WorldWideScience

Sample records for dry storage issues

  1. Spent fuel storage - dry storage options and issues

    International Nuclear Information System (INIS)

    Akins, M.J.

    2007-01-01

    The increase in the number of nuclear energy power generation facilities will require the ability to store the spent nuclear fuel for a long period until the host countries develop reprocessing or disposal options. Plants have storage pools which are closely associated with the operating units. These are excellent for short term storage, but require active maintenance and operations support which are not desirable for the long term. Over the past 25 years, dry storage options have been developed and implemented throughout the world. In recent years, protection against terrorist attack has become an increasing source of design objectives for these facilities, as well as the main nuclear plant. This paper explores the current design options of dry storage cask systems and examines some of the current design issues for above ground , in-ground, or below-ground storage of spent fuel in dry casks. (author)

  2. Technical issues and approach to license dry storage of LWR fuel in the United States

    International Nuclear Information System (INIS)

    Johnson, A.B.; Beeman, G.H.; Creer, J.M.; Gilbert, E.R.

    1984-01-01

    Dry storage is emerging as an important alternative to wet storage for US utilities, even though wet storage will remain the principal storage method, at least until the federal government begins to accept fuel in 1998. Dry storage has been licensed in several countries. In the USA, dry storage issues are related to storage system performance and behavior of spent fuel during storage. There is a coordinated US effort among electric utilities, the Electric Power Research Institute (EPRI), the Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC) to license two dry storage concepts: metal casks, and horizontal storage modules. The following activities are underway to resolve the licensing issues associated with dry storage and to establish the licensing basis: a) summarize and assimilate domestic and foreigh dry storage experience; b) conduct tests which resolve specific licensing issues; c) conduct cooperative demonstrations of the leading dry storage concepts; d) establish criteria and justifications for generic licensing. The paper summarizes the licensing issues and the approach to their resolution

  3. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  4. Safety issues of dry fuel storage at RSWF

    International Nuclear Information System (INIS)

    Clarksean, R.L.; Zahn, T.P.

    1995-01-01

    Safety issues associated with the dry storage of EBR-II spent fuel are presented and discussed. The containers for the fuel have been designed to prevent a leak of fission gases to the environment. The storage system has four barriers for the fission gases. These barriers are the fuel cladding, an inner container, an outer container, and the liner at the RSWF. Analysis has shown that the probability of a leak to the environment is much less than 10 -6 per year, indicating that such an event is not considered credible. A drop accident, excessive thermal loads, criticality, and possible failure modes of the containers are also addressed

  5. Licensing of spent fuel dry storage and consolidated rod storage

    International Nuclear Information System (INIS)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs

  6. Status of spent fuel dry storage concepts: concerns, issues and developments

    International Nuclear Information System (INIS)

    1985-11-01

    This report is intended to provide the reader with a general understanding of the various dry storage concepts and facilities required to support them. The outstanding technical concerns relative to dry storage installations, as well as, past and planned demonstration programs are briefly described. Such other activities as the development and approval of a design criteria standard is presented. An updated review of the cost of the various concepts are discussed

  7. Safety Aspects of Long Term Spent Fuel Dry Storage

    International Nuclear Information System (INIS)

    Botsch, Wolfgang; Smalian, S.; Hinterding, P.; Drotleff, H.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    As a consequence of the lack of a final repository for spent nuclear fuel (SF) and high level waste (HLW), long term interim storage of SF and HLW will be necessary. As with the storage of all radioactive materials, the long term storage of SF and HLW must conform to safety requirements. Safety aspects such as safe enclosure of radioactive materials, safe removal of decay heat, sub-criticality and avoidance of unnecessary radiation exposure must be achieved throughout the complete storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. After the events of Fukushima, the advantages of passively and inherently safe dry storage systems have become more obvious. In Germany, dry storage of SF in casks fulfils both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground; one storage facility has also been built as a rock tunnel. In all these facilities the safe enclosure of radioactive materials in dry storage casks is achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat is ensured by the design of the storage containers and the storage facility, which also secures to reduce the radiation exposure to acceptable levels. TUV and BAM, who work as independent experts for the competent authorities, inform about spent fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields. All relevant safety issues such as safe enclosure, shielding, removal of decay heat and sub-criticality are checked and validated with state-of-the-art methods and computer codes before the license approval. In our presentation we discuss which of these aspects need to be examined closer for a long term interim storage. It is shown

  8. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R.

    1994-11-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl x , UAl x -Al and U 3 O 8 -Al cermets, U-5% fissium, UMo, UZrH x , UErZrH, UO 2 -stainless steel cermet, and U 3 O 8 -stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified

  9. Fuel Behaviour in Transport after Dry Storage: a Key Issue for the Management of used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, Herve

    2014-01-01

    Interim used fuel dry storage has been developed in many countries providing an intermediate solution while waiting for evaluation and decisions concerning future use (such as recycling) or disposal sites. There is an important industrial experience feedback and excellent safety records. It appears that the duration of interim storage may become longer than initially expected. At the start of storage operations 40 years was considered sufficiently long to make a decision on either recycling or direct disposal of used nuclear fuel. Now it is said that storage time may have to be extended. Whatever the choice for the management of used fuel, it will finally have to be transported from the storage facility to another location, for recycling or final disposal. Bearing in mind the important principle that radioactive waste shall be managed in such a way that undue burdens will not be imposed on future generations, there is no guarantee that the fuel characteristics can be maintained in perpetuity. On the other hand, transport accident conditions from applicable regulation (IAEA SSR-6) are very severe for irradiated materials. Therefore, in compliance with transport regulations, the safety analysis of the fuel in transport after storage is mandatory. This paper will give an overview of the current situation related to the used fuel behaviour in transport after dry storage. On this matter there are some elements of information already available as well as some gaps of knowledge. Several national R and D programs and international teams are presently addressing these gaps. A lot of R and D work has already been done. An objective of these R and D projects is to aid decision makers. It is important to fix a limit and not to multiply intermediate operations because it means higher costs and more uncertainties. The identified gaps concern the following issues especially for high burn-up (HBU) fuels: thermal model for casks, degradation process of fuel material, cladding creep

  10. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  11. Thermal Analysis of a Dry Storage Concept for Capsule Dry Storage Project

    International Nuclear Information System (INIS)

    JOSEPHSON, W.S.

    2003-01-01

    There are 1,936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project is conducted under the assumption that the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event that vitrification of the capsule contents is pursued. The Capsule Advisory Panel (CAP) was created by the Project Manager for the Hanford Site Capsule Dry Storage Project (CDSP). The purpose of the CAP is to provide specific technical input to the CDSP; to identify design requirements; to ensure design requirements for the project are conservative and defensible; to identify and resolve emerging, critical technical issues, as requested; and to support technical reviews performed by regulatory organizations, as requested. The CAP will develop supporting and summary documents that can be used as part of the technical and safety bases for the CDSP. The purpose of capsule dry storage thermal analysis is to: (1) Summarize the pertinent thermal design requirements sent to vendors, (2) Summarize and address the assumptions that underlie those design requirements, (3) Demonstrate that an acceptable design exists that satisfies the requirements, (4) Identify key design features and phenomena that promote or impede design success, (5) Support other CAP analyses such as corrosion and integrity evaluations, and (6) Support the assessment of proposed designs. It is not the purpose of this report to optimize or fully analyze variations of postulated acceptable designs. The present evaluation will indicate the impact of various possible design features, but not systematically pursue design improvements obtainable through analysis

  12. Heat transfer modelling in a spent-fuel dry storage system

    International Nuclear Information System (INIS)

    Ritz, J.B.; Le Bonhomme, S.

    2001-01-01

    The purpose of this paper is to present a numerical modelling of heat transfers in a Spent-Fuel horizontal dry storage. The horizontal dry storage is an interesting issue to momentary store spent fuel containers before the final storage. From a thermal point of view, the cooling of spent fuel container by natural convection is a suitable and inexpensive process but it necessitates to well define the dimensions of the concept due to the difficulty to control the thermal environment. (author)

  13. Safety aspects of dry spent fuel storage and spent fuel management

    International Nuclear Information System (INIS)

    Botsch, W.; Smalian, S.; Hinterding, P.; Voelzke, H.; Wolff, D.; Kasparek, E.

    2014-01-01

    The storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Safety aspects like safe enclosure of radioactive materials, safe removal of decay heat, nuclear criticality safety and avoidance of unnecessary radiation exposure must be achieved throughout the storage period. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. In Germany dual purpose casks for SF or HLW are used for safe transportation and interim storage. TUV and BAM, who work as independent experts for the competent authorities, present the storage licensing process including sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel, based on their long experience in these fields (authors)

  14. The prospects for dry fuel storage

    International Nuclear Information System (INIS)

    Harris, G.G.; Elliott, D.

    1994-01-01

    Dry storage of spent nuclear fuels is one method of dealing with radioactive waste. This article reports from a one day seminar on future prospects for dry fuel storage held in November 1993. Dry storage in an inert gas or air environment in vaults or casks, is an alternative to wet storage in water-filled ponds. Both wet and dry storage form part of the Interim Storage option for radioactive waste materials, and form alternatives to reprocessing or direct disposal in a deep repository. It has become clear that a large market for dry fuel storage will exist in the future. It will therefore be necessary to ensure that the various technical, safety, commercial, legislative and political constraints associated with it can be met effectively. (UK)

  15. Current status on the spent fuel dry storage management in Taiwan

    International Nuclear Information System (INIS)

    Chen, H.T.; Liu, C.H.

    2006-01-01

    Full text: Full text: One of the high priority issues for the continuous operation of nuclear power plants is how to manage and store spent fuel. In recent years, interim dry storage of spent fuel has become a significant solution in extending the storage capacity at a nuclear reactor site that lacks sufficient spent fuel pool storage capacity as in the world, and also in Taiwan. Although the re-racking project for the spent fuel pools has been undertaken, the Taiwan Power Company (TPC) Chinshan nuclear power plant still will lose its full core reserve by the year 2010. TPC has declared to build an on-site interim dry storage facility, this followed by geological disposal represents the most suitable option at this time. TPC is expected to submit the application for construction permit in 2006; preoperational test and storage should be put into operation by the end of 2008. Interim dry storage is a passive system. Materials used play a crucial role in the safety function of cask. The competent authority of spent fuel management in Taiwan, FCMA/AEC, will carry out a confirmatory evaluation regarding heat dissipation, structural seismic analysis, and radiation shielding to assure available safety function for casks after reviewing safety analysis report submitted by TPC. Third party inspection has been required to enhance quality assurance program and foreign technical consultation will be arranged. Although the security level for such facility will be kept to the same level as an NPP, a comprehensive analysis against a commercial airplane attack on cask should be made and addressed in the supplement of SAR. Licensing hearing is also required before issuing the construction permit. The paper presents the review plan and regulatory requirements for the licensing of an interim dry storage of spent fuel, the licensing procedure, and the development of dry storage cask for spent fuel in Taiwan

  16. Developing new transportable storage casks for interim dry storage

    International Nuclear Information System (INIS)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R.

    2004-01-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication

  17. Anthology of dry storage solutions

    Energy Technology Data Exchange (ETDEWEB)

    Allimann, Nathalie; Otton, Camille [AREVA, Paris (France)

    2012-03-15

    Around 35,000 PWR, BWR or Veer used fuel elements with various enrichment value up to 5%, various cooling time down to 2 years and various burn-ups up to 60,000 Mwd/tU are currently stored in AREVA dry storage solutions. These solutions are delivered in the United States, in Japan and in many European countries like Belgium, Switzerland, Italy, Armenia and Germany. With more than 1000 dry storage solutions delivered all over the world AREVA is the leader on this market. Dealing with dry storage is not an easy task. Products have to be flexible, to be adapted to customer needs and to the national regulations which may stipulate very strict tests such as airplane crash or simulation of earthquake. To develop a dry storage solution for a foreign country means to deal with its national competent authorities. All the national competent authorities do not have the same requirements. Storage conditions may also be different.

  18. Anthology of dry storage solutions

    International Nuclear Information System (INIS)

    Allimann, Nathalie; Otton, Camille

    2012-01-01

    Around 35,000 PWR, BWR or Veer used fuel elements with various enrichment value up to 5%, various cooling time down to 2 years and various burn-ups up to 60,000 Mwd/tU are currently stored in AREVA dry storage solutions. These solutions are delivered in the United States, in Japan and in many European countries like Belgium, Switzerland, Italy, Armenia and Germany. With more than 1000 dry storage solutions delivered all over the world AREVA is the leader on this market. Dealing with dry storage is not an easy task. Products have to be flexible, to be adapted to customer needs and to the national regulations which may stipulate very strict tests such as airplane crash or simulation of earthquake. To develop a dry storage solution for a foreign country means to deal with its national competent authorities. All the national competent authorities do not have the same requirements. Storage conditions may also be different

  19. Economics of dry storage systems

    International Nuclear Information System (INIS)

    Moore, G.R.; Winders, R.C.

    1980-01-01

    This paper postulates a dry storage application suitable as a regional away-from-reactor storage (AFR), develops an economical system design concept and estimates system costs. The system discussed uses the experience gained in the dry storage research activities and attempts to present a best foot forward system concept. The major element of the system is the Receiving and Packaging Building. In this building fuel assemblies are removed from transportation casks and encapsulated for storage. This facility could be equally applicable to silo, vault, or caisson storage. However the caisson storage concept has been chosen for discussion purposes

  20. Developing new transportable storage casks for interim dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K.; Iwasa, K.; Araki, K.; Asano, R. [Hitachi Zosen Diesel and Engineering Co., Ltd., Tokyo (Japan)

    2004-07-01

    Transportable storage metal casks are to be consistently used during transport and storage for AFR interim dry storage facilities planning in Japan. The casks are required to comply with the technical standards of regulations for both transport (hereinafter called ''transport regulation'') and storage (hereafter called ''storage regulation'') to maintain safety functions (heat transfer, containment, shielding and sub-critical control). In addition to these requirements, it is not planned in normal state to change the seal materials during storage at the storage facility, therefore it is requested to use same seal materials when the casks are transported after storage period. The dry transportable storage metal casks that satisfy the requirements have been developed to meet the needs of the dry storage facilities. The basic policy of this development is to utilize proven technology achieved from our design and fabrication experience, to carry out necessary verification for new designs and to realize a safe and rational design with higher capacity and efficient fabrication.

  1. Final version dry cask storage study

    International Nuclear Information System (INIS)

    1989-02-01

    This report was prepared in response to Section 5064 of the Nuclear Waste Policy Amendments Act of 1987 (the Amendments Act--Public Law 100-203), which directs the Secretary of Energy to conduct a study of the use of dry-cask-storage technology for storing spent fuel at the sites of civilian nuclear reactors until a geologic repository is available. In conducting this study, whose results are being reported to the Congress, the Secretary was to consider such factors as costs, effects on human health and the environment, and the extent to which the Nuclear Waste Fund can and should be used to provide funds for at-reactor storage. In addition, the Secretary was to consult with the Nuclear Regulatory Commission (NRC), include NRC comments in the report, and solicit the views of State and local governments and the public. The study performed in response to these requirements was based largely on data published by the DOE or the NRC or included in documents issued by the DOE. Among the DOE documents are the 1987 MRS proposal to the Congress and a subsequent report, prepared to supply the Congress with additional information on the MRS facility. Because in evaluating dry storage at reactor sites it is necessary to take into account other options for meeting storage needs, this study covered all forms of at-reactor storage. 107 refs., 15 figs., 10 tabs

  2. Dry storage of Magnox fuel

    International Nuclear Information System (INIS)

    1986-09-01

    This work, commissioned by the CEGB, studies the feasibility of a combination of short-term pond storage and long-term dry storage of Magnox spent fuel as a cheaper alternative to reprocessing. Storage would be either at the reactor site or a central site. Two designs are considered, based on existing design work done by GEC-ESL and NNC; the capsule design developed by NNC and with storage in passive vaults for up to 100 yrs and the GEC-ESL tube design developed at Wylfa for the interim storage of LWR. For the long-term storage of Magnox spent fuel the GEC-ESL tubed vault all-dry storage method is recommended and specifications for this method are given. (U.K.)

  3. Behavior of spent nuclear fuel and storage system components in dry interim storage.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions.

  4. Behavior of spent nuclear fuel and storage-system components in dry interim storage

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.; Guenther, R.J.

    1982-08-01

    Irradiated nuclear fuel has been handled under dry conditions since the early days of nuclear reactor operation, and use of dry storage facilities for extended management of irradiated fuel began in 1964. Irradiated fuel is currently being stored dry in four types of facilities: dry wells, vaults, silos, and metal casks. Essentially all types of irradiated nuclear fuel are currently stored under dry conditions. Gas-cooled reactor (GCR) and liquid metal fast breeder reactor (LMFBR) fuels are stored in vaults and dry wells. Certain types of fuel are being stored in licensed dry storage facilities: Magnox fuel in vaults in the United Kingdom and organic-cooled reactor (OCR) fuel in silos in Canada. Dry storage demonstrations are under way for Zircaloy-clad fuel from boiling water reactors BWR's, pressurized heavy-water reactors (PHWRs), and pressurized water reactors (PWRs) in all four types of dry storage facilities. The demonstrations and related hot cell and laboratory tests are directed toward expanding the data base and establishing a licensing basis for dry storage of water reactor fuel. This report reviews the scope of dry interim storage technology, the performance of fuel and facility materials, the status of programs in several countries to license dry storage of water reactor fuel, and the characteristics of water reactor fuel that relate to dry storage conditions

  5. Dry spent fuel storage licensing

    International Nuclear Information System (INIS)

    Sturz, F.C.

    1995-01-01

    In the US, at-reactor-site dry spent fuel storage in independent spent fuel storage installations (ISFSI) has become the principal option for utilities needing storage capacity outside of the reactor spent fuel pools. Delays in the geologic repository operational date at or beyond 2010, and the increasing uncertainty of the US Department of Energy's (DOE) being able to site and license a Monitored Retrievable Storage (MRS) facility by 1998 make at-reactor-site dry storage of spent nuclear fuel increasingly desirable to utilities and DOE to meet the need for additional spent fuel storage capacity until disposal, in a repository, is available. The past year has been another busy year for dry spent fuel storage licensing. The licensing staff has been reviewing 7 applications and 12 amendment requests, as well as participating in inspection-related activities. The authors have licensed, on a site-specific basis, a variety of dry technologies (cask, module, and vault). By using certified designs, site-specific licensing is no longer required. Another new cask has been certified. They have received one new application for cask certification and two amendments to a certified cask design. As they stand on the brink of receiving multiple applications from DOE for the MPC, they are preparing to meet the needs of this national program. With the range of technical and licensing options available to utilities, the authors believe that utilities can meet their need for additional spent fuel storage capacity for essentially all reactor sites through the next decade

  6. Dry well storage of spent LWBR fuel

    International Nuclear Information System (INIS)

    Christensen, A.B.; Fielding, K.D.

    1985-01-01

    Recently, 50 dry wells were constructed at the Idaho Chemical Processing Plant (ICPP) to temporarily store the Light Water Breeder Reactor (LWBR) fuel. Over 400 dry wells of the same design are projected to be constructed in the next 5 yr at the ICPP to store unreprocessible fuels until a permanent repository becomes available. This summary describes the LWBR fuel storage dry wells and the enhancements made over the Peach Bottom fuel and Fermi blanket dry wells that have been in use for up to 4 yr. Dry well storage at the ICPP has historically been found to be a safe and efficient method of temporary fuel storage. The LWBR dry wells should be more reliable than the original dry wells and provide data not previously available

  7. Interim dry fuel storage for magnox reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, N [National Nuclear Corporation, Risley, Warrington (United Kingdom); Ealing, C [GEC Energy Systems Ltd, Whetstone, Leicester (United Kingdom)

    1985-07-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility.

  8. Interim dry fuel storage for magnox reactors

    International Nuclear Information System (INIS)

    Bradley, N.; Ealing, C.

    1985-01-01

    In the UK the practice of short term buffer storage in water ponds prior to chemical reprocessing had already been established on the early gas cooled reactors in Calder Hall. Thus the choice of water pond buffer storage for MGR power plants logically followed the national policy decision to reprocess. The majority of the buffer storage period would take place at the reprocessing plant with only a nominal of 100 days targeted at the station. Since Magnox clad fuel is not suitable for long term pond storage, alternative methods of storage on future stations was considered desirable. In addition to safeguards considerations the economic aspects of the fuel cycle has influenced the conclusion that today the purchase of a MGR power plant with dry spent fuel storage and without commitment to reprocess would be a rational decision for a country initiating a nuclear programme. Dry storage requirements are discussed and two designs of dry storage facilities presented together with a fuel preparation facility

  9. The subtle attractions of dry vault storage

    International Nuclear Information System (INIS)

    Ealing, C.J.

    1993-01-01

    Utilities in the United States of America, Scotland and Hungary have all adopted dry vault technology in their plans for spent fuel storage. This article looks at what makes dry storage an attractive option. (author)

  10. Dry storage

    International Nuclear Information System (INIS)

    Arnott, Don.

    1985-01-01

    The environmental movement has consistently argued against disposal of nuclear waste. Reasons include its irretrievability in the event of leakage, the implication that reprocessing will continue and the legitimacy attached to an expanding nuclear programme. But there is an alternative. The author here sets out the background and a possible future direction of a campaign based on a call for dry storage. (author)

  11. Spent fuel behaviour during dry storage - a review

    International Nuclear Information System (INIS)

    Shivakumar, V.; Anantharaman, K.

    1997-09-01

    One of the strategies employed for management of spent fuel prior to their final disposal/reprocessing is their dry storage in casks, after they have been sufficiently cooled in spent fuel pools. In this interim storage, one of the main consideration is that the fuel should retain its integrity to ensure (a) radiological health hazard remains minimal and (b) the fuel is retrievable for down steam fuel management processes such as geological disposal or reprocessing. For dry storage of spent fuel in air, oxidation of the exposed UO 2 is the most severe of phenomena affecting the integrity of fuel. This is kept within acceptable limits for desired storage time by limiting the fuel temperature in the storage cask. The limit on the fuel temperature is met by having suitable limits on maximum burn-up of fuel, minimum cooling period in storage pool and optimum arrangement of fuel bundles in the storage cask from heat removal considerations. The oxidation of UO 2 by moist air has more deleterious effects on the integrity of fuel than that by dry air. The removal of moisture from the storage cask is therefore a very important aspect in dry storage practice. The kinetics of the oxidation phenomena at temperatures expected during dry storage in air is very slow and therefore the majority of the existing data is based on extrapolation of data obtained at higher fuel temperatures. This and the complex effects of factors like fission products in fuel, radiolysis of storage medium etc. has necessitated in having a conservative limiting criteria. The data generated by various experimental programmes and results from the on going programmes have shown that dry storage is a safe and economical practice. (author)

  12. Evolution of spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Standring, Paul Nicholas [International Atomic Energy Agency, Vienna (Austria). Div. of Nuclear Fuel Cycle and Waste Technology; Takats, Ferenc [TS ENERCON KFT, Budapest (Hungary)

    2016-11-15

    Around 10,000 tHM of spent fuel is discharged per year from the nuclear power plants in operation. Whilst the bulk of spent fuel is still held in at reactor pools, 24 countries have developed storage facilities; either on the reactor site or away from the reactor site. Of the 146 operational AFR storage facilities about 80 % employ dry storage; the majority being deployed over the last 20 years. This reflects both the development of dry storage technology as well as changes in politics and trading relationships that have affected spent fuel management policies. The paper describes the various approaches to the back-end of the nuclear fuel cycle for power reactor fuels and provides data on deployed storage technologies.

  13. Development of spent fuel dry storage technology

    International Nuclear Information System (INIS)

    Maruoka, Kunio; Matsunaga, Kenichi; Kunishima, Shigeru

    2000-01-01

    The spent fuels are the recycle fuel resources, and it is very important to store the spent fuels in safety. There are two types of the spent fuel interim storage system. One is wet storage system and another is dry storage system. In this study, the dry storage technology, dual purpose metal cask storage and canister storage, has been developed. For the dual purpose metal cask storage, boronated aluminum basket cell, rational cask body shape and shaping process have been developed, and new type dual purpose metal cask has been designed. For the canister storage, new type concrete cask and high density vault storage technology have been developed. The results of this study will be useful for the spent fuel interim storage. Safety and economical spent fuel interim storage will be realized in the near future. (author)

  14. Dry storage of irradiated nuclear fuels and vitrified wastes

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A review is given of the work of GEC Energy Systems Ltd. over the years in the dry storage of irradiated fuel. The dry-storage module (designated as Cell 4) for irradiated magnox fuel recently constructed at Wylfa nuclear power station is described. Development work on the long-term dry storage of irradiated oxide fuels is reported. Four different methods of storage are compared. These are the pond, vault, cask and caisson stores. It is concluded that there are important advantages with the passive air-cooled ESL dry stove. (U.K.)

  15. Dry Cask Storage Inspection and Monitoring. Interim Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, Susan [Argonne National Lab. (ANL), Argonne, IL (United States); Elmer, Thomas W. [Argonne National Lab. (ANL), Argonne, IL (United States); Koehl, Eugene R. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Ke [Argonne National Lab. (ANL), Argonne, IL (United States); Raptis, Apostolos C. [Argonne National Lab. (ANL), Argonne, IL (United States); Kunerth, Dennis C. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Birk, Sandra M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-04

    Recently, the U.S. Nuclear Regulatory Commission (NRC) issued the guidance on the aging management of dry storage facilities that indicates the necessity to monitor the conditions of dry cask storage systems (DCSSs) over extended periods of time.1 Part of the justification of the aging management plans is the requirement for inspection and monitoring to verify whether continued monitoring, inspection or mitigation are necessary. To meet this challenge Argonne National Laboratory (ANL) in collaboration with Idaho National Laboratory (INL) is conducting scoping studies on current and emerging nondestructive evaluation/examination (NDE) and online monitoring (OLM) technologies for DCSS integrity assessments. The scope of work plan includes identification and verification of technologies for long-term online monitoring of DCSSs’ crucial physical parameters such as temperature, pressure, leakage and structural integrity in general. Modifications have been made to the current technologies to accommodate field inspections and monitoring. A summary of the scoping studies and experimental efforts conducted to date as well as plans for future activities is provided below.

  16. Considerations for Disposition of Dry Cask Storage System Materials at End of Storage System Life

    International Nuclear Information System (INIS)

    Howard, Rob; Van den Akker, Bret

    2014-01-01

    Dry cask storage systems are deployed at nuclear power plants for used nuclear fuel (UNF) storage when spent fuel pools reach their storage capacity and/or the plants are decommissioned. An important waste and materials disposition consideration arising from the increasing use of these systems is the management of the dry cask storage systems' materials after the UNF proceeds to disposition. Thermal analyses of repository design concepts currently under consideration internationally indicate that waste package sizes for the geologic media under consideration may be significantly smaller than the canisters being used for on-site dry storage by the nuclear utilities. Therefore, at some point along the UNF disposition pathway, there could be a need to repackage fuel assemblies already loaded into the dry storage canisters currently in use. In the United States, there are already over 1650 of these dry storage canisters deployed and approximately 200 canisters per year are being loaded at the current fleet of commercial nuclear power plants. There is about 10 cubic meters of material from each dry storage canister system that will need to be dispositioned. The concrete horizontal storage modules or vertical storage overpacks will need to be reused, re-purposed, recycled, or disposed of in some manner. The empty metal storage canister/cask would also have to be cleaned, and decontaminated for possible reuse or recycling or disposed of, likely as low-level radioactive waste. These material disposition options can have impacts of the overall used fuel management system costs. This paper will identify and explore some of the technical and interface considerations associated with managing the dry cask storage system materials. (authors)

  17. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, Luiz Sergio, E-mail: romanato@ctmsp.mar.mil.b [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), Sao Paulo, SP (Brazil). Dept. da Qualidade

    2011-07-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  18. Advantages of dry hardened cask storage over wet storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2011-01-01

    Pools are generally used to store and maintain spent nuclear fuel assemblies for cooling, after removed from reactors. After three to five years stored in the pools, spent fuel can be reprocessed or sent to a final disposition in a geological repository and handled as radioactive waste or sent to another site waiting for future solution. Spent fuel can be stored in dry or wet installations, depending on the method adopted by the nuclear plant. If this storage were exclusively wet, at the installation decommissioning in the future, another solution for storage will need to be found. Today, after a preliminary cooling, the spent fuel assemblies can be removed from the pool and sent to dry hardened storage installations. This kind of storage does not need complex radiation monitoring and it is safer than wet storage. Brazil has two nuclear reactors in operation, a third reactor is under construction and they use wet spent fuel storage . Dry hardened casks use metal or both metal and concrete for radiation shielding and they are safe, especially during an earthquake. An earthquake struck Japan on March 11, 2011 damaging Fukushima Daiichi nuclear power plant. The occurrence of earthquakes in Brazil is very small but dry casks can resist to other events, including terrorist acts, better than pools. This paper shows the advantages of dry hardened cask storage in comparison with the wet storage (water pools) for spent nuclear fuel. (author)

  19. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  20. Spent fuel dry storage in Hungary

    International Nuclear Information System (INIS)

    Buday, G.; Szabo, B.; Oerdoegh, M.; Takats, F.

    1999-01-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. Since 1989, approximately 40-50% of the total annual electricity generation of the country has been supplied by this plant. The fresh fuel is imported from Russia. Most of the spent fuel assemblies have been shipped back to Russia. Difficulties with spent fuel transportation to Russia have begun in 1992. Since that time, some of the shipments were delayed, some of them were completely cancelled, thus creating a backlog of spent fuel filling all storage positions of the plant. To provide assurance of the continued operation, Paks NPPs management decided to implement an independent spent fuel storage facility and chose GEC-Althom's MVDS design. The construction of the facility started in February 1995 and the first spent fuel assembly was placed in the store in September 1997. The paper gives an overview of the situation, describing the conditions leading to the construction of the dry storage facility at Paks and its implementation. Finally, some information is given about the new Public Agency for Radioactive Waste Management established this year and responsible for managing the issues related to spent fuel management. (author)

  1. Combined Thermal Management and Power Generation Concept for the Spent Fuel Dry Storage Cask

    International Nuclear Information System (INIS)

    Kim, In Guk; Bang, In Cheol

    2017-01-01

    The management of the spent nuclear fuel generated by nuclear power plants is a major issue in Korea due to insufficient capacity of the wet storage pools. Therefore, it is considered that dry storage system is the one possible solution for storing spent fuel. A dual-purpose metal cask (transportation and storage) is currently developing in Korea. This cask has 21 of fuel assemblies and 16.8 kW of maximum decay heat. To evaluate the critical safety in normal/off normal and accident conditions, critical stabilities were conducted by using CSAS 6.0. The experimental investigation of heat removal of a concrete storage cask was also conducted under normal, off normal and accident conditions. The results of the evaluation showed a good safety of the dry storage cask. The results showed the enhanced thermal performance according to modification of flow rate. To verify combined thermal management and power generation concept, a new type of test facility for dry storage cask was designed in 1/10 scale of concrete dry storage cask. The experimental study involved the cooling methods that are an integrated system on the top of the dry cask and air flow path on the canister wall. The results showed the temperature distribution of the wall and inside of the dry cask at the normal condition. The influence of the change of the heat load and cooling system were investigated. The heat removal by the integrated system is approximately 20% of the total heat removal of the dry cask with reduced wall temperature. In these tests, economic analysis is conducted by applying the concept of the cost and efficiency. Under different decay power cases, the energy efficiency of the heat pipe and Stirling engine are determined and compared based on experimental results. The average efficiencies of the Stirling engine were the range of 2.375 to 3.247% under the power range of 35– 65W. These results showed that advanced dry storage concept had a better cooling performance in comparison with

  2. Engineering and safety features of modular vault dry storage

    International Nuclear Information System (INIS)

    Deacon, D.; Wheeler, D.J.

    1984-01-01

    This paper discusses the need for interim dry storage and reviews detailed features of the Modular Vault Dry storage concept. The concept meets three basic utility requirements. Firstly, the technology and safety features have been demonstrated on existing plant; secondly, it can be built and licensed in an acceptably short timescale; and thirdly, economic analysis shows that a modular vault dry store is often the cheapest option for interim storage

  3. Safety aspects in the dry storage of spent nuclear fuel in long term operation

    Energy Technology Data Exchange (ETDEWEB)

    Nodarim, Claudir J.; Silva, Viviane B. da; Fontes, Gladson S. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Saldanha, Pedro L.C., E-mail: claudirnodari@gmail.com, E-mail: vivisborges@gmail.com, E-mail: gsfontes@hotmail.com, E-mail: Saldanha@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The purpose of the present paper is to discuss the safety assessment of the Dry Storage Unit (DSU), taking into account the long term operation and the operational experience already evidenced in similar facilities. In this sense, the RIDM (Risk-Informed Decision-Making) concept will be adopted for the regulatory decision-making process. Potential technical issues associated with the aging of materials from the dry storage unit will be considered. The work will be done using the rules and requirements of 10 CFR Part 72 and the U.S. NRC (United States Nuclear Regulatory Commission) regulatory guides. (author)

  4. Safe dry storage of intermediate-level waste at CRL

    International Nuclear Information System (INIS)

    Chiu, A.; Sanderson, T.; Lian, J.

    2011-01-01

    Ongoing operations at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) generate High-, Intermediate- and Low-Level Waste (HLW, ILW and LLW) that will require safe storage for several decades until a long-term management facility is available. This waste is stored in below grade concrete structures (i.e. tile holes or bunkers) or the above-ground Shielded Modular Above Ground Storage (SMAGS) facility depending on the thermal and shielding requirements of the particular waste package. Existing facilities are reaching their capacity and alternate storage is required for the future storage of this radioactive material. To this end, work has been undertaken at CRL to design, license, construct and commission the next generation of waste management facilities. This paper provides a brief overview of the existing radioactive-waste management facilities used at CRL and focuses on the essential requirements and issues to be considered in designing a new waste storage facility. Fundamentally, there are four general requirements for a new storage facility to dry store dry non-fissile ILW. They are the need to provide: (1) containment, (2) shielding, (3) decay heat removal, and (4) ability to retrieve the waste for eventual placement in an appropriate long-term management facility. Additionally, consideration must be given to interfacing existing waste generating facilities with the new storage facility. The new facilities will be designed to accept waste for 40 years followed by 60 years of passive storage for a facility lifespan of 100 years. The design should be modular and constructed in phases, each designed to accept ten years of waste. This strategy will allow for modifications to subsequent modules to account for changes in waste characteristics and generation rates. Two design concepts currently under consideration are discussed. (author)

  5. Review of Current Criteria of Spent Fuel Rod Integrity during Dry Storage

    International Nuclear Information System (INIS)

    Yang, Yong Sik; Kim, Sun Ki; Bang, Je Geon; Song, Kun Woo

    2006-01-01

    A PWR spent fuel has been stored in a wet storage pool in Korea. However, the amount of spent fuel is expected to exceed the capacity of a wet storage pool within 10∼15 years. From the early 1970's, a research on the PWR spent fuel dry storage started because the dry storage system has been economical compared with the wet storage system. The dry storage technology for Zircaloy-clad fuel was assessed and licensed in many countries such as USA, Canada, FRG and Switzerland. In the dry storage system, a clad temperature may be higher than in the wet storage system and can reach up to 400 .deg.. A higher clad temperature can cause cladding failures during the period of dry storage, and thus a dry storage related research has essentially dealt with the prevention of clad degradation. It is temperature and rod internal pressure that cause cladding failures through the mechanisms such as clad creep rupture, hydride re-orientation, and stress-corrosion cracking etc.. In this paper, the current licensing criteria are summarized for the PWR spent fuel dry storage system, especially on spent fuel rod integrity. And it is investigated that an application propriety of existing criteria to Korea spent fuel dry storage system

  6. Summary Report for Capsule Dry Storage Project

    Energy Technology Data Exchange (ETDEWEB)

    JOSEPHSON, W S

    2003-09-04

    There are 1.936 cesium (Cs) and strontium (Sr) capsules stored in pools at the Waste Encapsulation and Storage Facility (WESF). These capsules will be moved to dry storage on the Hanford Site as an interim measure to reduce risk. The Cs/Sr Capsule Dry Storage Project (CDSP) is conducted under the assumption the capsules will eventually be moved to the repository at Yucca Mountain, and the design criteria include requirements that will facilitate acceptance at the repository. The storage system must also permit retrieval of capsules in the event vitrification of the capsule contents is pursued. A cut away drawing of a typical cesium chloride (CsCI) capsule and the capsule property and geometry information are provided in Figure 1.1. Strontium fluoride (SrF{sub 2}) capsules are similar in design to CsCl capsules. Further details of capsule design, current state, and reference information are given later in this report and its references. Capsule production and life history is covered in WMP-16938, Capsule Characterization Report for Capsule Dry Storage Project, and is briefly summarized in Section 5.2 of this report.

  7. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L. [Savannah River National Laboratory (United States); Moore, E.N. [Moore Nuclear Energy, LLC (United States)

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage

  8. Modular vault dry storage system for interim storage of irradiated fuel

    International Nuclear Information System (INIS)

    Cundill, B.R.; Ealing, C.J.; Agarwal, B.K.

    1988-01-01

    The Foster Wheeler Energy Application (FWEA) Modular Vault Dry Store (MVDS) is a dry storage concept for the storage of all types of irradiated reactor fuel. For applications in the US, FWEA submitted an MVDS Topical Report to the US NRC during 1986. Following NRC approval of the MVDS Topical Report concept for unconsolidated LWR fuel, US utilities have available a new, compact, economic and flexible system for the storage of irradiated fuel at the reactor site for time periods of at least 20 years (the period of the first license). The MVDS concept jointly developed by FWEA and GEC in the U.K., has other applications for large central away from reactor storage facilities such as a Monitorable Retrievable Storage (MRS) installation. This paper describes the licensed MVDS design, aspects of performance are discussed and capital costs compared with alternative concepts. Alternative configurations of MVDS are outlined

  9. Pickering dry storage - commissioning and initial operation

    International Nuclear Information System (INIS)

    Jonjev, S.

    1996-01-01

    Having commissioned all individual conventional and nuclear systems, the first Dry Storage Container (DSC) was loaded with four modules of 17 year cooled irradiated fuel (366 bundles) in the Auxiliary Irradiated Fuel Bay (AIFB) on November 29, 1995. After decontamination of the outer surface, and draining of water, the DSC was transported to the Used Fuel Dry Storage Facility (UFDSF) workshop, where it was vacuum dried, and then the lid was welded on. Following successful radiography test of the lid weld, the DSC was vacuum dried again and backfilled with Helium to a pressure of 930 mbar(a). The Helium leak test showed zero leakage (allowable leak rate is 1x10 -5 cc/sec). Finally, after loose contamination checks were performed and permanent safeguards seals were applied, the DSC was placed in the UFDSF storage area on January 23, 1996. Radiation fields at contact with the DSC surface were < 0.6 mrem/hr, and at the exterior surface of the storage building wall only 33 micro-rem/hr (far below the target of 250 micro-rem/hr). Therefore, the actual dose rates to general public (at the exclusion zone boundary) will be well below the design target of 1 % of the regulatory limit. (author). 3 refs., 2 tabs., 5 figs

  10. Pickering dry storage - commissioning and initial operation

    Energy Technology Data Exchange (ETDEWEB)

    Jonjev, S [Ontario Hydro, Pickering, ON (Canada). Pickering Generating Station

    1997-12-31

    Having commissioned all individual conventional and nuclear systems, the first Dry Storage Container (DSC) was loaded with four modules of 17 year cooled irradiated fuel (366 bundles) in the Auxiliary Irradiated Fuel Bay (AIFB) on November 29, 1995. After decontamination of the outer surface, and draining of water, the DSC was transported to the Used Fuel Dry Storage Facility (UFDSF) workshop, where it was vacuum dried, and then the lid was welded on. Following successful radiography test of the lid weld, the DSC was vacuum dried again and backfilled with Helium to a pressure of 930 mbar(a). The Helium leak test showed zero leakage (allowable leak rate is 1x10{sup -5} cc/sec). Finally, after loose contamination checks were performed and permanent safeguards seals were applied, the DSC was placed in the UFDSF storage area on January 23, 1996. Radiation fields at contact with the DSC surface were < 0.6 mrem/hr, and at the exterior surface of the storage building wall only 33 micro-rem/hr (far below the target of 250 micro-rem/hr). Therefore, the actual dose rates to general public (at the exclusion zone boundary) will be well below the design target of 1 % of the regulatory limit. (author). 3 refs., 2 tabs., 5 figs.

  11. Advantages on dry interim storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, L.S.; Rzyski, B.M.

    2006-01-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  12. Advantages on dry interim storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, L.S. [Centro Tecnologico da Marinha em Sao Paulo, Av. Professor Lineu Prestes 2468, 05508-900 Sao Paulo (Brazil); Rzyski, B.M. [IPEN/ CNEN-SP, 05508-000 Sao Paulo (Brazil)]. e-mail: romanato@ctmsp.mar.mil.br

    2006-07-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  13. Acceptance criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Iyer, N.C.; Louthan, M.R. Jr.

    1994-01-01

    Direct repository disposal of foreign and domestic research reactor fuels owned by the United States Department of Energy is an alternative to reprocessing (together with vitrification of the high level waste and storage in an engineered barrier) for ultimate disposition. Neither the storage systems nor the requirements and specifications for acceptable forms for direct repository disposal have been developed; therefore, an interim storage strategy is needed to safely store these fuels. Dry storage (within identified limits) of the fuels received from wet-basin storage would avoid excessive degradation to assure post-storage handleability, a full range of ultimate disposal options, criticality safety, and provide for maintaining confinement by the fuel/clad system. Dry storage requirements and technologies for US commercial fuels, specifically zircaloy-clad fuels under inert cover gas, are well established. Dry storage requirements and technologies for a system with a design life of 40 years for dry storage of aluminum-clad foreign and domestic research reactor fuels are being developed by various groups within programs sponsored by the DOE

  14. Horizontal modular dry irradiated fuel storage system

    Science.gov (United States)

    Fischer, Larry E.; McInnes, Ian D.; Massey, John V.

    1988-01-01

    A horizontal, modular, dry, irradiated fuel storage system (10) includes a thin-walled canister (12) for containing irradiated fuel assemblies (20), which canister (12) can be positioned in a transfer cask (14) and transported in a horizontal manner from a fuel storage pool (18), to an intermediate-term storage facility. The storage system (10) includes a plurality of dry storage modules (26) which accept the canister (12) from the transfer cask (14) and provide for appropriate shielding about the canister (12). Each module (26) also provides for air cooling of the canister (12) to remove the decay heat of the irradiated fuel assemblies (20). The modules (26) can be interlocked so that each module (26) gains additional shielding from the next adjacent module (26). Hydraulic rams (30) are provided for inserting and removing the canisters (12) from the modules (26).

  15. Transitioning aluminum clad spent fuels from wet to interim dry storage

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Iyer, N.C.; Sindelar, R.L.; Peacock, H.B. Jr.

    1994-01-01

    The United States Department of Energy (DOE) currently owns several hundred metric tons of aluminum clad, spent nuclear fuel and target assemblies. The vast majority of these irradiated assemblies are currently stored in water basins that were designed and operated for short term fuel cooling prior to fuel reprocessing. Recent DOE decisions to severely limit the reprocessing option have significantly lengthened the time of storage, thus increasing the tendency for corrosion induced degradation of the fuel cladding and the underlying core material. The portent of continued corrosion, coupled with the age of existing wet storage facilities and the cost of continuing basin operations, including necessary upgrades to meet current facility standards, may force the DOE to transition these wet stored, aluminum clad spent fuels to interim dry storage. The facilities for interim dry storage have not been developed, partially because fuel storage requirements and specifications for acceptable fuel forms are lacking. In spite of the lack of both facilities and specifications, current plans are to dry store fuels for approximately 40 to 60 years or until firm decisions are developed for final fuel disposition. The transition of the aluminum clad fuels from wet to interim dry storage will require a sequence of drying and canning operations which will include selected fuel preparations such as vacuum drying and conditioning of the storage atmosphere. Laboratory experiments and review of the available literature have demonstrated that successful interim dry storage may also require the use of fuel and canister cleaning or rinsing techniques that preclude, or at least minimize, the potential for the accumulation of chloride and other potentially deleterious ions in the dry storage environment. This paper summarizes an evaluation of the impact of fuel transitioning techniques on the potential for corrosion induced degradation of fuel forms during interim dry storage

  16. Hydrogen storage materials and method of making by dry homogenation

    Science.gov (United States)

    Jensen, Craig M.; Zidan, Ragaiy A.

    2002-01-01

    Dry homogenized metal hydrides, in particular aluminum hydride compounds, as a material for reversible hydrogen storage is provided. The reversible hydrogen storage material comprises a dry homogenized material having transition metal catalytic sites on a metal aluminum hydride compound, or mixtures of metal aluminum hydride compounds. A method of making such reversible hydrogen storage materials by dry doping is also provided and comprises the steps of dry homogenizing metal hydrides by mechanical mixing, such as be crushing or ball milling a powder, of a metal aluminum hydride with a transition metal catalyst. In another aspect of the invention, a method of powering a vehicle apparatus with the reversible hydrogen storage material is provided.

  17. Spent fuel dry storage experience at Gentilly 2 NGS

    International Nuclear Information System (INIS)

    Macici, N.

    1997-01-01

    In order to provide the needed interim storage facility for the spent fuel, Hydro-Quebec chose the dry storage CANSTOR module developed by the Atomic Energy of Canada Ltd (AECL). The decision was made based upon the technical feasibility, public and environmental protection criteria, operational flexibility, economic and space saving advantages. Before the commissioning of the spent fuel dry storage facility, the project received all the required approvals. A joint provincial - federal public hearings was held in summer of 1994 in order to assess the project in term of its impact on the environment. In September 1995 took place the first transfer of spent fuel from the station bay to the dry storage facility and since then 21000 bundles of spent fuel were transferred in the two CANSTOR modules built on the station site located within the protected area of the Gentilly-2 station. To date, the expected performance of the dry storage units and equipment have been met. A third CANSTOR module is to be built in summer of 1997 on the station site. (author)

  18. Dry storage of spent nuclear fuel in UAE – Economic aspect

    International Nuclear Information System (INIS)

    Al Saadi, Sara; Yi, Yongsun

    2015-01-01

    Highlights: • Cost analysis of interim storage of spent nuclear fuel in the UAE was performed. • Two scenarios were considered: accelerated transfer of SNF and max. use of fuel pool. • Additional cost by accelerated transfer of SNF to dry storage was not significant. • Multiple regression analysis was applied to the resulting dry storage costs. • Dry storage costs for different cases could be expressed by single equations. - Abstract: Cost analysis of dry storage of spent nuclear fuel (SNF) discharged from Barakah nuclear power plants in the UAE was performed using three variables: average fuel discharge rate (FD), discount rate (d), and cooling time in a spent fuel pool (T cool ). The costs of dry storage as an interim spent fuel storage option in the UAE were estimated and compared between the following two scenarios: Scenario 1 is ‘accelerated transfer of spent fuel to dry storage’ that SNF will be transferred to dry storage facilities as soon as spent fuel has been sufficiently cooled down in a pool for the dry storage; Scenario 2 is defined as ‘maximum use of spent fuel pool’ that SNF will be stored in a pool as long as possible till the amount of stored SNF in the pool reaches the capacity of the pools and, then, to be moved to dry storage. A sensitivity analysis on the costs was performed and multiple regression analysis was applied to the resulting net present values (NPVs) for Scenarios 1 and 2 and ΔNPV that is difference in the net present values between the two scenarios. The results showed that NPVs and ΔNPV could be approximately expressed by single equations with the three variables. Among the three variables, the discount rate had the largest effect on the NPVs of the dry storage costs. However, ΔNPV was turned out to be equally sensitive to the discount rate and cooling period. Over the ranges of the variables, the additional cost for accelerated fuel transfer (Scenario 1) ranged from 86.4 to 212.9 million $. Calculated using

  19. Burnup credit in a dry storage module

    International Nuclear Information System (INIS)

    Thornton, J.R.

    1989-01-01

    Comparison of spent fuel storage expansion options available to Oconee Nuclear Station revealed that dry storage could be economically competitive with transshipment and rod consolidation. Economic competitiveness, however, mandated large unit capacity while existing cask handling facilities at Oconee severely limited size and weight. The dry storage concept determined to best satisfy these conflicting criteria is a 24 pressurized water reactor (PWR) fuel assembly capacity NUTECH Horizontal Modular Storage (NUHOMS) system. The Oconee version of the NUHOMS system takes advantage of burnup credit in demonstrating criticality safety. The burnup credit criticality analysis was performed by Duke Power Company's Design Engineering Department. This paper was prepared to summarize the criticality control design features employed in the Oconee NUHOMS-24P DSC basket and to describe the incentives for pursuing a burnup credit design. Principal criticality design parameters, criteria, and analysis methodology are also presented

  20. Materials in the environment of the fuel in dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Issard, H [TN International (Cogema Logistics) (France)

    2012-07-01

    Spent nuclear fuel has been stored safely in pools or dry systems in over 30 countries. The majority of IAEA Member States have not yet decided upon the ultimate disposition of their spent nuclear fuel: reprocessing or direct disposal. Interim storage is the current solution for these countries. For developing the technological knowledge data base, a continuation of the IAEA's spent fuel storage performance assessment was achieved. The objectives are: Investigate the dry storage systems and gather basic fuel behaviour assessment; Gather data on dry storage environment and cask materials; Evaluate long term behaviour of cask materials.

  1. Safety assessment of OPG's used fuel for dry storage

    International Nuclear Information System (INIS)

    Roman, H.; Khan, A.

    2005-01-01

    'Full text:' Ontario Power Generation (OPG) operates the Pickering Waste Management Facility (PWMF) and Western Waste Management Facility (WWMF) where OPG has been storing 10-year or older used fuel in the Dry Storage Containers (DSCs) since 1996 and 2003 respectively. The construction licence for the Darlington Used Fuel Dry Storage Facility (DUFDSF) was obtained in August 2004. Safety assessment of the used fuel for dry storage is required to support each request for regulatory approval to construct and operate a dry storage facility. The objective of the safety assessment is to assess the used fuel performance under normal operation and postulated credible accident scenarios. A reference used fuel bundle is defined based on the operating history and data on fuel discharged from the reactors of the specific nuclear generating station. The characteristics of the reference used fuel bundle are used to calculate the nuclide inventory, source term and decay heat used for the assessment. When assessing malfunctions and accidents, postulated external and internal events are considered. Consideration is also given to the design basis accidents of the specific nuclear generating station that could affect the used fuel under dry storage. For those events deemed credible (i.e. probability > 10 -7 ), a bounding fuel failure consequence is predicted. Given the chemical characteristics of the radionuclides in used fuel, the design of the CANDU fuel and the conditions inside the DSC, in the event that a used fuel bundle should become damaged during used fuel dry storage operations, the only significant radionuclides species that are volatile are krypton-85 and tritium. Release of these radionuclides is considered in calculating public and worker doses. (author)

  2. New concept for ARS dry spent fuel storage

    International Nuclear Information System (INIS)

    Doroszlai, P.G.K.; Johanson, N.W.; Patak, H.N.

    1980-01-01

    The dry fully passive and modular away-from-reactor (AFR) storage concept has been presented before for a size of 1500 to 3000 MTHM. Here it is suggested that the same concept is applicable for a small AR storage facility of 200 MTHM. Detailed investigations and feasibility studies have shown this concept to be economically interesting. Dry storage in the proposed concept has some other inherent advantages: spent fuel is stored in a dry and inert atmosphere, where no corrosion nor determination of cladding is to be expected during extended storage periods; storage canister and the silo concrete are additional barriers against activity release and increase therefore the security for long term safety; there are only passive systems involved where the heat is dissipated by natural convection and there is no need for additional emergency systems or special redundancy; concept of AR storage should be relatively easily licensed, as all requirements or constructions are well known standards of engineering; this storage concept creates no secondary waste nor contamination making decomissioning simple after retransfer of spent fuel canisters; manpower requirements for operation and maintenance is very small; operating costs are estimated to be some 2 US $/kg U (1980); investment costs are calculated to be 96 US $/kg U (May 1980) for a total size of 200 MTHM stored

  3. Dry cask storage: a Vepco/DOE/EPRI cooperative demonstration program

    International Nuclear Information System (INIS)

    Smith, M.L.

    1984-01-01

    In response to a Department of Energy (DOE) Solicitation for Cooperative Agreement Proposal, Virginia Electric and Power Company (Vepco) proposed to participate in a spent fuel storage demonstration program utilizing the dry cask storage technology. This proposed program includes dry cask storage at Vepco's Surry Nuclear Power Station and research and development activities at a DOE site in support of the licensed program at Surry. Phase I of Vepco's two-phase program involves a demonstration of the licensed dry cask storage of spent fuel in an inert atmosphere at the Surry Power Station site. Phase II of Vepco's proposed program will involve the demonstration of storing unconsolidated and consolidated spent fuel in dry casks filled only with air. This phase of the program will involve DOE site testing similar to Phase I and is expected to require an additional (fourth) cask to demonstrate storage of unconsolidated spent fuel in air-filled casks

  4. Status of work at PNL supporting dry storage of spent fuel

    International Nuclear Information System (INIS)

    Cunningham, M.E.; McKinnon, M.A.; Michener, T.E.; Thomas, L.E.; Thornhill, C.K.

    1992-01-01

    Three projects related to dry storage of light-water reactor spent fuel are being conducted at Pacific Northwest Laboratory. Performance testing of six dry storage systems (four metal casks and two concrete storage systems) has been completed and results compiled. Two computer codes for predicting spent fuel and storage system thermal performance, COBRA-SFS and HYDRA-II, have been developed and have been reviewed by the US Nuclear Regulatory Commission. Air oxidation testing of spent fuel was conducted from 1984 through 1990 to obtain data to support recommendations of temperature-time limits for air dry storage for periods up to 40 years

  5. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y. (Decision and Information Sciences); ( EVS); ( NE)

    2012-07-06

    The cancellation of the Yucca Mountain repository program in the United States raises the prospect of extended long-term storage (i.e., >120 years) and deferred transportation of used fuel at operating and decommissioned nuclear power plant sites. Under U.S. federal regulations contained in Title 10 of the Code of Federal Regulations (CFR) 72.42, the initial license term for an Independent Spent Fuel Storage Installation (ISFSI) must not exceed 40 years from the date of issuance. Licenses may be renewed by the U.S. Nuclear Regulatory Commission (NRC) at the expiration of the license term upon application by the licensee for a period not to exceed 40 years. Application for ISFSI license renewals must include the following: (1) Time-limited aging analyses (TLAAs) that demonstrate that structures, systems, and components (SSCs) important to safety will continue to perform their intended function for the requested period of extended operation; and (2) a description of the aging management program (AMP) for management of issues associated with aging that could adversely affect SSCs important to safety. In addition, the application must also include design bases information as documented in the most recent updated final safety analysis report as required by 10 CFR 72.70. Information contained in previous applications, statements, or reports filed with the Commission under the license may be incorporated by reference provided that those references are clear and specific. The NRC has recently issued the Standard Review Plan (SRP) for renewal of used-fuel dry cask storage system (DCSS) licenses and Certificates of Compliance (CoCs), NUREG-1927, under which NRC may renew a specific license or a CoC for a term not to exceed 40 years. Both the license and the CoC renewal applications must contain revised technical requirements and operating conditions (fuel storage, surveillance and maintenance, and other requirements) for the ISFSI and DCSS that address aging effects that

  6. FRAPCON analysis of cladding performance during dry storage operations

    Directory of Open Access Journals (Sweden)

    David J. Richmond

    2018-03-01

    Full Text Available There is an increasing need in the United States and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations or interim storage sites. Under normal conditions, the Nuclear Regulatory Commission limits cladding temperature to 400°C for high-burnup (>45 GWd/mtU fuel, with higher temperatures allowed for low-burnup fuel. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400°C. Results were representative of the majority of US light water reactor fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage. Keywords: Dry Storage, FRAPCON, Fuel Performance, Radial Hydride Reorientation, Vacuum Drying

  7. Development of a rapid screening protocol for selection of strains resistant to spray drying and storage in dry powder.

    Science.gov (United States)

    Reimann, S; Grattepanche, F; Baggenstos, C; Rezzonico, E; Berger, B; Arigoni, F; Lacroix, C

    2010-06-01

    An efficient screening method for selection of Bifidobacterium longum strains resistant to spray drying and storage was developed based on randomly amplified polymorphic DNA (RAPD) for identification of the best survivors in mixed strains bacterial preparations. Three different primers were used to generate RAPD profiles of 22 B. longum strains. All strains were distinguished according to their RAPD profiles except for the strain NCC2705 and its H(2)O(2) resistant derivative variant. The 22 strains were grouped in 3 batches of 7, 7 and 8 strains and subjected to spray drying and storage at 30 and 37 °C under anaerobic conditions. Batch survival rates after spray drying reached 17.1±4.4%. Strains showing the highest prevalence and/or resistance to storage at 37 °C were selected from individual batches for subsequent spray drying and storage testing. After 67 days of storage, NCC572 was identified as the dominant strain in powder. The stability of strain NCC572 was confirmed by performing single spray drying and storage tests. Out of 22 B. longum strains, a robust strain was identified by combining RAPD with a simultaneous screening test for survival under spray drying and storage. The method allowed a fast screening of B. longum strains in mixture for resistance to spray drying and storage compared to traditional screening procedures carried out with individual strains, in the same conditions. This approach could be applied to other stress conditions.

  8. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R.

    1996-01-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air

  9. Dry storage cells for radioactive material

    International Nuclear Information System (INIS)

    Hartley, D.J.; Paget, F.T.W.

    1982-01-01

    A facility for posting irradiated nuclear fuel from a preparation cell of a dry storage complex into storage canisters located in buckets within a clean cell comprises a telescopic tubular port member for sealably connecting the preparation cell to a canister. In operation the closure of the canister is screened against contamination and withdrawn from the canister into the preparation cell via a retractable grab prior to posting of the fuel into the canister. (author)

  10. High burnup fuel onset conditions in dry storage. Prediction of EOL rod internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E.

    2015-07-01

    During dry storage, cladding resistance to failure can be affected by several degrading mechanisms like creep or hydrides radial reorientation. The driving force of these effects is the stress at which the cladding is submitted. The maximum stress in the cladding is determined by the end-of-reactor-life (EOL) rod internal pressure, PEOL, at the maximum temperature attained during dry storage. Thus, PEOL sets the initial conditions of storage for potential time-dependent changes in the cladding. Based on FRAPCON-3.5 calculations, the aim of this work is to analyse the PEOL of a PWR fuel rod irradiated to burnups greater than 60 GWd/tU, where limited information is available. In order to be conservative, demanding irradiation histories have been used with a peak linear power of 44 kW/m. FRAPCON-3.5 results show an increasing exponential trend of PEOL with burnup, from which a simple correlation has been derived. The comparison with experimental data found in the literature confirms the enveloping nature of the predicted curve. Based on that, a conservative prediction of cladding stress in dry storage has been obtained. The comparison with a critical stress threshold related to hydrides embrittlement seems to point out that this issue should not be a concern at burnups below 65 GWd/tU. (Author)

  11. Dry spent fuel storage in the 1990's

    International Nuclear Information System (INIS)

    Roberts, J.P.

