WorldWideScience

Sample records for dry granular media

  1. Locomotion and drag in wet and dry granular media

    Science.gov (United States)

    Goldman, Daniel; Kuckuk, Robyn; Sharpe, Sarah

    2015-03-01

    Many animals move within substrates such as soil and dry sand; the resistive properties of such granular materials (GM) can depend on water content and compaction, but little is known about how such parameters affect locomotion or the relevant physics of drag and penetration. We developed a system to create homogeneous wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus) a desert-generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (~ 30 seconds) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics (and ``slip'') were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ~ 3 × more resistive than dry GM, suggesting that during burial the lizard operated near its maximum force producing capability and was thus constrained by environmental properties. work supported by NSF PoLS.

  2. Continuum modeling of projectile impact and penetration in dry granular media

    Science.gov (United States)

    Dunatunga, Sachith; Kamrin, Ken

    2017-03-01

    Modeling of impact into granular substrates is a topic of growing interest over the last decade. We present a fully continuum approach for this problem, which is shown to capture an array of experimentally observed behavior with regard to the intruder penetration dynamics as well as the flow and stress response of the granular media. The intruder is modeled as a stiff elastic body and the dry granular bulk is modeled using a 'trans-phase' constitutive relation. This relation has an elasto-viscoplastic response with pressure- and rate-sensitive yield behavior given by the μ (I) inertial rheology when the granular free volume is below a critical value. Above this critical value, the material is deemed to separate and is treated as a disconnected, stress-free medium. The Material Point Method is used to implement the impact problem numerically. Validations are conducted against a wide set of experimental data with a common granular material, which allows use of a single model calibration to test the agreement. In particular, continuum simulations of projectile impact with different shaped intruders and different impact energies show good agreement with experiments regarding of time-of-flight, penetration depth, and Poncelet drag force coefficients. Simultaneously, good agreement with experiments is found regarding the response of the granular media during impact, such as the pressure wave propagation process during the initial stage of impact, the flow fields that develop under the moving intruder, and the free-surface dynamics.

  3. Simulations of Granular Media

    Science.gov (United States)

    Herrmann, H. J.; Müller, M.

    For the last ten years there has been an enormous progress in the simulation of granular media like sand or powders. These simulations consist in simulating trajectories of each particle individually. Essentially one has to solve the Newton's equations including the effects of Coulomb friction and the physics occuring at a collision. But the details of the trajectories are not important for the collective behaviour. Therefore simplifications are introduced on the smallest scales. I will introduce various methods like molecular dynamics that are used to simulate large amounts of particles (over 109). Some of these medhods are based on the exploitation of parallelisation and metacomputing. Other approaches are more stochastic (DSMC Direct Simulation Monte Carlo) which simplify the calculation of collisions, positions and collision times. Very successful has been also the use of cellular automata which have been able to predict details such as the logarithmic tale of sand heaps. I will also discuss numerical techniques used for the surrounding fluid. This can be water in the case of sedimentation or air when one studies the formation of dunes in the desert. The calculation of velocity and pressure field of the fluid are done using multigrid techniques on parallel computers. We will compare the performance of the various techniques and show some benchmarks on the dependence on the size of the system, the density of particles and the number of processors used.

  4. Aerofractures in Confined Granular Media

    Science.gov (United States)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  5. Unified rheology of vibro-fluidized dry granular media: From slow dense flows to fast gas-like regimes

    Science.gov (United States)

    Gnoli, Andrea; Lasanta, Antonio; Sarracino, Alessandro; Puglisi, Andrea

    2016-01-01

    Granular media take on great importance in industry and geophysics, posing a severe challenge to materials science. Their response properties elude known soft rheological models, even when the yield-stress discontinuity is blurred by vibro-fluidization. Here we propose a broad rheological scenario where average stress sums up a frictional contribution, generalizing conventional μ(I)-rheology, and a kinetic collisional term dominating at fast fluidization. Our conjecture fairly describes a wide series of experiments in a vibrofluidized vane setup, whose phenomenology includes velocity weakening, shear thinning, a discontinuous thinning transition, and gaseous shear thickening. The employed setup gives access to dynamic fluctuations, which exhibit a broad range of timescales. In the slow dense regime the frequency of cage-opening increases with stress and enhances, with respect to μ(I)-rheology, the decrease of viscosity. Diffusivity is exponential in the shear stress in both thinning and thickening regimes, with a huge growth near the transition. PMID:27924928

  6. Inherent Segregation in Granular Media

    Directory of Open Access Journals (Sweden)

    Sánchez-Guzmán J.

    2011-10-01

    Full Text Available A study of the inherent segregation within granular media due to the relative size of the different particles is presented. A numerical model is used to simulate granular structures. For both simulation and granular structures evaluations, probability theory is widely used. Particles are idealized by disks (2D model and spheres (3D model. Strictly uniform grain size materials, bimodal (two particle sizes and continuous are simulated. Two variables representing segregation and allowing appreciating the grain-size parameters effects are considered. In uniform materials, the presence of spontaneous structuring is observed. In bimodal and continuous materials, inherent segregation mainly depends on the ratio between maximum and minimum diameters of particle. Some practical implications of inherent segregation in geotechnical problems and other disciplines are remarked.

  7. Local rheology of suspensions and dry granular materials

    NARCIS (Netherlands)

    de Cagny, H.; Fall, A.; Denn, M.M.; Bonn, D.

    2015-01-01

    The flow of dry and wet granular media is investigated in a Couette geometry using magnetic resonance imaging in order to test the applicability of the "fluidity model" for nonlocality in these materials. Local volume fraction measurements show that the systems become heterogeneous during flow. We f

  8. Bipedal locomotion in granular media

    Science.gov (United States)

    Kingsbury, Mark; Zhang, Tingnan; Goldman, Daniel

    Bipedal walking, locomotion characterized by alternating swing and double support phase, is well studied on ground where feet do not penetrate the substrate. On granular media like sand however, intrusion and extrusion phases also occur. In these phases, relative motion of the two feet requires that one or both feet slip through the material, degrading performance. To study walking in these phases, we designed and studied a planarized bipedal robot (1.6 kg, 42 cm) that walked in a fluidized bed of poppy seeds. We also simulated the robot in a multibody software environment (Chrono) using granular resistive force theory (RFT) to calculate foot forces. In experiment and simulation, the robot experienced slip during the intrusion phase, with the experiment presenting additional slip due to motor control error during the double support phase. This exaggerated slip gave insight (through analysis of ground reaction forces in simulation) into how slip occurs when relative motion exists between the two feet in the granular media, where the foot with higher relative drag forces (from its instantaneous orientation, rotation, relative direction of motion, and depth) remains stationary. With this relationship, we generated walking gaits for the robot to walk with minimal slip.

  9. Legged-locomotion on inclined granular media

    Science.gov (United States)

    Rieser, Jennifer; Qian, Feifei; Goldman, Daniel

    Animals traverse a wide variety of complex environments, including situations in which the ground beneath them can yield (e.g. dry granular media in desert dunes). Locomotion strategies that are effective on level granular media can fail when traversing a granular slope. Taking inspiration from successful legged-locomotors in sandy, uneven settings, we explore the ability of a small (15 cm long, 100 g), six-c-shaped legged robot to run uphill in a bed of 1-mm-diameter poppy seeds, using an alternating tripod gait. Our fully automated experiments reveal that locomotor performance can depend sensitively on both environmental parameters such as the inclination angle and volume fraction of the substrate, and robot morphology and control parameters like leg shape, step frequency, and the friction between the feet of the robot and the substrate. We assess performance by measuring the average speed of the robot, and we find that the robot tends to perform better at higher step frequency and lower inclination angles, and that average speed decreases more rapidly with increasing angle for higher step frequency.

  10. Rainwater Channelization and Infiltration in Granular Media

    Science.gov (United States)

    Cejas, Cesare; Wei, Yuli; Barrois, Remi; Durian, Douglas; Dreyfus, Remi; Compass Team

    2013-03-01

    We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-2D experimental set-up composed of a random close packing of mono-disperse glass beads. We determine effects of grain diameter and surface wetting properties on the formation and infiltration of water channels. For hydrophilic granular media, rainwater initially infiltrates a shallow top layer of soil creating a uniform horizontal wetting front before instabilities occur and grow to form water channels. For hydrophobic media, rainwater ponds on the soil surface rather than infiltrates and water channels may still occur at a later time when the hydraulic pressure of the ponding water exceeds the capillary repellency of the soil. We probe the kinetics of the fingering instabilities that serve as precursors for the growth and drainage of water channels. We also examine the effects of several different methods on improving rainwater channelization such as varying the level of pre-saturation, modifying the soil surface flatness, and adding superabsorbent hydrogel particles.

  11. Characteristics of undulatory locomotion in granular media

    Science.gov (United States)

    Peng, Zhiwei; Pak, On Shun; Elfring, Gwynn J.

    2016-03-01

    Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swimmer. We also find that, similar to Lighthill's results using resistive force theory in viscous fluids, the sawtooth swimmer is the optimal waveform for propulsion speed at a given power consumption in granular media. The results complement our understanding of undulatory locomotion and provide insights into the effective design of locomotive systems in granular media.

  12. Characteristics of undulatory locomotion in granular media

    CERN Document Server

    Peng, Zhiwei; Elfring, Gwynn J

    2015-01-01

    Undulatory locomotion is ubiquitous in nature and observed in different media, from the swimming of flagellated microorganisms in biological fluids, to the slithering of snakes on land, or the locomotion of sandfish lizards in sand. Despite the similarity in the undulating pattern, the swimming characteristics depend on the rheological properties of different media. Analysis of locomotion in granular materials is relatively less developed compared with fluids partially due to a lack of validated force models but recently a resistive force theory in granular media has been proposed and shown useful in studying the locomotion of a sand-swimming lizard. Here we employ the proposed model to investigate the swimming characteristics of a slender filament, of both finite and infinite length, undulating in a granular medium and compare the results with swimming in viscous fluids. In particular, we characterize the effects of drifting and pitching in terms of propulsion speed and efficiency for a finite sinusoidal swi...

  13. Contact micromechanics in granular media with clay

    Energy Technology Data Exchange (ETDEWEB)

    Ita, Stacey Leigh [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Many granular materials, including sedimentary rocks and soils, contain clay particles in the pores, grain contacts, or matrix. The amount and location of the clays and fluids can influence the mechanical and hydraulic properties of the granular material. This research investigated the mechanical effects of clay at grain-to-grain contacts in the presence of different fluids. Laboratory seismic wave propagation tests were conducted at ultrasonic frequencies using spherical glass beads coated with Montmorillonite clay (SWy-1) onto which different fluids were adsorbed. For all bead samples, seismic velocity increased and attenuation decreased as the contact stiffnesses increased with increasing stress demonstrating that grain contacts control seismic transmission in poorly consolidated and unconsolidated granular material. Coating the beads with clay added stiffness and introduced viscosity to the mechanical contact properties that increased the velocity and attenuation of the propagating seismic wave. Clay-fluid interactions were studied by allowing the clay coating to absorb water, ethyl alcohol, and hexadecane. Increasing water amounts initially increased seismic attenuation due to clay swelling at the contacts. Attenuation decreased for higher water amounts where the clay exceeded the plastic limit and was forced from the contact areas into the surrounding open pore space during sample consolidation. This work investigates how clay located at grain contacts affects the micromechanical, particularly seismic, behavior of granular materials. The need for this work is shown by a review of the effects of clays on seismic wave propagation, laboratory measurements of attenuation in granular media, and proposed mechanisms for attenuation in granular media.

  14. Ripples and Shear Bands in Plowed Granular Media

    CERN Document Server

    Gravish, Nick; Goldman, Daniel I

    2009-01-01

    Monodisperse packings of dry, air-fluidized granular media typically exist between volume fractions from $\\Phi$= 0.585 to 0.64. We demonstrate that the dynamics of granular drag are sensitive to volume fraction $\\Phi$ and their exists a transition in the drag force and material deformation from smooth to oscillatory at a critical volume fraction $\\Phi_{c}=0.605$. By dragging a submerged steel plate (3.81 cm width, 6.98 cm depth) through $300 \\mu m$ glass beads prepared at volume fractions between 0.585 to 0.635 we find that below $\\Phi_{c}$ the media deformation is smooth and non-localized while above $\\Phi_{c}$ media fails along distinct shear bands. At high $\\Phi$ the generation of these shear bands is periodic resulting in the ripples on the surface. Work funded by The Burroughs Wellcome Fund and the Army Research Lab MAST CTA

  15. Pneumatic fractures in confined granular media

    Science.gov (United States)

    Eriksen, Fredrik K.; Toussaint, Renaud; Turquet, Antoine L.; Mâløy, Knut J.; Flekkøy, Eirik G.

    2017-06-01

    We perform experiments where air is injected at a constant overpressure Pin, ranging from 5 to 250 kPa, into a dry granular medium confined within a horizontal linear Hele-Shaw cell. The setup allows us to explore compacted configurations by preventing decompaction at the outer boundary, i.e., the cell outlet has a semipermeable filter such that beads are stopped while air can pass. We study the emerging patterns and dynamic growth of channels in the granular media due to fluid flow, by analyzing images captured with a high speed camera (1000 images/s). We identify four qualitatively different flow regimes, depending on the imposed overpressure, ranging from no channel formation for Pin below 10 kPa, to large thick channels formed by erosion and fingers merging for high Pin around 200 kPa. The flow regimes where channels form are characterized by typical finger thickness, final depth into the medium, and growth dynamics. The shape of the finger tips during growth is studied by looking at the finger width w as function of distance d from the tip. The tip profile is found to follow w (d ) ∝dβ , where β =0.68 is a typical value for all experiments, also over time. This indicates a singularity in the curvature d2d /d w2˜κ ˜d1 -2 β , but not of the slope d w /d d ˜dβ -1 , i.e., more rounded tips rather than pointy cusps, as they would be for the case β >1 . For increasing Pin, the channels generally grow faster and deeper into the medium. We show that the channel length along the flow direction has a linear growth with time initially, followed by a power-law decay of growth velocity with time as the channel approaches its final length. A closer look reveals that the initial growth velocity v0 is found to scale with injection pressure as v0∝Pin3/2 , while at a critical time tc there is a cross-over to the behavior v (t ) ∝t-α , where α is close to 2.5 for all experiments. Finally, we explore the fractal dimension of the fully developed patterns. For

  16. Origin of Rigidity in Dry Granular Solids

    Science.gov (United States)

    Sarkar, Sumantra; Bi, Dapeng; Zhang, Jie; Behringer, R. P.; Chakraborty, Bulbul

    2013-08-01

    Solids are distinguished from fluids by their ability to resist shear. In traditional solids, the resistance to shear is associated with the emergence of broken translational symmetry as exhibited by a nonuniform density pattern. In this work, we focus on the emergence of shear rigidity in a class of solids where this paradigm is challenged. Dry granular materials have no energetically or entropically preferred density modulations. We show that, in contrast to traditional solids, the emergence of shear rigidity in these granular solids is a collective process, which is controlled solely by boundary forces, the constraints of force and torque balance, and the positivity of the contact forces. We develop a theoretical framework based on these constraints, which connects rigidity to broken translational symmetry in the space of forces, not positions of grains. We apply our theory to experimentally generated shear-jammed states and show that these states are indeed characterized by a persistent, non-uniform density modulation in force space, which emerges at the shear-jamming transition.

  17. Robophysical study of jumping dynamics on granular media

    Science.gov (United States)

    Aguilar, Jeffrey; Goldman, Daniel I.

    2016-03-01

    Characterizing forces on deformable objects intruding into sand and soil requires understanding the solid- and fluid-like responses of such substrates and their effect on the state of the object. The most detailed studies of intrusion in dry granular media have revealed that interactions of fixed-shape objects during free impact (for example, cannonballs) and forced slow penetration can be described by hydrostatic- and hydrodynamic-like forces. Here we investigate a new class of granular interactions: rapid intrusions by objects that change shape (self-deform) through passive and active means. Systematic studies of a simple spring-mass robot jumping on dry granular media reveal that jumping performance is explained by an interplay of nonlinear frictional and hydrodynamic drag as well as induced added mass (unaccounted by traditional intrusion models) characterized by a rapidly solidified region of grains accelerated by the foot. A model incorporating these dynamics reveals that added mass degrades the performance of certain self-deformations owing to a shift in optimal timing during push-off. Our systematic robophysical experiment reveals both new soft-matter physics and principles for robotic self-deformation and control, which together provide principles of movement in deformable terrestrial environments.

  18. Seismic wave propagation in granular media

    Science.gov (United States)

    Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion

    2016-10-01

    Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in

  19. Force transmission in cohesive granular media

    Science.gov (United States)

    Radjai, Farhang; Topin, Vincent; Richefeu, Vincent; Voivret, Charles; Delenne, Jean-Yves; Azéma, Emilien; El Youssoufi, Said

    2010-05-01

    We use numerical simulations to investigate force and stress transmission in cohesive granular media covering a wide class of materials encountered in nature and industrial processing. The cohesion results either from capillary bridges between particles or from the presence of a solid binding matrix filling fully or partially the interstitial space. The liquid bonding is treated by implementing a capillary force law within a debonding distance between particles and simulated by the discrete element method. The solid binding matrix is treated by means of the Lattice Element Method (LEM) based on a lattice-type discretization of the particles and matrix. Our data indicate that the exponential fall-off of strong compressive forces is a generic feature of both cohesive and noncohesive granular media both for liquid and solid bonding. The tensile forces exhibit a similar decreasing exponential distribution, suggesting that this form basically reflects granular disorder. This is consistent with the finding that not only the contact forces but also the stress components in the bulk of the particles and matrix, accessible from LEM simulations in the case of solid bonding, show an exponential fall-off. We also find that the distribution of weak compressive forces is sensitive to packing anisotropy, particle shape and particle size distribution. In the case of wet packings, we analyze the self-equilibrated forces induced by liquid bonds and show that the positive and negative particle pressures form a bi-percolating structure.

  20. Structure and cluster formation in granular media

    Indian Academy of Sciences (India)

    S Luding

    2005-06-01

    The two most important phenomena at the basis of granular media are excluded volume and dissipation. The former is captured by the hard sphere model and is responsible for, e.g., crystallization, the latter leads to interesting structures like clusters in non-equilibrium dynamical, freely cooling states. The freely cooling system is examined concerning the energy decay and the cluster evolution in time. Corrections for crystallization and multi-particle contacts are provided, which become more and more important with increasing density.

  1. Particle deposition in granular media. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Tien, C.

    1980-01-01

    Studies performed under Contract DE-AC02-79-ER10386.A000 Particle Deposition in Granular Media during the period June 1, 1979 to date are described. These studies include the design and construction of apparatus for filtration experiments and a complete trajectory analysis for the calculation of the initial collection efficiency of granular media. The results of the trajectory analysis have been used to develop a generalized correlation of the collection efficiency.

  2. Self-burrowing seeds: drag reduction in granular media

    Science.gov (United States)

    Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young

    2014-11-01

    We present the results of a combined experimental and theoretical investigation of drag reduction of self-burrowing seeds in granular media. In response to environmental changes in humidity, the awn (a tail-like appendage of seed) of Pelargonium carnosum exhibits coiling-uncoiling deformation which induces the thrust and rotary motions of the head of the seed against the surface of the soil. Using various sizes of glass beads that mimic the granular soil, we measure the thrust forces required for the seed of Pelargonium carnosum to penetrate into granular media with and without rotation. Our quantitative measurements show that the rotation of the seed remarkably reduces the granular drag as compared to the drag against the non-spinning seed. This leads us to conclude that the hygroscopically active awns of Pelargonium carnosum enables its seed to dig into the relatively coarse granular soils.

  3. Martian gullies: possible formation mechanism by dry granular material..

    Science.gov (United States)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    section Some of the geomorphological features in Mars are the gullies Some theories developed tried explain its origin either by liquid water liquid carbon dioxide or flows of dry granular material We made a comparative analysis of the Martian gullies with the terrestrial ones We propose that the mechanism of formation of the gullies is as follows In winter CO 2 snow mixed with sand falls in the terrain In spring the CO 2 snow sublimate and gaseous CO 2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies By experimental work with dry granular material we simulated the development of the Martian gullies injecting air in the granular material section We present the characteristics of some terrestrial gullies forms at cold environment sited at Nevado de Toluca Volcano near Toluca City M e xico We compare them with Martian gullies choose from four different areas to target goal recognize or to distinguish to identify possible processes evolved in its formation Also we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters Finally we present results of our experimental work at laboratory with dry granular material

  4. Wave propagation and energy dissipation in viscoelastic granular media

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In terms of viscoelasticity, the relevant theory of wave in granular media is analyzed in this paper.Under the conditions of slight deformation of granules, wave equation, complex number expressions of propagation vector and attenuation vector, attenuation coefficient expressions of longitudinal wave and transverse wave,etc, are analyzed and deduced. The expressions of attenuation coefficients of viscoelastic longitudinal wave and transverse wave show that the attenuation of wave is related to frequency. The higher the frequency is, the more the attenuation is, which is tested by the laboratory experiment. In addition, the energy dissipation is related to the higher frequency wave that is absorbed by granular media. The friction amongst granular media also increase the energy dissipation. During the flowing situation the expression of transmission factor of energy shows that the granular density difference is the key factor which leads to the attenuation of vibrating energy.This has been proved by the experiment results.

  5. Biosorption of Direct Black 38 by dried anaerobic granular sludge

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The biosorption of Direct Black 38 by dried anaerobic granular sludge in a batch system under specific temperatures and initial pH was investigated.The adsorption reaction is pH dependent with higher removal at low pH.The adsorption equilibrium data fit very well with both Langmuir and Freundlich models in the concentration range of Direct Black 38 at all chosen temperatures.The adsorption parameters show that the adsorption of Direct Black 38 is an endothermic and more effective process at high temperatures.The kinetics of adsorption was found to be second order and adsorption rate constants increased with increasing temperature.Activation energy was determined as 26.8 kJ/mol for the process.This suggests that the adsorption of Direct Black 38 by dried anaerobic granular sludge is chemically controlled.

  6. Motility of small nematodes in wet granular media

    CERN Document Server

    Juarez, G; Sznitman, J; Arratia, P E

    2010-01-01

    The motility behavior of the \\textit{Caenorhabditis elegans} is investigated in wet granular medium as a function of area density ($\\phi$) and dispersity. Surprisingly, the locomotion speed increases in granular media compared to free swimming. The surrounding structure of the medium leads to enhanced undulatory propulsion due to its ability to sustain a finite shear stress and convert lateral force into forward motion. For $\\phi > 0.55$, the nematode is observed to change its gate from swimming to crawling in polydisperse media \\textit{only}. This highlights the subtle difference in local structure between media.

