Vergara, Hernando; Pizano, Camila

    2018-04-01

    Tropical dry forests (TDFs) have been defined as a single biome occurring mostly in the lowlands where there is a marked period of drought during the year. In the Neotropics, dry forests occur across contrasting biogeographical regions that contain high beta diversity and endemism, but also strong anthropogenic pressures that threaten their biodiversity and ecological integrity. In Colombia, TDFs occur across six regions with contrasting soils, climate, and anthropogenic pressures, therefore being ideal for studying how these variables relate to dry forest species composition, successional stage and conservation status. Here, we explore the variation in climate and soil conditions, floristic composition, forest fragment size and shape, successional stage and anthropogenic pressures in 571 dry forest fragments across Colombia. We found that TDFs should not be classified solely on rainfall seasonality, as high variation in precipitation and temperature were correlated with soil characteristics. In fact, based on environmental factors and floristic composition, the dry forests of Colombia are clustered in three distinctive groups, with high species turnover across and within regions, as reported for other TDF regions of the Neotropics. Widely distributed TDF species were found to be generalists favored by forest disturbance and the early successional stages of dry forests. On the other hand, TDF fragments were not only small in size, but highly irregular in shape in all regions, and comprising mostly early and intermediate successional stages, with very little mature forest left at the national level. At all sites, we detected at least seven anthropogenic disturbances with agriculture, cattle ranching and human infrastructure being the most pressing disturbances throughout the country. Thus, although environmental factors and floristic composition of dry forests vary across regions at the national level, dry forests are equally threatened by deforestation, degradation

  14. Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest

    OpenAIRE

    Santos,Cleandson Ferreira; Borges,Magno

    2015-01-01

    AbstractINTRODUCTION: This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil.METHODS: Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models.RESULTS: Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition.CO...

  15. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  16. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests.

    Science.gov (United States)

    Poorter, Lourens

    2009-03-01

    Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found in forests under different climatic control. Here, adult leaf and metamer traits were measured for 39 tree species from a tropical moist semi-evergreen forest (1580 mm rain yr(-1)) and 41 species from a dry deciduous forest (1160 mm yr(-1)) in Bolivia. Twenty-six functional traits were measured and related to species regeneration light requirements.Adult leaf traits were clearly associated with shade tolerance. Different, rather than stronger, shade adaptations were found for moist compared with dry forest species. Shade adaptations exclusively found in the evergreen moist forest were related to tough and persistent leaves, and shade adaptations in the dry deciduous forest were related to high light interception and water use.These results suggest that, for forests differing in rainfall seasonality, there is a shift in the relative importance of functional leaf traits and performance trade-offs that control light partitioning. In the moist evergreen forest leaf traits underlying the growth-survival trade-off are important, whereas in the seasonally deciduous forest leaf traits underlying the growth trade-off between low and high light might become important.

  17. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species.

    Science.gov (United States)

    Lima, Robson B DE; Bufalino, Lina; Alves, Francisco T; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Currently, there is a lack of studies on the correct utilization of continuous distributions for dry tropical forests. Therefore, this work aims to investigate the diameter structure of a brazilian tropical dry forest and to select suitable continuous distributions by means of statistic tools for the stand and the main species. Two subsets were randomly selected from 40 plots. Diameter at base height was obtained. The following functions were tested: log-normal; gamma; Weibull 2P and Burr. The best fits were selected by Akaike's information validation criterion. Overall, the diameter distribution of the dry tropical forest was better described by negative exponential curves and positive skewness. The forest studied showed diameter distributions with decreasing probability for larger trees. This behavior was observed for both the main species and the stand. The generalization of the function fitted for the main species show that the development of individual models is needed. The Burr function showed good flexibility to describe the diameter structure of the stand and the behavior of Mimosa ophthalmocentra and Bauhinia cheilantha species. For Poincianella bracteosa, Aspidosperma pyrifolium and Myracrodum urundeuva better fitting was obtained with the log-normal function.

  18. [Regenerative morphological traits in a woody species community in Tumbesian tropical dry forest].

    Science.gov (United States)

    Romero-Saritama, José Miguel; Pérez-Rúuz, César

    2016-06-01

    The study of functional morphological traits enables us to know fundamental aspects of the dynamics of plant communities in local and global habitats. Regenerative morphological traits play an important role in defining plant history and ecological behavior. Seed and fruit characteristics determine to a large extent the patterns for dispersal, germination, establishment and seedling recruitment a given species exhibits on its natural habitat. Despite their prominent role, seed and fruit traits have been poorly studied at the community level of woody plant species in neo-tropical dry forests. In the present study we aimed at i) evaluate the functional role of morphological traits of seeds, fruits and embryo in woody plant species; ii) determine which are the morphological patterns present in seeds collected from the community of woody species that occur in neo-tropical dry forests; and iii) compare woody plant species seed mass values comparatively between neo-tropical dry and tropical forests. To do so, mature seeds were collected from 79 plant species that occur in the Tumbesian forest of Southwest Ecuador. The studied species included the 42 and 37 most representative tree and shrubbery species of the Tumbesian forest respectively. A total of 18 morphological traits (seven quantitative and 11 qualitative) were measured and evaluated in the seeds, fruits and embryos of the selected species, and we compared the seeds mass with other forest types. Our results showed a huge heterogeneity among traits values in the studied species. Seed mass, volume and number were the traits that vary the most at the community level, i.e. seed length ranged from 1.3 to 39 mm, and seed width from 0.6 to 25 mm. Only six embryo types were found among the 79 plant species. In 40 % of the cases, fully developed inverted embryos with large and thick cotyledons to store considerable amount of nutrients were recorded. We concluded that highly variable and functionally complementary

  19. Tree diversity in the tropical dry forest of Bannerghatta National Park in Eastern Ghats, Southern India

    Directory of Open Access Journals (Sweden)

    Gopalakrishna S. Puttakame

    2015-12-01

    Full Text Available Tree species inventories, particularly of poorly known dry deciduous forests, are needed to protect and restore forests in degraded landscapes. A study of forest stand structure, and species diversity and density of trees with girth at breast height (GBH ≥10 cm was conducted in four management zones of Bannerghatta National Park (BNP in the Eastern Ghats of Southern India. We identified 128 tree species belonging to 45 families in 7.9 hectares. However, 44 species were represented by ≤ 2 individuals. Mean diversity values per site for the dry forest of BNP were: tree composition (23.8 ±7.6, plant density (100.69 ± 40.02, species diversity (2.56 ± 0.44 and species richness (10.48 ± 4.05. Tree diversity was not significantly different (P>0.05 across the four management zones in the park. However, the number of tree species identified significantly (P<0.05 increased with increasing number of sampling sites, but majority of the species were captured. Similarly, there were significant variations (p<0.05 between tree diameter class distributions. Juveniles accounted for 87% of the tree population. The structure of the forest was not homogeneous, with sections ranging from poorly structured to highly stratified configurations. The study suggests that there was moderate tree diversity in the tropical dry thorn forest of Bannerghatta National Park, but the forest was relatively young.

  20. Dispersal, isolation and diversification with continued gene flow in an Andean tropical dry forest.

    Science.gov (United States)

    Toby Pennington, R; Lavin, Matt

    2017-07-01

    The Andes are the world's longest mountain chain, and the tropical Andes are the world's richest biodiversity hot spot. The origin of the tropical Andean cordillera is relatively recent because the elevation of the mountains was relatively low (400-2500 m palaeoelevations) only 10 MYA with final uplift being rapid. These final phases of the Andean orogeny are thought to have had a fundamental role in shaping processes of biotic diversification and biogeography, with these effects reaching far from the mountains themselves by changing the course of rivers and deposition of mineral-rich Andean sediments across the massive Amazon basin. In a recent issue of Molecular Ecology, Oswald, Overcast, Mauck, Andersen, and Smith (2017) investigate the biogeography and diversification of bird species in the Andes of Peru and Ecuador. Their study is novel in its focus on tropical dry forests (Figure 1) rather than more mesic biomes such as rain forests, cloud forests and paramos, which tend to be the focus of science and conservation in the Andean hot spot. It is also able to draw powerful conclusions via the first deployment of genomic approaches to a biogeographic question in the threatened dry forests of the New World. © 2017 John Wiley & Sons Ltd.

  1. Sensitivity Analysis of Biome-Bgc Model for Dry Tropical Forests of Vindhyan Highlands, India

    Science.gov (United States)

    Kumar, M.; Raghubanshi, A. S.

    2011-08-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to projected leaf area ratio and Canopy water interception coefficient (Wint). Therefore, these parameters need more precision and attention during estimation and observation in the field studies.

  2. SENSITIVITY ANALYSIS OF BIOME-BGC MODEL FOR DRY TROPICAL FORESTS OF VINDHYAN HIGHLANDS, INDIA

    OpenAIRE

    M. Kumar; A. S. Raghubanshi

    2012-01-01

    A process-based model BIOME-BGC was run for sensitivity analysis to see the effect of ecophysiological parameters on net primary production (NPP) of dry tropical forest of India. The sensitivity test reveals that the forest NPP was highly sensitive to the following ecophysiological parameters: Canopy light extinction coefficient (k), Canopy average specific leaf area (SLA), New stem C : New leaf C (SC:LC), Maximum stomatal conductance (gs,max), C:N of fine roots (C:Nfr), All-sided to...

  3. Impact of livestock on a mosquito community (Diptera: Culicidae in a Brazilian tropical dry forest

    Directory of Open Access Journals (Sweden)

    Cleandson Ferreira Santos

    2015-08-01

    Full Text Available AbstractINTRODUCTION: This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil.METHODS: Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models.RESULTS: Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition.CONCLUSIONS: This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.

  4. Impact of livestock on a mosquito community (Diptera: Culicidae) in a Brazilian tropical dry forest.

    Science.gov (United States)

    Santos, Cleandson Ferreira; Borges, Magno

    2015-01-01

    This study evaluated the effects of cattle removal on the Culicidae mosquito community structure in a tropical dry forest in Brazil. Culicidae were collected during dry and wet seasons in cattle presence and absence between August 2008 and October 2010 and assessed using multivariate statistical models. Cattle removal did not significantly alter Culicidae species richness and abundance. However, alterations were noted in Culicidae community composition. This is the first study to evaluate the impact of cattle removal on Culicidae community structure in Brazil and demonstrates the importance of assessing ecological parameters such as community species composition.

  5. [Diversity, structure and regeneration of the seasonally dry tropical forest of Yucatán Peninsula, Mexico].

    Science.gov (United States)

    Hernández-Ramírez, Angélica María; García-Méndez, Socorro

    2015-09-01

    Seasonally dry tropical forests are considered as the most endangered ecosystem in lowland tropics. The aim of this study was to characterize the floristic composition, richness, diversity, structure and regeneration of a seasonally dry tropical forest landscape constituted by mature forest, secondary forest and seasonally inundated forest located in the Northeastern part of the Yucatán Peninsula, Mexico. We used the Gentry's standard inventory plot methodology (0.1 ha per forest type in 2007) for facilitating comparison with other Mesoamerican seasonally dry tropical forests. A total of 77 species belonging to 32 families were observed in the study area. Fabaceae and Euphorbiaceae were the families with the largest taxonomic richness in the three forest types. Low levels of β diversity were observed among forest types (0.19-0.40), suggesting a high turnover of species at landscape level. The non-regenerative species were dominant (50-51 %), followed by regenerative species (30- 28 %), and colonizer species (14-21 %) in the three forest types. Zoochory was the most common dispersal type in the study area. The 88 % of the observed species in the study area were distributed in Central America. Some floristic attributes of the seasonally dry tropical forest of the Yucatán Peninsula, fall into the values reported for Mesoamerican seasonally dry tropical forests. Natural disturbances contributed to explain the high number of individuals, the low number of liana species, as well as the low values of basal area observed in this study. Our results suggested that the seasonally dry tropical forest of Yucatán Peninsula seems to be resilient to natural disturbances (hurricane) in terms of the observed number of species and families, when compared with the reported values in Mesoamerican seasonally dry tropical forests. Nonetheless, the recovery and regeneration of vegetation in long-term depends on animal-dispersed species. This study highlights the importance of

  6. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    OpenAIRE

    Janssen, T; Ametsisi, G; Collins, M; Adu-Bredu, S; Oliveras-Menor, I; Mitchard, ETA; Veenendaal, EM

    2017-01-01

    Abstract Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South America and Africa, also, if not foremost, inside formally protected areas. Here, we significantly extend the baseline of tropical dry forest loss inside a protected area in Ghana using a generali...

  7. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km2 (4.4 %) of India, whereas according to the MODIS fire product about 2200 km2 (1.4 %) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  8. Wildfires, Ecosystem Services, and Biodiversity in Tropical Dry Forest in India.

    Science.gov (United States)

    Schmerbeck, Joachim; Fiener, Peter

    2015-08-01

    This review is intended to contribute to the understanding of the interlinkage between wildfire in India's tropical dry forest (TDF) and selected ecosystem services (ES), namely forest provisioning and water regulating services, as well as biodiversity. TDF covers approximately 146,000 km(2) (4.4%) of India, whereas according to the MODIS fire product about 2200 km(2) (1.4%) burns per year. As studies on wildfire effects upon ESs and biodiversity in Indian TDFs are rare we partly transferred findings from other (dry) forest areas to the environmental situation in India. In India (intentionally lit) wildfires have a very important connection to local livelihoods and the availability of non-wood forest products. Very important adverse long-term effects are the deterioration of forest ecosystems and soil degradation. The potential for TDF to regulate hydrological cycles is expected to be greater in the absence of fire than with it. A general judgment on the effect of fire on biodiversity is difficult as it depends on the community and species involved but a loss of biodiversity under regular burnings is apparent. Consequently, forest managers need sound knowledge regarding the interplay of wildfires and ecosystem behavior in general and more specific knowledge regarding the effects on taxa being considered for conservation efforts. Generally, much more research is needed to understand the trade-offs between the short-term benefits gained from forest provisioning services and long-term adverse effects.

  9. Water flow and energy balance for a tropical dry semideciduous forest

    Science.gov (United States)

    Andrade, J. L.; Garruña-Hernandez, R.; Leon-Palomo, M.; Us-Santamaria, R.; Sima, J. L.

    2013-05-01

    Tropical forests cool down locally because increase water evaporation from the soil to the atmosphere, reduce albedo and help forming clouds that reflect solar radiation back to the atmosphere; this, aligned to the carbon catchment, increase forests value. We will present an estimation of the sap flow and energy balance for the tropical dry semideciduous forest at Kiuic, Yucatan, Mexico during a year. We use a meteorological tower equipped with a rain gauge, temperature and relative humidity, heat flow plates, thermocouples and volumetric soil water content. We recorded net radiation and soil heat flux and estimated sensible heat and latent heat. Besides, we estimated latent heat by measuring sap flow directly in tres using disispation constant heat probes during the rainy season. Results show the influence of the seasonality on net radiation, air temperatura and vapor pressure deficit, because during the dry season his variables were higher and with more duation than during the rainy and early dry season. Sap flow was different for trees belonging to the family Fabaceae compared to trees from other families.

  10. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    Science.gov (United States)

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  11. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    Science.gov (United States)

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  12. Sources and sinks of diversification and conservation priorities for the Mexican tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Judith X Becerra

    Full Text Available Elucidating the geographical history of diversification is critical for inferring where future diversification may occur and thus could be a valuable aid in determining conservation priorities. However, it has been difficult to recognize areas with a higher likelihood of promoting diversification. We reconstructed centres of origin of lineages and identified areas in the Mexican tropical dry forest that have been important centres of diversification (sources and areas where species are maintained but where diversification is less likely to occur (diversity sinks. We used a molecular phylogeny of the genus Bursera, a dominant member of the forest, along with information on current species distributions. Results indicate that vast areas of the forest have historically functioned as diversity sinks, generating few or no extant Bursera lineages. Only a few areas have functioned as major engines of diversification. Long-term preservation of biodiversity may be promoted by incorporation of such knowledge in decision-making.

  13. Attaining the canopy in dry and moist tropical forests: strong differences in tree growth trajectories reflect variation in growing conditions.

    Science.gov (United States)

    Brienen, Roel J W; Zuidema, Pieter A; Martínez-Ramos, Miguel

    2010-06-01

    Availability of light and water differs between tropical moist and dry forests, with typically higher understorey light levels and lower water availability in the latter. Therefore, growth trajectories of juvenile trees--those that have not attained the canopy--are likely governed by temporal fluctuations in light availability in moist forests (suppressions and releases), and by spatial heterogeneity in water availability in dry forests. In this study, we compared juvenile growth trajectories of Cedrela odorata in a dry (Mexico) and a moist forest (Bolivia) using tree rings. We tested the following specific hypotheses: (1) moist forest juveniles show more and longer suppressions, and more and stronger releases; (2) moist forest juveniles exhibit wider variation in canopy accession pattern, i.e. the typical growth trajectory to the canopy; (3) growth variation among dry forest juveniles persists over longer time due to spatial heterogeneity in water availability. As expected, the proportion of suppressed juveniles was higher in moist than in dry forest (72 vs. 17%). Moist forest suppressions also lasted longer (9 vs. 5 years). The proportion of juveniles that experienced releases in moist forest (76%) was higher than in dry forest (41%), and releases in moist forests were much stronger. Trees in the moist forest also had a wider variation in canopy accession patterns compared to the dry forest. Our results also showed that growth variation among juvenile trees persisted over substantially longer periods of time in dry forest (>64 years) compared to moist forest (12 years), most probably because of larger persistent spatial variation in water availability. Our results suggest that periodic increases in light availability are more important for attaining the canopy in moist forests, and that spatial heterogeneity in water availability governs long-term tree growth in dry forests.

  14. Diametric structure in a tropical dry forest fragment in the Cerrado Eco-Museum region, Brazil

    International Nuclear Information System (INIS)

    Imana Encinas Jose, Antunes Santana Otacilio; Rainier Imana Christian

    2011-01-01

    In a tropical dry forest area of the Brazilian central region, the DBH distribution of 742 trees ≥ 5 cm was analyzed in a 4000 m 2 area. Eighty three tree species were found, of which 25 species with more than 10 individuals were analyzed for this study. The frequency histograms were obtained through the Meyer and Gaussian equations. The DBH distribution of the population showed a negative exponential inverse J curve. Of the 25 species selected, 14 exhibited the same pattern. Eight species presented a tendency near the normal distribution while three species had an abnormal pattern. We concluded that the observed fragment is in a natural auto regenerative status.

  15. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    NARCIS (Netherlands)

    Janssen, Thomas A.J.; Ametsitsi, George K.D.; Collins, Murray; Adu-Bredu, Stephen; Oliveras, Imma; Mitchard, Edward T.A.; Veenendaal, Elmar M.

    2018-01-01

    Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South America

  16. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    NARCIS (Netherlands)

    Janssen, Thomas A.J.; Ametsitsi, George K.D.; Collins, Murray; Adu-Bredu, Stephen; Oliveras, Imma; Mitchard, Edward T.A.; Veenendaal, Elmar M.

    2018-01-01

    Abstract Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South

  17. Influence of matrix type on tree community assemblages along tropical dry forest edges.

    Science.gov (United States)

    Benítez-Malvido, Julieta; Gallardo-Vásquez, Julio César; Alvarez-Añorve, Mariana Y; Avila-Cabadilla, Luis Daniel

    2014-05-01

    • Anthropogenic habitat edges have strong negative consequences for the functioning of tropical ecosystems. However, edge effects on tropical dry forest tree communities have been barely documented.• In Chamela, Mexico, we investigated the phylogenetic composition and structure of tree assemblages (≥5 cm dbh) along edges abutting different matrices: (1) disturbed vegetation with cattle, (2) pastures with cattle and, (3) pastures without cattle. Additionally, we sampled preserved forest interiors.• All edge types exhibited similar tree density, basal area and diversity to interior forests, but differed in species composition. A nonmetric multidimensional scaling ordination showed that the presence of cattle influenced species composition more strongly than the vegetation structure of the matrix; tree assemblages abutting matrices with cattle had lower scores in the ordination. The phylogenetic composition of tree assemblages followed the same pattern. The principal plant families and genera were associated according to disturbance regimes as follows: pastures and disturbed vegetation (1) with cattle and (2) without cattle, and (3) pastures without cattle and interior forests. All habitats showed random phylogenetic structures, suggesting that tree communities are assembled mainly by stochastic processes. Long-lived species persisting after edge creation could have important implications in the phylogenetic structure of tree assemblages.• Edge creation exerts a stronger influence on TDF vegetation pathways than previously documented, leading to new ecological communities. Phylogenetic analysis may, however, be needed to detect such changes. © 2014 Botanical Society of America, Inc.

  18. Multi-Temporal Monitoring Of Ecological Succession In Tropical Dry Forests Using Angular - Hyperspectral Data (Chris/Proba)

    Science.gov (United States)

    Garcia Millan, V. E.

    2015-12-01

    The tropical dry forest is the largest and most threatened ecosystem in Latin America. Remote sensing can effectively contribute to the surveillance of conservation measurements and laws through the monitoring of natural protected areas, at the required temporal and spatial scales. CHRIS/PROBA is the only satellite that presents quasi-simultaneous multi-angular pointing and hyperspectral spectroscopy. These two characteristics permit the study of structural and compositional traces of successional stages within the tropical dry forest. The current study presents the results of mapping the succession of tropical dry forest in the Parque Estadual de la Mata-Seca, in Minas Gerais, Brazil, using a temporal analysis of CHRIS/PROBA images in a time frame of 7 years, between 2008 and 2014. For the purpose the -55° angle of observation has been used, which enhances spectral differences between successional stages. Spectral Angle Mapper has been used for mapping succession of tropical dry forest and afterwards Change Detection Analysis has been performed. Based on our observations, the tropical dry forest in the Parque Estadual de la Mataseca recovers at a fast rate, for the observed period (2008-2014). More than the 50% of the early and intermediate forests has been recovered to a mature forest. Significantly, around a 12% of old pastures have been converted into forest. The spatial analysis also reveals that the areas that recover most rapidly are located in the east of the Park, close to mature forests. The provision of seeds from these forests might be the cause for the fast recovery.

  19. Resource partitioning by evergreen and deciduous species in a tropical dry forest.

    Science.gov (United States)

    Álvarez-Yépiz, Juan C; Búrquez, Alberto; Martínez-Yrízar, Angelina; Teece, Mark; Yépez, Enrico A; Dovciak, Martin

    2017-02-01

    Niche differentiation can lead to coexistence of plant species by partitioning limiting resources. Light partitioning promotes niche differentiation in tropical humid forests, but it is unclear how niche partitioning occurs in tropical dry forests where both light and soil resources can be limiting. We studied the adult niche of four dominant evergreen (cycad, palm) and drought-deciduous (legume, oak) species co-occurring along environmental gradients. We analyzed light intensity and soil fertility effects on key functional traits related to plant carbon and water economy, how these traits determine species' functional strategies, and how these strategies relate to relative species abundance and spatial patterns. Light intensity was negatively associated with a key trait linked to plant water economy (leaf δ 13 C, a proxy for long-term water-use efficiency-WUE), while soil fertility was negatively associated with a key trait for plant carbon economy (LNC, leaf nitrogen content). Evergreens were highly sclerophyllous and displayed an efficient water economy but poor carbon economy, in agreement with a conservative resource-use strategy (i.e., high WUE but low LNC, photosynthetic rates and stature). Conversely, deciduous species, with an efficient carbon economy but poor water economy, exhibited an exploitative resource-use strategy (i.e., high LNC, photosynthetic rates and stature, but low WUE). Evergreen and deciduous species segregated spatially, particularly at fine-scales, as expected for species with different resource-use strategies. The efficient water economy of evergreens was related to their higher relative abundance, suggesting a functional advantage against drought-deciduous species in water-limited environments within seasonally dry tropical forests.

  20. Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations

    Directory of Open Access Journals (Sweden)

    ROBSON B. DE LIMA

    2017-08-01

    Full Text Available ABSTRACT Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005 generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005 is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.

  1. Predicting of biomass in Brazilian tropical dry forest: a statistical evaluation of generic equations.

    Science.gov (United States)

    Lima, Robson B DE; Alves, Francisco T; Oliveira, Cinthia P DE; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Dry tropical forests are a key component in the global carbon cycle and their biomass estimates depend almost exclusively of fitted equations for multi-species or individual species data. Therefore, a systematic evaluation of statistical models through validation of estimates of aboveground biomass stocks is justifiable. In this study was analyzed the capacity of generic and specific equations obtained from different locations in Mexico and Brazil, to estimate aboveground biomass at multi-species levels and for four different species. Generic equations developed in Mexico and Brazil performed better in estimating tree biomass for multi-species data. For Poincianella bracteosa and Mimosa ophthalmocentra, only the Sampaio and Silva (2005) generic equation was the most recommended. These equations indicate lower tendency and lower bias, and biomass estimates for these equations are similar. For the species Mimosa tenuiflora, Aspidosperma pyrifolium and for the genus Croton the specific regional equations are more recommended, although the generic equation of Sampaio and Silva (2005) is not discarded for biomass estimates. Models considering gender, families, successional groups, climatic variables and wood specific gravity should be adjusted, tested and the resulting equations should be validated at both local and regional levels as well as on the scales of tropics with dry forest dominance.

  2. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest.

    Science.gov (United States)

    Waring, Bonnie G; Becknell, Justin M; Powers, Jennifer S

    2015-07-01

    Plants on infertile soils exhibit physiological and morphological traits that support conservative internal nutrient cycling. However, potential trade-offs among use efficiencies for N, P, and cations are not well explored in species-rich habitats where multiple elements may limit plant production. We examined uptake efficiency and use efficiency of N, P, K, Ca, Mg, Al, and Na in plots of regenerating tropical dry forests spanning a gradient of soil fertility. Our aim was to determine whether plant responses to multiple elements are correlated, or whether there are trade-offs among exploitation strategies across stands varying in community composition, soil quality, and successional stage. For all elements, both uptake efficiency and use efficiency decreased as availability of the corresponding element increased. Plant responses to N, Na, and Al were uncoupled from uptake and use efficiencies for P and essential base cations, which were tightly correlated. N and P use efficiencies were associated with shifts in plant species composition along the soil fertility gradient, and there was also a trend towards increasing N use efficiency with stand age. N uptake efficiency was positively correlated with the abundance of tree species that associate with ectomycorrhizal fungi. Taken together, our results suggest that successional processes and local species composition interact to regulate plant responses to availability of multiple resources. Successional tropical dry forests appear to employ different strategies to maximize response to N vs. P and K.

  3. Diverse patterns of stored water use among saplings in seasonally dry tropical forests.

    Science.gov (United States)

    Wolfe, Brett T; Kursar, Thomas A

    2015-12-01

    Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.

  4. Light habitat, structure, diversity and dynamic of the tropical dry forest

    Directory of Open Access Journals (Sweden)

    Omar Melo-Cruz

    2017-01-01

    Full Text Available Tropical dry forests are complex and fragile ecosystems with high anthropic intervention and restricted reproductive cycles. These have unique richness, structural diversity, physiological and phenological . This research was executed  in the Upper Magdalena Valley, in four forest fragments with different successional stages. In each fragment four permanent plots of 0.25 ha were established and lighting habitat associated with richness, relative abundance and rarity of species. The forest dynamics included the mortality, recruitment and diameter growth for a period of 5.25 years. The species rischness found in the mature riparian forestis higher than that reported in other studies of similar areas in Valle del Cauca and the Atlantic coast.  The values of richness, diversity and rarity species are more evidenced  than the magnitudes found in  drier areas of Tolima. The structure, diversity and dynamics of forests were correlated with the lighting habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. Forests with dense canopy have limited availability of photosynthetically active radiation in understory related low species richness, while illuminated undergrowth are richer and heterogeneous.

  5. Functional strategies of tropical dry forest plants in relation to growth form and isotopic composition

    Science.gov (United States)

    Santiago, L. S.; Silvera, K.; Andrade, J. L.; Dawson, T. E.

    2017-11-01

    Tropical dry forests (TDFs) undergo a substantial dry season in which plant species must endure several months of drought. Although TDFs support a diverse array of plant growth forms, it is not clear how they vary in mechanisms for coping with seasonal drought. We measured organic tissue stable isotopic composition of carbon (δ13C) and nitrogen (δ15N) across six plant growth forms including epiphytes, terrestrial succulents, trees, shrubs, herbs, and vines, and oxygen (δ18O) of four growth forms, to distinguish among patterns of resource acquisition and evaluate mechanisms for surviving annual drought in a lowland tropical dry forest in Yucatan, Mexico. Terrestrial succulent and epiphyte δ13C was around -14‰, indicating photosynthesis through the Crassulacean acid metabolism pathway, and along with one C4 herb were distinct from mean values of all other growth forms, which were between -26 and -29‰ indicating C3 photosynthesis. Mean tissue δ15N across epiphytes was -4.95‰ and was significantly lower than all other growth forms, which had values around +3‰. Tissue N concentration varied significantly among growth forms with epiphytes and terrestrial succulents having significantly lower values of about 1% compared to trees, shrubs, herbs and vines, which were around 3%. Tissue C concentration was highest in trees, shrubs and vines, intermediate in herbs and epiphytes and lowest in terrestrial succulents. δ18O did not vary among growth forms. Overall, our results suggest several water-saving aspects of resource acquisition, including the absolute occurrence of CAM photosynthesis in terrestrial succulents and epiphytes, high concentrations of leaf N in some species, which may facilitate CO2 drawdown by photosynthetic enzymes for a given stomatal conductance, and potentially diverse N sources ranging from atmospheric N in epiphytes with extremely depleted δ15N values, and a large range of δ15N values among trees, many of which are legumes and dry season

  6. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    Science.gov (United States)

    Blair, Christopher; Jiménez Arcos, Victor H; Mendez de la Cruz, Fausto R; Murphy, Robert W

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  7. Landscape genetics of leaf-toed geckos in the tropical dry forest of northern Mexico.

    Directory of Open Access Journals (Sweden)

    Christopher Blair

    Full Text Available Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by FST and Dest. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.

  8. Landscape Genetics of Leaf-Toed Geckos in the Tropical Dry Forest of Northern Mexico

    Science.gov (United States)

    Blair, Christopher; Jiménez Arcos, Victor H.; Mendez de la Cruz, Fausto R.; Murphy, Robert W.

    2013-01-01

    Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by F ST and D est. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted. PMID:23451230

  9. Biodiversity and functional regeneration during secondary succession in a tropical dry forest: from microorganisms to mammals

    Science.gov (United States)

    do Espírito Santo, M. M.; Neves, F. S.; Valério, H. M.; Leite, L. O.; Falcão, L. A.; Borges, M.; Beirão, M.; Reis, R., Jr.; Berbara, R.; Nunes, Y. R.; Silva, A.; Silva, L. F.; Siqueira, P. R.

    2015-12-01

    In this study, we aimed to determine the changes on soil traits, forest structure and species richness and composition of multiple groups of organisms along secondary succession in a tropical dry forest (TDF) in southeastern Brazil. We defined three successional stages based in forest vertical and horizontal structure and age: early (18-25 years), intermediate (50-60 years) and late (no records of clearing). Five plots of 50 x 20 m were established per stage, and the following groups were sampled using specific techniques: rhizobacteria, mycorrhiza, trees and lianas, butterflies, ants, dung beetles, mosquitoes (Culicidae), birds and bats. We also determined soil chemical and physical characteristics and forest structure (tree height, density and basal area). Soil fertility increased along the successional gradient, and the same pattern was observed for all the forest structure variables. However, species richness and composition showed mixed results depending on the organism group. Three groups usually considered as good bioindicators of habitat quality did not differ in species richness and composition between stages: butterflies, ants and dung beetles. On the other hand, rizhobacteria and mycorrhiza differed both in species richness and composition between stages and may be more sensitive to changes in environmental conditions in TDFs. The other five groups differed either in species richness or composition between one or two pairs of successional stages. Although changes in abiotic conditions and forest structure match the predictions of classical successional models, the response of each group of organism is idiosyncratic in terms of diversity and ecological function, as a consequence of specific resource requirements and life-history traits. In general, diversity increased and functional groups changed mostly from early to intermediate-late stages, strengthening the importance of secondary forests to the maintenance of ecosystem integrity of TDFs.

  10. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Science.gov (United States)

    Lohbeck, Madelon; Lebrija-Trejos, Edwin; Martínez-Ramos, Miguel; Meave, Jorge A; Poorter, Lourens; Bongers, Frans

    2014-01-01

    Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and

  11. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    Science.gov (United States)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  12. Identifying tropical dry forests extent and succession via the use of machine learning techniques

    Science.gov (United States)

    Li, Wei; Cao, Sen; Campos-Vargas, Carlos; Sanchez-Azofeifa, Arturo

    2017-12-01

    Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages.

  13. Post-fire regeneration in seasonally dry tropical forest fragments in southeastern Brazil.

    Science.gov (United States)

    Costa, Mayke B; Menezes, Luis Fernando T DE; Nascimento, Marcelo T

    2017-01-01

    Seasonally dry tropical forest is one of the highly threatened biome. However, studies on the effect of fire on these tree communities are still scarce. In this context, a floristic and structural survey in three forest areas in the southeast of Brazil that were affected by fire between 14 and 25 years ago was performed with the objective of evaluating post-fire regeneration. In each site, five systematically placed plots (25 m x 25 m each) were established. The more recently burnt site had significantly lower values of richness and diversity than the other two sites. However, the sites did not differ in density and basal area. Annona dolabripetala, Astronium concinnum, Joannesia princeps and Polyandrococos caudescens were within the 10 most important species for the three sites. Comparing these data with adjacent mature forests, the results indicated differences both in structural and floristic aspects, suggesting that the time after fire was not sufficient for recuperation of these areas. The recovery process indicate at least 190 years for areas return to basal area values close to those observed in mature forests nearby.

  14. Diurnal flight behavior of Ichneumonoidea (Insecta: Hymenoptera) related to environmental factors in a tropical dry forest.

    Science.gov (United States)

    González-Moreno, A; Bordera, S; Leirana-Alcocer, J; Delfín-González, H

    2012-06-01

    The biology and behavior of insects are strongly influenced by environmental conditions such as temperature and precipitation. Because some of these factors present a within day variation, they may be causing variations on insect diurnal flight activity, but scant information exists on the issue. The aim of this work was to describe the patterns on diurnal variation of the abundance of Ichneumonoidea and their relation with relative humidity, temperature, light intensity, and wind speed. The study site was a tropical dry forest at Ría Lagartos Biosphere Reserve, Mexico; where correlations between environmental factors (relative humidity, temperature, light, and wind speed) and abundance of Ichneumonidae and Braconidae (Hymenoptera: Ichneumonoidea) were estimated. The best regression model for explaining abundance variation was selected using the second order Akaike Information Criterion. The optimum values of temperature, humidity, and light for flight activity of both families were also estimated. Ichneumonid and braconid abundances were significantly correlated to relative humidity, temperature, and light intensity; ichneumonid also showed significant correlations to wind speed. The second order Akaike Information Criterion suggests that in tropical dry conditions, relative humidity is more important that temperature for Ichneumonoidea diurnal activity. Ichneumonid wasps selected toward intermediate values of relative humidity, temperature and the lowest wind speeds; while Braconidae selected for low values of relative humidity. For light intensity, braconids presented a positive selection for moderately high values.

  15. Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America

    Science.gov (United States)

    Portillo, C. A.; Cao, G.; Smith, V.

    2015-12-01

    Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.

  16. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    Science.gov (United States)

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some

  17. Diptera of Medico-Legal Importance Associated With Pig Carrion in a Tropical Dry Forest.

    Science.gov (United States)

    Vasconcelos, S D; Salgado, R L; Barbosa, T M; Souza, J R B

    2016-06-20

    The diversity of necrophagous Diptera is largely unknown in seasonally dry tropical forests, despite their medical, veterinary, and forensic relevance. We performed a study in the dry Caatinga forest exclusive to Brazil in order to assess the diversity and temporal pattern of Diptera species using pig carcasses as substrates. Adults were collected daily until complete skeletonization. We collected 17,142 adults from 18 families, 10 of which comprise species with known necrophagous habits. The most abundant families were Calliphoridae (47.3% of specimens), Sarcophagidae (20.8%), and Muscidae (15.5%), whereas Sarcophagidae stood out in terms of richness with 21 species. The native Cochliomyia macellaria (F.) (Diptera: Calliphoridae) and the invasive Chrysomya albiceps (Wiedmann) (Calliphoridae) were the dominant species. A total of 18 species reached the carcass during the first 48 h postdeath. The bloated and active decay stages had the highest richness and abundance of dipterans. From a forensic standpoint, C. macellaria and C. albiceps are likely to aid in establishing postmortem interval due to their early arrival and high abundance on the carcass. Despite harsh environmental conditions, the Caatinga harbors a rich assemblage of dipterans that play a key role in carrion decomposition. Their medico-veterinary importance is strengthened by the poor local sanitary conditions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Fire, climate and vegetation linkages in the Bolivian Chiquitano seasonally dry tropical forest.

    Science.gov (United States)

    Power, M J; Whitney, B S; Mayle, F E; Neves, D M; de Boer, E J; Maclean, K S

    2016-06-05

    South American seasonally dry tropical forests (SDTFs) are critically endangered, with only a small proportion of their original distribution remaining. This paper presents a 12 000 year reconstruction of climate change, fire and vegetation dynamics in the Bolivian Chiquitano SDTF, based upon pollen and charcoal analysis, to examine the resilience of this ecosystem to drought and fire. Our analysis demonstrates a complex relationship between climate, fire and floristic composition over multi-millennial time scales, and reveals that moisture variability is the dominant control upon community turnover in this ecosystem. Maximum drought during the Early Holocene, consistent with regional drought reconstructions, correlates with a period of significant fire activity between 8000 and 7000 cal yr BP which resulted in a decrease in SDTF diversity. As fire activity declined but severe regional droughts persisted through the Middle Holocene, SDTFs, including Anadenanthera and Astronium, became firmly established in the Bolivian lowlands. The trend of decreasing fire activity during the last two millennia promotes the idea among forest ecologists that SDTFs are threatened by fire. Our analysis shows that the Chiquitano seasonally dry biome has been more resilient to Holocene changes in climate and fire regime than previously assumed, but raises questions over whether this resilience will continue in the future under increased temperatures and drought coupled with a higher frequency anthropogenic fire regime.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  19. Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS)

    Science.gov (United States)

    To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...

  20. Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest.

    Science.gov (United States)

    José Luis Andrade; Frederick C. Meinzer; Guillermo Goldstein; Stefan A. Schnitzer

    2005-01-01

    Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and basal sap flow were measured during the 1997 and...

  1. Does the edge effect influence plant community structure in a tropical dry forest?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.

  2. Ecological and evolutionary variation in community nitrogen use traits during tropical dry forest secondary succession.

    Science.gov (United States)

    Bhaskar, Radika; Porder, Stephen; Balvanera, Patricia; Edwards, Erika J

    2016-05-01

    We assessed the role of ecological and evolutionary processes in driving variation in leaf and litter traits related to nitrogen (N) use among tropical dry forest trees in old-growth and secondary stands in western Mexico. Our expectation was that legumes (Fabaceae), a dominant component of the regional flora, would have consistently high leaf N and therefore structure phylogenetic variation in N-related traits. We also expected ecological selection during succession for differences in nitrogen use strategies, and corresponding shifts in legume abundance. We used phylogenetic analyses to test for trait conservatism in foliar and litter N, C:N, and N resorption. We also evaluated differences in N-related traits between old-growth and secondary forests. We found a weak phylogenetic signal for all traits, partly explained by wide variation within legumes. Across taxa we observed a positive relationship between leaf and litter N, but no shift in resorption strategies along the successional gradient. Despite species turnover, N-resorption, and N-related traits showed little change across succession, suggesting that, at least for these traits, secondary forests rapidly recover ecosystem function. Collectively, our results also suggest that legumes should not be considered a single functional group from a biogeochemical perspective.

  3. Impact of habitat degradation on phlebotominae (Diptera: Psychodidae) of tropical dry forests in Northern Colombia.

    Science.gov (United States)

    Travi, Bruno L; Adler, Gregory H; Lozano, Margarita; Cadena, Horacio; Montoya-Lerma, James

    2002-05-01

    We examined changes in the phlebotomine fauna resulting from human intervention in a tropical dry forest of Northern Colombia where visceral and cutaneous leishmaniases are endemic. A natural forest reserve (Colosó) and a highly degraded area (San Andrés de Sotavento [SAS]) were sampled monthly for 8 mo using Shannon traps, sticky traps, and resting-site collections. Overall abundances were higher in Colosó (15,988) than in SAS (2,324). and species richness of phlebotomines was greater in the forest reserve (11 species) than in the degraded habitat (seven species). Fisher alpha, a measure of diversity, reinforced this trend. Both sand fly communities were dominated by Lutzomyia evansi (Nuòez-Tovar), vector of Leishmania chagasi (Cunha & Chagas), representing 92 and 81% of all captures in Colosó and SAS, respectively. Lutzomyia longipalpis (Lutz & Neiva), the common vector of visceral leishmaniasis, accounted for 4-7% of the sand fly community. Lutzornyia panamensis (Shannon) and Lutzomya gomezi (Nitzulescu), putative vectors of Leishmania braziliensis (Vianna), had low abundances at both study sites. The zoophilic species Lutzomyia cayennensis (Floch & Abonneuc) and Lutzomyia trinidadensis (Newstead) were present in variable numbers according to trapping methods and site. Habitat degradation negatively affected sand fly communities, but medically important species were able to exploit modified environments, thereby contributing to Lishmania endemicity.

  4. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  5. Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia

    Science.gov (United States)

    Dutrieux, Loïc Paul; Verbesselt, Jan; Kooistra, Lammert; Herold, Martin

    2015-09-01

    Automatically detecting forest disturbances as they occur can be extremely challenging for certain types of environments, particularly those presenting strong natural variations. Here, we use a generic structural break detection framework (BFAST) to improve the monitoring of forest cover loss by combining multiple data streams. Forest change monitoring is performed using Landsat data in combination with MODIS or rainfall data to further improve the modelling and monitoring. We tested the use of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) with varying spatial aggregation window sizes as well as a rainfall derived index as external regressors. The method was evaluated on a dry tropical forest area in lowland Bolivia where forest cover loss is known to occur, and we validated the results against a set of ground truth samples manually interpreted using the TimeSync environment. We found that the addition of an external regressor allows to take advantage of the difference in spatial extent between human induced and naturally induced variations and only detect the processes of interest. Of all configurations, we found the 13 by 13 km MODIS NDVI window to be the most successful, with an overall accuracy of 87%. Compared with a single pixel approach, the proposed method produced better time-series model fits resulting in increases of overall accuracy (from 82% to 87%), and decrease in omission and commission errors (from 33% to 24% and from 3% to 0% respectively). The presented approach seems particularly relevant for areas with high inter-annual natural variability, such as forests regularly experiencing exceptional drought events.

  6. Species biogeography predicts drought responses in a seasonally dry tropical forest

    Science.gov (United States)

    Schwartz, N.; Powers, J. S.; Vargas, G.; Xu, X.; Smith, C. M.; Brodribb, T.; Werden, L. K.; Becknell, J.; Medvigy, D.

    2017-12-01

    The timing, distribution, and amount of rainfall in the seasonal tropics have shifted in recent years, with consequences for seasonally dry tropical forests (SDTF). SDTF are sensitive to changing rainfall regimes and drought conditions, but sensitivity to drought varies substantially across species. One potential explanation of species differences is that species that experience dry conditions more frequently throughout their range will be better able to cope with drought than species from wetter climates, because species from drier climates will be better adapted to drought. An El-Niño induced drought in 2015 presented an opportunity to assess species-level differences in mortality in SDTF, and to ask whether the ranges of rainfall conditions species experience and the average rainfall regimes in species' ranges predict differences in mortality rates in Costa Rican SDTF. We used field plot data from northwest Costa Rica to determine species' level mortality rates. Mortality rates ranged substantially across species, with some species having no dead individuals to as high as 50% mortality. To quantify rainfall conditions across species' ranges, we used species occurrence data from the Global Biodiversity Information Facility, and rainfall data from the Chelsa climate dataset. We found that while the average and range of mean annual rainfall across species ranges did not predict drought-induced mortality in the field plots, across-range averages of the seasonality index, a measure of rainfall seasonality, was strongly correlated with species-level drought mortality (r = -0.62, p < 0.05), with species from more strongly seasonal climates experiencing less severe drought mortality. Furthermore, we found that the seasonality index was a stronger predictor of mortality than any individual functional trait we considered. This result shows that species' biogeography may be an important factor for how species will respond to future drought, and may be a more integrative

  7. Pathways, mechanisms and predictability of vegetation change during tropical dry forest succession

    NARCIS (Netherlands)

    Lebrija Trejos, E.E.; Meave, J.; Poorter, L.; Pérez- García, E.A.; Bongers, F.

    2010-01-01

    The development of forest succession theory has been based on studies in temperate and tropical wet forests. As rates and pathways of succession vary with the environment, advances in successional theory and study approaches are challenged by controversies derived from such variation and by the

  8. Microhabitat partitioning between leiuperidae and bufonidae species (amphibia: anura) in tropical dry forest areas in Colombian Caribbean

    International Nuclear Information System (INIS)

    Blanco Torres, Argelina; Bonilla Gomez, Maria Argenis

    2010-01-01

    We analyzed partitioning of microhabitats by five species of frogs in the families, Bufonidae (Rhinella marina, r. granulosa), and Leiuperidae (Engystomops pustulosus, Pleurodema brachyops and Pseudopaludicola pusilla) in six different localities of the Colombian Caribbean with tropical dry forest fragments and different land uses. We identified 29 types of microhabitats; permanent ponds in pastures with trees (CPPA) and flooded pastures without trees (PISA) were the most important environmental used. Engystomops pustulosus used the must microhabitats, and none are used by specialist species. Thus, differences in the use of resource on regional and local scales appeared. Dynamics of microhabitat uses was influenced by the climatic variations of the tropical dry forest. Microhabitats distribution as a mechanism of coexistence in these species is implemented for dry season but in rainfall season this mechanism not exists.

  9. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.

    Science.gov (United States)

    Mondal, Nandita; Sukumar, Raman

    2016-01-01

    The "varying constraints hypothesis" of fire in natural ecosystems postulates that the extent of fire in an ecosystem would differ according to the relative contribution of fuel load and fuel moisture available, factors that vary globally along a spatial gradient of climatic conditions. We examined if the globally widespread seasonally dry tropical forests (SDTFs) can be placed as a single entity in this framework by analyzing environmental influences on fire extent in a structurally diverse SDTF landscape in the Western Ghats of southern India, representative of similar forests in monsoonal south and southeast Asia. We used logistic regression to model fire extent with factors that represent fuel load and fuel moisture at two levels-the overall landscape and within four defined moisture regimes (between 700 and1700 mm yr-1)-using a dataset of area burnt and seasonal rainfall from 1990 to 2010. The landscape scale model showed that the extent of fire in a given year within this SDTF is dependent on the combined interaction of seasonal rainfall and extent burnt the previous year. Within individual moisture regimes the relative contribution of these factors to the annual extent burnt varied-early dry season rainfall (i.e., fuel moisture) was the predominant factor in the wettest regime, while wet season rainfall (i.e., fuel load) had a large influence on fire extent in the driest regime. Thus, the diverse structural vegetation types associated with SDTFs across a wide range of rainfall regimes would have to be examined at finer regional or local scales to understand the specific environmental drivers of fire. Our results could be extended to investigating fire-climate relationships in STDFs of monsoonal Asia.

  10. Litter decomposition, N2-fixer abundance, and microbial dynamics govern tropical dry forest recovery to land use change

    Science.gov (United States)

    Trierweiler, A.; Powers, J. S.; Xu, X.; Gei, M. G.; Medvigy, D.