    1991-01-01

    In the US, for the decade of the 1990's, at-reactor-site dry spent fuel storage has become the predominant option outside of reactor spent fuel pools. This development has resulted from failure, in the 1980's, of a viable reprocessing option for commercial power reactors, and delay in geologic repository development to an operational date at or beyond the year 2010. Concurrently, throughout the 1980's, aggressive technical and regulatory efforts by the Federal Government, coordinated with nuclear industry, have led to successful evolution of dry spent fuel storage as a utility option

  12. Loss of selenium in drying and storage of agronomic plant species

    DEFF Research Database (Denmark)

    Nielsen, Gunnar Gissel

    1970-01-01

    In two experiments with Se75, loss of selenium from agricultural species was noted during both drying and storage. The loss of selenium during drying was to some extent overshadowed by the influence of self-absorption caused by the water in the fresh material. The results showed that even plant...... material of non-indicator plantslose volatile selenium at drying temperatures of 60°C or higher, and in some cases even at temperatures below 60°C. The results also showed that storage as briquettes gives the lowest storage loss of selenium....

  13. Possible use of dual purpose dry storage casks for transportation and future storage of spent nuclear fuel from IRT-Sofia

    International Nuclear Information System (INIS)

    Manev, L.; Baltiyski, M.

    2003-01-01

    Objectives: The main objective of the present paper is related to one of the priority goals stipulated in Bulgarian Governmental Decision No.332 from May 17, 1999 - removal of SNF from IRT-Sofia site and its exporting for reprocessing and/or for temporary storage at Kozloduy NPP site. The variant of using dual purpose dry storage casks for transportation and future temporary storage of SNF from IRT-Sofia aims to find out a reasonable alternative of the existing till now variant for temporary SNF storage under water in the existing Kozloduy NPP Spent Fuel Storage Facility until its export for reprocessing. Results: Based on the given data for the condition of 73 Spent Nuclear Fuel Assemblies (SNFA) stored in the storage pool and technical data as well as data for available equipment and IRT-Sofia layout the following framework are specified: draft technical features of dual purpose dry storage casks and their overall dimensions; the suitability of the available equipment for safety and reliable performance of transportation and handling operations of assemblies from storage pool to dual purpose dry storage casks; the necessity of new equipment for performance of the above mentioned operations; Assemblies' transportation and handling operations are described; requirements to and conditions for future safety and reliable storage of SNFA loaded casks are determined. When selecting the technical solutions for safety assurance during performance of site handling operations of IRT-Sofia and for description of the exemplary casks the Effective Bulgarian Regulations are considered. The experience of other countries in performance of transfer and transportation of SNFA from such types of research reactors is taken into account. Also, Kozloduy NPP experience in SNF handling operations is taken into account. Conclusions: The Decision of Council of Minister for refurbishment of research reactor into a low power one and its future utilization for experimental and training

  14. Effect of drying treatments and storage stability on quality characteristics of bael powder.

    Science.gov (United States)

    Sagar, V R; Kumar, Rajesh

    2014-09-01

    Dehydration of bael pulp in to powder form is a challenging operation, mainly due to the sticky issue of bael pulp and caking of powder during handling and storage. To overcome on this problem maltodextrin MD (drying aid) and tricalcium phosphate, TCP (anti caking agent) were added to the bael pulp at four levels along with control and dried in a mechanical drier into thin layer at 58 ± 2 °C for 12 h, to obtain a moisture content of 4-5 % in dehydrated pulp. The dehydrated bael pulp was grounded in a laboratory powder mill and sieve with 30 mesh sieve. The powder was packed in 150gauge PP, 400gauge LDPE and 200gauge HDPE pouches and was stored at low temperature (7 °C) and ambient condition (18-35 °C) up to 6 months for storage study. The powder was evaluated for its quality characteristics in respect of acidity, sugars, antioxidant, phenol, ascorbic acid, non- enzymatic browning (NEB) before packaging and during storage. The amount of MD and TCP required to reduce powder stickiness and caking were optimized on the powder properties. The amount of MD (0.25 kg per kg dry bael solids) and TCP (0.15 kg per kg dry bael solids) with the values of degree of caking (19.24 %) and stickiness point temperature (45.4 °C) were found to be optimum for reducing the powder stickiness, caking and nutritional parameters. The adsorption isotherm of bael powder was found to be type-II sigmoid and 200 g HDPE as packaging material followed by storage at low temperature were selected as best process.

  15. Data needs for long-term dry storage of LWR fuel. Interim report

    International Nuclear Information System (INIS)

    Einziger, R.E.; Baldwin, D.L.; Pitman, S.G.

    1998-04-01

    The NRC approved dry storage of spent fuel in an inert environment for a period of 20 years pursuant to 10CFR72. However, at-reactor dry storage of spent LWR fuel may need to be implemented for periods of time significantly longer than the NRC's original 20-year license period, largely due to uncertainty as to the date the US DOE will begin accepting commercial spent fuel. This factor is leading utilities to plan not only for life-of-plant spent-fuel storage during reactor operation but also for the contingency of a lengthy post-shutdown storage. To meet NRC standards, dry storage must (1) maintain subcriticality, (2) prevent release of radioactive material above acceptable limits, (3) ensure that radiation rates and doses do not exceed acceptable limits, and (4) maintain retrievability of the stored radioactive material. In light of these requirements, this study evaluates the potential for storing spent LWR fuel for up to 100 years. It also identifies major uncertainties as well as the data required to eliminate them. Results show that the lower radiation fields and temperatures after 20 years of dry storage promote acceptable fuel behavior and the extension of storage for up to 100 years. Potential changes in the properties of dry storage system components, other than spent-fuel assemblies, must still be evaluated

  16. High Burnup Dry Storage Cask Research and Development Project, Final Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-02-27

    EPRI is leading a project team to develop and implement the first five years of a Test Plan to collect data from a SNF dry storage system containing high burnup fuel.12 The Test Plan defined in this document outlines the data to be collected, and the storage system design, procedures, and licensing necessary to implement the Test Plan.13 The main goals of the proposed test are to provide confirmatory data14 for models, future SNF dry storage cask design, and to support license renewals and new licenses for ISFSIs. To provide data that is most relevant to high burnup fuel in dry storage, the design of the test storage system must mimic real conditions that high burnup SNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to the ISFSI for multi-year storage.15 Along with other optional modeling, SETs, and SSTs, the data collected in this Test Plan can be used to evaluate the integrity of dry storage systems and the high burnup fuel contained therein over many decades. It should be noted that the Test Plan described in this document discusses essential activities that go beyond the first five years of Test Plan implementation.16 The first five years of the Test Plan include activities up through loading the cask, initiating the data collection, and beginning the long-term storage period at the ISFSI. The Test Plan encompasses the overall project that includes activities that may not be completed until 15 or more years from now, including continued data collection, shipment of the Research Project Cask to a Fuel Examination Facility, opening the cask at the Fuel Examination Facility, and examining the high burnup fuel after the initial storage period.

  17. Standard review plan for dry cask storage systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 {open_quotes}Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask{close_quotes} contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed.

  18. Standard review plan for dry cask storage systems. Final report

    International Nuclear Information System (INIS)

    1997-01-01

    The Standard Review Plan (SRP) For Dry Cask Storage Systems provides guidance to the Nuclear Regulatory Commission staff in the Spent Fuel Project Office for performing safety reviews of dry cask storage systems. The SRP is intended to ensure the quality and uniformity of the staff reviews, present a basis for the review scope, and clarification of the regulatory requirements. Part 72, Subpart B generally specifies the information needed in a license application for the independent storage of spent nuclear fuel and high level radioactive waste. Regulatory Guide 3.61 open-quotes Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Caskclose quotes contains an outline of the specific information required by the staff. The SRP is divided into 14 sections which reflect the standard application format. Regulatory requirements, staff positions, industry codes and standards, acceptance criteria, and other information are discussed

  19. Onsite dry spent-fuel storage: Becoming more of a reality

    International Nuclear Information System (INIS)

    1994-01-01

    An overview is presented of dry spent-fuel storage facilities operated at nuclear power plant sites in the USA. The experience of the utilities Virginia Power, Carolina Power and Light Company, Duke Power, Public Service Company of Colorado a Baltimore Gas and Electric is outlined. The spent fuel storage procedure using the Sierra Nuclear container system is described. Plans for the construction of additional storage facilities are mentioned. Dry stores are also operated at nuclear power plants that have been shut down. (J.B.). 1 fig

  20. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  1. Critical review of creep FRAPCON-3 model under dry storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E. [Unit of Nuclear Safety Research, CIEMAT, Avda. Complutense 22, Madrid, Madrid 28040 (Spain)

    2009-06-15

    There is a general agreement that cladding creep rupture is the most likely and limiting failure mechanism of spent fuel in dry storage compared to other potential mechanisms, like stress corrosion cracking and/or delayed hydride cracking. Nevertheless, occurrence of creep rupture is very improbable since both decay heat and hoop stress tend to decrease throughout dry storage. In spite of this, the current trend to higher burn up levels needs further attention that ensures safe storage of spent fuel irradiated over 45 GWd/MTU. An extensive work has been carried out during the last four decades in the area of in-reactor creep modelling. Unfortunately, the in-reactor conditions are so different from those prevailing under dry storage, that all the experience gained cannot be extrapolated in a straightforward manner. On the other side, as creep tests simulating conditions throughout a 20-40 year dry storage are impractical, post-irradiation cladding creep behaviour has been modelled by means of time-temperature dependent laws developed on the basis of currently available zirconium alloys data. Additionally, some tests have been exploring the effect of irradiation, hydrogen distribution and material composition on the materials creep behaviour. Adaptation of fuel performance codes initially developed for normal and off-normal reactor operation is not an easy task either. Creep modelling is usually dependent of host codes because a good part of its validation and update has been carried out in an integral way, and as a consequence its independent performance assessment is not an easy task. This work examines the current capability of FRAPCON-3 to model creep behaviour under dry storage conditions. To do so, a review of its major fundamentals has been done and its range of applicability discussed. Once its main approximations and drawbacks have been identified, an attempt to overcome some of them has been intended by implementing an alternative expression for creep under

  2. Behaviour of power and research reactor fuel in wet and dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Canosa, J [Nuclear Waste Management Organization (Canada)

    2012-07-01

    Canada has developed extensive experience in both wet and dry storage of CANDU fuel. Fuel has been stored in water pools at CANDU reactor sites for approximately 45 years, and in dry storage facilities for a large part of the past decade. Currently, Canada has 38 450 t U of spent fuel in storage, of which 8850 t U are in dry storage. In June 2007, the Government of Canada selected the Adaptive Phased Management (APM) approach, recommended by the Nuclear Waste Management Organization (NWMO), for the long-term management of Canada's nuclear-fuel waste. The Canadian utilities and AECL are conducting development work in extended storage systems as well as research on fuel behaviour under storage conditions. Both activities have as ultimate objective to establish a technical basis for assuring the safety of long-term fuel storage.

  3. Spent fuel and materials performance in wet and dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Zuloaga, P [ENRESA (Spain)

    2012-07-01

    According to the 6th General Radioactive Waste Plan, spent fuel in Spain shall have to be gathered in a Centralised Temporary Storage (CTS) during some decades in order to have time for a decision concerning its final fate: direct disposal at a geological repository or partitioning and transmutation if technology opens this possibility when the decision will be taken, expected in 2050. The CTS technology has already been chosen as a vault type building based in spent fuel dry storage. To support the use of this technology, a number of programmes have been completed or are still in progress, mostly concerned about high burnup fuel issues and new cladding materials. These programmes are directly managed by ENRESA alone or in joint venture with other parties, at a national and international level. Apart from that, there are contacts with other countries organisms who share similar interests with Spanish ones. The objectives are: Review of spent fuel data relevant for future storage in Spain; Perform destructive and non-destructive examinations on irradiated and non-irradiated fuel rods relevant to Spanish spent fuel management.

  4. Evaluation of limiting mechanisms for long-term spent fuel dry storage

    International Nuclear Information System (INIS)

    Rashid, J.; Machiels, A.

    2001-01-01

    Several failure mechanisms have been postulated that could become limiting for spent fuel in dry storage. These are: stress Corrosion Cracking (SCC), Delayed Hydride Cracking (DHC) and Creep Rupture (CR). These mechanisms are examined in some detail from two perspectives: their initial environments in which they were developed and applied, and in relation to their applicability to dry storage. Extrapolation techniques are used to transfer the mechanisms from their initial in-reactor and laboratory domains to out-of-reactor spent fuel dry storage environments. This transfer is accomplished both qualitatively where necessary and quantitatively when possible, with fracture toughness used as the transfer function. In this regard, the paper provides useful information on cladding fracture toughness estimates that recognize the specific physical conditions of the cladding, which would not be found elsewhere in the literature. The arguments presented in this paper confirm the general technical consensus that creep is the governing mechanism for spent fuel in long-term dry storage. (author)

  5. Evaluation of limiting mechanisms for long-term spent fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, J. [ANATECH Research Corp., San Diego, CA (United States); Machiels, A. [EPRI, Palo Alto, CA (United States)

    2001-07-01

    Several failure mechanisms have been postulated that could become limiting for spent fuel in dry storage. These are: stress Corrosion Cracking (SCC), Delayed Hydride Cracking (DHC) and Creep Rupture (CR). These mechanisms are examined in some detail from two perspectives: their initial environments in which they were developed and applied, and in relation to their applicability to dry storage. Extrapolation techniques are used to transfer the mechanisms from their initial in-reactor and laboratory domains to out-of-reactor spent fuel dry storage environments. This transfer is accomplished both qualitatively where necessary and quantitatively when possible, with fracture toughness used as the transfer function. In this regard, the paper provides useful information on cladding fracture toughness estimates that recognize the specific physical conditions of the cladding, which would not be found elsewhere in the literature. The arguments presented in this paper confirm the general technical consensus that creep is the governing mechanism for spent fuel in long-term dry storage. (author)

  6. A new framework to assess risk for a spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Ryu, J. H.; Jae, M. S.; Jung, C. W.

    2004-01-01

    A spent fuel dry storage facility is a dry cooling storage facility for storing irradiated nuclear fuel and associated radioactive materials. It has very small possibilities to release radiation materials. It means a safety analysis for a spent fuel dry storage facility is required before construction. In this study, a new framework for assessing risk associated with a spent fuel dry storage facility is represented. A safety assessment framework includes 3 modules such as assessment of basket/cylinder failure rates, that of overall storage system, and site modeling. A reliability physics model for failure rates, event tree analysis(ETA)/fault tree analysis for system analysis, Bayesian analysis for initial events data, and MACCS code for consequence analysis have been used in this study

  7. Vacuum Drying Tests for Storage of Aluminum Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Chen, K.F.; Large, W.S.; Sindelar, R.L.

    1998-05-01

    A total inventory of up to approximately 32,000 aluminum-based spent nuclear fuel (Al SNF) assemblies are expected to be shipped to Savannah River Site (SRS) from domestic and foreign research reactors over the next several decades. Treatment technologies are being developed as alternatives to processing for the ultimate disposition of Al SNF in the geologic repository. One technology, called Direct/Co-disposal of Al SNF, would place the SNF into a canister ready for disposal in a waste package, with or without canisters containing high-level radioactive waste glass logs, in the repository. The Al SNF would be transferred from wet storage and would need to be dried in the Al SNF canister. The moisture content inside the Al SNF canister is limited to avoid excessive Al SNF corrosion and hydrogen buildup during interim storage before disposal. A vacuum drying process was proposed to dry the Al SNF in a canister. There are two major concerns for the vacuum drying process. One is water inside the canister could become frozen during the vacuum drying process and the other one is the detection of dryness inside the canister. To vacuum dry an irradiated fuel in a heavily shielded canister, it would be very difficult to open the lid to inspect the dryness during the vacuum drying operation. A vacuum drying test program using a mock SNF assembly was conducted to demonstrate feasibility of drying the Al SNF in a canister. These tests also served as a check-out of the drying apparatus for future tests in which irradiated fuel would be loaded into a canister under water followed by drying for storage

  8. Activity release during the dry storage of fuel assemblies

    International Nuclear Information System (INIS)

    Valentine, M.K.; Fettel, W.; Gunther, H.

    1991-01-01

    This paper reports that wet storage is the predominant storage method in the USA for spent fuel assemblies. Nevertheless, most utilities have stretched their storage capacities and several reactors will lose their full-core reserve in the 90's. A great variety of out-of-pool storage methods already exist, including the FUELSTOR vault-type dry storage concept. A FUELSTOR vault relies on double containment of the spent fuel (intact cladding as the primary containment and sealing of assemblies in canisters filled with an inert gas as the secondary containment) to reduce radiation levels at the outside wall of the vault to less than site boundary levels. Investigation of accident scenarios reveals that radiation release limits are only exceeded following complete failure of all canisters and simultaneous cladding breach for more than 40% of the rods (or for more than 1% of failed rods if massive fuel oxidation occurs following cladding failure). Such failures are considered highly improbable. Thus, it can be concluded that this type of dry storage is safe and individual canister monitoring is not required in the facility

  9. Criticality studies for dry storage cask

    International Nuclear Information System (INIS)

    Krishnani, P.D.; Srinivasan, K.R.

    1993-01-01

    Spent nuclear fuel from Tarapur Atomic Power Station (TAPS) is stored in a storage pool located inside the reactor building. The capacity of this pool was initially to meet storage requirements of 528 bundles which was later augmented from time to time. Since the enhanced capacity was also getting exhausted, setting up of a storage pool away from reactor was envisaged. As an interim measure, the dry storage casks were designed to store the spent fuel already cooled for a few years in the storage pools. If water enters the cask, the cask interior may be covered with steam water or air-water mixture. This paper gives the results of criticality calculations for storage cask under various conditions of steam water mixture, using the computer code LWRBOX. In these calculations, it has been assumed that the cask contains the most reactive fuel assemblies of reload-1 at zero burnup. It also gives the comparison of some of the results with General Electric (GE) calculations. (author). 3 refs., 1 fig., 2 tabs

  10. Accelerated storage testing of freeze-dried Pseudomonas ...

    African Journals Online (AJOL)

    Accelerated storage testing of freeze-dried Pseudomonas fluorescens BTP1, ... of all P. fluorescens strains were not significantly different and thermal inactivation ... useful to the development of improved reference materials and samples held ...

  11. Drying and storage effects on poly(ethylene glycol) hydrogel mechanical properties and bioactivity.

    Science.gov (United States)

    Luong, P T; Browning, M B; Bixler, R S; Cosgriff-Hernandez, E

    2014-09-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications because of their ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions on hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying), and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage. © 2013 Wiley Periodicals, Inc.

  12. Nondestructive Examination Guidance for Dry Storage Casks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suffield, Sarah R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lareau, John P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhuge, Jing Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, Traci L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-30

    In this report, an assessment of NDE methods is performed for components of NUHOMS 80 and 102 dry storage system components in an effort to assist NRC staff with review of license renewal applications. The report considers concrete components associated with the horizontal storage modules (HSMs) as well as metal components in the HSMs. In addition, the report considers the dry shielded canister (DSC). Scope is limited to NDE methods that are considered most likely to be proposed by licensees. The document, ACI 349.3R, Evaluation of Existing Nuclear Safety-Related Concrete Structures, is used as the basis for the majority of the NDE methods summarized for inspecting HSM concrete components. Two other documents, ACI 228.2R, Nondestructive Test Methods for Evaluation of Concrete in Structures, and ORNL/TM-2007/191, Inspection of Nuclear Power Plant Structure--Overview of Methods and Related Application, supplement the list with additional technologies that are considered applicable. For the canister, the ASME B&PV Code is used as the basis for NDE methods considered, along with currently funded efforts through industry (Electric Power Research Institute [EPRI]) and the U.S. Department of Energy (DOE) to develop inspection technologies for canisters. The report provides a description of HSM and DSC components with a focus on those aspects of design considered relevant to inspection. This is followed by a brief description of other concrete structural components such as bridge decks, dams, and reactor containment structures in an effort to facilitate comparison between these structures and HSM concrete components and infer which NDE methods may work best for certain HSM concrete components based on experience with these other structures. Brief overviews of the NDE methods are provided with a focus on issues and influencing factors that may impact implementation or performance. An analysis is performed to determine which NDE methods are most applicable to specific

  13. Spent LWR fuel encapsulation and dry storage demonstration

    International Nuclear Information System (INIS)

    Bahorich, R.J.; Durrill, D.C.; Cross, T.E.; Unterzuber, R.

    1980-01-01

    In 1977 the Spent Fuel Handling and Packaging Program (SFHPP) was initiated by the Department of Energy to develop and test the capability to satisfactorily encapsulate typical spent fuel assemblies from commercial light-water nuclear power plants and to establish the suitability of one or more surface and near surface concepts for the interim dry storage of the encapsulated spent fuel assemblies. The E-MAD Facility at the Nevada Test Site, which is operated for the Department of Energy by the Advanced Energy Systems Division (AESD) of the Westinghouse Electric Corporation, was chosen as the location for this demonstration because of its extensive existing capabilities for handling highly radioactive components and because of the desirable site characteristics for the proposed storage concepts. This paper describes the remote operations related to the process steps of handling, encapsulating and subsequent dry storage of spent fuel in support of the Demonstration Program

  14. Licensing of spent nuclear fuel dry storage in Russia

    International Nuclear Information System (INIS)

    Kislov, A.I.; Kolesnikov, A.S.

    1999-01-01

    The Federal nuclear and radiation safety authority of Russia (Gosatomnadzor) being the state regulation body, organizes and carries out the state regulation and supervision for safety at handling, transport and storage of spent nuclear fuel. In Russia, the use of dry storage in casks will be the primary spent nuclear fuel storage option for the next twenty years. The cask for spent nuclear fuel must be applied for licensing by Gosatomnadzor for both storage and transportation. There are a number of regulations for transportation and storage of spent nuclear fuel in Russia. Up to now, there are no special regulations for dry storage of spent nuclear fuel. Such regulations will be prepared up to the end of 1998. Principally, it will be required that only type B(U)F, packages can be used for interim storage of spent nuclear fuel. Recently, there are two dual-purpose cask designs under consideration in Russia. One of them is the CONSTOR steel concrete cask, developed in Russia (NPO CKTI) under the leadership of GNB, Germany. The other cask design is the TUK-104 cask of KBSM, Russia. Both cask types were designed for spent nuclear RBMK fuel. The CONSTOR steel concrete cask was designed to be in full compliance with both Russian and IAEA regulations for transport of packages for radioactive material. The evaluation of the design criteria by Russian experts for the CONSTOR steel concrete cask project was performed at a first stage of licensing (1995 - 1997). The CONSTOR cask design has been assessed (strength analysis, thermal physics, nuclear physics and others) by different Russian experts. To show finally the compliance of the CONSTOR steel concrete cask with Russian and IAEA regulations, six drop tests have been performed with a 1:2 scale model manufactured in Russia. A test report was prepared. The test results have shown that the CONSTOR cask integrity is guaranteed under both transport and storage accident conditions. The final stage of the certification procedure

  15. Development of Integrity Evaluation Technology for the Long-term Spent Fuel Dry Storage System (1st year Report)

    International Nuclear Information System (INIS)

    Choi, Jong Won; Kook, Dong Hak; Kim, Jun Sub

    2010-05-01

    Korea has operated 16 Pressurized Water Reactors(PWR) and has a plan to construct additional nuclear power reactors as only PWR. This causes a big issue of PWR spent fuel accumulation problem now and in the future. KRMC(Korea Radioactive waste Management Coorporation) which was established in 2009 is charged with managing all kinds of radioactive waste that is produced in Korea. KRMC is considering spent fuel dry storage as an option to solve this spent fuel problem and developing the related engineering techniques. KAERI(Korea Atomic Energy Research Institute) also participated in this development and focused on evaluating the spent fuel dry storage system integrity for a long term operation. This report is the first year research product. The aims of the first year work scope are surveying and analyzing models which could anticipate degradation phenomena of the all dry storage components(spent fuel, structure materials, and equipment materials) and selecting items of the tests which are planned to perform in the next project stage. The major work areas consist of 'spent fuel degradation evaluation model development', 'test senario development', 'long-term evaluation of structural material characteristics', and 'dry storage system structure degradation model development'. These works were successfully achieved. This report is expected to contribute for the second year work which includes degradation model development and test senario development, and next project stage

  16. Comparison of wet and dry storage of spent nuclear fuels

    International Nuclear Information System (INIS)

    Soederman, E.

    1998-06-01

    Technologies for interim storage of spent nuclear fuels are reviewed. Pros and cons of wet and dry storage are discussed. No conclusions about preferences for one or the other technologies can be made

  17. Assessment of nitrogen as an atmosphere for dry storage of spent LWR fuel

    International Nuclear Information System (INIS)

    Gilbert, E.R.; Knox, C.A.; White, G.D.

    1985-09-01

    Interim dry storage of spent light-water reactor (LWR) fuel is being developed as a licensed technology in the United States. Because it is anticipated that license agreements will specify dry storage atmospheres, the behavior of spent LWR fuel in a nitrogen atmosphere during dry storage was investigated. In particular, the thermodynamics of reaction of nitrogen compounds (expected to form in the cover gas during dry storage) and residual impurities (such as moisture and oxygen) with Zircaloy cladding and with spent fuel at sites of cladding breaches were examined. The kinetics of reaction were not considered it was assumed that the 20 to 40 years of interim dry storage would be sufficient for reactions to proceed to completion. The primary thermodynamics reactants were found to be NO 2 , N 2 O, H 2 O 2 , and O 2 . The evaluation revealed that the limited inventories of these reactants produced by the source terms in hermetically sealed dry storage systems would be too low to cause significant spent fuel degradation. Furthermore, the oxidation of spent fuel to degrading O/U ratios is unlikely because the oxidation potential in moist nitrogen limits O/U ratios to values less than UO/sub 2.006/ (the equilibrium stoichiometric form in equilibrium with moist nitrogen). Tests were performed with bare spent UO 2 fuel and nonirradiated UO 2 pellets (with no Zircaloy cladding) in a nitrogen atmosphere containing moisture concentrations greater than encountered under dry storage conditions. These tests were performed for at least 1100 h at temperatures as high as 380 0 C, where oxidation reactions proceed in a matter of minutes. No visible degradation was detected, and weight changes were negligible

  18. Creep and shrinkage analysis for concrete spent fuel dry storage module

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)], E-mail: zhangd@aecl.ca

    2009-07-01

    CANDU reactors are designed in Canada and are built and operated worldwide to produce electricity economically with no emission of green house gases. This paper presents creep and shrinkage analysis for a concrete spent fuel dry storage module of a CANDU nuclear power plant. Creep and shrinkage analysis was performed using a method outlined in American Concrete Institute (ACI) code, and then the creep and shrinkage strains were analyzed in a finite element model to obtain the structural behavior of the concrete module. This demonstrated that the creep and shrinkage analysis for concrete spent fuel dry storage is reasonable. AECL's spent fuel dry storage module is adequate to resist the time-dependent effects due to creep and shrinkage of concrete. (author)

  19. Creep and shrinkage analysis for concrete spent fuel dry storage module

    International Nuclear Information System (INIS)

    Zhang, D.

    2009-01-01

    CANDU reactors are designed in Canada and are built and operated worldwide to produce electricity economically with no emission of green house gases. This paper presents creep and shrinkage analysis for a concrete spent fuel dry storage module of a CANDU nuclear power plant. Creep and shrinkage analysis was performed using a method outlined in American Concrete Institute (ACI) code, and then the creep and shrinkage strains were analyzed in a finite element model to obtain the structural behavior of the concrete module. This demonstrated that the creep and shrinkage analysis for concrete spent fuel dry storage is reasonable. AECL's spent fuel dry storage module is adequate to resist the time-dependent effects due to creep and shrinkage of concrete. (author)

  20. Corrosion issues in the long term storage of aluminum-clad spent nuclear fuels

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.; Peacock, H.B. Jr.; Sindelar, R.L.; Iyer, N.C.

    1996-01-01

    Approximately 8% of the spent nuclear fuel owned by the US Department of Energy is clad with aluminum alloys. The spent fuel must be either reprocessed or temporarily stored in wet or dry storage systems until a decision is made on final disposition in a repository. There are corrosion issues associated with the aluminum cladding regardless of the disposition pathway selected. This paper discusses those issues and provides data and analysis to demonstrate that control of corrosion induced degradation in aluminum clad spent fuels can be achieved through relatively simple engineering practices

  1. Safety Test Report for the SNF Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Seo, K. S.; Lee, J. H.; Lee, J. C.; Choi, W. S

    2008-11-15

    This is technical report conducted by KAERI under the contract with NETEC for safety test for the PWR S/F dry storage system. Leak Test was performed after drop test and turn-over test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the dry storage system is maintained. In the seismic test, the moving of the model was measured at SRTH seismic response of 0.4 g and 0.8 g. Therefore the seismic test results can be used fully to the test data for verification of the seismic analysis. In the thermal test, the direction of the inlet and outlet of the air has no effect on the heat transfer performance. The passive heat removal system of the horizontal storage module was designed well.

  2. Long term integrity of spent fuel and construction materials for dry storage facilities

    Energy Technology Data Exchange (ETDEWEB)

    Saegusa, T [CRIEPI (Japan)

    2012-07-01

    In Japan, two dry storage facilities at reactor sites have already been operating since 1995 and 2002, respectively. Additionally, a large scale dry storage facility away from reactor sites is under safety examination for license near the coast and desired to start its operation in 2010. Its final storage capacity is 5,000tU. It is therefore necessary to obtain and evaluate the related data on integrity of spent fuels loaded into and construction materials of casks during long term dry storage. The objectives are: - Spent fuel rod: To evaluate hydrogen migration along axial fuel direction on irradiated claddings stored for twenty years in air; To evaluate pellet oxidation behaviour for high burn-up UO{sub 2} fuels; - Construction materials for dry storage facilities: To evaluate long term reliability of welded stainless steel canister under stress corrosion cracking (SCC) environment; To evaluate long term integrity of concrete cask under carbonation and salt attack environment; To evaluate integrity of sealability of metal gasket under long term storage and short term accidental impact force.

  3. Welding issues associated with design, fabrication and loading of spent fuel storage casks

    International Nuclear Information System (INIS)

    Battige, C.K. Jr.; Howe, A.G.; Sturz, F.C.

    1999-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has observed a number of welding issues associated with design, fabrication, and loading of spent fuel storage casks. These emerging welding-related issues involving a certain dry cask storage system have challenged the safety basis for which NRC approved the casks for storage of spent nuclear fuel. During closure welding, problems have been encountered with cracking. Although the cracks have been attributed to several causes including material suitability, joint restraint and residual stresses, NRC believes hydrogen-induced cracking is the most likely explanation. In light of these cracking events and the potential for flaws in any welding process, NRC sought verification of the corrective actions and the integrity of the lid closure welds before allowing additional casks to be loaded. As a result, the affected utility companies modified the closure welding procedures and developed an acceptable ultrasonic inspection (UT) method. In addition, the casks already loaded at three power reactor sites will require additional non-destructive examinations (NDE) to determine their suitability for continued use. NRC plans to evaluate the generic implications of this issue for current designs and for those in the licensing process. (author)

  4. Dry spent fuel storage experience at overseas nuclear stations focus USA

    International Nuclear Information System (INIS)

    Bradley, T. L.; Kumar, S.; Marcelli, D. G.

    1997-01-01

    This paper provides a summary of US dry spent fuel storage experience, including application of this experience outside the United States. Background information on the US nuclear and spent fuel storage industry is provided as a basis for discussing the various types of options and systems available. An overview of technology options is presented, including systems being used and/or considered by the US government and private sector, as well as a discussion of overall system design, licensing and operation. Factors involved in selecting the best available technology option for a specific site or group of sites are presented, along with a typical timeline for project implementation. Cross-geographical use of technologies under different regulatory and technological regimes is also discussed. The paper concludes that dry storage is safe and reliable based on a successful ten year period. The information presented may be considered for use in the development of dry spent fuel storage in Korea and other countries. (author)

  5. Modeling of dimensional changes of spent WWER fuel rods during dry storage

    International Nuclear Information System (INIS)

    Aliev, T.; Evdokimov, I.; Likhanskii, V.; Sorokin, A.; Kolesnik, M.; Kozhakin, A.; Zborovskii, V.; Zvir, E.; Ilyin, P.

    2015-01-01

    The engineering model of anisotropic creep is developed to predict the behavior of WWER fuel rods in dry storage of spent fuel. The model considers several deformation mechanisms, the main one being the dislocation creep. The effects of radiation defects accumulation and its partial annealing during storage, as well as work hardening are taken into account. Based on the available experimental data preliminary verification of the developed model is performed. The model adequately describes the data set used. Conditions of experiments conducted up to date are more severe in temperature and stresses than ones in dry storage. It is shown that in dry storage additional deformation mechanisms play an important role. One such mechanism is the creep induced by temperature cycling that occurs during the experiments. Thermal cycles produce internal stresses caused by thermal expansion anisotropy in α-Zr crystallites. This mechanism makes a significant contribution to the experimentally measured strain at stresses characteristic for spent fuel claddings. Additional experimental research is planned to expand the range of Verification Matrix to the prototype conditions for dry storage and to improve prediction accuracy of the model. (author)

  6. Quality of second season soybean submitted to drying and storage

    Directory of Open Access Journals (Sweden)

    Cesar Pedro Hartmann Filho

    2016-09-01

    Full Text Available Drying agricultural products reduces the moisture content to suitable levels for storage, in order to maintain the product quality. However, special care with the temperatures applied in the process is important for the integrity and longevity of the material. The present study aimed at determining the immediate and latent effect of air-drying temperatures on the quality of soybean produced as a second season crop. The grains were collected at the R8 stage, close to the physiological maturity, with moisture content of approximately 23 % (w.b., submitted to drying temperatures of 40 ºC, 50 ºC, 60 ºC, 70 ºC and 80 ºC, up to a moisture content of 12.5 ± 0.7 % (w.b., and then stored under non-controlled humidity and temperature for 180 days. Thereafter, quality was assessed every 45 days by determining the dry matter loss, color and crude protein and lipid contents, as well as the acidity and peroxide indices of the crude oil extracted. Based on the results obtained, it was concluded that the increase in the air-drying temperature affects the soybean quality and crude oil extracted, being this effect enhanced with the storage time; the soybean and crude oil quality decline with an increase in the air-drying temperature and storage time; the air temperature of 40 ºC has the least effect on the quality of soybean grains and crude oil extracted.

  7. Storage properties of gamma-irradiated semi-dried fish varieties

    International Nuclear Information System (INIS)

    Vinh, P.Q.; Alur, M.D.; Nair, P.M.

    1993-01-01

    Several varieties of semi-dried unirradiated and irradiated (1 and 3 kGy) fish, namely, anchovies (Stolephorus commersonii), Bombay duck (Harpodon nehereus), shrimp (Penaeus indicus) and Vietnam scad (Alepes mate) were stored at ambient temperature (26 degree C). During the course of storage, quality characteristics such as total bacterial count (TBC), mould count and biochemical indices of freshness were studied. These studies indicated that initial TBC of semi-dried fish varied from 700-5400 cfu per g of fish, while mould could ranged from 27-1500 cfu per g. However, upon irradiation at 3 kGy, initial bacterial load was considerably reduced. Vietnam scad was not contaminated with mould after 3-5 months of storage at room temperature. Indices such as TVA and TVBN increased during storage at room temperature for both unirradiated and irradiated samples

  8. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  9. Practice for dosimetry for a self-contained dry-storage gamma-ray irradiator

    International Nuclear Information System (INIS)

    2002-01-01

    This practice outlines dosimetric procedures to be followed with self-contained dry-storage gamma-ray irradiators. If followed, these procedures will help to ensure that calibration and testing will be carried out with acceptable precision and accuracy and that the samples processed with ionizing radiation from gamma rays in a self-contained dry-storage irradiator receive absorbed doses within a predetermined range. This practice covers dosimetry in the use of dry-storage gamma-ray irradiators, namely self-contained dry storage 137 Cs or 60 Co irradiators (shielded free-standing irradiators). It does not cover underwater pool sources, panoramic gamma-ray sources such as those raised mechanically or pneumatically to irradiate isotropically into a room or through a collimator, nor does it cover self-contained bremsstrahlung x-ray units. The absorbed dose range for the use of the dry-storage self-contained gamma-ray irradiators covered by this practice is typically 1 to 10 5 Gy, depending on the application. The absorbed-dose rate range typically is from 10 -2 to 10 3 Gy/min. This practice describes general procedures applicable to all self-contained dry-storage gamma-ray irradiators. For procedures specific to dosimetry in blood irradiation, see ISO/ ASTM Practice 51939. For procedures specific to dosimetry in radiation research on food and agricultural products, see ISO/ASTM Practice 51900. For procedures specific to radiation hardness testing, see ASTM Practice E 1249. For procedures specific to the dosimetry in the irradiation of insects for sterile release programs, see ISO/ASTM Guide 51940. In those cases covered by ISO/ASTM Practices 51939, 51900, 51940, or ASTM E 1249, those standards take precedence. In addition, this practice does not cover absorbed-dose rate calibrations of radiation protection instrumentation

  10. Bruce used fuel dry storage project evolution from Pickering to Bruce

    International Nuclear Information System (INIS)

    Young, R.E.

    1996-01-01

    Additional fuel storage capacity is required at Bruce Nuclear Generating Station, which otherwise would soon fill up all its pool storage capacity. The recommended option was to use a dry storage container similar to that at Pickering. The changes made to the Pickering type of container included: fuel to be stored in trays; the container's capacity increased to 600 bundles; the container's lid to be changed to a metal one; the single concrete lid to be changed to a double metal lid system; the container not to be transportable; the container would be dry-loaded. 7 figs

  11. Bruce used fuel dry storage project evolution from Pickering to Bruce

    Energy Technology Data Exchange (ETDEWEB)

    Young, R E [Ontario Hydro, Tiverton, ON (Canada). Bruce Nuclear Generating Station-A

    1997-12-31

    Additional fuel storage capacity is required at Bruce Nuclear Generating Station, which otherwise would soon fill up all its pool storage capacity. The recommended option was to use a dry storage container similar to that at Pickering. The changes made to the Pickering type of container included: fuel to be stored in trays; the container`s capacity increased to 600 bundles; the container`s lid to be changed to a metal one; the single concrete lid to be changed to a double metal lid system; the container not to be transportable; the container would be dry-loaded. 7 figs.

  12. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage

    Science.gov (United States)

    Quintana, Gabriel; Gerbino, Esteban; Gómez-Zavaglia, Andrea

    2017-01-01

    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum. Considering that okara is an agro-waste obtained in large quantities, these results represent an

  13. Equipment designs for the spent LWR fuel dry storage demonstration

    International Nuclear Information System (INIS)

    Steffen, R.J.; Kurasch, D.H.; Hardin, R.T.; Schmitten, P.F.

    1980-01-01

    In conjunction with the Spent Fuel Handling and Packaging Program (SFHPP) equipment has been designed, fabricated and successfully utilized to demonstrate the packaging and interim dry storage of spent LWR fuel. Surface and near surface storage configurations containing PWR fuel assemblies are currently on test and generating baseline data. Specific areas of hardware design focused upon include storage cell components and the support related equipment associated with encapsulation, leak testing, lag storage, and emplacement operations

  14. Studies and research concerning BNFP: spent fuel dry storage studies at the Barnwell Nuclear Fuel Plant

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1980-09-01

    Conceptual designs are presented utilizing the Barnwell Nuclear Fuel Plant for the dry interim storage of spent light water reactor fuel. Studies were conducted to determine feasible approaches to storing spent fuel by methods other than wet pool storage. Fuel that has had an opportunity to cool for several years, or more, after discharge from a reactor is especially adaptable to dry storage since its thermal load is greatly reduced compared to the thermal load immediately following discharge. A thermal analysis was performed to help in determining the feasibility of various spent fuel dry storage concepts. Methods to reject the heat from dry storage are briefly discussed, which include both active and passive cooling systems. The storage modes reviewed include above and below ground caisson-type storage facilities and numerous variations of vault, or hot cell-type, storage facilities

  15. Storage mite contamination of commercial dry dog food in south-eastern Australia.

    Science.gov (United States)

    Hibberson, C E; Vogelnest, L J

    2014-06-01

    To evaluate contamination of unopened and opened stored sources of commercial dry dog food by viable storage mites. Prospective laboratory and field study. Samples were collected from nine brands of previously unopened bags (new bags) of dry food and 20 field sources of stored dry food in homes in Sydney and Canberra, Australia. All samples were initially examined for the presence of mites using a stereo-binocular microscope and then placed in separate filter-paper-sealed containers. Field samples were incubated at an average temperature of 29°C and 78% relative humidity (RH) for 5 weeks and then at average 26°C/83% RH for 8 weeks. Paired new-bag samples were stored under room conditions (average 23°C/47% RH) and controlled incubator conditions (average 26°C/80% RH) for 6 weeks. All samples were thoroughly examined for mites, mite eggs and visible mould once weekly using a stereo-binocular microscope. Storage mites were not visualised in any of the field samples or in new-bag samples stored at room temperature. Storage mites, identified as Tyrophagus putrescentiae, were visualised in increasing numbers in seven of nine new-bag samples after incubation, with first mites and then eggs evident after 3 weeks of incubation. We confirmed the presence of viable storage mites in a range of previously unopened commercial dry dog foods in Australia and confirmed the possibility of heavy storage mite contamination for dry food stored under conditions of moderate temperature and high humidity. These findings have relevance to storage mite and/or dust mite sensitivity in canine atopic dermatitis. © 2014 Australian Veterinary Association.

  16. Spent Fuel Transfer to Dry Storage Using Unattended Monitoring System

    International Nuclear Information System (INIS)

    Park, Jae Hwan; Park, Soo Jin

    2009-01-01

    There are 4 CANDU reactors at Wolsung site together with a spent fuel dry storage associated with unit 1. These CANDU reactors, classified as On-Load Reactor (OLR) for Safeguards application, change 16- 24 fuel bundles with fresh fuel in everyday. Especially, the spent fuel bundles are transferred from spent fuel bays to dry storage throughout a year because of the insufficient capacity of spent fuel pond. Safeguards inspectors verify the spent fuel transfer to meet safeguards purposes according to the safeguards criteria by means of inspector's presence during the transfer campaign. For the verification, 60-80 person-days of inspection (PDIs) are needed during approximately 3 months for each unit. In order to reduce the inspection effort and operators' burden, an Unattended Monitoring System (UMS) was designed and developed by the IAEA for the verification of spent fuel bundles transfers from wet storage to dry storage. Based on the enhanced cooperation of CANDU reactors between the ROK and the IAEA, the IAEA installed the UMS at Wolsung unit 2 in January 2005 at first. After some field trials during the transfer campaign, this system is being replaced the traditional human inspection since September 1, 2006 combined with a Short Notice Inspection (SNI) and a near-real time Mailbox Declaration

  17. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    International Nuclear Information System (INIS)

    Sabourin, G.

    1998-01-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  18. Basic Considerations for Dry Storage of Spent Nuclear Fuels and Revisited CFD Thermal Analysis on the Concrete Cask

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jae Soo [ACT Co. Ltd., Daejeon (Korea, Republic of); Park, Younwon; Song, Sub Lee [BEES Inc., Daejeon (Korea, Republic of); Kim, Hyeun Min [KAIST, Daejeon (Korea, Republic of)

    2016-10-15

    The integrity of storage facility and also of the spent nuclear fuel itself is considered very important. Storage casks can be located in a designated area on a site or in a designated storage building. A number of different designs for dry storage have been developed and used in different countries. Dry storage system was classified into two categories by IAEA. One is container including cask and silo, the other one is vault. However, there is various way of categorization for dry storage system. Dry silo and cask are usually classified separately, so the dry storage system can be classified into three different types. Furthermore, dry cask storage can be categorized into two types based on the type of the materials, concrete cask and metal cask. In this paper, the design characteristics of dry storage cask are introduced and computational fluid dynamics (CFD) based thermal analysis for concrete cask is revisited. Basic principles for dry storage cask design were described. Based on that, thermal analysis of concrete dry cask was introduced from the study of H. M. Kim et al. From the CFD calculation, the temperature of concrete wall was maintained under the safety criteria. From this fundamental analysis, further investigations are expected. For example, thermal analysis on the metal cask, thermal analysis on horizontally laid spent nuclear fuel assemblies for transportation concerns, and investigations on better performance of natural air circulation in dry cask can be promising candidates.

  19. Basic Considerations for Dry Storage of Spent Nuclear Fuels and Revisited CFD Thermal Analysis on the Concrete Cask

    International Nuclear Information System (INIS)

    Noh, Jae Soo; Park, Younwon; Song, Sub Lee; Kim, Hyeun Min

    2016-01-01

    The integrity of storage facility and also of the spent nuclear fuel itself is considered very important. Storage casks can be located in a designated area on a site or in a designated storage building. A number of different designs for dry storage have been developed and used in different countries. Dry storage system was classified into two categories by IAEA. One is container including cask and silo, the other one is vault. However, there is various way of categorization for dry storage system. Dry silo and cask are usually classified separately, so the dry storage system can be classified into three different types. Furthermore, dry cask storage can be categorized into two types based on the type of the materials, concrete cask and metal cask. In this paper, the design characteristics of dry storage cask are introduced and computational fluid dynamics (CFD) based thermal analysis for concrete cask is revisited. Basic principles for dry storage cask design were described. Based on that, thermal analysis of concrete dry cask was introduced from the study of H. M. Kim et al. From the CFD calculation, the temperature of concrete wall was maintained under the safety criteria. From this fundamental analysis, further investigations are expected. For example, thermal analysis on the metal cask, thermal analysis on horizontally laid spent nuclear fuel assemblies for transportation concerns, and investigations on better performance of natural air circulation in dry cask can be promising candidates

  20. The cascad spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Guay, P.; Bonnet, C.

    1991-01-01

    France has a wide variety of experimental spent fuels different from LWR spent fuel discharged from commercial reactors. Reprocessing such fuels would thus require the development and construction of special facilities. The French Atomic Energy Commission (CEA) has consequently opted for long-term interim storage of these spent fuels over a period of 50 years. Comparative studies of different storage concepts have been conducted on the basis of safety (mainly containment barriers and cooling), economic, modular design and operating flexibility criteria. These studies have shown that dry storage in a concrete vault cooled by natural convection is the best solution. A research and development program including theoretical investigations and mock-up tests confirmed the feasibility of cooling by natural convection and the validity of design rules applied for fuel storage. A facility called CASCAD was built at the CEA's Cadarache Nuclear Research Center, where it has been operational since mid-1990. This paper describes the CASCAD facility and indicates how its concept can be applied to storage of LWR fuel assemblies

  1. Dry storage of spent fuel

    International Nuclear Information System (INIS)

    Jeffrey, R.

    1993-01-01

    Scottish Nuclear's plans to build and operate dry storage facilities at each of its two nuclear power station sites in Scotland are explained. An outline of where waste materials arise as part of the operation and decommissioning of nuclear power stations, the volumes for each category of high-, intermediate-and low-level wastes and the costs involved are given. The present procedure for the spent fuels from Hunterston-B and Torness stations is described and Scottish Nuclear's aims of driving output up and costs down are studied. (UK)

  2. Lipid oxidative changes in traditional dry fermented sausage Petrovská klobása during storage

    Directory of Open Access Journals (Sweden)

    Šojić Branislav V.

    2014-01-01

    Full Text Available The influence of drying and ripeninig conditions (traditional and industrial in the production of dry fermented sausage Petrovská klobása, on fatty-acid composition and oxidative changes in lipids, during 7 months of storage, was investigated. During the storage period, the sum of unsaturated fatty acids and the content of free fatty acids were significantly higher (p<0.05, while the content of malondialdehyde was significantly lower in the sausage subjected to traditional conditions of drying and ripening. At the end of the storage period, contents of pentanal and hexanal in the sausage subjected to traditional conditions of drying and ripening (4.03 μg/g and 1.67 μg/g, respectively were significantly lower (p<0.05 in comparison with these contents in the sausage subjected to industrial conditions of drying and ripening. Traditional conditions of drying and ripening at lower temperatures have led to lower oxidative changes in lipids in traditional dry fermented sausage Petrovská klobása during storage period. [Projekat Ministarstva nauke Republike Srbije, br. TR31032

  3. Suggestion on the safety classification of spent fuel dry storage in China’s pressurized water reactor nuclear power plant

    Science.gov (United States)

    Liu, Ting; Qu, Yunhuan; Meng, De; Zhang, Qiaoer; Lu, Xinhua

    2018-01-01

    China’s spent fuel storage in the pressurized water reactors(PWR) is stored with wet storage way. With the rapid development of nuclear power industry, China’s NPPs(NPPs) will not be able to meet the problem of the production of spent fuel. Currently the world’s major nuclear power countries use dry storage as a way of spent fuel storage, so in recent years, China study on additional spent fuel dry storage system mainly. Part of the PWR NPP is ready to apply for additional spent fuel dry storage system. It also need to safety classificate to spent fuel dry storage facilities in PWR, but there is no standard for safety classification of spent fuel dry storage facilities in China. Because the storage facilities of the spent fuel dry storage are not part of the NPP, the classification standard of China’s NPPs is not applicable. This paper proposes the safety classification suggestion of the spent fuel dry storage for China’s PWR NPP, through to the study on China’s safety classification principles of PWR NPP in “Classification for the items of pressurized water reactor nuclear power plants (GB/T 17569-2013)”, and safety classification about spent fuel dry storage system in NUREG/CR - 6407 in the United States.

  4. Post-Irradiation Examinations for Resolving Fuel Issues in Long Term Storage

    International Nuclear Information System (INIS)

    Karlsson, Joakim K.H.; Alvarez Holston, Anna-Maria

    2014-01-01

    In many countries extended long term dry storage is the solution for storage of spent nuclear fuel for the foreseeable future. The expected storage times have increased over the last years and today storage times of up to 300 years is anticipated. With such long storage times, requirements on transportability and retrievability of the fuel have become more important. Hitherto most investigations on fuel behaviour during dry storage have been focused on cladding creep and the impact of hydrogen and hydrides in the cladding. Creep data gives input to creep models and creep to rupture data helps to set criteria for maximum allowable internal rod pressure. Hydrides lower the ductility of the cladding and this is more pronounced with radially oriented hydrides. As the temperature decreases over time in a dry storage cask dissolved hydrogen will precipitate forming hydrides in addition to hydrides already present. Assuming there is sufficient hoop stress in the cladding, the new hydrides would be radially oriented. Together with lost ductility Delayed Hydride Cracking (DHC) could be a potential mechanism for rod failure over tens of years of dry storage as the temperature drops from about 350 deg. C to 150 deg. C. Hydride embrittlement and the DHC mechanism have been studied in the first Studsvik Cladding Integrity Project (SCIP), although the focus in this program has mainly been on higher temperatures relevant for operating conditions rather than on dry storage conditions. In addition to the mechanisms mentioned there are other failure mechanisms that could potentially threaten the cladding fuel integrity and retrievability. In case there is residual water or moisture available in the cask, or even in the fuel due to existing fuel failures, radiolysis gives free hydrogen and oxygen. In failed fuel this may cause fuel oxidation and swelling affecting fuel integrity. The hydrogen gas pressure will not threaten the cask but be available for cladding uptake. Furthermore

  5. Improved Food Drying and Storage Training Manual.

    Science.gov (United States)

    Zweig, Peter R.; And Others

    This manual is intended to serve as a guide for those who are helping future Peace Corps volunteers to acquire basic food drying and storage skills. Included in the guide are lesson outlines and handouts for use in each of the 30 sessions of the course. Representative topics discussed in the individual sessions are scheduling, solar dryers,…

  6. Protocols for dry DNA storage and shipment at room temperature.

    Science.gov (United States)

    Ivanova, Natalia V; Kuzmina, Masha L

    2013-09-01

    The globalization of DNA barcoding will require core analytical facilities to develop cost-effective, efficient protocols for the shipment and archival storage of DNA extracts and PCR products. We evaluated three dry-state DNA stabilization systems: commercial Biomatrica(®) DNAstable(®) plates, home-made trehalose and polyvinyl alcohol (PVA) plates on 96-well panels of insect DNA stored at 56 °C and at room temperature. Controls included unprotected samples that were stored dry at room temperature and at 56 °C, and diluted samples held at 4 °C and at -20 °C. PCR and selective sequencing were performed over a 4-year interval to test the condition of DNA extracts. Biomatrica(®) provided better protection of DNA at 56 °C and at room temperature than trehalose and PVA, especially for diluted samples. PVA was the second best protectant after Biomatrica(®) at room temperature, whereas trehalose was the second best protectant at 56 °C. In spite of lower PCR success, the DNA stored at -20 °C yielded longer sequence reads and stronger signal, indicating that temperature is a crucial factor for DNA quality which has to be considered especially for long-term storage. Although it is premature to advocate a transition to DNA storage at room temperature, dry storage provides an additional layer of security for frozen samples, protecting them from degradation in the event of freezer failure. All three forms of DNA preservation enable shipment of dry DNA and PCR products between barcoding facilities. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.

  7. Operating experience of vault type dry storage and its relevance to future storage needs

    International Nuclear Information System (INIS)

    Maxwell, E.O.; Deacon, D.

    1982-01-01

    An outline description of the early passive cooled vault type dry stores for irradiated magnox fuel at the Wylfa Nuclear Power Station together with the valuable operating experience gained over many years. An outline description of the world's first air-cooled vault type dry store (350 Te) and comments on its construction and successful operation. A description of the basic principles that were used in the design of this store and how these principles have been developed for use on vault type storage systems for oxide fuel and vitrified waste. An examination of the basic parameters that the author's consider should be used to measure the adequacy of the many storage options currently being considered around the world is included in order that a better assessment of the various systems may be obtained

  8. Commercial solutions [for dry spent fuel storage casks

    International Nuclear Information System (INIS)

    Howe, W.F.; Pennington, C.W.; Hobbs, J.; Lee, W.; Thomas, B.D.; Dibert, D.J.

    1996-01-01

    In the aftermath of the termination of the DOE's MPC (Multi-Purpose Canister) programme, commercial suppliers are coming forward with new or updated systems to meet utility needs. Leading vendors describe the advantages of their systems for dry spent fuel storage and transport. (Author)

  9. Legal and regulatory issues affecting compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, P.L.

    1981-07-01

    Several regulatory and legal issues that can potentially affect implementation of a compressed air energy storage (CAES) system are discussed. This technology involves the compression of air using base load electric power for storage in an underground storage medium. The air is subsequently released and allowed to pass through a turbine to generate electricity during periods of peak demand. The storage media considered most feasible are a mined hard rock cavern, a solution-mined cavern in a salt deposit, and a porous geologic formation (normally an aquifer) of suitable structure. The issues are discussed in four categories: regulatory issues common to most CAES facilities regardless of storage medium, regulatory issues applicable to particular CAES reservoir media, issues related to possible liability from CAES operations, and issues related to acquisition of appropriate property rights for CAES implementation. The focus is on selected federal regulation. Lesser attention is given to state and local regulation. (WHK)

  10. Analyses of expected rod performance during the dry storage of spent fuel

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1982-08-01

    Within the next ten years, a number of utilities will be forced to increase their interim spent-fuel-storage capability or face the loss of full-core reserve. Dry storage is being considered to fill this need. This paper analyzes the fuel-rod-performance data supporting dry storage and discusses areas where there are still outstanding questions. Three storage temperature ranges (T 0 C, 250 0 C 0 C and T > 400 0 C), two atmospheres (inert, unlimited air) and two initial fuel-rod conditions (intact, breached) are considered. It is concluded that a fuel-performance data base exists that indicates that storage below 250 0 C can be accomplished with long-term fuel pellet and cladding stability. At higher temperatures, analytic studies and laboratory experiments are needed especially to extrapolate and interpret the result of demonstration tests. 2 figures, 2 tables

  11. Improvement of hygienic quality and long-term storage of dried red pepper by gamma irradiation

    International Nuclear Information System (INIS)

    Byun, M.W.; Yook, H.S.; Kwon, J.H.; Kim, J.O.

    1996-01-01

    Dried-red pepper, whole and powdered types, was subjected to a storage-study by investigation the effects of packaging methods (polycloth & polyethylene/polycloth, whole dried-red pepper; nylon/polyethylene-lam-inated film, red pepper powder), temperature and gamma irradiation doses (0-10 kGy). After 6 months storage in polyclith sack at ambient temperature, all whole dried-red pepper showed quality deterioration, such as weight change, insect infestation, discoloration and chemical changes, After 2 years storage in combined packaging with polyethylene/polycloth sack of 5-7.5 kGy irradiated whole dried-red pepper at ambient temperature, however, quality deterioration was not observed. Gamma-irradiated red pepper powder (7.5-10kGy) showed a good quality in hygienic, physicochemical and organoleptic evaluation after 2 years of storage at ambient temperature

  12. MICROBIOLOGICAL QUALITY ASSESSMENT OF DRIED YAM CHIPS (Dioscorea rotundata DURING STORAGE

    Directory of Open Access Journals (Sweden)

    Patricia F. Omojasola

    2013-12-01

    Full Text Available Microbiological and physico-chemical analyses of dried yam chips (gbodo retailed in four markets in Ilorin and its environs alongside a laboratory – prepared control were carried out over a six month period. Microbiological assay consisted of total viable and coliform counts as well as microbial isolation. A total of 11 fungi and 5 bacteria were isolated from the different samples which included Acremonium sp., Aspergillus fumigatus., A. niger, A. ochraceus, Fusarium solani, Mucor hiemalis, Mucor racemosus, Penicillum notatum, Rhizopus oryzae, Rhizopus stolonifer, Syncephalastrum racemosum and Bacillus cereus, Bacillus subtilis, Erwinia carotovora, Escherichia coli and Staphylococcus aureus respectively. Total Viable Counts ranged from 3.0-120.0 cfu g-1 and coliform counts ranged from 0.00 - 18.80 cfu g-1 pre-storage to 0.10-219 cfu g-1 and 0.0-31.0 cfu g-1 post storage respectively. The physico-chemical parameters analysed were moisture content which ranged between 14.38-17.10% pre-storage to 13.43-24.96% post-storage; crude protein: 5.81-7.53% and 2.11-6.75%; crude fat: 0.35-0.71% and 0.07-0.61%; ash content: 3.30-5.18% and 1.17-4.77%; crude fibre: 0.77-1.45%; carbohydrate: 70.18-74.00% and 70.93-75.17% pre-storage and post-storage content respectively. Levels of Aflatoxin B1 were also monitored throughout the storage period. Insect infestation of the samples occurred during the storage period. Four species were identified; these were Tribolium casteneum, Dinoderus porcellus, Rhyzopertha dominica and Sitophilus zeamais. The traditional practice of open air sun-drying of yam chips should be discouraged, rather oven drying is recommended to minmize microbial contamination. In addition, sorting to exclude extreneous material and minimize mouldiness and insect infestation is suggested.

  13. Extending dry storage of spent LWR fuel for up to 100 years

    International Nuclear Information System (INIS)

    Einziger, R.E.; McKinnon, M.A.; Machiels, A.J.

    1999-01-01

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and excessive

  14. Extending dry storage of spent LWR fuel for up to 100 years

    International Nuclear Information System (INIS)

    Einziger, R. E.