  7. Noise induces rare events in granular media.

    Science.gov (United States)

    Khain, Evgeniy; Sander, Leonard M

    2016-09-01

    The granular Leidenfrost effect [B. Meerson, et al., Phys. Rev. Lett. 91, 024301 (2003)PRLTAO0031-900710.1103/PhysRevLett.91.024301; P. Eshuis et al., Phys. Rev. Lett. 95, 258001 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.258001] is the levitation of a mass of granular matter when a wall below the grains is vibrated, giving rise to a hot granular gas below the cluster. We find by simulation that for a range of parameters the system is bistable: the levitated cluster can occasionally break and give rise to two clusters and a hot granular gas above and below. We use techniques from the theory of rare events to compute the mean transition time for breaking to occur. This requires the introduction of a two-component reaction coordinate.

  8. A depth integrated model for dry geophysical granular flows

    Science.gov (United States)

    Rossi, Giulia; Armanini, Aronne

    2017-04-01

    Granular flows are rapid to very rapid flows, made up of dry sediment (rock and snow avalanches) or mixture of water and sediment (debris flows). They are among the most dangerous and destructive natural phenomena and the definition of run-out scenarios for risk assessment has received wide interest in the last decades. Nowadays there are many urbanized mountain areas affected by these phenomena, which cause several properties damages and loss of lives. The numerical simulation is a fundamental step to analyze these phenomena and define the runout scenarios. For this reason, a depth-integrated model is developed to analyze the case of dry granular flows, representative of snow avalanches or rock avalanches. The model consists of a two-phase mathematical description of the flow motion: it is similar to the solid transport equations but substantially different since there is no water in this case. A set of partial differential equations is obtained and written in the form of a hyperbolic system. The numerical solution is computed through a path-conservative SPH (Smoothed Particles Hydrodynamics) scheme, in the two dimensional case. Appropriate closure relations are necessary, with respect to the concentration C and the shear stress at the bed τ0. In first approximation, it is possible to derive a formulation for the two closure relations from appropriate rheological models (Bagnold theory and dense gas analogy). The model parameters are determined by means of laboratory tests on dry granular material and the effectiveness of the closure relation verified through a comparison with the experimental results. In particular, the experimental investigation aims to reproduce two case of study for dry granular material: the dam-break test problem and the stationary motion with changes in planimetry. The experiments are carried out in the Hydraulic Laboratory of the University of Trento, by means of channels with variable slope and variable shape. The mathematical model will

  9. A Terradynamics of Legged Locomotion on Granular Media

    CERN Document Server

    Li, Chen; Goldman, Daniel I; 10.1126/science.1229163

    2013-01-01

    The theories of aero- and hydrodynamics predict animal movement and device design in air and water through the computation of lift, drag, and thrust forces. Although models of terrestrial legged locomotion have focused on interactions with solid ground, many animals move on substrates that flow in response to intrusion. However, locomotor-ground interaction models on such flowable ground are often unavailable. We developed a force model for arbitrarily-shaped legs and bodies moving freely in granular media, and used this "terradynamics" to predict a small legged robot's locomotion on granular media using various leg shapes and stride frequencies. Our study reveals a complex but generic dependence of stresses in granular media on intruder depth, orientation, and movement direction and gives insight into the effects of leg morphology and kinematics on movement.

  10. Sound scattering in dense granular media

    Institute of Scientific and Technical Information of China (English)

    JIA XiaoPing; LAURENT J; KHIDAS Y; LANGLOIS V

    2009-01-01

    The sound propagation in a dense granular medium is basically characterized by the ratio of wave-length to the grain size. Two types of wave transport are distinguished: one corresponds to coherent waves in the long wavelength limit, the other to short-wavelength scattered waves by the inhomoge-neous contact force networks. These multiply scattered elastic waves are shown to exhibit a diffusive characteristics of transport over long distances of propagation. Determination of the transport mean free path l* and the inelastic absorption (Q~(-1)) allows the inference of the structural properties of the material such as the heterogeneity and internal dissipation. The relevance of our experiments for seismological applications is discussed. Moreover, we apply the correlation technique of the configu-ration-specific sound scattering to monitoring the dynamic behaviour of the granular medium (irre-versible rearrangements) under strong vibration, shearing and thermal cycling, respectively.

  11. Velocity Fluctuations in Electrostatically Driven Granular Media

    OpenAIRE

    Aranson, I. S.; Olafsen, J. S.

    2001-01-01

    We study experimentally the particle velocity fluctuations in an electrostatically driven dilute granular gas. The experimentally obtained velocity distribution functions have strong deviations from Maxwellian form in a wide range of parameters. We have found that the tails of the distribution functions are consistent with a stretched exponential law with typical exponents of the order 3/2. Molecular dynamic simulations shows qualitative agreement with experimental data. Our results suggest t...

  12. Flow of Dense Granular Media; A Peculiar Liquid

    Science.gov (United States)

    Pouliquen, Olivier

    2007-11-01

    Rice flowing out of a silo, rocks tumbling down a slope, sand avalanching on a dune, are examples of simple granular flows. Their description still represents a challenge due to the lack of constitutive laws able to describe the rich phenomenology observed with granular materials. However, the numerous experiments and simulations carried out during the last ten years have given keys for a better understanding. This talk will review the general properties of granular flows, before focusing on the dense flow regime where granular media flow like a liquid. In this regime, simple constitutive laws can be proposed, in which the granular fluid is described as a peculiar visco-plastic liquid. This talk will show that this approach gives quantitative predictions in several configurations, providing a relevant framework for adressing granular hydrodynamic problems. The second part of this presentation will discuss the limits of this approach, the important open problems, and the consequences of this development for the more complex case of mixture of grains and fluid. This work has been done with Pierre Jop, Yoel Forterre and Mickael Paihla.

  13. Collapse of granular media subjected to wetting

    Directory of Open Access Journals (Sweden)

    El Korchi Fatima Zahra

    2017-01-01

    Full Text Available This paper focuses on the collapse of granular materials subjected to wetting action. For soils, the collapse potential depends on several parameters such as liquid limit, matric suction, compactness, initial water content and the amount of fine particles. The effect of grain size, which plays a key role in the rearrangement of grains, remains little studied and poorly understood. To investigate the capillary origin of the collapse phenomenon, we present an experimental study on macroscopic and local scales. Our results show the effect of grain size and water content on collapse.

  14. Lizard locomotion in heterogeneous granular media

    Science.gov (United States)

    Schiebel, Perrin; Goldman, Daniel

    2014-03-01

    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  15. Shape of impact craters in granular media.

    Science.gov (United States)

    de Vet, Simon J; de Bruyn, John R

    2007-10-01

    We present the results of experiments studying the shape of craters formed by the normal impact of a solid spherical projectile into a deep noncohesive granular bed at low energies. The resultant impact crater surfaces are accurately digitized using laser profilometry, allowing for the detailed investigation of the crater shape. We find that these impact craters are very nearly hyperbolic in profile. Crater radii and depths are dependent on impact energy, as well as the projectile density and size. The precise crater shape is a function of the crater aspect ratio. While the dimensions of the crater are highly dependent on the impact energy, we show that the energy required to excavate the crater is only a tiny fraction (0.1%-0.5%) of the kinetic energy of the projectile.

  16. General scaling relations for locomotion in granular media.

    Science.gov (United States)

    Slonaker, James; Motley, D Carrington; Zhang, Qiong; Townsend, Stephen; Senatore, Carmine; Iagnemma, Karl; Kamrin, Ken

    2017-05-01

    Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.

  17. Impact craters in granular media: grains against grains.

    Science.gov (United States)

    Pacheco-Vázquez, F; Ruiz-Suárez, J C

    2011-11-18

    Impact experiments in granular media are usually performed with solid projectiles that do not fragment at all. Contrastingly, we study here the morphology produced by the impact of spherical granular projectiles whose structure is utterly lost after collision. Simple and complex craters are observed, depending on the packing fraction of the balls. Their diameters D and depths z are analyzed as a function of the drop height h. We find the same power law D ∝ h(1/4) obtained with solid spheres, but a discontinuity at a certain threshold height, related to the cohesive energy of the projectiles, shows up. Counterintuitively, instead of a monotonic increase with the collisional energy, z becomes constant above this threshold.

  18. Minor Losses During Air Flow into Granular Porous Media

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe Gorm; Minelgaite, Greta; Bentzen, Thomas Ruby

    2013-01-01

    Pressure gradients during uniform fluid flow in porous media are traditionally assumed to be linear. Thus, pressure loss across a sample of porous medium is assumed directly proportional to the thickness of the sample. In this study, measurements of pressure gradients inside coarse granular (2...... that the pressure loss in porous media consists of two components: (1) a linear pressure gradient and (2) an initial pressure loss near the inlet. This initial pressure loss is also known from hydraulics in tubes as a minor loss and is associated with abrupt changes in the flow field such as narrowings and bends....... The results further indicated that the minor loss depends on the particle size and particle size distribution in a manner similar to that of the linear pressure gradient. There is, thus, a close relation between these two components. In porous media, the minor loss is not instantaneous at the inlet point...

  19. Pattern formation in vibrated beds of dry and wet granular materials

    Science.gov (United States)

    Chuan Lim, Eldin Wee

    2014-01-01

    The Discrete Element Method was coupled with a capillary liquid bridge force model for computational studies of pattern formation in vibrated granular beds containing dry or wet granular materials. Depending on the vibration conditions applied, hexagonal, stripes, or cellular pattern was observed in the dry vibrated granular bed. In each of these cases, the same hexagonal, stripes, or cellular pattern was also observed in the spatial distribution of the magnitudes of particle-particle collision forces prior to the formation of the corresponding actual pattern in physical distributions of the particles. This seemed to suggest that the pattern formation phenomenon of vibrated granular bed systems might be the result of a two-dimensional Newton's cradle effect. In the presence of a small amount of wetness, these patterns were no longer formed in the vibrated granular beds under the same corresponding set of vibration conditions. Despite the relatively much weaker capillary forces arising from the simulated liquid bridges between particles compared with particle-particle collision forces, the spatial distributions of these collision forces, physical distributions of particles, as well as time profiles of average collision forces were altered significantly in comparison with the corresponding distributions and profiles observed for the dry vibrated granular beds. This seemed to suggest the presence of a two-dimensional Stokes' cradle effect in these wet vibrated granular bed systems which disrupted the formation of patterns in the wet granular materials that would have been observed in their dry counterparts.

  20. Low-speed impact cratering in loose granular media

    Science.gov (United States)

    Durian, Douglas

    2005-03-01

    In this talk I shall describe the penetration of projectiles dropped into noncohesive granular media, and how the results vary with the properties of both the projectile and the medium. In contrast to wide assumption, the penetration depth and crater diameter represent two distinct length scales. The diameter scales as the 1/4 power of projectile energy, but curiously the depth is not a simple function of either the projectile energy or momentum at impact. Rather, it scales as the 1/2 power of density, the 2/3 power of projectile diameter, and the 1/3 power of total drop distance. This same result also holds for cylinders with a variety of tips, and so is not an accident of projectile shape. It is crucial to understand the penetration depth because it is directly related to the mechanics of impact, namely the average stopping force acting between projectile and medium. In addition to this discussion, I shall also present new data on the dynamics of impact. All experiments were constructed and carried out at UCLA by undergraduate physics majors: Jun Uehara, Katie Newhall, Chris Santore, and Mike Ambroso.[1] J.S. Uehara, M.A. Ambroso, R.P. Ojha, and D.J. Durian, ``Low-Speed Impact Craters in Loose Granular Media,'' Phys. Rev. Lett. 90, 194301 (2003).[2] K.A. Newhall and D.J. Durian, ``Projectile-shape dependence of impact craters in loose granular media,'' Phys. Rev. E 68, 06030R (2003).[3] M.A. Ambroso, C.R. Santore, A.R. Abate, and D.J. Durian, ``Penetration depth for shallow impact cratering,'' cond-mat/0411231 (2004).

  1. Discharge flow of a bidisperse granular media from a silo

    Science.gov (United States)

    Benyamine, M.; Djermane, M.; Dalloz-Dubrujeaud, B.; Aussillous, P.

    2014-09-01

    The discharge flow in a cylindrical and a rectangular silo using both monodisperse and bidisperse mixtures of spherical glass beads is studied experimentally. The flow rate is measured using a precision balance for a large range of particle diameters, size ratios, and outlet diameters. A simple physical model is proposed to describe the flow of bidisperse mixtures. It gives an expression for the flow rate and predicts that the bulk velocity follows a simple mixture law. This model implies that a mixture diameter cannot be simply defined. Moreover it is shown that bidisperse granular media allow for the transport of coarse particles below their jamming conditions.

  2. Vibrating Liquefaction Experiment and Mechanism Study in Saturated Granular Media

    Institute of Scientific and Technical Information of China (English)

    Li Jianhua; Xu Ming; Ju Haiyan; Zhao Jiangqian; Huang Hongyuan; Sun Yezhi

    2006-01-01

    By the vibrating liquefaction experiment of tailings and fine-ores of iron, it is observed and noted that the change of pore water pressure when the vibrating liquefaction takes place. Based on relevant suppositions, the equation of wave propagation in saturated granular media is obtained. This paper postulates the potential vector equation and the velocity expression of three kinds of body waves under normal conditions.Utilizing the wave theory and the experimental results, the influence of three body waves on pore water pressure and granules has been analyzed in detail. This revealed the rapid increment mechanism of pore water pressure and the wave mechanism of vibrating liquefaction.

  3. No slip locomotion of hatchling sea turtles on granular media

    Science.gov (United States)

    Mazouchova, Nicole; Li, Chen; Gravish, Nick; Savu, Andrei; Goldman, Daniel

    2009-11-01

    Sea turtle locomotion occurs predominantly in aquatic environments. However after hatching from a nest on a beach, the juvenile turtles (hatchlings), must run across several hundred meters of granular media to reach the water. To discover how these organisms use aquatically adapted limbs for effective locomotion on sand, we use high speed infrared video to record hatchling Loggerhead sea turtles (Caretta caretta) kinematics in a field site on Jekyll Island, GA, USA. A portable fluidized bed trackway allows variation of the properties of the granular bed including volume fraction and angle up to the angle of repose. Despite being adapted for life in water, on all treatments the turtles use strategies similar to terrestrial organisms when moving on sand. Speeds up to 3 BL/sec are generated not by paddling in sand, but by limb movement that minimizes slip of the flippers, thus maintaining force below the yield stress of the medium. We predict turtle speed using a model which incorporates the yield stress of the granular medium as a function of surface angle.

  4. Wettability Control on Hydro-capillary Fracturing in Granular Media

    Science.gov (United States)

    Trojer, M.; de Anna, P.; Juanes, R.

    2015-12-01

    The flow of two or more immiscible phases within geologic porous media is important in natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, and hydraulic fracturing. The latter one, however, is a well-known reservoir stimulation technique, by which the permeability of the near-wellbore region is enhanced through the creation of tensile fractures within the rock, formed in the direction perpendicular to the least principal stress. While it is well known that fracturing of granular media strongly depends on the type of media and on the variability of its wetting properties, the effect of wettability on capillary-driven fracturing continues to challenge our microscopic and macroscopic descriptions. Here we study this problem experimentally, starting with the classic experiment of two-phase flow in a horizontal Hele-Shaw cell filled with a granular medium. We inject a low-viscosity fluid into a thin bed of glass beads initially saturated with a fluid 350 times more viscous. We investigate three control parameters: the injection rate of the less-viscous invading phase, the confining stress, and the contact angle, which we control by carefully chosen fluid pairs covering the entire range from drainage to imbibition. Our results demonstrate that wettability exerts a powerful influence on the invasion/fracturing morphology of unfavorable mobility displacements. High time resolution imaging techniques and particle image velocimetry (PIV) allow us to quantify matrix displacement and fracture opening dynamics. Our findings provide insights on fracture propagation, fracture length distribution and the fracture drainage area, parameters which are critically important to better understand long-term hydrocarbon production from shale.

  5. The influence of the fractal particle size distribution on the mobility of dry granular materials

    Directory of Open Access Journals (Sweden)

    Vallejo Luis E.

    2017-01-01

    Full Text Available This study presents an experimental analysis on the influence of the particle size distribution (psd on the mobility of dry granular materials. The psd obeys a power law of the form: N(L>d=kd-Df, where N is the number of particles with diameter L greater than a given diameter d, k is a proportionality constant, and Df is the fractal dimension of the psd. No laboratory or numerical study has been conducted to date analysing how a fractal psd influences the mobility of granular flows as in the case of rock avalanches. In this study, the flow characteristics of poly-dispersed granular materials that have a fractal psd were investigated in the laboratory. Granular mixtures having different fractal psd values were placed in a hollow cylinder. The cylinder was lifted and the distance of flow of the mixture was measured with respect to the original position of the cylinder. It was determined that the distance of flow of the mixtures was directly related to their fractal psd values. That is, the larger the distance of flow of the mixture, the larger is the fractal psd of the granular mixture tested. Thus, the fractal psd in dry granular mixtures seems to have a large influence on the easiness by which dry granular mixtures move in the field.

  6. Impact of capillarity and wettability on fracturing in granular media

    Science.gov (United States)

    Juanes, R.; Trojer, M.; De Anna, P.

    2016-12-01

    The flow of two or more immiscible phases in porous media is important in natural and industrial processes like geologic CO2 sequestration, enhanced oil recovery, water infiltration in soil, and methane venting from submerged organic-rich sediments. Hydrocarbon recovery from low-permeability geologic formations relies on hydraulic fracturing—a well-known reservoir stimulation technique by which the permeability of the near-wellbore region is enhanced through the opening of fractures within the rock. Here we study this phenomenon experimentally in a horizontal Hele-Shaw cell filled with a granular medium. We inject a low-viscosity fluid into a thin bed of glass beads initially saturated with a more viscous fluid. We investigate the role of three control variables: (1) the injection rate, (2) the confining stress, and (3) the contact angle between the beads and the two fluids. We control the contact angle by carefully choosing the fluid pairs to achieve a wide range of wetting properties, from drainage to imbibition. We image the fluid-fluid displacement and the branching network of fractures via fluorescence tagging, and quantify the displacement of the granular pack by means of particle image velocimetry (PIV). We demonstrate the emergence of fracturing and, crucially, we show that the wetting properties exert a strong, non-monotonic impact on fracture morphology.

  7. Controlled preparation of wet granular media reveals limits to lizard burial ability

    Science.gov (United States)

    Sharpe, Sarah S.; Kuckuk, Robyn; Goldman, Daniel I.

    2015-07-01

    Many animals move within ground composed of granular media (GM); the resistive properties of such substrates can depend on water content and compaction, but little is known about how such parameters affect locomotion or the physics of drag and penetration. Using apparatus to control compaction of GM, our recent studies of movement in dry GM have revealed locomotion strategies of specialized dry-sand-swimming reptiles. However, these animals represent a small fraction of the diversity and presumed burial strategies of fossorial reptilian fauna. Here we develop a system to create states of wet GM of varying moisture content and compaction in quantities sufficient to study the burial and subsurface locomotion of the Ocellated skink (C. ocellatus), a generalist lizard. X-ray imaging revealed that in wet and dry GM the lizard slowly buried (≈ 30 s) propagating a wave from head to tail, while moving in a start-stop motion. During forward movement, the head oscillated, and the forelimb on the convex side of the body propelled the animal. Although body kinematics and ‘slip’ were similar in both substrates, the burial depth was smaller in wet GM. Penetration and drag force experiments on smooth cylinders revealed that wet GM was ≈ 4× more resistive than dry GM. In total, our measurements indicate that while the rheology of the dry and wet GM differ substantially, the lizard's burial motor pattern is conserved across substrates, while its burial depth is largely constrained by environmental resistance.

  8. Multiscale modelling of fluid-immersed granular media

    OpenAIRE

    Clément, Christian Paul André René

    2010-01-01

    In this thesis we present numerical simulation studies of fluid-immersed granular systems using models of varying scales and complexities. These techniques are used to examine the effects of an interstitial fluid on the dynamics of dense granular beds within a number of vibrated systems. After an introduction to the field of granular materials, we present the techniques used to model both the granular dynamics and the fluid flow. We introduce various multiscale techniques to couple the mo...

  9. Shear strength and stress distribution in wet granular media

    Science.gov (United States)

    Richefeu, Vincent; Radjaï, Farhang; El Youssoufi, Moulay Saïd

    2009-06-01

    We investigate the shear strength and stress distribution properties of wet granular media in the pendular state where the liquid is mainly in the form of capillary bonds between particles. This work is based on a 3D discrete-element approach (molecular dynamics) with spherical particles enriched by a capillary force law. We show that the capillary force can be expressed as an explicit function of the gap and volume of the liquid bridge. The length scales involved in this expression are analyzed by comparing with direct integration of the Laplace-Young equation. In the simulations, we consider a maximum number density of liquid bonds in the bulk in agreement with equilibrium of each liquid bridge. This liquid bond number is a decisive parameter for the overall cohesion of wet granular materials. It is shown that the shear strength can be expressed as a function of liquid bond characteristics. The expression proposed initially by Rumpf is thus generalized to account for size polydispersity We show that this expression is in good agreement with our experimental data that will be briefly described. At low confining stress, the tensile action of capillary bonds induces a self-stressed particle network organized in a bi-percolating structure of positive and negative particle pressures. Various statistical descriptors of the microstructure and bond force network are used to characterize this partition. Two basic properties emerge: (i) The highest particle pressure is located in the bulk of each phase (positive and negative particle pressures); (ii) The lowest pressure level occurs at the interface between the two phases, involving also the largest connectivity of the particles via tensile and compressive bonds.

  10. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    Energy Technology Data Exchange (ETDEWEB)

    Makse, Hernan A. [City College of New York, NY (United States). Levich Inst., Dept. of Physcis; Johnson, David L. [Schlumberger-Doll Research, Cambridge, MA (United States)

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.

  11. Transport of Fluorescently Labeled Hydroxyapatite Nanoparticles in Saturated Granular Media at Environmentally Relevant Concentrations of Surfactants

    Science.gov (United States)

    Little is known about the mobility of engineered nanoparticles (ENPs) in granular media at environmentally relevant concentration of surfactant, which represents a critical knowledge gap in employing ENPs for in-situ remediation of contaminated groundwater. In this study, transpo...

  12. Contact investigations of granular mechanical media in a tumbling sorting machine

    OpenAIRE

    2007-01-01

    Chapter 1 briefly introduced some contact problems in granular media with some computational procedures used in sequential and parallel computations. In Chapter 2, a general description of the molecular dynamic problems and clarification of the basics of the granular media are presented. Some of the frequently-used algorithms and models, e.g. Discrete Element Method (DEM) and penalty method of the spring-dashpot model are involved in this chapter.Some basic techniques for speeding up simu...