    2017-12-01

    As one of the most threatened tropical biomes, Seasonal Dry Tropical Forests (TDF) have undergone extensive land-use change. However, some areas are undergoing recovery into secondary forests. Despite their broad distribution (42% of tropical forests), they are under-studied compared to wet tropical forests and our understanding of their biogeochemical cycling and belowground processes are limited. Here, we use models along with field measurements to improve our understanding of nutrient cycling and limitation in secondary TDFs. We ask (1) Is there modeling evidence that tropical dry forests can become nutrient limited? (2) What are the most important mechanisms employed to avoid nutrient limitation? (3) How might climate change alter biogeochemical cycling and nutrient limitation in recovering TDF? We use a new version of the Ecosystem Demography (ED2) model that has been recently parameterized for TDFs and incorporates a range of plant functional groups (including deciduousness and N2-fixation) and multiple resource constraints (carbon, nitrogen, phosphorus, and water). In the model, plants then can dynamically adjust their carbon allocation and nutrient acquisition strategies using N2-fixing bacteria and mycorrhizal fungi according to the nutrient limitation status. We ran the model for a nutrient gradient of field sites in Costa Rica and explored the sensitivity of nutrient limitation to key mechanisms including litter respiration, N resorption, N2-fixation, and overflow respiration. Future runs will evaluate how CO2 and climate change affect recovering TDFs. We found increasing nutrient limitation across the nutrient gradient of sites. Nitrogen limitation dominated the nutrient limitation signal. In the model, forest litter accumulation was negatively correlated with site fertility in Costa Rican forests. Our sensitivity analyses indicate that N2-fixer abundance, decomposition rates, and adding more explicit microbial dynamics are key factors in overcoming

  11. Land use policies and deforestation in Brazilian tropical dry forests between 2000 and 2015

    Science.gov (United States)

    Dupin, Mariana G. V.; Espírito-Santo, Mário M.; Leite, Marcos E.; Silva, Jhonathan O.; Rocha, André M.; Barbosa, Rômulo S.; Anaya, Felisa C.

    2018-03-01

    Tropical Dry Forests (TDFs) have been broadly converted into pastures and crops, with direct consequences to biodiversity, ecosystem services, and social welfare. Such land use and cover changes (LUCC) usually are strongly influenced by government environmental and development policies. The present study aimed at analyzing LUCC in Brazilian TDFs between 2000 and 2015, using the north of Minas Gerais state (128 000 km2) as a case study. We evaluated the potential biophysical and social-economic drivers of TDF loss, natural regeneration and net area change at the county level. Further, we determined the effects of these LUCC variables on socioeconomic indicators. We identified a considerable change in TDF cover, expressed as 9825 km2 of deforestation and 6523 km2 of regeneration, which resulted in a net loss of 3302 km2. The annual rate of TDF cover change was -1.2%, which is extremely high for a vegetation type that is protected as part of the Atlantic Rain Forest biome since 1993. TDF deforestation was directly affected by county area and by the increase in cattle density, and inversely affected by terrain declivity, indicating that land conversion is mostly driven by cattle ranching in flat regions. TDF regeneration was directly affected by county area and inversely affected by the increase in population density and terrain declivity. LUCC variables did not affect welfare indicators, undermining claims from rural sectors that TDF protection would cause a socioeconomic burden for northern Minas Gerais. Our results highlight the importance of naturally regenerating secondary forests to the maintenance of ecosystem integrity and its services, which are frequently neglected in conservation strategies. Hegemonic macroeconomic policies affecting TDFs have been deeply rooted in deforestation for commodities production, and need urgent review because they cause long-term environmental impacts without evidence of welfare gains.

  12. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    Science.gov (United States)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere

  13. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Science.gov (United States)

    Elmqvist, Thomas; Pyykönen, Markku; Tengö, Maria; Rakotondrasoa, Fanambinantsoa; Rabakonandrianina, Elisabeth; Radimilahy, Chantal

    2007-05-02

    Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000) and covering 5500 km(2), and made a time-series analysis of three distinct large-scale patterns: 1) loss of forest cover, 2) increased forest cover, and 3) stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  14. Patterns of loss and regeneration of tropical dry forest in Madagascar: the social institutional context.

    Directory of Open Access Journals (Sweden)

    Thomas Elmqvist

    Full Text Available Loss of tropical forests and changes in land-use/land-cover are of growing concern worldwide. Although knowledge exists about the institutional context in which tropical forest loss is embedded, little is known about the role of social institutions in influencing regeneration of tropical forests. In the present study we used Landsat images from southern Madagascar from three different years (1984, 1993 and 2000 and covering 5500 km(2, and made a time-series analysis of three distinct large-scale patterns: 1 loss of forest cover, 2 increased forest cover, and 3 stable forest cover. Institutional characteristics underlying these three patterns were analyzed, testing the hypothesis that forest cover change is a function of strength and enforcement of local social institutions. The results showed a minor decrease of 7% total forest cover in the study area during the whole period 1984-2000, but an overall net increase of 4% during the period 1993-2000. The highest loss of forest cover occurred in a low human population density area with long distances to markets, while a stable forest cover occurred in the area with highest population density and good market access. Analyses of institutions revealed that loss of forest cover occurred mainly in areas characterized by insecure property rights, while areas with well-defined property rights showed either regenerating or stable forest cover. The results thus corroborate our hypothesis. The large-scale spontaneous regeneration dominated by native endemic species appears to be a result of a combination of changes in precipitation, migration and decreased human population and livestock grazing pressure, but under conditions of maintained and well-defined property rights. Our study emphasizes the large capacity of a semi-arid system to spontaneously regenerate, triggered by decreased pressures, but where existing social institutions mitigate other drivers of deforestation and alternative land-use.

  15. Natural and near natural tropical forest values

    Science.gov (United States)

    Daniel H. Henning

    2011-01-01

    This paper identifies and describes some of the values associated with tropical rain forests in their natural and near-natural conditions. Tropical rain forests are moist forests in the humid tropics where temperature and rainfall are high and the dry season is short. These closed (non-logged) and broad-leaved forests are a global resource. Located almost entirely in...

  16. Functional trait strategies of trees in dry and wet tropical forests are similar but differ in their consequences for succession.

    Directory of Open Access Journals (Sweden)

    Madelon Lohbeck

    Full Text Available Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment and in 17 wet secondary forest sites (<1-25 years after abandonment. We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a 'Community-Weighted Mean' plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during

  17. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    Science.gov (United States)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  18. Patterns of forest composition and their long term environmental drivers in the tropical dry forest transition zone of southern Africa

    Directory of Open Access Journals (Sweden)

    Vera De Cauwer

    2016-09-01

    Full Text Available Background Tropical dry forests cover less than 13 % of the world’s tropical forests and their area and biodiversity are declining. In southern Africa, the major threat is increasing population pressure, while drought caused by climate change is a potential threat in the drier transition zones to shrub land. Monitoring climate change impacts in these transition zones is difficult as there is inadequate information on forest composition to allow disentanglement from other environmental drivers. Methods This study combined historical and modern forest inventories covering an area of 21,000 km2 in a transition zone in Namibia and Angola to distinguish late succession tree communities, to understand their dependence on site factors, and to detect trends in the forest composition over the last 40 years. Results The woodlands were dominated by six tree species that represented 84 % of the total basal area and can be referred to as Baikiaea - Pterocarpus woodlands. A boosted regression tree analysis revealed that late succession tree communities are primarily determined by climate and topography. The Schinziophyton rautanenii and Baikiaea plurijuga communities are common on slightly inclined dune or valley slopes and had the highest basal area (5.5 – 6.2 m2 ha−1. The Burkea africana - Guibourtia coleosperma and Pterocarpus angolensis – Dialium englerianum communities are typical for the sandy plateaux and have a higher proportion of smaller stems caused by a higher fire frequency. A decrease in overall basal area or a trend of increasing domination by the more drought and cold resilient B. africana community was not confirmed by the historical data, but there were significant decreases in basal area for Ochna pulchra and the valuable fruit tree D. englerianum. Conclusions The slope communities are more sheltered from fire, frost and drought but are more susceptible to human expansion. The community with the important timber tree P

  19. Insect herbivores associated with an evergreen tree Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) in a tropical dry forest.

    Science.gov (United States)

    Silva, J O; Neves, F S

    2014-08-01

    Goniorrhachis marginata Taub. (Leguminosae: Caesalpinioideae) is a tree species found in Brazilian tropical dry forests that retain their leaves during the dry season. That being, we addressed the following question: i) How do insect diversity (sap-sucking and chewing), leaf herbivory and defensive traits (tannin and leaf sclerophylly) vary on the evergreen tree species G. marginata between seasons? The abundance of sap-sucking insects was higher in the dry season than in the rainy season. However, we did not verify any difference in the species richness and abundance of chewing insects between seasons. Leaf herbivory was higher in the rainy season, whereas leaf sclerophylly was higher in the dry season. However, herbivory was not related to sclerophylly. Insect herbivores likely decrease their folivory activity during the dry season due to life history patterns or changes in behaviour, possibly entering diapause or inactivity during this period. Therefore, G. marginata acts as a likely keystone species, serving as a moist refuge for the insect fauna during the dry season in tropical dry forest, and the presence of this evergreen species is crucial to conservation strategies of this threatened ecosystem.

  20. INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS

    Directory of Open Access Journals (Sweden)

    Cleandson Ferreira SANTOS

    2015-06-01

    Full Text Available In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.

  1. INVENTORY OF MOSQUITOES (DIPTERA: CULICIDAE) IN CONSERVATION UNITS IN BRAZILIAN TROPICAL DRY FORESTS.

    Science.gov (United States)

    Santos, Cleandson Ferreira; Silva, Alex Chavier; Rodrigues, Raquel Andrade; de Jesus, Jamilli Sanndy Ramos; Borges, Magno Augusto Zazá

    2015-01-01

    In Brazil, most studies of the Culicidae family are concentrated in rainforest regions. As such, there is a lack of knowledge regarding the diversity of Culicidae in regions with different climatic and vegetational characteristics. The aim of this study was to compile an inventory of Culicidae in protected areas of the semi-arid region of the state of Minas Gerais, Brazil, in order to better understand the diversity of the family within this region. The study was conducted across four protected areas in the northern region of the state, in tropical dry forest (TDF) fragments. Sampling methods included Shannon trap and CDC light trap, as well as active collection. A total of 11,219 mosquito specimens were collected between August 2008 and July 2012, belonging to 11 genera and 45 species; 15 new records for the state of Minas Gerais were registered, as well as 26 new records for semi-arid regions within the state. The high number of new Culicidae records in this region demonstrates the importance of inventory studies for increasing the knowledge of culicid biodiversity in Minas Gerais, and in particular within semi-arid regions of the state.

  2. Vegetation and Lepidoptera in Seasonally Dry Tropical Forests. Community structure along climate zones, forest succession and seasonality in the Southern Yucatán, Mexico

    NARCIS (Netherlands)

    Essens, T.; Leyequien, E.; Pozo, C.

    2010-01-01

    Seasonally dry tropical forests are worldwide recognized as important ecosystems for biodiversity conservation. Increasing agricultural activities (e.g., slash-and-burn agriculture) leads to a heterogeneous landscape matrix; and as ecological succession takes over in abandoned fields, plant and

  3. Mapping tropical dry forest habitats integrating landsat NDVI, Ikonos imagery, and topographic information in the Caribbean island of Mona.

    Science.gov (United States)

    Martinuzzi, Sebastiáin; Gould, William A; Ramos Gonzalez, Olga M; Martinez Robles, Alma; Calle Maldonado, Paulina; Pérez-Buitrago, Néstor; Fumero Caban, José J

    2008-06-01

    Assessing the status of tropical dry forest habitats using remote sensing technologies is one of the research priorities for Neotropical forests. We developed a simple method for mapping vegetation and habitats in a tropical dry forest reserve, Mona Island, Puerto Rico, by integrating the Normalized Difference Vegetation Index (NDVI) from Landsat, topographic information, and high-resolution Ikonos imagery. The method was practical for identifying vegetation types in areas with a great variety of plant communities and complex relief, and can be adapted to other dry forest habitats of the Caribbean Islands. NDVI was useful for identifying the distribution of forests, woodlands, and shrubland, providing a natural representation of the vegetation patterns on the island. The use of Ikonos imagery allowed increasing the number of land cover classes. As a result, sixteen land-cover types were mapped over the 5500 ha area, with a kappa coefficient of accuracy equal to 79%. This map is a central piece for modeling vertebrate species distribution and biodiversity patterns by the Puerto Rico Gap Analysis Project, and it is of great value for assisting research and management actions in the island.

  4. β-Diversity of functional groups of woody plants in a tropical dry forest in Yucatan.

    Directory of Open Access Journals (Sweden)

    Jorge Omar López-Martínez

    Full Text Available Two main theories have attempted to explain variation in plant species composition (β-diversity. Niche theory proposes that most of the variation is related to environment (environmental filtering, whereas neutral theory posits that dispersal limitation is the main driver of β-diversity. In this study, we first explored how α- and β-diversity of plant functional groups defined by growth form (trees, shrubs and lianas, which represent different strategies of resource partitioning, and dispersal syndrome (autochory, anemochory and zoochory, which represent differences in dispersal limitation vary with successional age and topographic position in a tropical dry forest. Second, we examined the effects of environmental, spatial, and spatially-structured environmental factors on β-diversity of functional groups; we used the spatial structure of sampling sites as a proxy for dispersal limitation, and elevation, soil properties and forest stand age as indicators of environmental filtering. We recorded 200 species and 22,245 individuals in 276 plots; 120 species were trees, 41 shrubs and 39 lianas. We found that β-diversity was highest for shrubs, intermediate for lianas and lowest for trees, and was slightly higher for zoochorous than for autochorous and anemochorous species. All three dispersal syndromes, trees and shrubs varied in composition among vegetation classes (successional age and topographic position, whilst lianas did not. β-diversity was influenced mostly by proxies of environmental filtering, except for shrubs, for which the influence of dispersal limitation was more important. Stand age and topography significantly influenced α-diversity across functional groups, but showed a low influence on β-diversity -possibly due to the counterbalancing effect of resprouting on plant distribution and composition. Our results show that considering different plant functional groups reveals important differences in both α- and

  5. Traditional and formal ecological knowledge to assess harvesting and conservation of a Mexican Tropical Dry Forest.

    Science.gov (United States)

    Monroy-Ortiz, Columba; García-Moya, Edmundo; Romero-Manzanares, Angélica; Luna-Cavazos, Mario; Monroy, Rafael

    2018-05-15

    This research integrates Traditional and Formal Ecological Knowledge (TEK / FEK) of a Tropical Dry Forest in central Mexico, in order to assess harvesting and conservation of the non-timber forest species. We were interested in: knowing the structure and diversity of the forest community; identifying which are the tree resources of common interest to the users through participatory workshops. A further interest was to identify those resources which are important to local people in terms of preservation; explaining the relationship of the species with some environmental factors; and visualizing which management practices endanger or facilitate the conservation of species. Studied areas were defined and labelled on a map drawn by local informants, where they indicated those plant species of common interest for preservation. Ethnobotanical techniques were used to reveal the TEK and assess harvesting and conservation of the species. With the FEK through community and population ecology, we detected the importance of five environmental factors, obtained various ecological indicators of the vegetation, and studied the population structure of the relevant species. The FEK was analyzed using descriptive and multivariate statistics. As a result, low density and small basal area of trees were registered. Species richness and diversity index were similar to other natural protected areas in Mexico. Tree species harvested shown an asymmetric distribution of diameters. Harvesting, elevation, and accessibility were the most influential factors on tree density. FEK demonstrated that TEK is helpful for the assessment of forest harvesting. Ecological analysis complemented the local knowledge detecting that Lysiloma tergemina is a species non-identified for the people as interesting, although we discover that it is a threatened species by over-harvesting. Haematoxylum brasiletto was identified as important for conservation due to its scarcity and medicinal use. Our results advanced

  6. Effect of drought on productivity in a Costa Rican tropical dry forest

    Science.gov (United States)

    Castro, S. M.; Sanchez-Azofeifa, G. A.; Sato, H.

    2018-04-01

    Climate models predict that precipitation patterns in tropical dry forests (TDFs) will change, with an overall reduction in rainfall amount and intensification of dry intervals, leading to greater susceptibility to drought. In this paper, we explore the effect of drought on phenology and carbon dynamics of a secondary TDF located in the Santa Rosa National Park (SRNP), Costa Rica. Through the use of optical sensors and an eddy covariance flux tower, seasonal phenology and carbon fluxes were monitored over a four-year period (2013-2016). Over this time frame, annual precipitation varied considerably. Total precipitation amounts for the 2013-2016 seasons equaled 1591.8 mm (+14.4 mm SD), 1112.9 mm (+9.9 mm SD), 600.8 mm (+7.6 mm SD), and 1762.2 mm (+13.9 mm SD), respectively. The 2014 and 2015 (ENSO) seasonal precipitation amounts represent a 30% and 63% reduction in precipitation, respectively, and were designated as drought seasons. Phenology was affected by precipitation patterns and availability. The onset of green-up was closely associated with pre-seasonal rains. Drought events lead to seasonal NDVI minimums and changes in phenologic cycle length. Carbon fluxes, assimilation, and photosynthetic light use efficiency were negatively affected by drought. Seasonal minimums in photosynthetic rates and light use efficiency were observed during drought events, and gross primary productivity was reduced by 13% and 42% during drought seasons 2014 and 2015, respectively. However, all four growth seasons were net carbon sinks. Results from this study contribute towards a deeper understanding of the impact of drought on TDF phenology and carbon dynamics.

  7. The impact of an invasive African bunchgrass (Pennisetum setaceum) on water availability and productivity of canopy trees within a tropical dry forest in Hawaii

    Science.gov (United States)

    Susan Cordell; D. R. Sandquist

    2008-01-01

    Tropical dry forests are among the Earth's most threatened ecosystems. On the Island of Hawaii the African bunchgrass Pennisetum setaceum (fountain grass) dominates the understorey of the few remaining fragments of native dry forests and is contributing to the degradation of this once diverse ecosystem. In this study, we...

  8. Silvicultural treatments enhance growth rates of future crop trees in a tropical dry forest

    NARCIS (Netherlands)

    Villegas, Z.; Peña-Claros, M.; Mostacedo, B.; Alarcón, A.; Licona, J.C.; Leaño, C.; Pariona, W.; Choque, U.

    2009-01-01

    Silvicultural treatments are often needed in selectively logged tropical forest to enhance the growth rates of many commercial tree species and, consequently, for recovering a larger proportion of the initial volume harvested over the next cutting cycle. The available data in the literature suggest,

  9. Changes in composition and structure of a tropical dry forest following intermittent Cattle grazing

    Directory of Open Access Journals (Sweden)

    Margaret Stern

    2002-12-01

    Full Text Available In northwestern Costa Rica, cattle are being used as a "management tool" to reduce the amount of combustible material, mainly dominated by Hyparrhenia rufa, an African grass. This project is being developed within Parque Nacional Palo Verde and Reserva Biológica Lomas Barbudal, both of which fonn part of the only remaining tropical dry forests in Mesoamerica. To determine the short-term effects of cattle grazing on the natural vegetation, we compared the floristic composition within Palo Verde in an area under intermittent cattle grazing with an area that has not been grazed. There were significantly fewer plant species in the area with intermittent cattle grazing compared to the area with no grazing. Floristic composition of these two habitats was different as reflected by both Fisher's alpha values and the Shannon index of diversity, both of which were significantly higher in the ungrazed site. The ungrazed area contained more plant species and was more similar to mature forest. The structure of the vegetation was significantly different between the intermittently grazed and ungrazed sites with more small stems (1-5 cm dbh and fewer large stems (>5 cm dbh in the intermittently grazed habitat. These results indicate that cattle grazing has an impact on the dry forest by reducing the relative abundance and density of larger tree species and by changing the species composition and structure of the community. The current management plan implemented in Palo Verde and Lomas Barbudal is not appropriate because of the impact that cattle have on the structure of the natural vegetation and should not be considered a viable alternative in other protected areas of dry forest in the Neotropics. We suggest that alternative fire prevention measures be evaluated including hand-cutting H. rufa, the creation of more frequent and larger fire breaks, and the development of green breaks.En el noroeste de Costa Rica se utiliza ganado como una "herramienta de

  10. Floristics and biogeography of vegetation in seasonally dry tropical regions

    DEFF Research Database (Denmark)

    Dexter, K.G.; Smart, B.; Baldauf, C.

    2015-01-01

    To provide an inter-continental overview of the floristics and biogeography of drought-adapted tropical vegetation formations, we compiled a dataset of inventory plots in South America (n=93), Africa (n=84), and Asia (n=92) from savannas (subject to fire), seasonally dry tropical forests (not...... similar vegetation formations (e.g. savannas) are floristically highly dissimilar. Neotropical moist forest, savanna and seasonally dry tropical forest are floristically distinct, but elsewhere there is no clear floristic division of savanna and seasonally dry tropical forest, though moist and dry...... of the ecology, biology and conservation of savannas and seasonally dry tropical forests may be difficult....

  11. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Iris Juan-Baeza

    Full Text Available Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae and Ipomoea pauciflora (Convolvulaceae were selected in each plot (N = 110 trees. Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp. was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and

  12. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  13. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    Science.gov (United States)

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. © 2016 John Wiley & Sons Ltd.

  14. Bark traits and life-history strategies of tropical dry- and moist forest trees

    NARCIS (Netherlands)

    Poorter, L.; McNeil, A.; Hurtado, V.H.; Prins, H.H.T.; Putz, F.E.

    2014-01-01

    1.Bark is crucial to trees because it protects their stems against fire and other hazards and because of its importance for assimilate transport, water relationships and repair. We evaluate size-dependent changes in bark thickness for 50 woody species from a moist forest and 50 species from a dry

  15. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    Science.gov (United States)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  16. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico

    Directory of Open Access Journals (Sweden)

    Eliane Ceccon

    2009-06-01

    Full Text Available In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest’s capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE. We found a strong seasonality in seed rain (96% of seeds fell in the dry season in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard’s similarity index between E and WE sites was relatively low (0.57. Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%, followed by anemochory (39% and zoochory (13%. In relation to seed density, anemochory was the most frequent dispersal mode (88%. Most species in the zone were categorized as small seeds (92%, and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the

  17. Mapping Clearances in Tropical Dry Forests Using Breakpoints, Trend, and Seasonal Components from MODIS Time Series: Does Forest Type Matter?

    NARCIS (Netherlands)

    Grogan, Kenneth; Pflugmacher, Dirk; Hostert, Patrick; Verbesselt, Jan; Fensholt, Rasmus

    2016-01-01

    Tropical environments present a unique challenge for optical time series analysis, primarily owing to fragmented data availability, persistent cloud cover and atmospheric aerosols. Additionally, little is known of whether the performance of time series change detection is affected by diverse forest

  18. Diversity and Phenology of Wild Bees in a Highly Disturbed Tropical Dry Forest "Desierto de la Tatacoa", Huila-Colombia.

    Science.gov (United States)

    Poveda-Coronel, C A; Riaño-Jiménez, D; Cure, J R

    2018-01-12

    Colombian tropical dry forest is considered the most endangered tropical biome due to anthropic activities. Desierto de la Tatacoa (DsT) is an example of high disturbed tropical dry forest which still maintains a high biodiversity. The objective of the study was to record the diversity and phenology of wild bees in this place by monthly sampling between December 2014 and December 2016 in a 9-km 2 area. During the study, there was a prolonged El Niño-Southern Oscillation period. Bees were collected by entomological nets, malaise traps, eugenol scent trapping, and nest traps. Shannon index was calculated to estimate diversity and Simpson index to determine dominance of a species. The effect of environmental conditions (wet and dry season) in richness and abundance was analyzed by paired T tests. A total of 3004 bee specimens were collected, belonging to 80 species from Apidae, Megachilidae, Halictidae, and Colletidae. Apidae was the most diverse. Shannon index value was 2.973 (discarding Apis mellifera Linnaeus 1758 data); thus, DsT can be considered as a zone of high wild bee diversity. Dry and rainy season showed differences in diversity (p < 0.05). Rainy season showed larger blooming periods and higher bee diversity than dry season. In both seasons, social species were dominant (e.g., A. mellifera or Trigona fulviventris Guérin 1844). Although DsT is a highly disturbed ecosystem, this study found it has the second highest number of genera and the fourth highest number of species reported in Colombia.

  19. Seasonality in the dung beetle community in a Brazilian tropical dry forest: Do small changes make a difference?

    Science.gov (United States)

    Medina, Anderson Matos; Lopes, Priscila Paixão

    2014-01-01

    Dung beetle (Coleoptera: Scarabaeoidea: Scarabaeinae) activity is influenced by rainfall seasonality. We hypothesized that rainfall might also play a major role in regulating the community structure of this group. In this study, we describe seasonal changes in the richness, composition, and structure of the Scarabaeinae community in a Brazilian tropical dry forest. A fragment of arboreal Caatinga was sampled using baited pitfall traps during the early dry season (EDS), late dry season (LDS), early wet season (EWS), and middle wet season (MWS). We compared the dung beetle community in each season in relationship to species richness, rank-dominance, curves, and composition. We collected 1352 Scarabaeinae individuals , belonging to 15 species. Dichotomius aff. laevicollis Felsche (Coleoptera: Scarabaeidae) was the dominant species, representing 73.89% of the individuals. There were no seasonal changes in the rank dominance curves; all had a single dominant species and a few species with low abundance, typical for arid areas. Estimated richness was highest in MWS, followed by EWS. Dry-season samples (EDS and LDS) had lower richness, with no significant difference between the dry seasons. Although species richness increased as the habitat became wetter, the difference between the wet and dry seasons was small, which differs completely from the findings of other studies in Neotropical dry forests, where almost all species cease activities in the dry season. Species composition changes were found in non-metric multidimensional scaling and sustained by analysis of similarity. All the seasons had pairwise differences in composition, with the exception of EDS and MWS, which indicates that the dung beetle community in this fragment requires more than three months of drought to trigger changes in species composition; this is probably due to small changes in the forest canopy. There was no difference in composition between EDS and MWS. As in other tropical dry forests, although

  20. How to restore dry forest ecosystems

    OpenAIRE

    Nalvarte, Jaime

    2012-01-01

    AIDER is a Peruvian non-governmental organization working since 1992 on forest management activities, watershed management and urban forest management on tropical humid and dry forest at a national level. AIDER and the José Ignacio Távara Pasapera rural community have been working on dry forest management and recovery since 1992. This paper summarizes the activity of AIDER in the dry forests for the purpose of recovering degraded forest areas and conserve existing forests by developing sustai...

  1. Tropical dry forest status and relative importance of woody flora, islands of Old Providence and Santa Catalina, Colombia, Southwestern Caribbean

    International Nuclear Information System (INIS)

    Linares, Jorge Ruiz; Fandino Orozco, Maria Claudia

    2009-01-01

    The purpose of this paper is to present evidence on the condition of the Dry Tropical Forest (DtF) in Old Providence. A chronological study was carried out in order to assess the land cover change in DtF between 1944 and 2005. Additionally, we established 109 plots 2 x 50 m, following the protocol by Gentry (1982); and species abundance models were fitted to the data. It is concluded that up to 2000 the forest recovered, yet, in 2005 it retreated to 1990 levels. The lognormal distribution suggests that the forest is indeed in good condition. Anacardiaceae is the family with the highest Importance Value Index (IVI) while Acacia collinsii is the species with the highest IVI.

  2. Occurrence of termites (Isoptera on living and standing dead trees in a tropical dry forest in Mexico

    Directory of Open Access Journals (Sweden)

    Nancy Calderón-Cortés

    2018-05-01

    Full Text Available Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2 than in riparian forests (0.022 and 0.027 trees/m2, even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2 than in larger class sizes (0–0.02 trees/m2. Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  3. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    Science.gov (United States)

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  4. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    Science.gov (United States)

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  5. Factors associated with long-term species composition in dry tropical forests of Central India

    Science.gov (United States)

    Agarwala, M.; DeFries, R. S.; Qureshi, Q.; Jhala, Y. V.

    2016-10-01

    The long-term future of species composition in forests depends on regeneration. Many factors can affect regeneration, including human use, environmental conditions, and species’ traits. This study examines the influence of these factors in a tropical deciduous forest of Central India, which is heavily used by local, forest-dependent residents for livestock grazing, fuel-wood extraction, construction and other livelihood needs. We measure size-class proportions (the ratio of abundance of a species at a site in a higher size class to total abundance in both lower and higher size classes) for 39 tree species across 20 transects at different intensities of human use. The size-class proportions for medium to large trees and for small to medium-sized trees were negatively associated with species that are used for local construction, while size class proportions for saplings to small trees were positively associated with those species that are fire resistant and negatively associated with livestock density. Results indicate that grazing and fire prevent non-fire resistant species from reaching reproductive age, which can alter the long term composition and future availability of species that are important for local use and ecosystem services. Management efforts to reduce fire and forest grazing could reverse these impacts on long-term forest composition.

  6. Exploiting water versus tolerating drought: water-use strategies of trees in a secondary successional tropical dry forest.

    Science.gov (United States)

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C; Angeles, Guillermo

    2016-02-01

    In seasonal plant communities where water availability changes dramatically both between and within seasons, understanding the mechanisms that enable plants to exploit water pulses and to survive drought periods is crucial. By measuring rates of physiological processes, we examined the trade-off between water exploitation and drought tolerance among seedlings of trees of a tropical dry forest, and identified biophysical traits most closely associated with plant water-use strategies. We also explored whether early and late secondary successional species occupy different portions of trade-off axes. As predicted, species that maintained carbon capture, hydraulic function and leaf area at higher plant water deficits during drought had low photosynthetic rates, xylem hydraulic conductivity and growth rate under non-limiting water supply. Drought tolerance was associated with more dense leaf, stem and root tissues, whereas rapid resource acquisition was associated with greater stem water storage, larger vessel diameter and larger leaf area per mass invested. We offer evidence that the water exploitation versus drought tolerance trade-off drives species differentiation in the ability of tropical dry forest trees to deal with alternating water-drought pulses. However, we detected no evidence of strong functional differentiation between early and late successional species along the proposed trade-off axes, suggesting that the environmental gradient of water availability across secondary successional habitats in the dry tropics does not filter out physiological strategies of water use among species, at least at the seedling stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Trade-offs between ecosystem services and alternative pathways toward sustainability in a tropical dry forest region

    Directory of Open Access Journals (Sweden)

    Francisco Mora

    2016-12-01

    Full Text Available The design of strategies aimed at sustainable resource management requires an understanding of the trade-offs between the ecosystem services at stake, to determine appropriate ways in which to navigate them. We assess trade-offs between forage production for cattle ranching and the maintenance of carbon stocks or tree diversity in a Mexican tropical dry forest. Trade-offs between pairs of services were assessed by identifying their efficiency frontiers at both site and landscape scales. We also estimated service outcomes under current and hypothetical land-management conditions. We found stark trade-offs between fodder and carbon stocks and between fodder and tree species richness at the site scale. At the landscape scale, the efficiency frontier was concave, with a much less pronounced trade-off in the fodder-species richness case. Our estimates of current service supply levels showed a reduction of 18-21% for C stock and 41-43% for fodder biomass, relative to the maximum feasible values along the efficiency frontier. Choice of the optimum management strategy to reduce such inefficiency depended on deforestation level: secondary forest regeneration was most suitable when deforestation is low, whereas increased fodder productivity in the pastures is best when deforestation is high. Pasture enrichment with forage trees and secondary forest growth are potential management alternatives for achieving sustainability given the range of enabling ecological factors and to balance ecological and social sustainability given the requirements and preferences of local stakeholders. Given that analogous trade-offs are found across the tropics, this work contributes to reconciling tropical forest maintenance and its use for sustainable rural livelihoods.

  8. Molecular phylogenetics and species delimitation of leaf-toed geckos (Phyllodactylidae: Phyllodactylus) throughout the Mexican tropical dry forest.

    Science.gov (United States)

    Blair, Christopher; Méndez de la Cruz, Fausto R; Law, Christopher; Murphy, Robert W

    2015-03-01

    Methods and approaches for accurate species delimitation continue to be a highly controversial subject in the systematics community. Inaccurate assessment of species' limits precludes accurate inference of historical evolutionary processes. Recent evidence suggests that multilocus coalescent methods show promise in delimiting species in cryptic clades. We combine multilocus sequence data with coalescence-based phylogenetics in a hypothesis-testing framework to assess species limits and elucidate the timing of diversification in leaf-toed geckos (Phyllodactylus) of Mexico's dry forests. Tropical deciduous forests (TDF) of the Neotropics are among the planet's most diverse ecosystems. However, in comparison to moist tropical forests, little is known about the mode and tempo of biotic evolution throughout this threatened biome. We find increased speciation and substantial, cryptic molecular diversity originating following the formation of Mexican TDF 30-20million years ago due to orogenesis of the Sierra Madre Occidental and Mexican Volcanic Belt. Phylogenetic results suggest that the Mexican Volcanic Belt, the Rio Fuerte, and Isthmus of Tehuantepec may be important biogeographic barriers. Single- and multilocus coalescent analyses suggest that nearly every sampling locality may be a distinct species. These results suggest unprecedented levels of diversity, a complex evolutionary history, and that the formation and expansion of TDF vegetation in the Miocene may have influenced subsequent cladogenesis of leaf-toed geckos throughout western Mexico. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Directory of Open Access Journals (Sweden)

    Leopoldo Vázquez

    Full Text Available It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha, though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  10. High density of tree-cavities and snags in tropical dry forest of western Mexico raises questions for a latitudinal gradient.

    Science.gov (United States)

    Vázquez, Leopoldo; Renton, Katherine

    2015-01-01

    It has been suggested that a latitudinal gradient exists of a low density of snags and high density of naturally-formed tree-cavities in tropical vs. temperate forests, though few cavities may have characteristics suitable for nesting by birds. We determined snag and cavity density, characteristics, and suitability for birds in a tropical dry forest biome of western Mexico, and evaluated whether our data fits the trend of snag and cavity density typically found in tropical moist and wet forests. We established five 0.25-ha transects to survey and measure tree-cavities and snags in each of three vegetation types of deciduous, semi-deciduous, and mono-dominant Piranhea mexicana forest, comprising a total of 3.75 ha. We found a high density of 77 cavities/ha, with 37 cavities suitable for birds/ha, where density, and characteristics of cavities varied significantly among vegetation types. Lowest abundance of cavities occurred in deciduous forest, and these were in smaller trees, at a lower height, and with a narrower entrance diameter. Only 8.6% of cavities were excavated by woodpeckers, and only 11% of cavities were occupied, mainly by arthropods, though 52% of all cavities were unsuitable for birds. We also found a high density of 56 snags/ha, with greatest density in deciduous forest (70 snags/ha), though these were of significantly smaller diameter, and snags of larger diameter were more likely to contain cavities. The Chamela-Cuixmala tropical dry forest had the highest density of snags recorded for any tropical or temperate forest, and while snag density was significantly correlated with mean snag dbh, neither latitude nor mean dbh predicted snag density in ten forest sites. The high spatial aggregation of snag and cavity resources in tropical dry forest may limit their availability, particularly for large-bodied cavity adopters, and highlights the importance of habitat heterogeneity in providing resources for primary and secondary cavity-nesters.

  11. Edge effects on foliar stable isotope values in a Madagascan tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Brooke E Crowley

    Full Text Available Edge effects represent an inevitable and important consequence of habitat loss and fragmentation. These effects include changes in microclimate, solar radiation, or temperature. Such abiotic effects can, in turn, impact biotic factors. They can have a substantial impact on species, communities, and ecosystems. Here we examine clinal variations in stable carbon and nitrogen isotope values for trees along an edge-interior gradient in the dry deciduous forest at Ankarafantsika National Park. We predicted that soil respiration and differences in solar irradiance would result in stratified δ¹³C values where leaves collected close to the forest floor would have lower δ¹³C values than those growing higher up in the canopy. We also anticipated that plants growing at the savannah-forest boundary would have higher δ¹³C and δ¹⁵N values than plants growing in the forest interior. As expected, we detected a small but significant canopy effect. Leaves growing below 2 m from the forest floor exhibit δ¹³C values that are, on average, 1.1‰ lower than those growing above this threshold. We did not, however, find any relationship between foliar δ¹³C and distance from the edge. Unpredictably, we detected a striking positive relationship between foliar δ¹⁵N values and increasing distance into the forest interior. Variability in physiology among species, anthropogenic influence, organic input, and rooting depth cannot adequately explain this trend. Instead, this unexpected relationship most likely reflects decreasing nutrient or water availability, or a shift in N-sources with increasing distance from the savannah. Unlike most forest communities, the trees at Ampijoroa are growing in nutrient-limited sands. In addition to being nutrient poor, these well-drained soils likely decrease the amount of soil water available to forest vegetation. Continued research on plant responses to edge effects will improve our understanding of the conservation

  12. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    Science.gov (United States)

    2011-01-01

    Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be

  13. Forgotten forests--issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study.

    Science.gov (United States)

    Särkinen, Tiina; Iganci, João R V; Linares-Palomino, Reynaldo; Simon, Marcelo F; Prado, Darién E

    2011-11-24

    South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF) biome using herbarium data of habitat specialist species. Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1) poor spatial resolution, and (2) poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM) approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in biome mapping, and could be particularly useful for mapping

  14. Forgotten forests - issues and prospects in biome mapping using Seasonally Dry Tropical Forests as a case study

    Directory of Open Access Journals (Sweden)

    Särkinen Tiina

    2011-11-01

    Full Text Available Abstract Background South America is one of the most species diverse continents in the world. Within South America diversity is not distributed evenly at both local and continental scales and this has led to the recognition of various areas with unique species assemblages. Several schemes currently exist which divide the continental-level diversity into large species assemblages referred to as biomes. Here we review five currently available biome maps for South America, including the WWF Ecoregions, the Americas basemap, the Land Cover Map of South America, Morrone's Biogeographic regions of Latin America, and the Ecological Systems Map. The comparison is performed through a case study on the Seasonally Dry Tropical Forest (SDTF biome using herbarium data of habitat specialist species. Results Current biome maps of South America perform poorly in depicting SDTF distribution. The poor performance of the maps can be attributed to two main factors: (1 poor spatial resolution, and (2 poor biome delimitation. Poor spatial resolution strongly limits the use of some of the maps in GIS applications, especially for areas with heterogeneous landscape such as the Andes. Whilst the Land Cover Map did not suffer from poor spatial resolution, it showed poor delimitation of biomes. The results highlight that delimiting structurally heterogeneous vegetation is difficult based on remote sensed data alone. A new refined working map of South American SDTF biome is proposed, derived using the Biome Distribution Modelling (BDM approach where georeferenced herbarium data is used in conjunction with bioclimatic data. Conclusions Georeferenced specimen data play potentially an important role in biome mapping. Our study shows that herbarium data could be used as a way of ground-truthing biome maps in silico. The results also illustrate that herbarium data can be used to model vegetation maps through predictive modelling. The BDM approach is a promising new method in

  15. CLIMATE-TREE GROWTH RELATIONSHIPS OF Mimosa tenuiflora IN SEASONALLY DRY TROPICAL FOREST, BRAZIL

    Directory of Open Access Journals (Sweden)

    Patrícia Póvoa Mattos

    2015-03-01

    Full Text Available Mimosa tenuiflora is a native pioneer tree from the Caatinga used commercially as firewood due to its high calorific value. It is deciduous, its trunk does not reach large diameters and it has good regrowth capacity. This study intended to determine the annual increment in diameter of M. tenuiflora and its correlation with rainfall, as basis for fuel wood management. Disks from the stem base of M. tenuiflora trees were collected in 2008 in Sertânia and Serra Talhada, Pernambuco State, from regrowth of trees coppiced in 2003 and in Limoeiro do Norte, Ceará State, from a plantation established in 2002. The trees have well-defined annual growth rings, highly correlated with annual precipitation and are well-suited for dendrochronological investigations. Forest managers must consider the influence of previous drier years in the wood production when predicting fuel wood harvesting. The high growth correlation with the previous year’s rainfall in regions where the rains start after photoperiodic stimulation indicate the necessity of understanding the growth dynamics of the species under dry forest conditions through additional ecophysiology studies.

  16. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors.

    Science.gov (United States)

    Cortés-Flores, Jorge; Hernández-Esquivel, Karen Beatriz; González-Rodríguez, Antonio; Ibarra-Manríquez, Guillermo

    2017-01-01

    Analyses of the influence of temporal variation in abiotic factors on flowering phenology of tropical dry forest species have not considered the possible response of species with different growth forms and pollination syndromes, while controlling for phylogenetic relationships among species. Here, we investigated the relationship between flowering phenology, abiotic factors, and plant functional attributes, while controlling for phylogenetic relationship among species, in a dry forest community in Mexico. We characterized flowering phenology (time and duration) and pollination syndromes of 55 tree species, 49 herbs, 24 shrubs, 15 lianas, and 11 vines. We tested the influence of pollination syndrome, growth form, and abiotic factors on flowering phenology using phylogenetic generalized least squares. We found a relationship between flowering duration and time. Growth form was related to flowering time, and the pollination syndrome had a more significant relationship with flowering duration. Flowering time variation in the community was explained mainly by abiotic variables, without an important phylogenetic effect. Flowering time in lianas and trees was negatively and positively correlated with daylength, respectively. Functional attributes, environmental cues, and phylogeny interact with each other to shape the diversity of flowering patterns. Phenological differentiation among species groups revealed multiples strategies associated with growth form and pollination syndromes that can be important for understanding species coexistence in this highly diverse plant community. © 2017 Botanical Society of America.

  17. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding

    Science.gov (United States)

    Fernando Pineda-Garcia; Horacio Paz; Frederick C. Meinzer

    2013-01-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early...

  18. FITTING AND TESTING ALLOMETRIC EQUATIONS FOR MEXICO’S SINALOAN TROPICAL DRY TREES AND FOREST INVENTORY PLOTS

    Directory of Open Access Journals (Sweden)

    Jose de Jesus Navar Chaidez

    2016-05-01

    Full Text Available Aboveground tree biomass (bole, branches and foliage, M, plays a key role in the conventional and sustainable management of forest communities. The standard approach to assess tree or plot M is harvesting trees, developing and fitting allometric equations to trees or forest inventory plot data. In the absence of local tree allometry, it is usually recommended to fit off site allometric equations to evaluate tree or plot M. This research aims: (a to develop an updated on site allometric equation (b to fit available off site allometric equations to destructively harvested trees and (c to fit available allometric equations to plot M of Mexico’s Sinaloan tropical dry forests to understand sources of inherent tree and plot M variability. Results showed that: (a the improved on site allometric equation increases precision in contrast to the conventional biomass equation previously reported as well as to off site tree M equations, (b off site allometry projects tree and plot M deviates by close to one order of magnitude. Two tested and recommended approaches to increase tree and plot M precision when fitting off site equations are: (i to use all available tree allometric functions to come up with a mean equation or (ii to calibrate off site equations by fitting new, local parameters that can be calculated using statistical programs.These options would eventually increase tree and plot M precision in regional evaluations.

  19. Foggy days and dry nights determine crown-level water balance in a seasonal tropical Montane cloud forest.

    Science.gov (United States)

    Gotsch, Sybil G; Asbjornsen, Heidi; Holwerda, Friso; Goldsmith, Gregory R; Weintraub, Alexis E; Dawson, Todd E

    2014-01-01

    The ecophysiology of tropical montane cloud forest (TMCF) trees is influenced by crown-level microclimate factors including regular mist/fog water inputs, and large variations in evaporative demand, which in turn can significantly impact water balance. We investigated the effect of such microclimatic factors on canopy ecophysiology and branch-level water balance in the dry season of a seasonal TMCF in Veracruz, Mexico, by quantifying both water inputs (via foliar uptake, FU) and outputs (day- and night-time transpiration, NT). Measurements of sap flow, stomatal conductance, leaf water potential and pressure-volume relations were obtained in Quercus lanceifolia, a canopy-dominant tree species. Our results indicate that FU occurred 34% of the time and led to the recovery of 9% (24 ± 9.1 L) of all the dry-season water transpired from individual branches. Capacity for FU was independently verified for seven additional common tree species. NT accounted for approximately 17% (46 L) of dry-season water loss. There was a strong correlation between FU and the duration of leaf wetness events (fog and/or rain), as well as between NT and the night-time vapour pressure deficit. Our results show the clear importance of fog and NT for the canopy water relations of Q. lanceifolia. © 2013 John Wiley & Sons Ltd.

  20. Seasonal variability in physiological and anatomical traits contributes to invasion success of Prosopis juliflora in tropical dry forest.

    Science.gov (United States)

    Oliveira, Marciel T; Souza, Gustavo M; Pereira, Silvia; Oliveira, Deborah A S; Figueiredo-Lima, Karla V; Arruda, Emília; Santos, Mauro G

    2017-03-01

    We investigated whether there were consistent differences in the physiological and anatomical traits and phenotypic variability of an invasive (Prosopis juliflora (Sw.) DC.) and native species (Anadenanthera colubrina (Vell.) Brenan) in response to seasonality in a tropical dry forest. The water potential, organic solutes, gas exchange, enzymes of the antioxidant system, products of oxidative stress and anatomical parameters were evaluated in both species in response to seasonality. An analysis of physiological responses indicated that the invasive P. juliflora exhibited higher response in net photosynthetic rate to that of the native species between seasons. Higher values of water potential of the invasive species than those of the native species in the dry season indicate a more efficient mechanism for water regulation in the invasive species. The invasive species exhibits a thicker cuticle and trichomes, which can reduce transpiration. In combination, the increased epidermal thickness and the decreased thickness of the parenchyma in the dry season may contribute to water saving. Our data suggest a higher variability in anatomical traits in the invasive species as a response to seasonality, whereas physiological traits did not present a clear pattern of response. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community.

    Science.gov (United States)

    Reyes-García, C; Mejia-Chang, M; Griffiths, H

    2012-02-01

    • Vascular epiphytes have developed distinct lifeforms to maximize water uptake and storage, particularly when delivered as pulses of precipitation, dewfall or fog. The seasonally dry forest of Chamela, Mexico, has a community of epiphytic bromeliads with Crassulacean acid metabolism showing diverse morphologies and stratification within the canopy. We hypothesize that niche differentiation may be related to the capacity to use fog and dew effectively to perform photosynthesis and to maintain water status. • Four Tillandsia species with either 'tank' or 'atmospheric' lifeforms were studied using seasonal field data and glasshouse experimentation, and compared on the basis of water use, leaf water δ(18) O, photosynthetic and morphological traits. • The atmospheric species, Tillandsia eistetteri, with narrow leaves and the lowest succulence, was restricted to the upper canopy, but displayed the widest range of physiological responses to pulses of precipitation and fog, and was a fog-catching 'nebulophyte'. The other atmospheric species, Tillandsia intermedia, was highly succulent, restricted to the lower canopy and with a narrower range of physiological responses. Both upper canopy tank species relied on tank water and stomatal closure to avoid desiccation. • Niche differentiation was related to capacity for water storage, dependence on fog or dewfall and physiological plasticity. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  2. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India.