    1998-01-01

    Because of delays in closing the back end of the fuel cycle in the U.S., there is a need to extend dry inert storage of spent fuel beyond its originally anticipated 20-year duration. Many of the methodologies developed to support initial licensing for 20-year storage should be able to support the longer storage periods envisioned. This paper evaluates the applicability of existing information and methodologies to support dry storage up to 100 years. The thrust of the analysis is the potential behavior of the spent fuel. In the USA, the criteria for dry storage of LWR spent fuel are delineated in 10 CFR 72 [1]. The criteria fall into four general categories: maintain subcriticality, prevent the release of radioactive material above acceptable limits, ensure that radiation rates and doses do not exceed acceptable levels, and maintain retrievability of the stored radioactive material. These criteria need to be considered for normal, off-normal, and postulated accident conditions. The initial safety analysis report submitted for licensing evaluated the fuel's ability to meet the requirements for 20 years. It is not the intent to repeat these calculations, but to look at expected behavior over the additional 80 years, during which the temperatures and radiation fields are lower. During the first 20 years, the properties of the components may change because of elevated temperatures, presence of moisture, effects of radiation, etc. During normal storage in an inert atmosphere, there is potential for the cladding mechanical properties to change due to annealing or interaction with cask materials. The emissivity of the cladding could also change due to storage conditions. If there is air leakage into the cask, additional degradation could occur through oxidation in breached rods, which could lead to additional fission gas release and enlargement of cladding breaches. Air in-leakage could also affect cover gas conductivity, cladding oxidation, emissivity changes, and

  15. Survey of wet and dry spent fuel storage

    International Nuclear Information System (INIS)

    1999-07-01

    Spent fuel storage is one of the important stages in the nuclear fuel cycle and stands among the most vital challenges for countries operating nuclear power plants. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and for coordinating and encouraging closer co-operation among Member States. Spent fuel management is recognized as a high priority IAEA activity. In 1997, the annual spent fuel arising from all types of power reactors worldwide amounted to about 10,500 tonnes heavy metal (t HM). The total amount of spent fuel accumulated worldwide at the end of 1997 was about 200,000 t HM of which about 130,000 t HM of spent fuel is presently being stored in at-reactor (AR) or away-from-reactor (AFR) storage facilities awaiting either reprocessing or final disposal and 70,000 t HM has been reprocessed. Projections indicate that the cumulative amount generated by 2010 may surpass 340,000 t HM and by the year 2015 395,000 t HM. Part of the spent fuel will be reprocessed and some countries took the option to dispose their spent fuel in a repository. Most countries with nuclear programmes are using the deferral of a decision approach, a 'wait and see' strategy with interim storage, which provides the ability to monitor the storage continuously and to retrieve the spent fuel later for either direct disposal or reprocessing. Some countries use different approaches for different types of fuel. Today the worldwide reprocessing capacity is only a fraction of the total spent fuel arising and since no final repository has yet been constructed, there will be an increasing demand for interim storage. The present survey contains information on the basic storage technologies and facility types, experience with wet and dry storage of spent fuel and international experience in spent fuel transport. The main aim is to provide spent fuel

  16. Assessment of dry storage performance of spent LWR fuel assemblies with increasing burnup

    International Nuclear Information System (INIS)

    Peehs, M.; Garzarolli, F.; Goll, W.

    1999-01-01

    Although the safety of a dry long-term spent fuel store is scarcely influenced if a few fuel rods start to leak during extended storage - since all confinement systems are designed to retain gaseous activity safely - it is a very conservative safety goal to avoid the occurrence of systematic rod defects. To assess the extended storage performance of a spent fuel assembly (FA), the experience can be collated into 3 storage modes: I - fast rate of temperature decrease δ max ≥ δ ≥ 300 deg. C, II - medium rate of decrease for the fuel rod dry storage temperature 300 deg. C > δ ≥ 200 deg. C, III - slow to negligible rate of temperature decrease for δ 2 -fuel are practically immobile during storage. Consequently all fission-product-driven defect mechanisms will not take place. The leading defect mechanism - also for fuel rods with increased burnup - remains creep due to the hoop strain resulting from the fuel rod internal fission gas pressure. Limiting the creep to its primary and secondary stages prevents fuel rod degradation. The allowable uniform strain of the cladding is 1 - 2%. Calculations were performed to predict the dry storage performance of fuel assemblies with a burnup ≤ 55 GW · d/tHM based on the fuel assemblies end of life (EOL)-data and on a representative curve T = f(t). The maximum allowable hot spot temperature of a fuel rod in the CASTOR V cask was between 348 deg. C (U FA) and 358 deg. C (MOX FA). The highest hoop strain predicted after 40 years of storage is 0.77% proving that spent LWR fuel dry storage is safe. (author)

  17. Survey of experience with dry storage of spent nuclear fuel and update of wet storage experience

    International Nuclear Information System (INIS)

    1988-01-01

    Spent fuel storage is an important part of spent fuel management. At present about 45,000 t of spent water reactor fuel have been discharged worldwide. Only a small fraction of this fuel (approximately 7%) has been reprocessed. The amount of spent fuel arisings will increase significantly in the next 15 years. Estimates indicate that up to the year 2000 about 200,000 t HM of spent fuel could be accumulated. In view of the large quantities of spent fuel discharged from nuclear power plants and future expected discharges, many countries are involved in the construction of facilities for the storage of spent fuel and in the development of effective methods for spent fuel surveillance and monitoring to ensure that reliable and safe operation of storage facilities is achievable until the time when the final disposal of spent fuel or high level wastes is feasible. The first demonstrations of final disposal are not expected before the years 2000-2020. This is why the long term storage of spent fuel and HLW is a vital problem for all countries with nuclear power programmes. The present survey contains data on dry storage and recent information on wet storage, transportation, rod consolidation, etc. The main aim is to provide spent fuel management policy making organizations, designers, scientists and spent fuel storage facility operators with the latest information on spent fuel storage technology under dry and wet conditions and on innovations in this field. Refs, figs and tabs

  18. Cell growth and resistance of Lactococcus lactis subsp. lactis TOMSC161 following freezing, drying and freeze-dried storage are differentially affected by fermentation conditions.

    Science.gov (United States)

    Velly, H; Fonseca, F; Passot, S; Delacroix-Buchet, A; Bouix, M

    2014-09-01

    To investigate the effects of fermentation parameters on the cell growth and on the resistance to each step of the freeze-drying process of Lactococcus lactis subsp. lactis TOMSC161, a natural cheese isolate, using a response surface methodology. Cells were cultivated at different temperatures (22, 30 and 38°C) and pH (5·6, 6·2 and 6·8) and were harvested at different growth phases (0, 3 and 6 h of stationary phase). Cultivability and acidification activity losses of Lc. lactis were quantified after freezing, drying, 1 and 3 months of storage at 4 and 25°C. Lactococcus lactis was not damaged by freezing but was sensitive to drying and to ambient temperature storage. Moreover, the fermentation temperature and the harvesting time influenced the drying resistance of Lc. lactis. Lactococcus lactis cells grown in a whey-based medium at 32°C, pH 6·2 and harvested at late stationary phase exhibited both an optimal growth and the highest resistance to freeze-drying and storage. A better insight on the individual and interaction effects of fermentation parameters made it possible the freeze-drying and storage preservation of a sensitive strain of technological interest. Evidence on the particularly damaging effect of the drying step and the high-temperature storage is presented. © 2014 The Society for Applied Microbiology.

  19. Dry Well Storage Facility conceptual design study

    International Nuclear Information System (INIS)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included

  20. Dry Well Storage Facility conceptual design study

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The Dry Well Storage Facility described is assumed to be located adjacent to or near a Spent Fuel Receiving and Packaging Facility and/or a Packaged Fuel Transfer Facility. Performance requirements, quality levels and codes and standards, schedule and methods of performance, special requirements, quality assurance program, and cost estimate are discussed. Appendices on major mechanical equipment and electric power requirements are included.

  1. Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Highlights: • Hybrid heat pipe was presented as a passive cooling device for dry storage cask of SNF. • A method to utilize waste heat from spent fuel was suggested using hybrid heat pipe. • CFD analysis was performed to evaluate the thermal performance of hybrid heat pipe. • Hybrid heat pipe can increase safety margin and storage capacity of the dry storage cask. - Abstract: Conventional dry storage facilities for spent nuclear fuel (SNF) were designed to remove decay heat through the natural convection of air, but this method has limited cooling capacity and a possible re-criticality accident in case of flooding. To enhance the safety and capacity of dry storage cask of SNF, hybrid heat pipe-based passive cooling device was suggested. Heat pipe is an excellent passive heat transfer device using the principles of both conduction and phase change of the working fluid. The heat pipe containing neutron absorber material, the so-called hybrid heat pipe, is expected to prevent the re-criticality accidents of SNF and to increase the safety margin during interim and long term storage period. Moreover, a hybrid heat pipe with thermoelectric module, a Stirling engine and a phase change material tank can be used for utilization of the waste heat as heat-transfer medium. Located at the guide tube or instrumentation tube, hybrid heat pipe can remove decay heat from inside the sealed metal cask to outside, decreasing fuel rod temperature. In this paper, a 2-step analysis was performed using computational fluid dynamics code to evaluate the heat and fluid flow inside a cask, which consisted of a single spent fuel assembly simulation and a full-scope dry cask simulation. For a normal dry storage cask, the maximum fuel temperature is 290.0 °C. With hybrid heat pipe cooling, the temperature decreased to 261.6 °C with application of one hybrid heat pipe per assembly, and to 195.1 °C with the application of five hybrid heat pipes per assembly. Therefore, a dry

  2. Cna 1 spent fuel element interim dry storage system thermal analysis

    International Nuclear Information System (INIS)

    Hilal, R. E; Garcia, J. C; Delmastro, D. F

    2006-01-01

    At the moment, the Atucha I Nuclear Power Plant (Cnea-I) located in the city of Lima, has enough room to store its spent fuel (Sf) in their two pools spent fuel until about 2015.In case of life extension a spend fuel element interim dry storage system is needed.Nucleolectrica Argentina S.A. (N A-S A) and the Comision Nacional de Energia Atomica (Cnea), have proposed different interim dry storage systems.These systems have to be evaluated in order to choose one of them.The present work's objective is the thermal analysis of one dry storage alternative for the Sf element of Cna 1.In this work a simple model was developed and used to perform the thermal calculations corresponding to the system proposed by Cnea.This system considers the store of sealed containers with 37 spent fuels in concrete modules.Each one of the containers is filled in the pool houses and transported to the module in a transference cask with lead walls.Fulfill the maximum cladding temperature requirement ( [es

  3. CFD Simulation of Heat and Fluid Flow for Spent Fuel in a Dry Storage

    International Nuclear Information System (INIS)

    In, Wangkee; Kwack, Youngkyun; Kook, Donghak; Koo, Yanghyun

    2014-01-01

    A dry storage system is used for the interim storage of spent fuel prior to permanent depository and/or recycling. The spent fuel is initially stored in a water pool for more than 5 years at least after dispatch from the reactor core and is transported to dry storage. The dry cask contains a multiple number of spent fuel assemblies, which are cooled down in the spent fuel pool. The dry cask is usually filled up with helium gas for increasing the heat transfer to the environment outside the cask. The dry storage system has been used for more than a decade in United States of America (USA) and the European Union (EU). Korea is also developing a dry storage system since its spent fuel pool is anticipated to be full within 10 years. The spent fuel will be stored in a dry cask for more than 40 years. The integrity and safety of spent fuel are important for long-term dry storage. The long-term storage will experience the degradation of spent fuel such as the embrittlement of fuel cladding, thermal creep and hydride reorientation. High burn-up fuel may expedite the material degradation. It is known that the cladding temperature has a strong influence on the material degradation. Hence, it is necessary to accurately predict the local distribution of the cladding temperature using the Computational Fluid Dynamics (CFD) approach. The objective of this study is to apply the CFD method for predicting the three-dimensional distribution of fuel temperature in a dry cask. This CFD study simulated the dry cask for containing the 21 fuel assemblies under development in Korea. This paper presents the fluid velocity and temperature distribution as well as the fuel temperature. A two-step CFD approach was applied to simulate the heat and fluid flow in a dry storage of 21 spent fuel assemblies. The first CFD analysis predicted the helium flow and temperature in a dry cask by a assuming porous body of the spent fuel. The second CFD analysis was to simulate a spent fuel assembly in the

  4. New developments in dry spent fuel storage

    International Nuclear Information System (INIS)

    Bonnet, C.; Chevalier, Ph.

    2001-01-01

    As shown in various new examples, HABOG facility (Netherlands), CERNAVODA (Candu - Romania), KOZLODUY (WWER - Bulgaria), CHERNOBYL ( RMBK - Ukraine), MAYAK (Spent Fuel from submarine and Icebreakers - Russia), recent studies allow to confirm the flexibility and performances of the CASCAD system proposed by SGN, both in safety and operability, for the dry storage of main kinds of spent fuel. The main features are: A multiple containment barrier system: as required by international regulation, 2 independent barriers are provided (tight canister and storage pit); Passive cooling, while the Fuel Assemblies are stored in an inert atmosphere and under conditions of temperature preventing from degradation of rod cladding; Sub-criticality controlled by adequate arrangements in any conditions; Safe facility meeting ICPR 60 Requirements as well as all applicable regulations (including severe weather conditions and earthquake); Safe handling operations; Retrievability of the spent fuel either during storage period or at the end of planned storage period (100 years); Future Decommissioning of the facility facilitated through design optimisation; Construction and operating cost-effectiveness. (author)

  5. Spent nuclear fuel integrity during dry storage - performance tests and demonstrations

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doherty, A.L.

    1997-06-01

    This report summarizes the results of fuel integrity surveillance determined from gas sampling during and after performance tests and demonstrations conducted from 1983 through 1996 by or in cooperation with the US DOE Office of Commercial Radioactive Waste Management (OCRWM). The cask performance tests were conducted at Idaho National Engineering Laboratory (INEL) between 1984 and 1991 and included visual observation and ultrasonic examination of the condition of the cladding, fuel rods, and fuel assembly hardware before dry storage and consolidation of fuel, and a qualitative determination of the effects of dry storage and fuel consolidation on fission gas release from the spent fuel rods. The performance tests consisted of 6 to 14 runs involving one or two loading, usually three backfill environments (helium, nitrogen, and vacuum backfills), and one or two storage system orientations. The nitrogen and helium backfills were sampled and analyzed to detect leaking spent fuel rods. At the end of each performance test, periodic gas sampling was conducted on each cask. A spent fuel behavior project (i.e., enhanced surveillance, monitoring, and gas sampling activities) was initiated by DOE in 1994 for intact fuel in a CASTOR V/21 cask and for consolidated fuel in a VSC-17 cask. The results of the gas sampling activities are included in this report. Information on spent fuel integrity is of interest in evaluating the impact of long-term dry storage on the behavior of spent fuel rods. Spent fuel used during cask performance tests at INEL offers significant opportunities for confirmation of the benign nature of long-term dry storage. Supporting cask demonstration included licensing and operation of an independent spent fuel storage installation (ISFSI) at the Virginia Power (VP) Surry reactor site. A CASTOR V/21, an MC-10, and a Nuclear Assurance NAC-I28 have been loaded and placed at the VP ISFSI as part of the demonstration program. 13 refs., 14 figs., 9 tabs

  6. Safety Test Report for the PWR S/F Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Seo, K. S.; Lee, J. H.; Koo, K. H.; Lee, J. C.; Choi, W. S.; Bang, K. S.; Park, H. Y.; Jang, S. Y

    2008-10-15

    This is contract report conducted by KAERI under the contract with NETEC for safety test for the PWR S/F dry storage system. Leak Test was performed after drop test and turn-over test, the measured leakage rate was lower than allowable leakage rate. It is revealed that the containment integrity of the dry storage system is maintained. In the seismic test, the moving of the model was measured at SRTH seismic response of 0.4 g and 0.8 g. Therefore the seismic test results can be used fully to the test data for verification of the seismic analysis. In the thermal test, the direction of the inlet and outlet of the air has no effect on the heat transfer performance. The passive heat removal system of the horizontal storage module was designed well.

  7. Nuclear spent fuel dry storage in the EWA reactor shaft

    International Nuclear Information System (INIS)

    Mieleszczenko, W.; Moldysz, A.; Hryczuk, A.; Matysiak, T.

    2001-01-01

    The EWA reactor was in operation from 1958 until February 1995. Then it was subjected to the decommissioning procedure. Resulting from a prolonged operation of Polish research reactors a substantial amount of nuclear spent fuel of various types, enrichment and degree of burnup have been accumulated. The technology of storage of spent nuclear fuel foresees the two stages of wet storing in a water pool (deferral period from tens to several dozens years) and dry storing (deferral period from 50 to 80 years). In our case the deferral time in the water environment is pretty significant (the oldest fuel elements have been stored in water for more than 40 years). Though the state of stored fuel elements is satisfactory, there is a real need for changing the storage conditions of spent fuel. The paper is covering the description of philosophy and conceptual design for construction of the spent fuel dry storage in the decommissioned EWA reactor shaft. (author)

  8. Neutronic and thermal hydraulic of dry cask storage systems

    International Nuclear Information System (INIS)

    Yavuz, U.

    2000-01-01

    Interim spent fuel storage systems must provide for the safe receipt, handling, retrieval and storage of spent nuclear fuel before reprocessing or disposal. In the context of achieving these objectives, the following features of the design are to be taken into consideration: to maintain fuel subcritical, to remove spent fuel residualheat, and to provide for radiation protection. These features in the design of a dry cask storage system were analyzed for normal operating conditions by employing COBRA-SFS, SCALE4.4 (ORIGEN, XSDOSE, CSAS6) codes. For a metal-shielded type storage system, appropriate designs, in accordance with safety assurance limits of IAEA, were obtained for spent fuel burned to 33000, 45000 and 55000 MW d/t and cooled for 5 and 10 years

  9. Development of technology to utilize existing tobacco kilns and/or tobacco storage barns for curing (drying) and/or storage of other crops

    Energy Technology Data Exchange (ETDEWEB)

    VanHooren, D L; Scott, J J

    1988-01-01

    This report investigates methods to utilize existing bulk tobacco kilns for curing (drying) of shelled corn, peanuts, and baled hay. In recent years Ontario tobacco producers have had to reduce production levels due to a declining demand for flue-cured tobacco. Many tobacco producers are currently diversifying into other crops. Some of these crops require curing and/or storage. Because of high capital costs to purchase conventional curing and/or storage facilities, tobacco producers wish to reduce their initial diversification costs by modifying their existing tobacco kilns (tobacco drying structures) and/or tobacco storage barns for this purpose. The investigation included high profile and low profile downdraft stick kilns, bulk kilns, and tobacco storage (pack) barns. Corn, peanuts, and hay were considered in relation to bulk kiln specifications and modifications, handling, drying and storage methods, energy requirements, cost, and quality of end product. The conclusions drawn from the study of each product are presented. Results from the projects indicate that: shelled corn can be dried from about 26% moisture content (w.b.) or less; baled hay can be dried from about 27% moisture content (w.b.) or less; and peanuts cured at airflow rates ranging from 169 to 645 l/s/m/sup 3/ of peanuts exhibited no significant differences when evaluated for appearance and flavour. 1 ref., 23 figs., 15 tabs.

  10. PBMR spent fuel bulk dry storage heat removal - HTR2008-58170

    International Nuclear Information System (INIS)

    De Wet, G. J.; Dent, C.

    2008-01-01

    A low decay heat (implying Spent Fuel (SF) pebbles older than 8-9 years) bulk dry storage section is proposed to supplement a 12-tank wet storage section. Decay heat removal by passive means must be guaranteed, taking into account the fact that dry storage vessels are under ground and inside the building footprint. Cooling takes place when ambient air (drawn downwards from ground level) passes on the outside of the 6 tanks' vessel containment (and gamma shielding), which is in a separate room inside the building, but outside PBMR building confinement and open to atmosphere. Access for loading/unloading of SF pebbles is only from the top of a tank, which is inside PBMR building confinement. No radioactive substances can therefore leak into atmosphere, as vessel design will take into account corrosion allowance. In this paper, it is shown (using CFD (Computational Fluid Dynamics) modelling and analytical analyses) that natural convection and draught induced flow combine to remove decay heat in a self-sustaining process. Decay heat is the energy source, which powers the draught inducing capability of the dry storage modular cell system: the more decay heat, the bigger the drive to expel heated air through a higher outlet and entrain cool ambient air from ground level to the bottom of the modular cell. (authors)

  11. Conceptual design and cost estimation of dry cask storage facility for spent fuel

    International Nuclear Information System (INIS)

    Maki, Yasuro; Hironaga, Michihiko; Kitano, Koichi; Shidahara, Isao; Shiomi, Satoshi; Ohnuma, Hiroshi; Saegusa, Toshiari

    1985-01-01

    In order to propose an optimum storage method of spent fuel, studies on the technical and economical evaluation of various storage methods have been carried out. This report is one of the results of the study and deals with storage facility of dry cask storage. The basic condition of this work conforms to ''Basic Condition for Spent Fuel Storage'' prepared by Project Group of Spent Fuel Dry Storage at July 1984. Concerning the structural system of cask storage facilities, trench structure system and concrete silo system are selected for storage at reactor (AR), and a reinforced concrete structure of simple design and a structure with membrance roof are selected for away from reactor (AFR) storage. The basic thinking of this selection are (1) cask is put charge of safety against to radioactivity and (2) storage facility is simplified. Conceptual designs are made for the selected storage facilities according to the basic condition. Attached facilities of storage yard structure (these are cask handling facility, cask supervising facility, cask maintenance facility, radioactivity control facility, damaged fuel inspection and repack facility, waste management facility) are also designed. Cost estimation of cask storage facility are made on the basis of the conceptual design. (author)

  12. FRAPCON analysis of cladding performance during dry storage operations

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, David J.; Geelhood, Kenneth J.

    2018-03-01

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

  13. Classification of transportation packaging and dry spent fuel storage system components according to importance to safety

    International Nuclear Information System (INIS)

    McConnell, J.W., Jr; Ayers, A.L. Jr; Tyacke, M.J.

    1996-02-01

    This report provides a graded approach for classification of components used in transportation packaging and dry spent fuel storage systems. This approach provides a method for identifying, the classification of components according to importance to safety within transportation packagings and dry spent fuel storage systems. Record retention requirements are discussed to identify the documentation necessary to validate that the individual components were fabricated in accordance with their assigned classification. A review of the existing regulations pertaining to transportation packagings and dry storage systems was performed to identify current requirements The general types of transportation packagings and dry storage systems were identified. Discussions were held with suppliers and fabricators of packagings and storage systems to determine current practices. The methodology used in this report is based on Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material. This report also includes a list of generic components for each of the general types of transportation packagings and spent fuel storage systems. The safety importance of each component is discussed, and a classification category is assigned

  14. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    Science.gov (United States)

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  15. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    Science.gov (United States)

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  16. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.

    Science.gov (United States)

    Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J

    2012-11-01

    Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.

  17. Box-Behnken analysis and storage of spray-dried collagenolytic proteases from Myceliophthora thermophila submerged bioprocess.

    Science.gov (United States)

    Hamin Neto, Youssef Ali Abou; Coitinho, Luciana Barbosa; de Freitas, Luis Alexandre Pedro; Cabral, Hamilton

    2017-05-28

    Enzymes do not have long-term storage stability in soluble forms, thus drying methods could minimize the loss of enzymatic activity, the spray dryer removes water under high temperatures and little time. The aims of this study were to improve the stability of enzymatic extract from Myceliophthora thermophila for potential applications in industry and to evaluate the best conditions to remove the water by spray drying technique. The parameters were tested according to Box-Behnken and evaluated by analysis of variance (ANOVA), all the parameters measured were found to influence the final enzyme activity and spray drying process yield ranged from 38.65 to 63.75%. Enzyme powders showed increased storage stability than extract and maintained about 100% of collagenolytic activity after 180 days of storage at 30°C. The results showed that the microbial enzymes maintained activity during the spray drying process and were stable during long-term storage; these are promising characteristics for industrial applications.

  18. Technology transfer and design conversion of a dry spent fuel storage system in Ukraine

    International Nuclear Information System (INIS)

    Peacock, R.C.; Marcelli, D.G.

    1998-01-01

    A number of unique issues surfaced in the technology transfer and design conversion of a US dry spent fuel storage technology in Ukraine. Unique challenges were encountered in the areas of nuclear design conversion, technical codes and standards, material selection and qualification, fabrication, construction and testing, quality assurance, documentation, and translation and verification processes. Technology transfer and design conversion were undertaken for both concrete and steel components for the project. The overall effort presented significant technical and cultural challenges to both the US and Ukrainian side, but technical exchange and design improvements to achieve a common goal have been reached. (author)

  19. Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)

    Energy Technology Data Exchange (ETDEWEB)

    Trond Bjornard; Philip C. Durst

    2012-05-01

    This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with

  20. Simulating thermal behavior of AECL's spent fuel dry storage system with CATHENA

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, G. [Atomic Energy of Canada Limited, Montreal, PQ (Canada)

    1998-07-01

    This paper documents the comparisons between CATHENA predictions and temperature measurements taken at the Gentilly-2 NPP spent fuel dry storage facility and in a mock--up of a storage basket placed inside a storage cylinder. It also presents CATHENA temperature predictions related to the storage of spent fuel in MACSTOR modules as planned for Ignalina NPP, Lithuania. CATHENA has been chosen because it can simulate many noncondensable gases including air and helium, and because of its great flexibility in the representation of the MACSTOR module geometry. The results of the simulations show good agreement with the experimental measurements. The two comparisons indicate that CATHENA can be used to simulate heat transfer from the fuel to the external air circuit of the spent fuel dry storage system. For the Ignalina MACSTOR module, containing RBMK fuel having higher heat release than typical CANDU fuel, CATHENA predicts that the maximum fuel temperature is expected to be around 240 deg C, giving an acceptable margin below the maximum allowed temperature of 300 deg C. In conclusion, this paper shows that the thermalhydraulic code CATHENA can accurately predict the thermal behavior AECL's air cooled spent fuel dry storage system. (author)

  1. Preliminary assessment of alternative dry storage methods for the storage of commercial spent nuclear fuel

    International Nuclear Information System (INIS)

    1981-11-01

    This report presents the results of an assessment of the (1) state of technology, (2) licensability, (3) implementation schedule, and (4) costs of alternative dry methods for storage of spent fuel at a reactor location when used to supplement reactor pool storage facilities. The methods of storage that were considered included storage in casks, drywells, concrete silos and air-cooled vaults. The impact of disassembly of spent fuel and storage of consolidated fuel rods was also determined. The economic assessments were made based on the current projected storage requirements of Virginia Electric and Power Company's Surry Station for the period 1985 to 2009, which has two operating pressurized water reactors (824 MWe each). It was estimated that the unit cost for storage of spent fuel in casks would amount to $117/kgU and that such costs for storage in drywells would amount to $137/kgU. However, based on the overall assessment it was concluded both storage methods were equal in merit. Modular methods of storage were generally found to be more economic than those requiring all or most of the facilities to be constructed prior to commencement of storage operations

  2. Use of filler materials to aid spent nuclear fuel dry storage

    International Nuclear Information System (INIS)

    Anderson, K.J.

    1981-09-01

    The use of filler materials (also known as stabilizer or encapsulating materials) was investigated in conjunction with the dry storage of irradiated light water reactor (LWR) fuel. The results of this investigation appear to be equally valid for the wet storage of fuel. The need for encapsulation and suitable techniques for closing was also investigated. Various materials were reviewed (including solids, liquids, and gases) which were assumed to fill the void areas within a storage can containing either intact or disassembled spent fuel. Materials were reviewed and compared on the basis of cost, thermal characteristics, and overall suitability in the proposed environment. A thermal analysis was conducted to yield maximum centerline and surface temperatures of a design basis fuel encapsulated within various filler materials. In general, air was found to be the most likely choice as a filler material for the dry storage of spent fuel. The choice of any other filler material would probably be based on a desire, or need, to maximize specific selection criteria, such as surface temperatures, criticality safety, or confinement

  3. Issues related to the transport of a transportable storage cask after storage

    International Nuclear Information System (INIS)

    McConnell, P.; Brimhall, J.L.; Creer, J.M.; Gilbert, E.R.; Sanders, T.L.; Jones, R.H.

    1991-01-01

    An evaluation was performed to assess whether the reliability of a transportable storage cask system and the risks associated with its use are comparable to those associated with existing transport cask systems and, if they are not, determine how the transportable storage cask system can be made as reliable as existing systems. Reliability and failure mode analyses of both transport-only casks and transportable storage casks and implementation options are compared. Current knowledge regarding the potential effects of a long-term dry storage environment on spent fuel and cask materials is reviewed. A summary assessment of the consideration for deploying a transportable storage cask (TSC) system with emphasis on preliminary design, validation and operational recommendations for TSC implementations is presented. The analyses conclude that a transportable storage cask can likely be shipped upopened by applying a combination of design considerations and operational constraints, including environmental monitoring and pretransport assessments of functional reliability of the cask. A proper mix of these constraints should yield risk parity with any existing transport cask

  4. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Bohachek, Randy; Wallace, Bruce; Winston, Phil; Marschman, Steve

    2013-04-30

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  5. Viability of Existing INL Facilities for Dry Storage Cask Handling

    Energy Technology Data Exchange (ETDEWEB)

    Randy Bohachek; Charles Park; Bruce Wallace; Phil Winston; Steve Marschman

    2013-04-01

    This report evaluates existing capabilities at the INL to determine if a practical and cost effective method could be developed for opening and handling full-sized dry storage casks. The Idaho Nuclear Technology and Engineering Center (INTEC) CPP-603, Irradiated Spent Fuel Storage Facility, provides the infrastructure to support handling and examining casks and their contents. Based on a reasonable set of assumptions, it is possible to receive, open, inspect, remove samples, close, and reseal large bolted-lid dry storage casks at the INL. The capability can also be used to open and inspect casks that were last examined at the TAN Hot Shop over ten years ago. The Castor V/21 and REA-2023 casks can provide additional confirmatory information regarding the extended performance of low-burnup (<45 GWD/MTU) used nuclear fuel. Once a dry storage cask is opened inside CPP-603, used fuel retrieved from the cask can be packaged in a shipping cask, and sent to a laboratory for testing. Testing at the INL’s Materials and Fuels Complex (MFC) can occur starting with shipment of samples from CPP-603 over an on-site road, avoiding the need to use public highways. This reduces cost and reduces the risk to the public. The full suite of characterization methods needed to establish the condition of the fuel exists and MFC. Many other testing capabilities also exist at MFC, but when those capabilities are not adequate, samples can be prepared and shipped to other laboratories for testing. This report discusses how the casks would be handled, what work needs to be done to ready the facilities/capabilities, and what the work will cost.

  6. Comparative studies on storage and drying of chips and chunks in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Gjoelsjoe, S. (Norwegian Forest Research Inst. (Norway))

    1988-11-01

    Knowledge of sporulation and alteration in moisture content and dry-matter content is essential when trying to determine optimal conditions for storage of wood fuel. The object of this experiment has been to study the progression of these variables in wood fuel of varying sizes. The material used was debranched stemwood of birch. The wood was comminuted up and stored in three different sizes. The sizes were chips (length approx. 3 cm), chunkwood (approx. 8 cm) and firewood (approx. 15 cm). The fuelwood was stored in bines of 10 m{sup 3} with netting floor and netting walls. Six of the bins were covered, the remaining six were without cover. The highest temperature increase was found in chips, particularly during the first stages of storage when temperature reached approximately 30 C. The other fuel sizes had temperature close to ambient temperature. At the start of the test, moisture content was approximately 40 %. By the end of the test the moisture content was below 20% for firewood and chunkwood under cover. The moisture was measured 50 cm from the top and 50 cm from the sidewall of the bin. Whilst chips without cover had a moisture content of more than 60%. Storage under cover resulted in a higher reduction of moisture content than storage without cover. The smaller sizes exhibited the greatest difference in moisture content. The highest dry-matter loss during the storage time was found in chips stored under cover, approximately 1.2% per month. Dry-matter loss was lowest in firewood stored under cover 0.07% per month. Dry-matter loss decreased with increasing size. Spores and dust particles had the highest concentrations in chips and lowest in firewood. (12 refs., 10 figs., 8 tabs.) (au).

  7. Classification of transportation packaging and dry spent fuel storage system components according to importance to safety

    International Nuclear Information System (INIS)

    Tyacke, M.J.; McConnell, J.W. Jr.; Ayers, A.L. Jr.; O'Connor, S.C.; Jankovich, J.P.

    1996-01-01

    The Idaho National Engineering Laboratory prepared a technical report for the Office of Nuclear Material Safety and Safeguards of the US Nuclear Regulatory Commission, entitled Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety, NUREG/CR-6407. This paper provides the results of that report. It also presents the graded approach for classification of components used in transportation packagings and dry spent fuel storage systems. This approach provides a method for identifying the classification of components according to importance to safety within transportation packagings and dry spent fuel storage systems. Record retention requirements are discussed to identify the documentation necessary to validate that the individual components were fabricated in accordance with their assigned classification. A review of the existing regulations pertaining to transportation packagings and dry storage systems was performed to identify current requirements. The general types of transportation packagings and dry storage systems are identified. The methodology used in this paper is based on Regulatory Guide 7.10, Establishing Quality Assurance Programs for Packaging Used in the Transport of Radioactive Material. This paper also includes a list of generic components for each of the general types of transportation packagings and spent fuel storage systems, with a classification category assigned to each component. Several examples concerning the safety importance of components are presented

  8. Corrosion of aluminum alloys in simulated dry storage environments

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.; Sindelar, R.L.; Lam, P.S.

    1996-01-01

    The effect of temperature and relative humidity on the high temperature (up to 150 degrees C) corrosion of aluminum alloys was investigated for dry storage of spent nuclear fuels in a closed or sealed system. A dependency on alloy type, temperature and initial humidity was determined for 1100, 5052 and 6061 aluminum alloys. Results after 4500 hours of environmental testing show that for a closed system, corrosion tends to follow a power law with the rate decreasing with increasing exposure. As corrosion takes place, two phenomena occur: (1) a hydrated layer builds up to resist corrosion, and (2) moisture is depleted from the system and the humidity slowly decreases with time. At a critical level of relative humidity, corrosion reactions stop, and no additional corrosion occurs if the system remains closed. The results form the basis for the development of an acceptance criteria for the dry storage of aluminum clad spent nuclear fuels

  9. Calculation of axial hydrogen redistribution on the spent fuels during interim dry storage

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo

    2006-01-01

    One of the phenomena that will affect fuel integrity during a spent fuel dry storage is a hydrogen axial migration in cladding. If there is a hydrogen pickup in cladding in reactor operation, hydrogen will move from hotter to colder cladding region in the axial direction under fuel temperature gradient during dry storage. Then hydrogen beyond solubility limit in colder region will be precipitated as hydride, and consequently hydride embrittlement may take place in the cladding. In this study, hydrogen redistribution experiments were carried out to obtain the data related to hydrogen axial migration by using actually twenty years dry (air) stored spent PWR-UO 2 fuel rods of which burn-ups were 31 and 58 MWd/kg HM. From the hydrogen redistribution experiments, the heat of transport of hydrogen of zircaloy-4 cladding from twenty years dry stored spent PWR-UO 2 fuel rods were from 10.1 to 18.6 kcal/mol and they were significantly larger than that of unirradiated zircaloy-4 cladding. This means that hydrogen in irradiated cladding can move easier than that in unirradiated cladding. In the hydrogen redistribution experiments, hydrogen diffusion coefficients and solubility limit were also obtained. There are few differences in the diffusion coefficients and solubility limits between the irradiated cladding and unirradiated cladding. The hydrogen redistribution in the cladding after dry storage for forty years was evaluated by one-dimensional diffusion calculation using the measured values. The maximum values as the heat of transports, diffusion coefficients and solubility limits of the irradiated cladding and various spent fuel temperature profiles reported were used in the calculation. The axial hydrogen migration was not significant after dry storage for forty years in helium atmosphere and the maximum values as the heat of transports, diffusion coefficients and solubility limits of the unirradiated cladding gave conservative evaluation for hydrogen redistribution

  10. Changes in polyphenol profile of dried apricots containing SO2 at various concentrations during storage.

    Science.gov (United States)

    Altındağ, Melek; Türkyılmaz, Meltem; Özkan, Mehmet

    2018-05-01

    Changes in polyphenols have important effects on the quality (especially color) and health benefits of dried apricots. SO 2 concentration, storage and the activities of polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were factors which had significant effects on polyphenols. Polyphenol profile and activities of PPO and PAL in sulfured dried apricots (SDAs, 0, 451, 832, 2112 and 3241 mg SO 2 kg -1 ) were monitored during storage at 4, 20 and 30 °C for 379 days for the first time. Even the lowest SO 2 concentration (451 mg kg -1 ) was sufficient to inactivate PPO during the entire storage period. However, while SO 2 led to the increase in PAL activity of the samples (r = 0.767) before storage, PAL activities of SDAs decreased during storage. After 90 days of storage, PAL activity was determined in only non-sulfured dried apricots (NSDAs) and dried apricots containing 451 mg SO 2 kg -1 . Although the major polyphenol in NSDAs was epicatechin (611.4 mg kg -1 ), that in SDAs was chlorogenic acid (455-1508 mg kg -1 ), followed by epicatechin (0-426.8 mg kg -1 ), rutin (148.9-477.3 mg kg -1 ), ferulic acid (23.3-55.3 mg kg -1 ) and gallic acid (2.4-43.6 mg kg -1 ). After storage at 30 °C for 379 days, the major polyphenol in SDAs was gallic acid (706-2324 mg kg -1 ). However, the major polyphenol in NSDAs did not change after storage. The highest total polyphenol content was detected in SDAs containing 2112 mg SO 2 kg -1 and stored at 30 °C. To produce dried apricots having high polyphenol content, ∼2000 mg SO 2 kg -1 should be used. Low storage temperature (<30 °C) was not necessary for the protection of polyphenols. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Lipid oxidative changes in traditional dry fermented sausage Petrovská klobása during storage

    OpenAIRE

    Šojić, Branislav V.; Petrović, Ljiljana S.; Mandić, Anamarija I.; Sedej, Ivana J.; Džinić, Natalija R.; Tomović, Vladimir M.; Jokanović, Marija R.; Tasić, Tatjana A.; Škaljac, Snežana B.; Ikonić, Predrag M.

    2014-01-01

    The influence of drying and ripeninig conditions (traditional and industrial) in the production of dry fermented sausage Petrovská klobása, on fatty-acid composition and oxidative changes in lipids, during 7 months of storage, was investigated. During the storage period, the sum of unsaturated fatty acids and the content of free fatty acids were significantly higher (p

  12. On-site interim storage of spent nuclear fuel: Emerging public issues

    International Nuclear Information System (INIS)

    Feldman, D.L.; Tennessee Univ., Knoxville, TN

    1992-01-01

    Failure to consummate plans for a permanent repository or above- ground interim Monitored Retrievable Storage (MRS) facility for spent nuclear fuel has spurred innovative efforts to ensure at-reactor storage in an environmentally safe and secure manner. This article examines the institutional and socioeconomic impacts of Dry Cask Storage Technology (DCST)-an approach to spent fuel management that is emerging as the preferred method of on-site interim spent fuel storage by utilities that exhaust existing storage capacity

  13. Development of the vacuum drying process for the PWR spent nuclear fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chagn Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-12-15

    This paper describes the development of a dry operation process for PWR spent nuclear fuel, which is currently stored in the domestic NPP's storage pool, using a dual purpose metal cask. Domestic NNPs have had experience with wet type transportation of PWR spent nuclear fuel between neighboring NPPs since the early 1990s, but no experience with dry type operation. For this reason, we developed a specific operation process and also confirmed the safety of the major cask components and its spent nuclear fuel during the dual purpose metal cask operation process. We also describe the short term operation process that was established to be completed within 21 hours and propose the allowable working time for each step (15 hours for wet process, 3 hours for drain process and 3 hours for vacuum drying process)

  14. Dry storage of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Tolmie, R.D.

    1983-01-01

    In transferring radioactive material between the preparation and clean chambers of a dry storage complex, irradiated nuclear fuel is posted from the preparation chamber to a sealable canister supported in a closable bucket in the clean chamber, or a contaminated sealed canister is posted from a closed bucket in the clean chamber into the preparation chamber by using a facility comprising two coaxial tubes constituting a closable orifice between the two chambers, the tubes providing sealing means for the bucket, and masking means for the bucket and canister closures together with means for withdrawing the closures into the preparation chamber. (author)

  15. Dry storage cell for radioactive material

    International Nuclear Information System (INIS)

    Bradley, N.

    1982-01-01

    In a dry storage cell for irradiated nuclear fuel or other highly active waste, cooling air flow is by natural draught in heat exchange with fuel containing canisters housed in channels. To inhibit corrosion by ensuring that the temperature of the air flowing over the canisters does not fall below the dew point when heat generation by decay has fallen, a fraction of the heat energy transferred to the cooling air is recirculated to the air upstream of the canisters. Recirculation of heat energy is effected by recirculation of a fraction of the hot air from downstream of the canisters. (author)

  16. Radioactive waste storage issues

    International Nuclear Information System (INIS)

    Kunz, D.E.

    1994-01-01

    In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state's boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected

  17. Assessing storage of stability and mercury reduction of freeze-dried Pseudomonas putida within different types of lyoprotectant

    Science.gov (United States)

    Azoddein, Abdul Aziz Mohd; Nuratri, Yana; Azli, Faten Ahada Mohd; Bustary, Ahmad Bazli

    2017-12-01

    Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose was able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage at 4 °C without vacuum. Polyethylene glycol (PEG) pre-treated freeze dried cells and broth pre-treated freeze dried cells after the freeze-dry process recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introducing freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage of 3 weeks was 17.91 %. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been grown in agar. Result from this study may be beneficial and useful as initial reference before

  18. Dry spent fuel storage facility at Kozloduy Nuclear Power Plant

    International Nuclear Information System (INIS)

    Goehring, R.; Stoev, M.; Davis, N.; Thomas, E.

    2004-01-01

    The Dry Spent Fuel Storage Facility (DSF) is financed by the Kozloduy International Decommissioning Support Fund (KIDSF) which is managed by European Bank for Reconstruction and Development (EBRD). On behalf of the Employer, the Kozloduy Nuclear Power Plant, a Project Management Unit (KPMU) under lead of British Nuclear Group is managing the contract with a Joint Venture Consortium under lead of RWE NUKEM mbH. The scope of the contract includes design, manufacturing and construction, testing and commissioning of the new storage facility for 2800 VVER-440 spent fuel assemblies at the KNPP site (turn-key contract). The storage technology will be cask storage of CONSTOR type, a steel-concrete-steel container. The licensing process complies with the national Bulgarian regulations and international rules. (authors)

  19. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  20. Validation concerns for dry storage of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Trumble, E.F.

    1994-01-01

    Recent decisions by the Department of Energy have accelerated the need for storage options to support the return of foreign research reactor (FRR) fuel to the United States. Many of these returns consist of fuel types which contain highly enriched uranium and are aluminum clad. These attributes present many challenges not experienced in the fuel storage designs for commercial nuclear fuels where the fuels have lower enrichment and the cladding is more robust. Historically, returned FRR fuel has been stored for short periods in basins where it is cooled and then sent to be reprocessed. However, a severe lack of basin space and questionable availability of reprocessing facilities necessitates the development of other proposals. One proposed option is to store the FRR fuel in a dry state, thus reducing the corrosion problems associated with aluminum cladding. A drawback to this type of storage, however, is the lack of experimental data for this type of fuel under dry storage conditions. This lack of data has led to recent discussions over the accuracy of some of the current multigroup cross section libraries when applied to dry, fast systems of uranium and aluminum. This concern is evaluated for the specific case of Material Test Reactor (MTR) fuel (MTR is >60% of FRR fuel), a review of applicable experiments is presented and a new experiment is proposed

  1. Numerical Simulation of the Thermal Performance of a Dry Storage Cask for Spent Nuclear Fuel

    Directory of Open Access Journals (Sweden)

    Heui-Yung Chang

    2018-01-01

    Full Text Available In this study, the heat flow characteristics and thermal performance of a dry storage cask were investigated via thermal flow experiments and a computational fluid dynamics (CFD simulation. The results indicate that there are many inner circulations in the flow channel of the cask (the channel width is 10 cm. These circulations affect the channel airflow efficiency, which in turn affects the heat dissipation of the dry storage cask. The daily operating temperatures at the top concrete lid and the upper locations of the concrete cask are higher than those permitted by the design specification. The installation of the salt particle collection device has a limited negative effect on the thermal dissipation performance of the dry storage cask.

  2. Effect of Packaging Materials on Orthosiphon Stamineus Dried-Leaf Quality During Storage

    Science.gov (United States)

    Norawanis, A. R.; Shaari, A. R.; Leng, L. Y.

    2018-03-01

    The experiment was conducted to determine the effects on the total phenolic content, antioxidant capacity, moisture content and total different color (ΔE) when the O. stamineus dried whole-leaf were packed in different packaging materials (plastic bag, paper bag and glass container) and stored under room temperature (±25 °C) and relative humidity (±65 %RH) for 8 weeks. The total phenolic compounds and antioxidant activity were measured using the Folin-Ciocalteu method and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity assay respectively, and analyzed using UV/VIS Spectrophotometer. The moisture content changes were examined using a moisture analyzer and the color changes were analyzed using colorimeter. The results showed that packing O. stamineus dried whole-leaf in different packaging materials significantly affected the herbal leaves quality. After 8 weeks of storage period, the total phenolic content and antioxidant capacity exhibited the increase values during storage. Meanwhile, the moisture content of the samples decreased by storage period for the samples packed in plastic bag and glass container. The moisture content of the samples packed in the paper bag fluctuated along the 8 weeks of storage period. The total different color (ΔE) of the O. stamineus dried whole-leaf increased by storage period. The highest changes of ΔE belonged to the samples packed in the glass container, followed by paper and plastic bags. The selection of the packaging materials can be considered as an important element to control the quality of raw herbal materials for further processing and the herbal finished products.

  3. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    International Nuclear Information System (INIS)

    Qu, Jianmin; Bazant, Zdenek; Jacobs, Laurence; Guimaraes, Maria

    2015-01-01

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete is widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems

  4. Nonlinear Ultrasonic Diagnosis and Prognosis of ASR Damage in Dry Cask Storage

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jianmin [Northwestern Univ., Evanston, IL (United States); Bazant, Zdenek [Northwestern Univ., Evanston, IL (United States); Jacobs, Laurence [Georgia Inst. of Technology, Atlanta, GA (United States); Guimaraes, Maria [Electrical Power Research Institute, Palo Alto, CA (United States)

    2015-11-30

    Alkali-silica reaction (ASR) is a deleterious chemical process that may occur in cement-based materials such as mortars and concretes, where the hydroxyl ions in the highly alkaline pore solution attack the siloxane groups in the siliceous minerals in the aggregates. The reaction produces a cross-linked alkali-silica gel. The ASR gel swells in the presence of water. Expansion of the gel results in cracking when the swelling-induced stress exceeds the fracture toughness of the concrete. As the ASR continues, cracks may grow and eventually coalesce, which results in reduced service life and a decrease safety of concrete structures. Since concrete is widely used as a critical structural component in dry cask storage of used nuclear fuels, ASR damage poses a significant threat to the sustainability of long term dry cask storage systems. Therefore, techniques for effectively detecting, managing and mitigating ASR damage are needed. Currently, there are no nondestructive methods to accurately detect ASR damage in existing concrete structures. The only current way of accurately assessing ASR damage is to drill a core from an existing structure, and conduct microscopy on this drilled cylindrical core. Clearly, such a practice is not applicable to dry cask storage systems. To meet these needs, this research is aimed at developing (1) a suite of nonlinear ultrasonic quantitative nondestructive evaluation (QNDE) techniques to characterize ASR damage, and (2) a physics-based model for ASR damage evolution using the QNDE data. Outcomes of this research will provide a nondestructive diagnostic tool to evaluate the extent of the ASR damage, and a prognostic tool to estimate the future reliability and safety of the concrete structures in dry cask storage systems

  5. Application of the BEPU methodology to assess fuel performance in dry storage

    International Nuclear Information System (INIS)

    Feria, F.; Herranz, L.E.

    2017-01-01

    Highlights: • Application of the BEPU methodology to estimate the cladding stress in dry storage. • The stress predicted is notably affected by the irradiation history. • Improvements of FGR modelling would significantly enhance the stress estimates. • The prediction uncertainty should not be disregarded when assessing clad integrity. - Abstract: The stress at which fuel cladding is submitted in dry storage is the driving force of the main degrading mechanisms postulated (i.e., embrittlement due to hydrides radial reorientation and creep). Therefore, a sound assessment is mandatory to reliably predict fuel performance under the dry storage prevailing conditions. Through fuel rod thermo-mechanical codes, best estimate calculations can be conducted. Precision of predictions depends on uncertainties affecting the way of calculating the stress, so by using uncertainty analysis an upper bound of stress can be determined and compared to safety limits set. The present work shows the application of the BEPU (Best Estimate Plus Uncertainty) methodology in this field. Concretely, hydrides radial reorientation has been assessed based on stress predictions under challenging thermal conditions (400 °C) and a stress limit of 90 MPa. The computational tools used to do that are FRAPCON-3xt (best estimate) and Dakota (uncertainty analysis). The methodology has been applied to a typical PWR fuel rod highly irradiated (65 GWd/tU) at different power histories. The study performed allows concluding that both the power history and the prediction uncertainty should not be disregarded when fuel rod integrity is evaluated in dry storage. On probabilistic bases, a burnup of 60 GWd/tU is found out as an acceptable threshold even in the most challenging irradiation conditions considered.

  6. Heritability, combining ability and inheritance of storage root dry ...

    African Journals Online (AJOL)

    Storage root dry matter content (RDM) is central to the improvement of consumer and industrial attributes of root crops. Yam bean (Pachyrhizus species) is a legume root crop newly introduced in Uganda, but its adoption may be constrained by low RDM. The objective of this study was to investigate the magnitude of ...

  7. Near surface spent fuel storage: environmental issues

    International Nuclear Information System (INIS)

    Nelson, I.C.; Shipler, D.B.; McKee, R.W.; Glenn, R.D.

    1979-01-01

    Interim storage of spent fuel appears inevitable because of the lack of reprocessing plants and spent fuel repositories. This paper examines the environmental issues potentially associated with management of spent fuel before disposal or reprocessing in a reference scenario. The radiological impacts of spent fuel storage are limited to low-level releases of noble gases and iodine. Water needed for water basin storage of spent fuel and transportation accidents are considered; the need to minimize the distance travelled is pointed out. Resource commitments for construction of the storage facilities are analyzed

  8. Final Technical Report: Imaging a Dry Storage Cask with Cosmic Ray Muons

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haori; Hayward, Jason; Can, Liao; Liu, Zhengzhi

    2018-03-31

    The goal of this project is to build a scaled prototype system for monitoring used nuclear fuel (UNF) dry storage casks (DSCs) through cosmic ray muon imaging. Such a system will have the capability of verifying the content inside a DSC without opening it. Because of the growth of the nuclear power industry in the U.S. and the policy decision to ban reprocessing of commercial UNF, the used fuel inventory at commercial reactor sites has been increasing. Currently, UNF needs to be moved to independent spent fuel storage installations (ISFSIs), as its inventory approaches the limit on capacity of on-site wet storage. Thereafter, the fuel will be placed in shipping containers to be transferred to a final disposal site. The ISFSIs were initially licensed as temporary facilities for ~20-yr periods. Given the cancellation of the Yucca mountain project and no clear path forward, extended dry-cask storage (~100 yr.) at ISFSIs is very likely. From the point of view of nuclear material protection, accountability and control technologies (MPACT) campaign, it is important to ensure that special nuclear material (SNM) in UNF is not stolen or diverted from civilian facilities for other use during the extended storage.

  9. Cytogenetic effects of electron-beam radiation on dry seed storage

    International Nuclear Information System (INIS)

    Baojiang, G.; Qishen, P.; Kohlman, A.

    1989-01-01

    Dry seeds of Viciafaba were exposed to 5 MeV electron beam (10–30 Krad) and stored afterwards during 20,40 and 60 days- Induction of chromosomal aberrations in root-tip cells of irradiated seeds has been found dose-dependent. The frequency of chromosomal aberrations (particularly, the bridges and the rings) and the frequency of micronucleated cells is proportional to the length of storage time, but is not significantly influenced by low temperatures (0–6°C) during storage. (author)

  10. SGN multipurpose dry storage technology applied to the Italian situation

    International Nuclear Information System (INIS)

    Giorgio, M.; Lanza, R.

    1999-01-01

    SGN has gained considerable experience in the design and construction of interim storage facilities for spent fuel and various nuclear waste, and can therefore propose single product and multipurpose facilities capable of accommodating all types of waste in a single structure. The pooling of certain functions (transport cask reception, radiation protection) and the choice of optimized technologies to answer the specific needs of clients (transfer of nuclear packages by shielded handling cask or nuclearized crane), the use of the same type of storage pit to cool the heat releasing packages (vitrified nuclear waste, fuel elements) makes it possible to propose industrially proven and cost-effective solutions. Studies carried out for the Dutch company COVRA (HABOG facility currently under implementation phase) provide an example of a multipurpose dry storage facility designed to store spent fuel, vitrified reprocessing waste, cemented hulls and end-pieces, cemented technological waste and bituminized waste from fuel reprocessing, i e. high level waste and intermediate level wastes. The study conducted by SGN and GENESI (an Italian consortium formed by Ansaldo's Nuclear Division and Fiat Avio), on behalf of the Italian utility ENEL, offers another example of the multipurpose dry storage facility designed to store in a centralised site all the remaining irradiated fuel elements plus the vitrified waste. This paper presents SGN's experience through a short description of reference storage facilities for various types of products (HLW and spent fuel). It continues with the typical application to the Italian situation to show how these proven technologies are combined to obtain multipurpose facilities tailored to the client's specific requirements. (author)

  11. Estimated risk contribution for dry spent fuel storage cask

    International Nuclear Information System (INIS)

    Santos, C.; Kirk, M.T.; Abramson, L.; Guttmann, J.; Hackett, E.; Simonen, F.A.

    2001-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is pursuing means to risk-inform its regulations and programs for dry storage of spent nuclear fuel. In pursuit of this objective, the NRC will develop safety goals and probabilistic risk assessments for implementing risk-informed programs. This paper provides one example method for calculating the risk of a dry spent fuel storage cask under normal and accident conditions. The example is on the HI-STORM 100 cask at a proposed site containing four thousand such casks. The paper evaluates the risk to the public by determining the likelihood a welded stainless steel container will leak. In addition, the study addresses the risk at a site where 4,000 casks may be stored until the U.S. Department of Energy accepts the casks for placement in a repository. The methods used employ the PRODIGAL computer code to assess the probability of a faulty weld on a stainless steel-welded canister. These analyses are only the initial stages of a comprehensive risk study that the NRC is performing in support of its regulatory initiatives. (author)

  12. Soil water storage, rainfall and runoff relationships in a tropical dry forest catchment

    Science.gov (United States)

    Farrick, Kegan K.; Branfireun, Brian A.

    2014-12-01

    In forested catchments, the exceedance of rainfall and antecedent water storage thresholds is often required for runoff generation, yet to our knowledge these threshold relationships remain undescribed in tropical dry forest catchments. We, therefore, identified the controls of streamflow activation and the timing and magnitude of runoff in a tropical dry forest catchment near the Pacific coast of central Mexico. During a 52 day transition phase from the dry to wet season, soil water movement was dominated by vertical flow which continued until a threshold soil moisture content of 26% was reached at 100 cm below the surface. This satisfied a 162 mm storage deficit and activated streamflow, likely through lateral subsurface flow pathways. High antecedent soil water conditions were maintained during the wet phase but had a weak influence on stormflow. We identified a threshold value of 289 mm of summed rainfall and antecedent soil water needed to generate >4 mm of stormflow per event. Above this threshold, stormflow response and magnitude was almost entirely governed by rainfall event characteristics and not antecedent soil moisture conditions. Our results show that over the course of the wet season in tropical dry forests the dominant controls on runoff generation changed from antecedent soil water and storage to the depth of rainfall.

  13. Integrity of spent CANDU fuel during and following dry storage

    International Nuclear Information System (INIS)

    Villagran, J.E.

    2004-01-01

    This report examines the issue of CANDU fuel integrity at the back end of the fuel cycle and outlines a program designed to provide assurance that used CANDU fuel will retain its integrity over an extended period. In specific terms, the program is intended to provide assurance that during and following extended dry storage the fuel will remain fit to undergo, without loss of integrity, the handling, packaging and transportation operations that might be necessary until it is placed in disposal containers. The first step in the development of the program was a review of the available technical information on phenomena relevant to fuel integrity. The major conclusions from that review were the following: Under normal storage conditions it is unlikely that the spent fuel will suffer significant degradation during a one-hundred year period and it should be possible to retrieve, repackage and transport the fuel as required, using methods and systems similar to those used today. However, to provide increased confidence regarding the above conclusion, investigations should be conducted in areas where there is higher uncertainty in the prediction of fuel condition and on some degradation processes to which the fuel appears to present higher vulnerability. The proposed program includes, among other tasks, irradiated fuel tests, analytical studies on the most relevant fuel degradation processes and the development of a long-term fuel verification program. (Author)

  14. Testing of the dual slab verification detector for attended measurements of the BN-350 dry storage casks

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter A [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Williams, Richard B [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory

    2009-01-01

    The Dual Slab Verification Detector (DSVD) has been developed and built by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of {sup 3}He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. The DSVD will be used to perform measurements of the neutron flux emanating from inside the dry storage cask at several locations around each cask to establish a neutron 'fingerprint' that is sensitive to the contents of the cask. The sensitivity of the fingerprinting technique to the removal of specific amount of nuclear material from the cask is determined by the characteristics of the detector that is used to perform the measurements, the characteristics of the spent fuel being measured, and systematic uncertainties that are associated with the dry storage scenario. MCNPX calculations of the BN-350 dry storage asks and layout have shown that the neutron fingerprint verification technique using measurements from the DSVD would be sensitive to both the amount and location of material that is present within an individual cask. To confirm the performance of the neutron fingerprint technique in verifying the presence of BN-350 spent fuel in dry storage, an initial series of measurements have been performed to test the performance and characteristics of the DSVD. Results of these measurements will be presented and compared with MCNPX results.

  15. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  16. Central unresolved issues in thermal energy storage for building heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Swet, C.J.; Baylin, F.

    1980-07-01

    This document explores the frontier of the rapidly expanding field of thermal energy storage, investigates unresolved issues, outlines research aimed at finding solutions, and suggests avenues meriting future research. Issues related to applications include value-based ranking of storage concepts, temperature constraints, consistency of assumptions, nomenclature and taxonomy, and screening criteria for materials. Issues related to technologies include assessing seasonal storage concepts, diurnal coolness storage, selection of hot-side storage concepts for cooling-only systems, phase-change storage in building materials, freeze protection for solar water heating systems, and justification of phase-change storage for active solar space heating.

  17. Study on effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans

    Directory of Open Access Journals (Sweden)

    Sari Farah Dina

    2015-03-01

    Full Text Available The main objective is to assess effectiveness of continuous solar dryer integrated with desiccant thermal storage for drying cocoa beans. Two type of desiccants were tested, molecular sieve 13× (Na86 [(AlO286·(SiO2106]·264H2O as an adsorbent type and CaCl2 as an absorbent type. The results revealed that during sunshine hours, the maximum temperature within the drying chamber varied from 40 °C to 54 °C. In average, it was 9–12 °C higher than ambient temperature. These temperatures are very suitable for drying cocoa beans. During off-sunshine hours, humidity of air inside the drying chamber was lower than ambient because of the desiccant thermal storage. Drying times for intermittent directs sun drying, solar dryer integrated with adsorbent, and solar dryer integrated with absorbent were 55 h, 41 h, and 30 h, respectively. Specific energy consumptions for direct sun drying, solar dryer integrated with adsorbent, and solar dryer integrated with absorber were 60.4 MJ/kg moist, 18.94 MJ/kg moist, and 13.29 MJ/kg moist, respectively. The main conclusion can be drawn here is that a solar dryer integrated with desiccant thermal storage makes drying using solar energy more effective in term of drying time and specific energy consumption.