  13. DRYING OF GRANULAR MATERIALS IN AGITATED FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An experimental study of the drying characteristics of an agitated fluidized bed dryer is presented and discussed. In the study, the citric acid particles were used as bed material with the diameters ranging from 0.2mm to 1.3mm. The variables affecting apparently the drying rate were found to be the mass flow rate, the inlet air temperature, the rotary speed of agitating mechanism and the particles feed rate. Comparing with other variables considered, mass flow rate was found to have the least important influence on the drying rate. The agitated fluidized bed dryer is suitable to drying agglomerating or sticky materials.

  14. PREDICTION OF MAXIMUM DRY DENSITY OF LOCAL GRANULAR ...

    African Journals Online (AJOL)

    methods. A test on a soil of relatively high solid density revealed that the developed relation looses ... where, Pd max is the laboratory maximum dry ... Addis-Jinima Road Rehabilitation. ..... data sets that differ considerably in the magnitude.

  15. Some fundamental aspects of the continuumization problem in granular Media

    Science.gov (United States)

    Peters, John F.

    The central problem of devising mathematical models of granular materials is how to define a granular medium as a continuum. This paper outlines the elements of a theory that could be incorporated in discrete models such as the Discrete-Element Method, without recourse to a continuum description. It is shown that familiar concepts from continuum mechanics such as stress and strain can be defined for interacting discrete quantities. Established concepts for constitutive equations can likewise be applied to discrete quantities. The key problem is how to define the constitutive response in terms of truncated strain measures that are a practical necessity for analysis of large granular systems.

  16. Active dry granular flows: Rheology and rigidity transitions

    Science.gov (United States)

    Peshkov, Anton; Claudin, Philippe; Clément, Eric; Andreotti, Bruno

    2016-10-01

    The constitutive relations of a dense granular flow composed of self-propelling frictional hard particles are investigated by means of DEM numerical simulations. We show that the rheology, which relates the dynamical friction μ and the volume fraction ϕ to the inertial number I, depends on a dimensionless number A , which compares the active force to the confining pressure. Two liquid/solid transitions —in the Maxwell rigidity sense— are observed. As soon as the activity is turned on, the packing becomes an “active solid” with a mean number of particle contacts larger than the isostatic value. The quasi-static values of μ and ϕ decrease with A . At a finite value of the activity At , corresponding to the isostatic condition, a second “active rigidity transition” is observed beyond which the quasi-static values of the friction vanishes and the rheology becomes Newtonian. For A>At , we provide evidence for a highly intermittent dynamics of this “active fluid”.

  17. Instationary compaction wave propagation in highly porous cohesive granular media

    Science.gov (United States)

    Gunkelmann, Nina; Ringl, Christian; Urbassek, Herbert M.

    2016-07-01

    We study the collision of a highly porous granular aggregate of adhesive \\upmu m-sized silica grains with a hard wall using a granular discrete element method. A compaction wave runs through the granular sample building up an inhomogeneous density profile. The compaction is independent of the length of the aggregate, within the regime of lengths studied here. Also short pulses, as they might be exerted by a piston pushing the granular material, excite a compaction wave that runs through the entire material. The speed of the compaction wave is larger than the impact velocity but considerably smaller than the sound speed. The wave speed is related to the compaction rate at the colliding surface and the average slope of the linear density profile.

  18. The propagation of blast pulses through dampened granular media

    Science.gov (United States)

    Badham, Henry; Chalmers, Max; Nguyen, Thuy-Tien Ngoc; Proud, William Graham

    2017-01-01

    The propagation of stress through granular and dampened granular material has been reported previously, the addition of significant amounts of liquid in granular beds causes the mechanism of transmission of blast from one of percolation through the bed pores to one of stress transmission through the granules of the bed. It has been shown, however, that limited amounts liquid can retard propagation within blast-loaded beds by approximately an order of magnitude. This paper presents data on percolation through dampened granular beds using a shock tube as the pressure driver. The effect of particle shape and size was investigated using angular grains of quartz sand as well as smooth glass microspheres. The effect of addition of small amounts of liquids is presented.

  19. The effect of limb kinematics on the speed of a legged robot on granular media

    CERN Document Server

    Li, Chen; Komsuoglu, Haldun; Goldman, Daniel I; 10.1007/s11340-010-9347-1

    2013-01-01

    Achieving effective locomotion on diverse terrestrial substrates can require subtle changes of limb kinematics. Biologically inspired legged robots (physical models of organisms) have shown impressive mobility on hard ground but suffer performance loss on unconsolidated granular materials like sand. Because comprehensive limb-ground interaction models are lacking, optimal gaits on complex yielding terrain have been determined empirically. To develop predictive models for legged devices and to provide hypotheses for biological locomotors, we systematically study the performance of SandBot, a small legged robot, on granular media as a function of gait parameters. High performance occurs only in a small region of parameter space. A previously introduced kinematic model of the robot combined with a new anisotropic granular penetration force law predicts the speed. Performance on granular media is maximized when gait parameters minimize body acceleration and limb interference, and utilize solidification features o...

  20. Generalized Phenomenological Cyclic Stress-Strain-Strength Characterization of Granular Media.

    Science.gov (United States)

    1984-09-02

    following special form of the general hypoelastic equation to model the behavior of granular media: dij = [a0 dem + a3 "pq d pq] 6ij + 1 dcij + C 2 dem...Phenomitno ogical I C.yclic Stress-Strain-Strength Characterization f Granular M~dia !RSO%.hL APT’.OR(S) M._McVay,_D._Seereeram,_P.__Linton andD... Granular Medi a, Vollow Cylinder. Cyclic Triaxial Test, Plasticity, Prediction Expanding Cavity LClic CTC rests ISTAAC? fCoom w mz_’-. ,f_.V,,A6’V "d

  1. Localization of Shear in Saturated Granular Media: Insights from a Multi-Scaled Granular-Fluid Model

    CERN Document Server

    Aharonov, Einat; Sparks, David; Toussaint, Renaud

    2013-01-01

    The coupled mechanics of fluid-filled granular media controls the behavior of many natural systems such as saturated soils, fault gouge, and landslides. The grain motion and the fluid pressure influence each other: It is well established that when the fluid pressure rises, the shear resistance of fluid-filled granular systems decreases, and as a result catastrophic events such as soil liquefaction, earthquakes, and accelerating landslides may be triggered. Alternatively, when the pore pressure drops, the shear resistance of these systems increases. Despite the great importance of the coupled mechanics of grains-fluid systems, the basic physics that controls this coupling is far from understood. We developed a new multi-scaled model based on the discrete element method, coupled with a continuum model of fluid pressure, to explore this dynamical system. The model was shown recently to capture essential feedbacks between porosity changes arising from rearrangement of grains, and local pressure variations due to ...

  2. Mechanisms of intruder motion in cyclically sheared granular media

    Science.gov (United States)

    Zheng, Hu; Barés, Jonathan; Wang, Dong; Behringer, Robert

    2016-11-01

    We perform an experimental study showing how an intruder, a Teflon disk that experiences a moderate constant force, F, can advance through a granular material that is subject to quasi-static cyclic shear. The large Teflon disk is embedded in a layer of smaller bidisperse photoelastic disks. The granular medium and disk are contained in a horizontal cell, which is deformed from a square to a parallelogram and back again. The area of the cell remains constant throughout, and the protocol corresponds to cyclical simple shear. We find that the net intruder motion per cycle increases as a power law in Nc. The intruder motion relative to the granular background occurs primarily following strain reversals. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.

  3. Positron emission particle tracking and its application to granular media.

    Science.gov (United States)

    Parker, D J

    2017-05-01

    Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.

  4. From the Cover: Sensitive dependence of the motion of a legged robot on granular media.

    Science.gov (United States)

    Li, Chen; Umbanhowar, Paul B; Komsuoglu, Haldun; Koditschek, Daniel E; Goldman, Daniel I

    2009-03-01

    Legged locomotion on flowing ground (e.g., granular media) is unlike locomotion on hard ground because feet experience both solid- and fluid-like forces during surface penetration. Recent bioinspired legged robots display speed relative to body size on hard ground comparable with high-performing organisms like cockroaches but suffer significant performance loss on flowing materials like sand. In laboratory experiments, we study the performance (speed) of a small (2.3 kg) 6-legged robot, SandBot, as it runs on a bed of granular media (1-mm poppy seeds). For an alternating tripod gait on the granular bed, standard gait control parameters achieve speeds at best 2 orders of magnitude smaller than the 2 body lengths/s (approximately 60 cm/s) for motion on hard ground. However, empirical adjustment of these control parameters away from the hard ground settings restores good performance, yielding top speeds of 30 cm/s. Robot speed depends sensitively on the packing fraction phi and the limb frequency omega, and a dramatic transition from rotary walking to slow swimming occurs when phi becomes small enough and/or omega large enough. We propose a kinematic model of the rotary walking mode based on generic features of penetration and slip of a curved limb in granular media. The model captures the dependence of robot speed on limb frequency and the transition between walking and swimming modes but highlights the need for a deeper understanding of the physics of granular media.

  5. Drying and Heating Modelling of Granular Flow: Application to the Mix-Asphalt Processes

    Directory of Open Access Journals (Sweden)

    L Le Guen

    2011-01-01

    Full Text Available Concrete asphalt is a hydrocarbon material that includes a mix of mineral components along with a bituminous binder. Prior to mixing, its production protocol requires drying and heating the aggregates. Generally performed in a rotary drum, these drying and heating steps within mix asphalt processes have never been studied from a physical perspective. We are thus proposing in the present paper to analyze the drying and heating mechanisms when granular materials and hot gases are involved in a co-current flow. This process step accounts for a large proportion of the overall energy consumed during hot-mix asphalt manufacturing. In the present context, the high energy cost associated with this step has encouraged developing new strategies specifically for the drying process. Applying new asphalt techniques so that an amount of moisture can be preserved in the asphalt concrete appears fundamental to such new strategies. This low-energy asphalt, also referred to as the "warm technique", depends heavily on a relevant prediction of the actual moisture content inside asphalt concrete during the mixing step. The purpose of this paper is to present a physical model dedicated to the evolution in temperature and moisture of granular solids throughout the drying and heating steps carried out inside a rotary drum. An initial experimental campaign to visualize inside a drum at the pilot scale (i.e. 1/3 scale has been carried out in order to describe the granular flow and establish the necessary physical assumptions for the drying and heating model. Energy and mass balance equations are solved by implementing an adequate heat and mass transfer coupling, yielding a 1D model from several parameters that in turn drives the physical modeling steps. Moreover, model results will be analyzed and compared to several measurements performed in an actual asphalt mix plant at the industrial scale (i.e. full scale.

  6. Rapid penetration into granular media visualizing the fundamental physics of rapid earth penetration

    CERN Document Server

    Iskander, Magued

    2015-01-01

    Rapid Penetration into Granular Media: Visualizing the Fundamental Physics of Rapid Earth Penetration introduces readers to the variety of methods and techniques used to visualize, observe, and model the rapid penetration of natural and man-made projectiles into earth materials. It provides seasoned practitioners with a standard reference that showcases the topic's most recent developments in research and application. The text compiles the findings of new research developments on the subject, outlines the fundamental physics of rapid penetration into granular media, and assembles a com

  7. Probing density waves in fluidized granular media with diffusing-wave spectroscopy

    Science.gov (United States)

    Born, Philip; Reinhold, Steffen; Sperl, Matthias

    2016-09-01

    Density waves are characteristic for fluidized beds and affect measurements on liquidlike dynamics in fluidized granular media. Here the intensity autocorrelation function as obtainable with diffusing-wave spectroscopy is derived in the presence of density waves. The predictions by the derived form of the intensity autocorrelation function match experimental observations from a gas-fluidized bed. The model suggests separability of the contribution from density waves from the contribution by microscopic scatterer displacement to the decay of correlation and thus paves the way for characterizing microscopic particle motions using diffusing-wave spectroscopy as well as heterogeneities in fluidized granular media.

  8. Removal of nano and microparticles by granular filter media coated with nanoporous aluminium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Lau, B.L.T.; Harrington, G.W.; Anderson, M.A.; Tejedor, I. [University of Wisconsin, Madison, WI (US). Dept. of Civil & Environmental Engineering

    2004-07-01

    Conventional filtration was designed to achieve high levels of particle and pathogen removal. Previous studies have examined the possibility of modifying filtration media to improve their ability to remove microorganisms and viruses. Although these studies have evaluated filter media coatings for this purpose, none have evaluated nanoscale particle suspensions as coating materials. The overall goal of this paper is to describe the preliminary test results of nanoporous aluminium oxide coated media that can be used to enhance filtration of nano and microparticles. Filtration tests were carried out using columns packed with uncoated and coated forms of granular anthracite or granular activated carbon. A positive correlation between isoelectric pH of filter media and particle removal was observed. The modified filter media with a higher isoelectric pH facilitated better removal of bacteriophage MS2 and 3 {mu}m latex microspheres, possibly due to increased favorable electrostatic interactions.

  9. Removal of nano and microparticles by granular filter media coated with nanoporous aluminium oxide.

    Science.gov (United States)

    Lau, B L T; Harrington, G W; Anderson, M A; Tejedor, I

    2004-01-01

    Conventional filtration was designed to achieve high levels of particle and pathogen removal. Previous studies have examined the possibility of modifying filtration media to improve their ability to remove microorganisms and viruses. Although these studies have evaluated filter media coatings for this purpose, none have evaluated nanoscale particle suspensions as coating materials. The overall goal of this paper is to describe the preliminary test results of nanoporous aluminium oxide coated media that can be used to enhance filtration of nano and microparticles. Filtration tests were carried out using columns packed with uncoated and coated forms of granular anthracite or granular activated carbon. A positive correlation between isoelectric pH of filter media and particle removal was observed. The modified filter media with a higher isoelectric pH facilitated better removal of bacteriophage MS2 and 3 microm latex microspheres, possibly due to increased favorable electrostatic interactions.

  10. Granular Media under Vibration in Zero Gravity: Transition from Rattling to Granular Gas

    CERN Document Server

    Evesque, P; Zhai, G; Hou, M

    2011-01-01

    We report on different experimental behaviours of granular dissipative matter excited by vibration as studied during the 43rd ESA campaign of Airbus A300-0g from CNES. The effect of g-jitter is quantified through the generation of a rattle effect. The French-European team's electromagnetic set-up is used, with 20Hz cam recording and high speed camera for a short duration (1s) during each parabola.

  11. Discharge flow of granular media from silos with a lateral orifice and injection of air

    Directory of Open Access Journals (Sweden)

    Aussillous Pascale

    2017-01-01

    Full Text Available Few studies concern the prediction of the mass flow rate of a granular media discharged from a silo with a lateral orifice. However, this situation can have pratical interest considering a tank of granular material with a leak on its side. We studied experimentally the discharge of a vertical silo filled by spherical glass beads. We consider rectangular silos with a rectangular orifice. The impact of size, aspect ratio and position of the orifice and the effect of an additional air flow were studied. The measured parameters are the mass flow rate and the pressure along the silo, whereas the controlled parameters are the size of particles, and the flow rate of air. We identified two regimes of discharge according to the aspect ratio (of width to height of the rectangular orifice. Increasing the air flow rate induces an increase of the granular media flow rate. Using a simple physical model to describe the grains and gas flow, we put in evidence the role played by the air pressure gradient at the outlet. Then we compared the experimental results with continuum Navier-Stokes simulations with the granular μ(I-rheology. We showed that the continuum μ(I-rheology describes well our discharge flow of granular media from silos, taking into account the effect of the position of the orifice as well as the coupling with the gas flow.

  12. Electrification and Charge Distribution in Vertically Shaken Granular Media

    Science.gov (United States)

    Rojas, Ruben; Nordsiek, Freja; Lathrop, Daniel

    2016-11-01

    Granular charging of particle laden flows at large scales is a widespread phenomenon and has long been observed in nature: Volcanic ash clouds, desert sandstorms, dust devils, thunderstorms and snowstorms all undergo electrification at large scale. As a first approach to understand this phenomenon, we confined granular particles to a vertically oscillating cylindrical chamber with top and bottom conducting plates. Long term voltage transients between the plates and a high dependence on the total particle surface area suggested the preponderance of collective effects in the electrification processes. In order to further explore this hypothesis, we reduced the electrode area for the measurement with two 2-cm circular flat probes on the top plate. With this setup we detected differences in the charge distribution among the particles due to a more localized measurement of the voltage. This research was supported by the Julian Schwinger Foundation.

  13. Scaling Relations for Wheeled Locomotion in Granular Media

    Science.gov (United States)

    Slonaker, James; Kamrin, Ken

    Vehicular wheel design for use on granular material has not currently been perfected. Resistive Force Theory (RFT) is a reduced-order empirical model for granular drag, which shows promise to help simulate and understand locomotion processes to design more efficient wheels. Here we explore the fundamental scaling relations derived from RFT and their experimental validation. Similar to the non-dimensional scaling relations in fluid mechanics, the relative simplicity of RFT asserts that only one material parameter, the ''grain-structure coefficient'', is required, which reduces the complexity of the non-dimensional groups implied by the system. Therefore, wheels with differing input design parameters like size, mass, shape and even gravity, can be tested and their performance related to each other in predictable ways. We experimentally confirmed these relations by testing with 3D printed wheel geometries in a controlled sand bed.

  14. Density Waves in the Flows of Granular Media

    OpenAIRE

    1993-01-01

    We study density waves in the flows of granular particles through vertical tubes and hoppers using both analytic methods and molecular dynamics (MD) simulations. We construct equations of motion for quasi one-dimensional systems. The equations, combined with the Bagnold's law for friction, are used to describe the time evolutions of the density and the velocity fields for narrow tubes and hoppers. The solutions of the equations can have two types of density waves, kinetic and dynamic. For tub...

  15. Numerical Algorithms for Two-Dimensional Dry Granular Flow with Deformable Elastic Grain

    Energy Technology Data Exchange (ETDEWEB)

    Boateng, H A; Elander, V; Jin, C; Li, Y; Vasquez, P; Fast, P

    2005-08-11

    The authors consider the dynamics of interacting elastic disks in the plane. This is an experimentally realizable two-dimensional model of dry granular flow where the stresses can be visualized using the photoelastic effect. As the elastic disks move in a vacuum, they interact through collisions with each other and with the surrounding geometry. Because of the finite propagation speed of deformations inside each grain it can be difficult to capture computationally even simple experiments involving just a few interacting grains. The goal of this project is to improve our ability to simulate dense granular flow in complex geometry. They begin this process by reviewing some past work, how they can improve upon previous work. the focus of this project is on capturing the elastic dynamics of each grain in an approximate, computationally tractable, model that can be coupled to a molecular dynamics scheme.

  16. Feasibility study on pliant media drying using fluidized bed dryer

    Science.gov (United States)

    Zakaria, J. H.; Zaid, M. H. H. M.; Batcha, M. F. M.; Asmuin, N.

    2015-09-01

    The usage of pliant media for blasting in surface preparation has gained substantial interest in various industries, particularly oil and gas. Being a clean technology, this relatively new method of surface preparation has become an alternative to conventional abrasive blasting technique which lowers fugitive emissions from blasting process and hence lowering risk to workers in the industry. Despite proven to be effective and cost efficient, the usage of pliant media in tropical climate poses a new challenge due to the torrential rain in the monsoon season. During rainy and wet conditions, the pliant media was literally soaked and the recovery rate of the pliant media for a continuous blasting becomes retarded. A viable technique for drying of this pliant media has then become imperative. The present study proposes to dry water laden pliant media in a Swirling Fluidized Bed Dryer (SFBD). In this preliminary study, three bed loadings of 1.7, 2.0 and 2.3 kg of pliant media was dried in the SfBd at 80°C, 90°C and 100°C. The experimental works revealed that the SFBD has shown excellent potential to dry the pliant media with a relatively short drying time. The behaviour of moisture ratio and drying rate against time are discussed. The findings conclude that the SFBD is a feasible technique for wet pliant media drying and can be extended for continuous processing system.

  17. Frustration and disorder in granular media and tectonic blocks: implications for earthquake complexity

    Directory of Open Access Journals (Sweden)

    A. Sornette

    1994-01-01

    Full Text Available We present exploratory analogies and speculations on the mechanisms underlying the organization of faulting and earthquake in the earth crust. The mechanical properties of the brittle lithosphere at scales of the order or larger than a few kilometers are proposed to be analogous to those of non-cohesive granular media, since both systems present stress amplitudes controlled by gravity, and shear band (faulting localization is determined by a type of friction Mohr-Coulomb rupture criterion. here, we explore the implications of this correspondence with respect to the origin of tectonic and earthquake complexity, on the basis of the existing experimental data on granular media available in the mechanical literature. An important observation is that motions and deformations of non-cohesive granular media are characterized by important fluctuations both in time (sudden breaks, avalanches, which are analogous to earthquakes and space (strain localizations, yield surfaces forming sometimes complex patterns. This is in apparent contradiction with the conventional wisdom in mechanics, based on the standard tendency to homogenize, which has led to dismiss fluctuations as experimental noise. On the basis of a second analogy with spinglasses and neural networks, based on the existence of block and grain packing disorder and block rotation "frustration", we suggest that these fluctuations observed both at large scales and at the block scale constitute an intrinsic signature of the mechanics of granular media. The space-time complexity observed in faulting and earthquake phenomenology is thus proposed to result form the special properties of the mechanics of granular media, dominated by the "frustration" of the kinematic deformations of its constitutive blocks.

  18. A hierarchical model for cross-scale simulation of granular media

    Science.gov (United States)

    Guo, Ning; Zhao, Jidong

    2013-06-01

    This paper presents a multiscale modeling framework for granular media based on a hierarchical cross-scale approach. The overall material is treated as a continuum on the macroscale and the corresponding boundary value problem is solved by finite element method (FEM). At each Gauss point of the FEMmesh, a discrete element assembly is embedded from which the material behavior is obtained for the global FEM computation. It is demonstrated that this technique may capture the salient macroscopic behavior of granular media in a natural manner, and meanwhile helps to bypass the conventional phenomenological nature of continuum modeling approaches. Moreover, the framework provides us with rich information on the particle level which can be closely correlated to the macroscopic material response and hence helps to shed lights on the cross-scaling understanding of granular media. Specific linkages between the microscopic origins and mechanisms and the macroscopic responses can be conveniently developed. As a demonstrative example, the strain localization of granular sand in biaxial compression test is investigated by the multiscale approach to showcase the above features.

  19. Depth-Dependent Resistance of Granular Media to Vertical Penetration

    Science.gov (United States)

    Brzinski, T. A., III; Mayor, P.; Durian, D. J.

    2013-10-01

    We measure the quasistatic friction force acting on intruders moving downwards into a granular medium. By utilizing different intruder geometries, we demonstrate that the force acts locally normal to the intruder surface. By altering the hydrostatic loading of grain contacts by a sub-fluidizing airflow through the bed, we demonstrate that the relevant frictional contacts are loaded by gravity rather than by the motion of the intruder itself. Lastly, by measuring the final penetration depth versus airspeed and using an earlier result for inertial drag, we demonstrate that the same quasistatic friction force acts during impact. Altogether this force is set by a friction coefficient, hydrostatic pressure, projectile size and shape, and a dimensionless proportionality constant. The latter is the same in nearly all experiments, and is surprisingly greater than one.