    Science.gov (United States)

    Gandhi, Durai Sanjay; Sundarapandian, Somaiah

    2017-04-01

    Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among

  3. Paratrechina longicornis ants in a tropical dry forest harbor specific Actinobacteria diversity.

    Science.gov (United States)

    Reyes, Ruth D Hernández; Cafaro, Matías J

    2015-01-01

    The diversity of Actinobacteria associated with Paratrechina longicornis, an ant species that prefers a high protein diet, in a subtropical dry forest (Guánica, Puerto Rico) was determined by culture methods and by 16S rDNA clone libraries. The results of both methodologies were integrated to obtain a broader view of the diversity. Streptomyces, Actinomadura, Nocardia, Ornithinimicrobium, Tsukamurella, Brevibacterium, Saccharopolyspora, Nocardioides, Microbacterium, Leifsonia, Pseudonocardia, Corynebacterium, Geodermatophilus, Amycolatopsis, and Nonomuraea were found associated with the ants. The genera Streptomyces and Actinomadura were the most abundant. Also, the diversity of Actinobacteria associated with the soil surrounding the nest was determined using 16S rDNA clone libraries. In total, 27 genera of Actinobacteria were associated with the nest soils. A dominant genus was not observed in any of the soil samples. We compared statistically the Actinobacteria communities among P. longicornis nests and each nest with its surrounding soil using the clone libraries data. We established that the communities associated with the ants were consistent and significantly different from those found in the soil in which the ants live. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Floristic composition of the dry tropical forest in biological reserve (sanctuary "Los Besotes" and phenology of the dominant arboreal species (Valledupar, Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    Mary Lee Berdugo Lattke

    2015-01-01

    Full Text Available Based on the floristic composition and structural aspects, the formation tropical dry forest of the reserve "Los Besotes" (Valledupar, Cesar; 248 y 1046m of altitude was characterized. In 35 individuals from nine dominant tree species in two forest types, the phenological characteristics were assessed. Seven monitoring were performed along one year according to the scheme of distribution of rainfall. The leaf fall in the forests of Myrcianthes aff. fragrans and Brosimum alicastrum did not exceed 20% regardless of the climatic period (drought or rainy seasons. In others dominant understory species the leaf fall was less than 40%, thus species of the canopy are classified as evergreen while those of the understory as semideciduous. Blooming peaked during the dry season while fruit production peaked during the two rainy seasons. In the forest ofBursera simaruba and Pterocarpus acapulcensis the leaf fall exceeded 60% in the dry season, while in the rainy season was only 30%. The leaf fall increased to 60% in others dominant understory species. Both canopy as well as understory species are deciduous. Blooming was observed during the dry season (December to March, and July, but it is also likely to occur in October; fruit production was observed at the end of the rainy season. In the tropical dry forest formation evergreen plant communities with low values of leaf fall (40% and deciduous communities with values greater than 60% are recognized.

  5. Cultural significance of the flora of a tropical dry forest in the Doche vereda (Villavieja, Huila, Colombia).

    Science.gov (United States)

    Rosero-Toro, Jeison Herley; Romero-Duque, Luz Piedad; Santos-Fita, Dídac; Ruan-Soto, Felipe

    2018-03-22

    In Colombia, ethnobotanical studies regarding plant cultural significance (CS) in tropical dry forests are scarce and mainly focused on the Caribbean region. Different authors have indicated that the plants with the most uses are those of greater cultural importance. Additionally, gender differences in knowledge and interest in natural resources has been widely recorded. This study evaluated the cultural significance of plants in the Doche community, in the Department of Huila. Furthermore, it evaluates the richness of plant knowledge among local inhabitants, looking for testing the hypothesis that the CS of plants positively correlates to the number of uses people inform about, and that there are significant differences on the richness of ethnobotanical knowledge between men and women in this community. The ethnobotanical categories: "food," "condiment," "economy," "fodder," "firewood," "timber", "medicine," and "others" were established to carry out semi-structured interviews, social cartography, and ethnobotanical walks. The frequency of mention was calculated as a measure of CS. The richness of knowledge of each collaborator was obtained. Non-parametric tests were performed to determine whether differences between the numbers of mentioned species existed between genders and ethnobotanical categories. Finally, Pearson correlation tests determined the relationship between CS and the number of ethnobotanical categories. A hundred useful species were registered in crops and forests. The most abundant categories were medicinal (45 species), firewood (30), and fodder (28). The most culturally significant species according to frequency of mention were Pseudosamanea guachapele, Guazuma ulmifolia, Manihot esculenta, and Musa balbisiana. The species with the most registered uses (five) were Guazuma ulmifolia and Gliricidia sepium. We found a correlation between CS and the number of uses per ethnobotanical category, but no significant difference between genders regarding

  6. Collective Action in the Management of a Tropical Dry Forest Ecosystem: Effects of Mexico's Property Rights Regime

    Science.gov (United States)

    Schroeder, Natalia Mariel; Castillo, Alicia

    2013-04-01

    Dilemmas of natural resources governance have been a central concern for scholars, policy makers, and users. Major debates occur over the implications of property rights for common resources management. After the Mexican Revolution (1910-1917), land was distributed mainly as ejidos conceived as a hereditary but unalienable collective form of property. In 1992, a new Agrarian Law was decreed that allows individual ownership by removing various restrictions over the transfer of land. Scholars have examined the reform mainly focusing on land-tenure changes and environmental fragmentation. This study examines how the new ownership regime is affecting collective decision-making in ejidos located in a tropical dry forest (TDF) ecosystem. Information on decision-making processes before and after the 1992 reform was gathered through 52 interviews conducted in four ejidos selected along a gradient including agricultural, cattle-raising, and TDF use. The new individualized land property system reduced collective action in ejidos but did not trigger it. Collective action responses to the 1992 reform were buffered by self-organization each ejido already had. Heterogeneous users who shared a short history and showed little understanding of TDF and low dependence on its resources seemed to explain why ejidos have not been able to share a sense of community that would shape the construction of institutions for the collective management of forest resources. However, when a resource is scarce and highly valuable such as water the same users showed capacities for undertaking costly co-operative activities.

  7. Vegetation structure and composition of a tropical dry forest in regeneration in Bataclán (Cali, Colombia

    Directory of Open Access Journals (Sweden)

    Viviana Londoño Lemos

    2015-01-01

    Full Text Available Characterization of long-term vegetation in a tropical dry forest (TDF that is in the process of regeneration permits establishment of patterns of composition, structure and dynamics of plant communities and sheds light on the different stages of plant succession. In this study, the plant community of ecoparque Bataclán, Cali, Colombia was evaluated by determining its structure and composition in two regeneration strategies. One strategy consisted of natural regeneration with bamboo barriers and the other of natural regeneration without bamboo barriers. Three permanent plots of 500 m2 were established in each regeneration strategy (six plots in total. Composition and structure was determined, taking into account all the growth habits, with different sampling methods. We found no significant differences between vegetation structure and composition of the two strategies for forest regeneration. forty-one species belonging to 27 families were recorded (trees and shrubs 58.5 %, herbs 24.4 %, climbers or scandents 14.6 %, epiphytes 2.4 %. The dominant family was Melastomataceae and the dominant species was Miconia prasina. The orchidCatasetum ochraceum and the grass Thrasya petrosa were indicator species for high luminosity. We conclude that the plant community is in an early successional stage, where there is a mixture of planted and naturally regenerated species in the zone, characterized by pioneer species from TDF and other nearby life zones.

  8. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  9. Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest.

    Science.gov (United States)

    Frosi, Gabriella; Barros, Vanessa A; Oliveira, Marciel T; Santos, Mariana; Ramos, Diego G; Maia, Leonor C; Santos, Mauro G

    2016-12-01

    In seasonal dry tropical forests, plants are subjected to severe water deficit, and the arbuscular mycorrhizal fungi (AMF) or inorganic phosphorus supply (P i ) can mitigate the effects of water deficit. This study aimed to assess the physiological performance of Poincianella pyramidalis subjected to water deficit in combination with arbuscular mycorrhizal fungi (AMF) and leaf inorganic phosphorus (P i ) supply. The experiment was conducted in a factorial arrangement of 2 water levels (+H 2 O and -H 2 O), 2 AMF levels (+AMF and -AMF) and 2P i levels (+P i and -P i ). Leaf primary metabolism, dry shoot biomass and leaf mineral nutrients were evaluated. Inoculated AMF plants under well-watered and drought conditions had higher photosynthesis and higher shoot biomass. Under drought, AMF, P i or AMF+P i plants showed metabolic improvements in photosynthesis, leaf biochemistry and higher biomass compared to the plants under water deficit without AMF or P i . After rehydration, those plants submitted to drought with AMF, P i or AMF+P i showed a faster recovery of photosynthesis compared to treatment under water deficit without AMF or P i . However, plants under the drought condition with AMF showed a higher net photosynthesis rate. These findings suggest that AMF, P i or AMF+P i increase the drought tolerance in P. pyramidalis, and AMF associations under well-watered conditions increase shoot biomass and, under drought, promoted faster recovery of photosynthesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Stress tolerance and ecophysiological ability of an invader and a native species in a seasonally dry tropical forest.

    Science.gov (United States)

    Oliveira, Marciel Teixeira; Matzek, Virginia; Dias Medeiros, Camila; Rivas, Rebeca; Falcão, Hiram Marinho; Santos, Mauro Guida

    2014-01-01

    Ecophysiological traits of Prosopis juliflora (Sw.) DC. and a phylogenetically and ecologically similar native species, Anadenanthera colubrina (Vell.) Brenan, were studied to understand the invasive species' success in caatinga, a seasonally dry tropical forest ecosystem of the Brazilian Northeast. To determine if the invader exhibited a superior resource-capture or a resource-conservative strategy, we measured biophysical and biochemical parameters in both species during dry and wet months over the course of two years. The results show that P. juliflora benefits from a flexible strategy in which it frequently outperforms the native species in resource capture traits under favorable conditions (e.g., photosynthesis), while also showing better stress tolerance (e.g., antioxidant activity) and water-use efficiency in unfavorable conditions. In addition, across both seasons the invasive has the advantage over the native with higher chlorophyll/carotenoids and chlorophyll a/b ratios, percent N, and leaf protein. We conclude that Prosopis juliflora utilizes light, water and nutrients more efficiently than Anadenanthera colubrina, and suffers lower intensity oxidative stress in environments with reduced water availability and high light radiation.

  11. Do Reductions in Dry Season Transpiration Allow Shallow Soil Water Uptake to Persist in a Tropical Lower Montane Cloud Forest?

    Science.gov (United States)

    Munoz Villers, L. E.; Holwerda, F.; Alvarado-Barrientos, M. S.; Goldsmith, G. R.; Geissert Kientz, D. R.; González Martínez, T. M.; Dawson, T. E.

    2016-12-01

    Tropical montane cloud forests (TMCF) are ecosystems particularly sensitive to climate change; however, the effects of warmer and drier conditions on TMCF water cycling remain poorly understood. To investigate the plant functional response to reduced water availability, we conducted a study during the mid to late dry season (2014) in the lower limit (1,325 m asl) of the TMCF belt (1200-2500 m asl) in central Veracruz, Mexico. The temporal variation of transpiration rates of dominant upper canopy and mid-story tree species, depth of water uptake, as well as tree water sources were examined using micrometeorological, sapflow and soil moisture measurements, in combination with data on stable isotope (δ18O and δ2H) composition of rain, tree xylem, soil (bulk and low suction-lysimeter) and stream water. The sapflow data suggest that crown conductances decreased as temperature and vapor pressure deficit increased, and soil moisture decreased from the mid to late dry season. Across all samplings (January 21, April 12 and 26), upper canopy species (Quercus spp.) showed more depleted (negative) isotope values compared to mid-story trees (Carpinus tropicalis). Overall, we found that the evaporated soil water pool was the main source for the trees. Furthermore, our MixSIAR Bayesian mixing model results showed that the depth of tree water uptake changed over the course of the dry season. Unexpectedly, a shift in water uptake from deeper (60-120 cm depth) to shallower soil water (0-30 cm) sources was observed, coinciding with the decreases in transpiration rates towards the end of the dry season. A larger reduction in deep soil water contributions was observed for upper canopy trees (from 70±14 to 22±15%) than for mid-story species (from 10±13 to 7±10%). The use of shallow soil water by trees during the dry season seems consistent with the greater root biomass and higher macronutrient concentrations found in the first 10 cm of the soil profiles. These findings are an

  12. Mapping tropical dry forest habitats integrating Landsat NDVI, Ikonos imagery, and topographic information in the Caribbean Island of Mona

    Directory of Open Access Journals (Sweden)

    Sebastián Martinuzzi

    2008-06-01

    Full Text Available Assessing the status of tropical dry forest habitats using remote sensing technologies is one of the research priorities for Neotropical forests. We developed a simple method for mapping vegetation and habitats in a tropical dry forest reserve, Mona Island, Puerto Rico, by integrating the Normalized Difference vegetation Index (NDvI from Landsat, topographic information, and high-resolution Ikonos imagery. The method was practical for identifying vegetation types in areas with a great variety of plant communities and complex relief, and can be adapted to other dry forest habitats of the Caribbean Islands. NDvI was useful for identifying the distribution of forests, woodlands, and shrubland, providing a natural representation of the vegetation patterns on the island. The use of Ikonos imagery allowed increasing the number of land cover classes. As a result, sixteen land-cover types were mapped over the 5 500 ha area, with a kappa coefficient of accuracy equal to 79 %. This map is a central piece for modeling vertebrate species distribution and biodiversity patterns by the Puerto Rico Gap Analysis Project, and it is of great value for assisting research and management actions in the island. Rev. Biol. Trop. 56 (2: 625-639. Epub 2008 June 30.El estudio y evaluación de los bosques tropicales secos mediante herramientas de teledetección es una de las prioridades de investigación en los ambientes neotropicales. Desarrollamos una metodología simple para mapear la vegetación de la isla de Mona, Puerto Rico, mediante el uso del índice de vegetación normalizado (NDVI por sus siglas en inglés de Landsat, información topográfica, e imágenes auxiliares de alta resolución Ikonos. La metodología fue útil para identificar las clases de vegetación en un área de gran variedad de comunidades vegetales y relieve complejo, y puede ser adaptada a otras regiones de bosque seco de las islas del Caribe. El NDVI permitió identificar la distribución de

  13. The role of arbuscular mycorrhizal fungi on the early-stage restoration of seasonally dry tropical forest in Chamela, Mexico

    Directory of Open Access Journals (Sweden)

    Pilar Huante

    2012-04-01

    Full Text Available It was evaluated the effect of two different sources of local inocula from two contrasting sites (mature forest, pasture of arbuscular mycorrhizae fungi (AMF and a non-mycorrhizal control on the plant growth of six woody species differing in functional characteristics (slow-, intermediate- and fast-growth, when introduced in a seasonally tropical dry forest (STDF converted into abandoned pasture. Six plots (12 X 12m were set as AMF inoculum source. Six replicates of six different species arranged in a Latin Square design were set in each plot. Plant height, cover area and the number of leaves produced by individual plant was measured monthly during the first growing season in each treatment. Species differed in their ability to benefit from AMF and the largest responsiveness in plant height and leaf production was exhibited by the slow-growing species Swietenia humilis, Hintonia latiflora and Cordia alliodora. At the end of the growing season (November, the plant height of the fast growing species Tabebuia donnel-smithii, Ceiba pentandra and Guazuma ulmifolia were not influenced by AMF. However, inocula of AMF increased leaf production of all plant species regardless the functional characteristics of the species, suggesting a better exploitation of above-ground space and generating a light limited environment under the canopy, which contributed to pasture suppression. Inoculation of seedlings planted in abandoned pasture areas is recommended for ecological restoration due to the high responsiveness of seedling growth in most of species. Use of forest inoculum with its higher diversity of AMF could accelerate the ecological restoration of the above and below-ground comunities.

  14. Caribbean dry forest networking: an opportunity for conservation

    Science.gov (United States)

    K. Banda-Rodriguez; J. Weintritt; R.T. Pennington

    2016-01-01

    Seasonally dry tropical forest is the most threatened tropical forest in the world. Though its overall plant species diversity is lower than in neighboring biomes such as rain forest, species endemism can be high, and its conservation has often been neglected. Caribbean dry forests face diverse threats including tourism, agriculture, and climate change. The Latin...

  15. The sensitivity of wet and dry tropical forests to climate change in Bolivia

    NARCIS (Netherlands)

    Seiler, C.; Hutjes, R.W.A.; Kruijt, B.; Hickler, T.

    2015-01-01

    Bolivia's forests contribute to the global carbon and water cycle, as well as to global biodiversity. The survival of these forests may be at risk due to climate change. To explore the associated mechanisms and uncertainties, a regionally adapted dynamic vegetation model was implemented for the

  16. Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico

    Science.gov (United States)

    Verduzco, Vivian S.; Garatuza-Payán, Jaime; Yépez, Enrico A.; Watts, Christopher J.; Rodríguez, Julio C.; Robles-Morua, Agustin; Vivoni, Enrique R.

    2015-10-01

    Due to their large extent and high primary productivity, tropical dry forests (TDF) are important contributors to atmospheric carbon exchanges in subtropical and tropical regions. In northwest Mexico, a bimodal precipitation regime that includes winter precipitation derived from Pacific storms and summer precipitation from the North American monsoon (NAM) couples water availability with ecosystem processes. We investigated the net ecosystem production of a TDF ecosystem using a 4.5 year record of water and carbon fluxes obtained from the eddy covariance method complemented with remotely sensed data. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer that respiration is mainly due to decomposition of soil organic matter accumulated from the prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production but can be overwhelmed by the strength of the primary productivity during the NAM. Precipitation characteristics during NAM have significant controls on sustaining carbon fixation in the TDF into the fall season. We identified that a threshold of ~350 to 400 mm of monsoon precipitation leads to a switch in the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This monsoonal precipitation threshold is typically exceeded one out of every 2 years. The close coupling of winter and summer periods with respect to carbon fluxes suggests that the annual carbon balance is dependent on precipitation amounts in both seasons in TDF ecosystems.

  17. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales).

    Science.gov (United States)

    De-Nova, J Arturo; Medina, Rosalinda; Montero, Juan Carlos; Weeks, Andrea; Rosell, Julieta A; Olson, Mark E; Eguiarte, Luis E; Magallón, Susana

    2012-01-01

    • Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. • Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. • Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. • The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  18. Contrasting patterns of leaf trait variation among and within species during tropical dry forest succession in Costa Rica.

    Science.gov (United States)

    Derroire, Géraldine; Powers, Jennifer S; Hulshof, Catherine M; Cárdenas Varela, Luis E; Healey, John R

    2018-01-10

    A coordinated response to environmental drivers amongst individual functional traits is central to the plant strategy concept. However, whether the trait co-ordination observed at the global scale occurs at other ecological scales (especially within species) remains an open question. Here, for sapling communities of two tropical dry forest types in Costa Rica, we show large differences amongst traits in the relative contribution of species turnover and intraspecific variation to their directional changes in response to environmental changes along a successional gradient. We studied the response of functional traits associated with the leaf economics spectrum and drought tolerance using intensive sampling to analyse inter- and intra-specific responses to environmental changes and ontogeny. Although the overall functional composition of the sapling communities changed during succession more through species turnover than through intraspecific trait variation, their relative contributions differed greatly amongst traits. For instance, community mean specific leaf area changed mostly due to intraspecific variation. Traits of the leaf economics spectrum showed decoupled responses to environmental drivers and ontogeny. These findings emphasise how divergent ecological mechanisms combine to cause great differences in changes of individual functional traits over environmental gradients and ecological scales.

  19. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure

    Directory of Open Access Journals (Sweden)

    Lizet Solis-Gabriel

    2017-05-01

    Full Text Available Tropical dry forests (TDFs have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.

  20. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest.

    Science.gov (United States)

    Victoriano-Romero, Elizabeth; Valencia-Díaz, Susana; Toledo-Hernández, Víctor Hugo; Flores-Palacios, Alejandro

    2017-01-01

    Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera) and low (Conzattia multiflora) epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.

  1. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Elizabeth Victoriano-Romero

    Full Text Available Seed dispersal permits the colonization of favorable habitats and generation of new populations, facilitating escape from habitats that are in decline. There is little experimental evidence of the factors that limit epiphyte dispersion towards their hosts. In a tropical dry forest in central Mexico, we monitored the phenology of dispersion of epiphyte species of the genus Tillandsia; we tested experimentally whether precipitation could cause failures in seed dispersal and whether seed capture differs among vertical strata and between host species with high (Bursera copallifera and low (Conzattia multiflora epiphyte loads. With the exception of one species that presents late dispersion and low abundance, all of the species disperse prior to the onset of the rainy season. However, early rains immobilize the seeds, affecting up to 24% of the fruits in species with late dispersion. We observed that Tillandsia seeds reach both Bursera and Conzattia hosts, but found that adherence to the host is 4-5 times higher in Bursera. Furthermore, seeds liberated from Bursera travel shorter distances and up to half may remain within the same crown, while the highest seed capture takes place in the upper strata of the trees. We conclude that dispersion of Tillandsia seeds is limited by early rains and by the capture of seeds within the trees where populations concentrate. This pattern of capture also helps to explain the high concentrations of epiphytes in certain hosts, while trees with few epiphytes can be simultaneously considered deficient receivers and efficient exporters of seeds.

  2. Restoring lepidopteran diversity in a tropical dry forest: relative importance of restoration treatment, tree identity and predator pressure.

    Science.gov (United States)

    Solis-Gabriel, Lizet; Mendoza-Arroyo, Wendy; Boege, Karina; Del-Val, Ek

    2017-01-01

    Tropical dry forests (TDFs) have been widely transformed by human activities worldwide and the ecosystem services they provide are diminishing. There has been an urgent call for conservation and restoration of the degraded lands previously occupied by TDFs. Restoration experiences aim to recover species diversity and ecological functions. Different restoration strategies have been used to maximize plant performance including weeding, planting or using artificial mulching. In this investigation, we evaluated whether different restoration practices influence animal arrival and the reestablishment of biotic interactions. We particularly evaluated lepidopteran larvae diversity and caterpillar predation on plants established under different restoration treatments (mulching, weeding and control) in the Pacific West Coast of México. This study corroborated the importance of plant host identity for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory rates were not affected by the restoration treatment but they were related to tree species. In contrast, caterpillar predation marks were affected by restoration treatment, with a greater number of predation marks in control plots, while caterpillar predation marks among plant species were not significantly different. This study highlights the importance of considering the introduction of high plant species diversity when planning TDF restoration to maximize lepidopteran diversity and ecosystem functioning.

  3. Variability in core areas of spider monkeys (Ateles geoffroyi) in a tropical dry forest in Costa Rica.

    Science.gov (United States)

    Asensio, Norberto; Schaffner, Colleen M; Aureli, Filippo

    2012-04-01

    Core areas are highly used parts of the home range on which the survival of solitary or group-living animals depends. We investigated the home range and core area size and area fidelity of a spider monkey community in a tropical dry forest over a 4-year period. Home ranges overlapped extensively across years, subgroup sizes, and seasons. In contrast, spider monkeys used core areas that varied in size and location across the study years, subgroup sizes, and seasons. These shifts in core areas suggest that the understanding of core areas, and thus the spatial requirements, of a species in a particular habitat may be limited if based on short-term studies. In this respect, our findings emphasize the importance of long-term studies of the spatial ecology of any species in a particular habitat. Our study also shows that the yearly home range basically includes all the core areas from different years, seasons, and subgroup sizes (i.e., the super-core area). This is conceptually important for territorial species, such as spider monkeys, which defend a stable home range as it contains not only the current, but also the future core areas.

  4. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests.

    Science.gov (United States)

    Xu, Xiangtao; Medvigy, David; Powers, Jennifer S; Becknell, Justin M; Guan, Kaiyu

    2016-10-01

    We assessed whether diversity in plant hydraulic traits can explain the observed diversity in plant responses to water stress in seasonally dry tropical forests (SDTFs). The Ecosystem Demography model 2 (ED2) was updated with a trait-driven mechanistic plant hydraulic module, as well as novel drought-phenology and plant water stress schemes. Four plant functional types were parameterized on the basis of meta-analysis of plant hydraulic traits. Simulations from both the original and the updated ED2 were evaluated against 5 yr of field data from a Costa Rican SDTF site and remote-sensing data over Central America. The updated model generated realistic plant hydraulic dynamics, such as leaf water potential and stem sap flow. Compared with the original ED2, predictions from our novel trait-driven model matched better with observed growth, phenology and their variations among functional groups. Most notably, the original ED2 produced unrealistically small leaf area index (LAI) and underestimated cumulative leaf litter. Both of these biases were corrected by the updated model. The updated model was also better able to simulate spatial patterns of LAI dynamics in Central America. Plant hydraulic traits are intercorrelated in SDTFs. Mechanistic incorporation of plant hydraulic traits is necessary for the simulation of spatiotemporal patterns of vegetation dynamics in SDTFs in vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Scale-dependent variation in nitrogen cycling and soil fungal communities along gradients of forest composition and age in regenerating tropical dry forests.

    Science.gov (United States)

    Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S

    2016-01-01

    Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  7. Classification of tree species based on longwave hyperspectral data from leaves, a case study for a tropical dry forest

    Science.gov (United States)

    Harrison, D.; Rivard, B.; Sánchez-Azofeifa, A.

    2018-04-01

    Remote sensing of the environment has utilized the visible, near and short-wave infrared (IR) regions of the electromagnetic (EM) spectrum to characterize vegetation health, vigor and distribution. However, relatively little research has focused on the use of the longwave infrared (LWIR, 8.0-12.5 μm) region for studies of vegetation. In this study LWIR leaf reflectance spectra were collected in the wet seasons (May through December) of 2013 and 2014 from twenty-six tree species located in a high species diversity environment, a tropical dry forest in Costa Rica. A continuous wavelet transformation (CWT) was applied to all spectra to minimize noise and broad amplitude variations attributable to non-compositional effects. Species discrimination was then explored with Random Forest classification and accuracy improved was observed with preprocessing of reflectance spectra with continuous wavelet transformation. Species were found to share common spectral features that formed the basis for five spectral types that were corroborated with linear discriminate analysis. The source of most of the observed spectral features is attributed to cell wall or cuticle compounds (cellulose, cutin, matrix glycan, silica and oleanolic acid). Spectral types could be advantageous for the analysis of airborne hyperspectral data because cavity effects will lower the spectral contrast thus increasing the reliance of classification efforts on dominant spectral features. Spectral types specifically derived from leaf level data are expected to support the labeling of spectral classes derived from imagery. The results of this study and that of Ribeiro Da Luz (2006), Ribeiro Da Luz and Crowley (2007, 2010), Ullah et al. (2012) and Rock et al. (2016) have now illustrated success in tree species discrimination across a range of ecosystems using leaf-level spectral observations. With advances in LWIR sensors and concurrent improvements in their signal to noise, applications to large-scale species

  8. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest.

    Science.gov (United States)

    González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis

    2010-07-01

    Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments. 2010 Elsevier GmbH. All rights reserved.

  9. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests

    NARCIS (Netherlands)

    Poorter, L.

    2009-01-01

    ¿ Shade tolerance is the central paradigm for understanding forest succession and dynamics, but there is considerable debate as to what the salient features of shade tolerance are, whether adult leaves show similar shade adaptations to seedling leaves, and whether the same leaf adaptations are found

  10. Does the edge effect influence plant community structure in a tropical dry forest? O efeito de borda influencia a estrutura da comunidade vegetal em uma floresta tropical seca?

    Directory of Open Access Journals (Sweden)

    Diogo Gallo Oliveira

    2013-04-01

    Full Text Available Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.Efeitos de borda são considerados fator-chave na regulação da estrutura de comunidades vegetais em diferentes ecossistemas. Entretanto, apesar dos poucos estudos relacionados, o efeito de borda parece não ser determinante em regiões semiáridas, como a floresta tropical seca brasileira, conhecida como Caatinga. Este estudo testou a hipótese nula de que a comunidade vegetal arbustivo-arbórea não sofre alterações em sua estrutura, riqueza e composição devido ao efeito de borda. Foram instaladas 24 parcelas (20 x 20 m em um fragmento de Caatinga arbórea, sendo 12 parcelas na borda do fragmento e 12 parcelas no seu interior. A riqueza, abundância e composição das espécies não diferiram estatisticamente entre as parcelas de borda e interior. Os resultados deste estudo corroboram um possível padr

  11. Effects of Habitat Structure, Plant Cover, and Successional Stage on the Bat Assemblage of a Tropical Dry Forest at Different Spatial Scales

    Directory of Open Access Journals (Sweden)

    Luiz A. D. Falcão

    2018-05-01

    Full Text Available Bats play a fundamental role in ecosystem functioning since they are responsible for several ecological services such as seed dispersal and pollination. Therefore, assessing the effects of habitat structure at different scales on the bat assemblage is extremely important for supporting conservation strategies. The objective of the present study was to investigate the effects of habitat structure at multiple spatial scales on the bat assemblages and their variation along a gradient of secondary succession in a Brazilian tropical dry forest. Our results suggest that bat abundance is higher in areas close to mature forests, which shows the important role of those habitats as refuges for the regional bat fauna (in a fragmented landscape and for the maintenance of ecosystem services provided by this group in tropical dry forests in a landscape context. In addition, bat abundance was lower in protected areas whose surroundings were better preserved (greater forest extension. This unexpected finding could result from an altered behavior in areas under a strong influence of a fruit crop matrix. Finally, we showed that the effects of the surroundings depend on the successional stage of the area under analysis. Late forests are more susceptible to variations in the forest cover in their surroundings, which show the higher fragility of these environments.

  12. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    de la Rosa-Manzano, Edilia; Andrade, José Luis; García-Mendoza, Ernesto; Zotz, Gerhard; Reyes-García, Casandra

    2015-12-01

    Epiphytic orchids from dry forests of Yucatán show considerable photoprotective plasticity during the dry season, which depends on leaf morphology and host tree deciduousness. Nocturnal retention of antheraxanthin and zeaxanthin was detected for the first time in epiphytic orchids. In tropical dry forests, epiphytes experience dramatic changes in light intensity: photosynthetic photon flux density may be up to an order of magnitude higher in the dry season compared to the wet season. To address the seasonal changes of xanthophyll cycle (XC) pigments and photosynthesis that occur throughout the year, leaves of five epiphytic orchid species were studied during the early dry, dry and wet seasons in a deciduous and a semi-deciduous tropical forests at two vertical strata on the host trees (3.5 and 1.5 m height). Differences in XC pigment concentrations and photosynthesis (maximum quantum efficiency of photosystem II; F v/F m) were larger among seasons than between vertical strata in both forests. Antheraxanthin and zeaxanthin retention reflected the stressful conditions of the epiphytic microhabitat, and it is described here in epiphytes for the first time. During the dry season, both XC pigment concentrations and photosystem II heat dissipation of absorbed energy increased in orchids in the deciduous forest, while F v/F m and nocturnal acidification (ΔH(+)) decreased, clearly as a response to excessive light and drought. Concentrations of XC pigments were higher than those in orchids with similar leaf shape in semi-deciduous forest. There, only Encyclia nematocaulon and Lophiaris oerstedii showed somewhat reduced F v/F m. No changes in ΔH(+) and F v/F m were detected in Cohniella ascendens throughout the year. This species, which commonly grows in forests with less open canopies, showed leaf tilting that diminished light interception. Light conditions in the uppermost parts of the canopy probably limit the distribution of epiphytic orchids and the retention of

  13. Dragonfly (insecta: odonata) diversity in two use of soils in a tropical dry forest

    International Nuclear Information System (INIS)

    Altamiranda S, Mariano

    2009-01-01

    Dragonfly diversity was estimated in the Agricultural Center Cotove (Santafe de Antioquia-Colombia). Active capture using an entomological net was used. Each transect was located perpendicular to the water body, for a length of approximately 200 m and a lateral extension of 8 m. Twenty Odonata species were registered, from 5 families and 15 genus. Libellulidae showed the biggest abundance and richness, with 65 specimens that represent 53.7% of the total abundance, and 12 species that represent 60% of the registered community. The diversity was high in the forest in reference at crop; however, the low abundances register highlight the need for greater sampling effort in cultivating, for a better estimate of ? diversity; the diversity was of 12 species and the complementary index was of 0.6, it indicates that the Odonata's fauna is characteristic and distinctive for each use of soil.

  14. How Does Dung Beetle (Coleoptera: Scarabaeidae) Diversity Vary Along a Rainy Season in a Tropical Dry Forest?

    Science.gov (United States)

    Novais, Samuel M A; Evangelista, Lucas A; Reis-Júnior, Ronaldo; Neves, Frederico S

    2016-01-01

    Dung beetle community dynamics are determined by regional rainfall patterns. However, little is known about the temporal dynamics of these communities in tropical dry forests (TDFs). This study was designed to test the following predictions: 1) Peak diversity of dung beetle species occurs early in the wet season, with a decrease in diversity (α and β) and abundance throughout the season; 2) Nestedness is the primary process determining β-diversity, with species sampled in the middle and the end of the wet season representing subsets of the early wet season community. Dung beetles were collected in a TDF in the northern Minas Gerais state, Brazil over three sampling events (December 2009, February and April 2010). We sampled 2,018 dung beetles belonging to 39 species and distributed among 15 genera. Scarabaeinae α-diversity and abundance were highest in December and equivalent between February and April, while β-diversity among plots increased along the wet season. The importance of nestedness and species turnover varies between pairs of sample periods as the main process of temporal β-diversity. Most species collected in the middle and end of the wet season were found in greater abundance in early wet season. Thus, the dung beetle community becomes more homogeneous at the beginning of the wet season, and as the season advances, higher resource scarcity limits population size, which likely results in a smaller foraging range, increasing β-diversity. Our results demonstrate high synchronism between the dung beetle life cycle and seasonality of environmental conditions throughout the wet season in a TDF, where the onset of rains determines adult emergence for most species. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  15. Response of the endangered tropical dry forests to climate change and the role of Mexican Protected Areas for their conservation.

    Science.gov (United States)

    Prieto-Torres, David A; Navarro-Sigüenza, Adolfo G; Santiago-Alarcon, Diego; Rojas-Soto, Octavio R

    2016-01-01

    Assuming that co-distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of bird and plant species inhabiting tropical dry forests (TDFs) in Mexico were developed to evaluate future projections of their distribution for the years 2050 and 2070. We used ENM-based predictions and climatic data for two Global Climate Models, considering two Representative Concentration Pathway scenarios (RCP4.5/RCP8.5). We also evaluated the effects of habitat loss and the importance of the Mexican system of protected areas (PAs) on the projected models for a more detailed prediction of TDFs and to identify hot spots that require conservation actions. We identified four major distributional areas: the main one located along the Pacific Coast (from Sonora to Chiapas, including the Cape and Bajío regions, and the Balsas river basin), and three isolated areas: the Yucatán peninsula, central Veracruz, and southern Tamaulipas. When considering the effect of habitat loss, a significant reduction (~61%) of the TDFs predicted area occurred, whereas climate-change models suggested (in comparison with the present distribution model) an increase in area of 3.0-10.0% and 3.0-9.0% for 2050 and 2070, respectively. In future scenarios, TDFs will occupy areas above its current average elevational distribution that are outside of its present geographical range. Our findings show that TDFs may persist in Mexican territory until the middle of the XXI century; however, the challenges about long-term conservation are partially addressed (only 7% unaffected within the Mexican network of PAs) with the current Mexican PAs network. Based on our ENM approach, we suggest that a combination of models of species inhabiting present TDFs and taking into account change scenarios represent an invaluable tool to create new PAs and ecological corridors, as a response to the increasing levels of habitat destruction and the effects of climate change on this ecosystem. © 2015

  16. Mating system, population growth, and management scenario for Kalanchoe pinnata in an invaded seasonally dry tropical forest.

    Science.gov (United States)

    González de León, Salvador; Herrera, Ileana; Guevara, Roger

    2016-07-01

    Ecological invasions are a major issue worldwide, where successful invasion depends on traits that facilitate dispersion, establishment, and population growth. The nonnative succulent plant Kalanchoe pinnata, reported as invasive in some countries, is widespread in remnants of seasonally dry tropical forest on a volcanic outcrop with high conservation value in east-central Mexico where we assessed its mating system and demographic growth and identified management strategies. To understand its local mating system, we conducted hand-pollination treatments, germination, and survival experiments. Based on the experimental data, we constructed a life-stage population matrix, identified the key traits for population growth, weighted the contributions of vegetative and sexual reproduction, and evaluated management scenarios. Hand-pollination treatments had slight effects on fruit and seed setting, as well as on germination. With natural pollination treatment, the successful germination of seeds from only 2/39 fruit suggests occasional effective natural cross-pollination. The ratios of the metrics for self- and cross-pollinated flowers suggest that K. pinnata is partially self-compatible. Most of the pollinated flowers developed into fruit, but the seed germination and seedling survival rates were low. Thus, vegetative propagation and juvenile survival are the main drivers of population growth. Simulations of a virtual K. pinnata population suggest that an intense and sustained weeding campaign will reduce the population within at least 10 years. Synthesis and applications. The study population is partially self-compatible, but sexual reproduction by K. pinnata is limited at the study site, and population growth is supported by vegetative propagation and juvenile survival. Demographic modeling provides key insights and realistic forecasts on invasion process and therefore is useful to design management strategies.

  17. The Microclimate of a Tropical Evergreen Forest.

    Science.gov (United States)

    1980-08-01

    of Human Bioclimate - A Review. World Meteorological Organization Bulletin, Geneva, 56 pp. REFERENCES (con’t) Lee, R., 1978. Forest Micrometeorology...Geophysics, and Bioclimatology , Ser. B 24, 243-251. Pinker, R. (1980): The Microclimate of a dry tropical forest. (Accepted for publication in

  18. Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Paramesha Mallegowda

    2015-02-01

    Full Text Available Most wildlife habitats and migratory routes are extremely threatened due to increasing demands on forestland and forest resources by burgeoning human population. Corridor landscape in Biligiri Rangaswamy Temple Tiger Reserve (BRT is one among them, subjected to various anthropogenic pressures. Human habitation, intensive farming, coffee plantations, ill-planned infrastructure developments and rapid spreading of invasive plant species Lantana camara, pose a serious threat to wildlife habitat and their migration. Aim of this work is to create detailed NDVI based land change maps and to use them to identify time-series trends in greening and browning in forest corridors in the study area and to identify the drivers that are influencing the observed changes. Over the four decades in BRT, NDVI increased in the core area of the forest and reduced in the fringe areas. The change analysis between 1973 and 2014 shows significant changes; browning due to anthropogenic activities as well as natural processes and greening due to Lantana spread. This indicates that the change processes are complex, involving multiple driving factors, such as socio-economic changes, high population growth, historical forest management practices and policies. Our study suggests that the use of updated and accurate change detection maps will be useful in taking appropriate site specific action-oriented conservation decisions to restore and manage the degraded critical wildlife corridors in human-dominated landscape.

  19. Comparing MODIS and near-surface vegetation indexes for monitoring tropical dry forest phenology along a successional gradient using optical phenology towers

    Science.gov (United States)

    Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain

    2017-10-01

    Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these

  20. Dry and Semi-Dry Tropical Cyclones

    Science.gov (United States)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  1. Root depth and morphology in response to soil drought: comparing ecological groups along the secondary succession in a tropical dry forest.

    Science.gov (United States)

    Paz, Horacio; Pineda-García, Fernando; Pinzón-Pérez, Luisa F

    2015-10-01

    Root growth and morphology may play a core role in species-niche partitioning in highly diverse communities, especially along gradients of drought risk, such as that created along the secondary succession of tropical dry forests. We experimentally tested whether root foraging capacity, especially at depth, decreases from early successional species to old-growth forest species. We also tested for a trade-off between two mechanisms for delaying desiccation, the capacity to forage deeper in the soil and the capacity to store water in tissues, and explored whether successional groups separate along such a trade-off. We examined the growth and morphology of roots in response to a controlled-vertical gradient of soil water, among seedlings of 23 woody species dominant along the secondary succession in a tropical dry forest of Mexico. As predicted, successional species developed deeper and longer root systems than old-growth forest species in response to soil drought. In addition, shallow root systems were associated with high plant water storage and high water content per unit of tissue in stems and roots, while deep roots exhibited the opposite traits, suggesting a trade-off between the capacities for vertical foraging and water storage. Our results suggest that an increased capacity of roots to forage deeper for water is a trait that enables successional species to establish under the warm-dry conditions of the secondary succession, while shallow roots, associated with a higher water storage capacity, are restricted to the old-growth forest. Overall, we found evidence that the root depth-water storage trade-off may constrain tree species distribution along secondary succession.

  2. Effects of land use change and seasonality of precipitation on soil nitrogen in a dry tropical forest area in the Western Llanos of Venezuela.

    Science.gov (United States)

    González-Pedraza, Ana Francisca; Dezzeo, Nelda

    2014-01-01

    We evaluated changes of different soil nitrogen forms (total N, available ammonium and nitrate, total N in microbial biomass, and soil N mineralization) after conversion of semideciduous dry tropical forest in 5- and 18-year-old pastures (YP and OP, resp.) in the western Llanos of Venezuela. This evaluation was made at early rainy season, at end rainy season, and during dry season. With few exceptions, no significant differences were detected in the total N in the three study sites. Compared to forest soils, YP showed ammonium losses from 4.2 to 62.9% and nitrate losses from 20.0 to 77.8%, depending on the season of the year. In OP, the ammonium content increased from 50.0 to 69.0% at the end of the rainy season and decreased during the dry season between 25.0 and 55.5%, whereas the nitrate content increased significantly at early rainy season. The net mineralization and the potentially mineralizable N were significantly higher (P forest and YP, which would indicate a better quality of the substrate in OP for mineralization. The mineralization rate constant was higher in YP than in forest and OP. This could be associated with a reduced capacity of these soils to preserve the available nitrogen.

  3. Local deforestation patterns and their driving forces of tropical dry forest in two municipalities in Southern Oaxaca, Mexico (1985-2006

    Directory of Open Access Journals (Sweden)

    L. Galicia

    2016-11-01

    Full Text Available The tropical dry forest is an ecosystem that is undergoing rapid changes. Although global driving forces behind these changes have been addressed at a local scale, spatio-temporal dynamics are still largely unknown. The main objective of this study was to identify the causes governing the dynamics of changes in land use and land cover in the tropical dry forest in two municipalities in Southern México. Satellite imagery and air photographs were used in a GIS context to produce maps of land use and land cover for 1985, 1995 and 2006. A number of statistical methods (Markov chains, general lineal models and regression tree analysis were applied to identify the proximate and the underlying causes of deforestation, agriculture being the most important one. When agriculture is mainly for self consumption, topographic factors determine its location. Increasing job opportunities in the tourism sector has resulted in the abandonment of agricultural land; consequently, the forest has recovered. Different studies have examined the dynamics of local deforestation and its driving forces in México; however, this study considered both spatial and temporal elements in order to identify the most important underlying driving forces of deforestation and its dynamics at local scale, and also compared two neighboring municipalities.

  4. Plant cover and hydrological response in a seasonally dry tropical forest (SDTF = Cobertura vegetal e as respostas hidrológicas em floresta tropical sazonalmente seca (FTSS

    Directory of Open Access Journals (Sweden)

    Eunice Maia de Andrade

    2017-10-01

    Full Text Available The scarcity of information on the processes of rainfall-flow limits understanding of the hydrology of dry regions of the world. In order to minimise the problem, this study was developed to investigate the influence of the characteristics of rainfall events and plant cover on the effective precipitation (Pe in a seasonally dry tropical forest (SDTF in the Northeast of Brazil. The study was carried out in two paired watersheds, one with SDTF under regeneration for 35 years (CR35 and the other under thinned SDTF for 5 years (TC. A historical series of five years (2009-2013 was analysed, with a total of 203 rainfall events, where only those rainfall events that generated a Pe > 1.0 mm were considered. CR35 had a greater number of Pe events (47 than TC (35. Rainfall depth and intensity were the factors that best explained the effective precipitation under both types of vegetation cover. The influence of herbaceous vegetation on the reduction of surface runoff was demonstrated by the smaller runoff depth and the greater potential for soil water storage in the watershed under thinned Caatinga. This fact leads to the conclusion that the technique of thinning is suitable management for Caatinga vegetation, and is capable of promoting the retention of soil water. = A escassez de informações sobre os processos chuva-deflúvio é uma limitação no entendimento da hidrologia das regiões secas do globo terrestre. Buscando minimizar esta problemática, desenvolveuse este estudo objetivando investigar as influências das características dos eventos pluviométricos e da cobertura vegetal na precipitação efetiva (Pe em floresta tropical sazonalmente seca (FTSS, no nordeste do Brasil. O estudo foi realizado em duas microbacias emparelhadas, uma com FTSS em regeneração há 35 anos (CR35 e outra com FTSS raleada há 5 anos (CR. Foi analisada uma série histórica de cinco anos (2009-2013, com um total de 203 eventos pluviométricos, sendo considerados

  5. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs.

    Directory of Open Access Journals (Sweden)

    Gabriela Silva Ribeiro Gonçalves

    Full Text Available Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition, in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  6. The role of climate and environmental variables in structuring bird assemblages in the Seasonally Dry Tropical Forests (SDTFs).

    Science.gov (United States)

    Gonçalves, Gabriela Silva Ribeiro; Cerqueira, Pablo Vieira; Brasil, Leandro Schlemmer; Santos, Marcos Pérsio Dantas

    2017-01-01

    Understanding the processes that influence species diversity is still a challenge in ecological studies. However, there are two main theories to discuss this topic, the niche theory and the neutral theory. Our objective was to understand the importance of environmental and spatial processes in structuring bird communities within the hydrological seasons in dry forest areas in northeastern Brazil. The study was conducted in two National Parks, the Serra da Capivara and Serra das Confusões National Parks, where 36 areas were sampled in different seasons (dry, dry/rainy transition, rainy, rainy/dry transition), in 2012 and 2013. We found with our results that bird species richness is higher in the rainy season and lower during the dry season, indicating a strong influence of seasonality, a pattern also found for environmental heterogeneity. Richness was explained by local environmental factors, while species composition was explained by environmental and spatial factors. The environmental factors were more important in explaining variations in composition. Climate change predictions have currently pointed out frequent drought events and a rise in global temperature by 2050, which would lead to changes in species behavior and to increasing desertification in some regions, including the Caatinga. In addition, the high deforestation rates and the low level of representativeness of the Caatinga in the conservation units negatively affects bird communities. This scenario has demonstrated how climatic factors affect individuals, and, therefore, should be the starting point for conservation initiatives to be developed in xeric environments.

  7. Chemical composition of the fruit of two species of tropical dry forest in the coastal region of Ecuador as food source for ruminants

    Directory of Open Access Journals (Sweden)

    Henrry Othón Intriago Mendoza

    2015-04-01

    Full Text Available Fodder species of trees in the coastal region of Manabí are an alternative food to cattle, especia-lly between the months of september and december when the pasture gets scarce. To evaluate their nutritional potential was made a compositional analysis of nutritional parameters to the fruits of Prosopis juliflora (Sw. DC. (Algarrobo and Guazuma ulmifolia Lam. (Guasmo. Botanical characters of these trees and compositional analysis results are described. Furthermore, a comparison of these results with those obtained by other authors by con-sidering the values of protein, fat, fiber, ash and moisture is performed. For the environmental conditions of tropical dry forest, the guasmo presents higher contents of protein, fat, ash and fiber carob, although both species are important in the diet of herbivores, especially in dry seasons as providers of usable nutrients favoring animal nutrition

  8. Aspergillus and Penicillium (Eurotiales: Trichocomaceae) in soils of the Brazilian tropical dry forest: diversity in an area of environmental preservation.

    Science.gov (United States)

    Barbosa, Renan do Nascimento; Bezerra, Jadson Diogo Pereira; Costa, Phelipe Manoel Oller; de Lima-Júnior, Nelson Correia; Alves de Souza Galvão, Ivana Roberta Gomes; Alves dos Santos-Júnior, Anthony; Fernandes, Maria José; de Souza-Motta, Cristina Maria; Oliveira, Neiva Tinti

    2016-03-01

    Soil is a complex biological system that plays a key role for plants and animals, especially in dry forests such as the Caatinga. Fungi from soils, such as Aspergillus and Penicillium, can be used as bioindica- tors for biodiversity conservation. The aim of this study was to isolate and identify species of Aspergillus and Penicillium in soil, from the municipalities of Tupanatinga and Ibimirim, with dry forests, in the Catimbau National Park. Five collections were performed in each area during the drought season of 2012, totaling 25 soil samples per area. Fungi were isolated by suspending soil samples in sterile distilled water and plating on Sabouraud Agar media plus Chloramphenicol and Rose Bengal, and Glycerol Dicloran Agar. Isolates were identified by morphological taxonomy in the Culture Collection Laboratory and confirmed by sequencing of the Internal Transcribed Spacer of rDNA. A total of 42 species were identified, of which 22 belong to the genus Aspergillus and 20 to Penicillium. Penicillium isolates showed uniform distribution from the collecting area in Tupanatinga, and the evenness indices found were 0.92 and 0.88 in Tupanatinga and Ibimirim, respectively. Among isolates of Aspergillus evenness, the value found in Tupanatinga (0.85) was very close to that found in Ibimirim (0.86). High diversity and low dominance of fungi in soil samples was observed. These results con- tributed to the estimation of fungal diversity in dry environments of the Caatinga, where diversity is decreasing in soils that have undergone disturbance.