  18. Managing aging effects on used fuel dry cask for very long-term storage - 59067

    International Nuclear Information System (INIS)

    Chopra, Omesh; Diercks, Dwight; Ma, David; Shah, Vikram; Tam, Shiu-Wing; Fabian, Ralph; Liu, Yung; Nutt, Mark

    2012-01-01

    The cancellation of the Yucca Mountain repository program in the Unites States raises the prospect of very long-term storage (i.e., >120 years) and deferred transportation of used fuel at the nuclear power plant sites. While long-term storage of used nuclear fuel in dry cask storage systems (DCSSs) at Independent Spent Fuel Storage Installations (ISFSIs) is already a standard practice among U.S. utilities, recent rule-making activities of the U.S. Nuclear Regulatory Commission (NRC) indicated additional flexibility for the NRC licensees of ISFSIs and certificate holders of the DCSSs to request initial and renewal terms for up to 40 years. The proposed rule also adds a requirement that renewal applicants must provide descriptions of aging management programs (AMPs) and time-limited aging analyses (TLAAs) to ensure that the structures, systems, and components (SSCs) that are important to safety in the DCSSs will perform as designed under the extended license terms. This paper examines issues related to managing aging effects on DCSSs for very long-term storage (VLTS) of used fuels, capitalizing on the extensive knowledge and experience accumulated from the work on aging research and life cycle management at Argonne National Laboratory (ANL) over the last 30 years. The technical basis for acceptable AMPs and TLAAs is described, as are generic AMPs and TLAAs that are being developed by Argonne under the support of the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign for R and D on extended long-term storage and transportation. (authors)

  19. Status analysis for the confinement monitoring technology of PWR spent nuclear fuel dry storage system

    Energy Technology Data Exchange (ETDEWEB)

    Baeg, Chang Yeal; Cho, Chun Hyung [Korea Radioactive Waste Agency, Daejeon (Korea, Republic of)

    2016-03-15

    Leading national R and D project to design a PWR spent nuclear fuel interim dry storage system that has been under development since mid-2009, which consists of a dual purpose metal cask and concrete storage cask. To ensure the safe operation of dry storage systems in foreign countries, major confinement monitoring techniques currently consist of pressure and temperature measurement. In the case of a dual purpose metal cask, a pressure sensor is installed in the interspace of bolted double lid(primary and secondary lid) in order to measure pressure. A concrete storage cask is a canister based system made of double/redundant welded lid to ensure confinement integrity. For this reason, confinement monitoring method is real time temperature measurement by thermocouple placed in the air flow(air intake and exit) of the concrete structure(over pack and module). The use of various monitoring technologies and operating experiences for the interim dry storage system over the last decades in foreign countries were analyzed. On the basis of the analysis above, development of the confinement monitoring technology that can be used optimally in our system will be available in the near future.

  20. Conceptual study of dry storage method for spent fuel assemblies based on honeycomb concrete overpack (COP). Phase 1

    International Nuclear Information System (INIS)

    Hida, Yoshio; Hayashi, Shigeki; Katsuyama, Yoshiaki; Hashimoto, Hirohide; Murata, Takashi

    2017-01-01

    The amount of spent fuel assemblies currently stored in Japan is approximately 15,000 tU. Most of these are stored in storage pools, although dry storage method will be safer, as was revealed in the accident of the Fukushima Daiichi Nuclear Power Plant. In addition, Japan has established a national policy of the nuclear fuel cycle. All spent fuel assemblies are designated for reprocessing. However, the reprocessing plant in Japan is currently under regulatory review for compliance with newly established safety standards. Beyond this, shortfalls in its processing capacity mean interim storage facilities for spent fuel are required. The Tokyo Electric Power Company Holdings, Incorporated and the Japan Atomic Power Company are currently building an interim dry storage facility with a storage capacity of 5,000 tU in Aomori Prefecture, while Chubu Electric Power Company, Inc. is currently building a dry storage facility with a storage capacity of 400 tU in the Hamaoka Nuclear Power Station. These facilities consist of earthquake-resistant buildings and dry storage casks. Within the buildings, metal transportable storage casks loaded with spent fuel assemblies are placed vertically with spaces between the casks and supported by earthquake-proof measures that prevent toppling or other movement. These structures entail significant cost and construction efforts. At the Fukushima Daiichi Nuclear Power Plant, a temporary dry storage facility has been built within the premises to store spent fuel generated during decommissioning. Part of this facility is already in operation. Here, each metal cask containing spent fuel is mounted on an earthquake-resistant concrete mat, which is anchored to the ground. Each cask is enclosed in a concrete box for additional radiation shielding, and the casks are spaced at intervals. This approach requires a large plot of land. The dry storage method for spent fuel presented here does not require a building. The dry metal casks containing spent

  1. The influence of sun drying process and prolonged storage on composition of essential oil from clove buds (Syzygium aromaticum)

    Science.gov (United States)

    Hastuti, L. T.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Murni, V. W.; Haib, J.

    2017-07-01

    Clove (Syzygium aromaticum) is native to Indonesia and used as a spice in virtually all of the world's cuisine. Clove bud oil, a yellow liquid, is obtained from distillation of buds. The quality of oil is influenced by origin, post-harvest processing, pre-treatment before distillation, the distillation method, and post-distillation treatment. The objective of this study is to investigate the effect of drying process and prolonged storage on essential oil composition of clove bud from the Tolitoli, Indonesia. To determine the effect of drying, fresh clove bud was dried under sunlight until it reached moisture content 13±1 %. The effect of storage was studied in the oil extracted from clove bud that was stored in laboratory at 25 °C for 4 months. The essential oil of each treatment was obtained by steam distillation and its chemical composition was analyzed by GC/MS. The major components found in fresh and dried clove are as follows: eugenol, eugenyl acetate, and caryophyllene. Percentage of caryophyllene was slightly increase after drying but decrease during storage. While the content of eugenyl acetate decreased during drying and storage, the content of eugenol increased. The drying and storage also affect to the change on minor compounds of essential oil of clove.

  2. Inherent security benefits of underground dry storage of nuclear materials

    International Nuclear Information System (INIS)

    Moore, R.D.; Zahn, T.

    1997-07-01

    This paper, augmented by color slides and handouts, will examine the inherent security benefits of underground dry storage of nuclear materials. Specific items to be presented include: the successful implementation of this type of storage configuration at Argonne National Laboratory - West; facility design concepts with security as a primary consideration; physical barriers achieved by container design; detection, assessment, and monitoring capabilities; and open-quotes self protectionclose quotes strategies. This is a report on the security features of such a facility. The technical operational aspects of the facility are beyond the scope of this paper

  3. A study of thermal, structural and shielding safety analysis for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S. H. [Kyungpook Nationl Univ., Daegu (Korea, Republic of)

    1997-03-15

    As a replaced method for MRS, the dry storage has been intensively developed by the advanced countries of nuclear power technology. Currently, the domestic technology for the dry storage is also under development. In the present study, the developed technical standards for USNRC and its operation are summarized. Futhermore, the SAR for VECTRA's NUHOMES satisfied with DOE and NRC's requirements is inversely analyzed and combined with both USNRC's regulatory guide and LLNL's SARS. In the safety analysis of a dry storage, the principal design criteria which identifies the structural and mechanical safety criteria is investigated. Based on the design criteria, hypothetical accident analysis as well as off-normal operation analysis are investigated.

  4. Conceptual design of an interim dry storage system for the Atucha nuclear power plant spent fuels

    International Nuclear Information System (INIS)

    Nassini, Horacio E.P.; Fuenzalida Troyano, C.S.; Bevilacqua, Arturo M.; Bergallo, Juan E.

    2005-01-01

    The Atucha I nuclear power station, after completing the rearrangement and consolidation of the spent fuels in the two existing interim wet storage pools, will have enough room for the storage of spent fuel from the operation of the reactor till December 2014. If the operation is extended beyond 2014, or if the reactor is decommissioned, it will be necessary to empty both pools and to transfer the spent fuels to a dry storage facility. This paper shows the progress achieved in the conceptual design of a dry storage system for Atucha I spent fuels, which also has to be adequate, without modifications, for the storage of fuels from the second unity of the nuclear power station, Atucha II, that is now under construction. (author) [es

  5. Annotated Bibliography for Drying Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  6. Management issues for high performance storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Louis, S. [Lawrence Livermore National Lab., CA (United States); Burris, R. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Managing distributed high-performance storage systems is complex and, although sharing common ground with traditional network and systems management, presents unique storage-related issues. Integration technologies and frameworks exist to help manage distributed network and system environments. Industry-driven consortia provide open forums where vendors and users cooperate to leverage solutions. But these new approaches to open management fall short addressing the needs of scalable, distributed storage. We discuss the motivation and requirements for storage system management (SSM) capabilities and describe how SSM manages distributed servers and storage resource objects in the High Performance Storage System (HPSS), a new storage facility for data-intensive applications and large-scale computing. Modem storage systems, such as HPSS, require many SSM capabilities, including server and resource configuration control, performance monitoring, quality of service, flexible policies, file migration, file repacking, accounting, and quotas. We present results of initial HPSS SSM development including design decisions and implementation trade-offs. We conclude with plans for follow-on work and provide storage-related recommendations for vendors and standards groups seeking enterprise-wide management solutions.

  7. Effective moisture diffusivity and activation energy of rambutan seed under different drying methods to promote storage stability

    Science.gov (United States)

    Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.

    2017-05-01

    The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.

  8. Effect of oven drying and storage on essential oil composition of clove (Syzygium aromaticum) from Toli-Toli

    Science.gov (United States)

    Murni, V. W.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Hastuti, L. T.; Haib, J.

    2017-07-01

    The research about post-harvested clove is still limited especially in Indonesia, as the biggest producer of clove in the world. The present study was aimed to investigate the effect of drying process and storage on the composition of essential oil of Indonesian clove originated from Toli-Toli. The essential oil of fresh and dried clove was obtained by steam distillation and the composition of the oil was analyzed by gas chromatography-mass spectrometry (GC-MS). In all of the clove oil samples, eugenol was the major component, followed by caryophyllene and acetyleugenol. The drying method used was oven drying at 50°C until clove's moisture content reaches 13±1%. During the drying process, the content of phenylpropanoids such as eugenol, isoeugenol, and chavicol increased, while esters and monoterpenes decreased. The composition of clove oil was studied from dried clove after oven drying, then stored in the laboratory at room temperature for 4 months. There was slightly change on clove oil composition after 4 months of storage. The content of major components of clove like eugenol was higher while acetyleugenol was lower after 4 months of storage.

  9. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burtseva, T. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  10. Effect of harvest, drying and storage on the bitterness, moisture, sugars, free amino acids and phenolic compounds of jujube fruit (Zizyphus jujuba cv. Junzao).

    Science.gov (United States)

    Pu, Yunfeng; Ding, Tian; Wang, Wenjun; Xiang, Yanju; Ye, Xingqian; Li, Mei; Liu, Donghong

    2018-01-01

    The taste of dried jujube fruit when compared with fresh ones is less palatable, as it develops bitterness during drying and storage. Therefore, identifying the methods by which bitterness occurs is essential for developing strategies for processing and storage. Bitterness in fresh jujube fruit was negligible; however, it increased by 0.9-, 1.5- and 1.8-fold during drying and storage over 6 and 12 months. The moisture significantly decreased during harvesting and drying. Free amino acids, except proline and tyrosine, significantly decreased during drying and storage. Fructose, glucose and sucrose hardly changed during harvest, drying and storage. Titratable acidity, total phenolic and total flavonoids contents were stable during harvest and drying, but increased upon storage. Additionally, protocatechuic and ellagic acids were not detected in fresh jujube fruit, however, were found to increase during drying and storage. Bitterness in fresh jujube fruit tasted negligible because of meagre amount of phytochemicals, while the condensation effect of moisture reduction, the loss of free amino acids, and the formation of protocatechuic and ellagic acids could aggravate the bitterness of jujube fruit during drying and storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Tutorial review of spent-fuel degradation mechanisms under dry-storage conditions

    International Nuclear Information System (INIS)

    Einziger, R.E.

    1983-02-01

    This tutorial reviews our present understanding of fuel-rod degradation over a range of possible dry-storage environments. Three areas are covered: (1) why study fuel-rod degradation; (2) cladding-degradation mechanisms; and (3) the status of fuel-oxidation studies

  12. Thermal safety analysis of a dry storage cask for the Korean standard spent fuel - 16159

    International Nuclear Information System (INIS)

    Cha, Jeonghun; Kim, S.N.; Choi, K.W.

    2009-01-01

    A conceptual dry storage facility, which is based on a commercial dry storage facility, was designed for the Korea standard spent nuclear fuel (SNF) and preliminary thermal safety analysis was performed in this study. To perform the preliminary thermal analysis, a thermal analysis method was proposed. The thermal analysis method consists of 2 parts. By using the method, the surface temperature of the storage canister corresponding to the SNF clad temperature was calculated and the adequate air duct area was decided using the calculation result. The initial temperature of the facility was calculated and the fire condition and half air duct blockage were analyzed. (authors)

  13. Recent findings on the oxidation of UO2 fuel under nominally dry storage conditions

    International Nuclear Information System (INIS)

    Taylor, P.; McEachern, R.J.; Sunder, S.; Wasywich, K.M.; Miller, N.H.; Wood, D.D.

    1995-01-01

    This paper is an overview of fuel-storage demonstration experiments, supporting research on UO 2 oxidation, and associated model development, in progress at AECL's Whiteshell Laboratories. The work is being performed to determine the time/temperature limits for safe storage of irradiated CANDU fuel in dry air. The most significant recent experimental finding has been the detection of small quantities of U 3 O 8 , formed over periods of one to several years in a variety of experiments at 150-170 deg C. Another important trading is the slight suppression of U 3 O 8 formation in SIMFUEL and other doped U0 2 formulations. The development of a nucleation-and-growth model for U 3 O 8 formation is discussed, along with available activation energy data. These provide a basis for predicting U 3 O 8 formation rates under dry-storage conditions, and hence optimizing fuel storage strategies. (author)

  14. Sustainable Irrigation Allocation Model for Dry and Wet Periods using Reservoir Storage and Inflow

    Science.gov (United States)

    Surianarayanan, S.; Suribabu, C. R.; Ramakrishnan, K.

    2017-07-01

    The dry period agriculture is inevitable both for the farmers for their earning, and for the soil for its fertility by crop-rotation. In tropical countries like INDIA, dry period agriculture becomes difficult because of less (or) no rain fall. Hence a simple water balancing model for irrigation scheduling, using the measure “Volumetric Reliability” is prepared in this paper, with the storage and inflow of a reservoir both for the dry and wet periods. The case-study is done for a reservoir in INDIA with thirty one years of hydrological data(from 1982 to 2012). The objective of this paper is to prepare a simple water balance model taking 10 days periods of demand and supply for ID crop(Irrigated Dry crop, ground nut) with usage of volumetric reliability concept for the periods of deficiency and adoption of less water requirement crops to reduce the water-stress during critical periods of crop growth, and finally arrive at a feasible allocation schedule for the success of agriculture and the yield throughout the year both for wet and dry crops with the available storage on the start of irrigation for a particular year. The reservoir is divided for storages such as full, deficient and critical storages. The starting storage for the dry period from January is used after adequate allocation for wet crops, the quantity for riparian rights and for drinking water, for the sustainability. By the water-balancing, the time-series for thirty one years, it is found that for twenty two years the demand for the ID crops is satisfied with the storage in the reservoir, and in the remaining years of deficient inflows, for three years (1986,1996,2004)the demand is managed by using the safe reliability factor for demand which can nullify the deficit in demand for the whole supply period. But it is genuine to assure that the reduction in the amount of water for each 10 days periods should not exceed the survival limit of the crop. Necessary soil-moisture must be ensured in the crop

  15. Heat removal tests on dry storage facilities for nuclear spent fuels

    International Nuclear Information System (INIS)

    Wataru, M.; Saegusa, T.; Koga, T.; Sakamoto, K.; Hattori, Y.

    1999-01-01

    In Japan, spent fuel generated in NPP is controlled and stored in dry storage facility away-from reactor. Natural convection cooling system of the storage facility is considered advantageous from both safety and economic point of view. In order to realize this type of facility it is necessary to develop an evaluation method for natural convection characteristics and to make a rational design taking account safety and economic factors. Heat removal tests with the reduces scale models of storage facilities (cask, vault and silo) identified the the flow pattern in the test modules. The temperature and velocity distributions were obtained and the heat transfer characteristics were evaluated

  16. Dry storage developments in France build on CASCAD experience

    International Nuclear Information System (INIS)

    Bonnet, C.; Giraud, C.

    1992-01-01

    The CASCAD dry store, located at CEA's research centre at Cadarache, stores spent fuel from the EL4 heavy water reactor and the Osiris research reactor. The design was based on the following criteria: Storage period. Interim storage is provided for 50 years. Containment. The fuel is contained by a multiple barrier system consisting of: the fuel canister (primary barrier); the sealed stainless steel storage well; and the storage building which includes a ventilation system to provide dynamic containment during handling operations. The fuel is loaded into canisters at the reactor site to avoid contamination in the storage building. The integrity of the primary barrier is periodically monitored by sampling of air from the storage well. Cooling. The storage wells are cooled by a natural convection system that maintains the temperature of the fuel below its stated limit and the temperature of the concrete below 80 o C. Criticality. Criticality incidents are prevented by static design measures such as maintaining a minimum pitch between storage wells and providing sufficient storage well diameter. Radiation protection. Radiation shielding limits the maximum equivalent dose rate for operating personnel to less than 25μSv/h at the handling cell floor and the wall adjoining the control room, and to less than 7.5μSv/h at the outside walls of the storage building. Cannister design. The canister must resist corrosion caused by condensation as well as pressure due to radiolytic gases. The canister must also withstand a drop of up to 10m without losing its integrity. The design has now been adapted to accommodate light reactor fuels and is known as CASCAD+. (Author)

  17. Multiple-Angle Muon Radiography of a Dry Storage Cask

    Energy Technology Data Exchange (ETDEWEB)

    Durham, J. Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Guardincerri, Elena [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morris, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Poulson, Daniel Cris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bacon, Jeffrey Darnell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Deborah Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Plaud-Ramos, Kenie Omar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-23

    A partially loaded dry storage cask was imaged using cosmic ray muons. Since the cask is large relative to the size of the muon tracking detectors, the instruments were placed at nine different positions around the cask to record data covering the entire fuel basket. We show that this technique can detect the removal of a single fuel assembly from the center of the cask.

  18. Thermal-hydraulic experiment and analysis for interim dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Yoo, Seung Hun

    2011-02-01

    The experimental and numerical studies of interim storages for nuclear spent fuels have been performed to investigate thermal-hydraulic characteristics of the dry storage systems and to propose new methodologies for the analysis and the design. Three separate researches have been performed in the present study: (a) Development of a scaling methodology and thermal-hydraulic experiment of a single spent fuel assembly simulating a dry storage cask: (b) Full-scope simulation of a dry storage cask by the use of Computational Fluid Dynamics (CFD) code: (c) Thermal-hydraulic design of a tunnel-type interim storage facility. In the first study, a scaling methodology has been developed to design a scaled-down canister. The scaling was performed in two steps. For the first step, the height of a spent fuel assembly was reduced from full height to half height. In order to consider the effect of height reduction on the natural convection, the scaling law of Ishii and Kataoka (1984) was employed. For the second step, the quantity of spent fuel assemblies was reduced from multiple assemblies to a single assembly. The scaling methodology was validated through the comparison with the experiment of the TN24P cask. The Peak Cladding Temperature (PCT), temperature gradients, and the axial and radial temperature distribution in the nondimensional forms were in good agreement with the experimental data. Based on the developed methodology, we have performed a single assembly experiment which was designed to simulate the full scale of the TN24P cask. The experimental data was compared with the CFD calculations. It turns out that their PCTs were less than the maximum allowable temperature for the fuel cladding and that the differences of their PCTs were agreed within 3 .deg. C, which was less than measurement uncertainty. In the second study, the full-scope simulations of the TN24P cask were performed by FLUENT. In order to investigate the sensitivity of the numerical and physical

  19. SCALE6.1 Hybrid Shielding Methodology For The Spent Fuel Dry Storage

    International Nuclear Information System (INIS)

    Matijevic, M.; Pevec, D.; Trontl, K.

    2015-01-01

    The SCALE6.1/MAVRIC hybrid deterministic-stochastic shielding methodology was used for dose rates calculation of the generic spent fuel dry storage installation. The neutron-gamma dose rates around the cask array were calculated over a large problem domain in order to determine the boundary of the controlled area. The FW-CADIS methodology, based on the deterministic forward and adjoint solution over the phase - space, was used for optimized, global Monte Carlo results over the mesh tally. The cask inventory was modeled as homogenized material corresponding to 20 fuel assemblies from a standard mid - sized PWR reactor. The global simulation model was an array of 32 casks in 2 rows with concrete foundations and external air, which makes a large spatial domain for shielding calculations. The dose rates around the casks were determined using FW-CADIS method with weighted adjoint source and mesh tally covering a portion of spatial domain of interest. The conservatively obtained dose rates give the upper boundary, since the activation reduction of sources was not taken into account when sequential filling of the dry storage will start. The effective area of the dry storage installation can be additionally reduced with lowering concrete foundation under the ground, embankment raising, and with extra concrete walls, that would additionally lower the dominant gamma dose rates. (author).

  20. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  1. Dry storage of spent nuclear fuel: present principles

    International Nuclear Information System (INIS)

    Vapirev, E.; Christoskov, I.; Boyadjiev, Z.

    1998-01-01

    The basic principles for the dry storage of spent nuclear fuel are presented in accordance to the author's understanding. The are: 1) Storage in the air at a low temperature (below 200 o C) or in a inert atmosphere (nitrogen, helium) at a temperature up to 300-400 o C; 2) Passive cooling by air; 3) Multiple barriers to the propagation of fission products and trans-uraniums: fuel palette, fuel pin cladding, a containment or a canister, a single or a double cover of the container; 4) Control of the condition of the atmosphere within the double cover - pressure monitoring, helium concentration monitoring (if the atmosphere in the container is of helium or contains traces of helium). Based on publications, observations and discussion during the recent years, several principles are propose for discussion. It is proposed: 4) Stored fuel must be regarded as defective; 5) Active control of the integrity of the protective barriers of of the composition of the storage atmosphere - principle of the 'control barrier' or the 'control atmosphere'; 6) Introduction of the procedure of 'check up of the condition of SNF' by visual control or sampling of the storage atmosphere for the technologies which do not provide for monitoring the integrity of barriers or of the storage atmosphere. Principle 4 is being gradually accepted in modern technologies. Principle 5 is observed in the double-purpose containers and in some of MVDS technologies. A common feature of the technologies of horizontal and vertical canister storage in concrete modules is the absence of control of the integrity of barriers or of the composition of the atmosphere. To these technologies, if they are not revised, principle 6 applies

  2. Thermalhydraulic analyses of AECL's spent fuel dry storage systems

    International Nuclear Information System (INIS)

    Moffett, R.; Sabourin, G.

    1995-01-01

    This paper presents the validation of one- and three-dimensional thermalhydraulic models to be used to evaluate the thermal performance of AECL's MACSTOR and CANSTOR spent fuel dry storage modules. For this purpose, we compared analytical results to results of experiments conducted at AECL's Whiteshell Laboratories where mockups of the MACSTOR module and of a CANDU fuel storage basket were tested. The paper shows improvements to a simple one-dimensional model of the MACSTOR mock-up used previously. The replacement of constant heat transfer coefficients by free convection correlations, the addition of a storage cylinder model, and the addition of a radiation heat transfer model improved the predictions of concrete and storage cylinder temperatures. The paper also presents a new three-dimensional model for flow and heat transfer in the MACSTOR mock-up developed using CFDS-FLOW3D and -RAD3D computer programs. CFDS-FLOW3D code can estimate loss coefficients in complex geometry to an accuracy better than standard engineering correlations. The flow and temperature fields predicted using CFDS-FLOW3D are consistent with the measurements made during MACSTOR mock-up experiments (author). 5 refs., 4 tabs., 9 figs

  3. Retention of short chain fatty acids under drying and storage conditions

    Directory of Open Access Journals (Sweden)

    Alexandre Santos Souza

    2011-09-01

    Full Text Available Cheese whey permeate was used as a substrate for the fermentation of Propionibacterium freudenreichi PS1 for the production of short chain fatty acids, components of the bio-aroma of Swiss cheese. The liquid bio-aroma was encapsulated by spray drying under different conditions of air inlet temperature and feed rate. A study was carried out on the stability of the bio-aroma during storage in laminated packages at 30 °C for 96 days using the product showing the greatest retention of acetic and propionic acids. The results showed that the best drying conditions were an air entrance temperature of 180 °C and a feed rate of 24 g/min resulting in particles with a smooth surface and few invaginations and micro-fissures. However, 72% of the acetic acid and 80% of the propionic acid were lost during storage showing that the wall material used was inadequate to guarantee product stability.

  4. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    International Nuclear Information System (INIS)

    Cho, Chun-Hyung; Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun

    2011-01-01

    Research highlights: → We compare the costs of wet and dry interim storage facilities for PWR spent fuel. → We use the parametric method and quotations to deduce unknown cost items. → Net present values and levelized unit prices are calculated for cost comparisons. → A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  5. Cost comparisons of wet and dry interim storage facilities for PWR spent nuclear fuel in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chun-Hyung, E-mail: skycho@krmc.or.kr [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Tae-Man; Seong, Ki-Yeoul; Kim, Hyung-Jin; Yoon, Jeong-Hyoun [Korea Radioactive Waste Management Corporation, 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of)

    2011-05-15

    Research highlights: > We compare the costs of wet and dry interim storage facilities for PWR spent fuel. > We use the parametric method and quotations to deduce unknown cost items. > Net present values and levelized unit prices are calculated for cost comparisons. > A system price is the most decisive factor in cost comparisons. - Abstract: As a part of an effort to determine the ideal storage solution for pressurized water reactor (PWR) spent nuclear fuel, a cost assessment was performed to better quantify the competitiveness of several storage types. Several storage solutions were chosen for comparison, including three dry storage concepts and a wet storage concept. The net present value (NPV) and the levelized unit cost (LUC) of each solution were calculated, taking into consideration established scenarios and facility size. Wet storage was calculated to be the most expensive solution for a 1700 MTU facility, and metal cask storage marked the highest cost for a 5000 MTU facility. Sensitivity analyses on discount rate, metal cask price, operation and maintenance cost, and facility size revealed that the system price is the most decisive factor affecting competitiveness among the storage types.

  6. Dry interim storage of radioactive material in Germany

    International Nuclear Information System (INIS)

    Drobniewski, Christian; Palmes, Julia

    2013-01-01

    In accordance with the waste management concept in Germany, spent fuel is stored in interim storage facilities for a period of up to 40 years until deposition in a geological repository. In twelve on-site interim storages in the vicinity or directly on the sites of the nuclear power plants, spent fuel elements from reactor operation are stored after the necessary period of decay in wet storage basins inside the reactors. Additionally, three central interim storage facilities for storage of spent fuel of different origin are in operation. The German facilities realize the concept of dry interim storage in metallic transport and storage casks. The confinement of the radioactive material is ensured by the double lid system of the casks, of which the leak tightness is monitored constantly. The casks are constructed to provide adequate heat removal and shielding of gamma and neutron radiation. Usually the storage facilities are halls of thick concrete structures, which ensure the removal of the decay heat by natural convection. The main safety goal of the storage concept is to prevent unnecessary exposure of persons, material goods and environment to ionizing radiation. Moreover any exposure should be kept as low as reasonable achievable. To reach this goal the containment of the radioactive materials, the disposal of decay heat, the sub criticality and the shielding of ionizing radiation has to be demonstrated by the applicant and verified by the licensing authority. In particular accidents, incidents and disasters have to be considered in the facility and cask design. This includes mechanical impacts onto the cask, internal and external fire, and environmental effects like wind, rain, snowfall, flood, earthquakes and landslides. In addition civilizatoric influences like plane crashes and explosions have to be taken into account. In all mentioned cases the secure confinement of the radioactive materials has to be ensured. On-site storage facilities have to consider the

  7. Design Of Dry Cask Storage For Serpong Multipurpose Reactor Spent Nuclear Fuel

    Directory of Open Access Journals (Sweden)

    Dyah Sulistyani Rahayu

    2018-03-01

    Full Text Available DESIGN OF DRY CASK STORAGE FOR SERPONG MULTI PURPOSE REACTOR SPENT NUCLEAR FUEL. The spent nuclear fuel (SNF from Serpong Multipurpose Reactor, after 100 days storing in the reactor pond, is transferred to water pool interim storage for spent fuel (ISFSF. At present there are a remaining of 245 elements of SNF on the ISSF,198 element of which have been re-exported to the USA. The dry-cask storage allows the SNF, which has already been cooled in the ISSF, to lower its radiation exposure and heat decayat a very low level. Design of the dry cask storage for SNF has been done. Dual purpose of unventilated vertical dry cask was selected among other choices of metal cask, horizontal concrete modules, and modular vaults by taking into account of technical and economical advantages. The designed structure of cask consists of SNF rack canister, inner steel liner, concrete shielding of cask, and outer steel liner. To avoid bimetallic corrosion, the construction material for canister and inner steel liner follows the same material construction of fuel cladding, i.e. the alloy of AlMg2. The construction material of outer steel liner is copper to facilitate the heat transfer from the cask to the atmosphere. The total decay heat is transferred from SNF elements bundle to the atmosphere by a serial of heat transfer resistance for canister wall, inner steel liner, concrete shielding, and outer steel liner respectedly. The rack canister optimum capacity of 34 fuel elements was designed by geometric similarity method basedon SNF position arrangement of 7 x 6 triangular pitch array of fuel elements for prohibiting criticality by spontaneous neutron. The SNF elements are stored vertically on the rack canister.  The thickness of concrete wall shielding was calculated by trial and error to give air temperature of 30 oC and radiation dose on the wall surface of outer liner of 200 mrem/h. The SNF elements bundles originate from the existing racks of wet storage, i

  8. Characterizing and packaging BN-350 spent fuel for long-term dry storage

    International Nuclear Information System (INIS)

    Lambert, J. D. B.; Bolshinsky, I.; Haues, S.L.; Allen, K.J.; Howden, E.A.; Hill, R.N.; Planchon, H.P.; Staples, P.; Karaulov, V.N.; Blynskij, A.P.; Yakovlev, I.K.; Maev, V.; Dumchev, I. A.

    2000-01-01

    The Republic of Kazakhstan is being assisted by the U.S. Department of Energy in preparing spent fuel from the BN-350 fast reactor for long term dry storage. Argonne National Laboratory was assigned responsibility for the physical and nuclear characterization of the spent fuel, for the design and safety analysis of 6-pac and 4-pac canisters used to contain spent fuel assemblies for storage, and for the design, testing and installation of a closure station at the reactor in which the canisters of fuel are dried, filled with inert gas and welded shut. This paper briefly describes the specialized components and equipment used, the process followed, and experience gained in packaging the spent fuel. Olsen et al and Schaefer separately discuss overall safety and criticality considerations of the packaging process in parallel papers to this conference

  9. Technical Aspects Regarding the Preservation of Dry Onions in Different Storage Conditions

    Directory of Open Access Journals (Sweden)

    Marian Vintila

    2014-11-01

    Full Text Available Research refers to the ability to maintain the quality of dry onions in different conditions of temperature, the three varieties used in experimentation (De Buzau, Daytona and Countach being stored after proper preparation at ambient temperature (+20…+22°C, refrigerated (+10…+12°C and cold conditions (+3…+5°C. Storage life, the level of weight (mass and decay losses and evolution of some chemical components determined from the 9 variants led to the conclusion that the best results were obtained by De Buzau variety for storage under ambient conditions and Daytona variety for storage under refrigerated and cold conditions. Moreover large differences between varieties and their behavior depending on storage conditions require choosing resistant cultivars and optimum storage temperatures according to destination and period of marketing or consumption.

  10. Storage conditions affect oxidative stability and nutritional composition of freeze-dried Nannochloropsis salina

    DEFF Research Database (Denmark)

    Safafar, Hamed; Langvad, Sten; Møller, Peter

    2017-01-01

    composition of microalgae biomass. In order to investigate the worsening of the nutritional quality of freeze dried biomass, a multifactorial storage experiment was conducted on a high EPA (eicosapentaenoic acid) Nannochloropsis salina biomass. The storage time (0–56 days), storage temperature (5, 20,and 40...... °C and packaging conditions (under vacuum and ambient pressure)used as main factors. During the 56 days of storage, both time and temperature strongly influenced the oxidation reactions which result in deterioration of bioactive compounds such as carotenoids, tocopherols, and EPA. Lipid deterioration......, or cosmetics requires the knowledge of the optimum storage conditions to prevent the value-added compounds from deterioration. Results of this study improve our understanding of the chemical deterioration under different storage conditions and can help the producers/customers to extend the shelf life...

  11. Natural drying treatments during seasonal storage of wood for bioenergy in different European locations

    International Nuclear Information System (INIS)

    Roeser, Dominik; Mola-Yudego, Blas; Sikanen, Lauri; Prinz, Robert; Gritten, David; Emer, Beatrice; Vaeaetaeinen, Kari; Erkkilae, Ari

    2011-01-01

    Research into the methods of producing high quality wood chips for a rapidly growing energy sector is becoming increasingly important. For example, small wood chip heating plants require high quality wood chips to ensure efficient operation, thereby minimizing maintenance costs. Moisture content is considered to be an important quality parameter regarding wood based fuels. The objective of this study is to investigate methods to promote the natural drying of wood for bioenergy purposes. The effects on the drying process through covering the wood piles and partial debarking of stems were tested in order to identify methods to reduce the moisture content of the woody material in the storage. Drying trials were established in Finland, Italy and Scotland, utilizing tree species typically used for energy purposes in each area. The results show that natural drying is a viable and effective method to enhance the energy efficiency of wood based fuel products in all the regions studied. Furthermore, by adapting current harvesting methods and storage procedures even better results can be achieved. In addition, the results also indicate that broadleaved trees dry more effectively, if some partial debarking is carried out and that covering of piles is of utmost importance in Scotland and Finland. -- Highlights: → Natural drying is an effective method to enhance efficiency in the wood-fuel chains → Broadleaved trees dry more effectively when partial debarking is done → In Scotland and Finland a method for covering of piles is of utmost importance.

  12. Pectin Methyl Esterase Activity Change in Intermediate Moisture Sun-Dried Figs after Storage

    Directory of Open Access Journals (Sweden)

    Dilek Demirbüker Kavak

    2015-12-01

    Full Text Available Intermediate moisture fruits can be obtained by rehydrating dried fruits. Intermediate moisture fruits are suitable for direct consumption compared to dry fruits and can be directly used in the production of various products such as bakery products, dairy products and candies. Aim of this study is to compare the pectin methyl esterase (PME activity of intermediate moisture figs which causes softening of the texture and to compare their microbial stability after 3 months storage period. For this purpose, dried figs were rehydrated in 30 and 80° C water until they reach 30% moisture content. Rehydrated samples were stored for 3 months at +4°C. Results showed that there was no statistically significant difference between the control samples and the samples rehydrated at 80°C according to the total viable counts. At the end of the storage period, results of residual PME activity in control samples was 24.1 μmol COOH min-1g-1, while it was found 17.4 μmol COOH min-1g-1 in samples rehydrated at 80°C. As a result rehydration conducted at 80°C provided 28% reduction in PME activity compared to the control samples rehydrated at 30°C, although it did not affect the microbial load significantly after storage.

  13. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage.

    Science.gov (United States)

    Jofré, A; Aymerich, T; Garriga, M

    2015-01-01

    The production of long shelf-life highly concentrated dried probiotic/starter cultures is of paramount importance for the food industry. The aim of the present study was to evaluate the protective effect of glucose, lactose, trehalose, and skim milk applied alone or combined upon the survival of potentially probiotic Lactobacillus rhamnosus CTC1679, Lactobacillus casei/paracasei CTC1677 and L. casei/paracasei CTC1678 during freeze-drying and after 39 weeks of storage at 4 and 22 °C. Immediately after freeze-drying, the percentage of survivors was very high (≥ 94%) and only slight differences were observed among strains and cryoprotectants. In contrast, during storage, survival in the dried state depended on the cryoprotectant, temperature and strain. For all the protectants assayed, the stability of the cultures was remarkably higher when stored under refrigeration (4 °C). Under these conditions, skim milk alone or supplemented with trehalose or lactose showed the best performance (reductions ≤ 0.9 log units after 39 weeks of storage). The lowest survival was observed during non-refrigerated storage and with glucose and glucose plus milk; no viable cells left at the end of the storage period. Thus, freeze-drying in the presence of appropriate cryoprotectants allows the production of long shelf-life highly concentrated dried cultures ready for incorporation in high numbers into food products as starter/potential probiotic cultures.

  14. A study on safety analysis methodology in spent fuel dry storage facility

    Energy Technology Data Exchange (ETDEWEB)

    Che, M. S.; Ryu, J. H.; Kang, K. M.; Cho, N. C.; Kim, M. S. [Hanyang Univ., Seoul (Korea, Republic of)

    2004-02-15

    Collection and review of the domestic and foreign technology related to spent fuel dry storage facility. Analysis of a reference system. Establishment of a framework for criticality safety analysis. Review of accident analysis methodology. Establishment of accident scenarios. Establishment of scenario analysis methodology.

  15. PERFORMANCE OF A FORCED CONVECTION SOLAR DRIER INTEGRATED WITH GRAVEL AS HEAT STORAGE MATERIAL FOR CHILI DRYING

    Directory of Open Access Journals (Sweden)

    M. MOHANRAJ

    2009-09-01

    Full Text Available An indirect forced convection solar drier integrated with different sensible heat storage maternal has been developed and tested its performance for drying chili under the metrological conditions of Pollachi, India. The system consists of a flat plate solar air heater with heat storage unit, a drying chamber and a centrifugal blower. Drying experiments have been performed at an air flow rate of 0.25 kg/s. Drying of chili in a forced convection solar drier reduces the moisture content from around 72.8% (wet basis to the final moisture content about 9.1% in 24 h. Average drier efficiency was estimated to be about 21%. The specific moisture extraction rate was estimated to be about 0.87 kg/kWh.

  16. Effects of Dry Storage and Resubmersion of Oysters on Total Vibrio vulnificus and Total and Pathogenic (tdh+/trh+) Vibrio parahaemolyticus Levels.

    Science.gov (United States)

    Kinsey, Thomas P; Lydon, Keri A; Bowers, John C; Jones, Jessica L

    2015-08-01

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are the two leading causes of bacterial illnesses associated with raw shellfish consumption. Levels of these pathogens in oysters can increase during routine antifouling aquaculture practices involving dry storage in ambient air conditions. After storage, common practice is to resubmerge these stored oysters to reduce elevated Vv and Vp levels, but evidence proving the effectiveness of this practice is lacking. This study examined the changes in Vv and in total and pathogenic (thermostable direct hemolysin gene and the tdh-related hemolysin gene, tdh+ and trh+) Vp levels in oysters after 5 or 24 h of dry storage (28 to 32°C), followed by resubmersion (27 to 32°C) for 14 days. For each trial, replicate oyster samples were collected at initial harvest, after dry storage, after 7 days, and after 14 days of resubmersion. Oysters not subjected to dry storage were collected and analyzed to determine natural undisturbed vibrio levels (background control). Vibrio levels were measured using a most-probable-number enrichment followed by real-time PCR. After storage, vibrio levels (excluding tdh+ and trh+ Vp during 5-h storage) increased significantly (P oysters stored for 5 h) were not significantly different (P oysters. Vv and total and pathogenic Vp levels were not significantly different (P > 0.1) from levels in background oysters after 14 days of resubmersion, regardless of dry storage time. These data demonstrate that oyster resubmersion after dry storage at elevated ambient temperatures allows vibrio levels to return to those of background control samples. These results can be used to help minimize the risk of Vv and Vp illnesses and to inform the oyster industry on the effectiveness of routine storing and resubmerging of aquaculture oysters.

  17. Modeling of the process of moisture loss during the storage of dried apricots.

    Science.gov (United States)

    Miranda, G; Berna, A; Bon, J; Mulet, A

    2011-10-01

    Moisture content is a reference parameter for dried food because the growth of most microorganisms is inhibited below certain water activity levels. In addition, it has a determining influence on the evolution of important parameters, such as color and flavor, and on other properties and deterioration reactions, such as texture, oxidation processes and nutritional value. During the storage of some dried fruits, moisture is produced due to Maillard reactions and exchanged with the surrounding environment through the packaging. The evolution of dried foods during their shelf life depends on the storage conditions. The aim of this study is to analyze the evolution of the moisture content in dried apricots packaged in different types of containers, namely glass and thermosealed polypropylene trays. The samples were stored at constant temperatures: 5, 15, 25 and 35 °C and were analyzed periodically over a period of 12 months. The sorption isotherms of apricots used in this study were also determined. In order to model how the moisture evolved, an empirical kinetic model was tested. This model considers both water transfer from the fruit and also water production as a result of the Maillard processes. The explained variance was higher than 95% in the samples stored in trays, which were thermosealed with film.

  18. Analysis for seismic response of dry storage facility for spent fuel

    International Nuclear Information System (INIS)

    Ko, Y.-Y.; Hsu, S.-Y.; Chen, C.-H.

    2009-01-01

    Most of the dry storage systems for spent fuel are freestanding, which leads to stability concerns in an earthquake. In this study, as a safety check, the ABAQUS/Explicit code is adopted to analyse the seismic response of the dry storage facility planned to be installed at Nuclear Power Plant no. 1 (NPP1) in Taiwan. A 3D coupled finite element (FE) model was established, which consisted of a freestanding cask, a concrete pad, and underneath soils interacting with frictional contact interfaces. The scenario earthquake used in the model included an artificial earthquake compatible to the design spectrum of NPP1, and a strong ground motion modified from the time history recorded during the Chi-Chi earthquake. The results show that the freestanding cask will slide, but not tip over, during strong earthquakes. The scale of the sliding is very small and a collision between casks will not occur. In addition, the differential settlement of the foundation pad that takes place due to the weight of the casks increases the sliding potential of the casks during earthquakes

  19. Interim dry storage system technologies and innovations VARNA 2002

    International Nuclear Information System (INIS)

    Chollet, P.; Guenon, Y.

    2002-01-01

    The main concepts of the TN24 Family and NUHOMS System are explained in the paper. It is discussed how the NPPs specific requirements and economics trends contributes to the growing families of interim dry storage systems delivered under COGEMA LOGICTICS license. It is concluded that modular solutions are currently dominating because they are derived from main concepts evolved over time, benefited from both the transport aspects with internationally recognised stringent regulations, and various specific ISFSI requirements and economic trends

  20. Dry storage facility for spent fuel or high-level wastes

    International Nuclear Information System (INIS)

    Geoffroy, J.; Dobremelle, M.; Fabre, J.C.; Bonnet, C.

    1989-01-01

    The French Atomic Energy Commission (CEA) has specific irradiated fuels which, due to their properties, cannot be reprocessed directly in existing industrial facilities. Accordingly, for the spent fuels from the EL4 and OSIRIS power plants, the CEA has been faced with the problem of selecting a process that will allow the storage of these materials under satisfactory technical and economic conditions. The authors discuss how three conditions must be satisfied to store irradiated fuels releasing heat: containment of radioactive materials, biological shielding, and thermal cooling to guarantee an acceptable temperature- level throughout. In view of the need for an interim storage facility using a simple cooling process requiring only minimal maintenance and monitoring, dry storage in a concrete vault cooled by natural convection was selected. This choice was made within the framework of a research and development program in which theoretical heat transfer investigations and mock-up tests confirmed the feasibility of cooling by natural convection

  1. Dry Matter Losses and Greenhouse Gas Emissions From Outside Storage of Short Rotation Coppice Willow Chip.

    Science.gov (United States)

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO 2 ) concentration within the heap. A peak in methane (CH 4 ) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH 4 concentration occurred as CO 2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other

  2. Evaluation of Corrosion of Aluminum Based Reactor Fuel Cladding Materials During Dry Storage

    International Nuclear Information System (INIS)

    Peacock, H.B. Jr.

    1999-01-01

    This report provides an evaluation of the corrosion behavior of aluminum cladding alloys and aluminum-uranium alloys at conditions relevant to dry storage. The details of the corrosion program are described and the results to date are discussed

  3. Thermalhydraulic analyses of AECL`s spent fuel dry storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Moffett, R; Sabourin, G [Atomic Energy of Canada Ltd., Montreal, PQ (Canada). CANDU Operations; Banas, A O [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-12-31

    This paper presents the validation of one- and three-dimensional thermalhydraulic models to be used to evaluate the thermal performance of AECL`s MACSTOR and CANSTOR spent fuel dry storage modules. For this purpose, we compared analytical results to results of experiments conducted at AECL`s Whiteshell Laboratories where mockups of the MACSTOR module and of a CANDU fuel storage basket were tested. The paper shows improvements to a simple one-dimensional model of the MACSTOR mock-up used previously. The replacement of constant heat transfer coefficients by free convection correlations, the addition of a storage cylinder model, and the addition of a radiation heat transfer model improved the predictions of concrete and storage cylinder temperatures. The paper also presents a new three-dimensional model for flow and heat transfer in the MACSTOR mock-up developed using CFDS-FLOW3D and -RAD3D computer programs. CFDS-FLOW3D code can estimate loss coefficients in complex geometry to an accuracy better than standard engineering correlations. The flow and temperature fields predicted using CFDS-FLOW3D are consistent with the measurements made during MACSTOR mock-up experiments (author). 5 refs., 4 tabs., 9 figs.

  4. Dry storage of MTR spent fuel from the Argentine radioisotope production reactor RA-3

    International Nuclear Information System (INIS)

    Di Marco, A.; Gillaume, E.J.; Ruggirello, G.; Zaweruchi, A.

    1996-01-01

    The nuclear fuel elements of the RA-3 reactor consist in 19 rectangular fuel plates held in position by two lateral structural plates. The whole assembly is coupled to the lower nozzles that fits in the reactor core grid. The inner plates are 1.5 mm thick, 70.5 mm wide and 655 mm long and the outer plates are 100 mm longer. The fuel plates are formed by a core of an AI-U alloy co-laminated between two plates of Al. Enrichment is 90% 235 U. After being extracted from the reactor, the fuel elements have been let to cool down in the reactor storage pool and finally moved to the storage facility. This facility is a grid of vertical underground channels connected by a piping system. The system is filled with processed and controlled water. At the present the storage capacity of the facility is near to be depleted and some indications of deterioration of the fuel elements has been detected. Due to the present status of the facility and the spent fuel stored there, a decision has been taken to proceed to modify the present underwater storage to dry storage. The project consist in: a) Decontamination and conditioning of the storage channels to prepare them for dry storage. b) Disassembly of the fuel elements in hot cells in order to can only the active fuel plates in an adequate tight canister. c) The remnant structural pieces will be treated as low level waste. (author). 10 figs

  5. Survival of spray-dried Lactobacillus kefir is affected by different protectants and storage conditions.

    Science.gov (United States)

    Golowczyc, Marina A; Gerez, Carla L; Silva, Joana; Abraham, Analía G; De Antoni, Graciela L; Teixeira, Paula

    2011-04-01

    Survival of two Lactobacillus kefir strains after spray drying in reconstituted skim milk with or without the addition of 12.5 g monosodium glutamate/l, 20 g sucrose/l, or 20 g fructo-oligosaccharides (FOS)/l and during subsequent storage under different conditions of temperature (20 and 30°C) and relative humidity (RH) (0, 11 and 23%) was evaluated. After being dried, L. kefir 8321 and L. kefir 8348 had a decrease in viability of 0.29 and 0.70 log cfu/ml respectively, while the addition of different protectants improved the survival of both strains significantly. During storage, bacterial survival was significantly higher under lower conditions of RH (0-11%), and monosodium glutamate and FOS proved to be the best protectants.

  6. Radioprotection and safety for a dry storage module for bare PWR fuel elements

    International Nuclear Information System (INIS)

    Tzontlimatzin, E.

    1983-01-01

    A module for dry storage of spent fuel from PWR, after a previous cooling time of 2 years, is examined. Biological protection is obtained by 185 cm of concrete. The safety study shows the impossibility of a fast increase in temperature in case of cooling system failure because in this case the module will be cooled by natural convection or thermosiphon. A project for a storage installation consisting of 5 modules for 1500 irradiated fuel assemblies is described [fr

  7. Thermoelectric Powered Wireless Sensors for Dry-Cask Storage

    Science.gov (United States)

    Carstens, Thomas Alan

    This study focuses on the development of self-powered wireless sensors. These sensors can be used to measure key parameters in extreme environments; e.g., temperature monitoring for spent nuclear fuel during dry-cask storage. This study has developed a design methodology for these self-powered monitoring systems. The main elements that constitute this work consist of selecting and testing a power source for the wireless sensor, determination of the attenuation of the wireless signal, and testing the wireless sensor circuitry in an extreme environment. OrigenArp determined the decay heat and gamma/neutron source strength of the spent fuel throughout the service life of the dry-cask. A first principles analysis modeled the temperatures inside the dry-cask. A finite-element heat transfer code calculated the temperature distribution of the thermoelectric and heat sink. The temperature distributions determine the power produced by the thermoelectric. It was experimentally verified that a thermoelectric generator (HZ-14) with a DC/DC converter (Linear Technology LTC3108EDE) can power a transceiver (EmbedRF) at condition which represent prototypical conditions throughout and beyond the service life of the dry-cask. The wireless sensor is required to broadcast with enough power to overcome the attenuation from the dry-cask. It will be important to minimize the attenuation of the signal in order to broadcast with a small transmission power. To investigate the signal transmission through the dry-cask, CST Microwave Studio was used to determine the scattering parameter S2,1 for a horizontal dry-cask. Important parameters that can influence the transmission of the signal are antenna orientation, antenna placement, and transmission frequency. The thermoelectric generator, DC/DC converter, and transceiver were exposed to 60Co gamma radiation (exposure rate170.3 Rad/min) at the University of Wisconsin Medical Radiation Research Center. The effects of gamma radiation on the

  8. Fibres as carriers for Lactobacillus rhamnosus during freeze-drying and storage in apple juice and chocolate-coated breakfast cereals.

    Science.gov (United States)

    Saarela, Maria; Virkajärvi, Ilkka; Nohynek, Liisa; Vaari, Anu; Mättö, Jaana

    2006-11-01

    The capability of different fibre preparations to protect the viability and stability of Lactobacillus rhamnosus during freeze-drying, storage in freeze-dried form and after formulation into apple juice and chocolate-coated breakfast cereals was studied. In freeze-drying trials wheat dextrin and polydextrose proved to be promising carriers for the L. rhamnosus strains: both freeze-drying survival and storage stability at 37 degrees C were comparable to the control carrier (sucrose). Using apple fibre and inulin carriers resulted in powders with fairly good initial freeze-drying survival but with poor storage stability at 37 degrees C. When fresh L. rhamnosus cells were added into apple juice (pH 3.5) together with oat flour with 20% beta-glucan the survival of the cells was much better at 4 degrees C and at 20 degrees C than with sucrose, wheat dextrin and polydextrose, whereas with freeze-dried cells no protective effect of oat flour could be seen. The stability of freeze-dried L. rhamnosus cells at 20 degrees C was higher in chocolate-coated breakfast cereals compared to low pH apple juice. Similar to freeze-drying stability, wheat dextrin and polydextrose proved to be better carriers than oat flour in chocolate-coated breakfast cereals. Regardless of their differing capability to adhere to fibre preparations the two L. rhamnosus strains studied gave parallel results in the stability studies with different carriers.

  9. Past experience and future needs for the use of burnup credit in LWR fuel storage

    International Nuclear Information System (INIS)

    Boyd, W.A.; Wrights, G.N.

    1987-01-01

    To achieve improved fuel economics and reduce the amount of fuel discharged annually, utilities are engaging in fuel management strategies that will achieve higher discharge burnups for their fuel assemblies. Although burnup credit methodologies have been developed and spent-fuel racks have been licensed, burnup credit fuel storage racks are not the answer for all utilities. Off-site and out-of-pool spent-fuel storage may be more appropriate. This is leading to the development of dry spent-fuel storage and shipping casks. Cask designs with spent-fuel storage capability between 20 and 32 assemblies are being developed by several vendors. The US Dept. of Energy is also funding work by VEPCO. Westinghouse is currently licensing its dry storage cask, developing a shipping cask for the domestic market, and is involved in a joint venture to develop a cask for the international market. Although methods of taking credit for fuel burnup in spent-fuel storage racks have been developed and licensed, use of these methods on dry spent-fuel storage and shipping casks can lead to new issues. These issues arise because the excess reactivity margin that is inherent in a burnup credit spent-fuel storage rack criticality analysis will not be available in a dry cask analysis

  10. Standard guide for drying behavior of spent nuclear fuel

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide is organized to discuss the three major components of significance in the drying behavior of spent nuclear fuel: evaluating the need for drying, drying spent nuclear fuel, and confirmation of adequate dryness. 1.1.1 The guide addresses drying methods and their limitations in drying spent nuclear fuels that have been in storage at water pools. The guide discusses sources and forms of water that remain in SNF, its container, or both, after the drying process and discusses the importance and potential effects they may have on fuel integrity, and container materials. The effects of residual water are discussed mechanistically as a function of the container thermal and radiological environment to provide guidance on situations that may require extraordinary drying methods, specialized handling, or other treatments. 1.1.2 The basic issue in drying is to determine how dry the SNF must be in order to prevent issues with fuel retrievability, container pressurization, or container corrosion. Adequate d...

  11. Spray Drying of Spinach Juice: Characterization, Chemical Composition, and Storage.

    Science.gov (United States)

    Çalışkan Koç, Gülşah; Nur Dirim, Safiye

    2017-12-01

    The 1st aim of this study is to determine the influence of inlet and outlet air temperatures on the physical and chemical properties of obtained powders from spinach juice (SJ) with 3.2 ± 0.2 °Brix (°Bx). Second, the effect of 3 different drying agents (maltodextrin, whey powder, and gum Arabic) on the same properties was investigated for the selected inlet/outlet temperatures (160/100 °C) which gives the minimum moisture content and water activity values. For this purpose, the total soluble solid content of SJ was adjusted to 5.0 ± 0.2 °Bx with different drying agents. Finally, the effects of different storage conditions (4, 20, and 30 °C) on the physical and chemical properties of spinach powders (SPs) produced at selected conditions were examined. A pilot scale spray dryer was used at 3 different inlet/outlet air temperatures (160 to 200 °C/80 to 100 °C) where the outlet air temperature was controlled by regulating the feed flow rate. Results showed that the moisture content, water activity, browning index, total chlorophyll, and total phenolic contents of the SP significantly decreased and pH and total color change of the SP significantly increased by the addition of different drying agents (P < 0.05). In addition, the changes in the above-mentioned properties were determined during the storage period, at 3 different temperatures. It was also observed that the vitamin C, β-carotene, chlorophyll, and phenolic compounds retention showed first-order degradation kinetic with activation energy of 32.6840, 10.2736, 27.7031, and 28.2634 kJ/K.mol, respectively. © 2017 Institute of Food Technologists®.

  12. Gamma dose rate calculations for conceptual design of a shield system for spent fuel interim dry storage in CNA 1

    International Nuclear Information System (INIS)

    Blanco, A; Gomez S

    2012-01-01

    After completing the rearrangement of the Spent Fuel Elements (SFE) into a compact arrangement in the two storage water pools, Atucha Nuclear Reactor 1 (ANR 1) will leave free position for the wet storage of the SFE discharged until December 2014. Even, in two possible scenarios, such as extending operation from 2015 or the cessation of operation after that date, it will be necessary to empty the interim storage water pools transferring the SFE to a temporary dry storage system. Because the law 25.018 'Management of Radioactive Wastes' implies for the first scenario - operation beyond 2015 - that Nucleoelectrica Argentina S.A. will still be in charge of the dry storage system and for the second - the cessation of operation after 2015 - the National Commission of Atomic Energy (CNEA) will be in charge by the National Management Program of Radioactive Wastes, the interim dry storage system of SNF is an issue of common interest which justifies go forward together. For that purpose and in accordance with the criticality and shielding calculations relevant to the project, in this paper we present the dose rate calculations for shielding conceptual design of a system for dry interim storage of the SFE of ANR 1. The specifications includes that the designed system must be suitable without modification for the SFE of the ANR 2. The results for the calculation of the photon dose rate, in touch and at one meter far, for the Transport Module and the Container of the SFE, are presented, which are required and controlled by the National Regulatory Authority (NRA) and the International Atomic Energy Agency (IAEA). It was used the SAS4 module of SCALE5.1 system and MCNP5. As a design tool for the photon shielding in order to meet current standards for allowable dose rates, a radial and axial parametric analysis were developed based on the thickness of lead of the Transport Module. The results were compared and verified between the two computing systems. Before this

  13. Proposal of a dry storage installation in Angra NPP for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, Luiz S.; Rzyski, Barbara M.

    2009-01-01

    When nuclear fuel is removed from a power reactor core after the depletion of efficiency in generating energy is called Spent Nuclear Fuel (SNF). After its withdrawal from the reactor core, SNF is temporarily stored in pools usually at the same site of the reactor. During this time, short-living radioactive elements and generated heat undergo decay until levels that allow removing the SNF from the pool and sending it for reprocessing or a temporary storage whether any of its final destinations has not yet been defined. It can be loaded in casks and disposed during years in a dry storage installations until be sent to a reprocessing plant or deep repositories. Before any decision, reprocessing or disposal, the SNF needs to be safely and efficiently isolated in one of many types of storages that exist around the world. Worldwide, the amount of SNF increases annually and in the next years this amount will be higher as a consequence of new Nuclear Power Plants (NPP) construction. In Brazil, that is about to construct the Angra 3 nuclear power reactor, a project about the final destination of the SNF is not yet ready. This paper presents a proposal for a dry storage installation in the Angra NPP site since it can be an initial solution for the Brazilian's SNF, until a final decision is taken. (author)

  14. The dry spent RBMK fuel cask storage site at the Ignalina NPP in Lithuania

    International Nuclear Information System (INIS)

    Penkov, V.V.; Diersch, R.

    1999-01-01

    At present, there are about 15,000 spent RBMK fuel assemblies stored in the water pools near the reactors at the Ignalina Nuclear Power Plant (INPP). Part of them are cut in two bundles and stored in standardized baskets in the pools. Each basket is loaded with 102 bundles. For long-term interim storage of this fuel, it was decided to use dry storage in casks. For this reason, the total activity to be stored is split into individual units (casks). Each cask represents a closed and independent safety system, fulfilling all safety-relevant requirements for both normal operational and hypothetical accidental conditions. The main safety relevant features of the storage cask system are: (1) Inherent safety system; (2) Double barrier system; (3) Passive cooling by natural convection; (4) Safety against accidents. The cask dry storage system is a cost effective and multi-functional system for storage, transport after the operation time and final disposal under consideration of additional protective elements. From an economical point of view, cask storage has a number of advantages. Two cask types have been intended for the INPP storage site: (1) The CASTOR RBMK cask made of ductile cast iron; (2) The CONSTOR RBMK sandwich cask made of an inner and outer steel shell and reinforced heavy concrete. The CASTOR RBMK and the CONSTOR RBMK casks are designed to withstand severe storage site accidents and with help of impact limiters - to fulfil the IAEA test criteria for type B(U)F packages. The INPP spent RBMK fuel storage site is designed as an open air storage for an operational time of 50 years. The casks are arranged on the concrete storage pad. The site is equipped with a crane for cask handling and technological buildings and security systems. The safety analyses for fuel and cask handling and for cask handling and for cask technology at the site have been made and accepted by the Lithuanian Competent Authority. (author)

  15. Dry oxidation behaviour of metallic containers during long term interim storages

    International Nuclear Information System (INIS)

    Desgranges, C.; Terlain, A.; Bertrand, N.; Gauvain, D.