  20. Inelastic gas: An experimental study of vibro-fluidized dilute granular media

    Science.gov (United States)

    Feitosa, Klebert Bezerra

    We conduct an experimental study of a two dimensional vibro-fluidized dilute granular medium. The system is composed of spherical beads confined to move in a vertical plane and excited by intense vertical vibrations. We perform full-field tracking of positions and orientations of the spheres by high speed photography. In steady-state, the motion of the grains resembles that of a molecular gas, thus the name granular gas. We study the distribution of linear velocities in the granular gas. The investigation shows that the distributions are non-gaussian, best fitted by the function P(v) ˜ exp(-beta| v|/sigma)1.5), and insensitive to number density, driving parameters and particle inelasticity. The distribution is a one parameter distribution, parameterized by the mean square velocity; which defines a granular temperature. T = ½ . We study binary mixtures of the granular media. We find that, in general, the granular temperature is not equal for the two types of spheres. However, the temperature ratio is constant in the bulk. The ratio depends strongly on the mass ratio of the spheres, but not on their inelasticity. The ratio is also insensitive to compositional parameters of the mixture such as number fraction and number density. We also investigate the statistics of the power flux into a subsystem of the granular gas. The power shows large fluctuations, including frequent large negative fluctuations. The relative probabilities of positive and negative fluctuations in the power flux are in close accord with the Fluctuation Theorem of Gallavotti and Cohen (Gallavotti & Cohen, 1995b). We also compare the effective temperature that emerges from this analysis to the kinetic granular temperature. Finally, we study the rotational dynamics of the granular gas. We find that the granular temperature is not equipartitioned between translational and rotational degrees of freedom. We also demonstrate that the ratio of rotational to translational energy is independent of the

  1. Water flow exchange characteristics in coarse granular filter media

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Pugliese, Lorenzo; Poulsen, Tjalfe

    2013-01-01

    in this study are performed at a concurrent airflow of 0.3 m s−1, water irrigation rates of 1–21 cm h−1 in materials with particle diameters ranging from 2 to 14 mm to represent media and operation conditions relevant for low flow biotrickling filter design. Specific surface area related elution velocity...... distribution was closely related to the filter water content, water irrigation rate, media specific surface area and particle size distribution. A predictive model linking the specific surface area related elution velocity distribution to irrigation rate, specific surface area and particle size distribution......Elution of inhibitory metabolites is a key parameter controlling the efficiency of air cleaning bio- and biotrickling filters. To the authors knowledge no studies have yet considered the relationship between specific surface area related elution velocity and physical media characteristics, which...

  2. Water flow exchange characteristics in coarse granular filter media

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Pugliese, Lorenzo; Poulsen, Tjalfe

    2013-01-01

    Elution of inhibitory metabolites is a key parameter controlling the efficiency of air cleaning bio- and biotrickling filters. To the authors knowledge no studies have yet considered the relationship between specific surface area related elution velocity and physical media characteristics, which...... in this study are performed at a concurrent airflow of 0.3 m s−1, water irrigation rates of 1–21 cm h−1 in materials with particle diameters ranging from 2 to 14 mm to represent media and operation conditions relevant for low flow biotrickling filter design. Specific surface area related elution velocity...... distribution was closely related to the filter water content, water irrigation rate, media specific surface area and particle size distribution. A predictive model linking the specific surface area related elution velocity distribution to irrigation rate, specific surface area and particle size distribution...

  3. Comparison of physical, numerical and resistive force models of undulatory locomotion within granular media

    Science.gov (United States)

    Goldman, Daniel I.; Maladen, Ryan D.; Ding, Yang; Umbanhowar, Paul

    2010-11-01

    We integrate biological experiments, empirical theory, numerical simulation, and a physical robot model to reveal principles of undulatory locomotion in granular media. High speed x-ray imaging of the sandfish, Scincus scincus, in 3 mm glass particles reveals that it swims within the medium without limb use by propagating a single period traveling sinusoidal wave down its body, resulting in a wave efficiency, η, the ratio of its average forward speed to wave speed, of 0.54,,.13. A resistive force theory (RFT) which balances granular thrust and drag forces along the body predicts η close to the observed value. We test this prediction against two other modeling approaches: a numerical model of the sandfish coupled to a Molecular Dynamics (MD) simulation of the granular medium, and an undulatory robot which swims within granular media. We use these models and analytic solutions of the RFT to vary the ratio of undulation amplitude to wavelength (A/λ) and demonstrate an optimal condition for sand-swimming that results from competition between η and λ. The RFT, in agreement with simulation and robot models, predicts that for a single period sinusoidal wave, maximal speed occurs for A/λ 0.2, the same kinematics used by the sandfish.

  4. The effect of wettability on capillary fracturing in granular media

    Science.gov (United States)

    Trojer, M.; Szulczewski, M.; Juanes, R.

    2012-12-01

    During multiphase flow in a granular medium, capillary pressures can overcome cohesive forces between the grains and cause grain displacements that macroscopically resemble fracture patterns. These patterns were recently studied in experiments of air displacing water in a thin bed of glass beads, for which air is a strongly non-wetting fluid (Holtzman et al. 2012). The experiments showed that the transition from viscous fingering and capillary fingering to capillary fracturing could be predicted by a single dimensionless number called the fracturing number, which is the ratio of the capillary forces that promote grain displacements to the frictional forces that resist displacements. Here, we extend those experiments to study exclusively how the wettability of the invading fluid affects fracturing by visually observing the morphology of the pattern. As in the previous work, we inject a less viscous fluid into a thin bed of glass beads saturated with a more viscous fluid. However, we now vary the fluids to change the wettability of the invading fluid from perfectly non-wetting to wetting. We hypothesize that the emergence of fracturing can be predicted by a modified fracturing number that includes the contact angle to account for the effect of wettability on the capillary pressure. Since the contact angle is a function of the capillary number, we expect the emergence of fracturing will depend on the capillary number when the invading fluid is partially wetting.

  5. The impact of fluid flow on force chains in granular media

    Science.gov (United States)

    Mahabadi, Nariman; Jang, Jaewon

    2017-01-01

    Fluid flow through granular media is an important process found in nature and various engineering applications. The effect of fluid flow on the evolution of force chains in the granular media is explored using the photoelasticity theory. A transparent cell is designed to contain several photoelastic disks of different sizes and to allow fluid flow through the particle packing. Water is injected into the cell while the particle packing is under confining stress. Several images are taken for the conditions of different confining stresses and fluid injection rates. An algorithm of an image processing technique is developed to detect the orientation and magnitude of contact forces. The results show that forces in parallel and transverse to the flow direction increase with increasing water velocity, while parallel force shows a higher increasing rate.

  6. Experimental added modal damping induced by confined granular media on a single degree of freedom system

    Science.gov (United States)

    Sternberger, Antoine; Pelat, Adrien; Génevaux, Jean-Michel

    2017-06-01

    The use of granular media to induce vibration energy's dissipation in lighter huge industrial structures permits to decrease the mass of the structure and consequently to spare the construction's cost and to satisfy oil consumption. In fact, when the structure in which the granular media is in contact overtakes an acceleration threshold, relative movements of the grains appears which lead to a dissipation of energy. When the grains are confined inside a cavity, the dissipation's level depends on several parameters (the acceleration's amplitude, the frequency, the grain's characteristics, the cavity's dimensions, the cavity's filling ratio, the fluid between the particles, etc.). This study quantifies the influence of several parameters by exciting uniformly a given volume of grains. A modal damping coefficient of a single degree of freedom system (SDOF) can be thus calculated as a function of the preceding parameters.

  7. 3D Printer Instrumentation to Create Varied Geometries of Robotic Limbs and Heterogeneous Granular Media

    Science.gov (United States)

    2015-05-20

    11-May-2015 Approved for Public Release; Distribution Unlimited Final Report: 3D Printer Instrumentation to Create Varied Geometries of Robotic Limbs... 3D Printer Instrumentation to Create Varied Geometries of Robotic Limbs and Heterogeneous Granular Media Report Title There is a need for robotic...studies, we request Research Instrumentation (RI) to purchase two 3D printers , which we will use to fabricate a wide of variety of objects that will

  8. Generalized Phenomenological Cyclic Stress-Strain-Strength Characterization of Anisotropic Granular Media.

    Science.gov (United States)

    1985-06-27

    ANISOTROPIC GRANULAR MEDIA" 19. A review of existing elasto-plastic theory as related to soil mechanics showed only a few models of a phenomenological...characterizations, Prevost’s pressure sensitive model , was used in the prediction of the hollow cylinder tests. Although the model reasonably reproduced the...48 1. Cauchy Type Elasticity ...................... 49 2. Hyperelasticity or Green Type Elasticity .... 53 3. Hypoelasticity or Incremental Type

  9. Evolvement of permeability of ore granular media during heap leaching based on image analysis

    Institute of Scientific and Technical Information of China (English)

    YANG Bao-hua; WU Ai-xiang; JIANG Huai-chun; CHEN Xue-song

    2008-01-01

    The column leaching experiment of ore granular media was carried out with the home-made multi-functional experimental apparatus and the pore structure of ore granular media was scanned by the X-ray computed tomography machine before and after leaching. The porosities of each section before and after leaching were calculated based on CT images processing, and the permeability of each zone before and after leaching were also calculated with Carman-Kozeny equation. The permeability evolvement law was disclosed. The results indicate that before leaching the permeability of the ore granular media in different height has not much difference and the value ranges from 5.70×10-4 mm2 to 1.11×10-3 mm2, where the lowest one locates in the bottom zone. After leaching the permeability distributes inhomogeneously along the height of the column and the value ranges from 3.44×10-4 mm2 to 2.25×10-2 mm2, where the lowest one is in the same place. Except for the bottom zone, the permeability of other zones increases after leaching, especially the top zone. Through comparison of the permeability at bottom zone before and after leaching, the whole permeability after leaching decreases by 39.65% that coincides with the measured experimental data.

  10. Erosion and deposition in depth-averaged models of dense, dry, inclined, granular flows

    Science.gov (United States)

    Jenkins, James T.; Berzi, Diego

    2016-11-01

    We derive expressions for the rates of erosion and deposition at the interface between a dense, dry, inclined granular flow and an erodible bed. In obtaining these, we assume that the interface between the flowing grains and the bed moves with the speed of a pressure wave in the flow, for deposition, or with the speed of a disturbance through the contacting particles in the bed, for erosion. We employ the expressions for the rates of erosion and deposition to show that after an abrupt change in the angle of inclination of the bed the characteristic time for the motion of the interface is much shorter than the characteristic time of the flow. This eliminates the need for introducing models of erosion and deposition rate in the mass balance; and the instantaneous value of the particle flux is the same function of the instantaneous value of the flow depth as in a steady, uniform flow.

  11. Deformation of a 3D granular media caused by fluid invasion

    Science.gov (United States)

    Dalbe, Marie-Julie; Juanes, Ruben

    2016-11-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing. Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  12. Deformation of a 3D granular media caused by fluid invasion

    Science.gov (United States)

    Dalbe, M. J.; Juanes, R.

    2016-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing (Sandnes et al., Nat. Comm. 2011, Holtzman et al., PRL 2012). Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  13. Colloquium: Biophysical principles of undulatory self-propulsion in granular media

    Science.gov (United States)

    Goldman, Daniel I.

    2014-07-01

    Biological locomotion, movement within environments through self-deformation, encompasses a range of time and length scales in an organism. These include the electrophysiology of the nervous system, the dynamics of muscle activation, the mechanics of the skeletal system, and the interaction mechanics of such structures within natural environments like water, air, sand, and mud. Unlike the many studies of cellular and molecular scale biophysical processes, movement of entire organisms (like flies, lizards, and snakes) is less explored. Further, while movement in fluids like air and water is also well studied, little is known in detail of the mechanics that organisms use to move on and within flowable terrestrial materials such as granular media, ensembles of small particles that collectively display solid, fluid, and gaslike behaviors. This Colloquium reviews recent progress to understand principles of biomechanics and granular physics responsible for locomotion of the sandfish, a small desert-dwelling lizard that "swims" within sand using undulation of its body. Kinematic and muscle activity measurements of sand swimming using high speed x-ray imaging and electromyography are discussed. This locomotion problem poses an interesting challenge: namely, that equations that govern the interaction of the lizard with its environment do not yet exist. Therefore, complementary modeling approaches are also described: resistive force theory for granular media, multiparticle simulation modeling, and robotic physical modeling. The models reproduce biomechanical and neuromechanical aspects of sand swimming and give insight into how effective locomotion arises from the coupling of the body movement and flow of the granular medium. The argument is given that biophysical study of movement provides exciting opportunities to investigate emergent aspects of living systems that might not depend sensitively on biological details.

  14. Shearing fluid-filled granular media: A coupled discrete element - continuous approach

    Science.gov (United States)

    Goren, L.; Aharonov, E.; Sparks, D.; Toussaint, R.; Marder, E.

    2012-04-01

    Fluid-filled granular layers are abundant in the Earth's shallow crust as saturated soils and poorly consolidated hillslope material, and as fluid-filled fault gouge layers. When such grains-fluid systems are subjected to excitation by the passage of seismic waves, tectonic loading, or gravitational loading they exhibit a highly non-trivial dynamical behavior that may lead to instabilities in the form of soil liquefaction, debris flow mobilization, and earthquakes. In order to study the basic coupled mechanics of fluid-filled granular media and the dynamical processes that are responsible for the emergence of instabilities we develop a model that couples granular dynamics (DEM) algorithm with a continuous Eulerian grid-based solver. The two components of the model represent the two phases (grains and fluid) in two different scales. Each grain is represented by a single element in the granular dynamics component, where grains interact by elastic collisions and frictional sliding. The compressible pore fluid is represented on a coarser Darcy scale grid that is super-imposed over the grains layer. The pore space geometry set by the evolving granular packing is used to define smooth porosity and permeability fields, and the individual grain velocities are interpolated to define a smooth field of a solid-fraction velocity. The porosity, permeability, and solid velocity fields are used in the continuous fluid grid-based solver to find pore fluid velocity and pressure. Pore fluid pressure gradients are interpolated back from the fluid grid to individual grains, where they enter the grains force balance equation as seepage forces. Boundary conditions are specified separately for the two phases. For the pore fluid we test two end-member drainage conditions: completely drained system (with infinite boundary permeability) and completely undrained system (with zero boundary permeability). For the grains, two-dimensional time dependent stress and velocity conditions are

  15. Effect of deformation on the thermal conductivity of granular porous media with rough grain surface

    Science.gov (United States)

    Askari, Roohollah; Hejazi, S. Hossein; Sahimi, Muhammad

    2017-08-01

    Heat transfer in granular porous media is an important phenomenon that is relevant to a wide variety of problems, including geothermal reservoirs and enhanced oil recovery by thermal methods. Resistance to flow of heat in the contact area between the grains strongly influences the effective thermal conductivity of such porous media. Extensive experiments have indicated that the roughness of the grains' surface follows self-affine fractal stochastic functions, and thus, the contact resistance cannot be accounted for by models based on smooth surfaces. Despite the significance of rough contact area, the resistance has been accounted for by a fitting parameter in the models of heat transfer. In this Letter we report on a study of conduction in a packing of particles that contains a fluid of a given conductivity, with each grain having a rough self-affine surface, and is under an external compressive pressure. The deformation of the contact area depends on the fractal dimension that characterizes the grains' rough surface, as well as their Young's modulus. Excellent qualitative agreement is obtained with experimental data. Deformation of granular porous media with grains that have rough self-affine fractal surface is simulated. Thermal contact resistance between grains with rough surfaces is incorporated into the numerical simulation of heat conduction under compressive pressure. By increasing compressive pressure, thermal conductivity is enhanced more in the grains with smoother surfaces and lower Young's modulus. Excellent qualitative agreement is obtained with the experimental data.

  16. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes

    Science.gov (United States)

    Johnson, P.A.; Savage, H.; Knuth, M.; Gomberg, J.; Marone, Chris

    2008-01-01

    It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence. ??2007 Nature Publishing Group.

  17. An equation of state for granular media at the limit state of isotropic compression

    Science.gov (United States)

    Oquendo, W. F.; Muñoz, J. D.; Radjai, F.

    2016-04-01

    It is well believed that the volumetric entropy of Edwards captures part of the physics of granular media, but it is still unclear whether it can be applied to granular systems under mechanical stress. By working out a recent proposal by Aste, Di Matteo et al. to measure Edwards' compactivity from the volume distribution of Voronoï or Delaunay tessellations (Phys. Rev. E, 77 (2008) 021309), and assuming that the total volume divides into elementary cells of fixed minimal volume, we derive an equation of state relating the compactivity to the packing fraction, and we show by extensive molecular-dynamics simulations that this equation and its underlying assumption describe well the volumetric aspects of both the limit state of isotropic compression and the limit state of shear (also called critical state in soil mechanics) for three-dimensional ensembles of mono-disperse spheres, for a broad range of the sliding and rolling friction coefficients. In addition, by using the limit state of isotropic compression as testing ground, we find that the compactivity, the entropy per elementary cell and the number of elementary cells per grain computed by this method are the same within statistical precision, either by using Voronoï, Delaunay, or centroidal Voronoï tessellations, allowing thus for an objective definition. This means that not only Aste's cell method is robust and suitable to measure Edwards' compactivity of granular systems under mechanical stress but also the actual nature of the elementary cells might be unimportant.

  18. Testing Occam's razor to characterize high-order connectivity in pore networks of granular media: Feature selection in machine learning

    Science.gov (United States)

    van der Linden, Joost; Tordesillas, Antoinette; Narsilio, Guillermo

    2017-06-01

    A perennial challenge for the characterization and modelling of phenomena involving granular media is that the internal connectivity of, and interactions between, the pores and the particles exhibit hallmarks of complexity: multi-scale and nonlinear interactions that lead to a plethora of patterns at the mesoscale, including fluid flow patterns that ultimately render a permeability of the granular media at the macroscale. A multitude of physical parameters exist to characterize geometry and structure, including pore/particle shape, volume and surface area, while a rich class of complex network parameters quantifies internal connectivity of the pore and particles in the material. A large collection of such variables is likely to exhibit a high degree of redundancy. Here we demonstrate how to use feature selection in machine learning theory to identify the most informative and non-redundant, yet parsimonious set of features that optimally characterizes the interstitial flow properties of porous, granular media, e.g., permeability, from high resolution data.

  19. Process Performance of Secondary Effluent Granular Media Filtration with and without Preozonation.

    Science.gov (United States)

    Merlo, Rion; De Las Casas, Carla; Henneman, Seppi; Witzgall, Robert; Yu, William; Ramberg, Steve; Parker, Denny; Ohlinger, Kurt

    2015-07-01

    A 10-month pilot study compared the performance of conventional granular media filtration (CGMF) with granular media filtration with preozonation (OGMF) to determine the effects of preozonation on filter performance. Filtration recoveries were lower for OGMF compared to CMGF when operated at a loading rate of 18.3 m/h. Operation at 18.3 m/h met turbidity requirements for California Department of Public Health Title 22 unrestricted reclaimed water requirements for both OGMF and CGMF. Preozonated secondary effluent at a transferred dose of 3 mg/L resulted in an increase in ultraviolet transmissivity (UVT) of approximately 6% and greater than 5-log inactivation of male-specific bacteriophage MS2. Wet weather flow events resulted in UVT decrease and a decline in MS2 inactivation to less than 3 log attributed to higher ozone demand in the secondary effluent. Preozonation increased N-nitrosodimethlyamine (NDMA) concentration approximately 10 times, but subsequent filtration reduced levels to secondary effluent values. A net increase in NDMA was observed at times.

  20. A k-{\\varepsilon} turbulence closure model of an isothermal dry granular dense matter

    Science.gov (United States)

    Fang, Chung

    2016-07-01

    The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k-{\\varepsilon} turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.

  1. Dry granular avalanche down a flume: Choice of discrete element simulation parameters

    Science.gov (United States)

    Yang, F.-L.; Chang, W. T.; Huang, Y. T.; Hsieh, S. H.; Chen, C. S.

    2013-12-01

    This paper presents a method to assign soft-sphere contact model parameters in a discrete-element simulation with which we can reproduce the experimentally measured avalanche dynamics of finite dry granular mass down a flume. We adopt the simplest linear model in which interaction force is decomposed along or tangent to the contact normal. The model parameters are chosen uniquely to satisfy theoretical models or to meet experimental evidences at either the particle or the bulk size level. The normal mode parameters are chosen specifically to ensure Hertzian contact time (but not its force-displacement history) and the resulting loss of particle kinetic energy, characterized by a measured coefficient of restitution, for each pair of colliding surfaces. We follow the literature to assign the tangential spring constant according to an elasticity model but propose a method to assign the friction coefficient using a measured bulk property that characterizes the bulk discharge volume flow rate. The linear contact model with the assigned parameters are evaluated by comparing the simulated bulk avalanche dynamics down three slopes to the experimental data, including instantaneous particle trajectories and bulk unsteady velocity profile. Satisfying quantitative agreement can be obtained except at the free surface and the early-time front propagation velocity.

  2. Fracturing in granular media: the role of capillarity, wetting, and disorder

    Science.gov (United States)

    Juanes, R.; Trojer, M.; de Anna, P.; Szulczewski, M. L.

    2015-12-01

    The advent of shale oil and shale gas into the energy landscape has relied on achieving vigorous stimulation of the rock by means of horizontal drilling and hydraulic fracturing. Traditionally, hydraulic fracturing is understood as a single-fluid-phase, pressure-driven process, in which the fluid (typically water with additives) is injected at a high-enough rate that the pressure builds up faster than it can dissipate by permeating into the rock, thereby fracturing it. However, the prevalent conditions for shale (ultra fine pore size, moderate overburden stress, and poor cementation) suggest that capillary forces could play an important role in the fracturing process. Here, we show the results of our recent experimental and theoretical studies on fracturing of granular media by means of injection of an immiscible fluid. We conduct carefully controlled injection experiments in a quasi-2D granular medium (a circular Hele-Shaw cell filled with glass beads), in an experimental set-up that allows us to systematically study the impact of capillarity (by varying injection rate, bead size, and fluid-fluid surface tension), wetting properties (by treating the beads and the cell plates by chemical vapor deposition of silane-based substances) and confinement (by varying the load on the cell). Our choice of defending and invading liquids and granular medium allows us to investigate a wide range of contact angles, from drainage to imbibition. We demonstrate that wettability exerts a powerful influence on the invasion/fracturing morphology of unfavorable mobility displacements. High time resolution imaging techniques and particle image velocimetry (PIV) allow us to quantify matrix displacement and fracture opening dynamics. Our results provide insights on fracture propagation, fracture length distribution and the fracture drainage area, parameters which are critically important to better understand long-term hydrocarbon production from shale.