  9. Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest

    Directory of Open Access Journals (Sweden)

    Wanessa Nepomuceno Ferreira

    2015-09-01

    Full Text Available ABSTRACTIn seasonally dry tropical forests, species carrying attributes of Stress Resistance Syndrome (SRS may have ecological advantages over species demanding high quantities of resources. In such forests, Poincianella bracteosa is abundant, while Libidibia ferrea has low abundance; therefore, we hypothesized that P. bracteosa has characteristics of low-resource species, while L. ferrea has characteristics of high-resource species. To test this hypothesis, we assessed morphological and physiological traits of seedlings of these species under different water regimes (100%, 70%, 40%, and 10% field capacity over 85 days. For most of the studied variables we observed significant decreases with increasing water stress, and these reductions were greater in L. ferrea. As expected, L. ferreamaximized their growth with increased water supply, while P. bracteosa maintained slower growth and had minor adjustments in biomass allocation, characteristics representative of low-resource species that are less sensitive to stress. We observed that specific leaf area, biomass allocation to roots, and root/shoot ratio were higher in L. ferrea, while biomass allocation to leaves and photosynthesis were higher in P. bracteosa. Results suggest that the attributes of SRS can facilitate high abundance of P. bracteosa in dry forest.

  10. Diversified Native Species Restoration for Recovery of Multiple Ecosystem Services in a Highly Disturbed Tropical Dry Forest Landscape of Southwestern Nicaragua

    Science.gov (United States)

    Williams-Guillen, K.; Otterstrom, S.; Perla, C.

    2015-12-01

    Tropical dry forests have been reduced to a fraction of their original extent in the Neotropics due to conversion to agriculture and cattle pasture. While TDF can recover via natural regeneration, resulting forests are dominated by wind-dispersed pioneer species of limited value for frugivorous wildlife. Additionally, passive restoration can be perceived as "abandonment" resulting in neighbors casually invading property to rear livestock and extract timber. In 2007, the NGO Paso Pacífico initiated restoration in a highly degraded tropical dry forest landscape of southwestern Nicaragua; funded by an ex-ante carbon purchase, the project was designed to integrate multiple native tree species known to provide resources used by local wildlife. We restored roughly 400 hectares spanning a rainfall gradient from dry to transitional moist forest, using reforestation (planting 70 species of tree seedlings in degraded pastures on a 4x4 m grid, leaving occurring saplings) and assisted regeneration (clearing vines and competing vegetation from saplings in natural regeneration and strategically managing canopy cover). In just over seven years, mean carbon increased nearly threefold, from to 21.5±5.0 to 57.9±9.6 SE tonnes/ha. Current carbon stocks match those of 20-year-old forests in the area, accumulated in less than a decade. Stem density per 15-m radius plot decreased from 16.3±2.3 to 12.5±0.9 SE, while species richness increased from 3.9±0.4 to 18.4±1.4 SE. Alpha richness of woody stems across plots increased from 36 to 94 species, and over 20 tree species established as a result of natural dispersal and recruitment. We have observed sensitive species such as spider monkeys and parrots foraging in restoration areas. Managed reforestation is a highly effective method for rapidly restoring the functionality of multiple ecosystem services in degraded TDF, particularly when social and political realities force restoration to coexist with human productive activities

  11. Phylogenetic classification of the world's tropical forests

    DEFF Research Database (Denmark)

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodriguez, Victor

    2018-01-01

    -Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between......Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern...... phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal...

  12. Tropical forests. Nettai no shinrin

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, I [Kyoto Univ., Kyoto (Japan)

    1991-11-05

    It was in 1950s when felling of tropical forests started in earnest, in 1970s felling of forest trees in Southeast Asia reached its peak and the destnation of exportation of most of them was Japan. Besides, among the present overseas development assistance projects (ODA) of Japan, her role to be played in connection with tropical forests is not small and its funds, which surpass by far the budget for forestry of the United Nations Food and Agriculture Organization (FAO), are aiding cooperation projects on forestry in many places in the world. Nevertheless, in Japan, the understanding of tropical forests is insufficient and its realities have not been known. In this article, based on the experience and knowledge of the author who stayed in Kalimantan, various kinds of problems concerning tropical forests are explained, the realities are introduced on information, well trained people, funds and philosophy which are far short in pursuance of the problems of tropical forests. Furthermore, as the issues hereafter, such proposals on tropical forests are made as protection of natural forests, planned operation in respecting self renewal ability of the secondary forests and afforestation of alang-alang grassy plains resulted from the failure of burning felled trees and grasses for making the land arable. 1 ref..

  13. Influence of Plot Size on Efficiency of Biomass Estimates in Inventories of Dry Tropical Forests Assisted by Photogrammetric Data from an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Daud Jones Kachamba

    2017-06-01

    Full Text Available Applications of unmanned aircraft systems (UASs to assist in forest inventories have provided promising results in biomass estimation for different forest types. Recent studies demonstrating use of different types of remotely sensed data to assist in biomass estimation have shown that accuracy and precision of estimates are influenced by the size of field sample plots used to obtain reference values for biomass. The objective of this case study was to assess the influence of sample plot size on efficiency of UAS-assisted biomass estimates in the dry tropical miombo woodlands of Malawi. The results of a design-based field sample inventory assisted by three-dimensional point clouds obtained from aerial imagery acquired with a UAS showed that the root mean square errors as well as the standard error estimates of mean biomass decreased as sample plot sizes increased. Furthermore, relative efficiency values over different sample plot sizes were above 1.0 in a design-based and model-assisted inferential framework, indicating that UAS-assisted inventories were more efficient than purely field-based inventories. The results on relative costs for UAS-assisted and pure field-based sample plot inventories revealed that there is a trade-off between inventory costs and required precision. For example, in our study if a standard error of less than approximately 3 Mg ha−1 was targeted, then a UAS-assisted forest inventory should be applied to ensure more cost effective and precise estimates. Future studies should therefore focus on finding optimum plot sizes for particular applications, like for example in projects under the Reducing Emissions from Deforestation and Forest Degradation, plus forest conservation, sustainable management of forest and enhancement of carbon stocks (REDD+ mechanism with different geographical scales.

  14. Associations between soil variables and vegetation structure and composition of Caribbean dry forests

    Science.gov (United States)

    Elvia M. Melendez-Ackerman; Julissa Rojas-Sandoval; Danny S. Fernandez; Grizelle Gonzalez; Hana Lopez; Jose Sustache; Mariely Morales; Miguel Garcia-Bermudez; Susan Aragon

    2016-01-01

    Soil–vegetation associations have been understudied in tropical dry forests when compared to the amount of extant research on this issue in tropical wet forests. Recent studies assert that vegetation in tropical dry forests is highly heterogeneous and that soil variability may be a contributing factor. In this study, we evaluated the relationship between soil variables...

  15. Phylogenetic classification of the world's tropical forests.

    Science.gov (United States)

    Slik, J W Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C, Gerardo A; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L; Bastin, Jean-François; Bellingham, Peter J; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H S; Davidar, Priya; DeWalt, Saara J; Din, Hazimah; Drake, Donald R; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M; Grogan, James; Hakeem, Khalid Rehman; Harris, David J; Harrison, Rhett D; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M Shah; Ibarra-Manríquez, Guillermo; Hanum, I Faridah; Imai, Nobuo; Jansen, Patrick A; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kessler, Michael; Killeen, Timothy J; Kooyman, Robert M; Laumonier, Yves; Laurance, Susan G; Laurance, William F; Lawes, Michael J; Letcher, Susan G; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R; Martin, Emanuel H; Calderado Leal Matos, Darley; Meave, Jorge A; Melo, Felipe P L; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D; Munguía-Rosas, Miguel A; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R; Powers, Jennifer S; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S B; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z; Saner, Philippe; Santos, Braulio; Dos Santos, João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V J; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Webb, Edward L; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo

    2018-02-20

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world's tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: ( i ) Indo-Pacific, ( ii ) Subtropical, ( iii ) African, ( iv ) American, and ( v ) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. Copyright © 2018 the Author(s). Published by PNAS.

  16. Morphotype-based characterization of arbuscular mycorrhizal fungal communities in a restored tropical dry forest, Margarita island-Venezuela

    Directory of Open Access Journals (Sweden)

    Laurie Fajardo

    2015-09-01

    Full Text Available The mycorrhizal component of revegetated areas after ecological restoration or rehabilitation in arid and semiarid tropical areas has been scarcely assessed, particularly those made after mining disturbance. We evaluated and compared the presence of arbuscular mycorrhizal fungi of a small area of restored tropical dry for est destroyed by sand extraction, with a non-restored area of similar age, at the peninsula of Macanao, Margarita Island (Venezuela. Our study was undertaken in 2009, four years after planting, and the mycorrhizal status was evaluated in four restored plots (8 x 12.5 m (two were previously treated with hydrogel (R2 and R2', and two were left untreated (R1 and R1', and four non-restored plots of similar size (NR1 and NR1' with graminoid physiognomy with some scattered shrubs; and NR2 and NR2', with a more species rich plant community. Apparently the restoration management promoted higher arbuscular mycorrhizal fungi (AMF species richness and diversity, particularly in restored soils where the hydrogel was added (R2 treatment. Soil of the NR1 treat ment (with a higher herbaceous component showed the highest spore density, compared to samples of soils under the other treatments. Considering species composition, Claroideoglomus etunicatumand Rhizophagus intraradiceswere found in all treatments; besides, Diversispora spurcaand Funneliformis geosporumwere only found in non-restored plots, while members of the Gigasporaceae (a family associated with little disturbed sites were commonly observed in the plots with restored soils. Mycorrhizal colonization was similar in the restored and non-restored areas, being a less sensitive indicator of the ecosystem recovery. The trend of higher richness and diversity of AMF in the restored plot with hydrogel suggests that this management strategy contributes to accelerate the natural regeneration in those ecosystems where water plays an essential role.

  17. Assessing the effects of multiple stressors on the recruitment of fruit harvested trees in a tropical dry forest, Western Ghats, India.

    Directory of Open Access Journals (Sweden)

    Anita Varghese

    Full Text Available The harvest of non-timber forest products (NTFPs, together with other sources of anthropogenic disturbance, impact plant populations greatly. Despite this, conservation research on NTFPs typically focuses on harvest alone, ignoring possible confounding effects of other anthropogenic and ecological factors. Disentangling anthropogenic disturbances is critical in regions such as India's Western Ghats, a biodiversity hotspot with high human density. Identifying strategies that permit both use and conservation of resources is essential to preserving biodiversity while meeting local needs. We assessed the effects of NTFP harvesting (fruit harvest from canopy and lopping of branches for fruit in combination with other common anthropogenic disturbances (cattle grazing, fire frequency and distance from village, in order to identify which stressors have greater effects on recruitment of three tropical dry forest fruit tree species. Specifically, we assessed the structure of 54 populations of Phyllanthus emblica, P. indofischeri and Terminalia chebula spread across the Nilgiri Biosphere Reserve, Western Ghats to ask: (1 How are populations recruiting? and (2 What anthropogenic disturbance and environmental factors, specifically forest type and elevation, are the most important predictors of recruitment status? We combined participatory research with an information-theoretic model-averaging approach to determine which factors most affect population structure and recruitment status. Our models illustrate that for T. chebula, high fire frequency and high fruit harvest intensity decreased the proportion of saplings, while lopping branches or stems to obtain fruit increased it. For Phyllanthus spp, recruitment was significantly lower in plots with more frequent fire. Indices of recruitment of both species were significantly higher for plots in more open-canopy environments of savanna woodlands than in dry forests. Our research illustrates an approach for

  18. Assessing the effects of multiple stressors on the recruitment of fruit harvested trees in a tropical dry forest, Western Ghats, India.

    Science.gov (United States)

    Varghese, Anita; Ticktin, Tamara; Mandle, Lisa; Nath, Snehlata

    2015-01-01

    The harvest of non-timber forest products (NTFPs), together with other sources of anthropogenic disturbance, impact plant populations greatly. Despite this, conservation research on NTFPs typically focuses on harvest alone, ignoring possible confounding effects of other anthropogenic and ecological factors. Disentangling anthropogenic disturbances is critical in regions such as India's Western Ghats, a biodiversity hotspot with high human density. Identifying strategies that permit both use and conservation of resources is essential to preserving biodiversity while meeting local needs. We assessed the effects of NTFP harvesting (fruit harvest from canopy and lopping of branches for fruit) in combination with other common anthropogenic disturbances (cattle grazing, fire frequency and distance from village), in order to identify which stressors have greater effects on recruitment of three tropical dry forest fruit tree species. Specifically, we assessed the structure of 54 populations of Phyllanthus emblica, P. indofischeri and Terminalia chebula spread across the Nilgiri Biosphere Reserve, Western Ghats to ask: (1) How are populations recruiting? and (2) What anthropogenic disturbance and environmental factors, specifically forest type and elevation, are the most important predictors of recruitment status? We combined participatory research with an information-theoretic model-averaging approach to determine which factors most affect population structure and recruitment status. Our models illustrate that for T. chebula, high fire frequency and high fruit harvest intensity decreased the proportion of saplings, while lopping branches or stems to obtain fruit increased it. For Phyllanthus spp, recruitment was significantly lower in plots with more frequent fire. Indices of recruitment of both species were significantly higher for plots in more open-canopy environments of savanna woodlands than in dry forests. Our research illustrates an approach for identifying which

  19. Fog Water Is Important in Maintaining the Water Budgets of Vascular Epiphytes in an Asian Tropical Karst Forests during the Dry Season

    Directory of Open Access Journals (Sweden)

    Yi Wu

    2018-05-01

    Full Text Available Fog may be an important source of water for forest vascular epiphytes on trees, because they lack direct access to sources of soil water, but little is known about the water use proportions from various sources and potential water uptake pathways in epiphytes. Here, we analyzed leaf carbon isotope ratios as a measure of water use efficiency (WUE, proportions of fog, rain, and soil water use, and foliar water uptake (FWU in species of epiphyte and their host trees in a tropical karst dwarf forest in China during the dry season. We found that the WUE, as represented by leaf δ13C, was generally enriched in the epiphyte species compared to their host trees. Epiphytes used substantial proportions of fog water, whereas water use in the host trees was dominated by soil water. The leaves of epiphytes and host trees absorbed water following immersion in water for 3 h and FWU possibly related to foliar epicuticular structures, such as fungal endophytes. Our results show a divergence of water use strategies between epiphytes and their hosts and highlight the importance of fog water for epiphytes during the dry season and under a climate change scenario with a reduced occurrence of fog events.

  20. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding.

    Science.gov (United States)

    Pineda-García, Fernando; Paz, Horacio; Meinzer, Frederick C

    2013-02-01

    The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early and late-successional species differ in resistance to experimentally imposed soil drought. The microenvironment in early successional sites was warmer and drier than in mature forest. Nevertheless, successional groups did not differ in resistance to soil drought. Late-successional species resisted drought through two independent mechanisms: high resistance of xylem to embolism, or reliance on high stem water storage capacity. High sapwood water reserves delayed the effects of soil drying by transiently decoupling plant and soil water status. Resistance to soil drought resulted from the interplay between variations in xylem vulnerability to embolism, reliance on sapwood water reserves and leaf area reduction, leading to a tradeoff of avoidance against tolerance of soil drought, along which successional groups were not differentiated. Overall, our data suggest that ranking species' performance under soil drought based solely on xylem resistance to embolism may be misleading, especially for species with high sapwood water storage capacity. © 2012 Blackwell Publishing Ltd.

  1. Effects of soil type and light on height growth, biomass partitioning, and nitrogen dynamics on 22 species of tropical dry forest tree seedlings: Comparisons between legumes and nonlegumes.

    Science.gov (United States)

    Smith-Martin, Christina M; Gei, Maria G; Bergstrom, Ellie; Becklund, Kristen K; Becknell, Justin M; Waring, Bonnie G; Werden, Leland K; Powers, Jennifer S

    2017-03-01

    The seedling stage is particularly vulnerable to resource limitation, with potential consequences for community composition. We investigated how light and soil variation affected early growth, biomass partitioning, morphology, and physiology of 22 tree species common in tropical dry forest, including eight legumes. Our hypothesis was that legume seedlings are better at taking advantage of increased resource availability, which contributes to their successful regeneration in tropical dry forests. We grew seedlings in a full-factorial design under two light levels in two soil types that differed in nutrient concentrations and soil moisture. We measured height biweekly and, at final harvest, biomass partitioning, internode segments, leaf carbon, nitrogen, δ 13 C, and δ 15 N. Legumes initially grew taller and maintained that height advantage over time under all experimental conditions. Legumes also had the highest final total biomass and water-use efficiency in the high-light and high-resource soil. For nitrogen-fixing legumes, the amount of nitrogen derived from fixation was highest in the richer soil. Although seed mass tended to be larger in legumes, seed size alone did not account for all the differences between legumes and nonlegumes. Both belowground and aboveground resources were limiting to early seedling growth and function. Legumes may have a different regeneration niche, in that they germinate rapidly and grow taller than other species immediately after germination, maximizing their performance when light and belowground resources are readily available, and potentially permitting them to take advantage of high light, nutrient, and water availability at the beginning of the wet season. © 2017 Botanical Society of America.

  2. Novelty and its ecological implications to dry forest functioning and conservation

    Science.gov (United States)

    Ariel Lugo; Heather. Erickson

    2017-01-01

    Tropical and subtropical dry forest life zones support forests with lower stature and species richness than do tropical and subtropical life zones with greater water availability. The number of naturalized species that can thrive and mix with native species to form novel forests in dry forest conditions in Puerto Rico and the US Virgin Islands is lower than in other...

  3. Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest.

    Science.gov (United States)

    Graham, Eric A; Andrade, Jose Luis

    2004-05-01

    Vertical stratification of epiphytes generally has not been reported for dry forests. For two epiphytic Crassulacean acid metabolism bromeliads that segregate vertically, it was hypothesized that different potentials for photoprotection or shade tolerance rather than drought tolerance is responsible for the observed stratification. The light environment, capacity for photoprotection, germination response to light quality, and responses to light and drought were thus examined for Tillandsia brachycaulos and T. elongata. Vertical and light-environment distributions differed for the two species but photoprotection and photodamage did not where they occurred at similar field locations; T. brachycaulos had a higher pigment acclimation to light. Tillandsia brachycaulos had higher acid accumulation under low light as opposed to T. elongata, which responded similarly to all but the highest light treatment. Tillandsia brachycaulos maintained positive total daily net CO(2) uptake through 30 d of drought; T. elongata had a total daily net CO(2) loss after 7 d of drought. The vertical stratification was most likely the result of the sensitivity to drought of T. elongata rather than differences in photoprotection or shade tolerance between the two species. Tillandsia elongata occurs in more exposed locations, which may be advantageous for rainfall interception and dew formation.

  4. Phytogeography and conservation of neotropical dry forest with emphasis on Columbia

    OpenAIRE

    Banda Rodriguez, Karina Paola

    2017-01-01

    Dry forest is one of the most threatened tropical forests in the world. Human impact has caused its massive transformation but conservation of dry forest has often been neglected across Latin America. In Colombia, less than 10% of the original extension of dry forest remains. This thesis studies the phytogeography of neotropical dry forest and its relevance for conservation using data from 1602 tree species inventories made in dry forests across Latin America and the Caribbean ...

  5. Wet season water distribution in a tropical Andean cloud forest of Boyacá (Colombia) during the dry climate of El Niño

    Science.gov (United States)

    Garcia-Santos, G.; Berdugo, M. B.

    2010-07-01

    Fog has been demonstrated as the only source of moisture during the dry climate of El Niño in the tropical Andean cloud forest of Boyacá region in Colombia, yet its importance for the forest is virtually unknown. We assessed fog water distribution during the wet season inside the forest and outside in a practically deforested area. Water intercepted by plant was measured at different vertical stratus. Soil moisture in the first centimetres was also measured. During the anomalous drier wet season there was lack of rainfall and the total recorded cloud water was lower compared with the same period during the previous year. Our results indicated that the upper part of the forest mass intercepts most of the fog water compared with lower stratus when the fog event starts. However upper most stratus became rapidly drier after the event, which is explained because water is released to the atmosphere due to high heat atmosphere-leaves interface fluctuations caused by wind and solar radiation, flows towards a different water potential and drips from the leaves. Low amount of fog dripped from tree foliage into the soil, indicating a large water storage capacity of the epiphyte and bryophyte vegetation. Despite the small amount of throughfall, understory vegetation and litter remained wet, which might be explained by the water flowing through the epiphyte vegetation or the high capacity of the understory to absorb moisture from the air. Soil water did not infiltrate in depth, which underlines the importance of fog as water and cool source for seedling growth and shallow rooted understory species, especially during drier conditions.

  6. Effect of fragmentation on the Costa Rican dry forest avifauna

    OpenAIRE

    Barrantes, Gilbert; Ocampo, Diego; Ram?rez-Fern?ndez, Jos? D.; Fuchs, Eric J.

    2016-01-01

    Deforestation and changes in land use have reduced the tropical dry forest to isolated forest patches in northwestern Costa Rica. We examined the effect of patch area and length of the dry season on nestedness of the entire avian community, forest fragment assemblages, and species occupancy across fragments for the entire native avifauna, and for a subset of forest dependent species. Species richness was independent of both fragment area and distance between fragments. Similarity in bird comm...

  7. Camerobiid mites (Acariformes: Raphignathina: Camerobiidae inhabiting epiphytic bromeliads and soil litter of tropical dry forest with analysis of setal homology in the genus Neophyllobius

    Directory of Open Access Journals (Sweden)

    Ricardo Paredes-León

    2016-06-01

    Full Text Available A survey of the camerobiid mites living on epiphytic bromeliads and the forest floor of a Mexican tropical dry forest was carried out. We found three new species of the genus Neophyllobius, which are described in this paper; the first two, namely N. cibyci sp. nov. and N. tepoztlanensis sp. nov., were both found inhabiting bromeliads (Tillandsia spp. and living on two tree species (Quercus obtusata and Sapium macrocarpum; the third, N. tescalicola sp. nov., was found in soil and litter under Q. obtusata. These three new species can be differentiated from other species in the genus by a combination of morphological characters in adult females, mainly those setae on femora and genua I. The idiosoma and leg setal ontogeny of a camerobiid mite is presented for the first time in this paper, illustrating chaetotaxic notations and their relative positions in N. cibyci sp. nov. larva, protonymph and adults (female and male, and establishing setal homologies among instars. Setal homology with other species in the cohort Raphignathina is briefly discussed. Additionally, a compilation and an identification key to all known species of camerobiid mites in Mexico is provided.

  8. The future of tropical forests.

    Science.gov (United States)

    Wright, S Joseph

    2010-05-01

    Five anthropogenic drivers--land use change, wood extraction, hunting, atmospheric change, climate change--will largely determine the future of tropical forests. The geographic scope and intensity of these five drivers are in flux. Contemporary land use change includes deforestation (approximately 64,000 km(2) yr(-1) for the entire tropical forest biome) and natural forests regenerating on abandoned land (approximately 21,500 km(2) yr(-1) with just 29% of the biome evaluated). Commercial logging is shifting rapidly from Southeast Asia to Africa and South America, but local fuelwood consumption continues to constitute 71% of all wood production. Pantropical rates of net deforestation are declining even as secondary and logged forests increasingly replace old-growth forests. Hunters reduce frugivore, granivore and browser abundances in most forests. This alters seed dispersal, seed and seedling survival, and hence the species composition and spatial template of plant regeneration. Tropical governments have responded to these local threats by protecting 7% of all land for the strict conservation of nature--a commitment that is only matched poleward of 40 degrees S and 70 degrees N. Protected status often fails to stop hunters and is impotent against atmospheric and climate change. There are increasing reports of stark changes in the structure and dynamics of protected tropical forests. Four broad classes of mechanisms might contribute to these changes. Predictions are developed to distinguish among these mechanisms.

  9. Botanical and ecological basis for the resilience of Antillean dry forests

    Science.gov (United States)

    A.E. Lugo; E. Medina; J. Carlos Trejo Torres; E. Helmer

    2006-01-01

    Dry forest environments limit the number of species that can survive there. Antillean dry forests have low floristic diversity and stature, high density of small and medium-sized trees, and are among the least conserved of the tropical forests. Their canopies are smooth with no emergent trees and have high species dominance. Antillean dry forests occur mostly on...

  10. Evaluation of Biological and Enzymatic Activity of Soil in a Tropical Dry Forest: Desierto de la Tatacoa (Colombia) with Potential in Mars Terraforming and Other Similar Planets

    Science.gov (United States)

    Moreno Moreno, A. N.

    2009-12-01

    Desierto de la Tatacoa has been determined to be a tropical dry forest bioma, which is located at 3° 13" N 75° 13" W. It has a hot thermal floor with 440 msnm of altitude; it has a daily average of 28° C, and a maximum of 40° C, Its annual rainfall total can be upwards of 1250 mm. Its solar sheen has a daily average of 5.8 hours and its relative humidity is between 60% and 65%. Therefore, the life forms presents are very scant, and in certain places, almost void. It was realized a completely random sampling of soil from its surface down to 6 inches deep, of zones without vegetation and with soils highly loaded by oxides of iron in order to determine the number of microorganisms per gram and its subsequent identification. It was measured the soil basal respiration. Besides, it was determined enzymatic activity (catalase, dehydrogenase, phosphatase and urease). Starting with the obtained results, it is developes an alternative towards the study of soil genesis in Mars in particular, and recommendations for same process in other planets. Although the information found in the experiments already realized in Martian soil they demonstrate that doesnt exist any enzymatic activity, the knowledge of the same topic in the soil is proposed as an alternative to problems like carbonic fixing of the dense Martian atmosphere of CO2, the degradation of inorganic compounds amongst other in order to prepare the substratum for later colonization by some life form.

  11. Ant species (Hymenoptera, Formicidae from the seasonally dry tropical forest of northeastern Brazil: a compilation from field surveys in Bahia and literature records

    Directory of Open Access Journals (Sweden)

    Mônica A. Ulysséa

    2013-06-01

    Full Text Available Ant species (Hymenoptera, Formicidae from the seasonally dry tropical forest of northeastern Brazil: a compilation from field surveys in Bahia and literature records. The Caatingas occur predominantly in northeastern Brazil and comparatively it is the biome that received less attention than any other ecosystem in Brazil, representing the region where invertebrate groups are less known. We present here the first list of ant species of the Caatingas, compiling information from the literature, from a study of samples preserved in alcohol in the Laboratory of Entomology (Universidade Estadual de Feira de Santana, and from a field survey conducted in Milagres, Bahia, submitting standardized 1-m² samples of the leaf-litter to Winkler extractors. Summing all information, 11 subfamilies, 61 genera and 173 species (plus one subspecies of ants are recognized in the biome. This species number does not consider morphospecies that could not be named due to the lack of reliable recent taxonomic information for some Neotropical ant genera. The list presented here for ant species of the Caatingas is therefore underestimated, but it is relevant because it allows the identification of areas to be sampled in order to improve our knowledge of the diversity of ants in this biome.

  12. Tree height and tropical forest biomass estimation

    Science.gov (United States)

    M.O. Hunter; M. Keller; D. Vitoria; D.C. Morton

    2013-01-01

    Tropical forests account for approximately half of above-ground carbon stored in global vegetation. However, uncertainties in tropical forest carbon stocks remain high because it is costly and laborious to quantify standing carbon stocks. Carbon stocks of tropical forests are determined using allometric relations between tree stem diameter and height and biomass....

  13. Regional variation in Caribbean dry forest tree species composition

    Science.gov (United States)

    Janet Franklin; Julie Ripplinger; Ethan H. Freid; Humfredo Marcano-Vega; David W. Steadman

    2015-01-01

    How does tree species composition vary in relation to geographical and environmental gradients in a globally rare tropical/subtropical broadleaf dry forest community in the Caribbean? We analyzed data from 153 Forest Inventory and Analysis (FIA) plots from Puerto Rico and the U.S. Virgin Islands (USVI), along with 42 plots that we sampled in the Bahamian Archipelago (...

  14. Interactions between frugivorous bats (Chiroptera: Phyllostomidae) and Piper tuberculatum (Piperaceae) in a tropical dry forest in Valle del Cauca, Colombia.

    Science.gov (United States)

    Montoya-Bustamante, Sebastián; Rojas-Díaz, Vladimir; Torres-González, Alba Marina

    2016-06-01

    In any ecosystem, fruits are resources that vary in time and space as well as in nutritional content. Coexistence of species from a trophic guild depends on the division and use of resources. Therefore, the organisms that depend on them as a food source, tend to show a certain degree of specialization. This way, understanding the factors that influence the dynamics of seed dispersal is important for the regeneration and conservation of tropical ecosystems. Our aim was to determine variation in consumption of Piper tuberculatum by fruit bat assemblages in the village of Robles (Jamundí, Valle del Cauca, Colombia). P. tuberculatum is a resource used not only by wildlife but also by people in the village of Robles. Bats were captured in mist nets between June and November 2014, their feces were collected, and the length of the forearm, wing area, leg length and mass were recorded. At the Universidad del Valle seed laboratory, fecal samples were washed, and their content determined. Of the 14 species captured, Sturnira lilium, Carollia brevicauda, Carollia perspicillata and Artibeus lituratus showed signs of having consumed P. tuberculatum. Sturnira lilium was the main consumer of P. tuberculatum fruits, with the greatest number of consumption events of fruit from this plant species, whereas the other bats showed more diversified consumption events. The greatest niche overlap was recorded between C. brevicauda and C. perspicillata, species that showed similar sizes (i.e., wing area and forearm length) followed by S. lilium and C. perspicillata. In contrast, A. lituratus showed the least niche overlap with the other three fruit bats captured. In conclusion, Sturnira lilium showed an interaction Sturnira-Piper, which is the result of low Solanum availability, and this bat species was the largest consumer of P. tuberculatum in the region.

  15. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Science.gov (United States)

    Mendivelso, Hooz A; Camarero, J Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  16. Synchrony, compensatory dynamics, and the functional trait basis of phenological diversity in a tropical dry forest tree community: effects of rainfall seasonality

    Science.gov (United States)

    Lasky, Jesse R.; Uriarte, María; Muscarella, Robert

    2016-11-01

    Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that

  17. Differential growth responses to water balance of coexisting deciduous tree species are linked to wood density in a Bolivian tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Hooz A Mendivelso

    Full Text Available A seasonal period of water deficit characterizes tropical dry forests (TDFs. There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

  18. Differential Growth Responses to Water Balance of Coexisting Deciduous Tree Species Are Linked to Wood Density in a Bolivian Tropical Dry Forest

    Science.gov (United States)

    Mendivelso, Hooz A.; Camarero, J. Julio; Royo Obregón, Oriol; Gutiérrez, Emilia; Toledo, Marisol

    2013-01-01

    A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability. PMID:24116001

  19. Strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1994-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990 and the rate of change in forest cover between 1980 and 1990. The following are described here: (1) the...

  20. Tropical rain forest: a wider perspective

    National Research Council Canada - National Science Library

    Goldsmith, F. B

    1998-01-01

    .... Barbier -- Can non-market values save the tropical forests? / D. Pearce -- The role of policy and institutions / James Mayers and Stephen Bass -- Modelling tropical land use change and deforestation...

  1. Gall inducing arthropods from a seasonally dry tropical forest in Serra do Cipó, Brazil Artrópodes indutores de galhas em Floresta Sazonal Tropical Seca da Serra do Cipó, Brasil

    Directory of Open Access Journals (Sweden)

    Marcel Serra Coelho

    2009-01-01

    Full Text Available Highly diverse forms of galling arthropods can be identified in much of southeastern Brazil's vegetation. Three fragments of a Seasonally Dry Tropical Forest (SDTF located in the southern range of the Espinhaço Mountains were selected for study in the first survey of galling organisms in such tropical vegetation. Investigators found 92 distinct gall morphotypes on several organs of 51 host plant species of 19 families. Cecidomyiidae (Diptera was the most prolific gall-inducing species, responsible for the largest proportion of galls (77% observed. Leaves were the most frequently galled plant organ (63%, while the most common gall morphotype was of a spherical shape (30%. The two plant species, Baccharis dracunculifolia (Asteraceae and Celtis brasiliensis (Cannabaceae, presented the highest number of gall morphtypes, displaying an average of 5 gall morphotypes each. This is the first study of gall-inducing arthropods and their host plant species ever undertaken in a Brazilian SDTF ecosystem. Given the intense human pressure on SDTFs, the high richness of galling arthropods, and implied floral host diversity found in this study indicates the need for an increased effort to catalogue the corresponding flora and fauna, observe their intricate associations and further understand the implications of such rich diversity in these stressed and vulnerable ecosystems.Artrópodes indutores de galhas são muito ricos em espécies nas formações vegetais no sudeste do Brasil. Três fragmentos de Floresta Sazonal Tropical Seca (FSTS foram selecionados nas montanhas do sudeste da cadeia do Espinhaço para a primeira pesquisa de organismos indutores de galhas nesse tipo de vegetação. Encontramos 92 morfotipos distintos de galhas em vários órgãos de 51 espécies de plantas hospedeiras pertencentes à 19 famílias. A maioria das galhas (77% foi induzida pela família Cecidomyiidae (Diptera. A folha foi o órgão mais atacado (63%, enquanto o morfotipo mais

  2. Interannual variability in the extent and intensity of tropical dry forest deciduousness in the Mexican Yucatan (2000-2016): Drivers and Links to Regional Atmospheric Conditions

    Science.gov (United States)

    Cuba, Nicholas Joseph

    The dry topical forests of the southern Yucatan Peninsula experience multiple natural and anthropogenic disturbances, as well as substantial interannual climate variability that can result in stark interannual differences in vegetation phenology. Dry season deciduousness is a typical response to limit tree water loss during prolonged periods of hot and dry conditions, and this behavior has both direct implications for ecosystem functioning, and the potential to indicate climate conditions when observed using remotely-sensed data. The first research paper of this dissertation advances methods to assess the accuracy of remotely-sensed measurements of canopy conditions using in-situ observations. Linear regression models show the highest correlation (R2 = 0.751) between in-situ canopy gap fraction and Landsat NDWISWIR2. MODIS time series NDWISWIR2 are created for the period March 2000-February 2011, and exhibit stronger correlation with time series of TRMM precipitation data than do MODIS EVI time series (R2= 0.48 vs. R2 = 0.43 in deciduous forest areas). The second paper examines differences between the deciduous phenology of young forest stands and older forest stands. Land-cover maps are overlaid to determine whether forested areas are greater than or less than 22 years old in 2010, and metrics related to deciduous phenology are derived from MODIS EVI2 time series in three years, 2008 to 2011. Statistical tests that compare matched pairs of young (12-22 years) and older (>22 years) forest stand age class samples are used to detect significant differences in metrics related to the intensity and timing of deciduousness. In all three years, younger forests exhibit significantly more intense deciduousness, measured as total seasonal change of EVI2 normalized by annual maximum EVI2 (pmediating environmental factors that drive the spatial and temporal variability in the intensity of deciduousness, and point toward analyzing deciduousness to reveal information about other

  3. Phylogenetic classification of the world's tropical forests

    NARCIS (Netherlands)

    Slik, J.W.F.; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin Ichiro; Alves, Luciana F.; Anitha, K.; Avella, Andres; Mora, Francisco; Aymard, Gerardo A.C.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean François; Bellingham, Peter J.; Berg, Van Den Eduardo; Conceição Bispo, Da Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brambach, Fabian; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H.S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean Francois; Gonmadje, Christelle; Granzow-De La Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Homeier, Jürgen; Hussain, M.S.; Ibarra-Manríquez, Guillermo; Hanum, I.F.; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, Susan G.; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lindsell, Jeremy; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Bin Khairil; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Matos, Darley Calderado Leal; Meave, Jorge A.; Melo, Felipe P.L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; Oliveira, De Eddie Lenza; Onrizal,; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qi, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S.B.; Rolim, Samir; Rovero, Francesco; Rozak, Andes; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd Said, Mohd Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; Santos, Dos João Roberto; Sarker, Swapan Kumar; Schmitt, Christine B.; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sultana, Aisha; Sukumar, Raman; Sunderland, Terry; Supriyadi, S.; Suresh, H.S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V.J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; Morisson Valeriano, De Márcio; Valkenburg, Van Johan; Do, Van Tran; Sam, Van Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Yao, C.Y.A.; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world's tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern

  4. The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity.

    Science.gov (United States)

    Bongers, Frans; Poorter, Lourens; Hawthorne, William D; Sheil, Douglas

    2009-08-01

    The intermediate disturbance hypothesis (IDH) predicts local species diversity to be maximal at an intermediate level of disturbance. Developed to explain species maintenance and diversity patterns in species-rich ecosystems such as tropical forests, tests of IDH in tropical forest remain scarce, small-scale and contentious. We use an unprecedented large-scale dataset (2504 one-hectare plots and 331,567 trees) to examine whether IDH explains tree diversity variation within wet, moist and dry tropical forests, and we analyse the underlying mechanism by determining responses within functional species groups. We find that disturbance explains more variation in diversity of dry than wet tropical forests. Pioneer species numbers increase with disturbance, shade-tolerant species decrease and intermediate species are indifferent. While diversity indeed peaks at intermediate disturbance levels little variation is explained outside dry forests, and disturbance is less important for species richness patterns in wet tropical rain forests than previously thought.

  5. Patterns of nectar production and composition, and morphology of floral nectaries in Helicteres guazumifolia and Helicteres baruensis (Sterculiaceae: two sympatric species from the Costa Rican tropical dry forest

    Directory of Open Access Journals (Sweden)

    Loretta Goldberg

    2009-11-01

    Full Text Available Helicteres guazumifolia Kunth and Helicteres baruensis Jacq. (Sterculiaceae are two sympatric species of shrubs common along the North Western tropical dry forest of Costa Rica. i recorded their nectar production within a 24 hour cycle. i also describe the morphology of extrafloral nectaries with scanning electron microscopy. in H. guazumifolia secretion was restricted to the first day of flower life span, shortly after anthesis (0600 hr - 1800 hr. Flowers secreted on average 15.63 ±8.45 µl (N=409. Nectar is composed of three main sugars: sucrose, fructose and glucose (mainly sucrose. A total of 17 free amino acids were identified: mainly proline, arginine, threonine and tyrosine, with a concentration above 70 Ng/µl. values were different for H. baruensis. Nectar secretion was confined to the second day after anthesis, starting at 1600 hr and ending at 0600 hr the following day. Flowers secreted on average 77.03 ±64.99 µl (N=163 of nectar. Nectar is also composed of three main sugars; however, it showed a tendency to be hexose-rich, having more fructose and glucose than sucrose. There were also 17 free amino acids, mainly proline, alanine, tyrosine, arginine and threonine. Patterns of nectar production are different between the two species for timing, and for amount and composition of nectar secretion. Rev. Biol. Trop. 57 (Suppl. 1: 161-177. Epub 2009 November 30.Helicteres guazumifolia Kunth y Helicteres baruensis Jacq. (Sterculiaceae son dos especies simpátricas de arbustos comunes en el bosque tropical seco de la zona noroeste de Costa Rica. Registré los patrones de producción de néctar de las dos especies según la hora del día o de la noche cuando hubo secreción de néctar. En H. guazumifolia se limitó al primer día del período de vida floral, desde el inicio de la antesis a las 0600 hr hasta las 1800 hr. Las flores secretaron en promedio 15.63 ±8.45 µl (N=409 de néctar. El néctar está compuesto por tres az

  6. FUEL CONDITIONS ASSOCIATED WITH NATIVE AND EXOTIC GRASSES IN A SUBTROPICAL DRY FOREST IN PUERTO RICO

    Science.gov (United States)

    Jarrod M. Thaxton; Skip J. Van Bloem; Stefanie Whitmire

    2012-01-01

    Exotic grasses capable of increasing frequency and intensity of anthropogenic fire have invaded subtropical and tropical dry forests worldwide. Since many dry forest trees are susceptible to fire, this can result in decline of native species and loss of forest cover. While the contribution of exotic grasses to altered fire regimes has been well documented, the role of...

  7. Forest structure and carbon dynamics in Amazonian tropical rain forests.

    Science.gov (United States)

    Vieira, Simone; de Camargo, Plinio Barbosa; Selhorst, Diogo; da Silva, Roseana; Hutyra, Lucy; Chambers, Jeffrey Q; Brown, I Foster; Higuchi, Niro; dos Santos, Joaquim; Wofsy, Steven C; Trumbore, Susan E; Martinelli, Luiz Antonio

    2004-08-01

    Living trees constitute one of the major stocks of carbon in tropical forests. A better understanding of variations in the dynamics and structure of tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon, and for understanding how they recover from disturbance. Amazonian tropical forests occur over a vast area that encompasses differences in topography, climate, and geologic substrate. We observed large differences in forest structure, biomass, and tree growth rates in permanent plots situated in the eastern (near Santarém, Pará), central (near Manaus, Amazonas) and southwestern (near Rio Branco, Acre) Amazon, which differed in dry season length, as well as other factors. Forests at the two sites experiencing longer dry seasons, near Rio Branco and Santarém, had lower stem frequencies (460 and 466 ha(-1) respectively), less biodiversity (Shannon-Wiener diversity index), and smaller aboveground C stocks (140.6 and 122.1 Mg C ha(-1)) than the Manaus site (626 trees ha(-1), 180.1 Mg C ha(-1)), which had less seasonal variation in rainfall. The forests experiencing longer dry seasons also stored a greater proportion of the total biomass in trees with >50 cm diameter (41-45 vs 30% in Manaus). Rates of annual addition of C to living trees calculated from monthly dendrometer band measurements were 1.9 (Manaus), 2.8 (Santarém), and 2.6 (Rio Branco) Mg C ha(-1) year(-1). At all sites, trees in the 10-30 cm diameter class accounted for the highest proportion of annual growth (38, 55 and 56% in Manaus, Rio Branco and Santarém, respectively). Growth showed marked seasonality, with largest stem diameter increment in the wet season and smallest in the dry season, though this may be confounded by seasonal variation in wood water content. Year-to-year variations in C allocated to stem growth ranged from nearly zero in Rio Branco, to 0.8 Mg C ha(-1) year(-1) in Manaus (40% of annual mean) and 0.9 Mg C ha(-1) year(-1) (33% of

  8. Explosive Radiation of Malpighiales Supports a Mid-Cretaceous Origin of Modern Tropical Rain Forests

    OpenAIRE

    Wurdack, Kenneth J.; Jaramillo, Carlos A.; Davis, Charles; Webb, Campbell O.; Donoghue, Michael J.

    2005-01-01

    Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, p...

  9. Phylogenetic classification of the world’s tropical forests

    Science.gov (United States)

    Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia; Bastian, Meredith L.; Bastin, Jean-François; Bellingham, Peter J.; van den Berg, Eduardo; da Conceição Bispo, Polyanna; Boeckx, Pascal; Boehning-Gaese, Katrin; Bongers, Frans; Boyle, Brad; Brearley, Francis Q.; Brown, Sandra; Chai, Shauna-Lee; Chazdon, Robin L.; Chen, Shengbin; Chhang, Phourin; Chuyong, George; Ewango, Corneille; Coronado, Indiana M.; Cristóbal-Azkarate, Jurgi; Culmsee, Heike; Damas, Kipiro; Dattaraja, H. S.; Davidar, Priya; DeWalt, Saara J.; Din, Hazimah; Drake, Donald R.; Durigan, Giselda; Eichhorn, Karl; Eler, Eduardo Schmidt; Enoki, Tsutomu; Ensslin, Andreas; Fandohan, Adandé Belarmain; Farwig, Nina; Feeley, Kenneth J.; Fischer, Markus; Forshed, Olle; Garcia, Queila Souza; Garkoti, Satish Chandra; Gillespie, Thomas W.; Gillet, Jean-Francois; Gonmadje, Christelle; Granzow-de la Cerda, Iñigo; Griffith, Daniel M.; Grogan, James; Hakeem, Khalid Rehman; Harris, David J.; Harrison, Rhett D.; Hector, Andy; Hemp, Andreas; Hussain, M. Shah; Ibarra-Manríquez, Guillermo; Hanum, I. Faridah; Imai, Nobuo; Jansen, Patrick A.; Joly, Carlos Alfredo; Joseph, Shijo; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kessler, Michael; Killeen, Timothy J.; Kooyman, Robert M.; Laumonier, Yves; Laurance, William F.; Lawes, Michael J.; Letcher, Susan G.; Lovett, Jon; Lozada, Jose; Lu, Xinghui; Lykke, Anne Mette; Mahmud, Khairil Bin; Mahayani, Ni Putu Diana; Mansor, Asyraf; Marshall, Andrew R.; Martin, Emanuel H.; Calderado Leal Matos, Darley; Meave, Jorge A.; Melo, Felipe P. L.; Mendoza, Zhofre Huberto Aguirre; Metali, Faizah; Medjibe, Vincent P.; Metzger, Jean Paul; Metzker, Thiago; Mohandass, D.; Munguía-Rosas, Miguel A.; Muñoz, Rodrigo; Nurtjahy, Eddy; de Oliveira, Eddie Lenza; Onrizal; Parolin, Pia; Parren, Marc; Parthasarathy, N.; Paudel, Ekananda; Perez, Rolando; Pérez-García, Eduardo A.; Pommer, Ulf; Poorter, Lourens; Qie, Lan; Piedade, Maria Teresa F.; Pinto, José Roberto Rodrigues; Poulsen, Axel Dalberg; Poulsen, John R.; Powers, Jennifer S.; Prasad, Rama Chandra; Puyravaud, Jean-Philippe; Rangel, Orlando; Reitsma, Jan; Rocha, Diogo S. B.; Rolim, Samir; Rovero, Francesco; Ruokolainen, Kalle; Rutishauser, Ervan; Rutten, Gemma; Mohd. Said, Mohd. Nizam; Saiter, Felipe Z.; Saner, Philippe; Santos, Braulio; dos Santos, João Roberto; Sarker, Swapan Kumar; Schoengart, Jochen; Schulze, Mark; Sheil, Douglas; Sist, Plinio; Souza, Alexandre F.; Spironello, Wilson Roberto; Sposito, Tereza; Steinmetz, Robert; Stevart, Tariq; Suganuma, Marcio Seiji; Sukri, Rahayu; Sukumar, Raman; Sunderland, Terry; Supriyadi; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jianwei; Tanner, Ed V. J.; Targhetta, Natalia; Theilade, Ida; Thomas, Duncan; Timberlake, Jonathan; de Morisson Valeriano, Márcio; van Valkenburg, Johan; Van Do, Tran; Van Sam, Hoang; Vandermeer, John H.; Verbeeck, Hans; Vetaas, Ole Reidar; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Webb, Edward L.; Whitfeld, Timothy; Wich, Serge; Williams, John; Wiser, Susan; Wittmann, Florian; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo

    2018-01-01

    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests. PMID:29432167

  10. Broadcast seeding as a potential tool to reestablish native species in degraded dry forest ecosystems in Hawaii

    Science.gov (United States)

    S. Brooks; S. Cordell; L. Perry

    2009-01-01

    Hawaiian dry forests currently occupy a small fraction of their former range, and worldwide tropical dry forests are one of the most human-altered systems. Many small-scale projects have been successful in restoring native dry forests in abandoned pastures and degraded woodlands by outplanting after invasive species removal, but this is a costly approach. In this...