    2004-01-01

    Low-alloyed steels or carbon steels are considered candidate materials for the fabrication of some nuclear waste package containers for long term interim storage. The containers are required to remain retrievable for centuries. One factor limiting their performance on this time scale is corrosion. The estimation of the metal thickness lost by dry oxidation over such long periods requires the construction of reliable models from short-time experimental data. Two complementary approaches for modelling dry oxidation have been considered. First, basic models following simple analytical laws from classical oxidation theories have been adjusted on the apparent activation energy of oxidation deduced from experimental data. Their extrapolation to long oxidation periods confirms that the expected damage due to dry oxidation could be small. Second, a numerical model able to take in consideration several mechanisms controlling the oxide scale growth is under development. Several preliminary results are presented. (authors)

  16. The Role of Technological Innovations for Dry Storage of Used Nuclear Fuel

    International Nuclear Information System (INIS)

    Issard, H.

    2015-01-01

    We cannot predict the recovery from the financial crisis, but regardless of whether it is slow or quick, the global need for energy and the growth of electricity consumption have been confirmed. Many countries throughout the world are pursuing or have publicly expressed their intention to pursue the construction of Nuclear Power Plants or to extend the life of existing nuclear reactors and to address the back end of the fuel cycle. As always in history, when economic constraints become more severe, the answer is often innovation. Maintaining the high level of performance of nuclear energy and increasing safety with an attractive cost is today’s challenge. It is true for reactors, true also for fuel cycle and in particular for the back end: recycling and interim storage. Interim storage equipment or systems of used fuel are considered in this presentation. The industry is ready to provide support to countries and utilities for the development of radioactive material transportation and storage, and is striving to develop innovative solutions in wet or dry storage systems and casks and to bring them to the market. This presentation will elaborate on the two following questions: Where are the most crucial needs for technological innovations? What is the role of innovation? The needs of technological innovation are important in 3 domains: storage equipment design, interfaces and handling of used fuel and safety justification methodology. Concerning the design, continuous effort for optimisation of used fuel storage equipment requires innovations. These designs constitute the new generation of dry storage casks. The expectations are a higher payload thanks to new materials (such as metal matrix composites) and optimised geometry for criticality-safety, better thermal evacuation efficiency to accept higher fuel characteristics (more enrichment, burnup, shorter cooling time), resistance to impact of airplanes. Designs are also expected to be optimised for sustainable

  17. Investigation of water-logged spent fuel rods under dry storage conditions

    International Nuclear Information System (INIS)

    Kohli, R.; Pasupathi, V.

    1986-09-01

    Tests were conducted to determine the amount of moisture contained in breached, water-logged spent fuel rods and the rate of release. Two well-characterized BWR fuel rods with reactor-induced breaches were tested in a hot cell. These rods contained approximately 6 to 10 g of moisture, most of which was released during heating tests simulating normal cask drying operations. Additional testing with two intentionally defected fuel rods (BWR and PWR) was performed to evaluate the effect of the cladding breach on migration of moisture along the length of the fuel rod. The results showed that the moisture released from reactor-breached spent fuel rods was insufficient to cause degradation of fuel or dry storage system components

  18. Interim spent-fuel storage options at commercial nuclear power plants

    International Nuclear Information System (INIS)

    Thakkar, A.R.; Hylko, J.M.

    1991-01-01

    Although spent fuel can be stored safely in waterfilled pools at reactor sites, some utilities may not possess sufficient space for life-of-plant storage capability. In-pool storage capability may be increased by reracking assemblies, rod consolidation, double tiering spent-fuel racks, and by shipping spent fuel to other utility-owned facilities. Long-term on-site storage capability for spent fuel may be provided by installing (dry-type) metal casks, storage and transportation casks, concrete casks, horizontal concrete modules, modular concrete vaults, or by constructing additional (pool-type) storage installations. Experience to date has provided valuable information regarding dry-type or pool-type installations, cask handling and staffing requirements, security features, decommissioning activities, and radiological issues

  19. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments.

  20. Corrosion experiments on stainless steels used in dry storage canisters of spent nuclear fuel

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Adams, J.P.; Faw, E.M.; Anderson, P.A.

    1996-09-01

    Nonradioactive (cold) experiments have been set up in the Idaho Chemical Processing Plant (ICPP)-1634, and radioactive (hot) experiments have been set up in the Irradiated Fuel Storage Facility (IFSF) at ICPP. The objective of these experiments is to provide information on the interactions (corrosion) between the spent nuclear fuel currently stored at the ICPP and the dry storage canisters and containment materials in which this spent fuel will be stored for the next several decades. This information will be used to help select canister materials that will retain structural integrity over this period within economic, criticality, and other constraints. The two purposes for Dual Purpose Canisters (DPCs) are for interim storage of spent nuclear fuel and for shipment to a final geological repository. Information on how corrosion products, sediments, and degraded spent nuclear fuel may corrode DPCs will be required before the DPCs will be allowed to be shipped out of the State of Idaho. The information will also be required by the Nuclear Regulatory Commission (NRC) to support the licensing of DPCs. Stainless steels 304L and 316L are the most likely materials for dry interim storage canisters. Welded stainless steel coupons are used to represent the canisters in both hot and cold experiments

  1. Interim dry cask storage of irradiated Fast Flux Test Facility fuel

    International Nuclear Information System (INIS)

    Scott, P.L.

    1994-09-01

    The Fast Flux Test Facility (FFTF), located at the US Department of Energy's (DOE'S) Hanford Site, is the largest, most modern, liquid metal-cooled test reactor in the world. This paper will give an overview of the FFTF Spent Fuel Off load project. Major discussion areas will address the status of the fuel off load project, including an overview of the fuel off load system and detailed discussion on the individual components that make up the dry cask storage portion of this system. These components consist of the Interim Storage Cask (ISC) and Core Component Container (CCC). This paper will also discuss the challenges that have been addressed in the evolution of this project

  2. The state of the Primary Degradation Factors and Models of Concrete Cask in Spent Fuel Dry Storage System

    International Nuclear Information System (INIS)

    Kim, J. S.; Lee, K. S.; Choi, J. W.; Kwon, S.

    2010-01-01

    In South Korea, a total of twenty nuclear reactors are in operation; the cumulative amount of spent fuel is estimated to be 10,490 MTU in 2009. The full capacity of the waste storage is expected to be saturated in around 2016. However, a national strategy for spent fuel management has not yet been set down and high level waste (HLW) such as spent fuel will have to be stored at-reactor (AR) by re-racking. Recently an worldwide interest on the dry storage has increased especially around U.S. With a perspective of the material of the spent fuel dry storage cask, the system can be divided into two types of metal and concrete casks. The concrete type cask is a very attractive option because of the cost competitiveness of concrete material and its relatively long-term durability. Although the type of metal cask is chosen, the use of cementitious material is inevitable at least for the cask foundation and the facilities for the protection of dry storage structures. Upon being placed, the performance of concrete begins to deteriorate from the intrinsic change of cement and the physical/ chemical environmental conditions. Thus it is necessary to evaluate the durability of a concrete for the increase of reliability and safety of the whole system during the designed life time. Considering the dry storage system of spent fuel is the item which can create a lot of added value, the development of a dry storage cask is usually initiated by private enterprises among developed countries. The detail research results and specific design criteria for the safety assessment of a concrete cask have not been revealed to the public well. In this paper, the major expected degradation factors and related degradation models of concrete casks were investigated as part of the safety assessment by taking account of the site where Korea industrial nuclear power plants are located

  3. Dry Cask Storage Characterization Project - Phase 1: CASTOR V/21 Cask Opening and Examination

    Energy Technology Data Exchange (ETDEWEB)

    Bare, Walter Claude; Ebner, Matthias Anthony; Torgerson, Laurence Dale

    2001-08-01

    This report documents visual examination and testing conducted in 1999 and early 2000 at the Idaho National Engineering and Environmental Laboratory (INEEL) on a Gesellschaft für Nuklear Service (GNS) CASTOR V/21 pressurized water reactor (PWR) spent fuel dry storage cask. The purpose of the examination and testing is to develop a technical basis for renewal of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level waste at independent spent fuel storage installation sites. The examination and testing was conducted to assess the condition of the cask internal and external surfaces, cask contents consisting of 21 Westinghouse PWR spent fuel assemblies from Dominion’s (formerly named Virginia Power) Surry Power Station and cask concrete storage pad. The assemblies have been continuously stored in the CASTOR cask since 1985. Cask exterior surface and selected fuel assembly temperatures, and cask surface gamma and neutron dose rates were measured. Cask external/internal surfaces, fuel basket components including accessible weldments, fuel assembly exteriors, and primary lid seals were visually examined. Selected fuel rods were removed from one fuel assembly, visually examined, and then shipped to Argonne National Laboratory for nondestructive, destructive, and mechanical examination. Cask interior crud samples and helium cover gas samples were collected and analyzed. The results of the examination and testing indicate the concrete storage pad, CASTOR V/21 cask, and cask contents exhibited sound structural and seal integrity and that long-term storage has not caused detectable degradation of the spent fuel cladding or the release of gaseous fission products between 1985 and 1999.

  4. Effect of storage time on microbial quality of some spices and dried ...

    African Journals Online (AJOL)

    The effect of storage time on the microbial quality of some spices and dried seasonings (SDS) (dawadawa, pepper, ginger, shrimp and fish powders) was studied over a 12-month period. Microbial load and profile of irradiated and unirradiated SDS were assessed at 0, 6 and 12-month periods. The range of total variable ...

  5. Results on Technical and Consultants Service Meetings on Lessons Learned from Operating Experience in Wet and Dry Spent Fuel Storage

    International Nuclear Information System (INIS)

    White, B.; Zou, X.

    2015-01-01

    Spent fuel storage has been and will continue to be a vital portion of the nuclear fuel cycle, regardless of whether a member state has an open or closed nuclear fuel cycle. After removal from the reactor core, spent fuel cools in the spent fuel pool, prior to placement in dry storage or offsite transport for disposal or reprocessing. Additionally, the inventory of spent fuel at many reactors worldwide has or will reach the storage capacity of the spent fuel pool; some facilities are alleviating their need for additional storage capacity by utilizing dry cask storage. While there are numerous differences between wet and dry storage; when done properly both are safe and secure. The nuclear community shares lessons learned worldwide to gain knowledge from one another’s good practices as well as events. Sharing these experiences should minimize the number of incidents worldwide and increase public confidence in the nuclear industry. Over the past 60 years, there have been numerous experiences storing spent fuel, in both wet and dry mediums, that when shared effectively would improve operations and minimize events. These lessons learned will also serve to inform countries, who are new entrants into the nuclear power community, on designs and operations to avoid and include as best practices. The International Atomic Energy Agency convened a technical and several consultants’ meetings to gather these experiences and produce a technical document (TECDOC) to share spent fuel storage lessons learned among member states. This paper will discuss the status of the TECDOC and briefly discuss some lessons learned contained therein. (author)

  6. The shutdown reactor: Optimizing spent fuel storage cost

    International Nuclear Information System (INIS)

    Pennington, C.W.

    1995-01-01

    Several studies have indicated that the most prudent way to store fuel at a shutdown reactor site safely and economically is through the use of a dry storage facility licensed under 10CFR72. While such storage is certainly safe, is it true that the dry ISFSI represents the safest and most economical approach for the utility? While no one is really able to answer that question definitely, as yet, Holtec has studied this issue for some time and believes that both an economic and safety case can be made for an optimization strategy that calls for the use of both wet and dry ISFSI storage of spent fuel at some plants. For the sake of brevity, this paper summarizes some of Holtec's findings with respect to the economics of maintaining some fuel in wet storage at a shutdown reactor. The safety issue, or more importantly the perception of safety of spent fuel in wet storage, still varies too much with the eye of the beholder, and until a more rigorous presentation of safety analyses can be made in a regulatory setting, it is not practically useful to argue about how many angels can sit on the head of a safety-related pin. Holtec is prepared to present such analyses, but this does not appear to be the proper venue. Thus, this paper simply looks at certain economic elements of a wet ISFSI at a shutdown reactor to make a prima facie case that wet storage has some attractiveness at a shutdown reactor and should not be rejected out of hand. Indeed, an optimization study at certain plants may well show the economic vitality of keeping some fuel in the pool and converting the NRC licensing coverage from 10CFR50 to 10CFR72. If the economics look attractive, then the safety issue may be confronted with a compelling interest

  7. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  8. Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks

    Science.gov (United States)

    Poulson, D.; Durham, J. M.; Guardincerri, E.; Morris, C. L.; Bacon, J. D.; Plaud-Ramos, K.; Morley, D.; Hecht, A. A.

    2017-01-01

    Radiography with cosmic ray muon scattering has proven to be a successful method of imaging nuclear material through heavy shielding. Of particular interest is monitoring dry storage casks for diversion of plutonium contained in spent reactor fuel. Using muon tracking detectors that surround a cylindrical cask, cosmic ray muon scattering can be simultaneously measured from all azimuthal angles, giving complete tomographic coverage of the cask interior. This paper describes the first application of filtered back projection algorithms, typically used in medical imaging, to cosmic ray muon scattering imaging. The specific application to monitoring spent nuclear fuel in dry storage casks is investigated via GEANT4 simulations. With a cylindrical muon tracking detector surrounding a typical spent fuel cask, simulations indicate that missing fuel bundles can be detected with a statistical significance of ∼ 18 σ in less than two days exposure and a sensitivity at 1σ to a 5% missing portion of a fuel bundle. Potential detector technologies and geometries are discussed.

  9. A Preliminary Study on Rock Bed Heat Storage from Biomass Combustion for Rice Drying

    Science.gov (United States)

    Nelwan, L. O.; Wulandani, D.; Subrata, I. D. M.

    2018-05-01

    One of the main constraints of biomass fuel utilization in a small scale rice drying system is the operating difficulties related to the adjustment of combustion/feeding rate. Use of thermal storage may reduce the problem since combustion operation can be accomplished in a much shorter time and then the use of heat can be regulated by simply adjusting the air flow. An integrated biomass furnace-rock bed thermal storage with a storage volume of 540 L was designed and tested. There were four experiments conducted in this study. Charging was performed within 1-2 hours with a combustion rate of 11.5-15.5 kg/h. In discharging process, the mixing of air passing through the rock bed and ambient air were regulated by valves. Without adjusting the valve during the discharging process, air temperature increased up to 80°C, which is not suitable for rice batch drying process. Charging with sufficiently high combustion rate (14 kg/h) within 1 hour continued by adjusting the valve during discharging process below 60°C increased the discharge-charge time ratio (DCTR) up to 5.33 at average air temperature of 49°C and ambient temperature of 33°C.The efficiency of heat discharging was ranged from 34.5 to 45.8%. From the simulation, as much as 156.8-268.8 kg of rice was able to be dried by the discharging conditions.

  10. Possibility for dry storage of the WWR-K reactor spent fuel

    International Nuclear Information System (INIS)

    Arinkin, F.M.; Belyakova, E.A.; Gizatulin, Sh.Kh.; Khromushin, I.V.; Koltochik, S.N.; Maltseva, R.M.; Medvedeva, Z.V.; Petukhov, V.K.; Soloviev, Yu.A.; Zhotabaev, Zh.R.

    2000-01-01

    This work is devoted to development of the way for dry storage of spent fuel of the WWR-K reactor. Residual energy release in spent fuel element assembly was determined via fortune combination of calculations and experiments. The depth of fission product occurrence relative to the fuel element shroud surface was found experimentally. The time of fission product release to the fuel element shroud surface was estimated. (author)

  11. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Rafaela da S. A.; Fontes, Gladson S., E-mail: rafaaelaandrade@hotmail.com, E-mail: gsfontes@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Saldanha, Pedro L. C., E-mail: saldanha@cnen.gov.br [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  12. Conceptual aspects of the safety evaluation of a project of complementary spent nuclear fuel dry storage unit

    International Nuclear Information System (INIS)

    Freitas, Rafaela da S. A.; Fontes, Gladson S.; Saldanha, Pedro L. C.

    2017-01-01

    Based on the number of cycles and the amount of new fuel elements exchanged in the reactor cores at each cycle, the forecast for the exhaustion of the spent nuclear fuel pools of the Brazil plants has provision until 2021. As are still in the studies the availability of a long-term storage facility for spent fuel, the short-term solution will be the construction of the Complementary Storage Spent Nuclear Fuel Unit, it will build inside the site in Angra Plants. The dry cask is a method of storage in which the fuel elements of high-level radioactive waste are stored, such as spent nuclear fuel, which already cooled in the fuel pool for at least one year and up to ten years. The purpose of the present paper is to discuss a conceptual study of the safety analysis of a project of licensing of a Dry Storage Unit (DSU) with the objective of verifying the application of national and international criteria, requirements and standards. The safety analysis will make on the principles adopted by the US Nuclear USNRC and the standards adopted at CNEN for dry storage. The concept of installation, seismic, geological and other analysis will be approached for approval of the site to be installed at DSU, the approved permit for the construction and finally the external and internal events that may occur being incidents and / or accidents and which are The necessary mitigations if something occurs within a period of time. (author)

  13. Dry matter losses and quality changes during short rotation coppice willow storage in chip or rod form.

    Science.gov (United States)

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    2018-05-01

    This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60 °C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.

  14. Effect of gamma irradiation and storage on lutein and zeaxanthin in liquid, frozen and dried egg yolk samples

    International Nuclear Information System (INIS)

    Mine Uygun-Saribay; Ece Ergun; Turhan Koeseoglu

    2014-01-01

    The aim of this study was to monitor the effects of gamma irradiation and storage on the content of lutein and zeaxanthin in egg yolk samples. Liquid, frozen and dried egg samples were subjected to gamma irradiation doses of 0, 1, 2 and 3 kGy followed by storage of liquid samples at +4 ± 1 deg C for 21 days, frozen samples at -18 ± 1 deg C and dried samples at room temperature for 1 year. The xanthophyll concentrations were determined by high-performance liquid chromatography-diode array detector. It was observed that concentrations of both lutein and zeaxanthin were decreased significantly (P < 0.05) after irradiation and during storage. The mechanism for radiation-induced degradation was proposed as radical formation which initiate chain reactions. It was suggested that during storage active radical species and oxygen caused the degradation. (author)

  15. Yield and acidity indices of sunflower and soybean oils in function of grain drying and storage

    Directory of Open Access Journals (Sweden)

    Paulo Carteri Coradi

    2017-04-01

    Full Text Available The aim of this study was to identify the best conditions for drying and storing soybeans and sunflower grains to maintain their quality. In the first experiment, the soybeans were found to have initial moisture contents of 25 and 19% (w.b. at different drying air temperatures (75, 90, 105, and 120°C. In the second step, the soybeans were evaluated after they were stored in paper bags and plastic polyethylene at temperatures of 3, 10 and 23°C for six months. In the third experiment, sunflower grains were tested after exposure to drying air temperatures of 45, 55, 65, and 75°C, and under storage conditions of 25°C and 50%, 20°C and 60%, 30°C and 40% RH over six months in paper bags and raffia. Drying the sunflower seeds at 45°C and storing them at 30°C and 40% RH led to higher oil yields and lower acid numbers. The oil that was extracted from the acid number was higher for soybean grains that were dried down from initial concentrations of 25% water at a drying air temperature of 120°C. The air temperature in storage at 3°C favored for yield and reduction of the soybean oil acidity.

  16. Corrosion assessment of dry fuel storage containers

    Energy Technology Data Exchange (ETDEWEB)

    Graves, C.E.

    1994-09-01

    The structural stability as a function of expected corrosion degradation of 75 dry fuel storage containers located in the 200 Area Low-Level Waste Burial Grounds was evaluated. These containers include 22 concrete burial containers, 13 55-gal (208-l) drums, and 40 Experimental Breeder Reactor II (EBR-II) transport/storage casks. All containers are buried beneath at least 48 in. of soil and a heavy plastic tarp with the exception of 35 of the EBR-II casks which are exposed to atmosphere. A literature review revealed that little general corrosion is expected and pitting corrosion of the carbon steel used as the exterior shell for all containers (with the exception of the concrete containers) will occur at a maximum rate of 3.5 mil/yr. Penetration from pitting of the exterior shell of the 208-l drums and EBR-II casks is calculated to occur after 18 and 71 years of burial, respectively. The internal construction beneath the shell would be expected to preclude containment breach, however, for the drums and casks. The estimates for structural failure of the external shells, large-scale shell deterioration due to corrosion, are considerably longer, 39 and 150 years respectively for the drums and casks. The concrete burial containers are expected to withstand a service life of 50 years.

  17. Validation issues for depletion and criticality analysis in burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Broadhead, B.L.; Dehart, M.D.; Gauld, I.C.

    2001-01-01

    This paper reviews validation issues associated with implementation of burnup credit in transport, dry storage, and disposal. The issues discussed are ones that have been identified by one or more constituents of the United States technical community (national laboratories, licensees, and regulators) that have been exploring the use of burnup credit. There is not necessarily agreement on the importance of the various issues, which sometimes is what creates the issue. The broad issues relate to the paucity of available experimental data (radiochemical assays and critical experiments) covering the full range and characteristics of spent nuclear fuel in away-from-reactor systems. The paper will also introduce recent efforts initiated at Oak Ridge National Laboratory (ORNL) to provide technical information that can help better assess the value of different experiments. The focus of the paper is on experience with validation issues related to use of burnup credit for transport and dry storage applications. (author)

  18. Low-Level Radioactive Waste temporary storage issues

    International Nuclear Information System (INIS)

    1992-04-01

    The Low-Level Radioactive Waste Policy Act of 1980 gave responsibility for the disposal of commercially generated low-level radioactive waste to the States. The Low-Level Radioactive Waste Policy Amendments Act of 1985 attached additional requirements for specific State milestones. Compact regions were formed and host States selected to establish disposal facilities for the waste generated within their borders. As a result of the Low-Level Radioactive Waste Policy Amendments Act of 1985, the existing low-level radioactive waste disposal sites will close at the end of 1992; the only exception is the Richland, Washington, site, which will remain open to the Northwest Compact region only. All host States are required to provide for disposal of low-level radioactive waste by January 1, 1996. States also have the option of taking title to the waste after January 1, 1993, or taking title by default on January 1, 1996. Low-level radioactive waste disposal will not be available to most States on January 1, 1993. The most viable option between that date and the time disposal is available is storage. Several options for storage can be considered. In some cases, a finite storage time will be permitted by the Nuclear Regulatory Commission at the generator site, not to exceed five years. If disposal is not available within that time frame, other options must be considered. There are several options that include some form of extension for storage at the generator site, moving the waste to an existing storage site, or establishing a new storage facility. Each of these options will include differing issues specific to the type of storage sought

  19. Project W-441 cold vacuum drying facility design requirements document

    International Nuclear Information System (INIS)

    O'Neill, C.T.

    1997-01-01

    This document has been prepared and is being released for Project W-441 to record the design basis for the design of the Cold Vacuum Drying Facility. This document sets forth the physical design criteria, Codes and Standards, and functional requirements that were used in the design of the Cold Vacuum Drying Facility. This document contains section 3, 4, 6, and 9 of the Cold Vacuum Drying Facility Design Requirements Document. The remaining sections will be issued at a later date. The purpose of the Facility is to dry, weld, and inspect the Multi-Canister Overpacks before transport to dry storage

  20. Antioxidant and Sensorial Properties of Polyfloral Honey with Dried Apricots after One Year of Storage

    Directory of Open Access Journals (Sweden)

    Jelena Vulić

    2015-01-01

    Full Text Available Total phenol (TPh and flavonoid (TFd contents, antioxidant and sensorial properties of polyfloral (PH, and polyfloral honey after one year of storage (PHs with dried apricots (20, 30, and 40% were evaluated. In comparison to honey, TPh increased 1.86 times for PH40. After storage time, TPh of PH40s increased slightly lower (1.77 times, compared to PHs. TFd slightly increased, approximately 3.23-fold, from PH to PH40, while PHs showed increase of 5.15-fold for PH40s. Antioxidant activity increased with increasing concentration of apricots in honey. EC50OH varied from 3.36 for PH to 2.29 mg/mL for PH40 and from 3.48 for PHs to 2.68 mg/mL for PH40s; EC50DPPH ranged from 30.60 for PH to 14.95 mg/mL for PH40 and from 31.22 for PHs to 17.43 mg/mL for PH40s; RP0.5 ranged from 66.37 for PH to 31.83 mg/mL for PH40 and from 67.99 for PHs to 35.03 mg/mL for PH40s. Statistical analysis suggested that TPh and TFd were associated with antioxidant activity and colour. Sensory parameters, before and after storage, indicated very good sensory qualities. Phenolic composition, antioxidant capacity, and sensory properties were promoted after addition of dried apricots and these parameters stayed improved, since antioxidant compounds present in dried apricots aided in maintenance of honey properties along one year of storage.

  1. Develop an piezoelectric sensing based on SHM system for nuclear dry storage system

    Science.gov (United States)

    Ma, Linlin; Lin, Bin; Sun, Xiaoyi; Howden, Stephen; Yu, Lingyu

    2016-04-01

    In US, there are over 1482 dry cask storage system (DCSS) in use storing 57,807 fuel assemblies. Monitoring is necessary to determine and predict the degradation state of the systems and structures. Therefore, nondestructive monitoring is in urgent need and must be integrated into the fuel cycle to quantify the "state of health" for the safe operation of nuclear power plants (NPP) and radioactive waste storage systems (RWSS). Innovative approaches are desired to evaluate the degradation and damage of used fuel containers under extended storage. Structural health monitoring (SHM) is an emerging technology that uses in-situ sensory system to perform rapid nondestructive detection of structural damage as well as long-term integrity monitoring. It has been extensively studied in aerospace engineering over the past two decades. This paper presents the development of a SHM and damage detection methodology based on piezoelectric sensors technologies for steel canisters in nuclear dry cask storage system. Durability and survivability of piezoelectric sensors under temperature influence are first investigated in this work by evaluating sensor capacitance and electromechanical admittance. Toward damage detection, the PES are configured in pitch catch setup to transmit and receive guided waves in plate-like structures. When the inspected structure has damage such as a surface defect, the incident guided waves will be reflected or scattered resulting in changes in the wave measurements. Sparse array algorithm is developed and implemented using multiple sensors to image the structure. The sparse array algorithm is also evaluated at elevated temperature.

  2. Behavior of spent fuel and cask components after extended periods of dry storage

    International Nuclear Information System (INIS)

    Kenneally, R.; Kessler, J.

    2001-01-01

    The U.S. Nuclear Regulatory Commission (NRC) promulgated 10 CFR Part 72, Title 10, for the independent storage of spent nuclear fuel and high-level radioactive waste outside reactor spent fuel pools. Part 72 currently limits the license term for an independent spent fuel storage installation to 20 years from the date of issuance. Licenses may be renewed by the Commission at or before the expiration of the license term. Applications for renewal of a license should be filed at least two years prior to the expiration of the existing license. In preparation for possible license renewal, the NRC Office of Nuclear Material and Safeguards, Spent Fuel Project Office, is developing the technical basis for renewals of licenses and Certificates of Compliance for dry storage systems for spent nuclear fuel and high-level radioactive waste at independent spent fuel storage installation sites. An analysis of past performance of selected components of these systems is required as part of that technical basis. In the years 1980 through the early 1990, the Department of Energy (DOE) procured four prototype dry storage casks for testing at the Idaho National Engineering and Environmental Laboratory (INEEL): Castor-V/21, MC-10, TN-24P, and VSC-17. The primary purpose of the testing was to benchmark thermal and radiological codes and to determine the thermal and radiological characteristics of the casks. A series of examinations in 1999 and early 2000 to investigate the integrity of the Castor V/21 cask were undertaken. There is no evidence of significant degradation of the Castor V/21 cask systems important to safety from the time of initial loading of the cask in 1985 up to the time of testing in 1999. (author)

  3. Key technical issues relating to safety of spent fuel dry storage in vaults: CASCAD system

    Energy Technology Data Exchange (ETDEWEB)

    Berge, F [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    1994-12-31

    The operating CASCAD Facility at the Cadarashe site (FR) was commissioned in May 1990. Fuel is received in tight canisters which are transferred to storage pits in the vault and scheduled to be stored for up to 50 years. Canistering operations are performed in a cell of the reactor building.The paper describes the main functions of the facility as: cask receipt and shipping; fuel unloading; fuel conditioning; canisters emplacements in storage location; fuel storage; fuel retrieving and shipping at the end of the storage period; operation system and operation organization. Safety characteristics of the facility discussed are: fuel decay heat removal; subcriticality control and radiological protection. The fuel decay heat removal has two main purposes: (1) maintaining rod cladding temperature below a set limit in order to keep the fuel in its as received condition; (2) maintaining structures and equipment performing a safety function below the design temperature. The features of the sub-criticality control in the storage vault are such that sub-criticality in normal and accidental conditions is provided by the arrangement of pits in the vault. Radiological protection is based on limiting collective and individual annual dose equivalent to ALARA levels ensuring that they remain in any case below the set limits. Radiological protection system described consists in: confinement of radioactive materials for protection against its dissemination; radiation shielding for protection against irradiation. It is pointed out that all technical solutions presented are based on or adapted from proven technologies used in operating facilities in France or in other countries. The solution not only benefits from the experience of SGN in the design, construction and start-up of facilities for fuel or high level waste handling and storage, but also from the experience of the CEA and COGEMA groups in operating such facilities. 2 figs., 1 ref.

  4. Magnox fuel dry storage and direct disposal assessment of CEGB/SSEB reports

    International Nuclear Information System (INIS)

    1987-12-01

    This report assesses the Boards' presented work in response to Recommendations 17 and 18 of the Environment Committee's First Report (Jan 86). The Boards have made an extensive study of the dry store design and also considered direct disposal. Their basic conclusion that the financial advantage is with continued reprocessing is accepted with the comment that their storage and disposal costs may be on the high side. The Boards statements on drying wet-stored fuel and on improvement of the fuel's chemical stability are accepted. The Boards coverage of fuel after disposal is considered to be too brief; the assessment expresses a more pessimistic view than the Boards' of the acceptability of direct disposal. (author)

  5. Probabilistic risk assessment of aircraft impact on a spent nuclear fuel dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Belal, E-mail: balmomani@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Sanghoon, E-mail: shlee1222@kmu.ac.kr [Department of Mechanical and Automotive Engineering, Keimyung University, Dalgubeol-daero 1095, Dalseo-gu, Daegu (Korea, Republic of); Jang, Dongchan, E-mail: dongchan.jang@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kang, Hyun Gook, E-mail: kangh6@rpi.edu [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)

    2017-01-15

    Highlights: • A new risk assessment frame is proposed for aircraft impact into an interim dry storage. • It uses event tree analysis, response-structural analysis, consequence analysis, and Monte Carlo simulation. • A case study of the proposed procedure is presented to illustrate the methodology’s application. - Abstract: This paper proposes a systematic risk evaluation framework for one of the most significant impact events on an interim dry storage facility, an aircraft crash, by using a probabilistic approach. A realistic case study that includes a specific cask model and selected impact conditions is performed to demonstrate the practical applicability of the proposed framework. An event tree analysis of an occurred aircraft crash that defines a set of impact conditions and storage cask response is constructed. The Monte-Carlo simulation is employed for the probabilistic approach in consideration of sources of uncertainty associated with the impact loads onto the internal storage casks. The parameters for representing uncertainties that are managed probabilistically include the aircraft impact velocity, the compressive strength of the reinforced concrete wall, the missile shape factor, and the facility wall thickness. Failure probabilities of the impacted wall and a single storage cask under direct mechanical impact load caused by the aircraft crash are estimated. A finite element analysis is applied to simulate the postulated direct engine impact load onto the cask body, and a source term analysis for associated releases of radioactive materials as well as an off-site consequence analysis are performed. Finally, conditional risk contribution calculations are represented by an event tree model. Case study results indicate that no severe risk is presented, as the radiological consequences do not exceed regulatory exposure limits to the public. This risk model can be used with any other representative detailed parameters and reference design concepts for

  6. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    NARCIS (Netherlands)

    Groot, S.P.C.; Surki, A.A.; Vos, de R.C.H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under

  7. Development of a new drying and storage system. The design phase; Ontwikkeling van een nieuw Droog- en Bewaarsysteem. De ontwerpfase

    Energy Technology Data Exchange (ETDEWEB)

    Wildschut, J. [Praktijkonderzoek Plant en Omgeving PPO, Bloembollen, Boomkwekerij en Fruit, Lisse (Netherlands); Sapounas, A. [WUR Glastuinbouw, Wageningen (Netherlands); Braam, G. [DLV Plant, Wageningen (Netherlands)

    2011-03-15

    The aim of this project is to develop a system for drying and storing flower bulbs which improves the quality of the bulbs, reduces the energy use significantly compared to the current, improved drying and storage system, and which can easily be used throughout the entire process of harvesting, drying, storage, planting and heating [Dutch] Het doel van dit project is een systeem voor het drogen en bewaren van bloembollen te ontwikkelen waarmee de kwaliteit van de bollen wordt verbeterd, het energieverbruik sterk wordt verminderd in vergelijking met het huidige verbeterde droog en bewaarsysteem, en dat eenvoudig kan worden ingezet in het totale proces van oogsten, drogen, bewaren, planten en broeien.

  8. An assessment of temperature history on concrete silo dry storage system for CANDU spent fuel

    International Nuclear Information System (INIS)

    Lee, Dong-Gyu; Sung, Nak-Hoon; Park, Jea-Ho; Chung, Sung-Hwan

    2016-01-01

    Highlights: • We performed thermal analysis to predict the temperature distribution in the concrete silo. • Thermal analysis of the concrete silo was based on CFD code. • Temperature distribution and history for storage period was presented. • Thermal analysis results and test results agreed well. • The correlations can predict the maximum fuel temperature over storage period. - Abstract: Concrete silo is a dry storage system for spent fuel generated from CANDU reactors. The silo is designed to remove passively the decay heat from spent fuel, as well as to secure the integrity of spent fuel during storage period. Dominant heat transfer mechanisms must be characterized and validated for the thermal analysis model of the silo, and the temperature history along storage period could be determined by using the validated thermal analysis model. Heat transfer characteristics on the interior and exterior of fuel basket in the silo were assessed to determine the temperature history of silo, which is necessary for evaluating the long-term degradation behavior of CANDU spent fuel stored in the silo. Also a methodology to evaluate the temperature history during dry storage period was proposed in this study. A CFD model of fuel basket including fuel bundles was suggested and temperature difference correlation between fuel bundles and silo’s internal member, as a function of decay heat of fuel basket considering natural convection and radiation heat transfer, was deduced. Temperature difference between silo’s internal cavity and ambient air was determined by using a concept of thermal resistance, which was validated by CFD analysis. Fuel temperature was expressed as a function of ambient temperature and decay heat of fuel basket in the correlation, and fuel temperature along storage period was determined. Therefore, it could be used to assess the degradation behavior of spent fuel by applying the degradation mechanism expressed as a function of spent fuel

  9. Safety assessment of a dry storage container drop into irradiated fuel bays

    International Nuclear Information System (INIS)

    Parlatan, Y.; Oh, D.; Arguner, D.; Lei, Q.M.; Kulpa, T.; Bayoumi, M.H.

    2004-01-01

    In Pickering nuclear stations, Dry Storage Containers (DSCs) are employed to transfer used (irradiated) fuel from an irradiated fuel bay to a dry storage facility for interim storage. Each DSC is wet-loaded in the bay water with 4 fuel modules containing up to a total of 384 used fuel bundles that have been out of the reactor core for at least 10 years. Once the DSC is fully loaded, the crane in the bay raises the DSC for spray-wash such that the bottom of the DSC is never more than 2 m above the bay water surface. This paper presents a safety assessment of consequences of an unlikely event that a fully loaded DSC is accidentally dropped into an irradiated fuel bay from the highest possible elevation. Experiments and analyses performed elsewhere show that the DSC drop-generated shock waves will not threaten the structural integrity of an irradiated fuel bay. Therefore, this assessment only assesses the potential damage to the spent fuel bundles in the bay due to pressure transients generated by an accidental DSC drop. A bounding estimate approach has been used to calculate the upper limit of the pressure pulse and the resulting static and dynamic stresses on the fuel sheath. The bounding calculations and relevant experimental results demonstrate that an accidental drop of a fully loaded DSC into an irradiated fuel bay will not cause additional failures of the main fuel inventories stored in modules in the bay water, thus no consequential release of fission products into the bay water. (author)

  10. Effects of sample drying and storage, and choice of extraction solvent and analysis method on the yield of birch leaf hydrolyzable tannins.

    Science.gov (United States)

    Salminen, Juha-Pekka

    2003-06-01

    In this study, I investigated the effects of different methods of sample drying and storage, and the choice of extraction solvent and analysis method on the concentrations of 14 individual hydrolyzable tannins (HTs), and insoluble ellagitannins in birch (Betula pubescens) leaves. Freeze- and vacuum-drying of birch leaves were found to provide more reliable results than air- or oven-drying. Storage of leaves at -20 degrees C for 3 months before freeze-drying did not cause major changes in tannin content, although levels of 1,2,3,4,6-penta-O-galloylglucose and isostrictinin were altered. Storage of dried leaf material at -20 degrees C is preferred because 1 year storage of freeze-dried leaves at 4 degrees C and at room temperature decreased the concentration of the pedunculagin derivative, one of the main ellagitannins of birch. Furthermore, storage at room temperature increased the levels of isostrictinin and 2,3-(S)-HHDP-glucose, indicating possible HT catabolism. Of the extraction solvents tested, aqueous acetone was superior to pure acetone, or aqueous or pure methanol. The addition of 0.1% ascorbic acid into 70% acetone significantly increased the yield of ellagitannins. presumably by preventing their oxidation. By comparing the conventional rhodanine assay and the HPLC-ESI-MS assay for quantification of leaf galloylglucoses, the former tends to underestimate total concentrations of galloylglucoses in birch leaf extract. On the basis of the outcomes of all the method and solvent comparisons, their suitability for qualitative and quantitative analysis of plant HTs is discussed, emphasizing that each plant species, with its presumably unique HT composition, is likely to have a unique combination of ideal conditions for tissue preservation and extraction.

  11. A comparison study on the antibacterial efficiency of essential oil and dried powder of Ocimum basilicum in ground beef during refrigerated storage

    Directory of Open Access Journals (Sweden)

    shohreh Dadfar

    2014-09-01

    Conclusion: The results indicated that both essential oil and dried powder of Ocimum basilicum increased the microbial stability of ground meat during storage, whereas dried powder showed more preservative capability at final days of storage. So it is possible to use this kind of natural product instead of synthetic one to reduce the disease of consumers and enhancing the organoleptic features of food

  12. Analysis of fuel oxidation for long-term dry storage

    International Nuclear Information System (INIS)

    Dehaudt, Ph.

    1999-01-01

    Dry storage is one of the temporary end of life channels for PWR fuel assemblies after leaving the reactor. According to results of currently available digital simulations, the residual power will maintain at a temperature of over 150 degrees Celsius for several years for UO 2 and several decades for MOX. At such temperatures, the UO 2 , which constitutes the fuel wholly or partially (MOX) can oxidise in the presence of air to form the compound U 3 O 8 . The paper discusses parameters that influence the evolution of compounds formed as the reaction progresses, the morphological transformations accompanying their formation and the kinetic conditions according to the temperature and the nature of the initial products

  13. Microencapsulation of Lactobacillus acidophilus NCIMB 701748 in matrices containing soluble fibre by spray drying: Technological characterization, storage stability and survival after in vitro digestion☆

    Science.gov (United States)

    Yonekura, Lina; Sun, Han; Soukoulis, Christos; Fisk, Ian

    2014-01-01

    We evaluated sodium alginate, chitosan and hydroxypropyl methylcellulose (HPMC) as co-encapsulants for spray dried Lactobacillus acidophilus NCIMB 701748 by assessing their impact on cell viability and physicochemical properties of the dried powders, viability over 35 days of storage at 25 °C and survival after simulated digestion. Fibres were added to a control carrier medium containing whey protein concentrate, d-glucose and maltodextrin. Sodium alginate and HPMC did not affect cell viability but chitosan reduced viable counts in spray dried powders, as compared to the control. Although chitosan caused large losses of viability during spray-drying, these losses were counteracted by the excellent storage stability compared to control, sodium alginate and HPMC, and the overall effect became positive after the 35-day storage. Chitosan also improved survival rates in simulated GI conditions, however no single fibre could improve L. acidophilus NCIMB 701748 viability in all steps from production through storage and digestion. PMID:24748900

  14. Deformation and fracture map methodology for predicting cladding behavior during dry storage

    International Nuclear Information System (INIS)

    Chin, B.A.; Khan, M.A.; Tarn, J.C.L.

    1986-09-01

    The licensing of interim dry storage of light-water reactor spent fuel requires assurance that release limits of radioactive materials are not exceeded. The extent to which Zircaloy cladding can be relied upon as a barrier to prevent release of radioactive spent fuel and fission products depends upon its integrity. The internal pressure from helium and fission gases could become a source of hoop stress for creep rupture if pressures and temperatures were sufficiently high. Consequently, it is of interest to predict the condition of spent fuel cladding during interim storage for periods up to 40 years. To develop this prediction, deformation and fracture theories were used to develop maps. Where available, experimental deformation and fracture data were used to test the validity of the maps. Predictive equations were then developed and cumulative damage methodology was used to take credit for the declining temperature of spent fuel during storage. This methodology was then used to predict storage temperatures below which creep rupture would not be expected to occur except in fuel rods with pre-existing flaws. Predictions were also made and compared with results from tests conducted under abnormal conditions

  15. Waterproofing shielding for concrete in wet and dry storage

    International Nuclear Information System (INIS)

    Gorin, N.; Scherbina, A.; Urusov, S.

    2007-01-01

    One of main reliability and safety criteria for constructions, designed for wet and dry storage of radioactive materials and waste, is the long-term ability to maintain the waterproofing properties in the conditions of high radiation load. The base structural material of these constructions is concrete (cooling ponds, different storage for spent nuclear fuel and waste, etc.). The provision of reliable concrete waterproofing is very important for decreasing risks of radioactive substances ingress to environment and moisture penetration to objects from outside, and also for construction life extension. In the process of long-term operation, some concrete constructions, erected already few decades ago, are gradually losing their waterproofing and this circumstance involves severe operational and ecological threats. Therefore advanced effective concrete waterproofing technologies both for erection of new objects and for repairing of operating constructions are in extreme demand. The paper is devoted to the solution of this problem proposed by Russian Federal Nuclear Centre (RFNC-VNIITF, Snezhinsk). The paper contains the developed criteria established for the search for optimal materials, the 'integral capillary systems' (ICS) principal of operation, methods and results of the tests, and also the experience of ICS application on real objects. (author)

  16. Safety of interim storage solutions of used nuclear fuel during extended term

    Energy Technology Data Exchange (ETDEWEB)

    Shelton, C.; Bader, S.; Issard, H.; Arslan, M. [AREVA, 7135 Minstrel Way, Suite 300 Columbia, MD 21045 (United States)

    2013-07-01

    In 2013, the total amount of stored used nuclear fuel (UNF) in the world will reach 225,000 T HM. The UNF inventory in wet storage will take up over 80% of the available total spent fuel pool (SFP) capacity. Interim storage solutions are needed. They give flexibility to the nuclear operators and ensure that nuclear reactors continue to operate. However, we need to keep in mind that they are also an easy way to differ final decision and implementation of a UNF management approach (recycling or final disposal). In term of public perception, they can have a negative impact overtime as it may appear that nuclear industry may have significant issues to resolve. In countries lacking an integrated UNF management approach, the UNF are being discharged from the SFPs to interim storage (mostly to dry storage) at the same rate as UNF is being discharged from reactors, as the SFPs at the reactor sites are becoming full. This is now the case in USA, Taiwan, Switzerland, Spain, South Africa and Germany. For interim storage, AREVA has developed different solutions in order to allow the continued operation of reactors while meeting the current requirements of Safety Authorities: -) Dry storage canisters on pads, -) Dual-purpose casks (dry storage and transportation), -) Vault dry storage, and -) Centralized pool storage.

  17. Carbon Capture and Storage: legal issues

    Energy Technology Data Exchange (ETDEWEB)

    Mace, M.J.

    2006-10-15

    Carbon dioxide Capture and Storage (CCS) describes the process of capturing CO2 emissions from industrial and energy-related processes, compressing the gas to a liquid form, transporting it to a storage site (by pipeline, ship, truck or rail), and injecting it into a geological cavity – to isolate it from the atmosphere. CCS has been described as one option in the 'portfolio' of mitigation options - useful as a bridging technology to address the most prevalent greenhouse gases by volume in the short term, while economies make the shift from fossil fuels to low-carbon energy sources, including renewables. The IPCC has estimated that CCS has the potential to contribute 15-55% of the cumulative mitigation effort worldwide until 2100. However, for this to occur, the IPCC estimates that several hundreds or thousands of CO2 capture systems would need to be installed over the next century. Such a prospect raises a host of legal and regulatory issues and concerns. CCS activities will have to be undertaken in a manner consistent with the range of existing regulatory frameworks developed at the national level to address environmental and health and safety risks. But consistency with international law will also be essential where transboundary impacts are possible, transboundary transportation is involved, or offshore storage activities are contemplated.

  18. α- and β-Carotene Stability During Storage of Microspheres Obtained from Spray-Dried Microencapsulation Technology

    Directory of Open Access Journals (Sweden)

    Przybysz Marzena Anna

    2018-03-01

    Full Text Available This study was aimed at comparing the stability of carotenes (α- and β-carotene in oil solutions with their stability when spray-dried encapsulation is applied. The carotenes were isolated from carrot. A storage test was subsequently performed. The stability of carotenes in oil solutions was determined with the HPLC method. The color of the samples was also analyzed. The oil solutions of carotenes were microencapsulated with the spray-drying method. A mixture of gum Arabic and maltodextrin was used as a matrix.

  19. Guidelines for the segregation characterization management of dry waste at Berkeley Lab

    International Nuclear Information System (INIS)

    1997-05-01

    Managing and disposing of dry low level radioactive waste at Berkeley Lab. is problematic. The Waste Management Group must assure off site treatment, storage, and disposal facilities that dry waste from Berkeley Lab. is free of liquids and regulated metals (such as lead and mercury). RTR (Real Time Radioagraphy) used for waste to be rejected. This pamphlet helps to clarify dry waste management requirements that will ensure that Berkeley Lab. dry waste will be accepted for off site shipment. These issues are critical if we are to have an off site disposal option for your dry radioactive waste

  20. Effect of Storage Temperature on the Stability of Spray Dried Bacteriophage Powders.

    Science.gov (United States)

    Leung, Sharon S Y; Parumasivam, Thaigarajan; Nguyen, An; Gengenbach, Thomas; Carter, Elizabeth A; Carrigy, Nicholas B; Wang, Hui; Vehring, Reinhard; Finlay, Warren H; Morales, Sandra; Britton, Warwick J; Kutter, Elizabeth; Chan, Hak-Kim

    2018-02-24

    This study aimed to assess the robustness of using a spray drying approach and formulation design in producing inhalable phage powders. Two types of Pseudomonas phages, PEV2 (Podovirus) and PEV40 (Myovirus) in two formulations containing different amounts of trehalose (70% and 60%) and leucine (30% and 40%) were studied. Most of the surface of the produced powders was found to be covered in crystalline leucine. The powders were stored at 4°C and 20 °C under vacuum. The phage stability and in vitro aerosol performance of the phage powders were examined on the day of production and after 1, 3 and 12 months of storage. A minor titer loss during production was observed for both phages (0.2 - 0.8 log 10 pfu/ml). The storage stability of the produced phage powders was found to be phage and formulation dependent. No further reduction in titer occurred for PEV2 powders stored at 4 °C across the study. The formulation containing 30% leucine maintained the viability of PEV2 at 20 °C, while the formulation containing 40% leucine gradually lost titer over time with a storage reduction of ∼0.9 log 10 pfu/ml measured after 12 months. In comparison, the PEV40 phage powders generally had a ∼ 0.5 log 10 pfu/ml loss upon storage regardless of temperature. When aerosolized, the total in vitro lung doses of PEV2 were of the order of 10 7 pfu, except the formulation containing 40% leucine stored at 20 °C which had a lower lung dose. The PEV40 powders also had lung doses of 10 6 - 10 7 pfu. The results demonstrate that spray dried Myoviridae and Podoviridae phage in a simple formulation of leucine and trehalose can be successfully stored for one year at 4 °C and 20 °C with vacuum packaging. Copyright © 2018. Published by Elsevier B.V.

  1. How did climate drying reduce ecosystem carbon storage in the forest-steppe ecotone? A case study in Inner Mongolia, China.

    Science.gov (United States)

    Zhang, Yuke; Liu, Hongyan

    2010-07-01

    The projected recession of forests in the forest-steppe ecotone under projected climate drying would restrict the carbon sink function of terrestrial ecosystems. Previous studies have shown that the forest-steppe ecotone in the southeastern Inner Mongolia Plateau originally resulted from climate drying and vegetation shifts during the mid- to late-Holocene, but the interrelated processes of changing soil carbon storage and vegetation and soil shifts remain unclear. A total of 44 forest soil profiles and 40 steppe soil profiles were excavated to determine soil carbon storage in deciduous broadleaf forests (DBF), coniferous forests (CF) and steppe (ST) in this area. Carbon density was estimated to be 106.51 t/hm(2) (DBF), 73.20 t/hm(2) (CF), and 28.14 t/hm(2) (ST) for these ecosystems. Soil organic carbon (SOC) content was negatively correlated with sand content (R = -0.879, P ecotone. Changes in carbon storage caused by climate drying can be divided into two stages: (1) carbon storage of the ecosystem was reduced to 68.7%, mostly by soil coarsening when DBF were replaced by CF at approximately 5,900 (14)C years before present (BP); and (2) carbon storage was reduced to 26.4%, mostly by vegetation shifts when CF were replaced by ST at approximately 2,900 (14)C years BP.

  2. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Directory of Open Access Journals (Sweden)

    Ki-Nam Jang

    2017-12-01

    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  3. Conceptual design report for the ICPP spent nuclear fuel dry storage project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The conceptual design is presented for a facility to transfer spent nuclear fuel from shipping casks to dry storage containers, and to safely store those containers at ICPP at INEL. The spent fuels to be handled at the new facility are identified and overall design and operating criteria established. Physical configuration of the facility and the systems used to handle the SNF are described. Detailed cost estimate for design and construction of the facility is presented.

  4. Survival of Salmonella during Drying of Fresh Ginger Root (Zingiber officinale) and Storage of Ground Ginger.

    Science.gov (United States)

    Gradl, Dana R; Sun, Lingxiang; Larkin, Emily L; Chirtel, Stuart J; Keller, Susanne E

    2015-11-01

    The survival of Salmonella on fresh ginger root (Zingiber officinale) during drying was examined using both a laboratory oven at 51 and 60°C with two different fan settings and a small commercially available food dehydrator. The survival of Salmonella in ground ginger stored at 25 and 37°C at 33% (low) and 97% (high) relative humidity (RH) was also examined. To inoculate ginger, a four-serovar cocktail of Salmonella was collected by harvesting agar lawn cells. For drying experiments, ginger slices (1 ± 0.5 mm thickness) were surface inoculated at a starting level of approximately 9 log CFU/g. Higher temperature (60°C) coupled with a slow fan speed (nonstringent condition) to promote a slower reduction in the water activity (aw) of the ginger resulted in a 3- to 4-log reduction in Salmonella populations in the first 4 to 6 h with an additional 2- to 3-log reduction by 24 h. Higher temperature with a higher fan speed (stringent condition) resulted in significantly less destruction of Salmonella throughout the 24-h period (P ginger. During storage at 97% RH, the maximum aw values were 0.85 at 25°C and 0.87 at 37°C; Salmonella was no longer detected after 25 and 5 days of storage, respectively, under these conditions. At 33% RH, the aw stabilized to approximately 0.35 at 25°C and 0.31 at 37°C. Salmonella levels remained relatively constant throughout the 365-day and 170-day storage periods for the respective temperatures. These results indicate a relationship between temperature and aw and the survival of Salmonella during both drying and storage of ginger.

  5. Effects of temperature on concrete cask in a dry storage facility for spent nuclear fuels

    International Nuclear Information System (INIS)

    Huang Weiqing; Wu Ruixian; Zheng Yukuan

    2011-01-01

    In the dry storage of spent nuclear fuels,concrete cask serves both as a shielding and a structural containment. The concrete in the storage facility is expected to endure the decay heat of the spent nuclear fuel during its service life. Thus, effects of the sustaining high temperature on concrete material need be evaluated for safety of the dry storage facility. In this paper, we report an experimental program aimed at investigating possible high temperature effects on properties of concrete, with emphasis on the mechanical stability, porosity,and crack-resisting ability of concrete mixes prepared using various amounts of Portland cement, fly ash, and blast furnace slag. The experimental results obtained from concrete specimens exposed to a temperature of 94 degree C for 90 days indicate that: (1) compressive strength of the concrete remains practically unchanged; (2) the ultrasonic pulse velocity, and dynamic modulus of elasticity of the concrete decrease in early stage of the high-temperature exposure,and gradually become stable with continuing exposure; (3) shrinkage of concrete mixes exhibits an increase in early stage of the exposure and does not decrease further with time; (4) concrete mixes containing pozzolanic materials,including fly ash and blast furnace slag, show better temperature-resisting characteristics than those using only Portland cement. (authors)

  6. Effect of storage conditions on the weight and appearance of dried blood spot samples on various cellulose-based substrates.

    Science.gov (United States)

    Denniff, Philip; Spooner, Neil

    2010-11-01

    Before shipping and storage, dried blood spot (DBS) samples must be dried in order to protect the integrity of the spots. In this article, we examine the time required to dry blood spot samples and the effects of different environmental conditions on their integrity. Under ambient laboratory conditions, DBS samples on Whatman 903(®), FTA(®) and FTA(®) Elute substrates are dry within 90 min of spotting. An additional 5% of moisture is lost during subsequent storage with desiccant. When exposed to elevated conditions of temperature and relative humidity, the DBS samples absorb moisture. DBS samples on FTA lose this moisture on being returned to ambient conditions. DBS samples on 903 show no visible signs of deterioration when stored at elevated conditions. However, these conditions cause the DBS to diffuse through the FTA Elute substrate. Blood spots are dry within 90 min of spotting. However, the substrates examined behave differently when exposed to conditions of high relative humidity and temperature, in some cases resulting in the integrity of the substrate and DBS sample being compromised. It is recommended that these factors be investigated as part of method development and validation.

  7. Dry storage technologies: Optimized solutions for spent fuels and vitrified residues

    International Nuclear Information System (INIS)

    Roland, Vincent; Verdier, Antoine; Sicard, Damien; Neider, Tara

    2006-01-01

    In many countries, fuel cycle and waste policies influence the way operators organize waste management. These policies help drive progress and improvements in areas such as waste minimization programs, conditioning or industrial transformation before final or intermediate conditioning. The criteria that lead to different choices include economic factors, the presence or absence of a wide range of options such as transport, and reprocessing and recycling policies. The current international trend towards expanding Spent Fuel Interim Dry Storage capabilities goes with an improvement of the performance of the proposed systems which have to accommodate Spent fuel Assemblies characterized by ever increasing burn-up, fissile isotopes contents, thermal releases, and total inventory. Due to heterogeneous worldwide reactor pools and specific local constraints the proposed solutions have also to cope with a wide variety of fuel design. The Spent Fuel Assemblies stored temporarily for cooling may have to be transported either to reprocessing facilities or to interim storage facilities before direct disposal; it is the reason why the retrievability, including or not the need of transportation of the proposed systems, is often specified by the utilities for the design of their storage systems and sometimes required by law. In most cases, the producers of spent fuel require a large capacity that is cumulated over many years, each reload at a time. Then the key criterion is maximum modularity. Furthermore, the up front capital costs required for this type of solution has to be attractive for the investor. Two solutions, dual purpose metal casks of the TN TM 24 family or dual purpose or single purpose concrete shielded welded canisters such as NUHOMS R , implemented by COGEMA LOGISTICS, and TRANSNUCLEAR Inc. offer flexibility and modularity and have been adapted also to quite different fuels. Among what influences the choice, we can consider: - In favor of metal casks: Minimal

  8. Polyfloral, linden and acacia honeys with dried cherries after three months of storage - antioxidant and sensory evaluation

    Directory of Open Access Journals (Sweden)

    Vulić Jelena J.

    2015-01-01

    Full Text Available Samples of three types of honey: polyfloral (PH, linden (LH and acacia (AH, without and with addition of dried cherries (40% were analyzed before and after three months of storage. The total phenol (TPh, flavonoid (TFd and anthocyanin (TAn contents, antioxidant activities and sensory properties of honeys with and without the addition of dry cherries were evaluated. TPh and TFd increased with addition of dried cherries to the honey, while enriched honeys showed high TAn. The LH sample with dried cherries showed the highest anthocyanins content (41.41mgCGE/100g. The antioxidant activity increased with addition of dried cherries in honey in the DPPH• test and reducing power. The PH and enriched PH exibited the best antiradical activity compared to LH and AH. The EC50 DPPH values were: 23.81 for PH and 24.19 mg/mL for PH, while the EC50 DPPH were: 1.16 mg/mL for PH40 and 1.18 mg/mL for PH40s. RP0.5 values were: 57.00 mg/mL for PH40 and 56.00 mg/ml for PH40s, while RP0.5 were: 15.05 mg/mL for PH40 and 15.18 mg/mL for PH40s. The statistical analysis showed that TPh, TFd and TAn, and antioxidant activity of honeys and enriched honeys showed significant correlation. Sensory analysis of honey with dried cherries, before and after storage, indicated very good sensory characteristics.

  9. Role of mono- and oligosaccharides from FOS as stabilizing agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Romano, Nelson; Schebor, Carolina; Mobili, Pablo; Gómez-Zavaglia, Andrea

    2016-12-01

    The aim of this work was to assess the role of mono- and oligosaccharides present in fructo-oligosaccharides (FOS) mixtures as protective agents during freeze-drying and storage of Lactobacillus delbrueckii subsp. bulgaricus CIDCA 333. Different FOS mixtures were enzymatically obtained from sucrose and further purified by removing the monosaccharides produced as secondary products. Their glass transition temperatures (T g ) were determined at 11, 22 and 33% relative humidity (RH). Bacterial cultures were freeze-dried in the presence of 20% w/v solutions of the studied FOS. Their protective effect during freeze-drying was assessed by bacterial plate counting, and by determining the lag time from growth kinetics and the uptake of propidium iodide (PI). Plate counting during bacterial storage at 4°C, and 11, 22 and 33% RH for 80days completed this rational analysis of the protective effect of FOS. Purification of FOS led to an increase of T g in all the conditions assayed. Microorganisms freeze-dried in the presence of non-purified FOS were those with the shortest lag times. Bacteria freeze-dried with pure or commercial FOS (92% of total FOS) showed larger lag times (8.9-12.6h). The cultivability of microorganisms freeze-dried with non-purified FOS and with sucrose was not significantly different from that of bacteria before freeze-drying (8.74±0.14logCFU/mL). Pure or commercial FOS were less efficient in protecting bacteria during freeze-drying. All the protectants prevented membrane damage. The cultivability of bacteria freeze-dried with FOS decayed <1logarithmicunit after 80days of storage at 11% RH. When storing at 22 and 33% RH, pure and commercial FOS were those that best protected bacteria, and FOS containing monosaccharides were less efficient. The effect of FOS on bacterial protection is the result of a balance between monosaccharides, sucrose and larger FOS in the mixtures: the smallest sugars are more efficient in protecting lipid membranes, and the

  10. Control of degradation of spent LWR [light-water reactor] fuel during dry storage in an inert atmosphere

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Simonen, E.P.; Allemann, R.T.; Levy, I.S.; Hazelton, R.F.