  3. Liquid effect on the vibration of granular media in cylindrical cavities

    Science.gov (United States)

    Guzman, Enrique; Zenit, Roberto

    2010-11-01

    The study of the interactions of granular media with liquid phases is important both, from the academic applied points of view. A particularly interesting problem concerns the dispersion of the granular phase into the liquid phase. To this end, a series of experiments are being conducted in order to determine the conditions under which such dispersion takes place. The experimental apparatus consists of a short transparent cylinder (LvD) with its axis oriented in a horizontal position. The cavity is completely filled with liquid and a prescribed number of glass spheres forms a deposit layer at the bottom. The cylinder, which is initially at rest, is set into a vertical vibrating state of motion by means of an external actuator. While the amplitude of the excitation remains fixed, its frequency is swept (continously) from 5Hz to 15Hz. Synchronized high speed imaging is then used to identify the frequency at which the stratified-to-dispersed transition occurs. Preliminary results clearly indicate the essential role played by the properties of the liquid (i.e. density, viscosity and superficial tension) and of the spheres (i.e. size and number) during the process. The objective of the study is to determine the conditions required to produce appropriate dispersions for different combinations of liquids and spheres.

  4. In situ bioremediation: A network model of diffusion and flow in granular porous media

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W.

    1997-04-01

    In situ bioremediation is a potentially expedient, permanent and cost- effective means of waste site decontamination. However, permeability reductions due to the transport and deposition of native fines or due to excessive microorganism populations may severely inhibit the injection of supplemental oxygen in the contamination zone. To help understand this phenomenon, we have developed a micro-mechanical network model of flow, diffusion and particle transport in granular porous materials. The model differs from most similar models in that the network is defined by particle positions in a numerically-generated particle array. The model is thus widely applicable to computing effective transport properties for both ordered and realistic random porous media. A laboratory-scale apparatus to measure permeability reductions has also been designed, built and tested.

  5. Pseudo-hcp nonmagnetic intermediate layer for granular media with high perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Atsushi [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Saito, Shin [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Itagaki, Norikazu [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Takahashi, Migaku [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2008-01-07

    Materials with the hexagonal close-packed structure (hcp) and the face-centred-cubic structure with stacking faults (pseudo-hcp) are examined for the nonmagnetic intermediate layer (NMIL) in order to suppress variant growth of magnetic grains for granular-type perpendicular recording media. Judging from the analysis of the epitaxial growth of Co-based magnetic grains, it has been found that a lattice misfit between NMIL and magnetic grain of less than 6% and a spreading coefficient of wettability of magnetic grain on NMIL of greater than 0.3 J m{sup -3} are required for the recording layer to have high perpendicular magnetic anisotropy energy. (fast track communication)

  6. A two-layer depth-averaged approach to describe the regime stratification in collapses of dry granular columns

    Science.gov (United States)

    Sarno, L.; Carravetta, A.; Martino, R.; Tai, Y. C.

    2014-10-01

    The dynamics of dry granular flows is still insufficiently understood. Several depth-averaged approaches, where the flow motion is described through hydrodynamic-like models with suitable resistance laws, have been proposed in the last decades to describe the propagation of avalanches and debris flows. Yet, some important features of the granular flow dynamics cannot be well delivered. For example, it is very challenging to capture the progressive deposition process, observed in collapses and dam-break flows over rough beds, where an upper surface flow is found to coexist with a lower creeping flow. The experimental observations of such flows suggest the existence of a flow regime stratification caused by different momentum transfer mechanisms. In this work, we propose a two-layer depth-averaged model, aiming at describing such a stratification regime inside the flowing granular mass. The model equations are derived for both two-dimensional plane and axi-symmetric flows. Mass and momentum balances of each layer are considered separately, so that different constitutive laws are introduced. The proposed model is equipped with a closure equation accounting for the mass flux at the interface between the layers. Numerical results are compared with experimental data of axi-symmetric granular collapses to validate the proposed approach. The model delivers sound agreement with experimental data when the initial aspect ratios are small. In case of large initial aspect ratios, it yields a significant improvement in predicting the final shape of deposit and also the run-out distances. Further comparisons with different numerical models show that the two-layer approach is capable of correctly describing the main features of the final deposit also in the case of two-dimensional granular collapses.

  7. Acoustical properties of dry and saturated porous media

    Science.gov (United States)

    Adler, P. M.; Malinouskaya, I.; Mourzenko, V. V.; Thovert, J. F.

    2009-04-01

    Our objective is to determine the macroscopic acoustical properties of porous media (either dry or saturated by an interstitial fluid) and to relate them to the mechanical and hydromechanical characteristics of the medium and its components. Wave propagation in a dry elastic material is governed by the elastodynamic equation. For a dry medium, the stress is zero on the pore surface. The medium is supposed to be spatially periodic and composed of identical cells. When the wave length lambda is very large when compared to the scale l of the heterogeneities, the medium behaves in a first approximation as an equivalent homogeneous material. All the fields can expanded as series of the small parameter eta= l/2 pi lambda, in terms of two space variables associated to the scales lambda et l, respectively. This expansion is introduced into the elastodynamic equation with appropriate boundary conditions. A series of non homogeneous partial differential equations are found for the successive orders in eta. The predominant order corresponds to the equivalent homogeneous material. The first order equation provides the polarization correction, the second one the celerity dispersion and the third one the attenuation. These equations are discretized by a finite volume formulation in a tetrahedral mesh which is either structured or not. The resulting linear system is solved by a conjugate gradient method. Each elementary volume may have specific properties. Wave propagation in a saturated medium is more complex since it is influenced by the solid and liquid phases. When a periodic oscillation is imposed, the solid displacements are governed by the elastodynamic and the Stokes equations coupled by boundary conditions at the interface. The solutions to these equations yield the macroscopic characteristics of the medium. The first equation yields two independent problems in the solid, one identical to dry media and one corresponding to a medium submitted to an interstitial

  8. Influence of intergranular exchange coupling on the magnetization dynamics of CoCrPt:SiO{sub 2} granular media

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, R.; Schmidt, H. [School of Engineering, University of California-Santa Cruz, 1156 High Street, Santa Cruz, California 95064 (United States); Tibus, S. [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz (Germany); Springer, F. [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Fassbender, J. [Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Rohrmann, H. [OC Oerlikon Balzers AG, LI-9496 Balzers (Liechtenstein); Albrecht, M. [Institute of Physics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz (Germany)

    2012-08-01

    We investigate the effect of Co{sup +} irradiation on the magnetization dynamics of CoCrPt:SiO{sub 2} granular media. Increasing irradiation levels reduce the saturation magnetization and effective anisotropy, which decrease the intrinsic magnetization precession frequency. Furthermore, increasing intergranular exchange coupling results in a qualitative change in the behavior of the magnetic material from a collection of individual grains to a homogeneous thin film, as evidenced in both the switching behavior and dynamics. The frequency change cannot be explained by single crystal macrospin modeling, and can only be reproduced by the inclusion of the dipolar effects and anisotropy distribution inherent in a granular medium.

  9. Discharge flow of a granular media from a silo: effect of the packing fraction and of the hopper angle

    Science.gov (United States)

    Benyamine, Mebirika; Aussillous, Pascale; Dalloz-Dubrujeaud, Blanche

    2017-06-01

    Silos are widely used in the industry. While empirical predictions of the flow rate, based on scaling laws, have existed for more than a century (Hagen 1852, translated in [1] - Beverloo et al. [2]), recent advances have be made on the understanding of the control parameters of the flow. In particular, using continuous modeling together with a mu(I) granular rheology seem to be successful in predicting the flow rate for large numbers of beads at the aperture (Staron et al.[3], [4]). Moreover Janda et al.[5] have shown that the packing fraction at the outlet plays an important role when the number of beads at the apeture decreases. Based on these considerations, we have studied experimentally the discharge flow of a granular media from a rectangular silo. We have varied two main parameters: the angle of the hopper, and the bulk packing fraction of the granular material by using bidisperse mixtures. We propose a simple physical model to describe the effect of these parameters, considering a continuous granular media with a dilatancy law at the outlet. This model predicts well the dependance of the flow rate on the hopper angle as well as the dependance of the flow rate on the fine mass fraction of a bidisperse mixture.

  10. Pore structure of ore granular media by computerized tomography image processing

    Institute of Scientific and Technical Information of China (English)

    WU Ai-xiang; YANG Bao-hua; XI Yong; JIANG Huai-chun

    2007-01-01

    The pore structure images of ore particles located at different heights of leaching column were scanned with X-ray computerized tomography (CT) scanner, the porosity and pore size distribution were calculated and the geometrical shape and connectivity of pores were analyzed based on image process method, and the three dimensional reconstruction of pore structure images was realized. The results show that the porosity of ore particles bed in leaching column is 42.92%, 41.72%, 39.34% at top,middle and bottom zone, respectively. Obviously it has spatial variability and decreases appreciably along the height of the column.The overall average porosity obtained by image processing is 41.33% while the porosity gotten from general measurement method in laboratory is 42.77% showing the results of both methods are consistent well. The pore structure of ore granular media is characterized as a dynamical space network composed of interconnected pore bodies and pore throats. The ratio of throats with equivalent diameter less than 1.91 mm to the total pores is 29.31%, and that of the large pores with equivalent diameter more than 5.73 mm is 2.90%.

  11. Simple technique for texture function analysis in granular thin film media

    Energy Technology Data Exchange (ETDEWEB)

    El-Hilo, M., E-mail: mhilo@rocketmail.co [Physics Department, University of Bahrain, P.O. 32038, Sakhir (Bahrain); Al Saie, J. [Physics Department, University of Bahrain, P.O. 32038, Sakhir (Bahrain); Morales, M.P. [Instituto de Ciencia de Materiales de Madrid, CSIC. Sor Juana Ines de la Cruz 3, 28049 Cantoblanco, Madrid (Spain); Pita, M. [Chemistry and Biomolecular Sciences Department, Clarkson University, 8 Clarkson Avenue, Box 5810, Potsdam, NY 13699 (United States)

    2009-11-15

    In this work a simple technique to extract the texture function in granular thin film media is implemented. The technique is based on previous work in which the distribution function of particles easy axes f(alpha) is calculated from the measured parallel remanence curve (M{sub rp}(beta)). In this simple technique we consider that the measured M{sub rp}(beta) curve can be fitted to a series of cos(2beta), i.e. M{sub rp}(beta)=B{sub 0}+B{sub 2} cos(2beta)+B{sub 4} cos(4beta) where the angle beta is the angle by which the film is rotated. This approximation is found to be valid when the texture function has a standard deviation >20 deg. On this basis, the constants B{sub 0}, B{sub 2} and B{sub 4} can be determined by using only three data points for the parallel remanence, M{sub rp}(0), M{sub rp}(45 deg.) and M{sub rp}(90 deg.). The new technique is applied to a textured thin film consisting of cobalt ferrite particles 17 nm in diameter and to a commercial Sony video tape. Using this simple technique, the obtained texture functions are found to be similar to those obtained from the full M{sub rp}(beta) curves. This new technique will furnish a simple method with which the texture function in 2D systems can be obtained.

  12. Broken Symmetry in the Elastic Response to Temperature of Consolidated Granular Media

    Science.gov (United States)

    Ulrich, T. J.

    2006-05-01

    When subjected to externally applied forces consolidated granular media (CGM), take a Berea sandstone as example, are elastically soft, unusually nonlinear, and have hysteresis with end point memory. In response to a variety of transient external disturbances CGM exhibit slow dynamics, e.g. log(t) recovery of the strain following a step change in applied pressure. These elastic properties have led to a bricks (sand grains) and mortar (bond system) picture to describe the physics of the system. Because the grains are thermally anisotropic, temperature drives the bond system altogether differently than applied stress. Consequently temperature provides the means to probe new features in the elastic response of CGM. I describe an experiment/analysis in which the temperature, used to probe the elastic state of a CGM, reveals unusual behavior. The elastic state of CGM at fixed applied stress and temperature, is a function of the applied stress protocol and the temperature protocol. Working at constant stress I find that all aspects of the elastic response to temperature exhibit behavior which presents a broad range of time scales, i.e. slow dynamics, and the response to a transient temperature disturbance is asymmetric in the sign of ΔT(t).

  13. Spreading and Deposit Characteristics of a Rapid Dry Granular Avalanche Across 3D Topography: Experimental Study

    Science.gov (United States)

    Wang, Yu-Feng; Xu, Qiang; Cheng, Qian-Gong; Li, Yan; Luo, Zhong-Xu

    2016-11-01

    Aiming to understand the propagation and deposit behaviours of a granular avalanche along a 3D complex basal terrain, a new 3D experimental platform in 1/400 scale was developed according to the natural terrain of the Xiejiadianzi rock avalanche, with a series of laboratory experiments being conducted. Through the conduction of these tests, parameters, including the morphological evolution of sliding mass, run-outs and velocities of surficial particles, thickness contour and centre of final deposit, equivalent frictional coefficient, and energy dissipation, are documented and analysed, with the geomorphic control effect, material grain size effect, drop angle effect, and drop distance effect on rock avalanche mobility being discussed primarily. From the study, some interesting conclusions for a better understanding of rock avalanche along a 3D complex basal topography are reached. (1) For the granular avalanche tested in this study, great differences between the evolutions of the debris along the right and left branch valleys were observed, with an obvious geomorphic control effect on avalanche mobility presented. In addition, some other interesting features, including groove-like trough and superelevation, were also observed under the control of the topographic interferences. (2) The equivalent frictional coefficients of the granular avalanches tested here range from 0.48 to 0.57, which is lower than that reached with a set-up composed of an inclined chute and horizontal plate and higher than that reached using a set-up composed of only an inclined chute. And the higher the drop angle and fine particle content, the higher the equivalent frictional coefficient. The effect of drop distance on avalanche mobility is minor. (3) For a granular avalanche, momentum transfer plays an important role in the motion of mass, which can accelerate the mobility of the front part greatly through delivering the kinetic energy of the rear part to the front.

  14. EXPERIMENTAL STUDIES OF STATIC BEHAVIOR OF GRANULAR MEDIA IN THE CAPACITIVE STRUCTURE

    Directory of Open Access Journals (Sweden)

    D. O. Bannikov

    2009-03-01

    Full Text Available In the paper the main results of experimental investigations made by the author on distribution of static pressure from granular material in a covered capacity structure are presented. The investigations were conducted on the small-sized steel constructions and provided for the variation both a row of constructive parameters of the experimental installation and the types of granular material.

  15. EXPERIMENTAL STUDIES OF STATIC BEHAVIOR OF GRANULAR MEDIA IN THE CAPACITIVE STRUCTURE

    OpenAIRE

    2009-01-01

    In the paper the main results of experimental investigations made by the author on distribution of static pressure from granular material in a covered capacity structure are presented. The investigations were conducted on the small-sized steel constructions and provided for the variation both a row of constructive parameters of the experimental installation and the types of granular material.

  16. Alternative granular media for the metal casting industry. Final report, September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Guichelaar, P.J.; Ramrattan, S.N.; Tieder, R.E. [Michigan Technological Univ., Houghton, MI (United States)

    1995-09-01

    Silica sand for foundry use is inexpensive to purchase, readily transported and widely available. As a result, it is universally used. However, three factors are becoming increasingly significant as more environmental regulations are promulgated. First, the disposal of waste foundry sand has become an excessively burdensome cost. Second, the phase changes which occur in the silica structure on heating and cooling cause thermal breakdown of the sand into smaller unusable fractions. Third, silica is a relatively weak mineral. Alternatives to silica sand which can withstand the rigors of repetitive reuse must be seriously evaluated as a way to control production costs of the domestic metal casting industry. Chromite sands, olivine sands and carbon sands have each been successfully used to solve operating problems and thus have developed their specific niches in the foundry materials inventory. However, there are several other materials that are candidates for replacing silica sand, such as fused alumina, sintered bauxite and sintered oil well proppants. These media, and others that are generically similar, are manufactured for specific purposes. Compositions and shapes could be readily tailored for used in a metal casting environment of total recycling and materials conservation. This study examines materials that are readily available as alternatives to silica sand from a functionality perspective and a cost perspective. Some of the alternative materials are natural and others are synthetic and thus referring to them as ``sands`` has the potential to cause confusion; the generic term ``granular medium`` is used in this study to mean any material that could functionally substitute for silica sand in the foundry process.

  17. Investigation of the processes of impregnation and drying of granular silica gel

    Science.gov (United States)

    Fedorov, A. V.; Zhilin, A. A.; Korobeinikov, Yu. G.

    2011-09-01

    The process of capillary impregnation and drying of silica gel grains in the acousto-convective drier of the ITPM of the Siberian branch of the Russian Academy of Sciences has been investigated experimentally. Two methods for humidifying a material with developed surface and internal structures have been considered. A comparison of these methods has been made and the influence of the impregnation rate on the geometry of silica gel grains has been analyzed. Silica gel grains were dried by three methods: microwave, convective, and acousto-convective. The dependence of the drying rate and the quality of the dried material on the chosen drying method has been shown. To describe the moisture extraction, we propose a mathematical model based on a two-dimensional diffusion equation written in the cylindrical system of coordinates. The moisture distribution in cylindrical samples consisting of silica gel grains has been obtained numerically for various values of the initial moisture content with the use of certain diffusion coefficients and the dependence of the moisture transfer coefficient on the frequency of acousto-convective action.

  18. A parallel version of the non smooth contact dynamics algorithm applied to the simulation of granular media

    Science.gov (United States)

    Renouf, Mathieu; Dubois, Frederic; Alart, Pierre

    2004-07-01

    The NSCD method has shown its efficiency in the simulation of granular media. Since the number of particles and contact increases, the shape of the discrete elements becomes more complicated and the simulated problems becomes more complex, the numerical tools need to be improved in order to preserve reasonable elapsed CPU time. In this paper we present a parallelization approach of the NSCD algorithm and we investigate its influence on the numerical behaviour of the method. We illustrate the efficiency on an example made of hard disks: a free surface compaction.

  19. Avalanches in dry and saturated disordered media at fracture.

    Science.gov (United States)

    Milanese, Enrico; Yılmaz, Okan; Molinari, Jean-François; Schrefler, Bernhard

    2016-04-01

    This paper analyzes fracturing in inhomogeneous media under dry and fully saturated conditions. We adopt a central force model with continuous damage to study avalanche behavior in a two-dimensional truss lattice undergoing dilation. Multiple fractures can develop at once and a power-law distribution of the avalanche size is observed. The values for the power-law exponent are compared with the ones found in the literature and scale-free behavior is suggested. The fracture evolves intermittently in time because only some avalanches correspond to fracture advancement. A fully saturated model with continuous damage based on the extended Biot's theory is developed and avalanche behavior is studied in the presence of fluid, varying the fluid boundary conditions. We show that power-law behavior is destroyed when the fluid flux governs the problem. Fluid pressure behavior during intermittent crack tip advancement is studied for the continuous-damage fully saturated model. It is found that when mechanical loading prevails, the pressure rises when the crack advances, while when fluid loading prevails, the pressure drops when the crack advances.

  20. Investigation of 3D surface acoustic waves in granular media with 3-color digital holography

    Science.gov (United States)

    Leclercq, Mathieu; Picart, Pascal; Penelet, Guillaume; Tournat, Vincent

    2017-01-01

    This paper reports the implementation of digital color holography to investigate elastic waves propagating along a layer of a granular medium. The holographic set-up provides simultaneous recording and measurement of the 3D dynamic displacement at the surface. Full-field measurements of the acoustic amplitude and phase at different excitation frequencies are obtained. It is shown that the experimental data can be used to obtain the dispersion curve of the modes propagating in this granular medium layer. The experimental dispersion curve and that obtained from a finite element modeling of the problem are found to be in good agreement. In addition, full-field images of the interaction of an acoustic wave guided in the granular layer with a buried object are also shown.

  1. Numerical inversion of the Laplace transform in some problems of granular media dynamics

    Science.gov (United States)

    Yavich, Nikolay B.

    2004-04-01

    Approximated value for the vertical displacement of a surface bounding a half space and a layer laying on rigid foundation filled with granular medium caused by a vertical symmetric load is received here. The results obtained for Kandaurov standard linear medium model are used. This model takes in account an internal friction. The Papoulis method of numerical inversion of the Laplace transform is applied.

  2. Vibration-induced liquefaction of granular suspensions.

    Science.gov (United States)

    Hanotin, C; Kiesgen de Richter, S; Marchal, P; Michot, L J; Baravian, C

    2012-05-11

    We investigate the mechanical behavior of granular suspensions subjected to coupled vibrations and shear. At high shear stress, whatever the mechanical vibration energy and bead size, the system behaves like a homogeneous suspension of hard spheres. At low shear stress, in addition to a dependence on bead size, vibration energy drastically influences the viscosity of the material that can decrease by more than 2 orders of magnitude. All experiments can be rationalized by introducing a hydrodynamical Peclet number defined as the ratio between the lubrication stress induced by vibrations and granular pressure. The behavior of vibrated wet and dry granular materials can then be unified by assimilating the hookean stress in dry media to the lubrication stress in suspensions.

  3. 筒仓内散体静态屈服的研究%Study of Static Yield of Granular Media in Silo

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper,the granular media in storage is supposed to be elastic-perfectly plastic behaviour material submitting to Mohr-Coulomb yield criterion,and friction effect between granular media and silo wall is supposed to be Coulomb friction contact problem.The factors influencing the yield state of static graunlar media in rigid silo are studied,a method is proposed which is using granular media critical internal friction angle to identify whether the static granular media is in yield state,and the problems are simulated numerically with finite element method.%认为仓贮散体为服从Mohr—Coulomb屈服准则的理想弹塑性材料,散体与仓壁之间的摩擦属于Coulomb摩擦接触问题。就刚性筒仓讨论研究了静态时影响散体进入屈服状态的有关因素,提出了一种由散体临界内摩擦角来判断静态散体是否进入屈服状态的方法,并用有限元法做了数值模拟。

  4. Quantifying the Micromechanical Effects of Variable Cement in Granular Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, Laurel B.; Boutt David F.