  11. Non-native grass removal and shade increase soil moisture and seedling performance during Hawaiian dry forest restoration

    Science.gov (United States)

    Jared M. Thaxton; Susan Cordell; Robert J. Cabin; Darren R. Sandquist

    2012-01-01

    Invasive non-native species can create especially problematic restoration barriers in subtropical and tropical dry forests. Native dry forests in Hawaii presently cover less than 10% of their original area. Many sites that historically supported dry forest are now completely dominated by non-native species, particularly grasses. Within a grass-dominated site in leeward...

  12. Environmental determinants of tropical forest and savanna distribution: A quantitative model evaluation and its implication

    Science.gov (United States)

    Zeng, Zhenzhong; Chen, Anping; Piao, Shilong; Rabin, Sam; Shen, Zehao

    2014-07-01

    The distributions of tropical ecosystems are rapidly being altered by climate change and anthropogenic activities. One possible trend—the loss of tropical forests and replacement by savannas—could result in significant shifts in ecosystem services and biodiversity loss. However, the influence and the relative importance of environmental factors in regulating the distribution of tropical forest and savanna biomes are still poorly understood, which makes it difficult to predict future tropical forest and savanna distributions in the context of climate change. Here we use boosted regression trees to quantitatively evaluate the importance of environmental predictors—mainly climatic, edaphic, and fire factors—for the tropical forest-savanna distribution at a mesoscale across the tropics (between 15°N and 35°S). Our results demonstrate that climate alone can explain most of the distribution of tropical forest and savanna at the scale considered; dry season average precipitation is the single most important determinant across tropical Asia-Australia, Africa, and South America. Given the strong tendency of increased seasonality and decreased dry season precipitation predicted by global climate models, we estimate that about 28% of what is now tropical forest would likely be lost to savanna by the late 21st century under the future scenario considered. This study highlights the importance of climate seasonality and interannual variability in predicting the distribution of tropical forest and savanna, supporting the climate as the primary driver in the savanna biogeography.

  13. Layout Guide for Burnt and Un-burnt Tropical Forest: The Diversity of Forest Plants and Insetcs for Sustainable Environmental

    Science.gov (United States)

    Watiniasih, N. L.; Tambunan, J.; Merdana, I. M.; Antara, I. N. G.

    2018-04-01

    Forest fire is a common phenomenon in tropical forest likes in Indonesia. Beside the effect of soaring heat and lack of rain during dry season due to the tropical climate, farming system is also reported as one reason of forest fire in Indonesia. People of surrounding areas and neighbouring countries are suffering from the effect of forest fire. Plants and animals are the most suffer from this occurrence that they cannot escape. This study aimed to investigate the effect of previously burnt and un-burnt tropical forest in Borneo Island on the plant and insect diversity of the tropical forest. The result of the study found that the plants in previously burnt forest area was dominated by one species, while higher and more stable plant diversity was found in un-burnt forest. Although the number of individual insects was higher in previously burnt tropical forest, but the insects was more diverse in un-burnt tropical forest. The alteration of environmental conditions in previously burnt and un-burnt forest indicate that the energy held in natural forest support higher number and more stable insects than previously burnt forest.

  14. Tropical Forest Gain and Interactions amongst Agents of Forest Change

    Directory of Open Access Journals (Sweden)

    Sean Sloan

    2016-02-01

    Full Text Available The tropical deforestation literature advocates multi-agent enquiry in recognition that key dynamics arise from inter-agent interactions. Studies of tropical forest-cover gain have lagged in this respect. This article explores the roles and key aspects of interactions shaping natural forest regeneration and active reforestation in Eastern Panama since 1990. It employs household surveys of agricultural landholders, interviews with community forest-restoration organisations, archival analysis of plantation reforestation interests, satellite image analysis of forest-cover change, and the consideration of State reforestation policies. Forest-cover gain reflected a convergence of interests and land-use trends amongst agents. Low social and economic costs of sustained interaction and organisation enabled extensive forest-cover gain, but low transaction costs did not. Corporate plantation reforestation rose to the fore of regional forest-cover gain via opportunistic land sales by ranchers and economic subsidies indicative of a State preference for autonomous, self-organising forest-cover gain. This reforestation follows a recent history of neoliberal frontier development in which State-backed loggers and ranchers similarly displaced agriculturalists. Community institutions, long neglected by the State, struggled to coordinate landholders and so effected far less forest-cover gain. National and international commitments to tropical forest restoration risk being similarly characterised as ineffective by a predominance of industrial plantation reforestation without greater State support for community forest management.

  15. Novel dry forests in southwestern Puerto Rico

    Science.gov (United States)

    Sandra Molina Colón; Ariel E. Lugo; Olga Ramos

    2011-01-01

    We report results of new research on (1) community composition of novel subtropical dry forests developing on abandoned pastures and agricultural fields in both private and protected public lands and (2) seed germination and growth rates of plantings of native tree species on degraded soils. We found that novel dry forests were dominated by introduced species, which...

  16. Successional dynamics drive tropical forest nutrient limitation

    Science.gov (United States)

    Chou, C.; Hedin, L. O. O.

    2017-12-01

    It is increasingly recognized that nutrients such as N and P may significantly constrain the land carbon sink. However, we currently lack a complete understanding of these nutrient cycles in forest ecosystems and how to incorporate them into Earth System Models. We have developed a framework of dynamic forest nutrient limitation, focusing on the role of secondary forest succession and canopy gap disturbances as bottlenecks of high plant nutrient demand and limitation. We used succession biomass data to parameterize a simple ecosystem model and examined the dynamics of nutrient limitation throughout tropical secondary forest succession. Due to the patterns of biomass recovery in secondary tropical forests, we found high nutrient demand from rapid biomass accumulation in the earliest years of succession. Depending on previous land use scenarios, soil nutrient availability may also be low in this time period. Coupled together, this is evidence that there may be high biomass nutrient limitation early in succession, which is partially met by abundant symbiotic nitrogen fixation from certain tree species. We predict a switch from nitrogen limitation in early succession to one of three conditions: (i) phosphorus only, (ii) phosphorus plus nitrogen, or (iii) phosphorus, nitrogen, plus light co-limitation. We will discuss the mechanisms that govern the exact trajectory of limitation as forests build biomass. In addition, we used our model to explore scenarios of tropical secondary forest impermanence and the impacts of these dynamics on ecosystem nutrient limitation. We found that secondary forest impermanence exacerbates nutrient limitation and the need for nitrogen fixation early in succession. Together, these results indicate that biomass recovery dynamics early in succession as well as their connection to nutrient demand and limitation are fundamental for understanding and modeling nutrient limitation of the tropical forest carbon sink.

  17. Wood Decomposition of Cyrilla racemiflora (Cyrillaceae) in Puerto Rican Dry and Wet Forests: A 13-year Case Study.

    Science.gov (United States)

    Juan A. Torres; Grizelle Gonzalez

    2005-01-01

    We studied the decomposition of Cyrilla racemiflora logs over a 13-yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood-inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs...

  18. Tropical forests and the changing earth system.

    Science.gov (United States)

    Lewis, Simon L

    2006-01-29

    Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.

  19. Phylogenetic classification of the world’s tropical forests

    OpenAIRE

    Slik, J. W. Ferry; Franklin, Janet; Arroyo-Rodríguez, Víctor; Field, Richard; Aguilar, Salomon; Aguirre, Nikolay; Ahumada, Jorge; Aiba, Shin-Ichiro; Alves, Luciana F.; K, Anitha; Avella, Andres; Mora, Francisco; Aymard C., Gerardo A.; Báez, Selene; Balvanera, Patricia

    2018-01-01

    Identifying and explaining regional differences in tropical forest dynamics, structure, diversity, and composition are critical for anticipating region-specific responses to global environmental change. Floristic classifications are of fundamental importance for these efforts. Here we provide a global tropical forest classification that is explicitly based on community evolutionary similarity, resulting in identification of five major tropical forest regions and their relationships: (i) Indo-...

  20. Floristic structure and biomass distribution of a tropical seasonal rain forest in Xishuangbanna, southwest China

    Energy Technology Data Exchange (ETDEWEB)

    Shanmughavel, P.; Zheng Zheng; Sha Liqing; Cao Min [Chinese Academy of Sciences, Kunming (China). Dept. of Forest Ecology

    2001-07-01

    The aim of this research was to study the forest community structure, tree species diversity and biomass production of a tropical seasonal rain forest in Xishuangbanna, southwest China. The community structure showed a diversified species composition and supported many species of economic significance. This tropical rain forest in closely related to Malaysian forests. The biomass and its distribution were studied using standard regression analysis and the clear-cut method for shrubs and herbs. The total biomass was 360.9 t/ha and its allocation in different layers was: tree layer 352.5 t/ha, shrub layer 4.7 t/ha, liana 3.1 t/ha and herb layer 0.5 t/ha. Most of the biomass was concentrated in the trees: stem 241.2 t/ha, root 69.6 t/ha, branch 37.2 t/ha and leaves 4.3 t/ha. The DBH class allocation of the tree biomass was concentrated in the middle DBH class. The biomass of six DBH classes from 20 to 80 cm was 255.4 t/ha. There are twenty-six species with biomass over 0.5% of the total biomass of the tree layer, and three species with biomass over 5%, i.e., Pometia tomentosa, Barringtonia macrostachya (5.4%) and Terminalia myriocarpa (5.2%). Data on stem, branch, leaves and root of the individual tree species were used to develop regression models. D{sup 2}H was found to be the best estimator of the biomass in this tropical rain forest. However, higher biomass figures have been reported from tropical forests elsewhere e.g., 415-520 t/ha in the tropical forests of Cambodia, the tropical moist mixed dipterocarp forests, and the tropical moist logged moist evergreen-high, medium, and low yield forests of Sri Lanka. In some forests, lower accumulation of biomass was reported, e.g., 10-295 t/ha in the tropical moist forests of Bangladesh, the tropical moist dense forest of Cambodia, the tropical dry forests of India, the tropical moist forests of Peninsular-Malaysia, the tropical moist mixed dipterocarp forests of Sarawak-Malaysia, the tropical evergreen forests of

  1. Design considerations for tropical forest inventories

    Directory of Open Access Journals (Sweden)

    Ronald Edward McRoberts

    2013-06-01

    Full Text Available Forests contribute substantially to maintaining the global greenhouse gas balance, primarily because among the five economic sectors identified by the United Nations Framework Convention on Climate Change, only the forestry sector has the potential to remove greenhouse gas emissions from the atmosphere. In this context, development of national forest carbon accounting systems, particularly in countries with tropical forests, has emerged as an international priority. Because these systems are often developed as components of or in parallel with national forest inventories, a brief review of statistical issues related to the development of forest ground sampling designs is provided. This overview addresses not only the primary issues of plot configurations and sampling designs, but also to a lesser extent the emerging roles of remote sensing and uncertainty assessment. Basic inventory principles are illustrated for two case studies, the national forest inventory of Brazil with special emphasis on the state of Santa Catarina, and an inventory for Tanzania.

  2. Above Canopy Emissions of Isoprene and Monoterpenes from a Southeast Asian Tropical Forest

    Science.gov (United States)

    Baker, B.; Johnson, C.; Cai, Z.; Guenther, A.; Greenberg, J.; Bai, J.; Li, Q.

    2003-12-01

    Fluxes of isoprene were measured using the eddy covariance technique and an ozone chemiluminescence isoprene sensor above a secondary tropical forest/rubber tree plantation located in the Xishuangbanna region of southern China during the wet and dry seasons. Fluxes of monoterpenes were inferred from ambient boundary layer concentrations (wet season) and from relaxed eddy accumulation measurements (dry season). Isoprene emissions were comparable to what has been observed from other tropical forests in Africa and South America. In this forest, monoterpene emissions were much higher during the wet season due to the senescence of the rubber trees during the dry season. These flux measurements represent the first ecosystem level flux measurements reported from Southeast Asian tropical forests.

  3. Modelling tropical forests response to logging

    Science.gov (United States)

    Cazzolla Gatti, Roberto; Di Paola, Arianna; Valentini, Riccardo; Paparella, Francesco

    2013-04-01

    Tropical rainforests are among the most threatened ecosystems by large-scale fragmentation due to human activity such as heavy logging and agricultural clearance. Although, they provide crucial ecosystem goods and services, such as sequestering carbon from the atmosphere, protecting watersheds and conserving biodiversity. In several countries forest resource extraction has experienced a shift from clearcutting to selective logging to maintain a significant forest cover and understock of living biomass. However the knowledge on the short and long-term effects of removing selected species in tropical rainforest are scarce and need to be further investigated. One of the main effects of selective logging on forest dynamics seems to be the local disturbance which involve the invasion of open space by weed, vines and climbers at the expense of the late-successional state cenosis. We present a simple deterministic model that describes the dynamics of tropical rainforest subject to selective logging to understand how and why weeds displace native species. We argue that the selective removal of tallest tropical trees carries out gaps of light that allow weeds, vines and climbers to prevail on native species, inhibiting the possibility of recovery of the original vegetation. Our results show that different regime shifts may occur depending on the type of forest management adopted. This hypothesis is supported by a dataset of trees height and weed/vines cover that we collected from 9 plots located in Central and West Africa both in untouched and managed areas.

  4. Functional ecology of tropical forest recovery

    NARCIS (Netherlands)

    Lohbeck, M.W.M.

    2014-01-01

    Electronic abstract of the thesis for the library for the acquisitions department of Wageningen UR library (published as a html file so hyperlinks may be included)

    In English, one or 2 pages.

    Functional ecology of tropical forest recovery

    Currently in the

  5. Avifauna de la selva baja caducifolia en la cañada del río Sabino, Oaxaca, México Avifauna of the tropical dry forest in the Sabino Canyon, Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Leopoldo Vázquez

    2009-08-01

    Full Text Available Se describe la avifauna de la selva baja caducifolia del cañón del río Sabino, Oaxaca, al sureste de la Reserva de la Biosfera Tehuacán-Cuicatlán y compara la similitud de la avifauna de la Reserva con la de otras regiones con selvas bajas en México. El trabajo se realizó entre junio de 2005 y octubre de 2006, registrando 113 especies pertenecientes a 13 órdenes y 34 familias; 6 especies son muy abundantes, 10 abundantes, 20 comunes, 32 poco comunes y 37 raras; 79 de las especies registradas fueron residentes, 28 visitantes invernales, 2 visitantes de verano, 3 transitorias y 5 residentes con movimientos estacionales; 15 especies son endémicas a México y 23 están dentro de alguna categoría de riesgo. La avifauna estudiada representa una mezcla de especies características de la cuenca del Balsas, las vertientes pacífica y atlántica y los ambientes montanos y áridos del centro de México. Por su composición específica la avifauna estudiada se relacionó con las avifaunas de la cuenca del Balsas. La selva baja del cañón del Sabino es prioritaria para la conservación debido a su riqueza en especies endémicas y a la presencia una colonia reproductora de la guacamaya verde, Ara militaris, especie globalmente amenazada.This study describes the birds of the tropical dry forest in Sabino Canyon, Oaxaca, in the southeastern part of the Tehuacán-Cuicatlán biosphere reserve. Field work was conducted between June 2005 and October 2006. A total of 113 species belonging to 13 orders and 34 families were recorded. Six species were classified as very abundant, 10 as abundant, 20 as common, 32 as uncommon, and 37 as rare; 79 species were permanent residents, 28 were winter visitors, 2 summer visitors, 3 transients, and 5 were local migrants; 15 species were classified as endemic to Mexico, and 23 are threatened. The bird composition of Sabino Canyon mainly resembles the avifauna the Balsas river basin. The avifauna of the tropical dry

  6. Cutover tropical forest productivity potential merits assessment, Puerto Rico

    Science.gov (United States)

    Frank H. Wadsworth; Brynne Bryan; Julio Figueroa-Colón

    2010-01-01

    Timber extraction continues to add to vast cutover tropical forests. They are unattractive economically because of the loss of merchantable timber and the long delay foreseen for recovery. Despite this, wood in cutover tropical forests is in line to become more marketable as demand continues and old-growth forests become less accessible. In a cutover forest in Puerto...

  7. DRY DEPOSITION OF POLLUTANTS TO FORESTS

    Science.gov (United States)

    We report on the results of an extensive field campaign to measure dry deposition of ozone and sulfur dioxide to a sample of forest types in the United States. Measurements were made for full growing seasons over a deciduous forest in Pennsylvania and a mixed deciduous-conifer...

  8. Short dry spells in the wet season increase mortality of tropical pioneer seedlings.

    Science.gov (United States)

    Engelbrecht, Bettina M J; Dalling, James W; Pearson, Timothy R H; Wolf, Robert L; Gálvez, David A; Koehler, Tobias; Tyree, Melvin T; Kursar, Thomas A

    2006-06-01

    Variation in plant species performance in response to water availability offers a potential axis for temporal and spatial habitat partitioning and may therefore affect community composition in tropical forests. We hypothesized that short dry spells during the wet season are a significant source of mortality for the newly emerging seedlings of pioneer species that recruit in treefall gaps in tropical forests. An analysis of a 49-year rainfall record for three forests across a rainfall gradient in central Panama confirmed that dry spells of > or = 10 days during the wet season occur on average once a year in a deciduous forest, and once every other year in a semi-deciduous moist and an evergreen wet forest. The effect of wet season dry spells on the recruitment of pioneers was investigated by comparing seedling survival in rain-protected dry plots and irrigated control plots in four large artificially created treefall gaps in a semi-deciduous tropical forest. In rain-protected plots surface soil layers dried rapidly, leading to a strong gradient in water potential within the upper 10 cm of soil. Seedling survival for six pioneer species was significantly lower in rain-protected than in irrigated control plots after only 4 days. The strength of the irrigation effect differed among species, and first became apparent 3-10 days after treatments started. Root allocation patterns were significantly, or marginally significantly, different between species and between two groups of larger and smaller seeded species. However, they were not correlated with seedling drought sensitivity, suggesting allocation is not a key trait for drought sensitivity in pioneer seedlings. Our data provide strong evidence that short dry spells in the wet season differentially affect seedling survivorship of pioneer species, and may therefore have important implications to seedling demography and community dynamics.

  9. Understanding the Role of Typhoons, Fire, and Climate on the Vegetation Dynamics of Tropical Dry Forests: Looking to the Past to Develop Future Management Solutions

    Science.gov (United States)

    2010-04-01

    centennial -to millennial scale typhoon reconstructions from the western North Pacific are far more limited. Historical government documents of typhoon... Centennial scale swings from humid to drought conditions have been documented in some tropical locations (Hodell et al., 2001). By looking to the past... depressions with a maximum depth of roughly 12 meters. The lagoon hollows are bounded by sand flats and coral reefs (Fig. 2). Core VC9 was located in the

  10. Tropical forest policies for the global climate

    International Nuclear Information System (INIS)

    De Groot, W.T.; Kamminga, E.M.

    1995-01-01

    A summary is given of the approach and findings of the NRP project 'Local Actors and Global Tree Cover Policies'. The aim of this project was to identify the most effective and efficient options for global climate policies focusing on the tropical forest. Tropical deforestation is a process with very complex and variable causes. In the project's conclusions, therefore, much care has been given to arrive at a coherent image of what really counts most in the myriad of factors, actors, policy levels and policy options. 5 refs

  11. Structural Dynamics of Tropical Moist Forest Gaps

    Science.gov (United States)

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an

  12. Dendrochronology in the dry tropics: the Ethiopian case

    NARCIS (Netherlands)

    Wils, T.; Sass-Klaassen, U.; Eshetu, Z.; Bräuning, A.; Gebrenirstos, A.; Couralet, C.; Robertson, I.; Touchan, R.; Koprowski, M.; Conway, D.; Briffa, K.R.; Beeckman, H.

    2011-01-01

    Dendrochronology is developing outside temperate and boreal regions. Over the past decade substantial progress has been made in Mediterranean and wet tropical regions. However, research in dry tropical regions, notably those of sub-Saharan Africa, has remained fragmentary. Here, we try to identify

  13. Palm Harvest Impact on Tropical Forests

    DEFF Research Database (Denmark)

    Balslev, Henrik; Eiserhardt, Wolf L.

    Palms are the most useful group of plants in tropical American forests and in this project we study the effect of extraction and trade of palms on forest in the western Amazon, Andes and Pacific lowlands. We determine the size of the resource by making palm community studies in the different forest...... formations and determine the number of species and individuals of all palm species. The genetic structure of useful palm species is studied to determine how much harvesting of the species contributes to genetic erosion of its populations, and whether extraction can be made without harm. We determine how much...... palms are used for subsistence purposes by carrying out quantitative, ethnobotanical research in different forest types and we also study trade patterns for palm products from local markets to markets that involve export to other countries and continents. We study different ways in which palms...

  14. Height-diameter allometry of tropical forest trees

    Science.gov (United States)

    T.R. Feldpausch; L. Banin; O.L. Phillips; T.R. Baker; S.L. Lewis; C.A. Quesada; K. Affum-Baffoe; E.J.M.M. Arets; N.J. Berry; M. Bird; E.S. Brondizio; P de Camargo; J. Chave; G. Djagbletey; T.F. Domingues; M. Drescher; P.M. Fearnside; M.B. Franca; N.M. Fyllas; G. Lopez-Gonzalez; A. Hladik; N. Higuchi; M.O. Hunter; Y. Iida; K.A. Salim; A.R. Kassim; M. Keller; J. Kemp; D.A. King; J.C. Lovett; B.S. Marimon; B.H. Marimon-Junior; E. Lenza; A.R. Marshall; D.J. Metcalfe; E.T.A. Mitchard; E.F. Moran; B.W. Nelson; R. Nilus; E.M. Nogueira; M. Palace; S. Patiño; K.S.-H. Peh; M.T. Raventos; J.M. Reitsma; G. Saiz; F. Schrodt; B. Sonke; H.E. Taedoumg; S. Tan; L. White; H. Woll; J. Lloyd

    2011-01-01

    Tropical tree height-diameter (H:D) relationships may vary by forest type and region making large-scale estimates of above-ground biomass subject to bias if they ignore these differences in stem allometry. We have therefore developed a new global tropical forest database consisting of 39 955 concurrent H and D measurements encompassing 283 sites in 22 tropical...

  15. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2

    NARCIS (Netherlands)

    Reiche, Johannes; Hamunyela, Eliakim; Verbesselt, Jan; Hoekman, Dirk; Herold, Martin

    2018-01-01

    Combining observations from multiple optical and synthetic aperture radar (SAR) satellites can provide temporally dense and regular information at medium resolution scale, independently of weather, season, and location. This has the potential to improve near real-time deforestation monitoring in dry

  16. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    Science.gov (United States)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  17. Statistical strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1991-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990, and the rate of change in forest cover between 1980 and 1990. This paper describes: (1) the strategic...

  18. Management of tropical forests for products and energy

    Science.gov (United States)

    John I. Zerbe

    1992-01-01

    Tropical forests have always been sources for prized timbers, rubber, tannin, and other forest products for use worldwide. However, with the recent concern regarding global change, the importance of effective forest products management and utilization has increased significantly. The USDA Forest Service's Forest Products Laboratory at Madison, Wisconsin, has...

  19. Arthropod diversity in a tropical forest.

    Science.gov (United States)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe; Didham, Raphael K; Guilhaumon, François; Missa, Olivier; Novotny, Vojtech; Ødegaard, Frode; Roslin, Tomas; Schmidl, Jürgen; Tishechkin, Alexey K; Winchester, Neville N; Roubik, David W; Aberlenc, Henri-Pierre; Bail, Johannes; Barrios, Héctor; Bridle, Jon R; Castaño-Meneses, Gabriela; Corbara, Bruno; Curletti, Gianfranco; Duarte da Rocha, Wesley; De Bakker, Domir; Delabie, Jacques H C; Dejean, Alain; Fagan, Laura L; Floren, Andreas; Kitching, Roger L; Medianero, Enrique; Miller, Scott E; Gama de Oliveira, Evandro; Orivel, Jérôme; Pollet, Marc; Rapp, Mathieu; Ribeiro, Sérvio P; Roisin, Yves; Schmidt, Jesper B; Sørensen, Line; Leponce, Maurice

    2012-12-14

    Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.

  20. Forest structure and downed woody debris in boreal, temperate, and tropical forest fragments.

    Science.gov (United States)

    Gould, William A; González, Grizelle; Hudak, Andrew T; Hollingsworth, Teresa Nettleton; Hollingsworth, Jamie

    2008-12-01

    Forest fragmentation affects the heterogeneity of accumulated fuels by increasing the diversity of forest types and by increasing forest edges. This heterogeneity has implications in how we manage fuels, fire, and forests. Understanding the relative importance of fragmentation on woody biomass within a single climatic regime, and along climatic gradients, will improve our ability to manage forest fuels and predict fire behavior. In this study we assessed forest fuel characteristics in stands of differing moisture, i.e., dry and moist forests, structure, i.e., open canopy (typically younger) vs. closed canopy (typically older) stands, and size, i.e., small (10-14 ha), medium (33 to 60 ha), and large (100-240 ha) along a climatic gradient of boreal, temperate, and tropical forests. We measured duff, litter, fine and coarse woody debris, standing dead, and live biomass in a series of plots along a transect from outside the forest edge to the fragment interior. The goal was to determine how forest structure and fuel characteristics varied along this transect and whether this variation differed with temperature, moisture, structure, and fragment size. We found nonlinear relationships of coarse woody debris, fine woody debris, standing dead and live tree biomass with mean annual median temperature. Biomass for these variables was greatest in temperate sites. Forest floor fuels (duff and litter) had a linear relationship with temperature and biomass was greatest in boreal sites. In a five-way multivariate analysis of variance we found that temperature, moisture, and age/structure had significant effects on forest floor fuels, downed woody debris, and live tree biomass. Fragment size had an effect on forest floor fuels and live tree biomass. Distance from forest edge had significant effects for only a few subgroups sampled. With some exceptions edges were not distinguishable from interiors in terms of fuels.

  1. Tropical forest cover change in the 1990s and options for future monitoring.

    Science.gov (United States)

    Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric; Eva, Hugh; Stibig, Hans-Jürgen; Branthomme, Anne

    2005-02-28

    Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of -0.8 to -0.9%. The annual area deforested in Latin America is large, but the relative rate (-0.4 to -0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (-0.4 to -0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental

  2. Quantifying seasonal fallback on invertebrates, pith, and bromeliad leaves by white-faced capuchin monkeys (Cebus capucinus) in a tropical dry forest.

    Science.gov (United States)

    Mosdossy, Krisztina N; Melin, Amanda D; Fedigan, Linda M

    2015-09-01

    Fallback foods (FBFs) are hypothesized to shape the ecology, morphology, and behavior of primates, including hominins. Identifying FBFs is therefore critical for revealing past and present foraging adaptations. Recent research suggests invertebrates act as seasonal FBFs for many primate species and human populations. Yet, studies measuring the consumption of invertebrates relative to ecological variation are widely lacking. We address this gap by examining food abundance and entomophagy by primates in a seasonal forest. We study foraging behavior of white-faced capuchins (Cebus capucinus)-a species renowned for its intelligence and propensity for extractive foraging-along with the abundance of invertebrates, dietary ripe fruits, pith, and bromeliads. Consumption events and processing time are recorded during focal animal samples. We determine abundance of vegetative foods through phenological and density records. Invertebrates are collected in malaise, pan, and terrestrial traps; caterpillar abundance is inferred from frass traps. Invertebrates are abundant throughout the year and capuchins consume invertebrates-including caterpillars-frequently when fruit is abundant. However, capuchins spend significantly more time processing protected invertebrates when fruit and caterpillars are low in abundance. Invertebrate foraging patterns are not uniform. Caterpillar consumption is consistent with a preferred strategy, whereas capuchins appear to fallback on invertebrates requiring high handling time. Capuchins are convergent with hominins in possessing large brains and high levels of sensorimotor intelligence, thus our research has broad implications for primate evolution, including factors shaping cognitive innovations, brain size, and the role of entomophagy in the human diet. © 2015 Wiley Periodicals, Inc.

  3. Indirect approach for estimation of forest degradation in non-intact dry forest

    DEFF Research Database (Denmark)

    Dons, Klaus; Bhattarai, Sushma; Meilby, Henrik

    2016-01-01

    Background Implementation of REDD+ requires measurement and monitoring of carbon emissions from forest degradation in developing countries. Dry forests cover about 40 % of the total tropical forest area, are home to large populations, and hence often display high disturbance levels....... They are susceptible to gradual but persistent degradation and monitoring needs to be low cost due to the low potential benefit from carbon accumulation per unit area. Indirect remote sensing approaches may provide estimates of subsistence wood extraction, but sampling of biomass loss produces zero-inflated continuous...... data that challenges conventional statistical approaches. We introduce the use of Tweedie Compound Poisson distributions from the exponential dispersion family with Generalized Linear Models (CPGLM) to predict biomass loss as a function of distance to nearest settlement in two forest areas in Tanzania...

  4. Tropical forest transitions: structural changes in forest area, composition and landscape

    NARCIS (Netherlands)

    Wiersum, K.F.

    2014-01-01

    Most studies on tropical forest dynamics focus on the processes of deforestation and forest degradation and its associated ecological impacts; comparatively little attention is given to the emergence of forest transitions. This review gives an overview of forest transitions in the tropics as

  5. Recycling of phenolic compounds in Borneo's tropical peat swamp forests.

    Science.gov (United States)

    Yule, Catherine M; Lim, Yau Yan; Lim, Tse Yuen

    2018-02-07

    Tropical peat swamp forests (TPSF) are globally significant carbon stores, sequestering carbon mainly as phenolic polymers and phenolic compounds (particularly as lignin and its derivatives) in peat layers, in plants, and in the acidic blackwaters. Previous studies show that TPSF plants have particularly high levels of phenolic compounds which inhibit the decomposition of organic matter and thus promote peat accumulation. The studies of phenolic compounds are thus crucial to further understand how TPSF function with respect to carbon sequestration. Here we present a study of cycling of phenolic compounds in five forests in Borneo differing in flooding and acidity, leaching of phenolic compounds from senescent Macaranga pruinosa leaves, and absorption of phenolics by M. pruinosa seedlings. The results of the study show that total phenolic content (TPC) in soil and leaves of three species of Macaranga were highest in TPSF followed by freshwater swamp forest and flooded limestone forest, then dry land sites. Highest TPC values were associated with acidity (in TPSF) and waterlogging (in flooded forests). Moreover, phenolic compounds are rapidly leached from fallen senescent leaves, and could be reabsorbed by tree roots and converted into more complex phenolics within the leaves. Extreme conditions-waterlogging and acidity-may facilitate uptake and synthesis of protective phenolic compounds which are essential for impeded decomposition of organic matter in TPSF. Conversely, the ongoing drainage and degradation of TPSF, particularly for conversion to oil palm plantations, reverses the conditions necessary for peat accretion and carbon sequestration.

  6. Monitoring temporal Vegetation changes in Lao tropical forests

    International Nuclear Information System (INIS)

    Phompila, Chittana; Lewis, Megan; Clarke, Kenneth; Ostendorf, Bertram

    2014-01-01

    Studies on changes in vegetation are essential for understanding the interaction between humans and the environment. These studies provide key information for land use assessment, terrestrial ecosystem monitoring, carbon flux modelling and impacts of global climate change. The primary purpose of this study was to detect temporal vegetation changes in tropical forests in the southern part of Lao PDR from 2001-2012. The study investigated the annual vegetation phenological response of dominant land cover types across the study area and relationships to seasonal precipitation and temperature. Improved understanding of intra-annual patterns of vegetation variation was useful to detect longer term changes in vegetation. The breaks for additive season and trend (BFAST) approach was implemented to detect changes in these land cover types throughout the 2001-2012 period. We used the enhanced vegetation index (EVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD13Q1 products) and monthly rainfall and temperature data obtained from the Meteorology and Hydrology Department, Ministry of Agriculture-Forestry, published by Lao National Statistical Centre in this research. EVI well documented the annual seasonal growth of vegetation and clearly distinguished the characteristic phenology of four different land use types; native forest, plantation, agriculture and mixed wooded/cleared area. Native forests maintained high EVI throughout the year, while plantations, wooded/cleared areas and agriculture showed greater inter-annual variation, with minimum EVI at the end of the dry season in April and maximum EVI in September-October, around two months after the wet season peak in rainfall. The BFAST analysis detected abrupt temporal changes in vegetation in the tropical forests, especially in a large conversion of mixed wooded/cleared area into plantation. Within the study area from 2001-2012 there has been an overall decreasing trend of vegetation cover for

  7. Leaf litter arthropod responses to tropical forest restoration.

    Science.gov (United States)

    Cole, Rebecca J; Holl, Karen D; Zahawi, Rakan A; Wickey, Philipp; Townsend, Alan R

    2016-08-01

    Soil and litter arthropods represent a large proportion of tropical biodiversity and perform important ecosystem functions, but little is known about the efficacy of different tropical forest restoration strategies in facilitating their recovery in degraded habitats. We sampled arthropods in four 7- to 8-year-old restoration treatments and in nearby reference forests. Sampling was conducted during the wet and dry seasons using extractions from litter and pitfall samples. Restoration treatments were replicated in 50 × 50-m plots in four former pasture sites in southern Costa Rica: plantation - trees planted throughout the plot; applied nucleation/islands - trees planted in patches of different sizes; and natural regeneration - no tree planting. Arthropod abundance, measures of richness and diversity, and a number of functional groups were greater in the island treatment than in natural regeneration or plantation treatments and, in many cases, were similar to reference forest. Litter and pitfall morphospecies and functional group composition in all three restoration treatments were significantly different than reference sites, but island and plantation treatments showed more recovery than natural regeneration. Abundance and functional group diversity showed a much greater degree of recovery than community composition. Synthesis and applications: The less resource-intensive restoration strategy of planting tree islands was more effective than tree plantations in restoring arthropod abundance, richness, and functional diversity. None of the restoration strategies, however, resulted in similar community composition as reference forest after 8 years of recovery, highlighting the slow rate of recovery of arthropod communities after disturbance, and underscoring the importance of conservation of remnant forests in fragmented landscapes.

  8. Ecological Structure of a Tropical Urban Forest in the Bang Kachao Peninsula, Bangkok

    Directory of Open Access Journals (Sweden)

    Montathip Sommeechai

    2018-01-01

    Full Text Available Rapid urbanization has changed the structure and function of natural ecosystems, especially floodplain ecosystems in SE Asia. The ecological structure of vegetation stands and the usefulness of satellite images was investigated to characterize a disturbed tropical urban forest located in the Chao Phraya River lower floodplain, Thailand. Nine sample plots were established on the Bang Kachao Peninsula (BKP within 4 tropical forest types in an urban area: rehabilitation forest, home-garden agroforestry, mangrove and park. The tree habitats were beach forest, swamp forest, moist evergreen forest, dry evergreen forest, mangrove forest and abandoned orchard or home-garden. Normalized difference vegetation index (NDVI values obtained from Landsat 7 satellite images were correlated with plant structure from field surveys. NDVI had the highest relationship with stand factors for number of families, number of species, Shannon-Weiner index and total basal area. Linear regression predicted well the correlation between NDVI and stand factors for families and basal area. NDVI trends reflected urban tropical forest typing and biodiversity, being high in rehabilitation and mangrove forests, moderate in home-gardens and low in parks. We suggest that the application of NDVI for assessments can be useful for future planning, monitoring and management of the BKP and hence may contribute for increasing biodiversity and complexity of these urban forests.

  9. Diversity and carbon storage across the tropical forest biome.

    Science.gov (United States)

    Sullivan, Martin J P; Talbot, Joey; Lewis, Simon L; Phillips, Oliver L; Qie, Lan; Begne, Serge K; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; Ter Steege, Hans; White, Lee J T; Affum-Baffoe, Kofi; Aiba, Shin-Ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E O C; Ashton, Peter; Aymard C, Gerardo A; Baker, Timothy R; Balinga, Michael; Banin, Lindsay F; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J; Pacheco, Álvaro Cogollo; Comiskey, James A; Valverde, Fernando Cornejo; Coronado, Eurídice N Honorio; Dargie, Greta; Davies, Stuart J; De Canniere, Charles; Djuikouo K, Marie Noel; Doucet, Jean-Louis; Erwin, Terry L; Espejo, Javier Silva; Ewango, Corneille E N; Fauset, Sophie; Feldpausch, Ted R; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S; Harris, David J; Hart, Terese B; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G W; Laurance, William F; Leal, Miguel E; Lovejoy, Thomas; Lovett, Jon C; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S; Junior, Ben Hur Marimon; Marshall, Andrew R; Morandi, Paulo S; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C; Poulsen, Axel Dalberg; Poulsen, John R; Primack, Richard B; Priyadi, Hari; Quesada, Carlos A; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J W Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W; Thomas, Sean C; Toledo, Marisol; Umunay, Peter M; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-17

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

  10. Diversity and carbon storage across the tropical forest biome

    Science.gov (United States)

    Sullivan, Martin J. P.; Talbot, Joey; Lewis, Simon L.; Phillips, Oliver L.; Qie, Lan; Begne, Serge K.; Chave, Jerôme; Cuni-Sanchez, Aida; Hubau, Wannes; Lopez-Gonzalez, Gabriela; Miles, Lera; Monteagudo-Mendoza, Abel; Sonké, Bonaventure; Sunderland, Terry; Ter Steege, Hans; White, Lee J. T.; Affum-Baffoe, Kofi; Aiba, Shin-Ichiro; de Almeida, Everton Cristo; de Oliveira, Edmar Almeida; Alvarez-Loayza, Patricia; Dávila, Esteban Álvarez; Andrade, Ana; Aragão, Luiz E. O. C.; Ashton, Peter; Aymard C., Gerardo A.; Baker, Timothy R.; Balinga, Michael; Banin, Lindsay F.; Baraloto, Christopher; Bastin, Jean-Francois; Berry, Nicholas; Bogaert, Jan; Bonal, Damien; Bongers, Frans; Brienen, Roel; Camargo, José Luís C.; Cerón, Carlos; Moscoso, Victor Chama; Chezeaux, Eric; Clark, Connie J.; Pacheco, Álvaro Cogollo; Comiskey, James A.; Valverde, Fernando Cornejo; Coronado, Eurídice N. Honorio; Dargie, Greta; Davies, Stuart J.; de Canniere, Charles; Djuikouo K., Marie Noel; Doucet, Jean-Louis; Erwin, Terry L.; Espejo, Javier Silva; Ewango, Corneille E. N.; Fauset, Sophie; Feldpausch, Ted R.; Herrera, Rafael; Gilpin, Martin; Gloor, Emanuel; Hall, Jefferson S.; Harris, David J.; Hart, Terese B.; Kartawinata, Kuswata; Kho, Lip Khoon; Kitayama, Kanehiro; Laurance, Susan G. W.; Laurance, William F.; Leal, Miguel E.; Lovejoy, Thomas; Lovett, Jon C.; Lukasu, Faustin Mpanya; Makana, Jean-Remy; Malhi, Yadvinder; Maracahipes, Leandro; Marimon, Beatriz S.; Junior, Ben Hur Marimon; Marshall, Andrew R.; Morandi, Paulo S.; Mukendi, John Tshibamba; Mukinzi, Jaques; Nilus, Reuben; Vargas, Percy Núñez; Camacho, Nadir C. Pallqui; Pardo, Guido; Peña-Claros, Marielos; Pétronelli, Pascal; Pickavance, Georgia C.; Poulsen, Axel Dalberg; Poulsen, John R.; Primack, Richard B.; Priyadi, Hari; Quesada, Carlos A.; Reitsma, Jan; Réjou-Méchain, Maxime; Restrepo, Zorayda; Rutishauser, Ervan; Salim, Kamariah Abu; Salomão, Rafael P.; Samsoedin, Ismayadi; Sheil, Douglas; Sierra, Rodrigo; Silveira, Marcos; Slik, J. W. Ferry; Steel, Lisa; Taedoumg, Hermann; Tan, Sylvester; Terborgh, John W.; Thomas, Sean C.; Toledo, Marisol; Umunay, Peter M.; Gamarra, Luis Valenzuela; Vieira, Ima Célia Guimarães; Vos, Vincent A.; Wang, Ophelia; Willcock, Simon; Zemagho, Lise

    2017-01-01

    Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.

  11. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    Science.gov (United States)

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  12. Functional traits, drought performance, and the distribution of tree species in tropical forests of Ghana

    NARCIS (Netherlands)

    Amissah, L.

    2014-01-01

    Tropical forests occur along a rainfall gradient where annual amount, the length and intensity of dry season vary and water availability shapes therefore strongly the distribution of tree species. Annual rainfall in West Africa has declined at a rate of 4% per decade, and climate change

  13. Axial and radial water transport and internal water storage in tropical forest canopy trees.

    Science.gov (United States)

    Shelley A. James; Frederick C. Meinzer; Guillermo Goldstein; David Woodruff; Timothy Jones; Teresa Restom; Monica Mejia; Michael Clearwater; Paula. Campanello

    2003-01-01

    Heat and stable isotope tracers were used to study axial and radial water transport in relation to sapwood anatomical characteristics and internal water storage in four canopy tree species of a seasonally dry tropical forest in Panama. Anatomical characteristics of the wood and radial profiles of sap flow were measured at the base, upper trunk, and crown of a single...

  14. Quantitative Analysis of Complex Tropical Forest Stands: A Review ...

    African Journals Online (AJOL)

    The importance of data analysis in quantitative assessment of natural resources remains significant in the sustainable management of complex tropical forest resources. Analyses of data from complex tropical forest stands have not been easy or clear due to improper data management. It is pivotal to practical researches ...

  15. Radar remote sensing to support tropical forest management

    NARCIS (Netherlands)

    Sanden, van der J.J.

    1997-01-01

    This text describes an investigation into the potential of radar remote sensing for application to tropical forest management. The information content of various radar images is compared and assessed with regard to the information requirements of parties involved in tropical forest

  16. [Dynamics of Amomum villosum growth and its fruit yield cultivated under tropical forests].

    Science.gov (United States)

    Zheng, Zheng; Gan, Jianmin; Feng, Zhili; Meng, Ying

    2004-01-01

    Investigations on the dynamics of Amomum villosum growth and its fruit yield cultivated under tropical ravine rainforest and secondary forest at different elevations in Xishuangbanna showed that the yield of A. villosum was influenced by the site age, sun light level of understorey, and water stress in dry season. The fruit yield and mature plant density decreased with increasing age of the A. villosum site. The fruit yield increased with sun light level when the light level in understorey was under 35% of full sun light (P forest was not significant. Planned cultivation of A. villosum in the secondary forest of the shifting cultivation land by ravine from 800-1000 m elevation instead of customary cultivation in the ravine rainforest, could not only resolve the problem of the effect of light deficiency in understorey and water stress in the dry season on A. villosum fruit yield, but also be useful to protect the tropical ravine rain forest.

  17. Root layering in a tropical forest after logging (Central Vietnam

    Directory of Open Access Journals (Sweden)

    Zdeněk Čermák

    2012-01-01

    Full Text Available Indigenous stands of tropical rain forests in the region of Kon Ha Nung are one of the most preserved forests in the whole Vietnam. Despite the logging activities mainly in the 1970’s, it was possible to preserve intact forests free from any primary harvesting. In the past, other stands were influenced by the logging to various extent. Some of those stands are managed presently; others were left to natural development. This paper deals with the influence of harvesting activities on the root system in forest stands. In primary stands and in stands with known harvest intensity, samples of root systems were collected. The total weight of dry basis and mainly their layering within the soil profile were assessed. The collected roots were divided into three classes: class I – ≤ 1.0 mm, class II 1.1–5.0 mm, class III – over 5.0 mm in the diameter. In the monitored plots, the total weight of dry basis of fine roots to 1.0 mm ranged from 2.34–3.24 t∙ha−1. The weight of dry basis of roots from 1.0–5.0 mm ranged from 6.57–9.69 t∙ha−1. The majority of roots of class I is presented in the top 10.0 cm of the soil and their share drops with the increasing depth. The roots of class II are distributed more equally. It was impossible to prove the influence of the logging on the root system.

  18. Community ecology of tropical forest snails: 30 years after Solem

    NARCIS (Netherlands)

    Schilthuizen, M.

    2011-01-01

    Since Solem’s provocative claim in the early 1980s that land snails in tropical forests are neither abundant nor diverse, at least 30 quantitative-ecological papers on tropical land snail communities have appeared. Jointly, these papers have shown that site diversity is, in fact, high in tropical

  19. Poverty and corruption compromise tropical forest reserves.

    Science.gov (United States)

    Wright, S Joseph; Sanchez-Azofeifa, G Arturo; Portillo-Quintero, Carlos; Davies, Diane

    2007-07-01

    We used the global fire detection record provided by the satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) to determine the number of fires detected inside 823 tropical and subtropical moist forest reserves and for contiguous buffer areas 5, 10, and 15 km wide. The ratio of fire detection densities (detections per square kilometer) inside reserves to their contiguous buffer areas provided an index of reserve effectiveness. Fire detection density was significantly lower inside reserves than in paired, contiguous buffer areas but varied by five orders of magnitude among reserves. The buffer: reserve detection ratio varied by up to four orders of magnitude among reserves within a single country, and median values varied by three orders of magnitude among countries. Reserves tended to be least effective at reducing fire frequency in many poorer countries and in countries beset by corruption. Countries with the most successful reserves include Costa Rica, Jamaica, Malaysia, and Taiwan and the Indonesian island of Java. Countries with the most problematic reserves include Cambodia, Guatemala, Paraguay, and Sierra Leone and the Indonesian portion of Borneo. We provide fire detection density for 3964 tropical and subtropical reserves and their buffer areas in the hope that these data will expedite further analyses that might lead to improved management of tropical reserves.

  20. Plant diversity patterns in neotropical dry forests and their conservation implications.

    Science.gov (United States)

    Banda-R, Karina; Delgado-Salinas, Alfonso; Dexter, Kyle G; Linares-Palomino, Reynaldo; Oliveira-Filho, Ary; Prado, Darién; Pullan, Martin; Quintana, Catalina; Riina, Ricarda; Rodríguez M, Gina M; Weintritt, Julia; Acevedo-Rodríguez, Pedro; Adarve, Juan; Álvarez, Esteban; Aranguren B, Anairamiz; Arteaga, Julián Camilo; Aymard, Gerardo; Castaño, Alejandro; Ceballos-Mago, Natalia; Cogollo, Álvaro; Cuadros, Hermes; Delgado, Freddy; Devia, Wilson; Dueñas, Hilda; Fajardo, Laurie; Fernández, Ángel; Fernández, Miller Ángel; Franklin, Janet; Freid, Ethan H; Galetti, Luciano A; Gonto, Reina; González-M, Roy; Graveson, Roger; Helmer, Eileen H; Idárraga, Álvaro; López, René; Marcano-Vega, Humfredo; Martínez, Olga G; Maturo, Hernán M; McDonald, Morag; McLaren, Kurt; Melo, Omar; Mijares, Francisco; Mogni, Virginia; Molina, Diego; Moreno, Natalia Del Pilar; Nassar, Jafet M; Neves, Danilo M; Oakley, Luis J; Oatham, Michael; Olvera-Luna, Alma Rosa; Pezzini, Flávia F; Dominguez, Orlando Joel Reyes; Ríos, María Elvira; Rivera, Orlando; Rodríguez, Nelly; Rojas, Alicia; Särkinen, Tiina; Sánchez, Roberto; Smith, Melvin; Vargas, Carlos; Villanueva, Boris; Pennington, R Toby

    2016-09-23

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale. Copyright © 2016, American Association for the Advancement of Science.