    1987-10-01

    Dry storage of Zircaloy-clad spent fuel in inert gas (referred to as inerted dry storage or IDS) is being developed as an alternative to water pool storage of spent fuel. The objectives of the activities described in this report are to identify potential Zircaloy degradation mechanisms and evaluate their applicability to cladding breach during IDS, develop models of the dominant Zircaloy degradation mechanisms, and recommend cladding temperature limits during IDS to control Zircaloy degradation. The principal potential Zircaloy cladding breach mechanisms during IDS have been identified as creep rupture, stress corrosion cracking (SCC), and delayed hydride cracking (DHC). Creep rupture is concluded to be the primary cladding breach mechanism during IDS. Deformation and fracture maps based on creep rupture were developed for Zircaloy. These maps were then used as the basis for developing spent fuel cladding temperature limits that would prevent cladding breach during a 40-year IDS period. The probability of cladding breach for spent fuel stored at the temperature limit is less than 0.5% per spent fuel rod. 52 refs., 7 figs., 1 tab

  11. Viability of L. casei during fermentation in soymilk and freeze-dried soymilk; effect of cryoprotectant, rehydration and storage temperature

    Directory of Open Access Journals (Sweden)

    Kristina Mladenovska

    2005-12-01

    Full Text Available The aim of the work was to investigate the behaviour of L. casei and the effect of sorbitol on its viability during fermentation in soymilk drink. Values for pH, ranging from 6.82 to 3.42 in the soymilk drink without sorbitol and from 6.74 to 3.41 in the drink with sorbitol were noted during 72 h of fermentation at 25oC. The corresponding values for titratable acidity ranged from 0.071% to 0.758% and from 0.073% to 0.761%, respectively. Soymilk was found to support the growth of L. casei with improvement in viability for 0.24 log at the end of fermentation when sorbitol was added. Survival of L. casei and the effectiveness of sorbitol in improving viability during freeze-drying, subsequent rehydration and during a 5-week period of storage under different temperatures were also investigated. After freeze-drying, L. casei exhibited a survival percent of approximately 46%. Sorbitol improved the viability of L. casei by 0.51 log immediately after freeze-drying and by 1.30 log and 0.47 log during five weeks of storage at 25oC and 4oC, respectively. Further study revealed that the freeze-dried fermented soymilk rehydrated at 45oC was optimum for the recovery of L. casei with improvement in recovery for 0.68 log when sorbitol was added. A higher percent of survival was noted when the dried soymilk was stored at 4oC than at 25oC with improved viability at the end of 5 weeks storage for approximately 6 log for drinks with and without sorbitol. Fermented dried soymilk with sorbitol afforded significant tolerance of L. casei to acid stress. Generally, a stable probiotic diary product was prepared in which the concentration of L. casei remained above therapeutic level of 107 cfu/ml.

  12. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots

    International Nuclear Information System (INIS)

    Cetinkaya, N.; Ozyardimci, B.; Denli, E.; Ic, E.

    2006-01-01

    The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5-1.0 kGy for disinfestation and 0.5-5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses (∼1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes

  13. Radiation processing as a post-harvest quarantine control for raisins, dried figs and dried apricots

    Energy Technology Data Exchange (ETDEWEB)

    Cetinkaya, N. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey)]. E-mail: nurcet@taek.gov.tr; Ozyardimci, B. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey); Denli, E. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey); Ic, E. [TAEA, Ankara Nuclear Research Center in Agriculture and Animal Sciences, 06983 Ankara (Turkey)

    2006-03-15

    The commercially packed samples of raisins, dried figs and dried apricots were irradiated using doses in the range of 0.5-1.0 kGy for disinfestation and 0.5-5.0 kGy for sensory analysis with the dose rate ranging from 1.44 to 1.92 kGy/h. Pests on dried fruits were evaluated after 0, 1, 2 and 3 months of storage for irradiated dried figs and 1, 3, 6 and 12 months of storage for raisins and dried apricots. Sensory analysis of dried figs, dried apricots and raisins were carried out after 0, 1, 3, 6 and 12 months of storage. The results indicated that radiation processing at low doses ({approx}1.0 kGy) is an effective post-harvest treatment and quarantine control for these products with no adverse effects on sensory (marketing) attributes.

  14. Dry storage assessment of LWR fuel in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Goll, W [AREVA NP GmbH (Germany)

    2012-07-01

    Germany's revised energy act, dated 2002, prohibits the shipment of spent nuclear fuel to reprocessing plants and restricts its disposal to a final repository. To comply with this law and to ensure further nuclear plant operation, the reactor operators had to construct on-site facilities for dry cask storage, to keep spent fuel assemblies for 40 years until a final repository is available. Twelve facilities went into operation during the last years. The amount of spent fuel in store is continuously increasing and has reached a level of about 1700 t HM by end of 2007. The central sites Ahaus and Gorleben remain in operation but shall be used for special purposes in future. The objectives are: Review of main features of facilities with an emphasis on associated monitoring; Review of degradation mechanisms in the context of fuel types and design (PWR, BWR, UO2, MOX) relative to fuel burn-up, structural materials and long term behaviour.

  15. Development of evaluation method for heat removal design of dry storage facilities. pt. 1. Heat removal test on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Koga, Tomonari; Wataru, Masumi; Hattori, Yasuo

    1997-01-01

    The report describes the result of heat removal test of passive cooling vault storage system of cross flow type using 1/5 scale model. Based on a prospect of steady increase in the amount of spent fuel, it is needed to establish large capacity dry storage technologies for spent fuel. Air flow patterns, distributions of air temperature and velocity were measured, by which heat removal characteristics of the system were made clear. Air flow patterns in the storage module depended on the ratio of the buoyant force to the inertial force; the former generated by the difference of air temperatures and the height of the storage module, the latter by the difference of air densities between the outlet of the storage module and ambience and the height of the chimney of the storage facility. A simple method to estimate air flow patterns in the storage module was suggested, where Ri(Richardson) number was applied to represent the ratio. Moreover, heat transfer coefficient from a model of storage tube to cooling air was evaluated, and it was concluded that the generalized expression of heat transfer coefficient for common heat exchangers could be applied to the vault storage system of cross flow type, in which dozens of storage tubes were placed in a storage module. (author)

  16. Identification of Components or Fractions Associated with Adverse Changes in Freeze Dried Chicken and Pork during Storage

    Science.gov (United States)

    1978-06-01

    objective of which was to further define and correlate the majur physical, chemical. and sensory changes which occur during the storage deterioration of pr...changes in freeze-dried chicken and pork during high temper-ao -r ature, oxygen-free storage. This effort was undertaken as part of the U.S. Air Force ...for 20 minutes, drained for five minutes, and weighed. Water was expressed from the rehydrated samples by a 500-kg Instron activated force acting

  17. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mertyurek, Ugur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  18. Design of dry cask storage for Serpong multi purpose reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Dyah Sulistyani Rahayu; Yuli Purwanto; Zainus Salimin

    2018-01-01

    The spent nuclear fuel (SNF) from Serpong Multipurpose Reactor, after 100 days storing in the reactor pond, is transferred to water pool interim storage for spent fuel (ISFSF). At present there are a remaining of 245 elements of SNF on the ISSF, 198 element of which have been re-exported to the USA. The dry-cask storage allows the SNF, which has already been cooled in the ISSF, to lower its radiation exposure and heat decay at a very low level. Design of the dry cask storage for SNF has been done. Dual purpose of unventilated vertical dry cask was selected among other choices of metal cask, horizontal concrete modules, and modular vaults by taking into account of technical and economical advantages. The designed structure of cask consists of SNF rack canister, inner steel liner, concrete shielding of cask, and outer steel liner. To avoid bimetallic corrosion, the construction material for canister and inner steel liner follows the same material construction of fuel cladding, i.e. the alloy of AlMg 2 . The construction material of outer steel liner is copper to facilitate the heat transfer from the cask to the atmosphere. The total decay heat is transferred from SNF elements bundle to the atmosphere by a serial of heat transfer resistance for canister wall, inner steel liner, concrete shielding, and outer steel liner respectedly. The rack canister optimum capacity of 34 fuel elements was designed by geometric similarity method based on SNF position arrangement of 7 x 6 triangular pitch array of fuel elements for prohibiting criticality by spontaneous neutron. The SNF elements are stored vertically on the rack canister. The thickness of concrete wall shielding was calculated by trial and error to give air temperature of 30 °C and radiation dose on the wall surface of outer liner of 200 mrem/h. The SNF elements bundles originate from the existing racks of wet storage, i.e. rack canister no 3, 8 and 10. The value of I 0 from the rack no 3, 8 and 10 are 434.307; 446

  19. Construction of JRR-3 spent fuel dry storage facility

    International Nuclear Information System (INIS)

    Adachi, M.

    1982-01-01

    To store the JRR-3 metallic natural uranium spent fuel elements, dry storage facility has been constructed in JAERI. This facility has a capacity of about 30T of uranium. The elements are placed in encapsulated canister, then stored in drywell in the store. The store is basically an ordinary concrete box, about 12m long, 13m wide, and 5m deep. The store comprises a 10 x 10 lattice array of the drywells. The drywell consists of a stainless steel liner which is 2.5m deep, 36cm ID and 0.8cm thickness. A drywell also has an air inlet, outlet pipe for radiation monitoring and a shield plug in carbon steel for radiation protection. A canister which consists of stainless steel with 0.5cm thickness contains 36 elements. Sealing of the canister is accomplished by fusion welding

  20. Oxidation of nuclear fuel below 400 deg. Consequence on long-term dry storage

    International Nuclear Information System (INIS)

    Dehaudt, Ph.

    2000-01-01

    This document reviews the status of the knowledge on the oxidation of fuels below 400 deg C, in all its forms, including fuel rods, by examining the consequences of this reaction on the strength or ruin of the fuel rods during dry storage in air for a hundred years. The data available in the scientific literature, and the data acquired by CEA, are abundant on irradiated powders and pellets, but sparser for irradiated fuel fragments and for rods or sections of fuel rods. A bibliographic review is made to identify the morphological and structural changes, as well as the kinetic laws. An analysis and a summary is made with a concern to evaluate the risks of rod ruin by oxidation. The final section, in a few pages, addresses the essential lessons from this study. It presents: first, a summary of the main results of this review and its analysis, recommendations and remedies for storage; proposed research guidelines as well as precise topics, in order to fill out our knowledge and, even better, to identify the acceptable limits for storage. (author)

  1. Study of a brazilian cask and its installation for PWR spent nuclear fuel dry storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2009-01-01

    Spent nuclear fuel (SNF) is removed from the nuclear reactor after the depletion on efficiency in generating energy. After the withdrawal from the reactor core, the SNF is temporarily stored in pools at the same site of the reactor. At this time, the generated heat and the short and medium lived radioactive elements decay to levels that allow removing SNF from the pool and sending it to temporary dry storage. In that phase, the fuel needs to be safely and efficiently stored, and then, it can be retrieved in a future, or can be disposed as radioactive waste. The amount of spent fuel increases annually and, in the next years, will still increase more, because of the construction of new nuclear plants. Today, the number of new facilities back up to levels of the 1970's, since it is greater than the amount of decommissioning in old installations. As no final decision on the back-end of the nuclear fuel cycle is foreseen in the near future in Brazil, either to recover the SNF or to consider it as radioactive waste, this material has to be isolated in some type of storage model existing around the world. In the present study it is shown that dry SNF storage is the best option. A national cask model for SNF as well these casks storage installation are proposed. It is a multidisciplinary study in which the engineering conceptual task was developed and may be applied to national SNF removed from the Brazilian power reactors, to be safely stored for a long time until the Brazilian authorities will decide about the site for final disposal. (author)

  2. Long-Term Dry Storage of High Burn-Up Spent Pressurized Water Reactor (PWR) Fuel in TAD (Transportation, Aging, and Disposal) Containers

    International Nuclear Information System (INIS)

    Hwang, Yong Soo

    2008-12-01

    A TAD canister, in conjunction with specially-designed over-packs can accomplish the functions of transportation, aging, and disposal (TAD) in the management of spent nuclear fuel (SNF). Industrial dry cask systems currently available for SNF are licensed for storage-only or for dual-purpose (i.e., storage and transportation). By extending the function to include the indefinite storage and perhaps, eventual geologic disposal, the TAD canister would have to be designed to enhance, among others, corrosion resistance, thermal stability, and criticality-safety control. This investigative paper introduces the use of these advanced iron-based, corrosion-resistant materials for SNF transportation, aging, and disposal.The objective of this investigative project is to explore the interest that KAERI would research and develop its specific SAM coating materials for the TAD canisters to satisfy the requirements of corrosion-resistance, thermal stability, and criticality-controls for long-term dry storage of high burn-up spent PWR fuel

  3. Biophysical evaluation of aminoclay as an effective protectant for protein stabilization during freeze-drying and storage

    Directory of Open Access Journals (Sweden)

    Song JG

    2016-12-01

    Full Text Available Jae Geun Song, Sang Hoon Lee, Hyo-Kyung Han College of Pharmacy, Dongguk University, Goyang, South Korea Abstract: This study aimed to evaluate aminoclay (3-aminopropyl-functionalized magnesium phyllosilicate as an effective protectant for the stabilization of protein formulation in freeze-drying. Bovine serum albumin (BSA, as a model protein, was freeze-dried with aminoclay at various concentrations, and the effects of aminoclay on the structural stability of proteins were compared with those of the conventional stabilizers. The structural characteristics of the protein were determined by size exclusion chromatography (SEC, circular dichroism (CD, and Fourier transform infrared (FTIR spectroscopy. Furthermore, physicochemical and morphological characteristics were examined by X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and scanning electron microscopy (SEM. XRPD and DSC patterns indicated that the glass transition temperature (Tg of the amorphous formulation of aminoclay mixed with proteins was gradually elevated as the concentration of aminoclay increased. FTIR and CD spectral analysis suggested that the protein structure was well maintained with aminoclay during the freeze-drying process and 3 months of storage at 4°C and 40°C. Furthermore, aminoclay conferred the greatest protection against aggregation and retained the monomer content of BSA even at a high temperature. The morphological characteristics of lyophilized proteins were also well conserved during the storage with aminoclay. These results suggested that aminoclay may be useful as an alternative stabilizer for maintaining the structural stability of protein formulations. Keywords: aminoclay, cryoprotectant, lyoprotectant, freeze-drying, protein, stability

  4. Extended storage of spent fuel

    International Nuclear Information System (INIS)

    1992-10-01

    This document is the final report on the IAEA Co-ordinated Research Programme on the Behaviour of Spent Fuel and Storage Facility Components during Long Term Storage (BEFAST-II, 1986-1991). It contains the results on wet and dry spent fuel storage technologies obtained from 16 organizations representing 13 countries who participated in the co-ordinated research programme. Considerable quantities of spent fuel continue to arise and accumulate. Many countries are investigating the option of extended spent fuel storage prior to reprocessing or fuel disposal. Wet storage continues to predominate as an established technology with the construction of additional away-from-reactor storage pools. However, dry storage is increasingly used with most participants considering dry storage concepts for the longer term. Depending on the cladding type options of dry storage in air or inert gas are proposed. Dry storage is becoming widely used as a supplement to wet storage for zirconium alloy clad oxide fuels. Storage periods as long as under wet conditions appear to be feasible. Dry storage will also continue to be used for Al clad and Magnox type fuel. Enhancement of wet storage capacity will remain an important activity. Rod consolidation to increase wet storage capacity will continue in the UK and is being evaluated for LWR fuel in the USA, and may start in some other countries. High density storage racks have been successfully introduced in many existing pools and are planned for future facilities. For extremely long wet storage (≥50 years), there is a need to continue work on fuel integrity investigations and LWR fuel performance modelling. it might be that pool component performance in some cases could be more limiting than the FA storage performance. It is desirable to make concerted efforts in the field of corrosion monitoring and prediction of fuel cladding and poll component behaviour in order to maintain good experience of wet storage. Refs, figs and tabs

  5. Calculation of radiation exposure of the environment of interim storage facilities for the dry storage of spent fuel in dual-purpose casks

    Energy Technology Data Exchange (ETDEWEB)

    Wortmann, B.; Stratmann, W. [STEAG Encotec GmbH, Essen (Germany)

    2004-07-01

    Acceptance problems in the public concerning the transport of spent nuclear fuel elements and a new political objective of the Federal Government have forced the German utilities to embark on on-site interim storage projects for the temporary storage of spent nuclear fuel elements. STEAG encotec GmbH, Essen, Germany, was awarded contracts for the conceptual planning including necessary shielding calculations for the majority of the 13 nuclear sites which opted for the dry storage concept. The capacity of the storage facilities ranges from 80 to 100 casks, according to the storage needs of the plants. The average dose rate at the surface of each cask was limited to 0.5 mSv/h, independent of the type of radiation. These new buildings should not significantly increase the exposure of the public to radiation already originating from the existing nuclear power plant. The layout of the storage building therefore has to ensure that additional target values of 10-20 iSv/y are not exceeded. These very low target values as well as the requirement to avoid high mechanical impacts to the casks in case of external events led to a thickness of walls and ceilings of between 1.2 m and 1.3 m. To remove the decay heat from the casks by natural convection sufficient cross sections of the air inlet and outlet ducts are required.

  6. The Effect of Storage and Extraction Methods on Amplification of Plasmodium falciparum DNA from Dried Blood Spots

    NARCIS (Netherlands)

    Schwartz, A.; Baidjoe, A.Y.; Rosenthal, P.J.; Dorsey, G.; Bousema, T.; Greenhouse, B.

    2015-01-01

    Extraction and amplification of DNA from dried blood spots (DBS) collected in field studies is commonly used for detection of Plasmodium falciparum. However, there have been few systematic efforts to determine the effects of storage and extraction methods on the sensitivity of DNA amplification. We

  7. Radiological protection for spent fuel dry storage at Embalse NPP

    International Nuclear Information System (INIS)

    Carballo, Carlos; Melo, Rodolfo

    2008-01-01

    Embalse NPP dry-stores used fuel elements in concrete silos inside the premises: The fuel elements are kept for at least 6 years in pools located in the controlled area , before being moved into the silos. This paper describes the radiological protection for the different stages of the process, i.e., when the used fuel elements are moved from the pools into the silos, and while they are kept in the concrete silos. The occupational exposure of the personnel operating this system at each stage is showed, as well as the environmental dose rates around the silos, and the dose rate in the shields used during the transfer. These environmental dose rates are assessed with portable instruments and with TLD dosimeters placed around the silos. This paper also describes the periodical routine control performed every two years in the atmosphere inside the silo, the moisture control and the detection of possible aerosols (in some cases, traces of krypton 85 were detected). It is important to point out that the maximum equivalent environmental dose rate H* (10) detected at approximately 20 metres from the silos is overly low: (0.35 micro sievert / hour). Our experience demonstrates that dry storage is totally compatible with the environment and with the ALARA criterion for personnel's doses. (author)

  8. Modular dry storage of spent fuel

    International Nuclear Information System (INIS)

    Baxter, J.W.

    1982-01-01

    Long term uncertainties in US spent fuel reprocessing and storage policies and programs are forcing the electric utilities to consider means of storing spent fuel at the reactor site in increasing quantitities and for protracted periods. Utilities have taken initial steps in increasing storage capacity. Existing wet storage pools have in many cases been reracked to optimize their capacity for storing spent fuel assemblies

  9. Listeria monocytogenes presence during fermentation, drying and storage of Petrovská klobása sausage

    Science.gov (United States)

    Janković, V.; Mitrović, R.; Lakićević, B.; Velebit, B.; Baltić, T.

    2017-09-01

    The majority of human listeriosis cases appear to be caused by consumption of ready-to-eat (RTE) foods contaminated at the time of consumption with high levels of Listeria monocytogenes. Although strategies to prevent growth of L. monocytogenes in RTE products are critical for reducing the incidence of human listeriosis, this pathogen is highly difficult to control in fermented sausage processing environments due to its high tolerance to low pH and high salt concentration. The aims of the present study were to investigate the occurrence, presence and elimination of L. monocytogenes in Petrovská klobása sausage during processing, fermentation, drying and storage. L. monocytogenes, which was detected at the beginning of the production cycle, disappeared before day 30. The pathogen decline was much faster in those sausages which were dried in controlled, industrial conditions than in those dried applying the traditional, household technique.

  10. International conference on storage of spent fuel from power reactors. Book of extended synopses

    International Nuclear Information System (INIS)

    2003-01-01

    The management of spent nuclear fuel is a key aspect characterizing the use of nuclear power around the world. At the international level, there is an ongoing debate focused on this issue. At the national level, spent fuel management often provokes public concern. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel storage. Its role in this area is to: provide a forum for exchanging information; identify the key issues for long term storage; and co-ordinate and encourage closer co-operation among Member States in certain research and development activities that are of common interest. Meetings on this topic have been organized about once every four years since 1987. The objectives of the Conference were to: review recent advances in spent fuel storage technology; exchange information on the state of the art of and prospects for spent fuel storage; review and discuss the worldwide situation and the major factors influencing national policies in this field; exchange information on operating experience with wet and dry storage facilities; identify the most important directions for future national efforts and international co-operation in this area. The following subjects were covered in the topical sessions: National Programmes: the status and trends of spent fuel storage in Member States, spent fuel arising, amount of spent fuel stored, wet and dry storage capacities, storage facilities under construction and in planning and the national policy for the back end of the fuel cycle; Technologies: technological approaches for long term storage, new storage concepts, re-racking of fuel pools, spent fuel and material behaviour in long term storage; Experience and Licensing: experience in wet and dry storage, problems with materials in fuel pools, licensing practices for spent fuel storage facilities, license extension and re-licensing of existing facilities; R and D and Special Aspects: highly enriched fuel

  11. Radioactive material dry-storage facility and radioactive material containing method

    International Nuclear Information System (INIS)

    Kanai, Hidetoshi; Kumagaya, Naomi; Ganda, Takao.

    1997-01-01

    The present invention provides a radioactive material dry storage facility which can unify the cooling efficiency of a containing tube and lower the pressure loss in a storage chamber. Namely, a cylindrical body surrounds a first containing tube situated on the side of an air discharge portion among a plurality of containing tubes and forms an annular channel extending axially between the cylindrical body and the first containing tube. An air flow channel partitioning member is disposed below a second containing tube situated closer to an air charging portion than the first containing tube. A first air flow channel is formed below the air channel partitioning member extending from the air charging portion to the annular channel. The second air channel is formed above the air channel partitioning member and extends from the air charging portion to the air discharge portion by way of a portion between the second containing tubes and the portion between the cylindrical body and the first containing tube. Then, low temperature air can be led from the air charging portion to the periphery of the first containing tube. The effect of cooling the first containing tube can be enhanced. The difference between the cooling efficiency between the second containing tube and the first containing tube is decreased. (I.S.)

  12. Seismic Performance of Dry Casks Storage for Long- Term Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Luis [Univ. of Utah, Salt Lake City, UT (United States); Sanders, David [Univ. of Nevada, Reno, NV (United States); Yang, Haori [Oregon State Univ., Corvallis, OR (United States); Pantelides, Chris [Univ. of Utah, Salt Lake City, UT (United States)

    2016-12-30

    The main goal of this study is to evaluate the long-term seismic performance of freestanding and anchored Dry Storage Casks (DSCs) using experimental tests on a shaking table, as well as comprehensive numerical evaluations that include the cask-pad-soil system. The study focuses on the dynamic performance of vertical DSCs, which can be designed as free-standing structures resting on a reinforced concrete foundation pad, or casks anchored to a foundation pad. The spent nuclear fuel (SNF) at nuclear power plants (NPPs) is initially stored in fuel-storage pools to control the fuel temperature. After several years, the fuel assemblies are transferred to DSCs at sites contiguous to the plant, known as Interim Spent Fuel Storage Installations (ISFSIs). The regulations for these storage systems (10 CFR 72) ensure adequate passive heat removal and radiation shielding during normal operations, off-normal events, and accident scenarios. The integrity of the DSCs is important, even if the overpack does not breach, because eventually the spent fuel-rods need to be shipped either to a reprocessing plant or a repository. DSCs have been considered as a temporary storage solution, and usually are licensed for 20 years, although they can be relicensed for operating periods of up to 60 years. In recent years, DSCs have been reevaluated as a potential mid-term solution, in which the operating period may be extended for up to 300 years. At the same time, recent seismic events have underlined the significant risks DSCs are exposed. The consideration of DCSs for storing spent fuel for hundreds of years has created new challenges. In the case of seismic hazard, longer-term operating periods not only lead to larger horizontal accelerations, but also increase the relative effect of vertical accelerations that usually are disregarded for smaller seismic events. These larger seismic demands could lead to casks sliding and tipping over, impacting the concrete pad or adjacent casks. The casks

  13. Overview of technical Issues Associated with the Long Term Storage of Light Water Reactor used Nuclear Fuel

    International Nuclear Information System (INIS)

    Sorenson, Ken B.

    2014-01-01

    The nuclear power technical community is developing the technical basis for demonstrating the safety of storing used nuclear fuel for extended periods of time. The combination of reactor operations that off-load spent fuel to interim storage, coupled with delays in repository construction, has resulted in the expectation that storage periods may be for longer periods of time than originally intended. As more fuel continues to be off-loaded from operating reactors, the need for expanded interim storage also increases. As repository programs are delayed, interim storage requirements will likely exceed licensing term limits. To address these operational realities, there has been a concerted international effort to identify and prioritize the technical issues that need to be addressed in order to demonstrate the safety of storing used nuclear fuel for extended periods of time. Since this is an international effort, different storage systems, regulations, and policies need to be considered. This results in differences in technical issues, as well as differences in priorities. However, this effort also identifies important commonalities in some technical areas that need to be addressed. A broad-based international evaluation of these technical issues provides a better understanding of technical concerns as they relate to individual storage systems and specific national regulatory frameworks. While there are several international activities underway that are focused on long term storage, this paper will discuss the activities of the Electric Power Research Institute (EPRI)/Extended Storage Collaboration Program (ESCP) International Subcommittee. A status report detailing the identification and prioritization of the technical issues was presented at the PSAM11 Conference in June 2012 (1). Since that conference, a final report has been completed by the EPRI/ESCP International Subcommittee (2). This paper will provide important results of the final report as well as

  14. CFD Analysis on the Passive Heat Removal by Helium and Air in the Canister of Spent Fuel Dry Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Do Young; Jeong, Ui Ju; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of)

    2016-05-15

    In the current commercial design, the canister of the dry storage system is mainly backfilled with helium gas. Helium gas shows very conductive behavior due to high thermal conductivity and small density change with temperature. However, other gases such as air, argon, or nitrogen are expected to show effective convective behavior. Thus these are also considered as candidates for the backfill gas to provide effective coolability. In this study, to compare the dominant cooling mechanism and effectiveness of cooling between helium gas and air, a computational fluid dynamics (CFD) analysis for the canister of spent fuel dry storage system with backfill gas of helium and air is carried out. In this study, CFD simulations for the helium and air backfilled gas for dry storage system canister were carried out using ANSYS FLUENT code. For the comparison work, two backfilled fluids were modeled with same initial and boundary conditions. The observed major difference can be summarized as follows. - The simulation results showed the difference in dominant heat removal mechanism. Conduction for helium, and convection for air considering Reynolds number distribution. - The temperature gradient inside the fuel assembly showed that in case of air, more effective heat mixing occurred compared to helium.

  15. French Approach for Long Term Storage Safety

    International Nuclear Information System (INIS)

    Marciano, Jacob; Carreton, Jean-Pierre; Lizot, Marie Therese; Lhomme, Veronique

    2014-01-01

    IRSN presents its statement regarding long-term storage facilities; in France, the regulatory documents do not define the long term duration. The storage facility lifetime can only be appreciated according to the needs and materials stored therein. However, the magnitude of the long-term can be estimated at a few hundred years compared to a few decades for current storage. Usually, in France, construction of storage facilities is driven from the necessity various necessities, linked to the management of radioactive material (eg spent fuel) and to the management of radioactive waste. Because of the variety of 'stored materials and objects' (fission product solutions, plutonium oxide powders, activated solids, drums containing technological waste, spent fuel...), a great number of storage facility design solutions have been developed (surface, subsurface areas, dry or wet conditions...) in the World. After describing the main functions of a storage facility, IRSN displays the safety principles and the associated design principles. The specific design principles applied to particular storage (dry or wet spent fuel storage, depleted uranium or reprocessed uranium storage, plutonium storage, waste containing tritium storage, HLW and ILLW storage...) are also presented. Finally, the concerns due to the long-term duration storage and related safety assessment are developed. After discussing these issues, IRSN displays its statement. The authorization procedures governing the facility lifetime are similar to those of any basic nuclear installation, the continuation of the facility operation remaining subject to periodic safety reviews (in France, every 10 years). The applicant safety cases have to show, that the safety requirements are always met; this requires, at minimum, to take into account at the design stage, comfortable design margins. (author)

  16. Design of a dry cask storage system for spent LWR fuels: radiation protection, subcriticality, and heat removal aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, U. [Turkish Atomic Energy Authority, Ankara (Turkey). Nuclear Safety Dept.; Zabunoolu, O.H. [Hacettepe Univ., Ankara (Turkey). Dept. of Nuclear Engineering

    2006-08-15

    Spent nuclear fuel resulting from reactor operation must be safely stored and managed prior to reprocessing and/or final disposal of high-level waste. Any spent fuel storage system must provide for safe receipt, handling, retrieval, and storage of spent fuel. In order to achieve the safe storage, the design should primarily provide for radiation protection, subcriticality of spent fuel, and removal of spent fuel residual heat. This article is focused on the design of a metal-shielded dry-cask storage system, which will host spent LWR fuels burned to 33 000, 45 000, and 55 000 MWd/t U and cooled for 5 or 10 years after discharge from reactor. The storage system is analyzed by taking into account radiation protection, subcriticality, and heat-removal aspects; and appropriate designs, in accordance with the international standards. (orig.)

  17. Development of a dry transport and storage cask for spent LWR fuel assemblies in Spain

    International Nuclear Information System (INIS)

    Melches, C.; Uriarte, A.; Espallardo, J.A.

    1982-01-01

    One of the advantages of the cask storage concept is its flexibility which makes it specially attractive in the case of the Spanish circumstances. For these reasons the Empresa Nacional del Uranio, S.A. (ENUSA), Junta de Energia Nuclear (JEN) and Equipos Nucleares, S.A. (ENSA) initiated in 1981 a joint program for the development of a prototype cask for the dry transport and storage of spent fuel assemblies. This program includes as main steps the analysis of the conceptual design, the detailed design and experimental tests, the fabrication of a prototype and its licencing and safety testing. The mentioned program, which started in the early 1981, is scheduled to be completed at the end of 1984

  18. Fuel-assembly behavior under dynamic impact loads due to dry-storage cask mishandling

    International Nuclear Information System (INIS)

    1991-07-01

    Continued operation of nuclear power plants is contingent on the ability to provide adequate storage of spent fuel. Until recently, utilities have been able to maintain interim in-pool spent fuel storage. However, many facilities have reached their capacity and are now faced with shipping their spent fuel in dry casks to alternate storage facilities. The objective of this report is to provide estimates of the structural integrity of irradiated LWR fuel rods subjected to impact loads resulting from postulated cask handling accidents. This is accomplished in five stages: (1) Material properties for irradiated fuel are compiled for use in the structural analyses. (2) Results from parametric analyses of representative assembly designs are used to determine the most limiting case for end and side drop postulated handling accidents. (3) Detailed structural analysis results are presented for these critical designs. The detailed analyses include the coupling of assembly interaction with the cask and cask internals. (4) Criteria for both ultimate stress and brittle fracture failure modes of fuel rod cladding are established. (5) Safe cask handling drop height limits are computed based on items 2 through 4 above. 44 figs., 18 tabs

  19. Effect of storage time on microbial quality of some spices and dried seasonings

    International Nuclear Information System (INIS)

    Adu-Gyamfi, A.

    2006-01-01

    The effect of storage time on the microbial quality of some spices and dried seasonings (SOS) (dawadawa, pepper, ginger, shrimp and fish powders) was studied over a 12-month period. Microbial load and profile of irradiated and unirradiated SOS were assessed at 0, 6 and 12-month periods. The range of total variable counts (TVCs) were initially determined at 0.81-4.53 and 4.658.51 log 10 cfu g -1 for irradiated and un irradiated SDS, respectively; those for mould and yeast counts (MYCs) were determined at 0-1.74 and 1.55-3.35 log 10 cfu g -1 , respectively. Generally, TVCs were not significantly affected (P<0.05) by the 6 and 12-month periods, but MYCs were significantly reduced (P<0.05) after the storage periods in some SDS. Microbial profile, mainly dominated by Bacillus spp., Laclobacillus spp., Clostridium spp., Aspergillus spp. and Penicillium spp., was stable after the 6 and 12-month periods for all the SDS. However, the profile was consistently more diverse on dawadawa. pepper and ginger powders. No adverse change in microbial quality of irradiated and unirradiated SDS was observed at the end of the storage periods

  20. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  1. 10 CFR 72.103 - Geological and seismological characteristics for applications for dry cask modes of storage on or...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Geological and seismological characteristics for... § 72.103 Geological and seismological characteristics for applications for dry cask modes of storage on... foundation and geological investigation, literature review, and regional geological reconnaissance show no...

  2. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities

    International Nuclear Information System (INIS)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J.

    2013-10-01

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  3. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Ryan M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pardini, Allan F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cuta, Judith M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Casella, Andrew M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qiao, Hong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larche, Michael R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Diaz, Aaron A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Doctor, Steven R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  4. Criticality safety for deactivation of the Rover dry headend process

    International Nuclear Information System (INIS)

    Henrikson, D.J.

    1995-01-01

    The Rover dry headend process combusted Rover graphite fuels in preparation for dissolution and solvent extraction for the recovery of 235 U. At the end of the Rover processing campaign, significant quantities of 235 U were left in the dry system. The Rover Dry Headend Process Deactivation Project goal is to remove the remaining uranium bearing material (UBM) from the dry system and then decontaminate the cells. Criticality safety issues associated with the Rover Deactivation Project have been influenced by project design refinement and schedule acceleration initiatives. The uranium ash composition used for calculations must envelope a wide range of material compositions, and yet result in cost effective final packaging and storage. Innovative thinking must be used to provide a timely safety authorization basis while the project design continues to be refined

  5. UO{sub 2} oxidation under dry storage conditions: From data gaps to research needs

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E. [CIEMAT, Andalucia (Spain)

    2008-10-15

    Dry interim storage is becoming a major activity of today's fuel cycle. The potential contact between no grossly damaged fuel rods (i.e., rods containing tiny defects like pinhole leaks and hairline cracks) and an oxidizing atmosphere during the cask water removal might lead to unacceptable consequences. One way to prevent it is to determine the time to propagation of a defect at given conditions. This paper compiles and critically reviews the existing database concerning time at temperature profile of fuel rods containing tiny defects that are exposed to oxidizing atmospheres. This review has pointed out significant drawbacks and limitations that would hinder its reliable application to assess the potential for defect propagation of current LWR fuels to be loaded in dry storage casks. Those weaknesses come essentially from data scarcity and lack of tests representativity. Based on this study, three main areas of work are recommended to fill the existing knowledge gaps: sound characterization of fuel rod responses in the low burnup range (<30 GWd/tU), extension of the database to high burnups characteristic of current discharged LWR fuels (<60GWd/tU), assessment of availability (i.e., amount and nature) of oxidizing agents. The result of the work suggested would result in a more complete and extensive database that would strongly support the potential use of 'time at temperature' curves.

  6. Secagem e armazenamento de sementes de juçara Drying and storage of euterpe edulis seeds

    Directory of Open Access Journals (Sweden)

    Cibele Chalita Martins

    2009-08-01

    Full Text Available Com o objetivo de verificar o efeito da secagem parcial e do armazenamento sobre a germinação e vigor de sementes de Euterpe edulis obtidas em três épocas de produção, o lote 1 foi colhido em 10 plantasmatriz (PM, em 02/99; o lote 2 em 15 PM, em 04/00; e o lote 3 em 11 PM, em 08/00. Os frutos foram despolpados e as sementes, colocadas para secar por zero, 20 e 40 h (três sublotes, em câmara seca (temperatura de 27 ºC e umidade relativa de 35%. Os três sublotes foram armazenados a 10 ºC, em sacos plásticos (20 mm de espessura fechados. Durante o armazenamento, a qualidade das sementes foi avaliada a cada seis semanas, por 30 semanas, por meio das seguintes determinações: teor de água (105±3 ºC/24 h, porcentagem de germinação e vigor (primeira contagem e índice de velocidade de germinação. O aumento do tempo de secagem resultou em sementes com teor de água decrescente, em torno de 14 a 21% dos valores iniciais, que se mantiveram praticamente inalterados durante o armazenamento. A germinação e vigor das sementes foram prejudicados pela secagem parcial e pelo aumento do tempo de armazenamento, de forma diferenciada entre as épocas de produção, e ambas as características dependem das condições climáticas vigentes durante o desenvolvimento e maturação das sementes.The objective of this research was to verify the effects of partial drying and storage duration on the germination and vigor of three E. edulis seed lots developed under different weather conditions. Mature fruits were harvested in the palm collection from the Instituto Agronômico, located in Ubatuba, SP., forming three seed lots. Seeds from ten plants were harvested on 02/99 and constituted the Seed lot 1; seed lot 2 was composed of seeds of fifteen plants collected in 04/00, whereas seeds from eleven plants harvested on 08/00 composed seed lot 3. The fruits were depulped and the seeds were dried for 0, 20 and 40 hours, using a drying chamber regulated at

  7. Quality characteristics, structural changes, and storage stability of semi-dried noodles induced by moderate dehydration: understanding the quality changes in semi-dried noodles.

    Science.gov (United States)

    Li, Man; Zhu, Ke-Xue; Sun, Qing-Jie; Amza, Tidjani; Guo, Xiao-Na; Zhou, Hui-Ming

    2016-03-01

    Based on the critical water content (for noodle deterioration) concluded previously, high-temperature-short-time (HTST; 105-135°C) and medium-temperature-long-time (MTLT; 45-75°C) dehydrations were introduced in this study to produce semi-dried noodles. The effects of HTST and MTLT on the quality parameters of semi-dried noodles, as well as noodle structure, storage stability, and changes in starch and protein components were thoroughly investigated. Differential scanning calorimeter (DSC) and birefringent analysis presented few starch gelatinization (approximately 30%) in HTST dehydrated noodles. Scanning electron microscopy (SEM) images showed more compact noodle surface, with uniform pores in the cross section, probably due to enhanced protein-starch combination after HTST dehydration. Meanwhile, HTST induced protein polymerizations in semi-dried noodles, mainly by -SH-S-S interchange, and resulted in significantly (PHTST noodles showed higher microbial and color stability. Shelf-life of dehydrated samples at 120°C was extended to 5days from 1day of the control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Considerations applicable to the transportability of a transportable storage cask at the end of the storage period

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ottinger, C.A.; Brimhall, J.L.; Creer, J.M.; Gilbert, E.R.; Jones, R.H.; McConnell, P.E.

    1991-11-01

    Additional spent fuel storage capacity is needed at many nuclear power plant sites where spent fuel storage pools have either reached or are expected to reach maximum capacities before spent fuel can be removed. This analysis examines certain aspects of Transportable Storage Casks (TSC) to assist in the determination of their feasibility as an option for at-reactor dry storage. Factors that can affect in-transport reliability include: the quality of design, development, and fabrication activities; the possibilities of damage or error during loading and closure; in-storage deterioration or unanticipated storage conditions; and the potential for loss of storage period monitoring/measurement data necessary for verifying the TSC fitness-for-transport. The reported effort utilizes a relative reliability comparison of TSCs to Transport-Only Casks (TOC) to identify and prioritize those issues and activities that are unique to TSCs. TSC system recommendations combine certain design and operational features, such as in-service monitoring, pretransport assessments, and conservation design assumptions, which when implemented and verified, should sufficiently ensure that the system will perform as intended in a later transport environment

  9. Drying of Rhinacanthus nasutus (Linn. Kurz. using a solar dryer incorporated with a backup thermal energy storage from wood combustion

    Directory of Open Access Journals (Sweden)

    Perapong Tekasakul

    2006-05-01

    Full Text Available An indirect, natural convection, solar cabinet dryer incorporated with a backup thermal energy storage from wood combustion was designed and tested with the Thai herb, Rhinacanthus nasutus (Linn. Kurz. Most of Thai herbs are widely used as traditional medicine and drying is an initial step in the production process. Solar dryer with a biomass backup heating system is the most feasible solution to drying in Thailand. In this work, a 4 m x 5 m solar collector was used to absorb solar radiation for heating the incoming air during the daytime, while a biomass burner was used to supply heat when solar energy was not possible. Heat from fuelwood combustion was accumulated in the thermal storage system made of bricks, and was used to heat up the incoming air. Results showed that the herb was dried uniformly and the temperature inside the drying cabinet could be maintained above 50ºC for more than 10 hours. Thermal efficiency when using solar energy was 10.5%, but the value was less than 1% when using the heat from biomass burning. This resulted from the low moisture content of the products after being dried by the solar energy. The dryer is beneficial to the operators, particularly in southern Thailand, where continuous drying is required. This dryer is by no means limited to drying of the herb. Currently, four dryers of the same model have been used by farmer groups in southern Thailand for drying bananas, several types of herbs, fish, and other products. In economic consideration, its payback period is 5.5 years when compared with the LPG-equipped dryer. When the total cost and production capacity are considered, its payback period is about 6 years.

  10. Dry cooling with night cool storage to enhance solar power plants performance in extreme conditions areas

    International Nuclear Information System (INIS)

    Muñoz, J.; Martínez-Val, J.M.; Abbas, R.; Abánades, A.

    2012-01-01

    Highlights: ► Solar thermo-electric power plants with thermal storage for condenser cooling. ► Technology to mitigate the negative effect on Rankine cycles of the day-time high temperatures in deserts. ► Electricity production augmentation in demand-peak hours by the use of day-night temperature difference. -- Abstract: Solar thermal power plants are usually installed in locations with high yearly average solar radiation, often deserts. In such conditions, cooling water required for thermodynamic cycles is rarely available. Moreover, when solar radiation is high, ambient temperature is very high as well; this leads to excessive condensation temperature, especially when air-condensers are used, and decreases the plant efficiency. However, temperature variation in deserts is often very high, which drives to relatively low temperatures during the night. This fact can be exploited with the use of a closed cooling system, so that the coolant (water) is chilled during the night and store. Chilled water is then used during peak temperature hours to cool the condenser (dry cooling), thus enhancing power output and efficiency. The present work analyzes the performance improvement achieved by night thermal cool storage, compared to its equivalent air cooled power plant. Dry cooling is proved to be energy-effective for moderately high day–night temperature differences (20 °C), often found in desert locations. The storage volume requirement for different power plant efficiencies has also been studied, resulting on an asymptotic tendency.

  11. Design features for enhancing international safeguards of AFR dry storage for spent LWR fuel

    International Nuclear Information System (INIS)

    Roberts, F.P.; Harms, N.L.

    1985-05-01

    The Pacific Northwest Laboratory has performed a study for the Nuclear Regulatory Commission to identify and analyze design features that can facilitate the implementation of IAEA safeguards at facilities for dry storage of light water reactor spent fuels. Specific design features are identified that can enhance nuclear material flow and inventory verification. These are assessed from the viewpoint of safeguards effectiveness and possible impacts on the IAEA and the operator of the AFR facility. 11 refs., 3 figs., 2 tabs

  12. Mechanisms of deterioration of nutrients. [of freeze dried foods

    Science.gov (United States)

    Karel, M.; Flink, J. M.

    1976-01-01

    Methods which produce freeze dried foods of improved quality were examined with emphasis on storage stability. Specific topics discussed include: microstructure of freeze dried systems, investigation of structural changes in freeze dried systems, artificial food matrices, osmotic preconcentration to yield improved quality freeze dried fruits, and storage stability of osmotically preconcentrated freeze dried fruits.

  13. Status of US storage efforts

    International Nuclear Information System (INIS)

    Leasburg, R.H.

    1984-01-01

    Tasks involved in the implementation of the Nuclear Waste Policy Act are discussed. The need for speedy action on applications to deal with spent fuel storage problems is stressed. The problems faced by the Virginia Electric and Power Company, where full core discharge capability at the 1600-megawatt Surry power station is expected to be reached in early 1986, are reviewed. It is pointed out that although the Nuclear Waste Policy Act does not apply in this case, the problems illustrate the situation that may be faced after the Act is implemented. Problems involved in intro-utility transhipments and dry cask storage of spent fuel from Surry, including transportation ordinances at state and local levels and approval for the use of dry casks for storage, are reported. The suggestion that dry casks be used for interim storage and eventual transport to monitored retrievable storage facilities or permanent storage sites is considered. It is pointed out that data from a proposed 3-utility demonstration program of dry cask storage of consolidated fuels and the storage of fuels in air should give information applicable to the timely implementation of the Nuclear Waste Policy Act

  14. Facility handling and operational considerations with dry storage casks

    International Nuclear Information System (INIS)

    Moegling, J.; McCreery, P.N.

    1982-09-01

    The Tennessee Valley Authority, in conjunction with US DOE and Pacific Northwest Laboratory, is conducting the first US commercial demonstration of spent fuel storage in casks. The two casks selected for this study are the Castor Ic, on loan from Gesellschaft fur Nuklear Service of Essen, West Germany and the DOE supplied REA 2023, manufactured by Ridihalgh, Eggers, and Associates, of Columbus, Ohio. Preparations began in the spring of 1982. The casks are expected to be loaded with fuel at Brown's Ferry Nuclear Station early in 1984, and the test completed about two years later. NRC is issuing a two-year license for this test under 10 CFR 72

  15. Issues at stake when considering long term storage of HLW. A comprehensive approach to designing the facility

    International Nuclear Information System (INIS)

    Marvy, A.; Ochem, D.

    2002-01-01

    CEA has been conducting a comprehensive R and D program to identify and study key HLW storage design criteria to possibly meet the lifetime goal of a century and beyond. A novel approach is being used since such installations must be understood as a global system comprised of various materials and hardware components, canisters, concrete and steel structures and specific procedures covering engineering steps from construction to operation including monitoring, care and maintenance as well as licensing. The challenge set by such a lifetime design goal made the R and D people focus on issues at stake and relevant to long term HLW storage in particular heat management, the effect of time on materials and the sustainability of care and maintenance. This opened up the R and D field from fundamental research areas to more conventional and technical aspects. Two major guiding principles have been devised as key design goals for the storage concepts under consideration. One is the paramount function of retrievability, which must allow the safe retrieval of any HLW package from the facility at any given time. Next is the passive containment philosophy requiring that a two-barrier system be considered. In the case of spent fuel, CEA's early assessment of the long-term behaviour of cladding shows that it cannot qualify as a reliable barrier over a long period of time. Therefore, the overriding strategy of preventing corrosion and material degradation to achieve canister protection, and therefore containment of radioactive material throughout the time of period envisaged, is at the heart of the R and D program and several design alternatives are being studied to meet that objective. For instance available thermal power from SF is used to establish dry corrosion conditions within the storage facility. The paper reviews all of these different R and D and engineering aspects. (author)

  16. Long-term effects of drying conditions on the essential oil and color of tarragon leaves during storage

    NARCIS (Netherlands)

    ArabHosseini, A.; Boxtel, van A.J.B.; Huisman, W.; Muller, J.

    2007-01-01

    The effect of storage on the essential oil content and color of French Tarragon (Artemisia dracunculus L.) leaves is studied. Tarragon leaves were dried at temperatures 45, 60 and 90 °C with, respectively, the relative humidity levels 17%, 7% and 2.5%. At 60 °C also a relative humidity level of 18%

  17. Safety issue resolution strategy plan for inactive miscellaneous underground storage tanks

    International Nuclear Information System (INIS)

    Wang, O.S.; Powers, T.B.

    1994-09-01

    The purpose of this strategy plan is to identify, confirm, and resolve safely issues associated with inactive miscellaneous underground storage tanks (MUSTs) using a risk-based priority approach. Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations including risk ranking and cost effectiveness. This plan specifies work scope and recommends schedules for activities related to resolving safety issues, such as collecting historical data, searching for authorization documents, performing Unreviewed Safety Question (USQ) screening and evaluation, identifying safety issues, imposing operational controls and monitoring, characterizing waste contents, mitigating and resolving safety issues, and fulfilling other remediation requirements consistent with the overall Tank Waste Remediation System strategy. Recommendations for characterization and remediation are also recommended according to the order of importance and practical programmatic consideration

  18. Absence of storage effects on radiation damage after thermal neutron irradiation of dry rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Kowyama, Y. [Mie Univ., Tsu (Japan); Saito, M.; Kawase, T.

    1987-09-15

    Storage effects on dry rice seeds equilibrated to 6.8% moisture content were examined after irradiation with X-rays of 5, 10, 20 and 40 kR and with thermal neutrons of 2.1, 4.2, 6.3 and 8.4×10{sup 13}N{sub th}/cm{sup 2}. Reduction in root growth was estimated from dose response curves after storage periods of 1 hr to 21 days. The longer the storage period, the greater enhancement of radiation damages in X-irradiated seeds. There were two components in the storage effect, i. e., a rapid increase of radiosensitivity within the first 24 hr and a slow increase up to 21 days. An almost complete absence of a storage effect was observed after thermal neutron exposure, in spite of considerably high radioactivities of the induced nuclides, {sup 56}Mn, {sup 42}K and {sup 24}Na, which were detected from gamma-ray spectrometry of the irradiated seeds. The present results suggest that the contributions of gamma-rays from the activated nuclides and of inherent contaminating gamma-rays are little or negligible against the neutron-induced damage, and that the main radiobiological effects of thermal neutrons are ascribed to in situ radiations, i, e., heavy particles resulting from neutron-capture reaction of atom. A mechanism underlying the absence of storage effect after thermal neutron irradiation was briefly discussed on the basis of radical formation and decay. (author)

  19. Influence of insecticidal plant materials used during storage on sensory attributes and instrumental hardness of dry edible beans (Phaseolus vulgaris L.).

    Science.gov (United States)

    Dunkel, F V; Serugendo, A; Breene, W M; Sriharan, S

    1995-07-01

    Three plant products with known insecticidal properties, a dry extract of flowers of Chrysanthemum cinerariaefolium (Trevir.) Vis. produced in Rwanda, an ethanol extract of seeds of neem, Azadirachta indica A. Juss, and crushed leaves of Tetradenia riparia Hochst Codd, a traditional Rwandan medicine, were mixed with beans, Phaseolus vulgaris L., for storage protection. These plant-protected beans were compared with "off the shelf' beans that were being sold to consumers by the Rwandan National Agricultural Products Marketing Organization (OPROVIA). A trained sensory panel determined that beans treated with neem and C. cinerariaefolium were as acceptable after 8 months storage as those being sold throughout Rwanda by the marketing organization. Beans marketed by this organization were all treated with the standard insecticide application in Rwanda, 0.01% weight/weight pirimiphos methyl in a powder formulation. Instrumental hardness (% hard-to-cook/mean gram force) after 20 months of storage was acceptable for beans stored with neem or with C. cinerariaefolium or with the conventional government application of pirimiphos methyl. Use of either neem or C. cinerariaefolium for storage protection should not affect consumer acceptance of dry beans.

  20. Influência do armazenamento de folhas secas no óleo essencial de patchouli (Pogostemon cablin Benth. Storage influence of dried leaves on patchouly (Pogostemon cablin Benth. essential oil

    Directory of Open Access Journals (Sweden)

    Trícia Cavalcanti Pergentino de Sant'ana

    2010-01-01

    Full Text Available The aim of this work was to evaluate the influence of five storage times of dry leaves of two patchouli genotypes on its essential oil content and chemical composition. Harvest was realized four months after planting. Storage influenced essential oil content of genotype POG-002. Patchoulol was the majority compound. Storage of dry leaves increased significatively the content of the compounds α-bulnesene and germacrene A of genotype POG-021 and longicanfenilone, pogostol and patchoulol of POG-002. However, storage reduced significatively the content of the compounds cicloseichelene, β-cariofilene, α-guaiene, acifilene and α-bulnesene of the essential oil of genotype POG-002.

  1. Irradiation in combination with low temperature storage for preservation of semi-dried mango and longan

    Energy Technology Data Exchange (ETDEWEB)

    Noomhorm, A; Karki, D B; Rao, M S [Agricultural and Food Engineering Program, School of Environment, Resources and Development, Asian Institute of Technology, Bangkok (Thailand)

    1996-12-01

    Semi dried mango (30% m.c.) and longan (16% m.c.) packed in low density polyethylene were irradiated at doses of 0, 2, 4, 6 and 8 kGy using Cobalt-60 and stored at 14 degree C and 30 degree C. Irradiation had no significant effect (p > 0.05) on acidity, total and reducing sugars, total carotenes, vitamin C content and sensory quality of the product. An irradiation dose of 2 kGy was sufficient to prevent the growth of microorganisms but a high dose of 8 kGy failed to reduce the viable yeast-mold count to neutrality. Irradiation of semi-dried mango and longan at a minimum dose of 2 kGy and subsequent storage at 14 degree C prolonged the shelf life without significant changes in quality

  2. Irradiation in combination with low temperature storage for preservation of semi-dried mango and longan

    International Nuclear Information System (INIS)

    Noomhorm, A.; Karki, D.B.; Rao, M.S.

    1996-01-01

    Semi dried mango (30% m.c.) and longan (16% m.c.) packed in low density polyethylene were irradiated at doses of 0, 2, 4, 6 and 8 kGy using Cobalt-60 and stored at 14 degree C and 30 degree C. Irradiation had no significant effect (p > 0.05) on acidity, total and reducing sugars, total carotenes, vitamin C content and sensory quality of the product. An irradiation dose of 2 kGy was sufficient to prevent the growth of microorganisms but a high dose of 8 kGy failed to reduce the viable yeast-mold count to neutrality. Irradiation of semi-dried mango and longan at a minimum dose of 2 kGy and subsequent storage at 14 degree C prolonged the shelf life without significant changes in quality

  3. Important accounting issues for carbon dioxide capture and storage projects under the UNFCCC

    International Nuclear Information System (INIS)

    Haefeli, S.; Bosi, M.; Philibert, C.

    2005-01-01

    Carbon dioxide capture and storage (CCS) provides options for making continued use of fossil fuels more compatible with pollution abatement policies. This paper evaluated policy issues related to CCS, with particular focus on the geological sequestration of carbon dioxide (CO 2 ) into geological storage sites. Before any carbon dioxide (CO 2 ) CCS activities can be included in the portfolio of climate change mitigation activities, several issues need to be resolved such as the development of appropriate accounting and baselines rules and monitoring modalities. Guidance and policies on baselines and the accounting of emission reductions are critical to ensure that CCS projects can benefit from CO 2 markets and are recognized under various mitigation schemes. This paper examined the major issues that should considered along with changes to current accounting approaches. Issues that need to be addressed in order to prepare national inventories for the inclusion of CCS under the United Nations Framework Convention on Climate Change (UNFCCC) and emission reduction schemes such as the European greenhouse gas emissions trading scheme were first presented, followed by an examination of CCS issues under project-based mechanisms such as the Kyoto Protocol's Clean Development Mechanism. The importance of clear definitions and monitoring guidelines for the proper accounting of CCS were also highlighted. 12 refs., 2 figs

  4. A Criticality Evaluation of the GBC-32 Dry Storage Cask in PWR Burnup Credit

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hyoungju; Park, Kwangheon; Hong, Ser Gi [Kyung Hee Univ., Yongin (Korea, Republic of)

    2015-05-15

    The current criticality safety evaluation assumes the only unirradiated fresh fuels with the maximum enrichment in a dry storage cask (DSC) for conservatism without consideration of the depletion of fissile nuclides and the generation of neutron-absorbing fission products. However, the large conservatism leads to the significant increase of the storage casks required. Thus, the application of burnup credit which takes credit for the reduction of reactivity resulted from fuel depletion can increase the capacity in storage casks. On the other hand, the burnup credit application introduces lots of complexity into a criticality safety analysis such as the accurate estimation of the isotopic inventories and the burnup of UNFs and the validation of the criticality calculation. The criticality evaluation with an effect of burnup credit was performed for the DSC of GBC-32 by using SCALE 6.1/STARBUCS. keff values were calculated as a function of burnup and cooling time for four initial enrichments of 2, 3, 4, and 5 wt. % 235U. The values were calculated for the burnup range of 0 to 60,000 MWD/MTU, in increments of 10,000 MWD/MTU, and for five cooling times of 0, 5, 10, 20, and 40 years.

  5. Determination of chemical composition, and storage on dried fermented goat milk product (Oggtt

    Directory of Open Access Journals (Sweden)

    Badriah O. Al-Abdulkarim

    2013-06-01

    Full Text Available A sample of dried fermented goat milk product (Oggtt obtained from the local market of Riyadh city in The Kingdom of Saudi Arabia, was stored for 6 months at 4 °C and subjected to chemical composition analysis before and after storage. The result showed that the sample moisture increased significantly (P ⩽ 0.05 after storage from 7% to 10%, total ash decreased non-significantly (P ⩽ 0.05 from 8% to 7.6%, total carbohydrates decreased non-significantly (P ⩽ 0.05 from 35.5% to 33.8%, protein increased non-significantly (P ⩽ 0.05 from 16 to 16.1 g/l, fat content was found to have the same values in all samples before and after storage at 5%, lactose increased (P ⩽ 0.05 non-significantly from 28.4% to 29%, acidity decreased (P ⩽ 0.05 significantly from 0.45% to 0.39%, and pH decreased (P ⩽ 0.05 non-significantly from 4.3% to 4%. On the other hand, mineral composition showed (P ⩽ 0.05 non-significant results before and after storage. Ca concentration decreased from 118 to 1149 mg/kg and K concentration increased from 185.8 to 1888 mg/kg. While Mg increased from 105 to 123 mg/kg, Zn increased from 8.3 to 8.6 mg/kg, Mn and Fe were found to have the same values of concentrations before and after storage which were 0.2 and 0.1 mg/kg, respectively. Accordingly, we can conclude that Oggtt is a stable product and have a good nutritional value in comparison to daily required amounts for healthy human life.

  6. TEMPORARY STORAGE OF BOVINE SEMEN CRYOPRESERVED IN LIQUID NITROGEN ON DRY ICE AND REFREEZING OF FROZEN-THAWED SEMEN.

    Science.gov (United States)

    Abdussamad, A M; Gauly, M; Holtz, W

    2015-01-01

    Two experiments were conducted. The purpose of Experiment 1 was to investigate whether viability of bovine semen stored in liquid nitrogen (-196°C) will be adversely affected by temporary exposure to dry ice (-79°C). It was convincingly shown that post thaw-motility was not affected, regardless whether semen was thawed immediately or after being returned to liquid nitrogen. Shipping or temporary storage on dry ice, thus, is a viable option. In Experiment 2, refreezing of frozen-thawed semen was attempted. The proportion of motile spermatozoa was reduced by a factor of ten to between 6.0 % and 7.4 %, regardless whether thawing occurred directly after removal from liquid nitrogen or after an interim period on dry ice. When semen was refrozen on dry ice before being returned to liquid nitrogen, motility rates were significantly improved (13.0 % to 17.0 %, P<0.05). In both experiments sperm cells that remained motile displayed vigorous forward movement and normal morphological appearance.

  7. Spent fuel drying system test results (second dry-run)

    International Nuclear Information System (INIS)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks have been detected in the basins and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the second dry-run test, which was conducted without a fuel element. With the concurrence of project management, the test protocol for this run, and subsequent drying test runs, was modified. These modifications were made to allow for improved data correlation with drying procedures proposed under the IPS. Details of these modifications are discussed in Section 3.0

  8. Radiation preservation of dry fruits and nuts

    International Nuclear Information System (INIS)

    Wahid, M.; Sattar, A.; Jan, M.; Ahmad, A.; Khan, I.