    2010-02-18

    The mechanical and hydrologic behavior of clastic rocks and sediments is fundamentally controlled by variables such as grain size and shape, sorting, grain and cement mineralogy, porosity, and %cement - parameters that are not used directly in field-scale models of coupled flow and deformation. To improve our understanding of the relationship between these micromechanical properties and bulk behavior we focused on (1) relating detailed, quantitative characterization of the grain-pore systems to both hydrologic and mechanical properties of a suite of variably quartz-cemented quartz arenite samples and (2) the use of a combination of discrete element method (DEM) and poroelastic models parameterized by data from the natural samples to isolate and compare the influence of changes in the mechanical and hydrologic properties of granular porous media due to changes in degree of cementation. Quartz overgrowths, the most common form of authigenic cements in sandstones, are responsible for significant porosity and permeability reduction. The distribution of quartz overgrowths is controlled by available pore space and the crystallographic orientations of individual quartz grains. Study of the St. Peter Sandstone allowed evaluation of the relative effects of quartz cementation and compaction on final grain and pore morphology, showing that progressive quartz cementation modifies the grain framework in consistent, predictable ways. Detailed microstructural characterization and multiple regression analyses show that with progressive diagenesis, the number and length of grain contacts increases as the number of pores increases, the number of large, well-connected pores decreases, and pores become rounder. These changes cause a decrease in pore size variability that leads to a decrease in bulk permeability and both stiffening and strengthening of the grain framework. The consistent nature of these changes allows us to predict variations in hydrologic and mechanical properties

  5. Water retention against drying with soft-particle suspensions in porous media

    Science.gov (United States)

    Keita, E.; Kodger, T. E.; Faure, P.; Rodts, S.; Weitz, D. A.; Coussot, P.

    2016-09-01

    Polymers suspended in granular packings have a significant impact on water retention, which is important for soil irrigation and the curing of building materials. Whereas the drying rate remains constant during a long period for pure water due to capillary flow providing liquid water to the evaporating surface, we show that it is not the case for a suspension made of soft polymeric particles called microgels: The drying rate decreases immediately and significantly. By measuring the spatial water saturation and concentration of suspended particles with magnetic resonance imaging, we can explain these original trends and model the process. In low-viscosity fluids, the accumulation of particles at the free surface induces a recession of the air-liquid interface. A simple model, assuming particle transport and accumulation below the sample free surface, is able to reproduce our observations without any fitting parameters. The high viscosity of the microgel suspension inhibits flow towards the free surface and a drying front appears. We show that water vapor diffusion over a defined and increasing length sets the drying rate. These results and model allow for better controlling the drying and water retention in granular porous materials.

  6. From continuum analytical description to discrete numerical modelling of localized fluidization in granular media

    Science.gov (United States)

    Puig i Montellà, Eduard; Toraldo, Marcella; Chareyre, Bruno; Sibille, Luc

    2017-06-01

    We present analytical and numerical results on localized fluidization within a granular layer subjected to a local injection of fluid. As the injection rate increases the three different regimes previously reported in the literature are recovered: homogeneous expansion of the bed, fluidized cavity in which fluidization starts developing above the injection area, and finally the chimney of fluidized grains when the fluidization zone reaches the free surface. The analytical approach is at the continuum scale, based on Darcy's law and Therzaghi's effective stress principle. It provides a good description of the phenomenon as long as the porosity of the granular assembly remains relatively homogeneous. The numerical approach is at the particle scale based on the coupled DEM-PFV method. It tackles the more heterogeneous situations which occur at larger injection rates. A direct link is evidenced between the occurrence of the different regimes of fluidization and the injection aperture. Finally, the merging of chimneys in case of two injection points is investigated.

  7. Multiple-contact discrete-element model for simulating dense granular media

    Science.gov (United States)

    Brodu, Nicolas; Dijksman, Joshua A.; Behringer, Robert P.

    2015-03-01

    This article presents a new force model for performing quantitative simulations of dense granular materials. Interactions between multiple contacts (MC) on the same grain are explicitly taken into account. Our readily applicable MC-DEM method retains all the advantages of discrete-element method simulations and does not require the use of costly finite-element methods. The new model closely reproduces our recent experimental measurements, including contact force distributions in full 3D, at all compression levels of the packing up to the experimental maximum limit of 13%. Comparisons with classic simulations using the nondeformable spheres approach, as well as with alternative models for interactions between multiple contacts, are provided. The success of our model, compared to these alternatives, demonstrates that interactions between multiple contacts on each grain must be included for dense granular packings.

  8. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media

    Science.gov (United States)

    Antony, S. J.; Kruyt, N. P.

    2009-03-01

    The interlink between particle-scale properties and macroscopic behavior of three-dimensional granular media subjected to mechanical loading is studied intensively by scientists and engineers, but not yet well understood. Here we study the role of key particle-scale properties, such as interparticle friction and particle elastic modulus, in the functioning of dual contact force networks, viz., strong and weak contacts, in mobilizing shear strength in dense granular media subjected to quasistatic shearing. The study is based on three-dimensional discrete element method in which particle-scale constitutive relations are based on well-established nonlinear theories of contact mechanics. The underlying distinctive contributions of these force networks to the macroscopic stress tensor of sheared granular media are examined here in detail to find out how particle-scale friction and particle-scale elasticity (or particle-scale stiffness) affect the mechanism of mobilization of macroscopic shear strength and other related properties. We reveal that interparticle friction mobilizes shear strength through bimodal contribution, i.e., through both major and minor principal stresses. However, against expectation, the contribution of particle-scale elasticity is mostly unimodal, i.e., through the minor principal stress component, but hardly by the major principal stress. The packing fraction and the geometric stability of the assemblies (expressed by the mechanical coordination number) increase for decrease in interparticle friction and elasticity of particles. Although peak shear strength increases with interparticle friction, the deviator strain level at which granular systems attain peak shear strength is mostly independent of interparticle friction. Granular assemblies attain peak shear strength (and maximum fabric anisotropy of strong contacts) when a critical value of the mechanical coordination number is attained. Irrespective of the interparticle friction and elasticity

  9. Two dimension porous media reconstruction using granular model under influence of gravity

    OpenAIRE

    Sundari, Pury; Fauzi, Umar; Irayani, Zaroh; Viridi, Sparisoma

    2011-01-01

    Modeling of pores generation in 2-D with granular grains using molecular dynamics method is reported in this work. Grains with certain diameter distribution are let falling due to gravity. Three configurations (larger diameter on top, smaller diameter on top, and mixed) and two kinds of mixture (same grains density and same grains mass) are used in the simulation. Mixture with heterogen density gives higher porosity than the homogen one for higher initial height, but change into opposite cond...

  10. Wave Propagation and Dynamic Load Transfer due to Explosive Loading in Heterogenous Granular Media with Microstructure

    Science.gov (United States)

    1992-09-30

    in Granular Assemblies with Microstructural Defects", J. of Engineering Mechanics, Vol. 118, No. 1, Jan . 1992, pp. 190-201. 8. Shukla A. and Sadd, M. H...equivalent micropolar continuum has been investigated by Banks and Sokolowski (1968), Bazant and Christensen (1972) and Sun and Yang (1975). The...pp. 17 -2 3 . Bazant , Z. P. and Chr ;tensen, M. (1972) "Analogy Between Micropolar Continuum and Grid Frameworks Under Initial Stress’, Int. J. Solids

  11. Coupled discrete element modeling of fluid injection into dense granular media

    Science.gov (United States)

    Zhang, Fengshou; Damjanac, Branko; Huang, Haiying

    2013-06-01

    The coupled displacement process of fluid injection into a dense granular medium is investigated numerically using a discrete element method (DEM) code PFC2D® coupled with a pore network fluid flow scheme. How a dense granular medium behaves in response to fluid injection is a subject of fundamental and applied research interests to better understand subsurface processes such as fluid or gas migration and formation of intrusive features as well as engineering applications such as hydraulic fracturing and geological storage in unconsolidated formations. The numerical analysis is performed with DEM executing the mechanical calculation and the network model solving the Hagen-Poiseuille equation between the pore spaces enclosed by chains of particles and contacts. Hydromechanical coupling is realized by data exchanging at predetermined time steps. The numerical results show that increase in the injection rate and the invading fluid viscosity and decrease in the modulus and permeability of the medium result in fluid flow behaviors displaying a transition from infiltration-governed to infiltration-limited and the granular medium responses evolving from that of a rigid porous medium to localized failure leading to the development of preferential paths. The transition in the fluid flow and granular medium behaviors is governed by the ratio between the characteristic times associated with fluid injection and hydromechanical coupling. The peak pressures at large injection rates when fluid leakoff is limited compare well with those from the injection experiments in triaxial cells in the literature. The numerical analysis also reveals intriguing tip kinematics field for the growth of a fluid channel, which may shed light on the occurrence of the apical inverted-conical features in sandstone and magma intrusion in unconsolidated formations.

  12. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media

    NARCIS (Netherlands)

    Antony, S.J.; Kruyt, N.P.

    2009-01-01

    The interlink between particle-scale properties and macroscopic behavior of three-dimensional granular media subjected to mechanical loading is studied intensively by scientists and engineers, but not yet well understood. Here we study the role of key particle-scale properties, such as interparticle

  13. Influence of granulometry in the Hurst exponent of air liquid interfaces formed during capillary rising in a granular media

    Directory of Open Access Journals (Sweden)

    Gontijo Guilherme L.

    2017-01-01

    Full Text Available We report results concerning the fractal dimension of a air/fluid interface formed during the capillary rising of a fluid into a dense granular media. The system consists in a modified Hele-Shaw cell filled with grains at different granulometries and confined in a narrow gap between the glass plates. The system is then placed onto a water reservoir, and the liquid penetrates the medium due to capillary forces. We measure the Hurst exponent of the liquid/air interface with help of image processing, and follow the temporal evolution of the profiles. We observe that the Hurst exponent can be related with the granulometry, but the range of values are odd to the predicted values from models or theory.

  14. Numerical simulation of two-dimensional granular shearing flows and the friction force of a moving slab on the granular media

    Institute of Scientific and Technical Information of China (English)

    Cai Qing-Dong; Chen Shi-Yi; Sheng Xiao-Wei

    2011-01-01

    This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone. . In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent friction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough.

  15. Two dimension porous media reconstruction using granular model under influence of gravity

    Science.gov (United States)

    Sundari, Pury; Fauzi, Umar; Irayani, Zaroh; Viridi, Sparisoma

    2012-06-01

    Modeling of pores generation in 2-D with granular grains using molecular dynamics method is reported in this work. Grains with certain diameter distribution are let falling due to gravity. Three configurations (larger diameter in at upper layer, smaller diameter in at upper layer, and mixed) and two kinds of mixture (similar of grain density and mass) are used in the simulation. Mixture with heterogeneous density gives higher porosity than the homogeneous one for higher initial height, but change into opposite condition for lower initial height.

  16. Pore-scale Modelling of Capillarity in Swelling Granular Materials

    Science.gov (United States)

    Hassanizadeh, S. M.; Sweijen, T.; Nikooee, E.; Chareyre, B.

    2015-12-01

    Capillarity in granular porous media is a common and important phenomenon in earth materials and industrial products, and therefore has been studied extensively. To model capillarity in granular porous media, one needs to go beyond current models which simulate either two-phase flow in porous media or mechanical behaviour in granular media. Current pore-scale models for two-phase flow such as pore-network models are tailored for rigid pore-skeletons, even though in many applications, namely hydro-mechanical coupling in soils, printing, and hygienic products, the porous structure does change during two-phase flow. On the other hand, models such as Discrete Element Method (DEM), which simulate the deformable porous media, have mostly been employed for dry or saturated granular media. Here, the effects of porosity change and swelling on the retention properties was studied, for swelling granular materials. A pore-unit model that was capable to construct the capillary pressure - saturation curve was coupled to DEM. Such that the capillary pressure - saturation curve could be constructed for varying porosities and amounts of absorbed water. The study material was super absorbent polymer particles, which are capable to absorb water 10's to 200 times their initial weight. We have simulated quasi-static primary imbibition for different porosities and amounts of absorbed water. The results reveal a 3 dimensional surface between capillary pressure, saturation, and porosity, which can be normalized by means of the entry pressure and the effective water saturation to a unique curve.

  17. Modeling the impact of granular embedding media, and pulling versus pushing cells on growing cell clones

    Science.gov (United States)

    Drasdo, Dirk; Hoehme, Stefan

    2012-05-01

    In this paper, we explore how potential biomechanical influences on cell cycle entrance and cell migration affect the growth dynamics of cell populations. We consider cell populations growing in free, granular and tissue-like environments using a mathematical single-cell-based model. In a free environment we study the effect of pushing movements triggered by proliferation versus active pulling movements of cells stretching cell-cell contacts on the multi-cellular kinetics and the cell population morphotype. By growing cell clones embedded in agarose gel or cells of another type, one can mimic aspects of embedding tissues. We perform simulation studies of cell clones expanding in an environment of granular objects and of chemically inert cells. In certain parameter ranges, we find the formation of invasive fingers reminiscent of viscous fingering. Since the simulation studies are highly computation-time consuming, we mainly study one-cell-thick monolayers and show that for selected parameter settings the results also hold for multi-cellular spheroids. Finally, we compare our model to the experimentally observed growth dynamics of multi-cellular spheroids in agarose gel.

  18. Dissipation consistent fabric tensor definition from DEM to continuum for granular media

    Science.gov (United States)

    Li, X. S.; Dafalias, Y. F.

    2015-05-01

    In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.

  19. High-Performance Modeling and Simulation of Anchoring in Granular Media for NEO Applications

    Science.gov (United States)

    Quadrelli, Marco B.; Jain, Abhinandan; Negrut, Dan; Mazhar, Hammad

    2012-01-01

    NASA is interested in designing a spacecraft capable of visiting a near-Earth object (NEO), performing experiments, and then returning safely. Certain periods of this mission would require the spacecraft to remain stationary relative to the NEO, in an environment characterized by very low gravity levels; such situations require an anchoring mechanism that is compact, easy to deploy, and upon mission completion, easy to remove. The design philosophy used in this task relies on the simulation capability of a high-performance multibody dynamics physics engine. On Earth, it is difficult to create low-gravity conditions, and testing in low-gravity environments, whether artificial or in space, can be costly and very difficult to achieve. Through simulation, the effect of gravity can be controlled with great accuracy, making it ideally suited to analyze the problem at hand. Using Chrono::Engine, a simulation pack age capable of utilizing massively parallel Graphic Processing Unit (GPU) hardware, several validation experiments were performed. Modeling of the regolith interaction has been carried out, after which the anchor penetration tests were performed and analyzed. The regolith was modeled by a granular medium composed of very large numbers of convex three-dimensional rigid bodies, subject to microgravity levels and interacting with each other with contact, friction, and cohesional forces. The multibody dynamics simulation approach used for simulating anchors penetrating a soil uses a differential variational inequality (DVI) methodology to solve the contact problem posed as a linear complementarity method (LCP). Implemented within a GPU processing environment, collision detection is greatly accelerated compared to traditional CPU (central processing unit)- based collision detection. Hence, systems of millions of particles interacting with complex dynamic systems can be efficiently analyzed, and design recommendations can be made in a much shorter time. The figure

  20. Drying techniques for the visualisation of agarose-based chromatography media by scanning electron microscopy.

    Science.gov (United States)

    Nweke, Mauryn C; Turmaine, Mark; McCartney, R Graham; Bracewell, Daniel G

    2017-03-01

    The drying of chromatography resins prior to scanning electron microscopy is critical to image resolution and hence understanding of the bead structure at sub-micron level. Achieving suitable drying conditions is especially important with agarose-based chromatography resins, as over-drying may cause artefact formation, bead damage and alterations to ultrastructural properties; and under-drying does not provide sufficient resolution for visualization under SEM. This paper compares and contrasts the effects of two drying techniques, critical point drying and freeze drying, on the morphology of two agarose based resins (MabSelect™/dw ≈85 µm and Capto™ Adhere/dw ≈75 µm) and provides a complete method for both. The results show that critical point drying provides better drying and subsequently clearer ultrastructural visualization of both resins under SEM. Under this protocol both the polymer fibers (thickness ≈20 nm) and the pore sizes (diameter ≈100 nm) are clearly visible. Freeze drying is shown to cause bead damage to both resins, but to different extents. MabSelect resin encounters extensive bead fragmentation, whilst Capto Adhere resin undergoes partial bead disintegration, corresponding with the greater extent of agarose crosslinking and strength of this resin. While freeze drying appears to be the less favorable option for ultrastructural visualization of chromatography resin, it should be noted that the extent of fracturing caused by the freeze drying process may provide some insight into the mechanical properties of agarose-based chromatography media.

  1. How methylhydroxyethylcellulose (MHEC) influences drying in porous media

    NARCIS (Netherlands)

    Faiyas, A.P.A.; Erich, S.J.F.; Soestbergen, M. van; Huinink, H.P.; Adan, O.C.G.; Nijland, T.G.

    2015-01-01

    This article presents both an experimental as well as a theoretical study on the effect of MethylHy droxyEthylCellulose (MHEC) on drying in porous materials using Nuclear Magnetic Resonance Imaging (NMR). MHEC, a water soluble polymer, is normally added to glue mortars as a water retention agent in

  2. A Study of the Behavior and Micromechanical Modelling of Granular Soil. Volume 3. A Numerical Investigation of the Behavior of Granular Media Using Nonlinear Discrete Element Simulation

    Science.gov (United States)

    1991-05-22

    Eisenberg 1987). Among other formulations, the existing models are based on the theories of elasticity, hypoelasticity , plasticity and viscoplasticity...AD-A238 158 AFOSR4R. 91 069.1 A STUDY OF THE BEHAVIOR AND MICROMECHANICAL MODELLING OF GRANULAR SOIL DTIC VOLUME mI ELECTIE A NUMERICAL INVESTIGATION...Final 1/6/ 9-5/15/91 4. nU AN SUS"Ll5. FUNDING NUMBERS A Study of the Behavior and Micromechanical Modelling of Grant AFOSR-89-0350 Granular Soil PR

  3. Fate and Transport of Graphene Oxide in Granular Porous Media: Experimental Results and Modeling

    Science.gov (United States)

    Gao, Bin

    2014-05-01

    Although graphene oxide (GO) has been used in many applications to improve human life quality, its environmental fate and behavior are still largely unknown. In this work, a range of laboratory experiments were conducted to explore the aggregation, deposition, and transport mechanisms of GO nano-sheets in porous media under various conditions. Stability experimental data showed that both cation valence and pH showed significant effect on the aggregation of GO sheets. The measured critical coagulation concentrations were in good agreement with the predictions of the extended Schulze-Hardy rule. Sand column experimental results indicated that deposition and transport of GO in porous media were strongly dependent on solution ionic strength. Particularly, GO showed high mobility under low ionic strength conditions in both saturated and unsaturated columns. Increasing ionic strength dramatically increased the retention of GO in porous media, mainly through secondary-minimum deposition. Recovery rates of GO in unsaturated sand columns were lower than that in saturated columns under the same ionic strength conditions, suggesting moisture content also played an important role in the retention of GO in porous media. Findings from the bubble column experiments showed that the GO did not attach to the air-water interface, which is consistent with the XDLVO predictions. Additional retention mechanisms, such as film straining, thus could be responsible to the reduced mobility of GO in unsaturated porous media. The breakthrough curves of GO in saturated and unsaturated columns could be accurately simulated by an advection-dispersion-reaction model.

  4. Slithering on sand: kinematics and controls for success on granular media

    Science.gov (United States)

    Schiebel, Perrin E.; Zhang, Tingnan; Dai, Jin; Gong, Chaohui; Yu, Miao; Astley, Henry C.; Travers, Matthew; Choset, Howie; Goldman, Daniel I.

    Previously, we studied the subsurfacelocomotion of undulatory sand-swimming snakes and lizards; using empirical drag response of GM to subsurface intrusion of simple objects allowed us to develop a granular resistive force theory (RFT) to model the locomotion and predict optimal movement patterns. However, our knowledge of the physics of GM at the surface is limited; this makes it impossible to determine how the desert-dwelling snake C. occipitalis moves effectively (0.45 +/-0.04 bodylengths/sec) on the surface of sand .We combine organism biomechanics studies, GM drag experiments, RFT calculations and tests of a physical model (a snake-like robot), to reveal how multiple factors acting together contribute to slithering on sandy surfaces. These include the kinematics--targeting an ideal waveform which maximizes speed while minimizing joint-level torque, the ability to modulate ground interactions by lifting body segments, and the properties of the GM. Based on the sensitive nature of the relationship between these factors, we hypothesize that having an element of force-based control, where the waveform is modulated in response to the forces acting between the body and the environment, is necessary for successful locomotion on yielding substrates.

  5. VELOCITY FIELD COMPUTATION IN VIBRATED GRANULAR MEDIA USING AN OPTICAL FLOW BASED MULTISCALE IMAGE ANALYSIS METHOD

    Directory of Open Access Journals (Sweden)

    Johan Debayle

    2011-05-01

    Full Text Available An image analysis method has been developed in order to compute the velocity field of a granular medium (sand grains, mean diameter 600 μm submitted to different kinds of mechanical stresses. The differential method based on optical flow conservation consists in describing a dense motion field with vectors associated to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best compromise between accuracy and robustness of the results, while enabling an acceptable computation time. The corresponding algorithmis presented and its validation discussed through different tests. The results of the validation tests of the proposed approach show that the method is satisfactory when attributing specific values to parameters in association with the size of the image analysis window. An application in the case of vibrated sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration G, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles are deduced and allow to precisely quantify the dimensions of the fluidized region as a function of G.

  6. A multilayer shallow model for dry granular flows with the $\\mu(I)$ rheology: Application to granular collapse on erodible beds

    CERN Document Server

    Fernández-Nieto, Enrique D; Mangeney, Anne; Narbona-Reina, Gladys

    2015-01-01

    In this work we present a multilayer shallow model to approximate the Navier-Stokes equations with hydrostatic pressure and the $\\mu(I)$-rheology. The main advantages of this approximation are (i) the low cost associated with the numerical treatment of the free surface of the modelled flows, (ii) exact conservation of mass and (iii) the ability to compute 3D profiles of the velocities in the directions along and normal to the slope. The derivation of the model follows [14] and introduces a dimensional analysis based on the shallow flow hypothesis. The proposed first order multilayer model fully satisfies a dissipative energy equation. A comparison with an analytical solution with a non-constant normal profile of the downslope velocity demonstrates the accuracy of the numerical model. Finally, by comparing the numerical results with experimental data, we show that the proposed multilayer model with the $\\mu(I)$-rheology reproduces qualitatively the effect of the erodible bed on granular flow dynamics and depos...

  7. Predicting release and transport of pesticides from a granular formulation during unsaturated diffusion in porous media

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Soto-Gómez, Diego; Pérez-Rodrígez, Paula

    2014-01-01

    The release and transport of active ingredients (AIs) from controlled-release formulations (CRFs) have potential to reduce groundwater pesticide pollution. These formulations have a major effect on the release rate and subsequent transport to groundwater. Therefore the influence of CRFs should...... be included in modeling non-point source pollution by pesticides. We propose a simplified approach that uses a phase transition equation coupled to the diffusion equation that describes the release rate of AIs from commercial CRFs in porous media; the parameters are as follows: a release coefficient......, the solubility of the AI, and diffusion transport with decay. The model gives acceptable predictions of the pesticides release from commercial CRFs in diffusion cells filled with quartz sand. This approach can be used to study the dynamics of the CRF-porous media interaction. It also could be implemented in fate...