  1. Plant diversity patterns in neotropical dry forests and their conservation implications

    Science.gov (United States)

    K. Banda-R; A. Delgado-Salinas; K. G. Dexter; R. Linares-Palomino; A. Oliveira-Filho; D. Prado; M. Pullan; C. Quintana; R. Riina; G. M. Rodriguez M.; J. Weintritt; P. Acevedo-Rodriguez; J. Adarve; E. Alvarez; A. Aranguren B.; J. C. Arteaga; G. Aymard; A. Castano; N. Ceballos-Mago; A. Cogollo; H. Cuadros; F. Delgado; W. Devia; H. Duenas; L. Fajardo; A. Fernandez; M. A. Fernandez; J. Franklin; E. H. Freid; L. A. Galetti; R. Gonto; R. Gonzalez-M.; R. Graveson; E. H. Helmer; A. Idarraga; R. Lopez; H. Marcano-Vega; O. G. Martinez; H. M. Maturo; M. McDonald; K. McLaren; O. Melo; F. Mijares; V. Mogni; D. Molina; N. d. P. Moreno; J. M. Nassar; D. M. Neves; L. J. Oakley; M. Oatham; A. R. Olvera-Luna; F. F. Pezzini; O. J. R. Dominguez; M. E. Rios; O. Rivera; N. Rodriguez; A. Rojas; T. Sarkinen; R. Sanchez; M. Smith; C. Vargas; B. Villanueva; R. T. Pennington

    2016-01-01

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than...

  2. Forests to fields. Restoring tropical lands to agriculture.

    Science.gov (United States)

    Wood, D

    1993-04-01

    In discussing land use in tropical forest regions, there is an emphasis on the following topics: the need for the expansion of cropping areas, the precedent for use of the tropical forest for cropping based on past use patterns, the pressure from conservationists against cropping, debunking the mythology that forests are "natural" and refuting the claims that forest clearance is not reversible, the archeological evidence of past forest use for agricultural purposes, abandonment of tropical land to forest, and rotation of forest and field. The assumption is that the way to stop food importation is to increase crop production in the tropics. Crop production can be increased through 1) land intensification or clearing new land, 2) output per unit of land increases, or 3) reallocation to agriculture land previously cleared and overgrown with tropical forest. "Temporary" reuse of land, which reverted back to tropical forest, is recommended. This reuse would ease population pressure, and benefit bioconservation, while populations stabilize and further progress is made in international plant breeding. The land would eventually be returned to a forest state. Conservation of tropical forest areas should be accomplished, after an assessment has been made of its former uses. Primary forests need to identified and conversion to farming ceased. Research needs to be directed to understanding the process of past forest regeneration, and to devising cropping systems with longterm viability. The green revolution is unsuitable for traditional cropping systems, is contrary to demands of international funding agencies for sustainability, and is not affordable by most poor farmers. Only .48 million sq. km of closed forest loss was in tropical rainforests; 6.53 million sq. km was lost from temperate forests cleared for intensive small-scale peasant farming. The use of tropical forest land for farming has some benefits; crops in the wetter tropics are perennial, which would "reduce

  3. Forest extent and deforestation in tropical Africa since 1900.

    Science.gov (United States)

    Aleman, Julie C; Jarzyna, Marta A; Staver, A Carla

    2018-01-01

    Accurate estimates of historical forest extent and associated deforestation rates are crucial for quantifying tropical carbon cycles and formulating conservation policy. In Africa, data-driven estimates of historical closed-canopy forest extent and deforestation at the continental scale are lacking, and existing modelled estimates diverge substantially. Here, we synthesize available palaeo-proxies and historical maps to reconstruct forest extent in tropical Africa around 1900, when European colonization accelerated markedly, and compare these historical estimates with modern forest extent to estimate deforestation. We find that forests were less extensive in 1900 than bioclimatic models predict. Resultantly, across tropical Africa, ~ 21.7% of forests have been deforested, yielding substantially slower deforestation than previous estimates (35-55%). However, deforestation was heterogeneous: West and East African forests have undergone almost complete decline (~ 83.3 and 93.0%, respectively), while Central African forests have expanded at the expense of savannahs (~ 1.4% net forest expansion, with ~ 135,270 km 2 of savannahs encroached). These results suggest that climate alone does not determine savannah and forest distributions and that many savannahs hitherto considered to be degraded forests are instead relatively old. These data-driven reconstructions of historical biome distributions will inform tropical carbon cycle estimates, carbon mitigation initiatives and conservation planning in both forest and savannah systems.

  4. Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests.

    Science.gov (United States)

    Davis, Charles C; Webb, Campbell O; Wurdack, Kenneth J; Jaramillo, Carlos A; Donoghue, Michael J

    2005-03-01

    Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed-canopy rain forest did not originate until after the Cretaceous-Tertiary (K/T) boundary. However, some mid-Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence-time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, provide new tests of these hypotheses. We estimate that all 28 major lineages (i.e., traditionally recognized families) within this clade originated in tropical rain forest well before the Tertiary, mostly during the Albian and Cenomanian (112-94 Ma). Their rapid rise in the mid-Cretaceous may have resulted from the origin of adaptations to survive and reproduce under a closed forest canopy. This pattern may also be paralleled by other similarly diverse lineages and supports fossil indications that closed-canopy tropical rain forests existed well before the K/T boundary. This case illustrates that dated phylogenies can provide an important new source of evidence bearing on the timing of major environmental changes, which may be especially useful when fossil evidence is limited or controversial.

  5. Dry season aerosol iron solubility in tropical northern Australia

    Directory of Open Access Journals (Sweden)

    V. H. L. Winton

    2016-10-01

    Full Text Available Marine nitrogen fixation is co-limited by the supply of iron (Fe and phosphorus in large regions of the global ocean. The deposition of soluble aerosol Fe can initiate nitrogen fixation and trigger toxic algal blooms in nitrate-poor tropical waters. We present dry season soluble Fe data from the Savannah Fires in the Early Dry Season (SAFIRED campaign in northern Australia that reflects coincident dust and biomass burning sources of soluble aerosol Fe. The mean soluble and total aerosol Fe concentrations were 40 and 500 ng m−3 respectively. Our results show that while biomass burning species may not be a direct source of soluble Fe, biomass burning may substantially enhance the solubility of mineral dust. We observed fractional Fe solubility up to 12 % in mixed aerosols. Thus, Fe in dust may be more soluble in the tropics compared to higher latitudes due to higher concentrations of biomass-burning-derived reactive organic species in the atmosphere. In addition, biomass-burning-derived particles can act as a surface for aerosol Fe to bind during atmospheric transport and subsequently be released to the ocean upon deposition. As the aerosol loading is dominated by biomass burning emissions over the tropical waters in the dry season, additions of biomass-burning-derived soluble Fe could have harmful consequences for initiating nitrogen-fixing toxic algal blooms. Future research is required to quantify biomass-burning-derived particle sources of soluble Fe over tropical waters.

  6. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    Science.gov (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  7. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China.

    Science.gov (United States)

    Lü, Xiao-Tao; Tang, Jian-Wei; Feng, Zhi-Li; Li, Mai-He

    2009-01-01

    Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with > or = 2 cm diameter at breast height (dbh) were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha), 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded) was the most important family in the study forests. The population density, basal area and importance value index (IVI) varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha) accounted for 1.4% of the total community above-ground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales.

  8. Deadwood biomass: an underestimated carbon stock in degraded tropical forests?

    Science.gov (United States)

    Pfeifer, Marion; Lefebvre, Veronique; Turner, Edgar; Cusack, Jeremy; Khoo, MinSheng; Chey, Vun K.; Peni, Maria; Ewers, Robert M.

    2015-04-01

    Despite a large increase in the area of selectively logged tropical forest worldwide, the carbon stored in deadwood across a tropical forest degradation gradient at the landscape scale remains poorly documented. Many carbon stock studies have either focused exclusively on live standing biomass or have been carried out in primary forests that are unaffected by logging, despite the fact that coarse woody debris (deadwood with ≥10 cm diameter) can contain significant portions of a forest’s carbon stock. We used a field-based assessment to quantify how the relative contribution of deadwood to total above-ground carbon stock changes across a disturbance gradient, from unlogged old-growth forest to severely degraded twice-logged forest, to oil palm plantation. We measured in 193 vegetation plots (25 × 25 m), equating to a survey area of >12 ha of tropical humid forest located within the Stability of Altered Forest Ecosystems Project area, in Sabah, Malaysia. Our results indicate that significant amounts of carbon are stored in deadwood across forest stands. Live tree carbon storage decreased exponentially with increasing forest degradation 7-10 years after logging while deadwood accounted for >50% of above-ground carbon stocks in salvage-logged forest stands, more than twice the proportion commonly assumed in the literature. This carbon will be released as decomposition proceeds. Given the high rates of deforestation and degradation presently occurring in Southeast Asia, our findings have important implications for the calculation of current carbon stocks and sources as a result of human-modification of tropical forests. Assuming similar patterns are prevalent throughout the tropics, our data may indicate a significant global challenge to calculating global carbon fluxes, as selectively-logged forests now represent more than one third of all standing tropical humid forests worldwide.

  9. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2017-03-01

    Full Text Available We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the classification of forests by life zones, estimation of carbon density by forest type, assessing carbon storage changes with ecological succession and land use/land cover type, describing the details of the carbon cycle of forests at stand and landscape levels, assessing global land cover by forest type and the complexity of land use change in tropical regions, and assessing the ecological fluxes and storages that contribute to net carbon accumulation in tropical forests. We also review recent work that couples field inventory data, remote sensing technology such as LIDAR, and GIS analysis in order to more accurately determine the role of tropical forests in the global carbon cycle and point out new avenues of carbon research that address the responses of tropical forests to environmental change.

  10. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.

    Science.gov (United States)

    Cleveland, Cory C; Townsend, Alan R

    2006-07-05

    Terrestrial biosphere-atmosphere carbon dioxide (CO(2)) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are high, P fertilization drove large increases in soil respiration. Although the P-stimulated increase in soil respiration was largely confined to the dry-to-wet season transition, the seasonal increase was sufficient to drive an 18% annual increase in CO(2) efflux from the P-fertilized plots. Nitrogen (N) fertilization caused similar responses, and the net increases in soil respiration in response to the additions of N and P approached annual soil C fluxes in mid-latitude forests. Human activities are altering natural patterns of tropical soil N and P availability by land conversion and enhanced atmospheric deposition. Although our data suggest that the mechanisms driving the observed respiratory responses to increased N and P may be different, the large CO(2) losses stimulated by N and P fertilization suggest that knowledge of such patterns and their effects on soil CO(2) efflux is critical for understanding the role of tropical forests in a rapidly changing global C cycle.

  11. Diversidad de avispas parasitoides de la familia Encyrtidae (Hymenoptera: Chalcidoidea del bosque tropical caducifolio en San Buenaventura, Jalisco, México Diversity of parasitoid wasps of the family Encyrtidae (Hymenoptera: Chalcidoidea in the tropical dry forest of San Buenaventura, Jalisco, Mexico

    Directory of Open Access Journals (Sweden)

    Beatriz Rodríguez-Velez

    2011-09-01

    Full Text Available Se presentan los resultados del estudio de la fauna de avispas parasitoides de la familia Encyrtidae en el bosque tropical caducifolio de San Buenaventura, Jalisco, México. El estudio se llevó a cabo de noviembre de 1996 a octubre de 1997. La recolección se realizó con trampas Malaise durante 5 días de cada mes. Se registró un total de 61 especies, 30 géneros, 13 tribus y 2 subfamilias. El mayor número de géneros y especies fue de la subfamilia Encyrtinae, con 22 géneros y 44 especies, seguida por Tetracneminae con 8 géneros y 17 especies. El género con mayor número de especies fue Metaphycus con 11. Las especies recolectadas no fueron abundantes, y su riqueza y abundancia varió estacionalmente, registrándose los valores más altos durante la temporada de lluvias. La similitud de la fauna de San Buenaventura, Jalisco con la de Huautla, Morelos fue mayor que la encontrada en otras regiones previamente estudiadas de bosque tropical caducifolio (San Javier, Sonora y Huatulco, Oaxaca.Results of a faunistic study of the parasitoid wasps of the family Encyrtidae of the tropical dry forest of San Buenaventura, Jalisco, Mexico are presented. The study was carried out from November 1996 to October 1997. Collecting technique was Malaise trapping. Collections were carried out during 5 days of every month. A total of 61 species, 30 genera, 13 tribes and 2 subfamilies were recorded. The subfamily with the largest number of species was Encyrtinae with 22 genera and 44 species, followed by Tetracneminae with 8 genera and 17 species. The genus with the largest number of species was Metaphycus with 11. Species had low abundance. Species richness and abundance varied with time, with the highest values recorded in the rainy season. The fauna of San Buenaventura, Jalisco was most similar to that of Huautla, Morelos, than to that of San Javier, Sonora and Huatulco, Oaxaca, all of them previously studied.

  12. Interactions between atmospheric circulation, nutrient deposition, and tropical forest primary production (Invited)

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Rogers, B. M.; Morton, D. C.; van der Werf, G.; Mahowald, N. M.

    2010-12-01

    Tropical forests influence regional and global climate by means of several pathways, including by modifying surface energy exchange and by forming clouds. High levels of precipitation, leaching, and soil weathering limit nutrient availability in these ecosystems. Phosphorus (P) is a key element limiting net primary production, and in some areas, including forests recovering from prior disturbance, nitrogen (N) also may limit some components of production. Here we quantified atmospheric P and N inputs to these forests from fires using satellite-derived estimates of emissions and atmospheric models. In Africa and South America, cross-biome transport of fire-emitted aerosols and reactive N gases from savannas and areas near the deforestation frontier increased deposition of P and N in interior forests. Equatorward atmospheric transport during the dry (fire) season in one hemisphere was linked with surface winds moving toward the inter-tropical convergence zone (ITCZ) in the other hemisphere. Deposition levels were higher in tropical forests in Africa than in South America because of large savanna areas with high levels of fire emissions in both southern and northern Africa. We conclude by describing a potential feedback loop by which equatorward transport of fire emissions, dust, and spores sustains the productivity of tropical forests. We specifically assessed evidence that savanna-to-forest atmospheric transport of nutrients increases forest productivity, height, and rates of evapotranspiration (ET). In parallel, we examined the degree to which increases in ET and surface roughness in tropical forests have the potential to strengthen several components of the Hadley circulation, including deep convection, equatorward return flow (near the surface), and the intensity of seasonal drought in the subtropics (thereby increasing fires). These interactions are important for understanding biogeochemical - climate interactions on millennial timescales and for quantifying how

  13. Drought stress and tree size determine stem CO2 efflux in a tropical forest.

    Science.gov (United States)

    Rowland, Lucy; da Costa, Antonio C L; Oliveira, Alex A R; Oliveira, Rafael S; Bittencourt, Paulo L; Costa, Patricia B; Giles, Andre L; Sosa, Azul I; Coughlin, Ingrid; Godlee, John L; Vasconcelos, Steel S; Junior, João A S; Ferreira, Leandro V; Mencuccini, Maurizio; Meir, Patrick

    2018-06-01

    CO 2 efflux from stems (CO 2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO 2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO 2_stem in the droughted forest relative to a control forest. This was driven by increasing CO 2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO 2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO 2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO 2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO 2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO 2_stem fluxes, stand-scale future estimates of changes in stem CO 2 emissions remain highly uncertain. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  14. Phyllostomid bat occurrence in successional stages of neotropical dry forests.

    Directory of Open Access Journals (Sweden)

    Luis Daniel Avila-Cabadilla

    Full Text Available Tropical dry forests (TDFs are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration, in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance and assemblage level (species richness and composition, guild composition. We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1 the distinctive environmental conditions of each region, (2 the specific behavior and ecological requirements of the regional bat species, (3 the composition, structure and phenological patterns of plant assemblages in the different stages, and (4 the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable

  15. Phyllostomid Bat Occurrence in Successional Stages of Neotropical Dry Forests

    Science.gov (United States)

    Avila-Cabadilla, Luis Daniel; Stoner, Kathryn Elizabeth; Nassar, Jafet M.; Espírito-Santo, Mario M.; Alvarez-Añorve, Mariana Yolotl; Aranguren, Carla I.; Henry, Mickael; González-Carcacía, José A.; Dolabela Falcão, Luiz A.; Sanchez-Azofeifa, Gerardo Arturo

    2014-01-01

    Tropical dry forests (TDFs) are highly endangered tropical ecosystems being replaced by a complex mosaic of patches of different successional stages, agricultural fields and pasturelands. In this context, it is urgent to understand how taxa playing critical ecosystem roles respond to habitat modification. Because Phyllostomid bats provide important ecosystem services (e.g. facilitate gene flow among plant populations and promote forest regeneration), in this study we aimed to identify potential patterns on their response to TDF transformation in sites representing four different successional stages (initial, early, intermediate and late) in three Neotropical regions: México, Venezuela and Brazil. We evaluated bat occurrence at the species, ensemble (abundance) and assemblage level (species richness and composition, guild composition). We also evaluated how bat occurrence was modulated by the marked seasonality of TDFs. In general, we found high seasonal and regional specificities in phyllostomid occurrence, driven by specificities at species and guild levels. For example, highest frugivore abundance occurred in the early stage of the moistest TDF, while highest nectarivore abundance occurred in the same stage of the driest TDF. The high regional specificity of phyllostomid responses could arise from: (1) the distinctive environmental conditions of each region, (2) the specific behavior and ecological requirements of the regional bat species, (3) the composition, structure and phenological patterns of plant assemblages in the different stages, and (4) the regional landscape composition and configuration. We conclude that, in tropical seasonal environments, it is imperative to perform long-term studies considering seasonal variations in environmental conditions and plant phenology, as well as the role of landscape attributes. This approach will allow us to identify potential patterns in bat responses to habitat modification, which constitute an invaluable tool for

  16. Desorption isotherms, drying characteristics and qualities of glace tropical fruits undergoing forced convection solar drying

    Energy Technology Data Exchange (ETDEWEB)

    Jamradloedluk, Jindaporn; Wiriyaumpaiwong, Songchai [Mahasarakham Univ. Khamriang, Kantarawichai, Mahasarakham (Thailand)

    2008-07-01

    Solar energy, a form of sustainable energy, has a great potential for a wide variety of applications because it is abundant and accessible, especially for countries located in the tropical region. Drying process is one of the prominent techniques for utilization of solar energy. This research work proposes a forced convection solar drying of osmotically pretreated fruits viz. mango, guava, and pineapple. The fruit cubes with a dimension of 1cm x 1cm x 1cm were immersed in 35% w./w. sucrose solution prior to the drying process. Drying kinetics, color and hardness of the final products obtained from solar drying were investigated and compared with those obtained from open air-sun drying. Desorption isotherms of the osmosed fruits were also examined and five mathematical models were used to fit the desorption curves. Experimental results revealed that solar drying provided higher drying rate than natural sun drying. Color of glace fruit processed by solar drying was more intense, indicated by lower value of lightness and higher value of yellowness, than that processed by sun drying. Hardness of the products dehydrated by both drying methods, however, was not significantly different (p>0.05). Validation of the mathematical models developed showed that the GAB model was most effective for describing desorption isotherms of osmotically pretreated mango and pineapple whereas Peleg's model was most effective for describing desorption isotherms of osmotically pretreated guava. (orig.)

  17. Tropical forest biomass estimation from truncated stand tables.

    Science.gov (United States)

    A. J. R. Gillespie; S. Brown; A. E. Lugo

    1992-01-01

    Total aboveground forest biomass may be estimated through a variety of techniques based on commercial inventory stand and stock tables. Stand and stock tables from tropical countries commonly omit trees bellow a certain commercial limit.

  18. Richness and Abundance of Ichneumonidae in a Fragmented Tropical Rain Forest.

    Science.gov (United States)

    Ruiz-Guerra, B; Hanson, P; Guevara, R; Dirzo, R

    2013-10-01

    Because of the magnitude of land use currently occurring in tropical regions, the local loss of animal species due to habitat fragmentation has been widely studied, particularly in the case of vertebrates. Many invertebrate groups and the ichneumonid wasps in particular, however, have been poorly studied in this context, despite the fact that they are one of the most species-rich groups and play an important role as regulators of other insect populations. Here, we recorded the taxonomic composition of ichneumonid parasitoids and assessed their species richness, abundance, similarity, and dominance in the Los Tuxtlas tropical rain forest, Mexico. We compared two forest types: a continuous forest (640 ha) and a forest fragment (19 ha). We sampled ichneumonids using four malaise traps in both forest types during the dry (September-October) and rainy (March-April) seasons. A total of 104 individuals of Ichneumonidae belonging to 11 subfamilies, 18 genera, and 42 species were collected in the continuous forest and 11 subfamilies, 15 genera, and 24 species were collected in the forest fragment. Species richness, abundance, and diversity of ichneumonids were greater in the continuous forest than in the forest fragment. We did not detect differences between seasons. Species rank/abundance curves showed that the ichneumonid community between the forest types was different. Species similarity between forest types was low. The most dominant species in continuous forest was Neotheronia sp., whereas in the forest fragment, it was Orthocentrus sp. Changes in the ichneumonid wasp community may compromise important tropical ecosystem processes.

  19. Asynchronous response of tropical forest leaf phenology to seasonal and el Niño-driven drought.

    Directory of Open Access Journals (Sweden)

    Stephanie Pau

    2010-06-01

    Full Text Available The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO. Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (Delta(NDVI between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002-003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST index during 2002-2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited.

  20. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Feng, Xiaohui; Uriarte, María; González, Grizelle; Reed, Sasha C.; Thompson, Jill; Zimmerman, Jess K.; Murphy, Lora

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very limited. Efforts to model climate change impacts on carbon fluxes in tropical forests have not reached a consensus. Here we use the Ecosystem Demography model (ED2) to predict carbon fluxes of a Puerto Rican tropical forest under realistic climate change scenarios. We parameterized ED2 with species-specific tree physiological data using the Predictive Ecosystem Analyzer workflow and projected the fate of this ecosystem under five future climate scenarios. The model successfully captured inter-annual variability in the dynamics of this tropical forest. Model predictions closely followed observed values across a wide range of metrics including above-ground biomass, tree diameter growth, tree size class distributions, and leaf area index. Under a future warming and drying climate scenario, the model predicted reductions in carbon storage and tree growth, together with large shifts in forest community composition and structure. Such rapid changes in climate led the forest to transition from a sink to a source of carbon. Growth respiration and root allocation parameters were responsible for the highest fraction of predictive uncertainty in modeled biomass, highlighting the need to target these processes in future data collection. Our study is the first effort to rely on Bayesian model calibration and synthesis to elucidate the key physiological parameters that drive uncertainty in tropical forests responses to climatic change. We propose a new path forward for model-data synthesis that can substantially reduce uncertainty in our ability to model tropical forest responses to future climate.

  1. A warming tropical central Pacific dries the lower stratosphere

    Science.gov (United States)

    Ding, Qinghua; Fu, Qiang

    2018-04-01

    The amount of water vapor in the tropical lower stratosphere (TLS), which has an important influence on the radiative energy budget of the climate system, is modulated by the temperature variability of the tropical tropopause layer (TTL). The TTL temperature variability is caused by a complex combination of the stratospheric quasi-biennial oscillation (QBO), tropospheric convective processes in the tropics, and the Brewer-Dobson circulation (BDC) driven by mid-latitude and subtropical atmospheric waves. In 2000, the TLS water vapor amount exhibited a stepwise transition to a dry phase, apparently caused by a change in the BDC. In this study, we present observational and modeling evidence that the epochal change of water vapor between the periods of 1992-2000 and 2001-2005 was also partly caused by a concurrent sea surface temperature (SST) warming in the tropical central Pacific. This SST warming cools the TTL above by enhancing the equatorial wave-induced upward motion near the tropopause, which consequently reduces the amount of water vapor entering the stratosphere. The QBO affects the TLS water vapor primarily on inter-annual timescales, whereas a classical El Niño southern oscillation (ENSO) event has small effect on tropical mean TLS water vapor because its responses are longitudinally out of phase. This study suggests that the tropical central Pacific SST is another driver of TLS water vapor variability on inter-decadal timescales and the tropical SST changes could contribute to about 30% of the step-wise drop of the lower stratospheric water vapor from 1992-2000 to 2001-2005.

  2. Ectomycorrhizal fungi in Amazonian tropical forests in Colombia

    NARCIS (Netherlands)

    Vasco Palacios, A.M.

    2016-01-01

    The ectomycorrhizal (EcM) symbiosis was assumed to be restricted to the temperate regions where forests are dominated by EcM host plants, and the tropics were supposed to be dominated by endomycorrhizal fungi. However, evidence of the presence of EcM symbiosis in tropical lowland ecosystems has been

  3. Averting biodiversity collapse in tropical forest protected areas

    Science.gov (United States)

    W.F. Laurance; D.C. Useche; J. Rendeiro; and others NO-VALUE; Ariel Lugo

    2012-01-01

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon1–3. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment...

  4. The arboreal component of a dry forest in Northeastern Brazil

    OpenAIRE

    Rodal,M. J. N.; Nascimento,L. M.

    2006-01-01

    The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto) and to the deciduous thorn woodlands (Caatinga sensu stricto) of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid ...

  5. Plant-pollinator interactions in tropical monsoon forests in Southeast Asia.

    Science.gov (United States)

    Kato, Makoto; Kosaka, Yasuyuki; Kawakita, Atsushi; Okuyama, Yudai; Kobayashi, Chisato; Phimminith, Thavy; Thongphan, Daovorn

    2008-11-01

    Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.

  6. The arboreal component of a dry forest in Northeastern Brazil

    Directory of Open Access Journals (Sweden)

    M. J. N. Rodal

    Full Text Available The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto and to the deciduous thorn woodlands (Caatinga sensu stricto of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8° 35’ - 8° 38’ S and 38° 02’ - 38° 04’ W between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1 a humid forest/dry forest transition; and (2 a deciduous thorn-woodland/ dry forest transition.

  7. The arboreal component of a dry forest in Northeastern Brazil.

    Science.gov (United States)

    Rodal, M J N; Nascimento, L M

    2006-05-01

    The dry forests of northeastern Brazil are found near the coastal zone and on low, isolated mountains inland amid semi-arid vegetation. The floristic composition of these dry montane forests, as well as their relationship to humid forests (Atlantic forest sensu stricto) and to the deciduous thorn woodlands (Caatinga sensu stricto) of the Brazilian northeast are not yet well known. This paper sought to determine if the arboreal plants in a dry forest growing on a low mountain in the semi-arid inland region (Serra Negra, 8 degrees 35 - 8 degrees 38 S and 38 degrees 02 - 38 degrees 04 W) between the municipalities of Floresta and Inajá, state of Pernambuco have the same floristic composition and structure as that seen in other regional forests. In fifty 10 x 20 m plots all live and standing dead trees with trunk measuring > 5 cm diameter at breast height were measured. Floristic similarities between the forest studied and other regional forests were assessed using multivariate analysis. The results demonstrate that the dry forest studied can be classified into two groups that represent two major vegetational transitions: (1) a humid forest/dry forest transition; and (2) a deciduous thorn-woodland/ dry forest transition.

  8. Urgent need for warming experiments in tropical forests

    Science.gov (United States)

    Calaveri, Molly A.; Reed, Sasha C.; Smith, W. Kolby; Wood, Tana E.

    2015-01-01

    Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most

  9. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    Science.gov (United States)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data

  10. Landsat Pathfinder tropical forest information management system

    Science.gov (United States)

    Salas, W.; Chomentowski, W.; Harville, J.; Skole, D.; Vellekamp, K.

    1994-01-01

    A Tropical Forest Information Management System_(TFIMS) has been designed to fulfill the needs of HTFIP in such a way that it tracks all aspects of the generation and analysis of the raw satellite data and the derived deforestation dataset. The system is broken down into four components: satellite image selection, processing, data management and archive management. However, as we began to think of how the TFIMS could also be used to make the data readily accessible to all user communities we realized that the initial system was too project oriented and could only be accessed locally. The new system needed development in the areas of data ingest and storage, while at the same time being implemented on a server environment with a network interface accessible via Internet. This paper summarizes the overall design of the existing prototype (version 0) information management system and then presents the design of the new system (version 1). The development of version 1 of the TFIMS is ongoing. There are no current plans for a gradual transition from version 0 to version 1 because the significant changes are in how the data within the HTFIP will be made accessible to the extended community of scientists, policy makers, educators, and students and not in the functionality of the basic system.

  11. Fine-scale movement decisions of tropical forest birds in a fragmented landscape.

    Science.gov (United States)

    Gillies, Cameron S; Beyer, Hawthorne L; St Clair, Colleen Cassady

    2011-04-01

    The persistence of forest-dependent species in fragmented landscapes is fundamentally linked to the movement of individuals among subpopulations. The paths taken by dispersing individuals can be considered a series of steps built from individual route choices. Despite the importance of these fine-scale movement decisions, it has proved difficult to collect such data that reveal how forest birds move in novel landscapes. We collected unprecedented route information about the movement of translocated forest birds from two species in the highly fragmented tropical dry forest of Costa Rica. In this pasture-dominated landscape, forest remains in patches or riparian corridors, with lesser amounts of living fencerows and individual trees or "stepping stones." We used step selection functions to quantify how route choice was influenced by these habitat elements. We found that the amount of risk these birds were willing to take by crossing open habitat was context dependent. The forest-specialist Barred Antshrike (Thamnophilus doliatus) exhibited stronger selection for forested routes when moving in novel landscapes distant from its territory relative to locations closer to its territory. It also selected forested routes when its step originated in forest habitat. It preferred steps ending in stepping stones when the available routes had little forest cover, but avoided them when routes had greater forest cover. The forest-generalist Rufous-naped Wren (Campylorhynchus rufinucha) preferred steps that contained more pasture, but only when starting from non-forest habitats. Our results showed that forested corridors (i.e., riparian corridors) best facilitated the movement of a sensitive forest specialist through this fragmented landscape. They also suggested that stepping stones can be important in highly fragmented forests with little remaining forest cover. We expect that naturally dispersing birds and species with greater forest dependence would exhibit even stronger

  12. Phenological patterns and reproductive success of Ceiba pentandra (Bombacaceae in tropical dry and wet forests of Costa Rica Patrones fenológicos y éxito reproductivo de Ceiba pentandra (Bombacaceae en el bosque tropical seco y húmedo de Costa Rica

    Directory of Open Access Journals (Sweden)

    JULISSA ROJAS-SANDOVAL

    2008-12-01

    Full Text Available We studied the phenological patterns and the reproductive success of 103 Ceiba pentandra trees, located in the tropical dry and wet forests of the Pacific coast of Costa Rica. To determine the phenological patterns of this species we recorded leaf fall, flower and fruit production of marked trees every two-weeks from December through March over three years (2001, 2002 and 2003. We also recorded the flowering and fruiting frequencies for two more years (2000 and 2004. Our data suggest that phenological patterns of C. pentandra trees behave as irregular cycles rather than cycles fixed at supra-annual intervals, and the forest type in which the trees are located does not have a decisive effect on either the probability or the frequency of the reproductive cycles. The absence of a pattern of negative autocorrelations in qualitative reproductive success (e.g., no reproduction, only flowers and fruits among successive years suggests that the flowering or fruiting cycles of this species do not correspond to a simple model of resource limitation. Our results show that there is no relationship between the reproductive success and the periodicity of the reproductive cycles in this species.Estudiamos los patrones fenológicos y el éxito reproductivo de 103 árboles de Ceiba pentandra, localizados en el bosque tropical seco y en el bosque tropical húmedo de la costa del Pacífico de Costa Rica. Para determinar los patrones fenológicos se anotó la caída de hojas y la producción de flores y frutos cada dos semanas desde diciembre hasta marzo para todos los árboles marcados por un periodo de tres años (2001, 2002 y 2003. También se tomaron datos de la frecuencia de floración y fructificación para dos años más (2000 y 2004. Nuestros datos sugieren que los patrones fenológicos de árboles de C. pentandra se comportan como ciclos irregulares más que como ciclos fijos de intervalos supraanuales y el tipo de bosque en el cual los árboles se ubican

  13. Global demand for gold is another threat for tropical forests

    International Nuclear Information System (INIS)

    Alvarez-Berríos, Nora L; Mitchell Aide, T

    2015-01-01

    The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ∼1600 potential gold mining sites between 2001–2006 and 2007–2013. Approximately 1680 km 2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007–2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós–Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena–Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ∼32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems

  14. Lianas and trees in tropical forests in south China

    NARCIS (Netherlands)

    Cai, Z.Q.

    2007-01-01

    Lianas (woody climbers) and trees are the most important life-forms in most tropical forests. In many of these forests lianas are abundant and diverse and their presence is often a key physiognomic feature. Lianas contribute substantially to the floristic, structural and functional diversity of

  15. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Science.gov (United States)

    Sandra Brown; Ariel Lugo

    2017-01-01

    We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the...

  16. Restoring biodiversity and forest ecosystem services in degraded tropical landscapes

    Science.gov (United States)

    John A. Parrotta

    2010-01-01

    Over the past century, an estimated 850 million ha of the world’s tropical forests have been lost or severely degraded, with serious impacts on local and regional biodiversity. A significant proportion of these lands were originally cleared of their forest cover for agricultural development or other economic uses. Today, however, they provide few if any environmental...

  17. Dry eye syndrome: A rising occupational hazard in tropical countries

    Directory of Open Access Journals (Sweden)

    Kavita R Bhatnagar

    2014-01-01

    Full Text Available Aim : The aim of this study was to find out the prevalence of dry eye and evaluate personal and environmental risk factors attributable to dry eye in a hospital-based population. Materials and Methods : In this cross-sectional study, 1890 patients above 15 years of age were screened randomly for dry eye. McMonnies Dry Eye Questionnaire, Schirmer′s test, tear film breakup time (TBUT, presence of conjunctival injection, punctate epithelial erosions (PEE, and meibomian gland dysfunction (MGD were used to diagnose dry eye. Patient demographics including age, sex, smoking, and occupation and working environment were also recorded. Correlation of dry eye signs with symptoms and TFBUT and Schirmer′s tests was also assessed. Results : The prevalence of dry eye was 10.58%. The prevalence was higher in outdoor workers (17.77%. The male: female ratio was 2.33:1. The number of males was highest in the 56-60 (13% and 60-65 (14% years age groups while that of females was highest in the 46-50 (16.67% years age group. A total of 10% of the patients were smokers, while 8% were tobacco chewers. A 2.15-fold increase was found in the odds for dry eye in those exposed to excessive wind, 1.91-fold to sunlight exposure, and 2.04 for air pollution. Abnormally low TBUT and Schirmer′s tests were significantly associated with dry eye signs (P=0.009 and 0.014, respectively. Conclusion : Dry eye is a leading cause of ocular discomfort in OPD patients. Excessive exposure to wind, sunlight, high temperature, and air pollution was significantly related to dry eyes. There was a significant correlation between patient′s history, symptoms, dry eye signs and objective tests for tear film. The rural people and those with outdoor occupation are more exposed to extraneous influences of environmental factors in tropical climate. These factors affect the tear film and ocular surface causing the dry eye syndrome.

  18. Utilization of geothermal heat in tropical fruit-drying process

    Energy Technology Data Exchange (ETDEWEB)

    Chen, B.H.; Lopez, L.P.; King, R.; Fujii, J.; Tanaka, M.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits produced on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.

  19. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees.

    Science.gov (United States)

    Vlam, Mart; Baker, Patrick J; Bunyavejchewin, Sarayudh; Zuidema, Pieter A

    2014-04-01

    Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.

  20. The Influence of Forest Management Regimes on Deforestation in a Central Indian Dry Deciduous Forest Landscape

    OpenAIRE

    Shivani Agarwal; Harini Nagendra; Rucha Ghate

    2016-01-01

    This research examines the impact of forest management regimes, with various degrees of restriction, on forest conservation in a dry deciduous Indian forest landscape. Forest change is mapped using Landsat satellite images from 1977, 1990, 1999, and 2011. The landscape studied has lost 1478 km2 of dense forest cover between 1977 and 2011, with a maximum loss of 1002 km2 of dense forest between 1977 and 1990. The number of protected forest areas has increased, concomitant with an increase in r...

  1. Degradation in carbon stocks near tropical forest edges.

    Science.gov (United States)

    Chaplin-Kramer, Rebecca; Ramler, Ivan; Sharp, Richard; Haddad, Nick M; Gerber, James S; West, Paul C; Mandle, Lisa; Engstrom, Peder; Baccini, Alessandro; Sim, Sarah; Mueller, Carina; King, Henry

    2015-12-18

    Carbon stock estimates based on land cover type are critical for informing climate change assessment and landscape management, but field and theoretical evidence indicates that forest fragmentation reduces the amount of carbon stored at forest edges. Here, using remotely sensed pantropical biomass and land cover data sets, we estimate that biomass within the first 500 m of the forest edge is on average 25% lower than in forest interiors and that reductions of 10% extend to 1.5 km from the forest edge. These findings suggest that IPCC Tier 1 methods overestimate carbon stocks in tropical forests by nearly 10%. Proper accounting for degradation at forest edges will inform better landscape and forest management and policies, as well as the assessment of carbon stocks at landscape and national levels.

  2. Effects of tropical montane forest disturbance on epiphytic macrolichens

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, Angel [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Prieto, Maria, E-mail: maria.prieto@urjc.es [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain); Gonzalez, Yadira [Instituto de Ecologia, Herbario HUTPL, Universidad Tecnica Particular de Loja, San Cayetano s/n, Loja (Ecuador); Aragon, Gregorio [Area de Biodiversidad y Conservacion, ESCET, Universidad Rey Juan Carlos, Mostoles, E-28933, Madrid (Spain)

    2012-12-15

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for 'shade-adapted lichens', while the richness of 'heliophytic lichens' increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: Black-Right-Pointing-Pointer Tropical montane forest disturbance drastically reduced macrolichen diversity. Black-Right-Pointing-Pointer Species loss was most severe for the 'shade-adapted lichens' because high radiation is harmful to them. Black-Right-Pointing-Pointer In secondary forests lichen diversity of native forests was not regenerated. Black-Right-Pointing-Pointer The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  3. Effects of tropical montane forest disturbance on epiphytic macrolichens

    International Nuclear Information System (INIS)

    Benítez, Ángel; Prieto, María; González, Yadira; Aragón, Gregorio

    2012-01-01

    The high diversity of epiphytes typical of undisturbed montane tropical forests has been negatively affected by continuous deforestation and forest conversion to secondary vegetation. Macrolichens are an important component of these epiphytes. Because their physiology is strongly coupled to humidity and solar radiation, we hypothesized that microclimatic changes derived from forest clearing and logging can affect the diversity of these poikilohydric organisms. In southern Ecuador, we examined three types of forests according to a disturbance gradient (primary forests, secondary forests, and monospecific forests of Alnus acuminata) for the presence/absence and coverage of epiphytic macrolichens that we identified on 240 trees. We found that total richness tended to decrease when the range of the disturbance increased. The impoverishment was particularly drastic for “shade-adapted lichens”, while the richness of “heliophytic lichens” increased in the drier conditions of secondary growth. Epiphytic composition also differed significantly among the three types of forests, and the similarity decreased when the range of the disturbance was greater. We concluded that a span of 40 years of recovery by secondary vegetation was not enough to regenerate the diversity of epiphytic macrolichens that was lost due to forest disturbances. -- Highlights: ► Tropical montane forest disturbance drastically reduced macrolichen diversity. ► Species loss was most severe for the “shade-adapted lichens” because high radiation is harmful to them. ► In secondary forests lichen diversity of native forests was not regenerated. ► The protection of remnants of primary tropical forest might help to preserve a diverse community of epiphytic macrolichens.

  4. Three Decades of Remote Sensing Based Tropical Forests Phenological Patterns and Trends

    Science.gov (United States)

    Didan, K.

    2010-12-01

    The faint climatic seasonality of tropical rain forests is believed to be the reason these biomes lack strong and detectable seasonality. Forest seasonality is a critical element of ecosystem functions. It moderates the echo-hydrology, carbon, and nutrient exchange of the area. While deciduous forests exhibit distinct and strong seasonality, tropical forests do not, yet they play a large role in the cycling of energy and mass. Tropical forests represent a large percentage of vegetated land and their importance to the Earth system stems from their biological diversity, their habitat role, their role in regulating global weather, and the role they play in carbon storage. While Tropical forests are well buffered by their sheer size, their vulnerability to climate change is exacerbated by the human pressure. All of this begs the questions of what are the patterns and characteristic of tropical forests phenology and are there any detectable trends over the last three decades of synoptic remote sensing. These three decades comprise different episodes of droughts and an ever increasing level of human encroachment. In so far understanding the function and dynamic of these biomes, field studies continue to play a major role, but synoptic remote sensing is emerging as a viable tool to addressing the spatial and temporal scale associated with this problem. Recent studies of Brazilian rainforest with synoptic remote sensing point to a sizable seasonal signal coincident with the dry season. However, these studies were not extensive in time or space and did not look at other rainforests. Using data from AVHRR and MODIS, we generated a 30 year record of the 2 bands Enhance Vegetation Index (EVI2), and analyzed the patterns and trends of land surface phenology across all tropical forests using the homogeneous phenology cluster approach. We chose EVI because of its superior performance over these dense forests, and we selected the homogeneous phenology cluster approach to abate the

  5. Height-related changes in leaf photosynthetic traits in diverse Bornean tropical rain forest trees.

    Science.gov (United States)

    Kenzo, Tanaka; Inoue, Yuta; Yoshimura, Mitsunori; Yamashita, Megumi; Tanaka-Oda, Ayumi; Ichie, Tomoaki

    2015-01-01

    Knowledge of variations in morphophysiological leaf traits with forest height is essential for quantifying carbon and water fluxes from forest ecosystems. Here, we examined changes in leaf traits with forest height in diverse tree species and their role in environmental acclimation in a tropical rain forest in Borneo that does not experience dry spells. Height-related changes in leaf physiological and morphological traits [e.g., maximum photosynthetic rate (Amax), stomatal conductance (gs), dark respiration rate (Rd), carbon isotope ratio (δ(13)C), nitrogen (N) content, and leaf mass per area (LMA)] from understory to emergent trees were investigated in 104 species in 29 families. We found that many leaf area-based physiological traits (e.g., A(max-area), Rd, gs), N, δ(13)C, and LMA increased linearly with tree height, while leaf mass-based physiological traits (e.g., A(max-mass)) only increased slightly. These patterns differed from other biomes such as temperate and tropical dry forests, where trees usually show decreased photosynthetic capacity (e.g., A(max-area), A(max-mass)) with height. Increases in photosynthetic capacity, LMA, and δ(13)C are favored under bright and dry upper canopy conditions with higher photosynthetic productivity and drought tolerance, whereas lower R d and LMA may improve shade tolerance in lower canopy trees. Rapid recovery of leaf midday water potential to theoretical gravity potential during the night supports the idea that the majority of trees do not suffer from strong drought stress. Overall, leaf area-based photosynthetic traits were associated with tree height and the degree of leaf drought stress, even in diverse tropical rain forest trees.

  6. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps.

    Science.gov (United States)

    Mitchard, Edward Ta; Saatchi, Sassan S; Baccini, Alessandro; Asner, Gregory P; Goetz, Scott J; Harris, Nancy L; Brown, Sandra

    2013-10-26

    Mapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m - 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial modelling methodologies. Here, we compare these two maps to each other, to the FAO's Forest Resource Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of the Colombian Amazon. We find substantial differences between the two maps, in particular in central Amazonia, the Congo basin, the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the independent high resolution map, but show a similar spatial distribution of this biomass. Biomass mapping has progressed enormously over the past decade, to the stage where we can produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to converge, suggesting we can provide

  7. Lianas reduce carbon accumulation and storage in tropical forests.

    Science.gov (United States)

    van der Heijden, Geertje M F; Powers, Jennifer S; Schnitzer, Stefan A

    2015-10-27

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.

  8. Strong spatial structure, Pliocene diversification and cryptic diversity in the Neotropical dry forest spider Sicarius cariri.

    Science.gov (United States)

    Magalhaes, Ivan L F; Oliveira, Ubirajara; Santos, Fabrício R; Vidigal, Teofânia H D A; Brescovit, Antonio D; Santos, Adalberto J

    2014-11-01

    The Brazilian Caatinga is part of the seasonally dry tropical forests, a vegetation type disjunctly distributed throughout the Neotropics. It has been suggested that during Pleistocene glacial periods, these dry forests had a continuous distribution, so that these climatic shifts may have acted as important driving forces of the Caatinga biota diversification. To address how these events affected the distribution of a dry forest species, we chose Sicarius cariri, a spider endemic to the Caatinga, as a model. We studied the phylogeography of one mitochondrial and one nuclear gene and reconstructed the paleodistribution of the species using modelling algorithms. We found two allopatric and deeply divergent clades within S. cariri, suggesting that this species as currently recognized might consist of more than one independently evolving lineage. Sicarius cariri populations are highly structured, with low haplotype sharing among localities, high fixation index and isolation by distance. Models of paleodistribution, Bayesian reconstructions and coalescent simulations suggest that this species experienced a reduction in its population size during glacial periods, rather than the expansion expected by previous hypotheses on the paleodistribution of dry forest taxa. In addition to that, major splits of intraspecific lineages of S. cariri took place in the Pliocene. Taken together, these results indicate S. cariri has a complex diversification history dating back to the Tertiary, suggesting the history of dry forest taxa may be significantly older than previously thought. © 2014 John Wiley & Sons Ltd.

  9. Removal rates of native and exotic dung by dung beetles (Scarabaeidae: Scarabaeinae) in a fragmented tropical rain forest.

    Science.gov (United States)

    Amézquita, Sandra; Favila, Mario E

    2010-04-01

    Many studies have evaluated the effect of forest fragmentation on dung beetle assemblage structure. However, few have analyzed how forest fragmentation affects the processes carried out by these insects in tropical forests where their food sources consist mainly of dung produced by native herbivore mammals. With the conversion of forests to pastures, cattle dung has become an exotic alternative and abundant food for dung beetles. This study compares dung removal rates of native (monkey) and exotic (cow) dung in different-sized fragments of tropical rain forests, during the dry and rainy seasons at the Los Tuxtlas Biosphere Reserve. Dung removal rates were affected by season, dung type, and the interaction between resource type and season. During the dry season, the removal rates of monkey dung were somewhat similar than during the rainy season, whereas the removal rates of cow dung were much higher during the rainy season. Dung beetle biomass and species richness were almost three times greater in monkey dung than in cow dung. Monkey dung attracted species belonging to the dweller, roller, and tunneler guilds; cow dung attracted mostly tunnelers. Therefore, the use of exotic dung may result in a biased misconception of the rates of dung removal in tropical forest and an underestimation of dung beetle diversity. This study highlights the importance of working with natural tropical forest resources when attempting to identify realistic tendencies concerning processes in natural habitats and those modified by fragmentation and by other human activities.

  10. Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke Forest, Kenya.

    Science.gov (United States)

    Glenday, Julia

    2008-07-01

    Concerns about rapid tropical deforestation, and its contribution to rising atmospheric concentrations of greenhouse gases, increase the importance of monitoring terrestrial carbon storage in changing landscapes. Emerging markets for carbon emission offsets may offer developing nations needed incentives for reforestation, rehabilitation, and avoided deforestation. However, relatively little empirical data exists regarding carbon storage in African tropical forests, particularly for those in arid or semi-arid regions. Kenya's 416 km(2) Arabuko-Sokoke Forest (ASF) is the largest remaining fragment of East African coastal dry forest and is considered a global biodiversity hotspot (Myers et al. 2000), but has been significantly altered by past commercial logging and ongoing extraction. Forest carbon storage for ASF was estimated using allometric equations for tree biomass, destructive techniques for litter and herbaceous vegetation biomass, and spectroscopy for soils. Satellite imagery was used to assess land cover changes from 1992 to 2004. Forest and thicket types (Cynometra webberi dominated, Brachystegia spiciformis dominated, and mixed species forest) had carbon densities ranging from 58 to 94 Mg C/ha. The ASF area supported a 2.8-3.0 Tg C carbon stock. Although total forested area in ASF did not change over the analyzed time period, ongoing disturbances, quantified by the basal area of cut tree stumps per sample plot, correlated with decreased carbon densities. Madunguni Forest, an adjoining forest patch, lost 86% of its forest cover and at least 76% of its terrestrial carbon stock in the time period. Improved management of wood harvesting in ASF and rehabilitation of Madunguni Forest could substantially increase terrestrial carbon sequestration in the region.