    1988-01-01

    Dried fruits are considered a major source of income and foreign exchange in many countries. The spoilage of dried fruits and nuts by insect infestation, colour deterioration and chemical changes during storage are the serious problems especially under humid tropical conditions. The present work was undertaken to study the effect of irradiation in combination with different modified storage environments on insect infestation as well as chemical and sensory quality indices. The affect of gamma radiation dose of 1 KGy and storage environments such as air vacuum and carbon dioxide on insect infestation of dry fruits and nuts. In the case of un-irradiated samples, insect infestation progressed throughout the storage period especially in those kept under air. The vacuum storage was found better in checking infestation followed by CO/sub/2 and air. (orig./A.B.)

  9. Dry Transfer Systems for Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Brett W. Carlsen; Michaele BradyRaap

    2012-05-01

    The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

  10. Experiments for evaluation of corrosion to develop storage criteria for interim dry storage of aluminum-alloy clad spent nuclear fuel

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.; Murphy, T.H.

    1994-01-01

    The technical bases for specification of limits to environmental exposure conditions to avoid excessive degradation are being developed for storage criteria for dry storage of highly-enriched, aluminum-clad spent nuclear fuels owned by the US Department of Energy. Corrosion of the aluminum cladding is a limiting degradation mechanism (occurs at lowest temperature) for aluminum exposed to an environment containing water vapor. Attendant radiation fields of the fuels can lead to production of nitric acid in the presence of air and water vapor and would exacerbate the corrosion of aluminum by lowering the pH of the water solution. Laboratory-scale specimens are being exposed to various conditions inside an autoclave facility to measure the corrosion of the fuel matrix and cladding materials through weight change measurements and metallurgical analysis. In addition, electrochemical corrosion tests are being performed to supplement the autoclave testing by measuring differences in the general corrosion and pitting corrosion behavior of the aluminum cladding alloys and the aluminum-uranium fuel materials in water solutions

  11. WWER spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Bower, C C; Lettington, C [GEC Alsthom Engineering Systems Ltd., Whetstone (United Kingdom)

    1994-12-31

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs.

  12. WWER spent fuel storage

    International Nuclear Information System (INIS)

    Bower, C.C.; Lettington, C.

    1994-01-01

    Selection criteria for PAKS NPP dry storage system are outlined. They include the following: fuel temperature in storage; sub-criticality assurance (avoidance of criticality for fuel in the unirradiated condition without having to take credit for burn-up); assurance of decay heat removal; dose uptake to the operators and public; protection of environment; volume of waste produced during operation and decommissioning; physical protection of stored irradiated fuel assemblies; IAEA safeguards assurance; storage system versus final disposal route; cost of construction and extent of technology transfer to Hungarian industry. Several available systems are evaluated against these criteria, and as a result the GEC ALSTHOM Modular Vault Dry Store (MVDS) system has been selected. The MVDS is a passively cooled dry storage facility. Its most important technical, safety, licensing and technology transfer characteristics are outlined. On the basis of the experience gained some key questions and considerations related to the East European perspective in the field of spent fuel storage are discussed. 8 figs

  13. Issues for effective implementation of burnup credit

    International Nuclear Information System (INIS)

    Parks, C.V.; Wagner, J.C.

    2001-01-01

    In the United States, burnup credit has been used in the criticality safety evaluation for storage pools at pressurized water reactors (PWRs) and considerable work has been performed to lay the foundation for use of burnup credit in dry storage and transport cask applications and permanent disposal applications. Many of the technical issues related to the basic physics phenomena and parameters of importance are similar in each of these applications. However, the nuclear fuel cycle in the United States has never been fully integrated and the implementation of burnup credit to each of these applications is dependent somewhat on the specific safety bases developed over the history of each operational area. This paper will briefly review the implementation status of burnup credit for each application area and explore some of the remaining issues associated with effective implementation of burnup credit. (author)

  14. Viability tests of LIPI-MC mould collection in ampoule of L-drying preservation after one year of storage at 5ºC

    Directory of Open Access Journals (Sweden)

    MUHAMMAD ILYAS

    2007-01-01

    Full Text Available A study on viability test of several LIPI-MC mould isolates in ampoule of L-drying preservation after one year storage at 5º C had been conducted. In this study, cell survival level of 34 ampoules number from eight mould generas and 17 species had been counted. The objective of this study was to observe the survival or viability level of several mould isolates in ampoule L-drying preservation after one year storage at 5º C. The measurement of viability level was based on the average of colony forming unit density (CFU/ml. The result showed that there were seven mould isolates have hingh viabilitiy, 18 isolates have medium viabilitiy, two isolates have low viability, and five isolates have lost its viability.

  15. Validity and Reliability of Perinatal Biomarkers after Storage as Dry Blood Spots on Paper

    Science.gov (United States)

    Mihalopoulos, Nicole L.; Phillips, Terry M.; Slater, Hillarie; Thomson, J. Anne; Varner, Michael W.; Moyer-Mileur, Laurie J.

    2013-01-01

    Ojective To validate use of chip-based immunoaffinity capillary electrophoresis on dry blood spot samples (DBSS) to measure obesity-related cytokines. Methods Chip-based immunoaffinity capillary electrophoresis was used to measure adiponectin, leptin and insulin in serum and DBSS in pregnant women, cord blood, and infant heelstick at birth and 6 weeks. Concordance of measurements was determined with Pearson's correlation. Results We report high concordance between results obtained from serum and DBSS with the exception of cord blood specimens. Conclusions Ease of sample collection and storage makes DBSS an optimal method for use in studies involving neonates and young children. PMID:21735507

  16. Drying studies of simulated DOE aluminum plate fuels

    International Nuclear Information System (INIS)

    Lords, R.E.; Windes, W.E.; Crepeau, J.C.; Sidwell, R.W.

    1996-01-01

    Experiments have been conducted to validate the Idaho National Engineering Laboratory (INEL) drying procedures for preparation of corroded aluminum plate fuel for dry storage in an existing vented (and filtered) fuel storage facility. A mixture of hydrated aluminum oxide bound with a clay was used to model the aluminum corrosion product and sediment expected in these Department of Energy (DOE) owned fuel types. Previous studies demonstrated that the current drying procedures are adequate for removal of free water inside the storage canister and for transfer of this fuel to a vented dry storage facility. However, using these same drying procedures, the simulated corrosion product was found to be difficult to dry completely from between the aluminum clad plates of the fuel. Another related set of experiments was designed to ensure that the fuel would not be damaged during the drying process. Aluminum plate fuels are susceptible to pitting damage on the cladding that can result in a portion of UAl x fuel meat being disgorged. This would leave a water-filled void beneath the pit in the cladding. The question was whether bursting would occur when water in the void flashes to steam, causing separation of the cladding from the fuel, and/or possible rupture. Aluminum coupons were fabricated to model damaged fuel plates. These coupons do not rupture or sustain any visible damage during credible drying scenarios

  17. Common criteria among States for storage and use of dried blood spot specimens after newborn screening

    Directory of Open Access Journals (Sweden)

    Carlo Petrini

    2012-06-01

    Full Text Available Biological samples collected in biobanks are a resource with significant research potential. The Italian Joint Group cNB - cNBBSV (National committee of Bioethics - National committee for Biosecurity, Biotechnologies and Life Sciences published a document reporting recommendations on storage and use of dried blood spot (DBS and on the development of a National Network of Regional Newborn Screening Repositories for collection of residual DBS. Several ethical questions (about consent, possible use of genetic information, unanticipated possible usages for research purposes rise from residual newborn screening specimens collections. Moreover, legal and ethical controversies are accentuated by the conflicts between the interests of sample donors, biobank holders, researchers and the public. To overcome these difficulties the identification of a few criteria for storage and research usage of DBS is crucial.

  18. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage

    DEFF Research Database (Denmark)

    Baranauskiene, R.; Bylaite, Egle; Zukauskaite, J.

    2007-01-01

    The effect of different commercial modified food starch carrier materials on the flavor retention of the essential oil (EO) of peppermint (Mentha piperita L.) during spray drying and storage was evaluated. The obtained results revealed that the emulsification and encapsulation efficiencies...... individual compounds were observed. Larger differences in the compositions of surface oils from various encapsulation products were obtained. Flavor components were released at different rates by each of the encapsulated products. The aroma binding capacity of different modified starch matrices to lock EO...... droplets depends on the water activity, and the leakage of aromas from encapsulated powder products during storage increased with increasing water activity....

  19. Dry storage technologies: keys to choosing among metal casks, concrete shielded steel canister modules and vaults

    International Nuclear Information System (INIS)

    Roland, V.; Solignac, Y.; Chiguer, M.; Guenon, Y.

    2003-01-01

    The current international trend towards expanding Spent Fuel Interim Dry Storage capabilities goes with an improvement of the performance of the proposed systems which have to accommodate Spent fuel Assemblies characterized by ever increasing burn-up, fissile isotopes contents, thermal releases, and total inventory. Due to heterogeneous worldwide reactor pools and specific local constraints the proposed solutions have also to cope with a wide fuel design variety. Moreover, the Spent fuel Assemblies stored temporarily for cooling may have to be transported either to reprocessing facilities or to interim storage facilities before direct disposal; it is the reason why the retrievability, including or not transportability of the proposed systems, is often specified by the Utilities for the design of their Storage systems and sometimes by law. This paper shows on examples developed within companies of AREVA Group the key parameters and elements that can direct toward the selection of a technology in a user specific context. Some of the constraints are ability to dry store at once a large number of spent fuel assemblies, readily available, on a given site. No urgent need for further move of the fuel is foreseen. Then clearly a Vault Type Storage system developed and implemented by SGN is an excellent solution: It combines passive safety with immediate large capacity, which allows quick amortization of fuel receiving equipment. In addition the versatile storage position can easily accept in the same facility different fuel types, and also intermediate and High Level Waste. This is the reason why a vault system is often a preferred solution for a long-term dry interim centralized storage, for a multiplicity of spent fuel. It can be also a choice solution when the ISFSI stands on a site that is dedicated permanently to many different nuclear activities.In most cases, the producers of spent fuel require a large capacity that is cumulated over many years, each reload at a

  20. Preliminary safety analysis of criticality for dual-purpose metal cask under dry storage conditions in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taeman, E-mail: tmkim@korad.or.kr [Korea Radioactive Waste Agency (KORAD), 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Dho, Hoseog; Baeg, Chang-Yeal [Korea Radioactive Waste Agency (KORAD), 1045 Daedeokdaero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Lee, Gang-uk [Korea Nuclear Engineering and Service Co. (KONES), Hyundai Plaza, 341-4 Jangdae-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • DPC is under development led by Korea Radioactive Waste Agency in South Korea. • The results of criticality analysis with respect to design requirements. • The k{sub eff} under normal and off-normal conditions were 0.36 and 0.46, respectively. • In addition, the k{sub eff} under a postulated accident condition was evaluated to be 0.94. - Abstract: A dual-purpose metal cask is under development led by Korea Radioactive Waste Agency (KORAD) in Korea, for the dry interim storage and long-distance transportation. This cask comprises a main body made of carbon steel and a stainless steel Dry Shielded Canister (DSC), with stainless steel baskets inside to contain spent fuel assemblies. In this study, nuclear criticality safety analysis was conducted as a part of safety assessment of the metal cask. Analysis to show criticality safety in accordance with regulatory requirements of PWR spent fuel storage was carried out. 10CFR72.124 “Criteria for nuclear criticality safety” and the Regulatory Guide of the American Nuclear Society, ANSI/ANS-57.9 “Design Criteria for an Independent Spent Fuel” and US NRC's “Standard Review Plan for Spent Fuel Dry Storage Systems at a General License Facility” were employed as regulatory standard and criteria. This paper shows results of criticality analysis with respect to each designated criterion with modeling of a virtual nuclear fuel assembly and a cask body that induces the maximum reactivity among various design basis fuels of the metal cask. In addition, the sensitivity analysis of nuclear criticality taking into account the various modeling deviation such as manufacturing tolerance and modeling assumptions of conventional models was carried out to ensure the reliability of the analysis result. The criticality evaluation result of the metal cask and the maximum k{sub eff} under normal and off-normal conditions were 0.36884 and 0.46255, respectively. The maximum k{sub eff} under a postulated

  1. Cold vacuum drying facility: Phase 1 FMEA/FMECA session report

    International Nuclear Information System (INIS)

    Pitkoff, C.

    1998-01-01

    The mission of the Spent Nuclear Fuel (SNF) Project is to remove the fuel currently located in the K-Basins 100 Area to provide safe handling and interim storage of the fuel. The spent nuclear fuel will be repackaged in multi-canister overpacks, partially dried in the Cold Vacuum Drying Facility (CVDF), and then transported to the Canister Storage Building (CSB) for further processing and interim storage. The CVDF, a subproject to the SNF Project, will be constructed in the 100K area. The CVDF will remove free water and vacuum dry the spent nuclear fuel, making it safer to transport and store at the CSB. At present, the CVDF is approximately 90% complete with definitive design. Part of the design process is to conduct Failure Modes, Effects, and Criticality Analysis (FMECA). A four-day FMECA session was conducted August 18 through 21, 1997. The purpose of the session was to analyze 16 subsystems and operating modes to determine consequences of normal, upset, emergency, and faulted conditions with respect to production and worker safety. During this process, acceptable and unacceptable risks, needed design or requirement changes, action items, issues/concerns, and enabling assumptions were identified and recorded. Additionally, a path forward consisting of recommended actions would be developed to resolve any unacceptable risks. The team consisted of project management, engineering, design authority, design agent, safety, operations, and startup personnel. The report summarizes potential problems with the designs, design requirements documentation, and other baseline documentation

  2. The Resistance to Freeze-Drying and to Storage Was Determined as the Cellular Ability to Recover Its Survival Rate and Acidification Activity

    Directory of Open Access Journals (Sweden)

    Ibourahema Coulibaly

    2010-01-01

    Full Text Available The protective effects of the fatty acid composition and membrane action of the acidification activity of two strains of Lactobacillus kept at 20∘C were studied. The addition of sorbitol, monosodium glutamate and glycerol during storage is causing the decline of acidification and increased concentrations of unsaturated fatty acids observed in both strains. The addition of sorbitol and monosodium glutamate does not alter the fatty acid composition, whatever the strain, but increases the resistance to freeze-drying of L. plantarum CWBI-B1419 and improves survival during storage. The addition of these preservatives and decreased activity of acidification improves the ratio unsaturated. These results indicate that the survival during storage and freeze-drying resistance are closely related to the composition of membrane fatty acids. This behaviour can be interpreted as an adaptation of L. plantarum B1419-CWBI supplemented by cryoprotectant additives such as sorbitol or monosodium glutamate sorbitol and monosodium glutamate as an additive. L. plantarum CWBI-B1419 presents a greater adaptation to culture conditions than L. paracasei ssp. paracasei LMG9192T.

  3. ¬¬¬¬ SURVIVAL OF Cronobacter sakazakii IN SKIM MILK DURING SPRAY DRYING, STORAGE AND RECONSTITUTION [Ketahanan Hidup Cronobacter sakazakii dalam Susu Skim selama Proses Pengeringan Semprot, Penyimpanan dan Rekonstitusi

    Directory of Open Access Journals (Sweden)

    Lilis Nuraida1,2

    2012-12-01

    Full Text Available Cronobacter sakazakii is an emerging pathogen known to survive dry conditions and its presence in powder infant formula (PIF has been linked to several outbreaks. In Indonesia, isolation of this bacterium from various foods have been reported. The objective of this study was to determine the effect of spray drying and storage humidity on the survival of C. sakazakii YRc3a in skim milk and their viability upon reconstitution. The survival of Cronobacter during spray drying was determined by comparing the number of bacteria before and after drying. The viability of Cronobacter in spray dried skim milk (SDSM during storage was observed at weeks 1 to 8 and 12. At the same intervals, SDSM containing the pathogens was reconstituted at either 27°C or 50°C and the survivors were enumerated. The data were plotted to yield survival curves. Spray drying caused 4.19 log CFU/g reduction of Cronobacter and the bacteria experiencing drying were less sensitive to reconstitution at 50°C. During storage, the water activity of SDSM reached equilibrium at week 2 and afterwards, they started to decrease when stored at 50% or 90% RH, but maintained its viability at 70% RH. Storage at 50% and 90% RH accelerated the death rate of C. sakazakii YRc3a, resulting in the decline of the viable counts for 3 log cycles. At 50% RH, C. sakazakii Yrc3a decreased significantly, but the survivors exhibited increased heat resistance with the lowest reduction upon reconstitution at 50°C (0.16 log CFU/ml.

  4. Assessment of spent WWER-440 fuel performance under long-term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Takats, F [TS Enercon Kft. (Hungary)

    2012-07-01

    Paks Nuclear Power Plant is the only NPP in Hungary. It has four WWER-440 type reactor units. The fresh fuel is imported from Russia so far. The spent fuel assemblies were shipped back to Russia until 1997 after about 6 years cooling at the plant. A dry storage facility (MVDS type) has been constructed and is operational since then. By 1 January 2008, there were 5107 assemblies in dry storage. The objectives are: 1) Wet AR storage of spent fuel from the NPP Paks: Measurements of conditions for spent fuel storage in the at-reactor (AR) storage pools of Paks NPP (physical and chemical characteristics of pool water, corrosion product data); Measurements and visual control of storage pool component characteristics; Evaluation of storage characteristics and conditions with respect to long-term stability (corrosion of fuel cladding, construction materials); 2) Dry AFR storage at Paks NPP: Calculation and measurement of spent fuel conditions during the transfer from the storage pool to the modular vault dry storage (MVDS) on the site; Calculation and measurement of spent fuel conditions during the preparation of fuel for dry storage (drying process), such as crud release, activity build-up; Measurement of spent fuel conditions during the long-term dry storage, activity data in the storage tubes and amount of crud.

  5. Biochemical, Oxidative, and Lipolytic Changes during Vacuum-Packed Storage of Dry-Cured Loin: Effect of Chestnuts Intake by Celta Pigs

    Directory of Open Access Journals (Sweden)

    María Gómez

    2018-01-01

    Full Text Available The effect of the inclusion of chestnuts in the finishing diet of Celta pig breed on the characteristics of dry-cured loin, a traditional Spanish dry-cured meat product, after the manufacturing process and the vacuum-packed storage was studied. In general, no significant differences between the diets (chestnut, mixed, and concentrate diet were obtained for physicochemical (moisture, intramuscular fat, and titratable acidity and lipolytic parameters. Lower pH and higher values for oxidation parameters (peroxide and TBA values were obtained in loins from pigs fed with chestnuts. However, no differences were found for fatty acids from the different lipid fractions when diets were compared, with the exception of some minor fatty acids. Free fatty acids represented over 2.7% of the fat in the final product. The distinction between diets was procured when a discriminant canonical analysis was performed for fatty acid contents. After vacuum-packed storage, only a slight evolution of the studied parameters was obtained.

  6. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage.

    Science.gov (United States)

    Correia, Roberta; Grace, Mary H; Esposito, Debora; Lila, Mary Ann

    2017-11-15

    Particulate colloidal aggregate food ingredients were prepared by complexing wheat flour, chickpea flour, coconut flour and soy protein isolate with aqueous wild blueberry pomace extracts, then spray drying, freeze drying, or vacuum oven drying to prepare dry, flour-like matrices. Physico-chemical attributes, phytochemical content and stability during storage were compared. Eighteen anthocyanins peaks were identified for samples. Spray dried matrices produced with soy protein isolate had the highest concentration of polyphenols (156.2mg GAE/g) and anthocyanins (13.4mg/g) and the most potent DPPH scavenging activity (714.1μmolesTE/g). Spray dried blueberry polyphenols complexed with protein were protected from degradation during 16weeks at 4°C and 20°C. Soy protein isolate more efficiently captured and stabilized wild blueberry pomace phytochemicals than other protein sources. Overall, spray drying the blueberry extracts complexed with protein proved to be an environment-friendly strategy to produce stable functional ingredients with multiple applications for the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Standard review plan for reviewing safety analysis reports for dry metallic spent fuel storage casks

    International Nuclear Information System (INIS)

    1988-01-01

    The Cask Standard Review Plan (CSRP) has been prepared as guidance to be used in the review of Cask Safety Analysis Reports (CSARs) for storage packages. The principal purpose of the CSRP is to assure the quality and uniformity of storage cask reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The CSRP also sets forth solutions and approaches determined to be acceptable in the past by the NRC staff in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a CSAR does not have to follow the solutions or approaches presented in the CSRP. However, applicants should recognize that the NRC staff has spent substantial time and effort in reviewing and developing their positions for the issues. A corresponding amount of time and effort will probably be required to review and accept new or different solutions and approaches

  8. Influence of mechanical creep burned during the dry storage; Influencia del quemado en la fluencia mecanica durante el almacenamiento en seco

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2010-07-01

    This paper discusses the effect of burning, reached at the end of life of the reactor fuel rod, on the deformation of the mechanical creep sheath during dry storage. The simulation is conducted on scenarios postulates of irradiated fuel rods at different burned.

  9. Effect of Packaging Method and Storage Time on Physicochemical Characteristics of Dry-Cured Pork Neck Products at 10°C

    Directory of Open Access Journals (Sweden)

    Il-Suk Kim

    2014-11-01

    Full Text Available Dry-cured pork neck samples were stored at 10°C for 90 days under vacuum packaging (VP or modified atmosphere packaging (MAP; 25% CO2+75% N2 conditions. The pH, moisture, water activity, total aerobic bacteria, and Enterobacteriaceae counts of dry-cured pork neck products with MAP were significantly lower than those with VP (p60 days of storage were lower than those at Day 1. In conclusion, despite presenting higher lipid oxidation, the samples stored in packages containing 25% CO2 for 90 days at 10°C have lower bacterial counts than vacuum-packed samples. Therefore, further studies should be performed on the packaging of dry-cured meat at adjusted concentrations of CO2.

  10. Stability of Capsaicinoids and Antioxidants in Dry Hot Peppers under Different Packaging and Storage Temperatures

    Directory of Open Access Journals (Sweden)

    Qumer Iqbal

    2015-03-01

    Full Text Available The maintenance of the quality and storage life of perishable fruits and vegetables is a major challenge for the food industry. In this study, the effects of different temperatures, packaging materials and storage time on the stability of capsaicinoids and antioxidants, such as total carotenoids, ascorbic acid and total phenolic compounds, were studied in three commercially cultivated hot pepper hybrids, namely Sky Red, Maha and Wonder King. For this purpose, dry whole pods were packed in jute bags and low-density polyethylene bags (LDPE, stored for five months under controlled conditions at 20, 25 or 30 ○C and analyzed on Day 0 and at 50-day intervals until Day 150. The three hot pepper hybrids differed significantly with respect to their capsaicinoids and antioxidant concentrations, but the results indicated that with the increase in storage temperature and time, a gradual and steady decrease in these levels was equally observed for all hybrids. Overall, mean concentrations after five months were significantly reduced by 22.6% for ascorbic acid, 19.0% for phenolic compounds, 17% for carotenoids and 12.7% for capsaicinoids. The trends of capsaicinoids and antioxidants evolution were decreasing gradually during storage until Day 150, this effect being more pronounced at higher temperature. Furthermore, the disappearance rates of capsaicinoids and antioxidants were higher in peppers packed in jute bags than in those wrapped with LDPE. In conclusion, despite the sensitivity of capsaicinoids and antioxidants to oxygen, light and moisture, the packaging in natural jute or synthetic LDPE plastic bags, as well as the storage at ambient temperature preserved between 77.4% and 87.3% of the initial amounts of these health- and nutrition-promoting compounds during five months’ storage.

  11. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    Science.gov (United States)

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  12. Behaviour of Spent WWER fuel under long term storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kadarmetov, I M [A.A.Bochvar All-Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    1999-07-02

    Results of experimental investigation into thermomechanical properties of pre-irradiated Zr-1%Nb alloy over a range temperatures 500-570 grad C are presented. Safety examination of the Ventilation Storage Casks dry storage system has been carried out. Preliminary safety criteria under dry storage conditions in an environment of inert gas are follows: maximum cladding temperature under normal conditions of dry storage should not exceed 330 grad C after 5-year cooling in water-filled pools; maximum allowable temperature of spent fuel rod cladding under operational mode with infringement of heat removal should not exceed 440 grad C over 8 hours. As each SFA dry storage project comprises its individual technology of spent fuel management, it is necessary to evaluate allowable parameters (terms of storage, maximum temperatures of fuel) for each project respectively. The programme of experimental investigations for the justification of safety criteria for WWER-1000 dry spent fuel storage systems is underway. (author)

  13. Spent fuel storage at Prairie Island: January 1995 status

    International Nuclear Information System (INIS)

    Closs, J.; Kress, L.

    1995-01-01

    The disposal of spent nuclear fuel has been an issue for the US since the inception of the commercial nuclear power industry. In the past decade, it has become a critical factor in the continued operation of some nuclear power plants, including the two units at Prairie Island. As the struggles and litigation over storage alternatives wage on, spent fuel pools continue to fill and plants edge closer to premature shutdown. Due to the delays in the construction of a federal repository, many nuclear power plants have had to seek interim storage alternatives. In the case of Prairie Island, the safest and most feasible option is dry cask storage. This paper discusses the current status of the Independent Spent Fuel Storage Installation (ISFSI) Project at Prairie Island. It provides a historical background to the project, discusses the notable developments over the past year, and presents the projected plans of the Northern States Power Company (NSP) in regards to spent fuel storage

  14. The Canadian long-term experimental used fuel storage program

    International Nuclear Information System (INIS)

    Wasywich, K.M.; Taylor, P.

    1993-01-01

    The Canadian experimental fuel storage program consists of four components: (1) storage of used CANDU (CANadian Deuterium Uranium, registered trademark of AECL) fuel under water, with periodic examination; (2) storage of used CANDU fuel in dry air at seasonally varying temperatures, and in both dry and moisture-saturated air at 150 C, also with periodic examination; (3) underlying research on the oxidation of unused and used UO 2 in dry and moist air at temperatures up to 300 C; and (4) modeling of UO 2 oxidation in dry air. The primary objective of the fuel-storage experiments is to investigate the stability of used CANDU fuel during long-term storage. Burnup of the fuel in these experiments ranges from ∼43 to 582 MW h/kg U, while the outer-element linear power ratings range from 22 to 79 kW/m. The storage behavior of intact and intentionally defected fuel, and fuel that defected in-reactor, is being investigated in the above experiments. Since differences in UO 2 oxidation behavior were observed between dry-air, moisture-saturated air and wet storage of intentionally defected used CANDU fuel, underlying research was initiated on oxidation of unused and used fuel to develop a better understanding of the different mechanisms. Modeling of UO 2 oxidation based on the results of the dry-storage experiments is also under way

  15. Dry storage systems using casks for long term storage in an AFR and repository

    International Nuclear Information System (INIS)

    Einfeld, K.; Popp, F.W.

    1986-01-01

    In conclusion it can be stated that two basic routes with respect to spent fuel storage casks are feasible. One is the Multiple Transport Cask, which with certain modifications can be upgraded to meet the criteria for intermediate storage. Its status is characterized by the licensing of several types of Castor Casks for an intermediate storage period of 30 years in the AFR Storage Facility of DWK at Gorleben in the FRG. The other one is the Final Disposal (Repository) Cask, which can be made suitable for long term storage before a final decision with respect to a repository application is taken. The licensing procedure for a Pilot Conditioning Facility with the Pollux Cask System as reference case will be initiated by DWK in the near future. Under the assumption that in addition to the present Multiple Transport/Storage Casks a license for a Final disposal Cask with respect to long term storage is available, the relative merits of different cask storage systems would have to be evaluated

  16. Development of evaluation method for heat removal design of dry storage facilities. Pt. 4. Numerical analysis on vault storage system of cross flow type

    International Nuclear Information System (INIS)

    Sakamoto, Kazuaki; Hattori, Yasuo; Koga, Tomonari; Wataru, Masumi

    1999-01-01

    On the basis of the result of the heat removal test on vault storage system of cross flow type using the 1/5 scale model, an evaluation method for the heat removal design was established. It was composed of the numerical analysis for the convection phenomena of air flow inside the whole facility and that for the natural convection and the detailed turbulent mechanism near the surface of the storage tube. In the former analysis, air temperature distribution in the storage area obtained by the calculation gave good agreement within ±3degC with the test result. And fine turbulence models were introduced in the latter analysis to predict the separation flow in the boundary layer near the surface of the storage tube and the buoyant flow generated by the heat from the storage tube. Furthermore, the properties of removing the heat in a designed full-scale storage facility, such as flow pattern in the storage area, temperature and heat transfer rate of the storage tubes, were evaluated by using each of three methods, which were the established numerical analysis method, the experimental formula demonstrated in the heat removal test and the conventional evaluation method applied to the past heat removal design. As a result, the safety margin and issues included in the methods were grasped, and the measures to make a design more rational were proposed. (author)

  17. Biofilms promote survival and virulence of Salmonella enterica sv. Tennessee during prolonged dry storage and after passage through an in vitro digestion system.

    Science.gov (United States)

    Aviles, Bryan; Klotz, Courtney; Eifert, Joseph; Williams, Robert; Ponder, Monica

    2013-04-01

    Salmonella enterica serotypes have been linked to outbreaks associated with low water activity foods. While the biofilm-forming abilities of Salmonella improve its survival during thermal processing and sanitation it is unclear whether biofilms enhance survival to desiccation and gastric stresses. The purpose of this study was to quantify the effect of physiological state (planktonic versus biofilm) and prior exposure to desiccation and storage in dry milk powder on Salmonella survival and gene expression after passage through an in vitro digestion model. Planktonic cells of Salmonella enterica serotype Tennessee were deposited onto membranes while biofilms were formed on glass beads. The cells were subsequently dried at room temperature and stored in dried milk powder (a(w)=0.3) for up to 30 days. Salmonella survival was quantified by serial dilution onto Brilliant Green Agar before desiccation, after desiccation, after 1-day storage and after 30-day storage. At each sampling period both physiological states were tested for survival through a simulated gastrointestinal system. RNA was extracted at the identical time points and Quantitative Real-Time PCR was used to determine relative expression for genes associated with stress response (rpoS, otsB), virulence (hilA, invA, sipC) and a housekeeping gene 16S rRNA. The physiological state and length of storage affected the survival and gene expression of Salmonella within the desiccated milk powder environment and after passage through an in vitro digestion system (pstorage for short periods, however the largest amount of expression occurred in biofilm cells stored for 30 days at aw 0.3, suggesting increased virulence potential. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Project management for the Virginia power spent fuel storage project

    International Nuclear Information System (INIS)

    Smith, M.

    1992-01-01

    Like Duke Power, Virginia Power has been involved in spent fuel storage expansion studies for a long time - possibly a little longer than Duke Power. Virginia Power's initial studies date back to the late 70s and into the early 80s. Large variety of storage techniques are reviewed including reracking and transshipment. Virginia Power also considered construction a new spent fuel pool. This was one of the options that was considered early on since Virginia Power started this process before any dry storage techniques had been proven. Consolidation of spent fuel is something that was also studied. Finally, construction of dry storage facility was determined to be the technology of choice. They looked a large variety of dry storage technologies and eventually selected dry storage in metal casks at Surry. There are many of reasons why a utility may choose one technology over another. In Virginia Power's situation, additional storage was needed at Surry much earlier than at other utilities. Virginia Power was confronted with selecting a storage technique and having to be a leader in that it was the first U.S. utility to implement a dry storage system

  19. Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of t...

  20. A simplified computational scheme for thermal analysis of LWR spent fuel dry storage and transportation casks

    International Nuclear Information System (INIS)

    Kim, Chang Hyun

    1997-02-01

    A simplified computational scheme for thermal analysis of the LWR spent fuel dry storage and transportation casks has been developed using two-step thermal analysis method incorporating effective thermal conductivity model for the homogenized spent fuel assembly. Although a lot of computer codes and analytical models have been developed for application to the fields of thermal analysis of dry storage and/or transportation casks, some difficulties in its analysis arise from the complexity of the geometry including the rod bundles of spent fuel and the heat transfer phenomena in the cavity of cask. Particularly, if the disk-type structures such as fuel baskets and aluminium heat transfer fins are included, the thermal analysis problems in the cavity are very complex. To overcome these difficulties, cylindrical coordinate system is adopted to calculate the temperature profile of a cylindrical cask body using the multiple cylinder model as the step-1 analysis of the present study. In the step-2 analysis, Cartesian coordinate system is adopted to calculate the temperature distributions of the disk-type structures such as fuel basket and aluminium heat transfer fin using three- dimensional conduction analysis model. The effective thermal conductivity for homogenized spent fuel assembly based on Manteufel and Todreas model is incorporated in step-2 analysis to predict the maximum fuel temperature. The presented two-step computational scheme has been performed using an existing HEATING 7.2 code and the effective thermal conductivity for the homogenized spent fuel assembly has been calculated by additional numerical analyses. Sample analyses of five cases are performed for NAC-STC including normal transportation condition to examine the applicability of the presented simplified computational scheme for thermal analysis of the large LWR spent fuel dry storage and transportation casks and heat transfer characteristics in the cavity of the cask with the disk-type structures

  1. Sensitivity analyses of seismic behavior of spent fuel dry cask storage systems

    International Nuclear Information System (INIS)

    Luk, V.K.; Spencer, B.W.; Shaukat, S.K.; Lam, I.P.; Dameron, R.A.

    2003-01-01

    Sandia National Laboratories is conducting a research project to develop a comprehensive methodology for evaluating the seismic behavior of spent fuel dry cask storage systems (DCSS) for the Office of Nuclear Regulatory Research of the U.S. Nuclear Regulatory Commission (NRC). A typical Independent Spent Fuel Storage Installation (ISFSI) consists of arrays of free-standing storage casks resting on concrete pads. In the safety review process of these cask systems, their seismically induced horizontal displacements and angular rotations must be quantified to determine whether casks will overturn or neighboring casks will collide during a seismic event. The ABAQUS/Explicit code is used to analyze three-dimensional coupled finite element models consisting of three submodels, which are a cylindrical cask or a rectangular module, a flexible concrete pad, and an underlying soil foundation. The coupled model includes two sets of contact surfaces between the submodels with prescribed coefficients of friction. The seismic event is described by one vertical and two horizontal components of statistically independent seismic acceleration time histories. A deconvolution procedure is used to adjust the amplitudes and frequency contents of these three-component reference surface motions before applying them simultaneously at the soil foundation base. The research project focused on examining the dynamic and nonlinear seismic behavior of the coupled model of free-standing DCSS including soil-structure interaction effects. This paper presents a subset of analysis results for a series of parametric analyses. Input variables in the parametric analyses include: designs of the cask/module, time histories of the seismic accelerations, coefficients of friction at the cask/pad interface, and material properties of the soil foundation. In subsequent research, the analysis results will be compiled and presented in nomograms to highlight the sensitivity of seismic response of DCSS to

  2. Effects of radiation and environmental factors on the durability of materials in spent fuel storage and disposal

    International Nuclear Information System (INIS)

    2002-12-01

    This is the second report that addresses results from the Coordinated Research Project (CRP) on Irradiation Enhanced Degradation of Materials in Spent Fuel Storage Facilities. This second report addresses results of topical studies that are relevant to issues important to materials behaviour in wet storage technology, but also involves topics on materials behaviour in dry storage and repository environments, including effects of radiation. The material is in seven separate papers contributed by the participants in the CRP and contains details of research studies started within the framework of the CRP and in several cases completed well after the CRP was finished. The seven contributions fall into three broad subject areas: Effects of temperature and radiation on aqueous and moist air corrosion of stainless steels; Studies of materials behaviour in wet and dry storage; Effects of gamma radiation on the durability of candidate canister materials for repository applications: carbon steel, titanium, and copper. Each of the papers has been indexed separately

  3. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage

    OpenAIRE

    Sung, Jung-Min; Kim, Young-Boong; Kum, Jun-Seok; Choi, Yun-Sang; Seo, Dong-Ho; Choi, Hyun-Wook; Park, Jong-Dae

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h....

  4. An independent spent-fuel storage installation at Surry Station: Design and operation

    International Nuclear Information System (INIS)

    McKay, H.S.; Wakeman, B.H.; Pickworth, J.M.; Routh, S.D.; Hopkins, W.C.

    1989-07-01

    Design and licensing of the Surry Power Station Independent Spent Fuel Storage Installation (ISFSI) was initiated in 1982 by Virginia Power as part of a comprehensive strategy to increase spent fuel storage capacity at the Station. Designed to use large, metal dry storage casks, the Surry ISFSI will accommodate 84 such casks with a total storage capacity of 811 MTU of spent PWR fuel assemblies. The ISFSI is located at the Surry Station in a wooded area approximately 1000 meters (3300 feet) east of the reactor facilities. Construction of the first of three reinforced concrete storage pads and its associated support systems was completed in March 1986. The operating license and Technical Specifications were issued by the US NRC on July 2, 1986. Initial loading operations of a General Nuclear Systems, Inc., CASTOR V/21 storage cask began in September 1986. The first two CASTOR V/21 casks were placed in storage at the ISFSI in December 1986. 16 refs., 33 figs., 16 tabs

  5. Spent fuel storage for ISER plant

    International Nuclear Information System (INIS)

    Nakajima, Takasuke; Kimura, Yuzi

    1987-01-01

    ISER is an intrinsically safe reactor basing its safety only on physical laws, and uses a steel reactor vessel in order to be economical. For such a new type reactor, it is essentially important to be accepted by the society by showing that the reactor is more profitable than conventional reactors to the public in both technical and economic viewpoint. It is also important that the reactor raises no serious problem in the total fuel cycle. Reprocessing seems one of the major worldwide fuel cycle issues. Spent fuel storage is also one of the key technologies for fuel cycle back end. Various systems for ISER spent fuel storages are examined in the present report. Spent fuel specifications of ISER are similar to those of LWR and therefore, most of LWR spent fuel technologies are basically applicable to ISER spent fuel. Design requirements and examples of storage facilities are also discussed. Dry storage seems to be preferable for the relatively long cooling time spent fuel like ISER's one from economical viewpoint. Vault storage will possibly be the most advantageous for large storage capacity. Another point for discussion is the location and international collaboration for spent fuel storages: ISER expected to be a worldwide energy source and therefore, international spent fuel management seems to be fairly attractive way for an energy recipient country. (Nogami, K.)

  6. Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps

    Energy Technology Data Exchange (ETDEWEB)

    Fluss, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-31

    This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistant to oxidation and hydriding is outlined.

  7. UFD Storage and Transportation - Transportation Working Group Report

    International Nuclear Information System (INIS)

    Maheras, Steven J.; Ross, Steven B.

    2011-01-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms (known as features, events, and processes (FEPs)) were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the

  8. Storage issues: where are we in 2006?

    International Nuclear Information System (INIS)

    Chahine, R.

    2006-01-01

    Hydrogen storage onboard vehicles continue to be a key technical challenge for the widespread use of hydrogen and fuel cell power technologies in transportation. There are national and international collaborative efforts to narrow the gap between the present state of storage technologies and what is required for a competitive hydrogen economy. On-board hydrogen storage approaches under investigation mainly include advanced metal hydrides, nanoporus adsorbants, and chemical hydrogen storage. The presentation will briefly discuss the state of art of these technologies, highlight recent advances and outline future directions. (author)

  9. Pumped storage system model and experimental investigations on S-induced issues during transients

    Science.gov (United States)

    Zeng, Wei; Yang, Jiandong; Hu, Jinhong

    2017-06-01

    Because of the important role of pumped storage stations in the peak regulation and frequency control of a power grid, pump turbines must rapidly switch between different operating modes, such as fast startup and load rejection. However, pump turbines go through the unstable S region in these transition processes, threatening the security and stability of the pumped storage station. This issue has mainly been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. Therefore, in this work, the model test method was employed to study S-induced security and stability issues for a pumped storage station in transition processes. First, a pumped storage system model was set up, including the piping system, model units, electrical control systems and measurement system. In this model, two pump turbines with different S-shaped characteristics were installed to determine the influence of S-shaped characteristics on transition processes. The model platform can be applied to simulate any hydraulic transition process that occurs in real power stations, such as load rejection, startup, and grid connection. On the experimental platform, the S-shaped characteristic curves were measured to be the basis of other experiments. Runaway experiments were performed to verify the impact of the S-shaped characteristics on the pump turbine runaway stability. Full load rejection tests were performed to validate the effect of the S-shaped characteristics on the water-hammer pressure. The condition of one pump turbine rejecting its load after another defined as one-after-another (OAA) load rejection was performed to validate the possibility of S-induced extreme draft tube pressure. Load rejection experiments with different guide vane closing schemes were performed to determine a suitable scheme to adapt the S-shaped characteristics. Through these experiments, the threats existing in the station were verified, the

  10. Color stabilization of porcine hemoglobin during spray-drying and powder storage by combining chelating and reducing agents.

    Science.gov (United States)

    Salvador, P; Toldrà, M; Parés, D; Carretero, C; Saguer, E

    2009-10-01

    This work focuses on the effects of adding a chelating agent - such as nicotinic acid (NA, 2% w/v) or nicotinamide (Nam, 2.5% w/v) - along with glucose as a reducing agent (G, 10% w/v) to fresh porcine hemoglobin in order to stabilize its red color during spray-drying and powder storage at room temperature. Correlations between the CIELAB color parameters and the relative percentages of the different hemoglobin derivatives (liganded and deliganded ferrohemoglobin, and methemoglobin) were analyzed. The results indicate that, although little effects could be observed for any of the combined treatments on fresh hemoglobin, they were effective against pigment autoxidation during dehydration and subsequent storage. From the results, it can also be concluded that glucose was the main contributor to the color stabilization of the hemoglobin powder, probably due to its high water retention capacity.

  11. Drying characteristics of willow chips and stems

    NARCIS (Netherlands)

    Gigler, J.K.; Loon, van W.K.P.; Seres, I.; Meerdink, G.; Coumans, W.J.

    2000-01-01

    In supply chains of willow (Salix viminalis) biomass to energy plants, drying is advisable in order to enable safe long-term storage, increase boiler efficiency and reduce gaseous emissions. To gain insight into the drying process, drying characteristics of willow chips and stems were investigated

  12. Effects of composite surface coating and pre-drying on the properties of kabanosy dry sausage.

    Science.gov (United States)

    Tyburcy, Andrzej; Kozyra, Daniel

    2010-10-01

    Coating of dry sausages with renewable materials could be an alternative to vacuum packaging. In this study kabanosy dry sausage was coated with a composite emulsion and stored for 7 or 15 days at 4-6 degrees C. Effects of different emulsion formulas (0.5 or 1% w/w of kappa-carrageenan and 5 or 10% w/w of glycerol) and pre-drying of coated sausages (at 50 degrees C for 1.5h) were investigated. Carrageenan concentration had a significant effect (Pemulsion adsorbed on the sausage surface but little influence on the barrier properties of the coatings. At both glycerol concentration levels, coatings had no visible cracks and were easily removed from the sausage surface after 7 and 15 days of storage. The colour values of coatings (L*, a*, and b*) changed along with the decreasing water activity during storage. Pre-drying of coated sausages reduced peeled product weight loss after storage. The financial analysis showed that among coatings tested the best proved to be the emulsion containing (w/w): 5% glycerol, 5% gelatin, 0.5% carrageenan, 20% lard, 20% beeswax, and 50% water. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  13. Criticality impacts on LWR fuel storage efficiency

    International Nuclear Information System (INIS)

    Napolitano, D.

    1992-01-01

    This presentation discusses the criticality impacts throughout storage of fuel onsite including new fuel storage, spent fuel storage, consolidation, and dry storage. The general principles for criticality safety are also be discussed. There is first an introduction which explains today's situation for criticality safety concerns. This is followed by a discussion of criticality safety Regulatory Guides, safety limits and fundamental principles. Design objectives for criticality safety in the 1990's include higher burnups, longer cycles, and higher enrichments which impact the criticality safety design. Criticality safety for new fuel storage, spent fuel storage, fuel consolidation, and dry storage are followed by conclusions. Today's situation is one in which the US does not reprocess, and does not have an operating MRS facility or repository. High density fuel storage rack designs of the 1980s, are filling up. Dry cask storage systems for spent fuel storage are being utilized. Enrichments continue to increase PWR fuel assemblies with enrichments of 4.5 to 5.0 weight percent U-235 and BWR fuel assemblies with enrichments of 3.25 to 3.5 weight percent U-235 are common. Criticality concerns affect the capacity and the economics of light water reactor (LWR) fuel storage arrays by dictating the spacing of fuel assemblies in a storage system, or the use of poisons or exotic materials in the storage system design

  14. Characterization of a WESF [Waste Encapsulation and Storage Facility] cesium chloride capsule after fifteen months service in a dry operation/wet storage commercial irradiator

    International Nuclear Information System (INIS)

    Kjarmo, H.E.; Tingey, G.L.

    1988-08-01

    After 15 months of service, a Hanford Waste Encapsulation and Storage Facility (WESF) 137 Cs gamma source capsule was removed for examination from a commercial irradiator at Radiation Sterilizers Incorporated (RSI), Westerville, Ohio. The examination was conducted by Pacific Northwest Laboratory and was the first study of a 137 Cs source capsule after use in a commercial dry operation/wet storage (dry/wet) irradiator. The capsule was cycled 3327 times during the 15-month period with steady-state temperature differences ranging from 70 to 82/degree/C during the air-to-water cycle. The capsule was examined to determine the amount of corrosion that had occurred during this period and to determine if any degradation of the container was evident as the result of thermal cycling. Metallographic examinations were performed on sections that were removed from the inner capsule wall and bottom end cap and the outer capsule bottom end cap weld. The three regions of the inner capsule that were examined for corrosion were the salt/void interface, midwall, and bottom (including the end cap weld). The amount of corrosion measured (0.0002 to 0.0007 in.) is comparable to the corrosion produced (about 0.001 in.) during the melt-cast filling of a capsule. No observable effects of irradiator operation were found during this examination. Consequently, based on this examination, no degradation of WESF 137 Cs capsules is expected when they are used in irradiators similar to the RSI irradiator. 9 refs., 12 figs., 2 tabs

  15. German Approach for the Transport of Spent Fuel Packages after Interim Storage

    International Nuclear Information System (INIS)

    Wille, Frank; Wolff, Dietmar; Droste, Bernhard; Voelzke, Holger

    2014-01-01

    In Germany the concept of dry interim storage of spent nuclear fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently (in 2012) revised 'Guidelines for dry cask storage of spent nuclear fuel and heat-generating waste' by the German Waste management Commission (ESK) which are very similar to the former RSK (reactor safety commission) guidelines. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties which satisfy the proofs for the compliance of the safety objectives at that time. In recent years the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report including evaluation of long term behavior of components and specific operating procedures of the package. Present research and knowledge concerning the long term behavior of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behavior of aged metal and elastomeric seals under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period (aged package). Assessment methods for the material compatibility, the behavior of fuel assemblies and the aging behavior of shielding parts are issues as well. This paper describes the state

  16. Safety issues in construction of facilities for long-term storage of radioactive waste at vector site

    Energy Technology Data Exchange (ETDEWEB)

    Tokarevskyi, O.; Alekseeva, Z.; Kondratiev, S. [State Scientific and Technical Center for Nuclear and Radiation Safety, Kyiv (Ukraine); Rybalka, N. [State Nuclear Regulatory Inspectorate of Ukraine, Kyiv (Ukraine)

    2013-07-01

    In Ukraine, it is planned to create a number of near-surface facilities for disposal of short-lived RW and long-term (up to 100 years) storage of long-lived RW at the Vector site in the Chernobyl exclusion zone. The expected streams of long-lived RW are analyzed in the paper. According to the analysis of RW streams, in particular, issues are considered on development of RW acceptance criteria, admissible radiological impacts during preparation of RW for long-term storage, reliability of barriers (RW packages, modules and structures, etc.) during long-term storage of RW. (orig.)

  17. Characterization of In-Drum Drying Products

    International Nuclear Information System (INIS)

    Kroselj, V.; Jankovic, M.; Skanata, D.; Medakovic, S.; Harapin, D.; Hertl, B.

    2006-01-01

    A few years ago Krsko NPP decided to introduce In-Drum Drying technology for treatment and conditioning of evaporator concentrates and spent ion resins. The main reason to employ this technology was the need for waste volume reduction and experience with vermiculite-cement solidification that proved inadequate for Krsko NPP. Use of In-Drum Drying technology was encouraged by good experience in the field at some German and Spanish NPP's. In the paper, solidification techniques in vermiculite-cement matrix and In-Drum Drying System are described briefly. The resulting waste forms (so called solidification and dryer products) and containers that are used for interim storage of these wastes are described as well. A comparison of the drying versus solidification technology is performed and advantages as well as disadvantages are underlined. Experience gained during seven years of system operation has shown that crying technology resulted in volume reduction by factor of 20 for evaporator concentrates, and by factor of 5 for spent ion resin. Special consideration is paid to the characterization of dryer products. For evaporator concentrates the resulting waste form is a solid salt block with up to 5% bound water. It is packaged in stainless steel drums (net volume of 200 l) with bolted lids and lifting rings. The fluidized spent ion resins (primary and blow-down) are sluiced into the spent resin drying tank. The resin is dewatered and dried by electrical jacket heaters. The resulting waste (i.e. fine granulates) is directly discharged into a shielded stainless steel drum with bolted lid and lifting rings. Characterization of both waste forms has been performed in accordance with recommendations given in Characterization of Radioactive Waste Forms and Packages issued by International Atomic Energy Agency, 1997. This means that radiological, chemical, physical, mechanical, biological and thermal properties of the waste form has been taken into consideration. In the paper

  18. Comparison of Dry Gas Seasonal Storage with CO2 Storage and Re-Use Potential

    OpenAIRE

    Killerud, Marie

    2013-01-01

    To make large-scale CO2 storage economic, many groups have proposed using CO2in EOR projects to create value for CO2 storage. However, CO2 EOR projectsgenerally require a large and variable supply of CO2 and consequently may requiretemporary storage of CO2 in geological formations. In order to store CO2 atoffshore sites as a source for CO2 EOR projects, the CO2 needs to be extractedfrom a storage site to a certain extent. Alternatively, CO2 EOR projects maybe developed alongside saline aquife...

  19. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    Science.gov (United States)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-01-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  20. Resolution of the Hanford site ferrocyanide safety issue

    International Nuclear Information System (INIS)

    Cash, R.J.; Lilga, M.A.; Babad, H.

    1997-01-01

    The Ferrocyanide Safety Issue at the Hanford Site was officially resolved in December 1996. This paper summarizes the key activities that led to final resolution of this safety hazard, a process that began in 1990 after it and other safety concerns were identified for the underground high-level waste storage tanks at the Hanford Site. At the time little was known about ferrocyanide-nitrate/nitrite reactions and their potential to cause offsite releases of radioactivity. The ferrocyanide hazard was a perceived problem, but it took six years of intense studies and analyses of tank samples to prove that the problem no longer exists. The issue revolved around the fact that ferrocyanide and nitrate mixtures can be made to explode violently if concentrated, dry, and heated to temperatures of at least 250 degrees C. The studies conducted over the last six years have shown that the combined effects of temperature, radiation, and pH during 40 or more years of storage have destroyed almost all of the ferrocyanide originally added to tanks. This was shown in laboratory experiments using simulant wastes and confirmed by actual samples taken from the ferrocyanide tanks. The tank waste sludges are now too dilute to support a sustained exothermic reaction, even if dried out and heated to high temperatures. 2 tabs., 18 refs

  1. Storage stability of biodegradable polyethylene glycol microspheres

    Science.gov (United States)

    Jain, Era; Sheth, Saahil; Polito, Kristen; Sell, Scott A.; Zustiak, Silviya P.

    2017-10-01

    Degradable hydrogel microspheres are popular choices for multiple biomedical applications, including drug, protein, or cell carriers for minimally invasive delivery. Clinical transitioning of such new, sensitive pharmaceutical preparations requires investigation of storage methods that retain key properties for extended time. In this study, we sought to determine the influence of seven common storage conditions on the physical and mechanical properties of degradable polyethylene glycol (PEG) hydrogel microspheres: 25 °C, 4 °C, -80 °C, lyophilization/-20 °C, dimethyl sulfoxide/-80 °C, dimethyl sulfoxide/lyophilization/-20 °C, vacuum/-20 °C. We have outlined the storage conditions in detail and explained their effect on swelling ratio, stiffness and degradation rate post-storage. Additionally, we have implemented protein-loaded hydrogels to evaluate the effect of storage conditions on diffusivity as well as protein stability post-storage. We found that hydrogels could be stored short-term (1-4 d) under moist conditions (i.e. storage without drying) without a substantial loss of properties. For extended storage (7-28 d), they could be stored either at  -80 °C (moist condition) or vacuum drying (dry condition).

  2. Three-dimensional multiphase effects in aquifer gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Witherspoon, P.A.; Fuller, P.; Finsterle, S. [Lawrence Berkeley Laboratory, Berkeley, CA (United States)

    1995-03-01

    The underground storage of natural gas in the United States is one of the most widespread methods of storing energy in the United States. There are two main kinds of storage: (a) dry gas fields, and (b) aquifer storage fields. The storage of gas in dry gas fields involves the conversion of petroleum bearing reservoirs, usually after they have been depleted of any economic production, into a storage operation. An appropriate number of injection-withdrawal (I-W) wells are either drilled or converted from existing exploitation wells, and the storage operations begin by injecting gas to build up to some desired volume of gas in storage.

  3. Demonstration of cask transportation and dry storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Teer, B.R.; Clark, J.

    1984-01-01

    Nuclear Fuel Services, Inc. and the Department of Energy's Idaho Operations Office have signed a cost sharing contract to demonstrate dual purpose shipping and storage casks for spent nuclear fuel. Transnuclear, Inc. has been selected by NFS to design and supply two forged steel casks - one for 40 PWR assemblies from the Ginna reactor, the other for 85 BWR assemblies from the Big Rock Point reactor. The casks will be delivered to West Valley in mid-1985, loaded with the fuel assemblies and shipped by rail to the Idaho National Engineering Laboratory. The shipments will be made under a DOE Certificate of Compliance which will be issued based on reviews by Oak Ridge National Laboratory of Transnuclear's designs

  4. Quality changes in irradiated and nonirradiated boiled-dried anchovies after inter-country transportation and storage at 25degC

    International Nuclear Information System (INIS)

    Kwon, J.H.; Byun, M.W.; Warrier, S.B.; Kamat, A.S.; Alur, M.D.; Nair, P.M.

    1993-01-01

    Samples of nonirradiated and irradiated (5 kGy) dried anchovies (Engraulis encrasicholus) were transported from Korea to India for evaluation of microbiological, physico-chemical and organoleptic parameters during storage. The nonirradiated anchovies showed mould growth and an increase in total bacterial count by three log cycles over the initial load, after four months of storage at 25degC. However, 5 kGy irradiated samples packed with a laminated nylon/polyethylene (NY/PE) film exhibited 10 2 bacterial cells per g even after 6 months storage. Hunter's colour value, total volatile basic nitrogen, browning and lipid oxidation showed a good correlation with the organoleptic quality of stored anchovies. Partial changes in irradiated anchovies did not influence organoleptic acceptability. Differences in the levels of total volatile basic nitrogen and total volatile acid values in irradiated and nonirradiated samples may prove useful in distinguishing irradiated Korean anchovies from nonirradiated samples. (author). 24 refs., 2 tabs., 1 fig

  5. Spent-fuel-storage alternatives

    International Nuclear Information System (INIS)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed

  6. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: an HPLC/DAD/MS study.

    Science.gov (United States)

    Mulinacci, N; Innocenti, M; Bellumori, M; Giaccherini, C; Martini, V; Michelozzi, M

    2011-07-15

    The Rosmarinus officinalis L. is widely known for its numerous applications in the food field but also for the increasing interest in its pharmaceutical properties. Two groups of compounds are mainly responsible for the biological activities of the plant: the volatile fraction and the phenolic constituents. The latter group is mainly constituted by rosmarinic acid, by a flavonoidic fraction and by some diterpenoid compounds structurally derived from the carnosic acid. The aim of our work was to optimize the extractive and analytical procedure for the determination of all the phenolic constituents. Moreover the chemical stability of the main phenols, depending on the storage condition, the different drying procedures and the extraction solvent, have been evaluated. This method allowed to detect up to 29 different constituents at the same time in a relatively short time. The described procedure has the advantage to being able to detect and quantify several classes of compounds, among them numerous minor flavonoids, thus contributing to improving knowledge of the plant. The findings from this study have demonstrated that storing the raw fresh material in the freezer is not appropriate for rosemary, mainly due to the rapid disappearing of the rosmarinic acid during the freezing/thawing process. Regarding the flavonoidic fraction, consistent decrements, were highlighted in the dried samples at room temperature if compared with the fresh leaf. Rosmarinic acid, appeared very sensitive also to mild drying processes. The total diterpenoidic content undergoes to little changes when the leaves are freeze dried or frozen and limited losses are observed working on dried leaves at room temperature. Nevertheless it can be taken in account that this fraction is very sensitive to the water presence during the extraction that favors the conversion of carnosic acid toward it oxidized form carnosol. From our findings, it appear evident that when evaluating the phenolic content in

  7. Used fuel extended storage security and safeguards by design roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ketusky, Edward [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); England, Jeffrey [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Scherer, Carolynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, Michael. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rauch, Eric [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Scaglione, John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dunn, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-01

    In the United States, spent nuclear fuel (SNF) is safely and securely stored in spent fuel pools and dry storage casks. The available capacity in spent fuel pools across the nuclear fleet has nearly reached a steady state value. The excess SNF continues to be loaded in dry storage casks. Fuel is expected to remain in dry storage for periods beyond the initial dry cask certification period of 20 years. Recent licensing renewals have approved an additional 40 years. This report identifies the current requirements and evaluation techniques associated with the safeguards and security of SNF dry cask storage. A set of knowledge gaps is identified in the current approaches. Finally, this roadmap identifies known knowledge gaps and provides a research path to deliver the tools and models needed to close the gaps and allow the optimization of the security and safeguards approaches for an interim spent fuel facility over the lifetime of the storage site.

  8. The Effect of Peak Temperatures and Hoop Stresses on Hydride Reorientations of Zirconium Alloy Cladding Tubes under Interim Dry Storage Condition

    International Nuclear Information System (INIS)

    Cha, Hyun Jin; Jang, Ki Nam; Kim, Kyu Tae

    2016-01-01

    In this study, the effect of peak temperatures and hoop tensile stresses on hydride reorientation in cladding was investigated. It was shown that the 250ppm-H specimens generated larger radial hydride fractions and longer radial hydrides than the 500ppm-H ones. The precipitated hydride in radial direction severely degrades mechanical properties of spent fuel rod. Hydride reorientation is related to cladding material, cladding temperature, hydrogen contents, thermal cycling, hoop stress and cooling rate. US NRC established the regulation on cladding temperature during the dry storage, which is the maximum fuel cladding temperature should not exceed 400 .deg. C for all fuel burnups under normal conditions of storage. However, if it is proved that the best estimate cladding hoop stress is equal to or less than 90MPa for the temperature limit proposed, a higher short-term temperature limit is allowed for low burnup fuel. In this study, 250ppm and 500ppm hydrogen-charged Zr-Nb alloy cladding tubes were selected to evaluate the effect of peak temperatures and hoop tensile stresses on the hydride reorientation during the dry storage. In order to evaluate threshold stresses in relation to various peak temperatures, four peak temperatures of 250, 300, 350, and 400 .deg. C and three tensile hoop stresses of 80, 100, 120MPa were selected.

  9. Structural design concept and static analysis of CANDU spent fuel compact dry storage system

    International Nuclear Information System (INIS)

    Choi, K. S.; Yang, K. H.; Paek, C. R.; Jung, J. S.; Lee, H. Y.