  8. Thermal conductivity of granular porous media: A pore scale modeling approach

    Directory of Open Access Journals (Sweden)

    R. Askari

    2015-09-01

    Full Text Available Pore scale modeling method has been widely used in the petrophysical studies to estimate macroscopic properties (e.g. porosity, permeability, and electrical resistivity of porous media with respect to their micro structures. Although there is a sumptuous literature about the application of the method to study flow in porous media, there are fewer studies regarding its application to thermal conduction characterization, and the estimation of effective thermal conductivity, which is a salient parameter in many engineering surveys (e.g. geothermal resources and heavy oil recovery. By considering thermal contact resistance, we demonstrate the robustness of the method for predicting the effective thermal conductivity. According to our results obtained from Utah oil sand samples simulations, the simulation of thermal contact resistance is pivotal to grant reliable estimates of effective thermal conductivity. Our estimated effective thermal conductivities exhibit a better compatibility with the experimental data in companion with some famous experimental and analytical equations for the calculation of the effective thermal conductivity. In addition, we reconstruct a porous medium for an Alberta oil sand sample. By increasing roughness, we observe the effect of thermal contact resistance in the decrease of the effective thermal conductivity. However, the roughness effect becomes more noticeable when there is a higher thermal conductivity of solid to fluid ratio. Moreover, by considering the thermal resistance in porous media with different grains sizes, we find that the effective thermal conductivity augments with increased grain size. Our observation is in a reasonable accordance with experimental results. This demonstrates the usefulness of our modeling approach for further computational studies of heat transfer in porous media.

  9. Discrete volumetric digital image correlation for the investigation of granular type media at microscale: accuracy assessment

    Directory of Open Access Journals (Sweden)

    Bornert M.

    2010-06-01

    Full Text Available The recent development of efficient 3D imaging tools such as X-Rays computed microtomography combined with the extension to volumetric images of Digital Image Correlation (DIC techniques provide new insights on the analysis of materials and structures. Among many other possible fields of application, geomaterials are good candidates for such investigations, owing to their relative transparency to X-rays and the presence in many samples of a natural contrast suitable for deformation mapping. However, these materials often deform discontinuously at microscale, for instance in the form of the development of a networks of microcracks. Discontinuity is even the dominant rule in granular-type materials such as sand in which the contribution to overall deformation of the microcontinuous phenomena -elastic strains inside grains- are negligible. To investigate deformation at the scale of these discontinuous mechanisms, specific DIC algorithms are required, which override the assumption of continuity of the transformation at the scale of the correlation windows. The recent so-called Discrete-DIC procedure (Hall et al, 2010 is a possible answer. We recall here its general principles and focus on its potential accuracy, from both theoretical and practical points of view. We show that the position and the rotation of individual grains with an average diameter of 500µm can be determined from images recorded with a laboratory microCT scanner, with a 15µm voxel size, with an accuracy of the order of 1µm and 0,1 degree, respectively.

  10. Bonding Strength Effects in Hydro-Mechanical Coupling Transport in Granular Porous Media by Pore-Scale Modeling

    Directory of Open Access Journals (Sweden)

    Zhiqiang Chen

    2016-03-01

    Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.

  11. Hydraulic bridges in unsaturated coarse granular media: Influence of bridge size and conductivity on flow through clasts

    Science.gov (United States)

    Jayakody, Jeevan A.; Nicholl, Michael J.

    2016-10-01

    Unsaturated flow in coarse granular media must pass through hydraulic bridges (e.g., pendular water, porous connections) that form a physical connection between adjoining clasts. Previous studies suggest that volumetric flow through a porous clast (Q) will be linearly dependent on the cross-sectional area of the hydraulic bridges, and understate the importance of bridge conductivity. Numerical simulations were performed to explore steady-state flow through a spherical clast with identical bridges located at the top and bottom. The cross-sectional area of the bridges relative to that of the clast (Ar) was varied across six orders of magnitude. The ratio of hydraulic conductivity between bridges and clasts (Kb/Kc) was varied across 12 orders of magnitude to consider resistive, neutral, and conductive bridges. Results show that hydraulic bridges place a primary control on both Q and flux distribution within the clast. For neutral and conductive bridges (Kb/Kc ≥1), Ar is the dominant factor in determining Q, while Kb/Kc is the primary control for resistive bridges (Kb/Kc < 1). For all bridges, Q shows a non-linear dependency on both Ar and Kb/Kc. The intra-clast flow distribution shifts outwards as Ar increases. Conductive bridges promote this process and resistive bridges impede it.

  12. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability

    Science.gov (United States)

    van der Linden, Joost H.; Narsilio, Guillermo A.; Tordesillas, Antoinette

    2016-08-01

    We present a data-driven framework to study the relationship between fluid flow at the macroscale and the internal pore structure, across the micro- and mesoscales, in porous, granular media. Sphere packings with varying particle size distribution and confining pressure are generated using the discrete element method. For each sample, a finite element analysis of the fluid flow is performed to compute the permeability. We construct a pore network and a particle contact network to quantify the connectivity of the pores and particles across the mesoscopic spatial scales. Machine learning techniques for feature selection are employed to identify sets of microstructural properties and multiscale complex network features that optimally characterize permeability. We find a linear correlation (in log-log scale) between permeability and the average closeness centrality of the weighted pore network. With the pore network links weighted by the local conductance, the average closeness centrality represents a multiscale measure of efficiency of flow through the pore network in terms of the mean geodesic distance (or shortest path) between all pore bodies in the pore network. Specifically, this study objectively quantifies a hypothesized link between high permeability and efficient shortest paths that thread through relatively large pore bodies connected to each other by high conductance pore throats, embodying connectivity and pore structure.

  13. The evolution of orientational order in sheared, 2D granular media of convex and concave elongated particles

    Science.gov (United States)

    Marschall, Theodore; Teitel, Stephen

    We simulate granular media consisting of elongated grains in two dimensions with a uniform background shear. We study the orientational distribution and rotation over a wide range of packing fractions, and find that the distribution reaches a stable steady-state under most initial conditions. The nematic director increases with the packing fraction, but the nematic order parameter exhibits non-monotonic behavior, which occurs well below jamming. We observe the evolution of the orientational distribution starting from configurations with the director out of alignment from its steady state orientation, and the evolution of highly ordered initial states. In general, the tumbling motion caused by the background shear causes such systems to reorder into the steady-state, but some dense, highly-ordered configurations maintain their order and exhibit wagging behavior. This can occur both above and below the jamming transition. These results for smooth, convex, spherocylindrical particles are contrasted with those for concave cross-like particles. This work is supported by NSF Grant DMRPD-09-1765.

  14. Experimental Study of the Composition and Structure of Granular Media in the Shear Bands Based on the HHC-Granular Model

    Directory of Open Access Journals (Sweden)

    Guang-jin Wang

    2014-01-01

    Full Text Available The researchers cannot control the composition and structure of coarse grained soil in the indoor experiment because the granular particles of different size have the characteristics of random distribution and no sorting. Therefore, on the basis of the laboratory tests with the coarse grained soil, the HHC-Granular model, which could simulate the no sorting and random distribution of different size particles in the coarse-grained soil, was developed by use of cellular automata method. Meanwhile, the triaxial numerical simulation experiments of coarse grained soil were finished with the different composition and structure soil, and the variation of shear strength was discussed. The results showed that the internal friction angle was likely to reduce with the increasing of gravel contents in the coarse-grained soil, but the mean internal friction angle significantly increased with the increment of gravel contents. It indicated that the gravel contents of shear bands were the major factor affecting the shear strength.

  15. Comparison of Modeling and Experimental Approaches for Improved Modeling of Filtration in Granular and Consolidated Media

    Science.gov (United States)

    Mirabolghasemi, M.; Prodanovic, M.; DiCarlo, D. A.

    2014-12-01

    Filtration is relevant to many disciplines from colloid transport in environmental engineering to formation damage in petroleum engineering. In this study we compare the results of the novel numerical modeling of filtration phenomenon on pore scale with the complementary experimental observations on laboratory scale and discuss how the results of comparison can be used to improve macroscale filtration models for different porous media. The water suspension contained glass beads of 200 micron diameter and flows through a packing of 1mm diameter glass beads, and thus the main filtration mechanism is straining and jamming of particles. The numerical model simulates the flow of suspension through a realistic 3D structure of an imaged, disordered sphere pack, which acts as the filter medium. Particle capture through size exclusion and jamming is modeled via a coupled Discrete Element Method (DEM) and Computational Fluid Dynamics (CFD) approach. The coupled CFD-DEM approach is capable of modeling the majority of particle-particle, particle-wall, and particle-fluid interactions. Note that most of traditional approaches require spherical particles both in suspension and the filtration medium. We adapted the interface between the pore space and the spherical grains to be represented as a triangulated surface and this allows extensions to any imaged media. The numerical and experimental results show that the filtration coefficient of the sphere pack is a function of the flow rate and concentration of the suspension, even for constant total particle flow rate. An increase in the suspension flow rate results in a decrease in the filtration coefficient, which suggests that the hydrodynamic drag force plays the key role in hindering the particle capture in random sphere packs. Further, similar simulations of suspension flow through a sandstone sample, which has a tighter pore space, show that filtration coefficient remains almost constant at different suspension flow rates. This

  16. Transient natural convection and heat transfer during the storage of granular media

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Acevedo, J.G.; Tsotsas, E. [Institute of Process Engineering, Otto-von-Guericke-University, P.O. Box 4120, 39106 Magdeburg (Germany)

    2008-07-01

    Transient heat transfer in an originally isothermal cylinder filled with a porous medium after sudden change of wall temperature is studied experimentally and computationally. Lab-scale experiments with water as the interstitial fluid are used in order to imitate the conditions prevailing in large, air-filled industrial silos. The proposed model assumes isotropy of the porous medium, local thermal equilibrium between the phases, Darcy flow and applicability of the Boussinesq approximation. Its predictions are in satisfactory agreement with the experimental results. Simulations reveal the role of dimensionless parameters like the modified porous media Rayleigh number and the cylinder aspect ratio. A criterion for neglecting the influence of natural convection on heat transfer is established. (author)

  17. An Analysis of the Seismic Source Characteristics of Explosions in Low-Coupling Dry Porous Media (Postprint)

    Science.gov (United States)

    2011-12-30

    tectonic source region, explosions in dry, porous media are typically observed to have, at a given yield, mb values lower than those in hard rock by...mb/yield relation for any fixed tectonic source region, explosions in dry, porous media, such as the dry tuffs and alluvium found above the water...broadband digital data recorded from NNSS explosions at the four near-regional stations of the LLNL seismic network. Because the available data sample

  18. Effect of Four Different Media on Periodontal Ligament Cells Viability of Dry- Stored Dog Teeth

    OpenAIRE

    Fariborz Moazzami; Bahar Asheghi; Safoura Sahebi

    2017-01-01

    Statement of the Problem: The maintenance of viable periodontal ligament cells is the most important issue in the long-term preservation of avulsed teeth. Purpose: The aim of this study was to assess aloe vera as a new storage media in maintaining the cell viability of dry-stored teeth in comparison with soy milk, Hank`s balanced salt solution (HBSS), and milk. Materials and Method: Twenty one extracted dog premolar teeth were dried for 30 minutes and stored in soy milk, HBSS, milk, an...

  19. 喷雾干燥法制备非晶颗粒态玉米淀粉%Preparation of Non-crystal Granular Starch by Spray Drying Method

    Institute of Scientific and Technical Information of China (English)

    陈福泉; 张本山

    2009-01-01

    A new method for preparation of non-crystallized granule starch by pre-heating corn starch with spray drying was studied. The effects of starch concentration,technological parameters of spray drying,and pre-heat temperature on non-crystal granular corn starch was investigated. The structure and appearance were observed by micro-polariscopy and scanning electron microscopy. Combining the X- diffraction spectrum,the change from crystal to non-crystal was confirmed. The results indicated; when starch concentration was 15%,the inlet temperature of the heated wind in spry-drying process was 230 ℃,rotation speed of flexible tube pump was 50 r/min,and pre-heat temperature was 70 ℃. Under the above condition,95% of original corn starch particles was converted into amorphous non-crystal granular state.%预加热玉米原淀粉,以喷雾干燥的方式,研究制备非晶颗粒态玉米淀粉的新方法.考察了淀粉乳浓度,喷雾干燥工艺条件及预加热温度对玉米淀粉非晶化产品的影响.用偏光显微镜观测处理后的淀粉样品,结合X射线衍射曲线验证淀粉颗粒结构的变化,利用扫描电镜观测淀粉颗粒,并宏观的观察处理后样品的状态.结果表明:淀粉乳浓度150 g/L,喷雾干燥机进风温度230℃,蠕动泵转速50 r/min,预加热温度控制在70℃,制备出非晶化率达到95%以上非晶颗粒态玉米淀粉.

  20. Effect of Four Different Media on Periodontal Ligament Cells Viability of Dry- Stored Dog Teeth

    Science.gov (United States)

    Moazzami, Fariborz; Asheghi, Bahar; Sahebi, Safoura

    2017-01-01

    Statement of the Problem: The maintenance of viable periodontal ligament cells is the most important issue in the long-term preservation of avulsed teeth. Purpose: The aim of this study was to assess aloe vera as a new storage media in maintaining the cell viability of dry-stored teeth in comparison with soy milk, Hank`s balanced salt solution (HBSS), and milk. Materials and Method: Twenty one extracted dog premolar teeth were dried for 30 minutes and stored in soy milk, HBSS, milk, and aloe vera extract (50%) for 45 minutes (n=6 for each). Furthermore, positive and two negative control groups (n=6), corresponding to 0 min, 30 min, and 2-hour drying times were also prepared respectively. The number of viable cells was counted following storage using Trypan blue exclusion. Data were statistically analyzed using the one-way ANOVA and post hoc Tukey-HSD test. Results: Statistical analysis showed no significant differences in cell viability among aloe vera, soymilk, and HBSS- stored teeth; however, they were all superior to milk. Conclusion: Aloe vera extract can be recommended as a suitable storage media for avulsed teeth. PMID:28280756

  1. Effect of Four Different Media on Periodontal Ligament Cells Viability of Dry- Stored Dog Teeth

    Directory of Open Access Journals (Sweden)

    Fariborz Moazzami

    2017-03-01

    Full Text Available Statement of the Problem: The maintenance of viable periodontal ligament cells is the most important issue in the long-term preservation of avulsed teeth. Purpose: The aim of this study was to assess aloe vera as a new storage media in maintaining the cell viability of dry-stored teeth in comparison with soy milk, Hank`s balanced salt solution (HBSS, and milk. Materials and Method: Twenty one extracted dog premolar teeth were dried for 30 minutes and stored in soy milk, HBSS, milk, and aloe vera extract (50% for 45 minutes (n=6 for each. Furthermore, positive and two negative control groups (n=6, corresponding to 0 min, 30 min, and 2-hour drying times were also prepared respectively. The number of viable cells was counted following storage using Trypan blue exclusion. Data were statistically analyzed using the one-way ANOVA and post hoc Tukey-HSD test. Results: Statistical analysis showed no significant differences in cell viability among aloe vera, soymilk, and HBSS- stored teeth; however, they were all superior to milk. Conclusion: Aloe vera extract can be recommended as a suitable storage media for avulsed teeth.

  2. Instituto de Fisica, UFRGS, CP 15051, 91501-970, Porto Alegre RS, Brazil: Replica theory of granular media

    Science.gov (United States)

    Arenzon, Jeferson J.

    1999-03-01

    An infinite range spin-glass-like model for granular systems is introduced and studied through the replica mean-field formalism. Equilibrium, density-dependent properties under vibration and gravity are obtained that qualitatively resemble the results from real and numerical experiments.

  3. Granular flow

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Nakanishi, Hiizu

    2012-01-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing...

  4. Effects of texture on salt precipitation dynamics and deposition patterns in drying porous media

    Science.gov (United States)

    Norouzi Rad, Mansoureh; Shokri, Nima

    2015-04-01

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, CO2 sequestration and water quality. Also excess of salt accumulation in soil may result in soil salinization which is a global problem adversely affecting vegetation, plant growth and crop production. Thus it is important to understand the parameters affecting salt transport and precipitation in porous media. We applied X-ray micro-tomography to investigate the dynamics of salt precipitation during evaporation from porous media as influenced by the particle and pore sizes. The packed beds were saturated with NaCl solution of 3 Molal and the time-lapse X-ray imaging was continued for one day. The results show that the presence of preferential evaporation sites (associated with fine pores) on the surface of the sand columns influences significantly the patterns and dynamics of NaCl precipitation (Norouzi Rad et al., 2013; Norouzi Rad and Shokri, 2014). They confirm the formation of an increasingly thick and discrete salt crust with increasing grain size in the sand column due to the presence of fewer fine pores (preferential precipitation sites) at the surface compared to the sand packs with finer grains. Fewer fine pores on the surface also results in shorter stage-1 precipitation for the columns with larger grain sizes. A simple model for the evolution of salt crust thickness based on this principle shows a good agreement with our experiments. Our results provide new insights regarding the physics of salt precipitation and its complex dynamics in porous media during evaporation. References Norouzi Rad, M., Shokri, N., Sahimi, M. (2013), Pore-Scale Dynamics of Salt Precipitation in Drying Porous Media, Phys. Rev. E, 88, 032404. Norouzi Rad, M., Shokri, N. (2014), Effects of grain angularity on NaCl precipitation in porous media during evaporation, Water Resour. Res

  5. a Diffusivity Model for Gas Diffusion in Dry Porous Media Composed of Converging-Diverging Capillaries

    Science.gov (United States)

    Wang, Shifang; Wu, Tao; Deng, Yongju; Zheng, Qiusha; Zheng, Qian

    2016-08-01

    Gas diffusion in dry porous media has been a hot topic in several areas of technology for many years. In this paper, a diffusivity model for gas diffusion in dry porous media is developed based on fractal theory and Fick’s law, which incorporates the effects of converging-diverging pores and tortuous characteristics of capillaries as well as Knudsen diffusion. The effective gas diffusivity model is expressed as a function of the fluctuation amplitude of the capillary cross-section size variations, the porosity, the pore area fractal dimension and the tortuosity fractal dimension. The results show that the relative diffusivity decreases with the increase of the fluctuation amplitude and increases with the increase of pore area fractal dimension. To verify the validity of the present model, the relative diffusivity from the proposed fractal model is compared with the existing experimental data as well as two available models of Bruggeman and Shou. Our proposed diffusivity model with pore converging-diverging effect included is in good agreement with reported experimental data.

  6. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    Science.gov (United States)

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously

  7. Partially saturated granular column collapse

    Science.gov (United States)

    Turnbull, Barbara; Johnson, Chris

    2017-04-01

    Debris flows are gravity-driven sub-aerial mass movements containing water, sediments, soil and rocks. These elements lead to characteristics common to dry granular media (e.g. levee formation) and viscous gravity currents (viscous fingering and surge instabilities). The importance of pore fluid in these flows is widely recognised, but there is significant debate over the mechanisms of build up and dissipation of pore fluid pressure within debris flows, and the resultant effect this has on dilation and mobility of the grains. Here we specifically consider the effects of the liquid surface in the flow. We start with a simple experiment constituting a classical axisymmetric granular column collapse, but with fluid filling the column up to a depth comparable to the depth of grains. Thus, as the column collapses, capillary forces may be generated between the grains that prevent dilation. We explore a parameter space to uncover the effects of fluid viscosity, particle size, column size, aspect ratio, grain shape, saturation level, initial packing fraction and significantly, the effects of fine sediments in suspension which can alter the capillary interaction between wetted macroscopic grains. This work presents an initial scaling analysis and attempts to relate the findings to current debris flow modelling approaches.

  8. Development of A Darcy-flow model applied to simulate the drying of shrinking media

    Directory of Open Access Journals (Sweden)

    S. Chemkhi

    2008-09-01

    Full Text Available A mathematical model is developed to describe the coupling between heat, mass, and momentum transfers and is applied to simulate the drying of saturated and shrinking media. This model is called "the Darcy-flow model", which is based on the fact that the liquid flow is induced by a pressure gradient. The main novelties of the model are that firstly no phenomenological law need be introduced by keeping solid mass conservation and solid volume conservation together and secondly we use the effective stresses notion strongly coupling mechanical behaviour with mass transport. The analysis is limited to the preheating and the constant rate drying periods because shrinkage occurs during these two periods for most materials. Our purpose is to simulate the drying process and to compare the results of the simulations and the experiments done on clay material to demonstrate the consistency of the model developed. One of the important conclusions is that is no correlation between moisture flow and moisture gradient.

  9. Granular Computing

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    The basic ideas and principles of granular computing (GrC) have been studied explicitly or implicitly in many fields in isolation. With the recent renewed and fast growing interest, it is time to extract the commonality from a diversity of fields and to study systematically and formally the domain independent principles of granular computing in a unified model. A framework of granular computing can be established by applying its own principles. We examine such a framework from two perspectives,granular computing as structured thinking and structured problem solving. From the philosophical perspective or the conceptual level,granular computing focuses on structured thinking based on multiple levels of granularity. The implementation of such a philosophy in the application level deals with structured problem solving.

  10. Pore scale investigation of textural effects on salt precipitation dynamics and patterns in drying porous media

    Science.gov (United States)

    Norouzi Rad, Mansoureh; Shokri, Nima

    2014-05-01

    During stage-1 evaporation from saline porous media, the capillary-induced liquid flow from the interior to the surface of porous media supplies the evaporative demand and transfers the dissolved salt toward the surface where evaporation occurs. This mode of mass transfer is influenced by several factors such as properties of the evaporating fluid and transport properties of porous media. In this work, we carried out a comprehensive pore scale study using X-ray micro-tomography to understand the effects of the texture on the dynamics of salt precipitation and deposition patterns in drying saline porous media. To do so, four different samples of quartz sand with different particle size distributions were used enabling us to constrain the effects of particle size on the salt precipitation patterns and dynamics. The packed beds were saturated with NaCl solution of 3 Molal and the X-ray imaging was continued for 22 hours with temporal resolution of 30 min resulting in pore scale information about the evaporation and precipitation dynamics. During evaporation from saline porous media, salt concentration continuously increases in preferential evaporating sites at the surface until it reaches the solubility limit which is followed by salt precipitation. Thanking to the pore-scale information, the effects of pore size distribution on the dynamics and patterns of salt precipitation were delineated with high spatial and temporal resolutions. Our results show more precipitation at the early stage of the evaporation in the case of sand with the larger particle size due to the presence of a fewer evaporation sites at the surface. Having more preferential evaporation sites at the surface of sand with finer particle sizes affects the patterns and thickness of the salt crust deposited on the surface such that a thinner salt crust was formed in the case of sand with smaller particle size which covered a larger area at the surface as opposed to the thicker patchy crusts in samples

  11. Gas-solute dispersivity ratio in granular porous media as related to particle size distribution and particle shape

    DEFF Research Database (Denmark)

    Pugliese, Lorenzo; Poulsen, Tjalfe; Straface, Salvatore

    2013-01-01

    data. This paper evaluates the possibility for estimating solute dispersion based on gas dispersion measurements. Breakthrough measurements were carried out at different fluid velocities (covering the same range in Reynolds number), using O2 and NaCl as gas and solute tracers, respectively. Three...... different, granular porous materials were used: (1) crushed granite (very angular particles), (2) gravel (particles of intermediate roundness) and (3) Leca® (almost spherical particles). For each material, 21 different particle size fractions were used. Gas and solute dispersion coefficients were determined...