  11. Pennsylvanian coniferopsid forests in sabkha facies reveal the nature of seasonal tropical biome

    Science.gov (United States)

    Falcon-Lang, H. J.; Jud, N.A.; John, Nelson W.; DiMichele, W.A.; Chaney, D.S.; Lucas, S.G.

    2011-01-01

    Pennsylvanian fossil forests are known from hundreds of sites across tropical Pangea, but nearly all comprise remains of humid Coal Forests. Here we report a unique occurrence of seasonally dry vegetation, preserved in growth position along >5 km of strike, in the Pennsylvanian (early Kasimovian, Missourian) of New Mexico (United States). Analyses of stump anatomy, diameter, and spatial density, coupled with observations of vascular traces and associated megaflora, show that this was a deciduous, mixed-age, coniferopsid woodland (~100 trees per hectare) with an open canopy. The coniferopsids colonized coastal sabkha facies and show tree rings, confirming growth under seasonally dry conditions. Such woodlands probably served as the source of coniferopsids that replaced Coal Forests farther east in central Pangea during drier climate phases. Thus, the newly discovered woodland helps unravel biome-scale vegetation dynamics and allows calibration of climate models. ?? 2011 Geological Society of America.

  12. Averting biodiversity collapse in tropical forest protected areas

    OpenAIRE

    Laurance, William F; Useche, D. Carolina; Rendeiro, Julio; Kalka, Margareta; Bradshaw, Corey J A; Sloan, Sean P; Laurance, Susan G; Campbell, Mason; Abernethy, Kate; Alvarez, Patricia; Arroyo-Rodriguez, Victor; Ashton, Peter; Benitez-Malvido, Julieta; Blom, Allard; Bobo, Kadiri S

    2012-01-01

    The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their bi...

  13. Land crabs as key drivers in tropical coastal forest recruitment

    Science.gov (United States)

    Lindquist, E.S.; Krauss, K.W.; Green, P.T.; O'Dowd, D. J.; Sherman, P.M.; Smith, T. J.

    2009-01-01

    Plant populations are regulated by a diverse assortment of abiotic and biotic factors that influence seed dispersal and viability, and seedling establishment and growth at the microsite. Rarely does one animal guild exert as significant an influence on different plant assemblages as land crabs. We review three tropical coastal ecosystems-mangroves, island maritime forests, and mainland coastal terrestrial forests-where land crabs directly influence forest composition by limiting tree establishment and recruitment. Land crabs differentially prey on seeds, propagules and seedlings along nutrient, chemical and physical environmental gradients. In all of these ecosystems, but especially mangroves, abiotic gradients are well studied, strong and influence plant species distributions. However, we suggest that crab predation has primacy over many of these environmental factors by acting as the first limiting factor of tropical tree recruitment to drive the potential structural and compositional organisation of coastal forests. We show that the influence of crabs varies relative to tidal gradient, shoreline distance, canopy position, time, season, tree species and fruiting periodicity. Crabs also facilitate forest growth and development through such activities as excavation of burrows, creation of soil mounds, aeration of soils, removal of leaf litter into burrows and creation of carbon-rich soil microhabitats. For all three systems, land crabs influence the distribution, density and size-class structure of tree populations. Indeed, crabs are among the major drivers of tree recruitment in tropical coastal forest ecosystems, and their conservation should be included in management plans of these forests. ?? 2009 Cambridge Philosophical Society.

  14. Why tropical forest lizards are vulnerable to climate warming

    Science.gov (United States)

    Huey, Raymond B.; Deutsch, Curtis A.; Tewksbury, Joshua J.; Vitt, Laurie J.; Hertz, Paul E.; Álvarez Pérez, Héctor J.; Garland, Theodore

    2009-01-01

    Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low. PMID:19324762

  15. Radioecological studies of tritium movement in a tropical rain forest

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J R; Jordan, C F; Koranda, J J; Kline, J R [Bio-Medical Division, Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Several experiments on the movement of tritium in a tropical ecosystem have been conducted in the montane rainforest of Eastern Puerto Rico by the Bio-Medical Division of the Lawrence Radiation Laboratory, Livermore, in cooperation with the Puerto Rico Nuclear Center. Tritiated whaler was used as a tracer for water movement in: a) mature evergreen trees of the climax rainforest; b) soil and substory vegetation and c) rapidly growling successional species. A feasibility study on the Atlantic Pacific Interoceanic Canal is currently being conducted. If thermonuclear explosives were used in constructing the canal, tritium would be deposited as tritiated water and distributed among the several biological compartments of the tropical ecosystem in that area. The main hydrogen compartments are water in the soil and in leaves, limbs and wood of forest trees. Organic tissue hydrogen comprises another compartment. In the tree experiment, tritiated water was injected directly into several species of mature, broad leaved evergreen tropical trees. Transpiration and residence time for tritium was determined from analyses of leaves sampled during a several month period. Transpiration ranged from 4 ml/day/gm dry leaf for an understory Dacryodes excelsa to 10.0 and 13.8 ml/day/gm dry leaf for a mature Sloanea berteriana and D. excelsa, respectively. Mean residence time for the S. berteriana was 3.9 {+-} 0.2 days and the understory and mature D. excelsa values were 9.5 {+-} 0.4 and 11.0 {+-} 0. 6 days, respectively. In another experiment, tritiated water was sprinkled over a 3.68 m{sup 2} plot and its movement down into the soil and up into the vegetation growing on the plot was traced. The pattern of water movement in the soil was clearly demonstrated. The mean residence time for tritium in the soil and in trees was found to be 42 {+-} 2 days and 67 {+-} 9 days, respectively. The residence time for tritium in the trees in this experiment was considerably longer than for the single

  16. Radioecological studies of tritium movement in a tropical rain forest

    International Nuclear Information System (INIS)

    Martin, J.R.; Jordan, C.F.; Koranda, J.J.; Kline, J.R.

    1970-01-01

    Several experiments on the movement of tritium in a tropical ecosystem have been conducted in the montane rainforest of Eastern Puerto Rico by the Bio-Medical Division of the Lawrence Radiation Laboratory, Livermore, in cooperation with the Puerto Rico Nuclear Center. Tritiated whaler was used as a tracer for water movement in: a) mature evergreen trees of the climax rainforest; b) soil and substory vegetation and c) rapidly growling successional species. A feasibility study on the Atlantic Pacific Interoceanic Canal is currently being conducted. If thermonuclear explosives were used in constructing the canal, tritium would be deposited as tritiated water and distributed among the several biological compartments of the tropical ecosystem in that area. The main hydrogen compartments are water in the soil and in leaves, limbs and wood of forest trees. Organic tissue hydrogen comprises another compartment. In the tree experiment, tritiated water was injected directly into several species of mature, broad leaved evergreen tropical trees. Transpiration and residence time for tritium was determined from analyses of leaves sampled during a several month period. Transpiration ranged from 4 ml/day/gm dry leaf for an understory Dacryodes excelsa to 10.0 and 13.8 ml/day/gm dry leaf for a mature Sloanea berteriana and D. excelsa, respectively. Mean residence time for the S. berteriana was 3.9 ± 0.2 days and the understory and mature D. excelsa values were 9.5 ± 0.4 and 11.0 ± 0. 6 days, respectively. In another experiment, tritiated water was sprinkled over a 3.68 m 2 plot and its movement down into the soil and up into the vegetation growing on the plot was traced. The pattern of water movement in the soil was clearly demonstrated. The mean residence time for tritium in the soil and in trees was found to be 42 ± 2 days and 67 ± 9 days, respectively. The residence time for tritium in the trees in this experiment was considerably longer than for the single injected input

  17. [Contribution of tropical upland forests to carbon storage in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Herrera, Johana; Phillips, Juan; Galindo, Gustavo; Granados, Edwin; Duque, Alvaro; Barbosa, Adriana; Olarte, Claudia; Cardona, María

    2015-03-01

    The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical

  18. Climate change, allergy and asthma, and the role of tropical forests.

    Science.gov (United States)

    D'Amato, Gennaro; Vitale, Carolina; Rosario, Nelson; Neto, Herberto Josè Chong; Chong-Silva, Deborah Carla; Mendonça, Francisco; Perini, Josè; Landgraf, Loraine; Solé, Dirceu; Sánchez-Borges, Mario; Ansotegui, Ignacio; D'Amato, Maria

    2017-01-01

    Tropical forests cover less than 10 per cent of all land area (1.8 × 107 km 2 ) and over half of the tropical-forest area (1.1 × 107 Km 2 ) is represented by humid tropical forests (also called tropical rainforests). The Amazon basin contains the largest rainforest on Earth, almost 5.8 million km 2 , and occupies about 40% of South America; more than 60% of the basin is located in Brazil and the rest in Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname and Venezuela. Over the past decade the positive role of tropical rainforests in capturing large amounts of atmospheric carbon dioxide (CO 2 ) has been demonstrated. In response to the increase in atmospheric CO 2 concentration, tropical forests act as a global carbon sink. Accumulation of carbon in the tropical terrestrial biosphere strongly contributes to slowing the rate of increase of CO 2 into the atmosphere, thus resulting in the reduction of greenhouse gas effect. Tropical rainforests have been estimated to account for 32-36% of terrestrial Net Primary Productivity (NPP) that is the difference between total forest photosynthesis and plant respiration. Tropical rainforests have been acting as a strong carbon sink in this way for decades. However, over the past years, increased concentrations of greenhouse gases, and especially CO 2 , in the atmosphere have significantly affected the net carbon balance of tropical rainforests, and have warmed the planet substantially driving climate changes through more severe and prolonged heat waves, variability in temperature, increased air pollution, forest fires, droughts, and floods. The role of tropical forests in mitigating climate change is therefore critical. Over the past 30 years almost 600,000 km 2 have been deforested in Brazil alone due to the rapid development of Amazonia, this is the reason why currently the region is one of the 'hotspots' of global environmental change on the planet. Deforestation represents the second largest

  19. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  20. Traffic noise affects forest bird species in a protected tropical forest

    Directory of Open Access Journals (Sweden)

    J. Edgardo Arévalo

    2011-06-01

    Full Text Available The construction of roads near protected forest areas alters ecosystem function by creating habitat fragmentation and through several direct and indirect negative effects such as increased pollution, animal mortality through collisions, disturbance caused by excessive noise and wind turbulence. Noise in particular may have strong negative effects on animal groups such as frogs and birds, that rely on sound for communication as it can negatively interfere with vocalizations used for territorial defense or courtship. Thus, birds are expected to be less abundant close to the road where noise levels are high. In this study, we examined the effects of road traffic noise levels on forest bird species in a protected tropical forest in Costa Rica. Data collection was conducted in a forest segment of the Carara National Park adjacent to the Coastal Highway. We carried out 120 ten minute bird surveys and measured road noise levels 192 times from the 19th to the 23rd of April and from the 21st to the 28th of November, 2008. To maximize bird detection for the species richness estimates we operated six 12m standard mist nets simultaneously with the surveys. The overall mist-netting effort was 240net/h. In addition, we estimated traffic volumes by tallying the number of vehicles passing by the edge of the park using 24 one hour counts throughout the study. We found that the relative abundance of birds and bird species richness decreased significantly with the increasing traffic noise in the dry and wet season. Noise decreased significantly and in a logarithmic way with distance from the road in both seasons. However, noise levels at any given distance were significantly higher in the dry compared to the wet season. Our results suggest that noise might be an important factor influencing road bird avoidance as measured by species richness and relative abundance. Since the protected forest in question is located in a national park subjected to tourist visitation

  1. Climatology and forest decay - stresses caused by dry periods

    International Nuclear Information System (INIS)

    Havlik, D.

    1991-01-01

    In the discussion of forest decline in the Eighties, stresses due to dry weather is often named as a secondary cause. The concept of 'climatological dry periods' is introduced in this article and applied to records for the Basel and Aachen regions. The time distribution of dry periods of different length and different water deficiency (40 mm, 60 mm, 100 mm) is analyzed. In the case of the Basel data, the dry periods are related to the 'forest damage caused by draught' recorded for the Basel region since 1930. The results support the theory that increasingly larger and more frequent dry periods with water shortage have contributed significantly to forest damage in the last 15 years. Apart from the 'dry stress' itself, also the enhanced production of photooxidants is a damaging mechanism. (orig.) [de

  2. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Directory of Open Access Journals (Sweden)

    Joseph Mascaro

    Full Text Available Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus. The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag", which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1 when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  3. A tale of two "forests": random forest machine learning AIDS tropical forest carbon mapping.

    Science.gov (United States)

    Mascaro, Joseph; Asner, Gregory P; Knapp, David E; Kennedy-Bowdoin, Ty; Martin, Roberta E; Anderson, Christopher; Higgins, Mark; Chadwick, K Dana

    2014-01-01

    Accurate and spatially-explicit maps of tropical forest carbon stocks are needed to implement carbon offset mechanisms such as REDD+ (Reduced Deforestation and Degradation Plus). The Random Forest machine learning algorithm may aid carbon mapping applications using remotely-sensed data. However, Random Forest has never been compared to traditional and potentially more reliable techniques such as regionally stratified sampling and upscaling, and it has rarely been employed with spatial data. Here, we evaluated the performance of Random Forest in upscaling airborne LiDAR (Light Detection and Ranging)-based carbon estimates compared to the stratification approach over a 16-million hectare focal area of the Western Amazon. We considered two runs of Random Forest, both with and without spatial contextual modeling by including--in the latter case--x, and y position directly in the model. In each case, we set aside 8 million hectares (i.e., half of the focal area) for validation; this rigorous test of Random Forest went above and beyond the internal validation normally compiled by the algorithm (i.e., called "out-of-bag"), which proved insufficient for this spatial application. In this heterogeneous region of Northern Peru, the model with spatial context was the best preforming run of Random Forest, and explained 59% of LiDAR-based carbon estimates within the validation area, compared to 37% for stratification or 43% by Random Forest without spatial context. With the 60% improvement in explained variation, RMSE against validation LiDAR samples improved from 33 to 26 Mg C ha(-1) when using Random Forest with spatial context. Our results suggest that spatial context should be considered when using Random Forest, and that doing so may result in substantially improved carbon stock modeling for purposes of climate change mitigation.

  4. Hurricane Impacts to Tropical and Temperate Forest Landscapes

    OpenAIRE

    Boose, Emery Robert; Foster, David Russell; Fluet, Marcheterre

    1994-01-01

    Hurricanes represent an important natural disturbance process to tropical and temperate forests in many coastal areas of the world. The complex patterns of damage created in forests by hurricane winds result from the interaction of meteorological, physiographic, and biotic factors on a range of spatial scales. To improve our understanding of these factors and of the role of catastrophic hurricane wind as a disturbance process, we take an integrative approach. A simple meteorological model (HU...

  5. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    Science.gov (United States)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  6. Patterns and correlates of plant diversity differ between common and rare species in a neotropical dry forest

    NARCIS (Netherlands)

    Tetetla-Rangel, Erika; Dupuy, Juan Manuel; Hernández-Stefanoni, José Luis; Hoekstra, Paul H.

    2017-01-01

    Determining which factors affect species richness is important for conservation theory and practice. However, richness of common and rare species may be affected by different factors. We use an extensive inventory of woody plants from a tropical dry forest landscape in Yucatan, Mexico to assess the

  7. Long-term changes in above ground biomass after disturbance in a neotropical dry forest, Hellshire Hills, Jamaica

    DEFF Research Database (Denmark)

    Niño, Milena; McLaren, Kurt P.; Meilby, Henrik

    2014-01-01

    We used data from experimental plots (control, partially cut and clear-cut) established in 1998, in a tropical dry forest (TDF) in Jamaica, to assess changes in above ground biomass (AGB) 10 years after disturbance. The treatments reduced AGB significantly in 1999 (partially cut: 37.6 %, clear-cu...

  8. Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest.

    Science.gov (United States)

    Cai, Zhi-Quan; Schnitzer, Stefan A; Bongers, Frans

    2009-08-01

    Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in seasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO(2) assimilation per unit mass (A(mass)), nitrogen concentration (N(mass)), and delta(13)C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO(2) assimilation per unit area (A(area)), phosphorus concentration per unit mass (P(mass)), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree A(area) decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana delta(13)C increased four times more than tree delta(13)C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher A(mass) than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.

  9. [Species composition and diversity of soil mesofauna in the 'Holy Hills' fragmentary tropical rain forest of Xishuangbanna, China].

    Science.gov (United States)

    Yang, X; Sha, L

    2001-04-01

    The species composition and diversity of soil mesofauna were examined in fragmented dry tropical seasonal rainforest of tow 'Holy Hills' of Dai nationality, compared with the continuous moist tropical seasonal rain forest of Nature Reserve in Xishuangbanna area. 5 sample quadrats were selected along the diagonal of 20 m x 20 m sampling plot, and the samples of litterfall and 0-3 cm soil were collected from each 50 cm x 10 cm sample quadrat. Animals in soil sample were collected by using dry-funnel(Tullgren's), were identified to their groups according to the order. The H' index, D.G index and the pattern of relative abundance of species were used to compare the diversity of soil mesofauna. The results showed that the disturbance of vegetation and soil resulted by tropical rainforest fragmentation was the major factor affecting the diversity of soil mesofauna. Because the fragmented forest was intruded by some pioneer tree species and the "dry and warm" effect operated, this forest had more litterfall on the floor and more humus in the soil than the continuous moist rain forest. The soil condition with more soil organic matter, total N and P, higher pH value and lower soil bulk density became more favorable to the soil mesofauna. Therefore, the species richness, abundance and diversity of soil mesofauna in fragmented forests were higher than those in continuous forest, but the similarity of species composition in fragmented forest to the continuous forest was minimal. Soil mesofauna diversity in fragmented forests did not change with decreasing fragmented area, indicating that there was no species-area effect operation in this forest. The pattern of relative abundance of species in these forest soils was logarithmic series distribution.

  10. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle

    Science.gov (United States)

    Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas

    2017-03-01

    Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.

  11. Scenarios in tropical forest degradation: carbon stock trajectories for REDD+

    Directory of Open Access Journals (Sweden)

    Rafael B. de Andrade

    2017-03-01

    Full Text Available Abstract Background Human-caused disturbance to tropical rainforests—such as logging and fire—causes substantial losses of carbon stocks. This is a critical issue to be addressed in the context of policy discussions to implement REDD+. This work reviews current scientific knowledge about the temporal dynamics of degradation-induced carbon emissions to describe common patterns of emissions from logging and fire across tropical forest regions. Using best available information, we: (i develop short-term emissions factors (per area for logging and fire degradation scenarios in tropical forests; and (ii describe the temporal pattern of degradation emissions and recovery trajectory post logging and fire disturbance. Results Average emissions from aboveground biomass were 19.9 MgC/ha for logging and 46.0 MgC/ha for fire disturbance, with an average period of study of 3.22 and 2.15 years post-disturbance, respectively. Longer-term studies of post-logging forest recovery suggest that biomass accumulates to pre-disturbance levels within a few decades. Very few studies exist on longer-term (>10 years effects of fire disturbance in tropical rainforests, and recovery patterns over time are unknown. Conclusions This review will aid in understanding whether degradation emissions are a substantial component of country-level emissions portfolios, or whether these emissions would be offset by forest recovery and regeneration.

  12. An ecosystem model for tropical forest disturbance and selective logging

    Science.gov (United States)

    Maoyi Huang; Gregory P. Asner; Michael Keller; Joseph A. Berry

    2008-01-01

    [1] A new three-dimensional version of the Carnegie-Ames-Stanford Approach (CASA) ecosystem model (CASA-3D) was developed to simulate regional carbon cycling in tropical forest ecosystems after disturbances such as logging. CASA-3D has the following new features: (1) an alternative approach for calculating absorbed photosynthetically active radiation (APAR) using new...

  13. Increasing carbon storage in intact African tropical forests

    NARCIS (Netherlands)

    Lewis, S.L.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Ewango, C.E.N.

    2009-01-01

    The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide1, 2. The role of tropical forests is critical because they are carbon-dense and highly productive3, 4. Inventory plots across Amazonia show that

  14. Averting biodiversity collapse in tropical forest protected areas

    Czech Academy of Sciences Publication Activity Database

    Laurence, W. F.; Novotný, Vojtěch

    2012-01-01

    Roč. 489, č. 7415 (2012), s. 290-294 ISSN 0028-0836 Grant - others:NSF grant(AU) RCN-0741956 Institutional support: RVO:60077344 Keywords : biodiversity * tropical forest * collapse Subject RIV: EH - Ecology, Behaviour Impact factor: 38.597, year: 2012 http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature11318.pdf

  15. Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps

    OpenAIRE

    Mitchard, Edward TA; Saatchi, Sassan S; Baccini, Alessandro; Asner, Gregory P; Goetz, Scott J; Harris, Nancy L; Brown, Sandra

    2013-01-01

    BackgroundMapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m – 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by t...

  16. Arthropod diversity in a tropical forest

    DEFF Research Database (Denmark)

    Basset, Yves; Cizek, Lukas; Cuénoud, Philippe

    2012-01-01

    breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25......,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates...

  17. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics

    NARCIS (Netherlands)

    Slik, J.W.F.; Paoli, G.; McGuire, K.; Amaral, I.; Barroso, J.; Bongers, F.; Poorter, L.

    2013-01-01

    Aim - Large trees (d.b.h.¿=¿70¿cm) store large amounts of biomass. Several studies suggest that large trees may be vulnerable to changing climate, potentially leading to declining forest biomass storage. Here we determine the importance of large trees for tropical forest biomass storage and explore

  18. Tropical rain-forest matrix quality affects bat assemblage structure in secondary forest patches

    NARCIS (Netherlands)

    Vleut, I.; Levy-Tacher, I.; Galindo-Gonzalez, J.; Boer, de W.F.; Ramirez-Marcial, N.

    2012-01-01

    We studied Phyllostomidae bat assemblage structure in patches of secondary forest dominated by the pioneer tree Ochroma pyramidale, largely (.85%) or partially (,35%) surrounded by a matrix of tropical rain forest, to test 3 hypotheses: the highest bat diversity and richness is observed in the

  19. Pervasive Defaunation of Forest Remnants in a Tropical Biodiversity Hotspot

    Science.gov (United States)

    Canale, Gustavo R.; Peres, Carlos A.; Guidorizzi, Carlos E.; Gatto, Cassiano A. Ferreira; Kierulff, Maria Cecília M.

    2012-01-01

    Tropical deforestation and forest fragmentation are among the most important biodiversity conservation issues worldwide, yet local extinctions of millions of animal and plant populations stranded in unprotected forest remnants remain poorly explained. Here, we report unprecedented rates of local extinctions of medium to large-bodied mammals in one of the world's most important tropical biodiversity hotspots. We scrutinized 8,846 person-years of local knowledge to derive patch occupancy data for 18 mammal species within 196 forest patches across a 252,669-km2 study region of the Brazilian Atlantic Forest. We uncovered a staggering rate of local extinctions in the mammal fauna, with only 767 from a possible 3,528 populations still persisting. On average, forest patches retained 3.9 out of 18 potential species occupancies, and geographic ranges had contracted to 0–14.4% of their former distributions, including five large-bodied species that had been extirpated at a regional scale. Forest fragments were highly accessible to hunters and exposed to edge effects and fires, thereby severely diminishing the predictive power of species-area relationships, with the power model explaining only ∼9% of the variation in species richness per patch. Hence, conventional species-area curves provided over-optimistic estimates of species persistence in that most forest fragments had lost species at a much faster rate than predicted by habitat loss alone. PMID:22905103

  20. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Gustavo R Canale

    Full Text Available Tropical deforestation and forest fragmentation are among the most important biodiversity conservation issues worldwide, yet local extinctions of millions of animal and plant populations stranded in unprotected forest remnants remain poorly explained. Here, we report unprecedented rates of local extinctions of medium to large-bodied mammals in one of the world's most important tropical biodiversity hotspots. We scrutinized 8,846 person-years of local knowledge to derive patch occupancy data for 18 mammal species within 196 forest patches across a 252,669-km(2 study region of the Brazilian Atlantic Forest. We uncovered a staggering rate of local extinctions in the mammal fauna, with only 767 from a possible 3,528 populations still persisting. On average, forest patches retained 3.9 out of 18 potential species occupancies, and geographic ranges had contracted to 0-14.4% of their former distributions, including five large-bodied species that had been extirpated at a regional scale. Forest fragments were highly accessible to hunters and exposed to edge effects and fires, thereby severely diminishing the predictive power of species-area relationships, with the power model explaining only ~9% of the variation in species richness per patch. Hence, conventional species-area curves provided over-optimistic estimates of species persistence in that most forest fragments had lost species at a much faster rate than predicted by habitat loss alone.

  1. Spatio-temporal dynamics of the tropical rain forest

    Energy Technology Data Exchange (ETDEWEB)

    Chave, J. [CEN Saclay, Gif-sur-Yvette (France). Service de Physique de l' Etat Condense

    2000-07-01

    Mechanisms which drive the dynamics of forest ecosystems are complex, from seedling establishment to pollination, and seed dispersal by animals, running water or wind. These processes are more complex when the ecosystem shelters a large number of species and of vegetative forms, as it is the case in the tropical rainforest. To take them into account, we must develop and use models. I present a review of the fundamental mechanisms for the of a natural forest dynamics - photosynthesis, tree growth, recruitment and mortality - as well as a description of the past and of the present of tropical rainforests. This information is used to develop a spatially-explicit and individual-based forest model. Simplified models are deduced from it, and they serve to address more specific issues, such as the resilience of the forest to climate disturbances, or savanna-forest dynamics. The last topic is related to the spatio-temporal description of tropical plant biodiversity. A detailed introduction to the problem is provided, and models accounting for the maintenance of diversity are compared. These models include non spatial as well a spatial approaches (branching anihilating random walks and voter model with mutation). (orig.)

  2. Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest

    NARCIS (Netherlands)

    Gomes, L.G.L.; Oostra, V.; Nijman, V.; Cleef, A.M.; Kappelle, M.

    2008-01-01

    In view of the continued decline in tropical forest cover around the globe, forest restoration has become a key tool in tropical rainforest conservation. One of the main - and least expensive - restoration strategies is natural forest regeneration. By aiding forest seed influx both into disturbed

  3. Mirror image hydrocarbons from Tropical and Boreal forests

    Directory of Open Access Journals (Sweden)

    J. Williams

    2007-01-01

    Full Text Available Monoterpenes, emitted in large quantities by trees to attract pollinators and repel herbivores, can exist in mirror image forms called enantiomers. In this study such enantiomeric pairs have been measured in ambient air over extensive forest ecosystems in South America and northern Europe. For the dominant monoterpene, α-pinene, the (−-form was measured in large excess over the (+-form over the Tropical rainforest, whereas the reverse was observed over the Boreal forest. Interestingly, over the Tropical forest (−-α-pinene did not correlate with its own enantiomer, but correlated well with isoprene. The results indicate a remarkable ecosystem scale enantiomeric fingerprint and a nexus between the biosphere and atmosphere.

  4. Fate of Deposited Nitrogen in Tropical Forests in Southern China

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa

    and denitrification from the ecosystem. Loss of N, in turn, has many negative consequences, including soil and surface water acidification, plant nutrient imbalances and related adverse effects on biological diversities. Increased atmospheric N deposition that is anticipated for tropical regions may further aggravate...... as N export in soil water in tropical forests. Total annual atmospheric deposition of N to the forest in the study period was 51 kg N ha-1yr-1. Nitrogen deposition was dominated by NH4-N due to intensive agricultural NH3 emissions in nearby areas. Nitrate dominated leaching loss from the soil...... after the last addition and by monitoring leaching of 15N in soil water on a monthly basis. The result showed that deposited N is effectively retained in plant and soil pools resembling and exceeding that observed for temperate forests. Furthermore, increased N input decreased the N retention efficiency...

  5. Indigenous land tenure and tropical forest management in Latin America

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.H. (The World Bank, Environment Department, Washington DC (United States)); Wali, A. (University of Maryland, College of Behavioral and Social Sciences, Department of Anthropology, College Park, MD (United States))

    1994-12-01

    Indigenous peoples have received much attention as potential resource managers of threatened tropical forest ecosystems. Using data from Latin America, this article argues that fundamental changes need to take place in the legal recognition and demarcation of indigenous territories in order for this potential to be fulfilled. A comparison is made between different national land-tenure models for forest-dwelling indigenous peoples and a new model proposed by Latin American indigenous organizations. This comparison suggests that not only do indigenous peoples need to be provided with some degree of control over their territories and resources, but there needs to be a new type of partnership among indigenous peoples, the scientific community, national governments and international development agencies for the management of tropical forests. 37 refs, 3 tabs

  6. Environmental filtering of eudicot lineages underlies phylogenetic clustering in tropical South American flooded forests.

    Science.gov (United States)

    Aldana, Ana M; Carlucci, Marcos B; Fine, Paul V A; Stevenson, Pablo R

    2017-02-01

    The phylogenetic community assembly approach has been used to elucidate the role of ecological and historical processes in shaping tropical tree communities. Recent studies have shown that stressful environments, such as seasonally dry, white-sand and flooded forests tend to be phylogenetically clustered, arguing for niche conservatism as the main driver for this pattern. Very few studies have attempted to identify the lineages that contribute to such assembly patterns. We aimed to improve our understanding of the assembly of flooded forest tree communities in Northern South America by asking the following questions: are seasonally flooded forests phylogenetically clustered? If so, which angiosperm lineages are over-represented in seasonally flooded forests? To assess our hypotheses, we investigated seasonally flooded and terra firme forests from the Magdalena, Orinoco and Amazon Basins, in Colombia. Our results show that, regardless of the river basin in which they are located, seasonally flooded forests of Northern South America tend to be phylogenetically clustered, which means that the more abundant taxa in these forests are more closely related to each other than expected by chance. Based on our alpha and beta phylodiversity analyses we interpret that eudicots are more likely to adapt to extreme environments such as seasonally flooded forests, which indicates the importance of environmental filtering in the assembly of the Neotropical flora.

  7. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    NARCIS (Netherlands)

    Chazdon, R.L.; Broadbent, E.N.; Rozendaal, Danae; Bongers, F.; Jakovac, A.C.; Braga Junqueira, A.; Lohbeck, M.W.M.; Pena Claros, M.; Poorter, L.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We

  8. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests.

    Directory of Open Access Journals (Sweden)

    Luis Daniel Avila-Cabadilla

    Full Text Available Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late. We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity and the landscape level (forest cover, area and diversity of patches. Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in

  9. Local and landscape factors determining occurrence of phyllostomid bats in tropical secondary forests.

    Science.gov (United States)

    Avila-Cabadilla, Luis Daniel; Sanchez-Azofeifa, Gerardo Arturo; Stoner, Kathryn Elizabeth; Alvarez-Añorve, Mariana Yolotl; Quesada, Mauricio; Portillo-Quintero, Carlos Alonso

    2012-01-01

    Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic

  10. Traffic noise affects forest bird species in a protected tropical forest

    Directory of Open Access Journals (Sweden)

    J. Edgardo Arévalo

    2011-06-01

    Full Text Available The construction of roads near protected forest areas alters ecosystem function by creating habitat fragmentation and through several direct and indirect negative effects such as increased pollution, animal mortality through collisions, disturbance caused by excessive noise and wind turbulence. Noise in particular may have strong negative effects on animal groups such as frogs and birds, that rely on sound for communication as it can negatively interfere with vocalizations used for territorial defense or courtship. Thus, birds are expected to be less abundant close to the road where noise levels are high. In this study, we examined the effects of road traffic noise levels on forest bird species in a protected tropical forest in Costa Rica. Data collection was conducted in a forest segment of the Carara National Park adjacent to the Coastal Highway. We carried out 120 ten minute bird surveys and measured road noise levels 192 times from the 19th to the 23rd of April and from the 21st to the 28th of November, 2008. To maximize bird detection for the species richness estimates we operated six 12m standard mist nets simultaneously with the surveys. The overall mist-netting effort was 240net/h. In addition, we estimated traffic volumes by tallying the number of vehicles passing by the edge of the park using 24 one hour counts throughout the study. We found that the relative abundance of birds and bird species richness decreased significantly with the increasing traffic noise in the dry and wet season. Noise decreased significantly and in a logarithmic way with distance from the road in both seasons. However, noise levels at any given distance were significantly higher in the dry compared to the wet season. Our results suggest that noise might be an important factor influencing road bird avoidance as measured by species richness and relative abundance. Since the protected forest in question is located in a national park subjected to tourist visitation

  11. 76 FR 71342 - Proposed CERCLA Administrative Cost Recovery Settlement; River Forest Dry Cleaners Site, River...

    Science.gov (United States)

    2011-11-17

    ... Settlement; River Forest Dry Cleaners Site, River Forest, Cook County, IL AGENCY: Environmental Protection... response costs concerning the River Forest Dry Cleaners site in River Forest, Cook County, Illinois with... code: C-14J, Chicago, Illinois 60604. Comments should reference the River Forest Dry Cleaners Site...

  12. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches

    International Nuclear Information System (INIS)

    Asner, Gregory P

    2009-01-01

    Large-scale carbon mapping is needed to support the UNFCCC program to reduce deforestation and forest degradation (REDD). Managers of forested land can potentially increase their carbon credits via detailed monitoring of forest cover, loss and gain (hectares), and periodic estimates of changes in forest carbon density (tons ha -1 ). Satellites provide an opportunity to monitor changes in forest carbon caused by deforestation and degradation, but only after initial carbon densities have been assessed. New airborne approaches, especially light detection and ranging (LiDAR), provide a means to estimate forest carbon density over large areas, which greatly assists in the development of practical baselines. Here I present an integrated satellite-airborne mapping approach that supports high-resolution carbon stock assessment and monitoring in tropical forest regions. The approach yields a spatially resolved, regional state-of-the-forest carbon baseline, followed by high-resolution monitoring of forest cover and disturbance to estimate carbon emissions. Rapid advances and decreasing costs in the satellite and airborne mapping sectors are already making high-resolution carbon stock and emissions assessments viable anywhere in the world.

  13. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  14. Remote sensing for conservation of tropical moist forests: A study in Indonesia

    Science.gov (United States)

    Warwick-Smith, Robert Myles

    The Indonesian archipelago extends in a great 6000km arc from the northern tip of Sumatra to the eastern border of Irian Jaya. It includes a wide diversity of ecosystems ranging from the floristically rich and economically important lowland tropical rain forests to the 'moss' and sub-alpine meadows of the higher mountains and from fresh-water swamp forest to the dry monsoon forest and savanna woodlands of the lesser Sunda islands. These forests are of importance for the protection of watersheds and catchment areas, for the maintenance of water supplies, and for their general and local influence upon climate. They are the habitat of a large number of rare, endangered and endemic plant and animal species; also many other birds, mammals, reptiles and insects which form a colourful, scientifically valuable and irreplaceable part of the national heritage and world genetic resources. This study examines an area of great ecological importance in Sulawesi, and an attempt is made to map a number of ecosystems in the area. Landsat multispectral imagery (1972) was the basis of the mapping and field work was completed in 1980. The satellite imagery proved to be a satisfactory mapping tool in these tropical moist forest conditions.

  15. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  16. Forest response to heat waves at the dry timberline

    Science.gov (United States)

    Yakir, D.; Rotenberg, E.; Tatrinov, F.; Ogee, J.; Maseyk, K.

    2012-04-01

    Predictions of climate change consistently indicate continuous warming and drying for the entire Mediterranean basin and other regions during the next century. Investigating forest functioning at the current dry and hot "timberline" has therefore implications for predicting future forest distribution. In such investigations we should consider the forest adjustments to extreme conditions both at the long-term average climate basis, as at the time-scale of episodic extreme events, such as heat waves and droughts. Investigating both aspects in a 45-yr old semi-arid pine forest at the dry timberline (MuSICA) was used to test our understandings of underlying processes, and our ability to account for such differential responses.

  17. Restoring degraded tropical forests for carbon and biodiversity

    International Nuclear Information System (INIS)

    Budiharta, Sugeng; Meijaard, Erik; Wilson, Kerrie A; Erskine, Peter D; Rondinini, Carlo; Pacifici, Michela

    2014-01-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity. (letter)

  18. Restoring degraded tropical forests for carbon and biodiversity

    Science.gov (United States)

    Budiharta, Sugeng; Meijaard, Erik; Erskine, Peter D.; Rondinini, Carlo; Pacifici, Michela; Wilson, Kerrie A.

    2014-11-01

    The extensive deforestation and degradation of tropical forests is a significant contributor to the loss of biodiversity and to global warming. Restoration could potentially mitigate the impacts of deforestation, yet knowledge on how to efficiently allocate funding for restoration is still in its infancy. We systematically prioritize investments in restoration in the tropical landscape of East Kalimantan, Indonesia, and through this application demonstrate the capacity to account for a diverse suite of restoration techniques and forests of varying condition. To achieve this we develop a map of forest degradation for the region, characterized on the basis of aboveground biomass and differentiated by broad forest types. We estimate the costs of restoration as well as the benefits in terms of carbon sequestration and improving the suitability of habitat for threatened mammals through time. When the objective is solely to enhance carbon stocks, then restoration of highly degraded lowland forest is the most cost-effective activity. However, if the objective is to improve the habitat of threatened species, multiple forest types should be restored and this reduces the accumulated carbon by up to 24%. Our analysis framework provides a transparent method for prioritizing where and how restoration should occur in heterogeneous landscapes in order to maximize the benefits for carbon and biodiversity.

  19. WET AND DRY SEASON ECOSYSTEM LEVEL FLUXES OF ISOPRENE AND MONOTERPENES FROM A SOUTHEAST ASIAN SECONDARY FOREST AND RUBBER TREE PLANTATION

    Science.gov (United States)

    Canopy scale fluxes of isoprene and monoterpenes were investigated in both wet and dry seasons above a rubber tree (Hevea brasiliensis)/secondary tropical forest in the Yunnan province of southwestern China. Drought conditions were unusually high during the dry season experiment....

  20. Upscaling species richness and abundances in tropical forests.

    Science.gov (United States)

    Tovo, Anna; Suweis, Samir; Formentin, Marco; Favretti, Marco; Volkov, Igor; Banavar, Jayanth R; Azaele, Sandro; Maritan, Amos

    2017-10-01

    The quantification of tropical tree biodiversity worldwide remains an open and challenging problem. More than two-fifths of the number of worldwide trees can be found either in tropical or in subtropical forests, but only ≈0.000067% of species identities are known. We introduce an analytical framework that provides robust and accurate estimates of species richness and abundances in biodiversity-rich ecosystems, as confirmed by tests performed on both in silico-generated and real forests. Our analysis shows that the approach outperforms other methods. In particular, we find that upscaling methods based on the log-series species distribution systematically overestimate the number of species and abundances of the rare species. We finally apply our new framework on 15 empirical tropical forest plots and quantify the minimum percentage cover that should be sampled to achieve a given average confidence interval in the upscaled estimate of biodiversity. Our theoretical framework confirms that the forests studied are comprised of a large number of rare or hyper-rare species. This is a signature of critical-like behavior of species-rich ecosystems and can provide a buffer against extinction.

  1. Damage-controlled logging in managed tropical rain forest in Suriname

    OpenAIRE

    Hendrison, J.

    1990-01-01

    Concern about worldwide deforestation and exploitation of the tropical rain forests has led to friction between national governments, wood industries and timber trade on the one hand, and scientists and environmental organizations on the other. One way to safeguard the tropical rain forests is to avoid human interference and to use forests only as nature reserves and as buffer zones of environmental protection. Some vulnerable tropical rain forests and those with unique flora and fau...

  2. Soil mineralogy and microbes determine forest life history strategy and carbon cycling in humid tropical forests

    Science.gov (United States)

    Soong, J.; Verbruggen, E.; Peñuelas, J.; Janssens, I. A.; Grau, O.

    2017-12-01

    Tropical forests account for over one third of global terrestrial gross primary productivity and cycle more C than any other ecosystem on Earth. However, we still lack a mechanistic understanding of how such high productivity is maintained on the old, highly weathered and phosphorus depleted soils in the tropics. We hypothesized that heterogeneity in soil texture, mineralogy and microbial community composition may be the major drivers of differences in soil C storage and P limitation across tropical forests. We sampled 12 forest sites across a 200 km transect in the humid neo-tropics of French Guiana that varied in soil texture, precipitation and mineralogy. We found that soil texture was a major driver of soil carbon stocks and forest life history strategy, where sandy forests have lower soil C stocks, slower turnover and decomposition and a more closed nutrient cycle while clayey forests have higher soil C stocks, faster turnover and a more leaky nutrient cycle (using natural abundance stable isotope evidence). We found that although the presence of Al and Fe oxides in the clayey soils occludes soil organic matter and P, a greater abundance of arbuscular mycorrhizal fungi help forests to access occluded P in clayey soils fueling higher turnover and faster decomposition rates. Evidence from a laboratory incubation of tropical soils with nutrient additions further demonstrates the de-coupling of microbial P demands from C:N limitations providing further evidence for the need to examine microbial stoichiometry to explain C cycling in the P-limited tropics. We argue that microbial community composition and physiological demands, constrained within the limitations of soil mineralogical reactivity, largely controls nutrient and C cycling in tropical forest soils. Together our observational field study and laboratory incubation provide a unique dataset to shed light on the mineralogical and microbial controls on C and nutrient cycling in tropical soils. By integrating

  3. Optimal use of land surface temperature data to detect changes in tropical forest cover

    Science.gov (United States)

    Van Leeuwen, T. T.; Frank, A. J.; Jin, Y.; Smyth, P.; Goulden, M.; van der Werf, G.; Randerson, J. T.

    2011-12-01

    Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the build up of atmospheric CO2. Here we examined different ways to use remotely sensed land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05×0.05 degree Terra MODerate Resolution Imaging Spectroradiometer (MODIS) observations of LST and PRODES (Program for the Estimation of Deforestation in the Brazilian Amazon) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10×10 degree included most of the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (~1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pan-tropical deforestation classifiers. Combined with the normalized difference vegetation index (NDVI), a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST difference decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES. The use of day-night LST differences may be particularly valuable for use with satellites that do not have spectral bands that allow for the estimation of NDVI or other vegetation indices.

  4. Effectiveness of Africa's tropical protected areas for maintaining forest cover.

    Science.gov (United States)

    Bowker, J N; De Vos, A; Ament, J M; Cumming, G S

    2017-06-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forests. Tropical forests house a substantial portion of the world's remaining biodiversity and are heavily affected by anthropogenic activity. We analyzed park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control sites. Although significant geographical variation existed among parks, the majority of African parks had significantly less forest loss within their boundaries (e.g., Mahale Park had 34 times less forest loss within its boundary) than control sites. Accessibility was a significant driver of forest loss. Relatively inaccessible areas had a higher probability (odds ratio >1, p < 0.001) of forest loss but only in ineffective parks, and relatively accessible areas had a higher probability of forest loss but only in effective parks. Smaller parks less effectively prevented forest loss inside park boundaries than larger parks (T = -2.32, p < 0.05), and older parks less effectively prevented forest loss inside park boundaries than younger parks (F 2,154 = -4.11, p < 0.001). Our analyses, the first individual and national assessment of park effectiveness across Africa, demonstrated the complexity of factors (such as geographical variation, accessibility, and park size and age) influencing the ability of a park to curb forest loss within its boundaries. © 2016 Society for Conservation Biology.

  5. An Old-Growth Definition for Dry and Dry-Mesic Oak-Pine Forests.

    Science.gov (United States)

    David L. White; F. Thomas. Lloyd

    1998-01-01

    Dry and dry-mesic oak-pine forests are widely distributed from New Jersey to Texas, but representative old-growth stands are rare. Historical accounts of composition, along with information from existing old-growth stands, were used to characterize this type. Shortleaf pine and white oak were the most widely distributed trees across all old-growth stands. Shortleaf was...

  6. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand.

    Science.gov (United States)

    Hasin, Sasitorn; Ohashi, Mizue; Yamada, Akinori; Hashimoto, Yoshiaki; Tasen, Wattanachai; Kume, Tomonori; Yamane, Seiki

    2014-10-01

    Many ant species construct subterranean nests. The presence of their nests may explain soil respiration "hot spots", an important factor in the high CO2 efflux from tropical forests. However, no studies have directly measured CO2 efflux from ant nests. We established 61 experimental plots containing 13 subterranean ant species to evaluate the CO2 efflux from subterranean ant nests in a tropical seasonal forest, Thailand. We examined differences in nest CO2 efflux among ant species. We determined the effects of environmental factors on nest CO2 efflux and calculated an index of nest structure. The mean CO2 efflux from nests was significantly higher than those from the surrounding soil in the wet and dry seasons. The CO2 efflux was species-specific, showing significant differences among the 13 ant species. The soil moisture content significantly affected nest CO2 efflux, but there was no clear relationship between nest CO2 efflux and nest soil temperature. The diameter of the nest entrance hole affected CO2 efflux. However, there was no significant difference in CO2 efflux rates between single-hole and multiple-hole nests. Our results suggest that in a tropical forest ecosystem the increase in CO2 efflux from subterranean ant nests is caused by species-specific activity of ants, the nest soil environment, and nest structure.

  7. Why do forest products become less available? A pan-tropical comparison of drivers of forest-resource degradation

    OpenAIRE

    Hermans, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-01-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our study addresses this gap by analyzing the factors driving changes in tropical forest products in the perception of rural smallholder communities. Using the poverty and environment network global datas...

  8. Unique competitive effects of lianas and trees in a tropical forest understory.

    Science.gov (United States)

    Wright, Alexandra; Tobin, Mike; Mangan, Scott; Schnitzer, Stefan A

    2015-02-01

    Lianas are an important component of tropical forests, contributing up to 25% of the woody stems and 35% of woody species diversity. Lianas invest less in structural support but more in leaves compared to trees of similar biomass. These physiological and morphological differences suggest that lianas may interact with neighboring plants in ways that are different from similarly sized trees. However, the vast majority of past liana competition studies have failed to identify the unique competitive effects of lianas by controlling for the amount of biomass removed. We assessed liana competition in the forest understory over the course of 3 years by removing liana biomass and an equal amount of tree biomass in 40 plots at 10 sites in a secondary tropical moist forest in central Panama. We found that growth of understory trees and lianas, as well as planted seedlings, was limited due to competitive effects from both lianas and trees, though the competitive impacts varied by species, season, and size of neighbors. The removal of trees resulted in greater survival of planted seedlings compared to the removal of lianas, apparently related to a greater release from competition for light. In contrast, lianas had a species-specific negative effect on drought-tolerant Dipteryx oleifera seedlings during the dry season, potentially due to competition for water. We conclude that, at local scales, lianas and trees have unique and differential effects on understory dynamics, with lianas potentially competing more strongly during the dry season, and trees competing more strongly for light.

  9. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  10. Infrared heater system for warming tropical forest understory plants and soils

    Science.gov (United States)

    Bruce A. Kimball; Aura M. Alonso-Rodríguez; Molly A. Cavaleri; Sasha C. Reed; Grizelle González; Tana E. Wood

    2018-01-01

    The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses...

  11. Estimating Aboveground Forest Carbon Stock of Major Tropical Forest Land Uses Using Airborne Lidar and Field Measurement Data in Central Sumatra

    Science.gov (United States)

    Thapa, R. B.; Watanabe, M.; Motohka, T.; Shiraishi, T.; shimada, M.