    2003-01-01

    In this study, an structural design concept on CANDU spent fuel compact dry storage system MACSTOR/KN-400 module has been established with a view to optimally design the structural members of the system. Design loads, loading combination and structural safety criteria of the module were reviewed assuming W olsung Site. The static analysis of the module showed that compressive stress concentration due to dead load and live load occurred around the center of roof slab. Maximum stress resulted from dead load is about twice as much as the stress from live load, and structural behavior of module caused by wind load was not significant. The static analysis results will have influence on the reinforcement bar design of structural members with other structural analyses

  10. Effect of sulphur forms on colour and residue of sulphur during the storage at drying grapes by sulphur

    Directory of Open Access Journals (Sweden)

    Boztepe Özlem

    2016-01-01

    Full Text Available Turkey is the world leader in the manufacture and export of seedless raisins. Requirement of golden bleached raisins is increasing in food Industry of especially cake, bread and pastry year by year. In this research, the lowest residual value and the practical realization of such production was intended to determine by drying grapes with application of sulphur. In this case, sulphur residue and colour situations were determined during 12-mounth-storage according to sulphur forms. In this study sulphur studies were applied by Vitis Vinifera cv. “Sultani Çekirdeksiz” with Na2S2O5, which is liquid source of sulphur and SO2, which is gas source of sulphur. SO2 application were studied during 3, 6 and 8 hours and liquid form of sulphur is Na2S2O5 that was used during by 10, 20 and 30 minutes. Applications were prepared with 3 replicates which contain 20 kg fresh grape in each replicate. In conclusion, changes in dried grape have been identified in point of colour (chroma and hue and the sulphur content was determined according to sulphur forms in packing. Gas form of sulphur (SO2 which was applied 3 hours, gave the best result during 12-mounth-storage for colour and sulphur residue.

  11. Spent-fuel-storage alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  12. Temperature and humidity effects on the corrosion of aluminium-base reactor fuel cladding materials during dry storage

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.

    2004-01-01

    The effect of temperature and relative humidity on the high temperature (up to 200 deg. C) corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behaviour of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. (author)

  13. Cask operation and maintenance for spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.S. [International Atomic Energy Agency, Vienna (Austria)

    2004-07-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage.

  14. Cask operation and maintenance for spent fuel storage

    International Nuclear Information System (INIS)

    Lee, J.S.

    2004-01-01

    Interim storage is an essential platform for any option to be chosen later as an endpoint for spent fuel management. In view of such a circumstance, the most imminent service required for the spent fuel management worldwide is to provide adequate storage for the future spent fuel inventory arising either from the continued operation of nuclear power plants or from the removal of spent fuel in preparation for plant decommissioning. While the bulk of the global inventory of spent fuel are still stored in AR pools, dry storage has become a prominent alternative especially for newly built AFR facilities, with more than 17,000 t HM already stored in dry storage facilities worldwide. Storage in cask under inert conditions has become the preferred option, given the advantages including passive cooling features and modular mode of capacity increase. In terms of economics, dry storage is particularly propitious for long-term storage in that operational costs are minimized by the passive cooling features. The trend toward dry storage, especially in cask type, is likely to continue with an implication that and the supply will closely follow the increasing demand for storage by incremental additions of casks to the effect of minimizing cost penalty of the idle capacities typical of pool facilities. A variety of storage systems have been developed to meet specific requirements of different reactor fuels and a large number of designs based on these generic technologies are now available for the spent fuel containers (horizontal, vertical etc) and storage facilities. Multi-purpose technologies (i.e. a single technology for storage, transportation and disposal) have also been studied. Recent concern on security measures for protection of spent fuel has prompted a consideration on the possibility of placing storage facility underground. The future evolution of requirements and technologies will bring important impacts on cask operation and maintenance for spent fuel storage

  15. Dry process potentials

    International Nuclear Information System (INIS)

    Faugeras, P.

    1997-01-01

    Various dry processes have been studied and more or less developed in order particularly to reduce the waste quantities but none of them had replaced the PUREX process, for reasons departing to policy errors, un-appropriate demonstration examples or too late development, although realistic and efficient dry processes such as a fluoride selective volatility based processes have been demonstrated in France (CLOVIS, ATILA) and would be ten times cheaper than the PUREX process. Dry processes could regain interest in case of a nuclear revival (following global warming fears) or thermal wastes over-production. In the near future, dry processes could be introduced in complement to the PUREX process, especially at the end of the process cycle, for a more efficient recycling and safer storage (inactivation)

  16. Evaluation of microwave cavity gas sensor for in-vessel monitoring of dry cask storage systems

    Science.gov (United States)

    Bakhtiari, S.; Gonnot, T.; Elmer, T.; Chien, H.-T.; Engel, D.; Koehl, E.; Heifetz, A.

    2018-04-01

    Results are reported of research activities conducted at Argonne to assess the viability of microwave resonant cavities for extended in-vessel monitoring of dry cask storage system (DCSS) environment. One of the gases of concern to long-term storage in canisters is water vapor, which appears due to evaporation of residual moisture from incompletely dried fuel assembly. Excess moisture could contribute to corrosion and deterioration of components inside the canister, which would in turn compromise maintenance and safe transportation of such systems. Selection of the sensor type in this work was based on a number of factors, including good sensitivity, fast response time, small form factor and ruggedness of the probing element. A critical design constraint was the capability to mount and operate the sensor using the existing canister penetrations-use of existing ports for thermocouple lances. Microwave resonant cavities operating at select resonant frequency matched to the rotational absorption line of the molecule of interest offer the possibility of highly sensitive detection. In this study, two prototype K-band microwave cylindrical cavities operating at TE01n resonant modes around the 22 GHz water absorption line were developed and tested. The sensors employ a single port for excitation and detection and a novel dual-loop inductive coupling for optimized excitation of the resonant modes. Measurement of the loaded and unloaded cavity quality factor was obtained from the S11 parameter. The acquisition and real-time analysis of data was implemented using software based tools developed for this purpose. The results indicate that the microwave humidity sensors developed in this work could be adapted to in-vessel monitoring applications that require few parts-per-million level of sensitivity. The microwave sensing method for detection of water vapor can potentially be extended to detection of radioactive fission gases leaking into the interior of the canister through

  17. Quality, energy requirement and costs of drying tarragon (Artemisia dracunculus L.)

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.A.A.

    2005-11-07

    Tarragon (Artemisia dracunculus L.) is a favorite herbal and medicinal plant. Drying is necessary to achieve longer shelf life with high quality, preserving the original flavor. Essential oil content and color are the most important parameters that define the quality of herbal and medicinal plants. Hot air batch drying is the most common drying method for these plants but affects the essential oil content and color. The drying conditions affect essential oil content and color as well as the energy consumption and costs. Process engineers and farmers need to know how they have to dry to obtain the best quality. The objective of this work is to investigate the conditions for optimal drying in terms of quality, energy consumption and costs. Adsorption and desorption experiments were done to find the equilibrium moisture content and water exchange between the material and surrounding air during drying and storage at temperatures of 25C to 70C and relative humidities of 5% to 90%. Drying of tarragon leaves and chopped plants was investigated separately and the best model was selected from the drying equations in literature. The effect of drying temperature and relative humidity on the essential oil content and color change was studied. Experiments were done at temperatures of 40C to 90C and the optimal conditions were. Long-term effects of the drying conditions were also investigated during the storage time. Material dried at 45, 60 and 90C was stored and the essential oil content and color of the material was measured after 15, 30, 60 and 120 days of storage. Drying at 45C was found as the best condition based on the changes of essential oil and color during drying and storage. Optimization of drying of tarragon was studied based on the results of the sorption isotherms, drying equations and the changes of essential oil content and color during drying and storage. Models were made for the drying process, energy consumption and cost calculation. The current conditions

  18. Experimental silo-dryer-aerator for the storage of soybean grains

    Directory of Open Access Journals (Sweden)

    Paulo C. Coradi

    Full Text Available ABSTRACT This study aimed to verify the capacity of silo-dryer-aerator prototype equipment operating as a silo-storage-aerator for soybean quality analysis. Soybeans with water content of 17% (wet basis – w.b. were dried and stored in a silo-dryer-aerator system that was designed using a drying chamber, four independent storage cells, and a static capacity of 164 kg. Another batch of grains was stored in a silo-storage-aerator with a capacity of 1,200 kg. The experiment was set up in a completely randomized factorial 5 × 4 experimental design including five grain batches stored after being dried at 30, 40, and 50 °C (mixed grains were dried at three temperatures in the silo-dryer-aerator cells and one mixed grain batch stored in the silo-storage-aerator system under ambient air conditions for four storage times (zero, one, two, and three months. There was no difference between the grains stored in the silo-dryer-aerator and silo-storage-aerator at the end of the three-month storage in terms of the physico-chemical quality. The storage time associated with drying at 50 °C caused a reduction in the physical-chemical quality of the grains. The silo-dryer-aerator system was presented as a possible alternative to store soybean (Glycine max L. grains.

  19. Thermal analysis of dry concrete canister storage system for CANDU spent fuel

    International Nuclear Information System (INIS)

    Ryu, Yong Ho

    1992-02-01

    This paper presents the results of a thermal analysis of the concrete canisters for interim dry storage of spent, irradiated Canadian Deuterium Uranium(CANDU) fuel. The canisters are designed to contain 6-year-old fuel safely for periods of 50 years in stainless steel baskets sealed inside a steel-lined concrete shield. In order to assure fuel integrity during the storage, fuel rod temperature shall not exceed the temperature limit. The contents of thermal analysis include the following : 1) Steady state temperature distributions under the conservative ambient temperature and insolation load. 2) Transient temperature distributions under the changes in ambient temperature and insolation load. Accounting for the coupled heat transfer modes of conduction, convection, and radiation, the computer code HEATING5 was used to predict the thermal response of the canister storage system. As HEATING5 does not have the modeling capability to compute radiation heat transfer on a rod-to-rod basis, a separate calculating routine was developed and applied to predict temperature distribution in a fuel bundle. Thermal behavior of the canister is characterized by the large thermal mass of the concrete and radiative heat transfer within the basket. The calculated results for the worst case (steady state with maximum ambient temperature and design insolation load) indicated that the maximum temperature of the 6 year cooled fuel reached to 182.4 .deg. C, slightly above the temperature limit of 180 .deg. C. However,the thermal inertia of the thick concrete wall moderates the internal changes and prevents a rise in fuel temperature in response to ambient changes. The maximum extent of the transient zone was less than 75% of the concrete wall thickness for cyclic insolation changes. When transient nature of ambient temperature and insolation load are considered, the fuel temperature will be a function of the long term ambient temperature as opposed to daily extremes. The worst design

  20. Dry-type radioactive material storage facility

    International Nuclear Information System (INIS)

    Yamanaka, Yasuharu; Matsuda, Masami; Kanai, Hidetoshi; Ganda, Takao.

    1996-01-01

    A plurality of container tubes containing a plurality of canisters therein are disposed in a canister storage chamber. High level radioactive materials are filled in the canisters in the form of glass solidification materials. The canister storage chamber is divided into two cooling channels by a horizontal partition wall. Each of the container tubes is suspended from a ceiling slab and pass through the horizontal partition wall. Namely, each of the container tubes vertically traverses the cooling channel formed between the ceiling slab and the partition wall and extends to the cooling channel formed between the partition wall and a floor slab. Cooling gases heated in the cooling channel below the partition wall are suppressed from rising to the cooling channel above the partition wall. Therefore, the container tubes are efficiently cooled even in a cooling channel above the partition wall to unify temperature distribution in the axial direction of the container tubes. (I.N.)

  1. Spent fuel drying system test results (first dry-run)

    International Nuclear Information System (INIS)

    Klinger, G.S.; Oliver, B.M.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1998-07-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site. Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL) on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of the first dry-run test, which was conducted without a fuel element. The empty test apparatus was subjected to a combination of low- and high-temperature vacuum drying treatments that were intended to mimic, wherever possible, the fuel treatment strategies of the IPS. The data from this dry-run test can serve as a baseline for the first two fuel element tests, 1990 (Run 1) and 3128W (Run 2). The purpose of this dry-run was to establish the background levels of hydrogen in the system, and the hydrogen generation and release characteristics attributable to the test system without a fuel element present. This test also serves to establish the background levels of water in the system and the water release characteristics. The system used for the drying test series was the Whole Element Furnace Testing System, described in Section 2.0, which is located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodology are given in section 3.0, and the experimental

  2. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts.

    Science.gov (United States)

    Ali, Ameena; Chong, Chien Hwa; Mah, Siau Hui; Abdullah, Luqman Chuah; Choong, Thomas Shean Yaw; Chua, Bee Lin

    2018-02-23

    The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC) and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate) present in dried Piper betle 's extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C) and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di- tert -butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract's antioxidant activity. Zero-order displayed better fit with higher correlation coefficients ( R ² = 0.9046) and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions).

  3. Kinetic and thermodynamic bases to resolve issues regarding conditioning of uranium metal fuels

    International Nuclear Information System (INIS)

    Johnson, A.B.; Ballinger, R.G.; Simpson, K.A.

    1994-12-01

    Numerous uranium - bearing fuels are corroding in fuel storage pools in several countries. At facilities where reprocessing is no longer available, dry storage is being evaluated to preclude aqueous corrosion that is ongoing. It is essential that thermodynamic and kinetic factors are accounted for in transitions of corroding uranium-bearing fuels to dry storage. This paper addresses a process that has been proposed to move Hanford N-Reactor fuel from wet storage to dry storage

  4. Design of spent fuel storage facilities

    International Nuclear Information System (INIS)

    1994-01-01

    This Safety Guide is for interim spent fuel storage facilities that are not integral part of an operating nuclear power plant. Following the introduction, Section 2 describes the general safety requirements applicable to the design of both wet and dry spent fuel storage facilities; Section 3 deals with the design requirements specific to either wet or dry storage. Recommendations for the auxiliary systems of any storage facility are contained in Section 4; these are necessary to ensure the safety of the system and its safe operation. Section 5 provides recommendations for establishing the quality assurance system for a storage facility. Section 6 discusses the requirements for inspection and maintenance that must be considered during the design. Finally, Section 7 provides guidance on design features to be considered to facilitate eventual decommissioning. 18 refs

  5. Influence of packaging and storage conditions on quality parameters and shelf life of solar-dried banana

    Directory of Open Access Journals (Sweden)

    Nina Phothapaeree

    2017-04-01

    Full Text Available Effects of packaging materials (metalized or polylactic acid, PLA, based pouches, storage temperatures (30-50°C and time (up to 6 months on quality of solar-dried banana were investigated. At 30°C in both packaging materials, change in moisture content, water activity (a w and hardness were minimal while darkening of the surface color progressed. No microbial spoilage was found. Hedonic scores of color, flavor, taste, texture and overall acceptance of the 6th month aged samples were lowest (p≤0.05. Based on the sensory test, product packed in both packaging materials had shelf life of 5 months at 30°C. Higher storage temperature greatly induced time-dependent decrease in moisture content and a w with an increase in hardness, especially for the samples in PLA-based pouches. Fractional conversion model was used to predicted time-dependent change in total color difference (ΔE (R2 ≥ 0.84. Temperature dependence of the rate constant followed Arrhenius-type relationship (R2 ≥ 0.99.

  6. High pressure processing for dark-firm-dry beef: effect on physical properties and oxidative deterioration during refrigerated storage

    OpenAIRE

    Dicky Tri Utama; Seung Gyu Lee; Ki Ho Baek; Woon Si Chung; In Ae Chung; Jung Tae Jeon; Sung Ki Lee

    2017-01-01

    Objective Study on the application of high pressure processing (HPP) for dark-firm-dry (DFD) beef was conducted to observe whether HPP has any impact on physical properties and to evaluate oxidative deterioration during refrigerated storage under vacuum. Methods The longissimus lumborum muscles obtained from Friesian Holstein steers (33?0.5 months old) with 24-h postmortem pH higher than 6.0 were vacuum-packed and subjected to pressurization at 200, 400, and 600 MPa for 180 s at 15?C?2?C; the...

  7. Economics of spent LWR fuel storage

    International Nuclear Information System (INIS)

    Clark, H.J.

    1980-01-01

    A low cost option for spent fuel inventories would be to ship excess fuel from the overburdened reactor to another reactor in the utility's system that has available space. The only cost would be for cask leasing and shipping. Three other alternatives all require considerable capital expenditures: reracking, new at-reactor (AR) storage facilities, and away-from-reactor (AFR) storage facilities. Fuel storage requirements will be met best by transfer of fuel or by re-racking existing reactor basins whenever these options are available. These alternatives represent not only the lowest cost storage options but also the most timely. Fuel can be shipped to other storage pools for about $10/kg depending on the distance, while costs for reracking range from $18 to 25/kg depending on the approach. These alternatives are recognized to face environmental and regulatory obstacles. However, such obstacles should be less severe than similar issues that would be encountered with AR or AFR basin storage. When storage requirements cannot be met by the first two options, the next least costly alternative for most utilities will be use of a Federal AFR. Storage cost of about $137/kg at an AFR are less costly than charges of up to $350/kg that could be incurred by the use of AR basins. AR basins are practical only when a utility requires storage capacity to accommodate annual additions of 100 MT or more of spent fuel. The large reactor complexes discharging this much feul are not currently those that require relief from fuel storage problems. A recent development in Germany may offer an AR alternative of dry storage in transportation/storage casks at a cost of $200/kg; however, this method has not yet been accepted and licensed for use in the US

  8. Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation.

  9. Assessment of enriched uranium storage safety issues at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1996-08-01

    This document is an assessment of the technical safety issues pertaining to the storage of EU at the Oak Ridge Y-12 Plant. The purpose of the assessment is to serve as the basis for defining the technical standards for storage of EU at Y-12. A formal assessment of the Y-12 materials acceptance criteria for EU is currently being conducted by a task force cochaired by B. G. Eddy of DOE Oak Ridge Operations and S. 0. Cox of Y-12 Defense Programs. The mission of this technical assessment for storage is obviously dependent on results of the acceptance assessment. Clearly, the two efforts require coordination to avoid inconsistencies. In addition, both these Assessments must be consistent with the Environmental Assessment for EU storage at Y-12.1 Both the Storage Assessment and the Criteria for Acceptance must take cognizance of the fact that a portion of the EU to be submitted for storage in the future is expected to be derived from foreign sources and to include previously irradiated uranium containing significant levels of transuranics, radioactive daughter products, and unstable uranium isotopes that do not occur in the EU stream of the DOE weapons complex. National security considerations may dictate that these materials be accepted despite the fact that they fail to conform to the Acceptance Criteria. This document will attempt to address the complexities inherent in this situation

  10. Development of Neutron Energy Spectral Signatures for Passive Monitoring of Spent Nuclear Fuels in Dry Cask Storage

    Science.gov (United States)

    Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.

    2018-01-01

    Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.

  11. High pressure processing for dark-firm-dry beef: effect on physical properties and oxidative deterioration during refrigerated storage.

    Science.gov (United States)

    Utama, Dicky Tri; Lee, Seung Gyu; Baek, Ki Ho; Chung, Woon Si; Chung, In Ae; Jeon, Jung Tae; Lee, Sung Ki

    2017-03-01

    Study on the application of high pressure processing (HPP) for dark-firm-dry (DFD) beef was conducted to observe whether HPP has any impact on physical properties and to evaluate oxidative deterioration during refrigerated storage under vacuum. The longissimus lumborum muscles obtained from Friesian Holstein steers (33±0.5 months old) with 24-h postmortem pH higher than 6.0 were vacuum-packed and subjected to pressurization at 200, 400, and 600 MPa for 180 s at 15°C±2°C; the samples were then stored for 9 days at 4°C±1°C and compared with control (0.1 MPa). HPP increased meat pH by 0.1 to 0.2 units and the tenderness of cooked DFD beef significantly with no significant effects on meat texture profile. The stability of meat pH was well maintained during refrigerated storage under vacuum. No clear effects were found on the activity of catalase and superoxide dismutase, however, glutathione peroxidase activity was significantly reduced by high pressure. HPP and storage time resulted in aroma changes and the increasing amount of malondialdehyde and metmyoglobin relative composition. Although the increasing amount of malondialdehyde content, metmyoglobin formation and aroma changes in HPP-treated samples could not be avoided, HPP at 200 MPa increased L* and a* values with less discoloration and oxidative deterioration during storage.

  12. A novel freeze-dried storage and preparation method for the determination of mycophenolic acid in plasma by high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Lei; Qiang, Wei; Li, Ying; Cheng, Zeneng; Xie, Mengmeng

    2017-09-01

    Plasma samples were conventionally stored at freezing conditions until the time of detection. Such a technique, when carried out over an extended period, is energy consuming; in addition, preparation and transportation of stored samples is inconvenient. In this study, a freeze-dried storage and preparation method was proposed to determine the presence of mycophenolic acid (MPA) in plasma. Fresh plasma samples were freeze-dried using a device, and then stored at ambient temperature. After the stored samples were soaked with methanol spiked with the internal standard, high-performance liquid chromatography was conducted to detect MPA. The proposed method was demonstrated to be precise and accurate over the linear range of 0.5-50 μg mL -1 , with both intra- and inter-day precision being plasma concentration, time point of maximum plasma concentration and elimination half-life, among others, were consistent with the results in the published study. This proposed technique was proved to be simple, reproducible and energy saving. This approach could also simplify the storage and analysis of samples in clinical and scientific drug research. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Evaluation of economics of spent fuel storage techniques

    International Nuclear Information System (INIS)

    Yamaji, Kenji; Nagano, Koji

    1988-01-01

    Various spent fuel storage techniques are evaluated in terms of required costs. The unit storage cost for each spent fuel storage scenario is calculated based on the total cost required for the scenario including capital expenditure, operation cost, maintenance cost and transport cost. Intermediate storage may be performed in relatively small facilities in the plant or in independent large-scale facilities installed away from the plant. Dry casks or water pools are assumed to be used in in-plant storage facilities while vaults may also be employed in independent facilities. Evaluation is made for these different cases. In in-plant facilities, dry cask storage is found to be more economical in all cases than water pool storage, especially when large-sized casks are employed. In independent facilities, on the other hand, the use of vaults is the most desirable because the required capital expenditure is the lowest due to the effect of scale economics. Dry cask storage is less expensive than water pool storage also in independent facilities. The annual discount rate has relatively small influence on the unit cost for storage. An estimated unit cost for storage in independent storage facilities is shown separately for facilities with a capacity of 1,000 tons, 3,000 tons or 5,000 tons. The report also outlines the economics of spent fuel storage in overseas facilities (Finland, Sweden and U.S.A.). (Nogami, K.)

  14. Durability of spent nuclear fuels and facility components in wet storage

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  15. Durability of spent nuclear fuels and facility components in wet storage

    International Nuclear Information System (INIS)

    1998-04-01

    Wet storage continues to be the dominant option for the management of irradiated fuel elements and assemblies (fuel units). Fuel types addressed in this study include those used in: power reactors, research and test reactors, and defence reactors. Important decisions must be made regarding acceptable storage modes for a broad variety of fuel types, involving numerous combinations of fuel and cladding materials. A broadly based materials database has the following important functions: to facilitate solutions to immediate and pressing materials problems; to facilitate decisions on the most effective long term interim storage methods for numerous fuel types; to maintain and update a basis on which to extend the licenses of storage facilities as regulatory periods expire; to facilitate cost-effective transfer of numerous fuel types to final disposal. Because examinations of radioactive materials are expensive, access to materials data and experience that provide an informed basis to analyse and extrapolate materials behaviour in wet storage environments can facilitate identification of cost-effective approaches to develop and maintain a valuable materials database. Fuel storage options include: leaving the fuel in wet storage, placing the fuel in canisters with cover gases, stored underwater, or transferring the fuel to one of several dry storage modes, involving a range of conditioning options. It is also important to anticipate the condition of the various materials as periods of wet storage are extended or as decisions to transfer to dry storage are implemented. A sound basis for extrapolation is needed to assess fuel and facility component integrity over the expected period of wet storage. A materials database also facilitates assessment of the current condition of specific fuel and facility materials, with minimal investments in direct examinations. This report provides quantitative and semi-quantitative data on materials behaviour or references sources of data to

  16. Charging-discharging characteristics of macro-encapsulated phase change materials in an active thermal energy storage system for a solar drying kiln

    Directory of Open Access Journals (Sweden)

    Kumar Shailendra

    2017-01-01

    Full Text Available The present study explores suitability of two phase change materials (PCM for development of an active thermal storage system for a solar drying kiln by studying their melting and solidification behaviors. A double glass glazing prototype solar kiln was used in the study. The storage system consisted of a water storage tank with PCM placed inside the water in high density polyethylene containers. The water in the tank was heated with help of solar energy using an evacuated tube collector array. The melting and solidification temperature curves of PCM were obtained by charging and discharging the water tank. The study illustrated the utility of the PCM in using the stored thermal energy during their discharge to enhance the temperature inside the kiln. The rate of temperature reduction was found to be higher for paraffin wax as compared to a fatty acid based PCM. The water temperature during the discharge of the PCM showed dependence on the discharge characteristics of each PCM suggesting their suitability in designing active thermal storage systems.

  17. Spent fuel dry storage technology development: report of consolidated thermal data

    International Nuclear Information System (INIS)

    Lundberg, W.L.

    1980-09-01

    Experiments indicate that PWR fuel with decay heat levels in excess of 2 kW could be stored in isolated drywells in Nevada Test Site soil without exceeding the current fuel clad temperature limit (715 0 F). The document also assesses the ability to thermally analyze near-surface drywells and above-ground storage casks and it identifies analysis development areas. It is concluded that the required analysis procedures, computer programs, etc., are already developed and available. Analysis uncertainties, however, still exist but they lie mainly in the numerical input area. Soil thermal conductivity, of primary importance in analysis, requires additional study to better understand the soil drying mechanism and effects of moisture. Work is also required to develop an internal canister subchannel model. In addition, the ability of the overall drywell thermal model to accommodate thermal interaction effects between adjacent drywells should be confirmed. In the experimental area, tests with two BWR spent fuel assemblies encapsulated in a single canister should be performed to establish the fuel clad and canister temperature relationship. This is needed to supplement similar experimental work which has already been completed with PWR fuel

  18. Selection of away-from-reactor facilities for spent fuel storage. A guidebook

    International Nuclear Information System (INIS)

    2007-09-01

    This publication aims to provide information on the approaches and criteria that would have to be considered for the selection of away-from-reactor (AFR) type spent fuel storage facilities, needs for which have been growing in an increasing number of Member States producing nuclear power. The AFR facilities can be defined as a storage system functionally independent of the reactor operation providing the role of storage until a further destination such as a disposal) becomes available. Initially developed to provide additional storage space for spent fuel, some AFR storage options are now providing additional spaces for extended storage of spent fuel with a prospect for long term storage, which is becoming a progressive reality in an increasing number of Member States due to the continuing debate on issues associated with the endpoints for spent fuel management and consequent delays in the implementation of final steps, such as disposal. The importance of AFR facilities for storage of spent fuel has been recognized for several decades and addressed in various IAEA publications in the area of spent fuel management. The Guidebook on Spent Fuel Storage (Technical Reports Series No. 240 published in 1984 and revised in 1991) discusses factors to be considered in the evaluation of spent fuel storage options. A technical committee meeting (TCM) on Selection of Dry Spent Fuel Storage Technologies held in Tokyo in 1995 also deliberated on this issue. However, there has not been any stand-alone publication focusing on the topic of selection of AFR storage facilities. The selection of AFR storage facilities is in fact a critical step for the successful implementation of spent fuel management programmes, due to the long operational periods required for storage and fuel handling involved with the additional implication of subsequent penalties in reversing decisions or changing the option mid-stream especially after the construction of the facility. In such a context, the long

  19. Cursory search for carbonates suitable for developing dry underground storage space in the midcontinent, U.S.A

    International Nuclear Information System (INIS)

    Byerly, D.W.

    1975-01-01

    This search for carbonate strata for possible use as nuclear waste repository was prompted by studies of two sites: a deep limestone mine near Barberton, Ohio, and near-surface drift limestone mines near Kansas City, Missouri. Geomorphology, bedrock geology, tectonics and seismicity, and hydrology of the two sites are discussed. It is concluded that the geology of the Barberton site probably offers the greater potential for dry storage over a longer duration of time. Carbonate rocks in North America are evaluated briefly using the criteria just developed, and areas in the midcontinent warranting further study are identified. 26 figures

  20. 7 CFR 29.3058 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [24 FR 8771, Oct. 29, 1959. Redesignated at 47 FR...

  1. Measurements of Fundamental Fluid Physics of SNF Storage Canisters

    Energy Technology Data Exchange (ETDEWEB)

    Condie, Keith Glenn; Mc Creery, Glenn Ernest; McEligot, Donald Marinus

    2001-09-01

    With the University of Idaho, Ohio State University and Clarksean Associates, this research program has the long-term goal to develop reliable predictive techniques for the energy, mass and momentum transfer plus chemical reactions in drying / passivation (surface oxidation) operations in the transfer and storage of spent nuclear fuel (SNF) from wet to dry storage. Such techniques are needed to assist in design of future transfer and storage systems, prediction of the performance of existing and proposed systems and safety (re)evaluation of systems as necessary at later dates. Many fuel element geometries and configurations are accommodated in the storage of spent nuclear fuel. Consequently, there is no one generic fuel element / assembly, storage basket or canister and, therefore, no single generic fuel storage configuration. One can, however, identify generic flow phenomena or processes which may be present during drying or passivation in SNF canisters. The objective of the INEEL tasks was to obtain fundamental measurements of these flow processes in appropriate parameter ranges.

  2. Dry storage of spent fuel elements: interim facility

    International Nuclear Information System (INIS)

    Quihillalt, O.J.

    1993-01-01

    Apart from the existing facilities to storage nuclear fuel elements at Argentina's nuclear power stations, a new interim storage facility has been planned and projected by the Argentinean Atomic Energy Commission (CNEA) that will be constructed by private group. This article presents the developments and describes the activities undertaken until the national policy approach to the final decision for the most suitable alternative to be adopted. (B.C.A.). 09 refs, 01 fig, 09 tabs

  3. 7 CFR 29.2552 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam...

  4. 7 CFR 29.3548 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [30 FR 9207, July 23, 1965...

  5. 7 CFR 29.1060 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [42 FR 21092, Apr. 25, 1977...

  6. Impact of Storage Conditions on the Stability of Predominant Phenolic Constituents and Antioxidant Activity of Dried Piper betle Extracts

    Directory of Open Access Journals (Sweden)

    Ameena Ali

    2018-02-01

    Full Text Available The phenolic constituents in Piper betle are well known for their antioxidant potential; however, current literature has very little information on their stability under the influence of storage factors. Present study evaluated the stability of total phenolic content (TPC and antioxidant activity together with individual phenolic constituents (hydroxychavicol, eugenol, isoeugenol and allylpyrocatechol 3,4-diacetate present in dried Piper betle’s extract under different storage temperature of 5 and 25 °C with and without light for a period of six months. Both light and temperature significantly influenced TPC and its corresponding antioxidant activity over time. More than 95% TPC and antioxidant activity was retained at 5 °C in dark condition after 180 days of storage. Hydroxychavicol demonstrated the best stability with no degradation while eugenol and isoeugenol displayed moderate stability in low temperature (5 °C and dark conditions. 4-allyl-1,2-diacetoxybenzene was the only compound that underwent complete degradation. A new compound, 2,4-di-tert-butylphenol, was detected after five weeks of storage only in the extracts exposed to light. Both zero-order and first-order kinetic models were adopted to describe the degradation kinetics of the extract’s antioxidant activity. Zero-order displayed better fit with higher correlation coefficients (R2 = 0.9046 and the half-life was determined as 62 days for the optimised storage conditions (5 °C in dark conditions.

  7. Regulatory status of burnup credit for storage and transport of spent fuel in Germany

    International Nuclear Information System (INIS)

    Neuber, J.C.; Schweer, H.H.; Johann, H.G.

    2001-01-01

    This paper describes the regulatory status of burnup credit applications to pond storage and dry-cask transport and storage of spent fuel in Germany. Burnup credit for wet storage of LWR fuel at nuclear power plants has to comply with the newly developed safety standard DIN 25471. This standard establishes the safety requirements for burnup credit criticality safety analysis of LWR fuel storage ponds and gives guidance on meeting these requirements. Licensing evaluations of dry transport systems are based on the application of the IAEA Safety Standards Series No.ST-1. However, because of the fact that burnup credit for dry-cask transport becomes more and more inevitable due to increasing initial enrichment of the fuel, and because of the increasing importance of dry-cask storage in Germany, the necessity of giving regulatory guidance on applying burnup credit to dry-cask transport and storage is seen. (author)

  8. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  9. Canadian experience with wet and dry fuel storage concepts

    International Nuclear Information System (INIS)

    Mayman, S.A.

    1978-07-01

    Canada has been storing fuel in water-filled pools for 30 years. There have been no significant problems, but until recently little effort has been invested in quantitative assessment of fuel performance under storage conditions. Work is now in progress to provide such information. Storage pools at nuclear generating stations have operated satisfactorily. The Canadian nuclear industry has nevertheless been studying methods for reducing storage costs and/or increasing reliability. Various concepts, using both water and air cooling, have been suggested. One such concept - the air-cooled concrete canister - is presently under test at the Whiteshell Nuclear Research Establishment. (author)

  10. License considerations of the temporary storage in dry of the nuclear spent fuel of light water reactors; Consideraciones de licenciamiento del almacenamiento temporal en seco del combustible gastado nuclear de reactores de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Bazan L, A.; Vargas A, A.; Cardenas J, J. B., E-mail: ariadna.bazan@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2011-11-15

    The spent fuel of the nuclear power plants of light water is usually stored in cells or frames inside steel coating pools. The water of the spent fuel pool has a double function: it serves as shielding or barrier for the radiation that emits the spent fuel and, on the other hand, to cool it in accordance with its decay in the time. The administration policies of the spent fuel vary of some countries to other, resulting common to all the cases this initial stage of cooling in the pools, after its irradiation in the reactor. When is not possible to increase more this capacity, usually, technologies of temporary storage in dry of the spent fuel in independent facilities are used. The storage in dry of the spent fuel differs of the storage in the fuel pools making use of gas instead of water as coolant and using metal or concrete instead of the water like barrier against the radiation. The storage industry in dry offers a great variety of technologies, which should be certified by the respective nuclear regulator entity before its use. (Author)

  11. Dry storage systems with free convection air cooling

    International Nuclear Information System (INIS)

    Kioes, S.R.

    1980-01-01

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  12. Managing commercial low-level radioactive waste beyond 1992: Issues and potential problems of temporary storage

    International Nuclear Information System (INIS)

    Kerr, T.A.

    1991-01-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, States will become responsible for managing low-level radioactive waste, including mixed waste, generated within their borders as of January 1, 1993. In response to this mandate, many States and compact regions have made substantial progress toward establishing new disposal capacity for these wastes. While this progress is noteworthy, many circumstances can adversely affect States' abilities to meet the 1993 deadline, and many States have indicated that they are considering other waste management options in order to fulfill their responsibilities beyond 1992. Among the options that States are considering for the interim management of low- level radioactive waste is temporary storage. Temporary storage may be either short term or long term and may be at a centralized temporary storage facility provided by the State or a contractor, or may be at the point of generation or collection. Whether States choose to establish a centralized temporary storage facility or choose to rely on generators or brokers to provide additional and problem areas that must be addressed and resolved. Areas with many potential issues associated with the temporary storage of waste include: regulations, legislation, and policy and implementation guidance; economics; public participation; siting, design, and construction; operations; and closure and decommissioning

  13. Effects of plant polyphenols and a-tocopherol on lipid oxidation, residual nitrites, biogenic amines, and N-nitrosamines formation during ripening and storage of dry-cured bacon

    Science.gov (United States)

    Effects of plant polyphenols (green tea polyphenols (GTP) and grape seed extract (GSE) and a-tocopherol on physicochemical parameters, lipid oxidation, residual nitrite, microbiological counts, biogenic amines, and N-nitrosamines were determined in bacons during dry-curing and storage. Results show ...

  14. High pressure processing for dark-firm-dry beef: effect on physical properties and oxidative deterioration during refrigerated storage

    Directory of Open Access Journals (Sweden)

    Dicky Tri Utama

    2017-03-01

    Full Text Available Objective Study on the application of high pressure processing (HPP for dark-firm-dry (DFD beef was conducted to observe whether HPP has any impact on physical properties and to evaluate oxidative deterioration during refrigerated storage under vacuum. Methods The longissimus lumborum muscles obtained from Friesian Holstein steers (33±0.5 months old with 24-h postmortem pH higher than 6.0 were vacuum-packed and subjected to pressurization at 200, 400, and 600 MPa for 180 s at 15°C±2°C; the samples were then stored for 9 days at 4°C±1°C and compared with control (0.1 MPa. Results HPP increased meat pH by 0.1 to 0.2 units and the tenderness of cooked DFD beef significantly with no significant effects on meat texture profile. The stability of meat pH was well maintained during refrigerated storage under vacuum. No clear effects were found on the activity of catalase and superoxide dismutase, however, glutathione peroxidase activity was significantly reduced by high pressure. HPP and storage time resulted in aroma changes and the increasing amount of malondialdehyde and metmyoglobin relative composition. Conclusion Although the increasing amount of malondialdehyde content, metmyoglobin formation and aroma changes in HPP-treated samples could not be avoided, HPP at 200 MPa increased L* and a* values with less discoloration and oxidative deterioration during storage.

  15. Economic issues of storage technologies in different applications

    International Nuclear Information System (INIS)

    Beurskens, L.W.M.; De Noord, M.

    2004-09-01

    For evaluating energy storage technologies, economical parameters are of considerable importance. A qualitative assessment is given of storage technologies in general, contributing to success or failure of their use. Based on data of nine storage technologies that are defined in the INVESTIRE Network (Investigation on storage technologies for intermittent renewable energies: evaluation and recommended R and D strategy), results of a quantitative cost analysis are presented, based on device-specific key parameters. The costs have been defined as additional costs, effected by the required investments and operation and maintenance expenditures, the efficiency of a device and its lifetime. In order to compare the technologies properly, categories of typical use have been defined, ranging from stand-alone small applications (typical storage capacity of 0.1 kWh) to levelling of power production (approximately 1 MWh). The outcome is presented in such a way that for each category of typical use, the best technological options are identified, based on a cost analysis

  16. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage

    Science.gov (United States)

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt. PMID:26877641

  17. Effects of Freeze-dried Mulberry on Antioxidant Activities and Fermented Characteristics of Yogurt during Refrigerated Storage.

    Science.gov (United States)

    Sung, Jung-Min; Kim, Young-Boong; Kum, Jun-Seok; Choi, Yun-Sang; Seo, Dong-Ho; Choi, Hyun-Wook; Park, Jong-Dae

    2015-01-01

    This study investigated the effect of added freeze-dried mulberry fruit juice (FDMJ) (1, 3 and 5%) on the antioxidant activity and fermented characteristic of yogurt during refrigerated storage. A decrease in pH of yogurt and increase in acidity was observed during fermentation. The yogurts with FDMJ exhibited faster rate of pH reduction than control. Initial lactic acid bacteria count of yogurt was 6.49-6.94 Log CFU/g and increased above 9 Log CFU/g in control and 1% in FDMJ yogurt for 24 h. The total polyphenol and anthocyanin content of FDMJ yogurt was higher than that of control due to the presence of phytochemical contents in mulberry. Moreover, antioxidant activity such as DPPH and reducing power was highest 5% FDMJ yogurt. During cold storage, pH decreased or remained constant in all yogurts with values ranging from 4.08 to 4.78 units. In sensory evaluation, the score of 1% FDMJ yogurt was ranked higher when compared with other yogurts. It is proposed that mulberry fruit juice powder can be used to improve sensory evaluation and enhance functionality of yogurt.

  18. Effect of curing methods, packaging and gamma irradiation on the weight loss and dry matter percent of garlic during curing and storage

    International Nuclear Information System (INIS)

    Mahmoud, A.A.; El-Oksh, I.I.; Farag, S.E.A.

    1988-01-01

    The Egyptian garlic plants, showed higher percent of weight loss at 17 or 27 days from curing compared to those of Chinese plants. The curing period of 17 days seemed satisfactory for the Egyptian cultivar, whereas, 27 days seemed to be enough for the Chinese garlic. No significant differences were observed between common and shaded curing methods in weight loss per cent. The Chinese garlic contained higher dry matter percentage than those of the Egyptian cultivar. Shaded cured plants of the two cultivars contained higher dry matter percent than those subjected to the common curing methods. Irradiation of garlic bulbs, shaded curing method and sack packaging decreased, in general the weight loss during storage in comparison with other treatments

  19. PC-Cluster based Storage System Architecture for Cloud Storage

    OpenAIRE

    Yee, Tin Tin; Naing, Thinn Thu

    2011-01-01

    Design and architecture of cloud storage system plays a vital role in cloud computing infrastructure in order to improve the storage capacity as well as cost effectiveness. Usually cloud storage system provides users to efficient storage space with elasticity feature. One of the challenges of cloud storage system is difficult to balance the providing huge elastic capacity of storage and investment of expensive cost for it. In order to solve this issue in the cloud storage infrastructure, low ...

  20. Cold vacuum drying facility 90% design review

    International Nuclear Information System (INIS)

    O'Neill, C.T.

    1997-01-01

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage

  1. Cold vacuum drying facility 90% design review

    Energy Technology Data Exchange (ETDEWEB)

    O`Neill, C.T.

    1997-05-02

    This document contains review comment records for the CVDF 90% design review. Spent fuels retrieved from the K Basins will be dried at the CVDF. It has also been recommended that the Multi-Conister Overpacks be welded, inspected, and repaired at the CVD Facility before transport to dry storage.

  2. Drying and storage of Eugenia involucrata DC. seeds Secagem e armazenamento de sementes de Eugenia involucrata DC.

    Directory of Open Access Journals (Sweden)

    Angela Maria Maluf

    2003-01-01

    Full Text Available The physiological quality of seeds of native species is important to produce healthy saplings and therefore guarantee the success of programs to recover disturbed vegetation. This reinforces the necessity for investigating the physiological quality of those seeds. To evaluate the effects of different drying rates on the germination, moisture content and storability of Eugenia involucrata diaspores, mature fruits collected at Mogi Guaçu, SP, Brazil had their epi- and mesocarps removed by washing and were dried at 30, 40 or 50ºC until their water content was reduced from 57% (fresh diaspores to 13% (final drying, totaling six drying levels. In a second experiment, diaspores had their moisture content reduced from 57% to 49%, at 30ºC, totaling six drying levels (0h, 1h, 2h, 3h, 4h and 5h, and were kept for 180 days in plastic bags under cold storage. The drying rate had no effect on tolerance to desiccation by E. involucrata diaspores; water contents lower than 51% decreased both germinability and storability. Diaspores can be stored for up to 180 days as long as their water content is reduced to 53% and they are kept inside plastic bags under cold storage.O uso de sementes de espécies nativas de alta qualidade é fundamental nos programas de recomposição vegetal, o que fortalece a necessidade de se investigar o potencial fisiológico das mesmas. Esta pesquisa objetivou avaliar os efeitos da velocidade de secagem dos diásporos de Eugenia involucrata sobre a sua germinação e vigor, bem como as relações entre teor de água e capacidade de armazenamento. Foram colhidos frutos maduros em pomar instalado em Mogi Guaçu, SP (22º15-16'S, 47º8-12'W, que tiveram seu epicarpo e mesocarpo removidos por lavagem. A seguir, os diásporos (semente + endocarpo foram submetidos a secagem controlada a 30, 40 e 50ºC, com reduções progressivas do teor de água inicial de 57% para até 13%, obtendo-se seis níveis de secagem em cada temperatura. Em um

  3. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    International Nuclear Information System (INIS)

    McDeavitt, Sean

    2016-01-01

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  4. Fuel Aging in Storage and Transportation (FAST): Accelerated Characterization and Performance Assessment of the Used Nuclear Fuel Storage System

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2016-08-02

    This Integrated Research Project (IRP) was established to characterize key limiting phenomena related to the performance of used nuclear fuel (UNF) storage systems. This was an applied engineering project with a specific application in view (i.e., UNF dry storage). The completed tasks made use of a mixture of basic science and engineering methods. The overall objective was to create, or enable the creation of, predictive tools in the form of observation methods, phenomenological models, and databases that will enable the design, installation, and licensing of dry UNF storage systems that will be capable of containing UNF for extended period of time.

  5. Progress with Scottish Nuclear Limited's dry fuel store proposals

    International Nuclear Information System (INIS)

    Cathro, I.S.

    1994-01-01

    At present Scottish Nuclear plc's largest operating cost, associated with the Advanced Gas Cooled Reactors that it manages, is the reprocessing of spent fuels. Looking to reduce the costs, the company has considered alternative disposal options. Dry vault storage has emerged as a clear leader. An adaption of the United States Modular Vault Dry Storage design is being studied in order to examine the feasibility of a store of this type at each of its power stations. (UK)

  6. Composition and color stability of carbon monoxide treated dried porcine blood.

    Science.gov (United States)

    Fontes, P R; Gomide, L A M; Fontes, E A F; Ramos, E M; Ramos, A L S

    2010-07-01

    Color stability of swine blood was studied over 12 weeks of storage in plastic bags, after pH (7.40, 6.70, or 6.00) adjustment, saturation with carbon monoxide (CO) and spray-drying. CO-treated dried blood presented a redder color and higher reflectance between 610 and 700 nm, compared to a brownish-red color and lower reflectance of untreated samples. As indicated by reflectance spectra, blood pH adjustment did not influence (P>0.05) the initial color of dried blood but influenced (Pvalues, which was more pronounced in polyethylene (OTR=4130 cm(3)/m(2)/day/atm) packaged samples. After 12 weeks of storage, CO-treated samples packaged in high OTR bags presented color indexes similar to those of the untreated dried samples. CO-treated samples packaged in nylon-polyethylene (OTR=30-60 cm(3)/m(2)/day/atm) bags showed a smaller rate of discoloration and color difference (DeltaE(*)) between the CO-treated and untreated samples. Even with some darkening, packaging CO-treated dry blood in low OTR bags still gives an acceptable reddish color after 12 weeks of storage while untreated dry blood has a brownish color just after drying. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Options for the interim storage of spent fuel

    International Nuclear Information System (INIS)

    Kromar, M.; Kurincic, B.

    1995-01-01

    Different concepts for the interim storage of spent fuel arising from operation of a NPP are discussed. We considered at reactor as well as away from reactor storage options. Included are enhancements of existing storage capabilities and construction of a new wet or dry storage facility. (author)

  8. Vacuum storage of yellow-poplar pollen

    Science.gov (United States)

    James R. Wilcox

    1966-01-01

    Vacuum-drying, followed by storage in vacuo or in an inert gas, is effective for storing pollen of many species. It permits storage at room environments without rigid controls of either temperature or humidity, an advantage that becomes paramount during long-distance transfers of pollen when critical storage conditions are impossible to maintain. In...

  9. The iron content and ferritin contribution in fresh, dried, and toasted nori, Pyropia yezoensis.

    Science.gov (United States)

    Masuda, Taro; Yamamoto, Ami; Toyohara, Haruhiko

    2015-01-01

    Iron is one of the essential trace elements for humans. In this study, the iron contents in fresh, dried, and toasted nori (Pyropia yezoensis) were analyzed. The mean iron content of fresh, dried, and toasted nori were 19.0, 22.6, and 26.2 mg/100 g (dry weight), respectively. These values were superior to other food of plant origin. Furthermore, most of the iron in nori was maintained during processing, such as washing, drying, and toasting. Then, the form of iron in fresh, dried, and toasted nori was analyzed. As a result, an iron storage protein ferritin contributed to iron storage in raw and dried nori, although the precise rate of its contribution is yet to be determined, while ferritin protein cage was degraded in the toasted nori. It is the first report that verified the ferritin contribution to iron storage in such edible macroalgae with commercial importance.

  10. Accelerated storage testing of freeze-dried Pseudomonas ...

    African Journals Online (AJOL)

    Erika-Chris

    Full Length Research Paper ... was possible to compare rate constants of survival for the freeze-dried P. fluorescens ... studying and predicting the survival loss rate of the ... Erlenmeyer flask containing 3000 ml King B medium. ... The strain was grown in 20 L bioreactor (Biolafite) containing 15 L .... fermented banana media.

  11. Spent Fuel Drying System Test Results (Dry-Run in Preparation for Run 8)

    International Nuclear Information System (INIS)

    Oliver, B.M.; Klinger, G.S.; Abrefah, J.; Marschman, S.C.; MacFarlan, P.J.; Ritter, G.A.

    1999-01-01

    The water-filled K-Basins in the Hanford 100 Area have been used to store N-Reactor spent nuclear fuel (SNF) since the 1970s. Because some leaks in the basin have been detected and some of the fuel is breached due to handling damage and corrosion, efforts are underway to remove the fuel elements from wet storage. An Integrated Process Strategy (IPS) has been developed to package, dry, transport, and store these metallic uranium fuel elements in an interim storage facility on the Hanford Site (WHC 1995). Information required to support the development of the drying processes, and the required safety analyses, is being obtained from characterization tests conducted on fuel elements removed from the K-Basins. A series of whole element drying tests (reported in separate documents, see Section 7.0) have been conducted by Pacific Northwest National Laboratory (PNNL)(a)on several intact and damaged fuel elements recovered from both the K-East and K-West Basins. This report documents the results of a test ''dry-run'' conducted prior to the eighth and last of those tests, which was conducted on an N-Reactor outer fuel element removed from K-West canister6513U. The system used for the dry-run test was the Whole Element Furnace Testing System, described in Section 2.0, located in the Postirradiation Testing Laboratory (PTL, 327 Building). The test conditions and methodologies are given in Section 3.0. The experimental results are provided in Section 4.0 and discussed Section 5.0

  12. Correlation of the levels of glycosaminoglycans between urine and dried urine in filter paper samples and their stability over time under different storage temperatures.

    Science.gov (United States)

    Breier, Ana Carolina; Cé, Jaqueline; Coelho, Janice Carneiro

    2014-06-10

    Mucopolysaccharidoses (MPSs) are a group of lysosomal storage diseases caused by the deficiency/absence of enzymes which catalyze the degradation of glycosaminoglycans (GAGs). The use of biological samples dried on filter paper has been increasing because it makes it easy to ship them to reference laboratories. Urinary GAGs are the main biomarkers of MPS and, thus, we studied the correlations of determinations to GAGs and creatinine, as well as compared the GAGs' profile on electrophoresis, between urine and dried urine in filter paper (DUFP) samples. We also assessed the GAG stability over time under different storage temperatures. We quantified the GAG concentration in both sample types and compared the results by Pearson correlation. The results were very similar, with r=0.97 for creatinine and with r=0.94 and r=0.98 for GAGs for controls and patients, respectively, with similar electrophoretic profiles. The GAG stability in DUFP was up to 30days at -20, 4, and 25°C and up to 21days at 37°C. Our proposal assessed urinary GAGs in DUFP and concluded that these samples can be used in the investigation of MPS, replacing urine samples in neonatal screening and monitoring of therapies, due to ease of transportation and storage. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effects of drying method, storage period and carbon: nitrogen ratio ...

    African Journals Online (AJOL)

    Taghwo

    2012-12-03

    Dec 3, 2012 ... African Journal of Environmental Science and Technology Vol. 6(12), pp. .... Drying method 2 (method 2) involved air drying field- fresh soil ... then packed in polyethylene bags and stored at -10°C until inorganic N extraction ...

  14. Fuel performance in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-11-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). A variety of different types of fuels have been stored there since the 1950's prior to reprocessing for uranium recovery. In April of 1992, the DOE decided to end fuel reprocessing, changing the mission at ICPP. Fuel integrity in storage is now viewed as long term until final disposition is defined and implemented. Thus, the condition of fuel and storage equipment is being closely monitored and evaluated to ensure continued safe storage. There are four main areas of fuel storage at ICPP: an original underwater storage facility (CPP-603), a modern underwater storage facility (CPP-666), and two dry fuel storage facilities. The fuels in storage are from the US Navy, DOE (and its predecessors the Energy Research and Development Administration and the Atomic Energy Commission), and other research programs. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels. In the underwater storage basins, fuels are clad with stainless steel, zirconium, and aluminum. Also included in the basin inventory is canned scrap material. The dry fuel storage contains primarily graphite and aluminum type fuels. A total of 55 different fuel types are currently stored at the Idaho Chemical Processing Plant. The corrosion resistance of the barrier material is of primary concern in evaluating the integrity of the fuel in long term water storage. The barrier material is either the fuel cladding (if not canned) or the can material

  15. Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke Forest, Kenya.

    Science.gov (United States)

    Glenday, Julia

    2008-07-01

    Concerns about rapid tropical deforestation, and its contribution to rising atmospheric concentrations of greenhouse gases, increase the importance of monitoring terrestrial carbon storage in changing landscapes. Emerging markets for carbon emission offsets may offer developing nations needed incentives for reforestation, rehabilitation, and avoided deforestation. However, relatively little empirical data exists regarding carbon storage in African tropical forests, particularly for those in arid or semi-arid regions. Kenya's 416 km(2) Arabuko-Sokoke Forest (ASF) is the largest remaining fragment of East African coastal dry forest and is considered a global biodiversity hotspot (Myers et al. 2000), but has been significantly altered by past commercial logging and ongoing extraction. Forest carbon storage for ASF was estimated using allometric equations for tree biomass, destructive techniques for litter and herbaceous vegetation biomass, and spectroscopy for soils. Satellite imagery was used to assess land cover changes from 1992 to 2004. Forest and thicket types (Cynometra webberi dominated, Brachystegia spiciformis dominated, and mixed species forest) had carbon densities ranging from 58 to 94 Mg C/ha. The ASF area supported a 2.8-3.0 Tg C carbon stock. Although total forested area in ASF did not change over the analyzed time period, ongoing disturbances, quantified by the basal area of cut tree stumps per sample plot, correlated with decreased carbon densities. Madunguni Forest, an adjoining forest patch, lost 86% of its forest cover and at least 76% of its terrestrial carbon stock in the time period. Improved management of wood harvesting in ASF and rehabilitation of Madunguni Forest could substantially increase terrestrial carbon sequestration in the region.

  16. Risks attached to container- and bunker-storage of nuclear waste

    International Nuclear Information System (INIS)

    Jager, D. de

    1987-12-01

    The results are presented of a literature study into the risks attached to the two dry-storage options selected by the Dutch Central Organization For Radioactive Waste (COVRA): the container- and the bunker-storage for irradiated nuclear-fuel elements and nuclear waste. Since the COVRA does not make it clear how these concepts should have to be realized, the experiences abroad with dry interim-storage are considered. In particular the Castor-container-storage and the bunker storage proposed in the committee MINSK (Possibilities of Interim-storage in the Netherlands of Irradiated nuclear-fuel elements and Nuclear waste) are studied further in depth. The committee MINSK has performed a study into the technical realizability of various interim-storage facilities, among which a storage in bunkers. (author). 75 refs.; 14 figs.; 16 tabs

  17. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability.

    Science.gov (United States)

    Dadparvar, Miriam; Wagner, Sylvia; Wien, Sascha; Worek, Franz; von Briesen, Hagen; Kreuter, Jörg

    2014-10-01

    Severe intoxications with organophosphates require the immediate administration of atropine in combination with acetyl cholinesterase (AChE) reactivators such as HI-6. Although this therapy regimen enables the treatment of peripheral symptoms, the blood-brain barrier (BBB) restricts the access of the hydrophilic antidotes to the central nervous system which could lead to a fatal respiratory arrest. Therefore, HI-6-loaded albumin nanoparticles were previously developed to enhance the transport across this barrier and were able to reactivate organophosphate-(OP)-inhibited AChE in an in vitro BBB model. Since HI-6 is known to be moisture-sensitive, the feasibility of freeze-drying of the HI-6-loaded nanoparticles was investigated in the present study using different cryo- and lyoprotectants at different concentrations. Trehalose and sucrose (3%, w/v)-containing formulations were superior to mannitol concerning the physicochemical parameters of the nanoparticles whereas trehalose-containing samples were subject of a prolonged storage stability study at temperatures between -20°C and +40°C for predetermined time intervals. Shelf-life computations of the freeze-dried HI-6 nanoparticle formulations revealed a shelf-life time of 18 months when stored at -20°C. The formulations' efficacy was proven in vitro by reactivation of OP-inhibited AChE after transport over a porcine brain capillary endothelial cell layer model. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Introducing Systematic Aging Management for Interim Storage Facilities in Germany

    International Nuclear Information System (INIS)

    Spieth-Achtnich, Angelika; Schmidt, Gerhard

    2014-01-01

    In Germany twelve at-reactor and three central (away from reactor) dry storage facilities are in operation, where the fuel is stored in combined transport-and-storage casks. The safety of the storage casks and facilities has been approved and is licensed for up to 40 years operating time. If the availability of a final disposal facility for the stored wastes (spent fuel and high-level wastes from reprocessing) will be further delayed the renewal of the licenses can become necessary in future. Since 2001 Germany had a regulatory guideline for at-reactor dry interim storage of spent fuel. In this guideline some elements of ageing were implemented, but no systematic approach was made for a state-of-the-art ageing management. Currently the guideline is updated to include all kind of storage facilities (central storages as well) and all kinds of high level waste (also waste from reprocessing). Draft versions of the update are under discussion. In these drafts a systematic ageing management is seen as an instrument to upgrade the available technical knowledge base for possible later regulatory decisions, should it be necessary to prolong storage periods to beyond the currently approved limits. It is further recognized as an instrument to prevent from possible and currently unrecognized ageing mechanisms. The generation of information on ageing can be an important basis for the necessary safety-relevant verifications for long term storage. For the first time, the demands for a systematic monitoring of ageing processes for all safety-related components of the storage system are described. In addition, for inaccessible container components such as the seal system, the neutron shielding, the baskets and the waste inventory, the development of a monitoring program is recommended. The working draft to the revised guideline also contains recommendations on non-technical ageing issues such as the long-term preservation of knowledge, long term personnel planning and long term

  19. Management and storage of spent fuel from CEA research reactors

    International Nuclear Information System (INIS)

    Merchie, F.

    1996-01-01

    CEA research reactors and their interim spent fuel storage facilities are described. Long-term solutions for spent fuel storage problems, involving wet storage at PEGASE or dry storage at CASCAD, are outlined in some detail. (author)

  20. The Effect of Formulation on Spray Dried Sabin Inactivated Polio Vaccine.

    Science.gov (United States)

    Kanojia, Gaurav; Ten Have, Rimko; Brugmans, Debbie; Soema, Peter C; Frijlink, Henderik W; Amorij, Jean-Pierre; Kersten, Gideon

    2018-05-19

    The objective of this study was to develop a stable spray dried formulation, containing the three serotypes of Sabin inactivated polio vaccine (sIPV), aiming for minimal loss of native conformation (D-antigen) during drying and subsequent storage. The influence of atomization and drying stress during spray drying on trivalent sIPV was investigated. This was followed by excipient screening, in which monovalent sIPV was formulated and spray dried. Excipient combinations and concentrations were tailored to maximize both the antigen recovery of respective sIPV serotypes after spray drying and storage (T= 40°C and t= 7 days). Furthermore, a fractional factorial design was developed around the most promising formulations to elucidate the contribution of each excipient in stabilizing D-antigen during drying. Serotype 1 and 2 could be dried with 98 % and 97 % recovery, respectively. When subsequently stored at 40°C for 7 days, the D-antigenicity of serotype 1 was fully retained. For serotype 2 the D-antigenicity dropped to 71 %. Serotype 3 was more challenging to stabilize and a recovery of 56 % was attained after drying, followed by a further loss of 37 % after storage at 40°C for 7 days. Further studies using a design of experiments approach demonstrated that trehalose/monosodium glutamate and maltodextrin/arginine combinations were crucial for stabilizing serotype 1 and 2, respectively. For sIPV serotype 3, the best formulation contained Medium199, glutathione and maltodextrin. For the trivalent vaccine it is therefore probably necessary to spray dry the different serotypes separately and mix the dry powders afterwards to obtain the trivalent vaccine. Copyright © 2018. Published by Elsevier B.V.