    2013-12-01

    Tropical forests are providing environmental goods and services including carbon sequestration, energy regulation, water fluxes, wildlife habitats, fuel, and building materials. Despite the policy attention, the tropical forest reserve in Southeast Asian region is releasing vast amount of carbon to the atmosphere due to deforestation. Establishing quality forest statistics and documenting aboveground forest carbon stocks (AFCS) are emerging in the region. Airborne and satellite based large area monitoring methods are developed to compliment conventional plot based field measurement methods as they are costly, time consuming, and difficult to implement for large regions. But these methods still require adequate ground measurements for calibrating accurate AFCS model. Furthermore, tropical region comprised of varieties of natural and plantation forests capping higher variability of forest structures and biomass volumes. To address this issue and the needs for ground data, we propose the systematic collection of ground data integrated with airborne light detection and ranging (LiDAR) data. Airborne LiDAR enables accurate measures of vertical forest structure, including canopy height and volume demanding less ground measurement plots. Using an appropriate forest type based LiDAR sampling framework, structural properties of forest can be quantified and treated similar to ground measurement plots, producing locally relevant information to use independently with satellite data sources including synthetic aperture radar (SAR). In this study, we examined LiDAR derived forest parameters with field measured data and developed general and specific AFCS models for tropical forests in central Sumatra. The general model is fitted for all types of natural and plantation forests while the specific model is fitted to the specific forest type. The study region consists of natural forests including peat swamp and dry moist forests, regrowth, and mangrove and plantation forests

  12. Large lianas as hyperdynamic elements of the tropical forest canopy

    OpenAIRE

    Phillips, O.L.; Vásquez Martínez, R.; Monteagudo Mendoza, A.; Baker, T.R.; Núñez Vargas, P.

    2005-01-01

    Lianas (woody vines) are an important component of lowland tropical forests.\\ud We report large liana and tree inventory and dynamics data from Amazonia over periods\\ud of up to 24 years, making this the longest geographically extensive study of liana ecology\\ud to date. We use these results to address basic questions about the ecology of large lianas\\ud in mature forests and their interactions with trees. In one intensively studied site we find\\ud that large lianas (≥10 cm diameter) represen...

  13. Greenhouse gas emissions from tropical forest degradation: an underestimated source

    Directory of Open Access Journals (Sweden)

    Timothy R. H. Pearson

    2017-02-01

    Full Text Available Abstract Background The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Results Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. Conclusions The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  14. Whole-ecosystem experimental manipulations of tropical forests

    OpenAIRE

    Fayle, Tom M; Turner, Edgar Clive; Basset, Yves; Ewers, Robert M; Reynolds, Glen; Novotny, Vojtech

    2015-01-01

    Tropical forests are highly diverse systems involving extraordinary numbers of interactions between species, with each species responding in a different way to the abiotic environment. Understanding how these systems function and predicting how they respond to anthropogenic global change is extremely challenging. We argue for the necessity of ‘whole-ecosystem’ experimental manipulations, in which the entire ecosystem is targeted, either to reveal the functioning of the...

  15. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012

    International Nuclear Information System (INIS)

    Tyukavina, A; Hansen, M C; Potapov, P V; Krylov, A M; Turubanova, S; Baccini, A; Houghton, R A; Goetz, S J; Stehman, S V

    2015-01-01

    Tropical forests provide global climate regulation ecosystem services and their clearing is a significant source of anthropogenic greenhouse gas (GHG) emissions and resultant radiative forcing of climate change. However, consensus on pan-tropical forest carbon dynamics is lacking. We present a new estimate that employs recommended good practices to quantify gross tropical forest aboveground carbon (AGC) loss from 2000 to 2012 through the integration of Landsat-derived tree canopy cover, height, intactness and forest cover loss and GLAS-lidar derived forest biomass. An unbiased estimate of forest loss area is produced using a stratified random sample with strata derived from a wall-to-wall 30 m forest cover loss map. Our sample-based results separate the gross loss of forest AGC into losses from natural forests (0.59 PgC yr −1 ) and losses from managed forests (0.43 PgC yr −1 ) including plantations, agroforestry systems and subsistence agriculture. Latin America accounts for 43% of gross AGC loss and 54% of natural forest AGC loss, with Brazil experiencing the highest AGC loss for both categories at national scales. We estimate gross tropical forest AGC loss and natural forest loss to account for 11% and 6% of global year 2012 CO 2 emissions, respectively. Given recent trends, natural forests will likely constitute an increasingly smaller proportion of tropical forest GHG emissions and of global emissions as fossil fuel consumption increases, with implications for the valuation of co-benefits in tropical forest conservation. (letter)

  16. Biomass and carbon dynamics of a tropical mountain rain forest in China.

    Science.gov (United States)

    Chen, DeXiang; Li, YiDe; Liu, HePing; Xu, Han; Xiao, WenFa; Luo, TuShou; Zhou, Zhang; Lin, MingXian

    2010-07-01

    Biometric inventories for 25 years, from 1983 to 2005, indicated that the Jianfengling tropical mountain rain forest in Hainan, China, was either a source or a modest sink of carbon. Overall, this forest was a small carbon sink with an accumulation rate of (0.56+/-0.22) Mg C ha(-1)yr(-1), integrated from the long-term measurement data of two plots (P9201 and P8302). These findings were similar to those for African and American rain forests ((0.62+/-0.23) Mg C ha(-1)yr(-1)). The carbon density varied between (201.43+/-29.38) Mg C ha(-1) and (229.16+/-39.2) Mg C ha(-1), and averaged (214.17+/-32.42) Mg C ha(-1) for plot P9201. Plot P8302, however, varied between (223.95+/-45.92) Mg C ha(-1) and (254.85+/-48.86) Mg C ha(-1), and averaged (243.35+/-47.64) Mg C ha(-1). Quadratic relationships were found between the strength of carbon sequestration and heavy rainstorms and dry months. Precipitation and evapotranspiration are two major factors controlling carbon sequestration in the tropical mountain rain forest.

  17. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides).

    Science.gov (United States)

    Ramírez-Valiente, Jose A; Cavender-Bares, Jeannine

    2017-07-01

    In seasonally dry tropical forest regions, drought avoidance during the dry season coupled with high assimilation rates in the wet season is hypothesized to be an advantageous strategy for forest trees in regions with severe and long dry seasons. In contrast, where dry seasons are milder, drought tolerance coupled with a conservative resource-use strategy is expected to maximize carbon assimilation throughout the year. Tests of this hypothesis, particularly at the intraspecific level, have been seldom conducted. In this study, we tested the extent to which drought resistance mechanisms and rates of carbon assimilation have evolved under climates with varying dry season length and severity within Quercus oleoidesCham. and Schlect., a tropical dry forest species that is widely distributed in Central America. For this purpose, we conducted a greenhouse experiment where seedlings originating from five populations that vary in rainfall patterns were grown under different watering treatments. Our results revealed that populations from xeric climates with more severe dry seasons exhibited large mesophyllous leaves (with high specific leaf area, SLA), and leaf abscission in response to drought, consistent with a drought-avoidance strategy. In contrast, populations from more mesic climates with less severe dry seasons had small and thick sclerophyllous leaves with low SLA and reduced water potential at the turgor loss point (πtlp), consistent with a drought-tolerance strategy. Mesic populations also showed high plasticity in πtlp in response to water availability, indicating that osmotic adjustment to drought is an important component of this strategy. However, populations with mesophyllous leaves did not have higher maximum carbon assimilation rates under well-watered conditions. Furthermore, SLA was negatively associated with mass-based photosynthetic rates, contrary to expectations of the leaf economics spectrum, indicating that drought-resistance strategies are not

  18. Efficient way back litters nutrient potential of a tropical forest of bank. Sierra Nevada of Santa Marta Colombia

    International Nuclear Information System (INIS)

    Fuentes Molina, Natalia; Rodriguez Barrios, Javier Alfredo

    2012-01-01

    In three representative forests along the River Gaira, (subtropical wet forest, subtropical moist forest and tropical thorn mount), were measured over six months (wet and dry seasons) fluxes of nitrogen and phosphorus through the litter. Concentrations of nutrients (nitrogen and phosphorus) in the litter were relatively similar in the three Nevada de Santa Marta Colombia. Fuentes, Rodriguez. vegetation types (1.71% n and 0.12% p for the subtropical moist forest, followed by the tropical thorn mount with 1.50% n and 0.10% p and the subtropical wet forest with 1.39% n and 0.08% p), with the most significant differences found for nitrogen, which is the major nutrient with the absolute maximum in the subtropical rain forest set in the middle stretch of the basin. The greatest returns on biomass and nutrients occurred in the subtropical moist forest and tropical thorn mount set in the middle and lower reaches of the basin. The leaves showed high concentration of n and consequently, given the high production values of the different fractions, a high potential return of n (78.6 kg ha-1 yr-1). The foliar p concentration showed a potential return of 4.9 kgha1yr-1 and high values of the indices of efficiency in their use (iev: 2888.5) and foliar resorption (ern: 98.2), was the nutrient most limiting.

  19. Processes and lands for sequestering carbon in the tropical forest landscape

    Science.gov (United States)

    Sandra Brown; Ariel E. Lugo; Louis R. Iverson

    1992-01-01

    Balancing the C budget in the tropics has been hindered by the assumption that those forests not undergoing deforestation are in C steady state with respect to their C pools and thus with the atmosphere. The long history of human activity in tropical forests suggests otherwise. In this paper we discuss the forest compartments into which C can be stored, what the likely...

  20. Effects of nutrient additions on ecosystem carbon cycle in a Puerto Rican tropical wet forest

    Science.gov (United States)

    YIQING LI; MING XU; XIAOMING ZOU

    2006-01-01

    Wet tropical forests play a critical role in global ecosystem carbon (C) cycle, but C allocation and the response of different C pools to nutrient addition in these forests remain poorly understood. We measured soil organic carbon (SOC), litterfall, root biomass, microbial biomass and soil physical and chemical properties in a wet tropical forest from May 1996 to July...

  1. Polarimetric data for tropical forest monitoring : studies at the Colombian Amazon

    NARCIS (Netherlands)

    Quiñones Fernández, M.

    2002-01-01



    An urgent need exists for accurate data on the actual tropical forest extent, deforestation, forest structure, regeneration and diversity. The availability of accurate land cover maps and tropical forest type maps, and the possibility to update these maps frequently, is of

  2. Bali cattle peBali cattle performance in the dry tropics of Sumbawarformance in the dry tropics of Sumbawa

    Directory of Open Access Journals (Sweden)

    Tanda Panjaitan

    2004-10-01

    Full Text Available Preliminary data on Bali cattle reproduction and growth presented is based on monitoring between August 2001 and August 2003 in the Sumbawa and Dompu Districts of Sumbawa Island, NTB. Sixty two % of calves were born between May and July inclusively. Inter-calving interval averaged 11.9 ±1.9 months; though recognized as an under-estimate, it still indicated of high fertility. Post-natal calf mortality was 5.3%. Birth, 6-, and 18-month weights of 14.2 ± 2.4 kg, 90 ± 20 kg, 172 ± 40 kg, respectively, were recorded. Average daily gains between birth to 6 months and from 6 to 18 months were 0.41 ± 0.11 and 0.23 ± 0.11 kg/d, respectively. Females reached mature size at 2.5-3.0 years at a mean weight of 237 kg and height of 1147 mm. Weight could be accurately predicted from chest girth: Weight (kg = 7e0.0023 Chest girth (mm (R2=0.9656. At the sites monitored, reproduction was high, and growth was typical for Bali cattle, indicating that these animals are well suited to the dry tropical environment of Sumbawa.

  3. Controls over foliar N:P ratios in tropical rain forests.

    Science.gov (United States)

    Townsend, Alan R; Cleveland, Cory C; Asner, Gregory P; Bustamante, Mercedes M C

    2007-01-01

    Correlations between foliar nutrient concentrations and soil nutrient availability have been found in multiple ecosystems. These relationships have led to the use of foliar nutrients as an index of nutrient status and to the prediction of broadscale patterns in ecosystem processes. More recently, a growing interest in ecological stoichiometry has fueled multiple analyses of foliar nitrogen:phosphorus (N:P) ratios within and across ecosystems. These studies have observed that N:P values are generally elevated in tropical forests when compared to higher latitude ecosystems, adding weight to a common belief that tropical forests are generally N rich and P poor. However, while these broad generalizations may have merit, their simplicity masks the enormous environmental heterogeneity that exists within the tropics; such variation includes large ranges in soil fertility and climate, as well as the highest plant species diversity of any biome. Here we present original data on foliar N and P concentrations from 150 mature canopy tree species in Costa Rica and Brazil, and combine those data with a comprehensive new literature synthesis to explore the major sources of variation in foliar N:P values within the tropics. We found no relationship between N:P ratios and either latitude or mean annual precipitation within the tropics alone. There is, however, evidence of seasonal controls; in our Costa Rica sites, foliar N:P values differed by 25% between wet and dry seasons. The N:P ratios do vary with soil P availability and/or soil order, but there is substantial overlap across coarse divisions in soil type, and perhaps the most striking feature of the data set is variation at the species level. Taken as a whole, our results imply that the dominant influence on foliar N:P ratios in the tropics is species variability and that, unlike marine systems and perhaps many other terrestrial biomes, the N:P stoichiometry of tropical forests is not well constrained. Thus any use of N

  4. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling

    Science.gov (United States)

    Xiaohui Feng; María Uriarte; Grizelle González; Sasha Reed; Jill Thompson; Jess K. Zimmerman; Lora Murphy

    2018-01-01

    Tropical forests play a critical role in carbon and water cycles at a global scale. Rapid climate change is anticipated in tropical regions over the coming decades and, under a warmer and drier climate, tropical forests are likely to be net sources of carbon rather than sinks. However, our understanding of tropical forest response and feedback to climate change is very...

  5. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China

    Directory of Open Access Journals (Sweden)

    Xiao-Tao Lü

    2009-06-01

    Full Text Available Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with = 2 cm diameter at breast height (dbh were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha, 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded was the most important family in the study forests. The population density, basal area and importance value index (IVI varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha accounted for 1.4% of the total community aboveground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales. Rev. Biol. Trop. 57 (1-2: 211-222. Epub 2009 June 30.Las lianas son componentes importantes de los bosques tropicales y tienen importantes impactos en la diversidad, la estructura y la dinámica de los bosques tropicales. El presente estudio documenta la flora de lianas en una región tropical estacional china. La

  6. Root Hydraulics and Root Sap Flow in a Panamanian Low-Land Tropical Forest

    Science.gov (United States)

    Bretfeld, M.; Ewers, B. E.; Hall, J. S.; Ogden, F. L.; Beverly, D.; Speckman, H. N.

    2017-12-01

    In the tropics, trees are subjected to increasingly frequent and severe droughts driven by climate change. Given the hydrological benefits associated with tropical forests, such as reduced peak runoff during high precipitation events and increased base flow during drought periods ("sponge-effect"), the underlying plant-hydrological processes at the soil-plant interface have become the focus of recent research efforts. In Panama, the 2015/16 El Niño-Southern Oscillation (ENSO) event ranks amongst the driest and hottest periods on record, thus providing an excellent opportunity to study the effects of drought on tropical forests. Starting in 2015, we instrumented 76 trees with heat-ratio sap flow sensors in regrowing secondary forest (8-, 25-, and 80-year old stands) in the 15 km2 Agua Salud study area, located in central Panama. Of those trees, 16 individuals were instrumented with additional sap flow sensors on three roots each. Data were logged every 30 minutes and soil moisture was measured at 10, 30, 50, and 100 cm depth. Meteorological data were taken from a nearby met-station. Rooting depth and root density were assessed in eight 2×2×2 m soil pits. In April 2017, we measured hydraulic conductance and vulnerability to cavitation of eight species using the centrifuge technique. Trees in 8-year old forest limited transpiration during the drought whereas no such limitation was evident in trees of the 80-year old forest. Root sap flow data show seasonal shifts in water uptake between individual roots of a given tree, with sap flow decreasing in some roots while simultaneously increasing in other roots during the wet-dry season transition. Roots followed a typical log distribution along the profile, with overall root densities of 46, 43, and 52 roots m-2 in the 8-, 25-, and 80-yo stand, respectively. Roots were found up to 200 cm depth in all forests, with roots >5 cm occurring at lower depths (>125 cm) only in 25- and 80-year old forests. Maximum hydraulic

  7. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere

    OpenAIRE

    Cleveland, Cory C.; Townsend, Alan R.

    2006-01-01

    Terrestrial biosphere–atmosphere carbon dioxide (CO2) exchange is dominated by tropical forests, where photosynthetic carbon (C) uptake is thought to be phosphorus (P)-limited. In P-poor tropical forests, P may also limit organic matter decomposition and soil C losses. We conducted a field-fertilization experiment to show that P fertilization stimulates soil respiration in a lowland tropical rain forest in Costa Rica. In the early wet season, when soluble organic matter inputs to soil are hig...

  8. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests

    OpenAIRE

    Adame, Patricia; Brandeis, Thomas J; Uriarte, Maria

    2014-01-01

    Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Yet, the high species diversity of mixed tropical forests, including many uncommon sp...

  9. Seed ecology and regeneration in dry Afromontane forests of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Teketay, D. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Forest Vegetation Ecology

    1996-12-31

    Various aspects of seed and regeneration ecology: germination requirements of seeds, seed longevity in the soil, soil seed banks in forests, gaps and arable land as well as density, survival and growth of seedlings were investigated within the dry Afromontane region in Ethiopia. In laboratory germination tests, 60% of the species studied exhibited some degree of initial dormancy and the optimum constant temperature for germination was between 20 and 25 deg C in the majority of the species. A few species showed a requirement for fluctuating temperatures and germination was suppressed or completely inhibited in several, mainly small-seeded, species when they were incubated in darkness or in light filtered through green leaves. Hard-seeded species required scarification treatments to improve germination, indicating seed-coat imposed dormancy. Dry storage reduced the germinability of seeds in a few species, suggesting a recalcitrant behaviour, while seeds of many species remained unaffected. During four years of storage in forest soils, seeds of 2 out of 8 species germinated in the soil almost completely within a year, 2 of the species maintained nearly full viability, while 4 were intermediate. The generally high levels of dormancy and somewhat extended viability of seeds in the soil may have been selected for under a climate of seasonal drought and unreliable rainfall that characterizes the dry Afromontane region. Dry Afromontane forests have a potential to recover in relatively short time after natural and man-made disturbances, e.g. after carefully managed selective cutting. However, the common practice of clearing forests and converting them into permanent arable land destroys the sources of regrowth thereby preventing regeneration of the forest vegetation. Therefore, the fate of dry Afromontane forests depends on the protection, careful management and conservation of the remaining patches. 102 refs, 4 figs, 1 tab

  10. Exotic grasses and nitrate enrichment alter soil carbon cycling along an urban-rural tropical forest gradient.

    Science.gov (United States)

    Cusack, Daniela F; Lee, Joseph K; McCleery, Taylor L; LeCroy, Chase S

    2015-12-01

    Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect tropical urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that (H1) soil nitrate (NO3 (-) ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2) Exotic grasslands have elevated soil NO3 (-) and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3) Exotic grasslands have greater seasonality in soil NO3 (-) vs. secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO3 (-) would be positively related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary forest sites along a tropical urban-to-rural gradient during the three dominant seasons (hurricane, dry, and early wet). We found that (1) soil NO3 (-) was generally elevated nearer to the urban core, with particularly clear spatial trends for grasslands. (2) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO3 (-) was negatively related to enzyme activities, and was lower in grasslands than forests. (3) Grasslands had greater soil NO3 (-) seasonality vs. forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO3 (-) accumulation here was higher in urban forests than grasslands, potentially related to of aboveground N interception. Net urban effects on C storage across tropical landscapes will likely vary depending on the mosaic of grass cover, rates of N

  11. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests.

    Science.gov (United States)

    Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil

    2017-07-01

    More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological

  12. Why do forest products become less available? A pan-tropical comparison of drivers of forest-resource degradation

    NARCIS (Netherlands)

    Hermans, Kathleen; Gerstner, Katharina; Geijzendorffer, Ilse R.; Herold, Martin; Seppelt, Ralf; Wunder, Sven

    2016-01-01

    Forest products provide an important source of income and wellbeing for rural smallholder communities across the tropics. Although tropical forest products frequently become over-exploited, only few studies explicitly address the dynamics of degradation in response to socio-economic drivers. Our

  13. Indigenous exploitation and management of tropical forest resources: an evolutionary continuum in forest-people interactions.

    NARCIS (Netherlands)

    Wiersum, K.F.

    1997-01-01

    Since the early 1980s several new approaches towards forest management, which include active participation of local communities, have been tried out in many tropical regions. As a result of these efforts recognition has increased about the various ways in which many local communities are already

  14. Sustainable forest management of tropical forests can reduce carbon emissions and stabilize timber production

    Science.gov (United States)

    N. Sasaki; G.P. Asner; Yude Pan; W. Knorr; P.B. Durst; H.O. Ma; I. Abe; A.J. Lowe; L.P. Koh

    2016-01-01

    The REDD+ scheme of the United Nations Framework Conventionon Climate Change has provided opportunities to manage tropical forests for timber production and carbon emission reductions. To determine the appropriate loggingtechniques, we analyzed potential timber production and carbon emission reductions under two logging techniques over a 40-year period of selective...

  15. Observations of increased tropical rainfall preceded by air passage over forests.

    Science.gov (United States)

    Spracklen, D V; Arnold, S R; Taylor, C M

    2012-09-13

    Vegetation affects precipitation patterns by mediating moisture, energy and trace-gas fluxes between the surface and atmosphere. When forests are replaced by pasture or crops, evapotranspiration of moisture from soil and vegetation is often diminished, leading to reduced atmospheric humidity and potentially suppressing precipitation. Climate models predict that large-scale tropical deforestation causes reduced regional precipitation, although the magnitude of the effect is model and resolution dependent. In contrast, observational studies have linked deforestation to increased precipitation locally but have been unable to explore the impact of large-scale deforestation. Here we use satellite remote-sensing data of tropical precipitation and vegetation, combined with simulated atmospheric transport patterns, to assess the pan-tropical effect of forests on tropical rainfall. We find that for more than 60 per cent of the tropical land surface (latitudes 30 degrees south to 30 degrees north), air that has passed over extensive vegetation in the preceding few days produces at least twice as much rain as air that has passed over little vegetation. We demonstrate that this empirical correlation is consistent with evapotranspiration maintaining atmospheric moisture in air that passes over extensive vegetation. We combine these empirical relationships with current trends of Amazonian deforestation to estimate reductions of 12 and 21 per cent in wet-season and dry-season precipitation respectively across the Amazon basin by 2050, due to less-efficient moisture recycling. Our observation-based results complement similar estimates from climate models, in which the physical mechanisms and feedbacks at work could be explored in more detail.

  16. Geospatial Assessment of Forest Fragmentation and its Implications for Ecological Processes in Tropical Forests

    Directory of Open Access Journals (Sweden)

    Adepoju Kayode Adewale

    2017-11-01

    Full Text Available The study assessed the patterns of spatio-temporal configuration imposed on a forest landscape in Southwestern Nigeria due to fragmentation for the period 1986 – 2010 in order to understand the relationship between landscape patterns and the ecological processes influencing the distribution of species in tropical forest environment. Time-series Landsat TM and ETM satellite images and forest inventory data were pre-processed and classified into four landuse/landcover categories using maximum likelihood classification algorithm. Fragstats software was used for the computation of seven landscape and six class level metrics to provide indicators of fragmentation and landscape connectivity from the classified images.

  17. Terrestrial Ecosystem Science 2017 ECRP Annual Report: Tropical Forest Response to a Drier Future: Turnover Times of Soil Organic Matter, Roots, Respired CO2, and CH4 Across Moisture Gradients in Time and Space

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Karis J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-30

    The overall goal of my Early Career research is to constrain belowground carbon turnover times for tropical forests across a broad range in moisture regimes. My group is using 14C analysis and modeling to address two major objectives: quantify age and belowground carbon turnover times across tropical forests spanning a moisture gradient from wetlands to dry forest; and identify specific areas for focused model improvement and data needs through site-specific model-data comparison and belowground carbon modeling for tropic forests.

  18. Quantification and identification of lightning damage in tropical forests.

    Science.gov (United States)

    Yanoviak, Stephen P; Gora, Evan M; Burchfield, Jeffrey M; Bitzer, Phillip M; Detto, Matteo

    2017-07-01

    Accurate estimates of tree mortality are essential for the development of mechanistic forest dynamics models, and for estimating carbon storage and cycling. However, identifying agents of tree mortality is difficult and imprecise. Although lightning kills thousands of trees each year and is an important agent of mortality in some forests, the frequency and distribution of lightning-caused tree death remain unknown for most forests. Moreover, because all evidence regarding the effects of lightning on trees is necessarily anecdotal and post hoc, rigorous tests of hypotheses regarding the ecological effects of lightning are impossible. We developed a combined electronic sensor/camera-based system for the location and characterization of lightning strikes to the forest canopy in near real time and tested the system in the forest of Barro Colorado Island, Panama. Cameras mounted on towers provided continuous video recordings of the forest canopy that were analyzed to determine the locations of lightning strikes. We used a preliminary version of this system to record and locate 18 lightning strikes to the forest over a 3-year period. Data from field surveys of known lightning strike locations (obtained from the camera system) enabled us to develop a protocol for reliable, ground-based identification of suspected lightning damage to tropical trees. In all cases, lightning damage was relatively inconspicuous; it would have been overlooked by ground-based observers having no knowledge of the event. We identified three types of evidence that can be used to consistently identify lightning strike damage in tropical forests: (1) localized and directionally biased branch mortality associated with flashover among tree and sapling crowns, (2) mortality of lianas or saplings near lianas, and (3) scorched or wilting epiphytic and hemiepiphytic plants. The longitudinal trunk scars that are typical of lightning-damaged temperate trees were never observed in this study. Given the

  19. Simulated dry deposition of nitric acid near forest edges

    NARCIS (Netherlands)

    DeJong, JJM; Klaassen, W; Jong, J.J.M. de

    1997-01-01

    Dry deposition is simulated to understand and generalize observations of enhanced deposition of air pollution near forest edges. Nitric acid is taken as an example as its deposition velocity is often assumed to be determined by turbulent transport only. The simulations are based on the

  20. Multiple pathways of commodity crop expansion in tropical forest landscapes

    Science.gov (United States)

    Meyfroidt, Patrick; Carlson, Kimberly M.; Fagan, Matthew E.; Gutiérrez-Vélez, Victor H.; Macedo, Marcia N.; Curran, Lisa M.; DeFries, Ruth S.; Dyer, George A.; Gibbs, Holly K.; Lambin, Eric F.; Morton, Douglas C.; Robiglio, Valentina

    2014-07-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  1. Multiple pathways of commodity crop expansion in tropical forest landscapes

    International Nuclear Information System (INIS)

    Meyfroidt, Patrick; Lambin, Eric F; Carlson, Kimberly M; Fagan, Matthew E; DeFries, Ruth S; Gutiérrez-Vélez, Victor H; Macedo, Marcia N; Curran, Lisa M; Dyer, George A; Gibbs, Holly K; Morton, Douglas C; Robiglio, Valentina

    2014-01-01

    Commodity crop expansion, for both global and domestic urban markets, follows multiple land change pathways entailing direct and indirect deforestation, and results in various social and environmental impacts. Here we compare six published case studies of rapid commodity crop expansion within forested tropical regions. Across cases, between 1.7% and 89.5% of new commodity cropland was sourced from forestlands. Four main factors controlled pathways of commodity crop expansion: (i) the availability of suitable forestland, which is determined by forest area, agroecological or accessibility constraints, and land use policies, (ii) economic and technical characteristics of agricultural systems, (iii) differences in constraints and strategies between small-scale and large-scale actors, and (iv) variable costs and benefits of forest clearing. When remaining forests were unsuitable for agriculture and/or policies restricted forest encroachment, a larger share of commodity crop expansion occurred by conversion of existing agricultural lands, and land use displacement was smaller. Expansion strategies of large-scale actors emerge from context-specific balances between the search for suitable lands; transaction costs or conflicts associated with expanding into forests or other state-owned lands versus smallholder lands; net benefits of forest clearing; and greater access to infrastructure in already-cleared lands. We propose five hypotheses to be tested in further studies: (i) land availability mediates expansion pathways and the likelihood that land use is displaced to distant, rather than to local places; (ii) use of already-cleared lands is favored when commodity crops require access to infrastructure; (iii) in proportion to total agricultural expansion, large-scale actors generate more clearing of mature forests than smallholders; (iv) property rights and land tenure security influence the actors participating in commodity crop expansion, the form of land use displacement

  2. Vulnerability of tropical forest ecosystems and forest dependent communities to droughts.

    Science.gov (United States)

    Vogt, D J; Vogt, K A; Gmur, S J; Scullion, J J; Suntana, A S; Daryanto, S; Sigurðardóttir, R

    2016-01-01

    Energy captured by and flowing through a forest ecosystem can be indexed by its total Net Primary Productivity (NPP). This forest NPP can also be a reflection of its sensitivity to, and its ability to adapt to, any climate change while also being harvested by humans. However detecting and identifying the vulnerability of forest and human ecosystems to climate change requires information on whether these coupled social and ecological systems are able to maintain functionality while responding to environmental variability. To better understand what parameters might be representative of environmental variability, we compiled a metadata analysis of 96 tropical forest sites. We found that three soil textural classes (i.e., sand, sandy loam and clay) had significant but different relationships between NPP and precipitation levels. Therefore, assessing the vulnerability of forests and forest dependent communities to drought was carried out using data from those sites that had one of those three soil textural classes. For example, forests growing on soil textures of sand and clay had NPP levels decreasing as precipitation levels increased, in contrast to those forest sites that had sandy loam soils where NPP levels increased. Also, forests growing on sandy loam soil textures appeared better adapted to grow at lower precipitation levels compared to the sand and clay textured soils. In fact in our tropical database the lowest precipitation level found for the sandy loam soils was 821 mm yr(-1) compared to sand at 1739 mm yr(-1) and clay at 1771 mm yr(-1). Soil texture also determined the level of NPP reached by a forest, i.e., forest growing on sandy loam and clay reached low-medium NPP levels while higher NPP levels (i.e., medium, high) were found on sand-textured soils. Intermediate precipitation levels (>1800-3000 mm yr(-1)) were needed to grow forests at the medium and high NPP levels. Low thresholds of NPP were identified at both low (∼750 mm) and high precipitation

  3. Height is more important than light in determining leaf morphology in a tropical forest.

    Science.gov (United States)

    Cavaleri, Molly A; Oberbauer, Steven F; Clark, David B; Clark, Deborah A; Ryan, Michael G

    2010-06-01

    Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have provided evidence that water limitation in the upper canopy can constrain foliar morphological adaptations to higher light levels. We measured height, light, and LMA of all species encountered along 45 vertical canopy transects across a Costa Rican tropical rain forest. LMA was correlated with light levels in the lower canopy until approximately 18 m sample height and 22% diffuse transmittance. Height showed a remarkably linear relationship with LMA throughout the entire vertical canopy profile for all species pooled and for each functional group individually (except epiphytes), possibly through the influence of gravity on leaf water potential and turgor pressure. Models of forest function may be greatly simplified by estimating LMA-correlated leaf physiological parameters solely from foliage height profiles, which in turn can be assessed with satellite- and aircraft-based remote sensing.

  4. Linking Above- and Belowground Dynamics in Tropical Urban Forests

    Science.gov (United States)

    Atkinson, E. E.; Marin-Spiotta, E.

    2013-12-01

    Secondary forests that emerge after a long history of agriculture can have altered plant community composition and relative abundances of different species. These forests can look and behave differently compared to pre-agricultural forests due changes in primary productivity, resource allocation, and phenology, which can significantly affect processes such as carbon accumulation and nutrient availability. Our research explores how alternative successional trajectories following intensive agricultural use affect linkages among the establishment of novel plant communities, soil nutrient availability and turnover, and soil microbial community composition and function. We hypothesize that different plant species composition due to differing land use legacies and successional trajectories would drive changes in soil microbial community structure and function, affecting soil C and N chemistry and turnover. We conducted this research in the subtropical dry forest life zone of St. Croix, U.S. Virgin Islands where island-wide abandonment of sugarcane resulted in a mosaic of sites in different stages of forest succession. We identified replicate sites with the following post-sugarcane trajectories: 1) natural forest regeneration, 2) low intensity pasture use, followed by reforestation with timber plantation, which are no longer being managed, 3) high intensity pasture use and recent natural forest regeneration, and 4) high intensity pasture use and current active grazing. During 2011-2013, we sampled soils seasonally (0-10 cm) and measured tree species composition. The successional trajectories showed distinct tree species composition. The first two trajectories yielded 40-year old mixed-species secondary forest, dominated by the dry forest tree species Melicoccus bijugatas, Guapira fragrans, Maniklara zapota, and Sideroxylon foetidissimum. The tree species Melicoccus bijugatas primarily drove differences between the first two trajectories (natural forest regeneration vs

  5. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession

    DEFF Research Database (Denmark)

    Batterman, Sarah A.; Hedin, Lars O.; Van Breugel, Michiel

    2013-01-01

    Forests contribute a significant portion of the land carbon sink, but their ability to sequester CO 2 may be constrained by nitrogen, a major plant-limiting nutrient. Many tropical forests possess tree species capable of fixing atmospheric dinitrogen (N 2), but it is unclear whether this function...... tree species across the entire forest age sequence. These findings show that symbiotic N 2 fixation can have a central role in nitrogen cycling during tropical forest stand development, with potentially important implications for the ability of tropical forests to sequester CO 2....

  6. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Science.gov (United States)

    Palace, Michael; Sullivan, Franklin B; Ducey, Mark; Herrick, Christina

    2016-01-01

    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m). Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy

  7. Estimating Tropical Forest Structure Using a Terrestrial Lidar.

    Directory of Open Access Journals (Sweden)

    Michael Palace

    Full Text Available Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar. This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs and calculated a series of parameters including entropy, Fast Fourier Transform (FFT, number of layers and plant area index to develop statistical relationships with field data. We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p < 0.001, RMSE = 1.04 m. Tree density was found to have the poorest significant relationship (r2 = 0.50, p < 0.01, RMSE = 153.28 n ha-1. We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p < 0.001, RMSE = 3.76 number ha-1. Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included

  8. Arthropod pests of dried fish and fish by product in a tropical urban ...

    African Journals Online (AJOL)

    A four months research survey of arthropod pests infesting dried fish sold in a tropical urban community market (Ogige), Nsukka, Ngeria showed that 10 genera o dried freshwater fish (Synodontis, Hemisynodontis, Oreochromis, Hepsetus, Gymnarchus, Labeo, Protopterus, Heterobranchus, Alestes, Heterotis) and two ...

  9. Biodiversity can help prevent malaria outbreaks in tropical forests.

    Directory of Open Access Journals (Sweden)

    Gabriel Zorello Laporta

    Full Text Available BACKGROUND: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. METHODOLOGY/PRINCIPAL FINDINGS: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text] estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals. CONCLUSIONS/SIGNIFICANCE: To achieve biological conservation and to eliminate

  10. Landscape context mediates avian habitat choice in tropical forest restoration.

    Directory of Open Access Journals (Sweden)

    J Leighton Reid

    Full Text Available Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches, and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites.

  11. Whole-ecosystem experimental manipulations of tropical forests

    Czech Academy of Sciences Publication Activity Database

    Fayle, Tom Maurice; Turner, E. C.; Basset, Yves; Ewers, R. M.; Reynolds, G.; Novotný, Vojtěch

    2015-01-01

    Roč. 30, č. 6 (2015), s. 334-346 ISSN 0169-5347 R&D Projects: GA ČR GA14-32302S; GA ČR(CZ) GA14-04258S; GA ČR GB14-36098G Grant - others:Euroepan Social Fund(CZ) CZ.1.07/2.3.00/20.0064 Institutional support: RVO:60077344 Keywords : tropical forests Subject RIV: EH - Ecology, Behaviour Impact factor: 16.735, year: 2015 http://www.cell.com/trends/ecology-evolution/pdf/S0169-5347(15)00069-5.pdf

  12. The impact of lianas on the carbon cycle of tropical forests: a modeling study using the Ecosystem Demography model

    Science.gov (United States)

    di Porcia e Brugnera, M.; Longo, M.; Verbeek, H.

    2017-12-01

    Lianas are an important component of tropical forests, constituting up to 40% of the woody stems and about 35% of the woody species. Tropical forests have been experiencing large-scale structural changes, including an increase in liana abundance and biomass. This may eventually reduce the projected carbon sink of tropical forests. Despite their crucial role no single terrestrial ecosystem model has included lianas so far. Here, we present the very first implementation of lianas in the Ecosystem Demography model (ED2). ED2 is able to represent the competition for water and light between different vegetation types at the regional level. Our new implementation of ED2 is hence suitable to address important questions such as the impact of lianas on the tropical forest carbon balance. We validated the model against forest inventory and eddy covariance flux data at a dry seasonal site (Barro Colorado Island, Panama), and at a wet rainforest site (Paracou, French Guiana). The model was able to represent size structure and carbon accumulation rates. We also evaluated the impact of the unique allocation strategy of lianas on their competitive ability. Lianas invest only a small fraction of their carbon for structural tissues when compared to trees. As a result, lianas benefit from an extra amount of available carbon, however the trade-offs of low allocation on structural tissues are not yet well understood. We are currently investigating a number of hypotheses, including the possibility for lianas to have high turnover rates for leaves and fine roots, or to have high mortality rates due to the loss of structural support when trees die. As such our model allows us to get a better understanding of the role of lianas in the tropical forest carbon cycle.

  13. Temporal dynamics and leaf trait variability in Neotropical dry forests

    Science.gov (United States)

    Hesketh, Michael Sean

    This thesis explores the variability of leaf traits resulting from changes in season, ecosystem successional stage, and site characteristics. In chapter two, I present a review of the use of remote sensing analysis for the evaluation of Neotropical dry forests. Here, I stress the conclusion, drawn from studies on land cover characterization, biodiversity assessment, and evaluation of forest structural characteristics, that addressing temporal variability in spectral properties is an essential element in the monitoring of these ecosystems. Chapter three describes the effect of wet-dry seasonality on spectral classification of tree and liana species. Highly accurate classification (> 80%) was possible using data from either the wet or dry season. However, this accuracy decreased by a factor of ten when data from the wet season was classified using an algorithm trained on the dry, or vice versa. I also address the potential creation of a spectral taxonomy of species, but found that any clustering based on spectral properties resulted in markedly different arrangements in the wet and dry seasons. In chapter 4, I address the variation present in both physical and spectral leaf traits according to changes in forest successional stage at dry forest sites in Mexico and Costa Rica. I found significant differences in leaf traits between successional stages, but more strongly so in Costa Rica. This variability deceased the accuracy of spectral classification of tree species by a factor of four when classifying data using an algorithm trained on a different successional stage. Chapter 5 shows the influence of seasonality and succession on trait variability in Mexico. Differences in leaf traits between successional stages were found to be greater during the dry season, but were sufficient in both seasons to negatively influence spectral classification of tree species. Throughout this thesis, I show clear and unambiguous evidence of the variability of key physical and spectral

  14. Geographic, environmental and biotic sources of variation in the nutrient relations of tropical montane forests

    Science.gov (United States)

    James W. Dalling; Katherine Heineman; Grizelle Gonzalez; Rebecca Ostertag

    2016-01-01

    Tropicalmontane forests (TMF) are associated with a widely observed suite of characteristics encompassing forest structure, plant traits and biogeochemistry.With respect to nutrient relations, montane forests are characterized by slow decomposition of organic matter, high investment in below-ground biomass and poor litter quality, relative to tropical lowland forests....

  15. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  16. Road Expansion and the Fate of Africa's Tropical Forests

    Directory of Open Access Journals (Sweden)

    William F. Laurance

    2017-07-01

    Full Text Available The tropical forests of Africa are experiencing unprecedented changes as a result of a rapid proliferation of roads and other infrastructure. These projects are dramatically increasing access to relatively unexploited regions, particularly in the greater Congo Basin. We highlight some of the most important new projects and describe in detail an ongoing debate about a particular proposed development, the Cross River Superhighway in Nigeria. The scale and pace of new transportation projects, and the profound environmental changes they could bring, underscore a dire need for proactive land-use planning, capacity building, and environmental assessment in the nations of Equatorial Africa. It is no exaggeration to suggest that, unless carefully managed to ensure sustainability, the spate of planned and ongoing projects could irreparably diminish the forests and wildlife populations of Africa's most biologically diverse regions.

  17. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    International Nuclear Information System (INIS)

    Hosaka, T; Yamada, T; Okuda, T

    2014-01-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests

  18. Road-networks, a practical indicator of human impacts on biodiversity in Tropical forests

    Science.gov (United States)

    Hosaka, T.; Yamada, T.; Okuda, T.

    2014-02-01

    Tropical forests sustain the most diverse plants and animals in the world, but are also being lost most rapidly. Rapid assessment and monitoring using remote sensing on biodiversity of tropical forests is needed to predict and evaluate biodiversity loss by human activities. Identification of reliable indicators of forest biodiversity and/or its loss is an urgent issue. In the present paper, we propose the density of road networks in tropical forests can be a good and practical indicator of human impacts on biodiversity in tropical forests through reviewing papers and introducing our preliminary survey in peninsular Malaysia. Many previous studies suggest a strong negative impact of forest roads on biodiversity in tropical rainforests since they changes microclimate, soil properties, drainage patterns, canopy openness and forest accessibility. Moreover, our preliminary survey also showed that even a narrow logging road (6 m wide) significantly lowered abundance of dung beetles (well-known bio-indicator in biodiversity survey in tropical forests) near the road. Since these road networks are readily to be detected with remote sensing approach such as aerial photographs and Lider, regulation and monitoring of the road networks using remote sensing techniques is a key to slow down the rate of biodiversity loss due to forest degradation in tropical forests.

  19. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    International Nuclear Information System (INIS)

    Kauffman, J.B.; Cummings, D.L.; Sanford, R.L. Jr.; Salcedo, I.H.; Sampaio, E.V.S.B.

    1993-01-01

    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of deforestation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest (open-quotes Caatingaclose quotes) near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was ∼74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (< O.64 cm diameter). While these components comprised only 30% of the prefire aboveground biomass, they accounted for ∼60% of the aboveground pools of N and P. Three experimental fires were conducted during the 1989 burning season. Consumption was 78, 88, and 95% of the total aboveground biomass. As much as 96% of the prefire aboveground N and C pools and 56% of the prefire aboveground P pool was lost. Nitrogen losses exceeded 500 kg/ha and P losses exceeded 20 kg/ha in the fires of the greatest severity. With increasing fire severity, the concentrations of N and P in ash decreased while the concentration of Ca increased. Greater ecosystem losses of these nutrients occurred with increasing fire severity. Following fire, up to 47% of the residual aboveground N and 84% of the residual aboveground P were in the form of ash, quickly lost from the site via wind erosion. Fires appeared to have a minor immediate effect on total N, C, or P in the soils. However, soils in forests with no history of cultivation had significantly higher concentrations of C and P than second-growth forests. It would likely require a century or more of fallow for reaccumulation to occur. However, current fallow periods in this region are 15 yr or less. 38 refs., 2 figs., 7 tabs

  20. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.

    Science.gov (United States)

    Rehm, Evan M; Feeley, Kenneth J

    2015-07-01

    The elevation of altitudinal treelines is generally believed to occur where low mean temperatures during the growing season limit growth and prevent trees from establishing at higher elevations. Accordingly, treelines should move upslope with increasing global temperatures. Contrary to this prediction, tropical treelines have remained stable over the past several decades despite increasing mean temperatures. The observed stability of tropical treelines, coupled with the drastically different temperature profiles between temperate and tropical treelines, suggests that using mean measures of temperature to predict tropical treeline movements during climate change may be overly simplistic. We hypothesize that frost events at tropical treelines may slow climate driven treeline movement by preventing tree recruitment beyond the established forest canopy. To assess this hypothesis, we measured freezing resistance of four canopy-forming treeline species (Weinmannia fagaroides, Polylepis pauta, Clethra cuneata, and Gynoxys nitida) at two life stages (juvenile and adult) and during two seasons (warm-wet and cold-dry). Freezing resistances were then compared to microclimatic data to determine if freezing events in the grassland matrix above treeline are too harsh for these forest species. Freezing resistance varied among species and life stages from -5.7 degrees C for juveniles of P. pauta to -11.1 degrees C for juveniles of W. fagaroides. Over a four-year period, the lowest temperatures recorded at 10 cm above ground level in the grasslands above treeline and at treeline itself were -8.9 degrees C and -6.8 degrees C, respectively. Juveniles maintained freezing resistances similar to adults during the coldest parts of the year and ontogenetic differences in freezing resistance were only present during the warm season when temperatures did not represent a significant threat to active plant tissue. These findings support the hypothesis that rare extreme freezing events at and

  1. The domestic benefits of tropical forests: a critical review.

    Science.gov (United States)

    Chomitz, K M; Kumari, K

    1998-02-01

    This review focuses on forests in the humid tropics and on two of their potentially most important benefits. These include hydrological benefits, such as erosion control and regulation of stream flows, and non-timber forest products, such as rubber, rattan, fruits, and nuts. The first benefit is motivational. Host countries capture only a small proportion of the global benefits, which stem from biodiversity conservation. Demonstration of palpable local benefits could help to build support for biodiversity-oriented projects. The second benefit is the magnitude of domestic benefits that could influence project financing. Sufficiently large net domestic benefits could justify financing of a project on narrow economic grounds, with biodiversity conservation as a by-product. Overall, it is noted that the quantifiable benefits of forest preservation in providing hydrological services and non-timber forest products are highly variable. These classes of domestic benefits may in general be smaller than popularly supposed. In view of this, the need for financing conservation from the Global Environmental Facility or other global sources is emphasized rather than placing the burden on domestic resources.

  2. Mature oil palm plantations are thirstier than tropical forests

    Science.gov (United States)

    Manoli, G.; Meijide, A.; Huth, N.; Knohl, A.; Kosugi, Y.; Burlando, P.; Ghazoul, J.; Fatichi, S.

    2017-12-01

    Oil Palm (OP) is the highest yielding cash-crop in the world but, being the driver of significant tropical forest losses, it is also considered the "world's most hated crop". Despite substantial research on the impact of OP on ecosystem degradation, biodiversity losses, and carbon emissions, little is known on the ecohydrological impacts of forest conversion to OP. Here we employ numerical simulations constrained by field observations to quantify changes in ecosystem evapotranspiration (ET), infiltration/runoff, gross primary productivity (GPP) and surface temperature (Ts) due to OP establishment. Compared to pristine forests, young OP plantations decrease ET, causing an increase in Ts, but the changes become less pronounced as plantations grow. Mature plantations have a very high GPP to sustain the oil palm yield and, given relatively similar water use efficiency, they transpire more water that the forests they have replaced. Hence, the high fruit productivity of OP comes at the expense of water consumption. Our mechanistic modeling results corroborate anecdotal evidence of water scarcity issues in OP-dominated landscapes.

  3. Fluxes of energy, H2O, and CO2 between the atmosphere and the monsoon tropical forest in Southern Vietnam.

    Science.gov (United States)

    Kurbatova, Yu A; Kuricheva, O A; Avilov, V K; Dinh, Ba Duy; Kuznetsov, A N

    2015-01-01

    The 2.5-year dynamics of heat, water and carbon dioxide fluxes in the tropical monsoon semi-evergreen forest in Southern Vietnam obtained by means of continuous eddy covariance observations using standard procedures of FLUXNET global network are analyzed. The features of wet seasons during the measurement period were close to long-term average ones, but dry seasons had a great heterogeneity. The maximal duration of the period with little precipitation was 4 months. The annual radiation balance in the south of Vietnam exceeded the balance at all stations of FLUXNET in tropical forests, except one. Annual evapotranspiration in monsoon forest of south of Vietnam is approximately equal to the evaporation of the rain forests of Central Amazonia. During the wet season evapotranspiration spent 80% of the radiation balance, and in the driest months this value decreased to 50%. In the dry season reduction of evapotranspiration and gross primary production was relatively small due to photosynthesizing trees of 2-4 canopy sub-layers. For the first time a large net sink of carbon dioxide from the atmosphere in the monsoon forest ecosystem was identified.

  4. Mo