  12. Acoustic emissions in granular structures under gravitational destabilization

    Science.gov (United States)

    Thirot, J.-L.; Le Gonidec, Y.; Kergosien, B.

    2012-05-01

    In this work, we perform experiments in an acoustic tank to record acoustic emissions (AEs) occurring when a granular medium is submitted to a gravitational destabilization. The granular medium is composed of monodisperse glass beads filling a box which can be inclined from α=0° up to the avalanche threshold angle α0=28°. To respect quasi-static conditions, the angle increases by steps less than 3°/mn. An omnidirectional hydrophone records the continuous acoustic field in the bead structure until the avalanche occurs. We compare the results for different experimental configurations, in particular for dry and water saturated granular media, but also for different bead diameters (d=8, 3 and 0.3 mm) in order to span the viscosity range of the granular structure. We show that the AE signatures strongly depend on the viscosity parameter, which can be related to the Stokes number and the fluid/solid density ratio. The transition from a viscous to an inertial dynamic of the granular structure is discussed, based on these experimental results.

  13. Characters of Wave Propagation in Granular Media%振动场中散体介质波的传播规律

    Institute of Scientific and Technical Information of China (English)

    孙业志; 吴爱祥; 黎剑华; 赵国彦

    2001-01-01

    Real granular media manifest such characters as nonuniformity, ani sotropy and lamellar distribution and have gas, liquid and solid phases. Therefo re propogation of waves in them is very complex. When their strain number, ε <1×10-4, they are elastic media. According to this, the authors ana lyse and give the wave motion equation of elastic waves in isotropic media and t he expression of wave propogation velocity and wave energy, as well as the wave motion equation of elastic waves in horizontally isotropic media and the express ion of energy penetration coefficient of elastic waves. The tests show that ener gy attenuation has relation to the density of layered media. Rayleigh wave is a type of superimposition wave forming by vibration of P and S waves. According to the characteristic, the authors analyse the propagation characters of Rayleigh wave in isotropic media and horizontally isotropic media in semi-infinite body . In addition, Love wave is a kind of interference wave which is caused by total reflection of SH waves. The study shows that its characters depend on the thick ness of granular media and the velocity of shear waves, etc.%非理想散体介质显现出非匀质性、各向异性和层状分布等特点,且有气、液、固三相,其波 的传播比较复杂。当应变值ε<1×10-4时,散体介质为弹性介质,据此分析并给 出 了各向同性散体介质中弹性波的波动方程、传播速度和波动能量的表达式,以及横观各向同 性介质中弹性波的波动方程和能量透过系数表达式,并通过试验验证了能量衰减与分层介质 密度有关。此外,根据瑞利波由P波和S波振动叠加而成的特点,分析了无限半空间各向同性 介质和横观各向同性介质中瑞利波的传播特性;又由于勒夫波由SH波经多次全反射加强干涉 产生,研究表明其运动特性与散体厚度和剪切波速度等因素有关。

  14. Experimental improvements in sample preparation for the track registration technique from dry and solution media

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Navarro, M.J. [Universidad Politecnica de Madrid (UPM), E.T.S.I de Caminos, Canales y Puertos, Profesor Aranguren s/n, 28040 Madrid (Spain)]. E-mail: he04@caminos.upm.es; Pujol, Ll. [Centro de Estudios y Experimentacion de Obras Publicas (CEDEX), Alfonso XII, 3, 28014 Madrid (Spain); Gonzalez-Gonzalez, J.A. [Universidad Politecnica de Madrid (UPM), E.T.S.I de Caminos, Canales y Puertos, Profesor Aranguren s/n, 28040 Madrid (Spain)

    2006-04-15

    This paper describes the sample preparation studies carried out to determine gross alpha activities in waste materials by means of alpha-particle track counting using CR-39 detector. Sample preparation for the track registration technique using evaporation or electroplating methods (also known as conventional 'dry methods') has a number of drawbacks. The distribution of tracks in different areas of the detector surface is non-uniform, so accurate quantitative determinations depend on tedious and time-consuming counting of tracks under an optical microscope. In this paper, we propose the use of tensioactives in sample preparation to achieve uniform track distribution over the entire detector surface, which enables track density to be evaluated by scanning a small representative area. Under our counting conditions, uniform distribution was achieved with 0.2 ml of Teg from a planchetted source. Furthermore, track registration techniques using solution media (also known as the 'wet methods') and conventional 'dry methods' were analysed and compared with the proposed method. The reproducibility of the procedure described in the study was tested by analysing gross alpha activity in two low-level nuclear waste samples at two different laboratories.

  15. Porous filtering media comparison through wet and dry sampling of fixed bed gasification products

    Science.gov (United States)

    Allesina, G.; Pedrazzi, S.; Montermini, L.; Giorgini, L.; Bortolani, G.; Tartarini, P.

    2014-11-01

    The syngas produced by fixed bed gasifiers contains high quantities of particulate and tars. This issue, together with its high temperature, avoids its direct exploitation without a proper cleaning and cooling process. In fact, when the syngas produced by gasification is used in an Internal Combustion engine (IC), the higher the content of tars and particulate, the higher the risk to damage the engine is. If these compounds are not properly removed, the engine may fail to run. A way to avoid engine fails is to intensify the maintenance schedule, but these stops will reduce the system profitability. From a clean syngas does not only follow higher performance of the generator, but also less pollutants in the atmosphere. When is not possible to work on the gasification reactions, the filter plays the most important role in the engine safeguard process. This work is aimed at developing and comparing different porous filters for biomass gasifiers power plants. A drum filter was developed and tested filling it with different filtering media available on the market. As a starting point, the filter was implemented in a Power Pallet 10 kW gasifier produced by the California-based company "ALL Power Labs". The original filter was replaced with different porous biomasses, such as woodchips and corn cobs. Finally, a synthetic zeolites medium was tested and compared with the biological media previously used. The Tar Sampling Protocol (TSP) and a modified "dry" method using the Silica Gel material were applied to evaluate the tars, particulate and water amount in the syngas after the filtration process. Advantages and disadvantages of every filtering media chosen were reported and discussed.

  16. Continuum modelling of the collapse of a granular mass and its subsequent flow

    Science.gov (United States)

    Lagrée, P.; Staron, L.; Popinet, S.

    2011-12-01

    The continuum modelling of transient granular flows is of primary importance in the context of prediction and risk mitigation in relation with rock avalanches and dry debris flows. In this perspective, the granular column collapse experiment provides an interesting benchmark, due to both its relevance to natural granular flows and its challenging complexity (Lube 2004 et al, Lajeunesse et al 2006). In this contribution, we present 2D continuum simulations of granular column collapse using the Navier-Stokes solver Gerris (Popinet 2003), solving the full Navier-Stokes equations. The rheology implemented to model the granular media is the so-called μ (I) rheology, relating the frictional properties and the viscosity of the material to the pressure and shear rate (Jop et al 2006). In addition, discrete simulations using the Contact Dynamics method are performed for systematic comparison between the granular flow dynamics and its continuum counterpart (Staron & Hinch 2005). We find a good agreement, recovering the shape of the flow in the course of time, the internal flow structure, as well as experimental scaling laws for the run-out. A systematic underestimation of the latter is nevertheless observed, and discussed in terms of physical and numerical modeling. This work opens important new prospect for the simulation of more complex situations relevant to geophysical granular flows.

  17. Transport and abatement of fluorescent silica nanoparticle (SiO2 NP) in granular filtration: effect of porous media and ionic strength

    Science.gov (United States)

    Zeng, Chao; Shadman, Farhang; Sierra-Alvarez, Reyes

    2017-03-01

    The extensive production and application of engineered silica nanoparticles (SiO2 NPs) will inevitably lead to their release into the environment. Granular media filtration, a widely used process in water and wastewater treatment plants, has the potential for NP abatement. In this work, laboratory-scale column experiments were performed to study the transport and retention of SiO2 NPs on three widely used porous materials, i.e., sand, anthracite, and granular activated carbon (GAC). Synthetic fluorescent core-shell SiO2 NPs (83 nm) were used to facilitate NP detection. Sand showed very low capacity for SiO2 filtration as this material had a surface with limited surface area and a high concentration of negative charge. Also, we found that the stability and transport of SiO2 NP were strongly dependent on the ionic strength of the solution. Increasing ionic strength led to NP agglomeration and facilitated SiO2 NP retention, while low ionic strength resulted in release of captured NPs from the sand bed. Compared to sand, anthracite and GAC showed higher affinity for SiO2 NP capture. The superior capacity of GAC was primarily due to its porous structure and high surface area. A process model was developed to simulate NP capture in the packed bed columns and determine fundamental filtration parameters. This model provided an excellent fit to the experimental data. Taken together, the results obtained indicate that GAC is an interesting material for SiO2 NP filtration.

  18. Effect of filter media thickness on the performance of sand drying beds used for faecal sludge management.

    Science.gov (United States)

    Manga, M; Evans, B E; Camargo-Valero, M A; Horan, N J

    2016-12-01

    The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.

  19. Sulfur toxicity and media capacity for H{sub 2}S removal in biofilters packed with a natural or a commercial granular medium

    Energy Technology Data Exchange (ETDEWEB)

    Kim Jones; Alvaro Martinez; Mohammad Rizwan; Jim Boswell [Texas A& M University-Kingsville, Kingsville, TX (United States). Department of Environmental Engineering

    2005-04-01

    Two types of biofilter media, a natural medium (wood chips) and a commercially engineered medium, were evaluated for sulfur inhibition and capacity for removal of hydrogen sulfide (H{sub 2}S). Sulfate was added artificially (40, 65, and 100 mg of S/g of medium) to test its effect on removal efficiency and the media. A humidified gas stream of 50 ppm by volume H{sub 2}S was passed through the media-packed columns, and effluent readings for H{sub 2}S at the outlet were measured continuously. The overall H{sub 2}S baseline removal efficiencies of the column packed with natural medium remained 95% over a 2-day period even with the accumulated sulfur species. Added sulfate at a concentration high enough to saturate the biofilter moisture phase did not appear to affect the H{sub 2}S removal process efficiency. The results of additional experiments with a commercial granular medium also demonstrated that the accumulation of amounts of sulfate sufficient enough to saturate the moisture phase of the medium did not have a significant effect on H{sub 2}S removal. When the pH of the biofilter medium was lowered to 4, H{sub 2}S removal efficiency did drop to 36%. This work suggests that sulfate mass transfer through the moisture phase to the biofilm phase does not appear to inhibit H{sub 2}S removal rates in biofilters. Thus, performance degradation for odor-removing biofilters or H{sub 2}S breakthrough in field applications is probably caused by other consequences of high H{sub 2}S loading, such as sulfur precipitation. 12 refs., 4 figs., 2 tabs.

  20. Instability in Shocked Granular Gases

    CERN Document Server

    Sirmas, Nick; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  1. Instability in shocked granular gases

    Science.gov (United States)

    Sirmas, Nick; Falle, Sam; Radulescu, Matei

    2014-05-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  2. Grain scale simulation of multiphase flow through porous media; Simulacao em escala granular do escoamento multifasico em meio poroso

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, Ricardo Golghetto; Cheng, Liang-Yee [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2012-07-01

    Since the grain scale modeling of multi-phase flow in porous media is of great interest for the oil industry, the aim of the present research is to show an implementation of Moving Particle Semi-Implicit (MPS) method for the grain scale simulation of multi-phase flow in porous media. Geometry data obtained by a high-resolution CT scan of a sandstone sample has been used as input for the simulations. The results of the simulations performed considering different resolutions are given, the head loss and permeability obtained numerically, as well as the influence of the wettability of the fluids inside the sample of the reservoir's sandstone. (author)

  3. Micromechanical Behavior and Modelling of Granular Soil

    Science.gov (United States)

    1989-07-01

    elasticity, hypoelasticity , plasticity and viscoplasticity. Despite the large number of models , there is no consensus yet within the research community on...Classification) (U) Micromechanical Behavior and Modelling of Granular MOWo I... 12. PERSONAL AUTHOR(S) Emmanuel Petrakis and Ricardo Dobry 13a. TYPE OF...Institute (RPI) on the behavior and modelling of granular media is summarized. The final objective is to develol a constitutive law for granular soil

  4. Unifying suspension and granular rheology.

    Science.gov (United States)

    Boyer, François; Guazzelli, Élisabeth; Pouliquen, Olivier

    2011-10-28

    Using an original pressure-imposed shear cell, we study the rheology of dense suspensions. We show that they exhibit a viscoplastic behavior similarly to granular media successfully described by a frictional rheology and fully characterized by the evolution of the friction coefficient μ and the volume fraction ϕ with a dimensionless viscous number I(v). Dense suspension and granular media are thus unified under a common framework. These results are shown to be compatible with classical empirical models of suspension rheology and provide a clear determination of constitutive laws close to the jamming transition.

  5. Micromechanical Effects of Cement on Deformation of Porous Granular Media: Example from the San Gregorio Fault, California and Laboratory Studies

    Science.gov (United States)

    Cook, J.; Goodwin, L.; Boutt, D.; Bucheitt, T.; Cook, B.

    2006-12-01

    The San Gregorio fault, part of the San Andreas fault system, provides a structural record of transitions in deformation mechanisms with progressive lithification. The San Gregorio is an active, predominantly dextral strike-slip fault with cumulative offset of 90 - 150 km. Within the study area the fault cuts syntectonic mudstones, siltstones, and sandstones of the Purisma Formation. Detailed mapping documents a post- lithification damage zone that overprinted pre-lithification mixed zones that bracket a well-developed, exceptionally wide (greater than 15 m) fault core. Deformation within the mixed zone was distributed and characterized by increasing disorganization and boudinage of relatively competent sedimentary layers. Multiple sandstone dikes crosscut these structures, demonstrating that they formed prior to lithification. Deformation is inferred to have occurred largely through particulate flow. The brittle damage zone, which consists of discrete fractures, minor faults, and veins that crosscut both boudins and sandstone dikes, is less extensive than the mixed zone. The transition in macroscale deformation behavior that these structures record is inferred to reflect a transition in grain-scale mechanics with progressive consolidation, tectonic compaction, and cementation. To quantitatively assess the importance of intergranular cements we are conducting experimental investigations of the micromechanical behavior of cemented granular systems, using both synthetic and natural samples. Synthetic samples have been created with both calcite and amorphous silica cement. Natural samples are sandstones with variations in primary grain and cement composition, cement abundance and distribution, and porosity, including selected samples from the San Gregorio fault. Synthetic grain assemblages will be tested in tension, compression, and shear. Nanoindentation and mm-scale deformation experiments will be used to probe the mechanical properties, including modulus, hardness

  6. Predicted Disappearance of Saturation Hysteresis in Coarse Granular Media Based on Capillary and Gravity Scaling, and Experimental Tests

    Science.gov (United States)

    Tokunaga, T. K.; Olson, K. R.; Wan, J.

    2002-12-01

    Since the classic work of W. B. Haines (1930), hysteresis in the relation between matric (capillary) potential versus water content has been recognized as a basic aspect of interactions between water and variably saturated porous media. This lack of unique correspondence between potential and saturation has well-recognized consequences for equilibrium, flow, and transport. Although hysteresis in moisture characteristic relations has several causes, the existence of different pore-sizes within porous media (the "ink bottle" effect) is primary. This capillarity-dependent phenomenon has a grain-size limit imposed by the influence of gravity, and more generally by the relations between surface and body forces, and length scales. Above this limit, capillary hysteresis vanishes. The grain-size associated with vanishing of capillary hysteresis was predicted in two ways; first with a simple pore-size model, and second by Miller-Miller scaling. Both methods predict that hysteresis vanishes when characteristic grain-sizes exceed about 8 mm, when the water-air surface tension is 72 mN/m, and when the body force is due to ordinary gravity. More generally, capillary hysteresis is predicted to disappear when the Haines Number (dependent on grain-size, surface tension, the body force, density difference between immiscible fluids) exceeds 8. The predicted critical grain-size was experimentally supported through measurements of drainage and wetting curves of sands and gravels, with grain-sizes ranging from 0.2 up to 11 mm. We also consider effects of interfacial tension variation (surfactants), variation of the body force (centrifugal field), and capillarity associated with grain-surface roughness.

  7. Multi Media Dry Imager and printer: Codonics Medical Disc Publisher: Virtua

    Directory of Open Access Journals (Sweden)

    Eric Tual

    2007-08-01

    Full Text Available Multi media dry imager and printer: Codonics"nCodonics, a privately held corporation headquartered in Cleveland, Ohio, has been pioneering medical hardcopy solutions for over a decade, and is the industry leader in multi-media imagers. The first to introduce color DICOM printers, we are now represented in over 80 countries by thousands of people with over 25,000 installations worldwide. "nNow, Codonics revolutionizes the medical industry with the introduction of the Horizon Multi-media imager. Horizon instantly delivers diagnostic film, stunning color prints, and cost-saving white films. This all-in-one imager is an enormous breakthrough in performance, cost and quality for healthcare facilities. Horizon's unprecedented variety in printing options creates a new freedom of choice and allows users to match the output with the need, resulting in solutions capable of immediately reducing costs, minimizing waste and maximizing workflow. Horizon packs this all into one compact device, weighing less than 70 pounds and taking up less than two feet of desk space, eliminating costly sitting requirements. "nCodonics delivers a lot more than state-of-the-art medical imagers. Our focus is providing a greater value to your radiology department. Codonics was the first to introduce an exclusive medical-intended film alternative, DirectVista Paper. Printed the same way as our diagnostic film with no toners, wax or ribbons to ever replace, white film can be room light viewed and is preferred by referring physicians. "nCodonics implements design and test methodologies used in the aerospace industry to deliver the most reliable products in the world with the industry's lowest service and maintenance costs. The small size and light weight of Codonics imagers allow for further ground breaking innovation in the area of medical imager service. Codonics provides a replacement unit if any problem cannot be solved by our 24/7 technical support team. This

  8. The Use of Fresh Cogongrass as Transportation Media with Level Dry System for Broodstock of Crayfish on Various Old Time

    Directory of Open Access Journals (Sweden)

    Ferdinand Hukama Taqwa

    2015-01-01

    Full Text Available The research was to determine the effect of the use of fresh cogongrass as media packaging filler on survival rate of broodstock of crayfish that transported with level dry system for 24, 48, dan 72 hours which randomized completely design experiment. The research preparation were media preparation of pond water, preparation of filler material and preparation of experimental animal (3 days adaptation after arrived from producer and starvation for 24 hours. The major research were anestetion of broodstock of crayfish with direct sock of low temperature at 12oC for ±5 minutes, transportation experiment of broodstock with fresh cogongrass as material filler. The result showed that the use of fresh cogongrass on various old time of dry level system has a significantly different to time of recovery and survival rate of broodstock of crayfish after tranforted. The fastest time of recovery was 89.55 seconds for 24 hours transportation and significantly different with time of transportation for 48 hours and 72 hours. The survival rate after tranported the highest was 98.89% for 24 hours transportation and significantly different with time of transportation for 48 hours and 72 hours. This research showed that the use of fresh cogongrass as material packaging filler of dry level system was still effective until 48 hours.Keywords: afresh cogongrass, broodstock of crayfish, various old time transportation, level dry system

  9. Constitutive relations for steady, dense granular flows

    Science.gov (United States)

    Vescovi, D.; Berzi, D.; di Prisco, C. G.

    2011-12-01

    In the recent past, the flow of dense granular materials has been the subject of many scientific works; this is due to the large number of natural phenomena involving solid particles flowing at high concentration (e.g., debris flows and landslides). In contrast with the flow of dilute granular media, where the energy is essentially dissipated in binary collisions, the flow of dense granular materials is characterized by multiple, long-lasting and frictional contacts among the particles. The work focuses on the mechanical response of dry granular materials under steady, simple shear conditions. In particular, the goal is to obtain a complete rheology able to describe the material behavior within the entire range of concentrations for which the flow can be considered dense. The total stress is assumed to be the linear sum of a frictional and a kinetic component. The frictional and the kinetic contribution are modeled in the context of the critical state theory [8, 10] and the kinetic theory of dense granular gases [1, 3, 7], respectively. In the critical state theory, the granular material approaches a certain attractor state, independent on the initial arrangement, characterized by the capability of developing unlimited shear strains without any change in the concentration. Given that a disordered granular packing exists only for a range of concentration between the random loose and close packing [11], a form for the concentration dependence of the frictional normal stress that makes the latter vanish at the random loose packing is defined. In the kinetic theory, the particles are assumed to interact through instantaneous, binary and uncorrelated collisions. A new state variable of the problem is introduced, the granular temperature, which accounts for the velocity fluctuations. The model has been extended to account for the decrease in the energy dissipation due to the existence of correlated motion among the particles [5, 6] and to deal with non

  10. Interfacial Instability during Granular Erosion.

    Science.gov (United States)

    Lefebvre, Gautier; Merceron, Aymeric; Jop, Pierre

    2016-02-12

    The complex interplay between the topography and the erosion and deposition phenomena is a key feature to model granular flows such as landslides. Here, we investigated the instability that develops during the erosion of a wet granular pile by a dry dense granular flow. The morphology and the propagation of the generated steps are analyzed in relation to the specific erosion mechanism. The selected flowing angle of the confined flow on a dry heap appears to play an important role both in the final state of the experiment, and for the shape of the structures. We show that the development of the instability is governed by the inertia of the flow through the Froude number. We model this instability and predict growth rates that are in agreement with the experiment results.

  11. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dengjun [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Bradford, Scott A. [U.S. Salinity Laboratory, Agricultural Research Service, United States Department of Agriculture, 450 W. Big Springs Road, Riverside, CA 92507 (United States); Harvey, Ronald W. [U.S. Geological Survey, 3215 Marine Street, Boulder, CO 80303 (United States); Hao, Xiuzhen [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China); Zhou, Dongmei, E-mail: dmzhou@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing 210008 (China)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer The transport and retention kinetics of ARS-labeled hydroxyapatite nanoparticles (ARS-nHAP) were investigated over a range of ionic strengths in the presence of humic acid. Black-Right-Pointing-Pointer A two-site kinetic attachment model predicted both the breakthrough curves and retention profiles of ARS-nHAP quite well. Black-Right-Pointing-Pointer The retention profiles of ARS-nHAP exhibited hyperexponential shapes for all the test conditions. Black-Right-Pointing-Pointer Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population contributed to hyperexponential retention profiles. - Abstract: Hydroxyapatite nanoparticle (nHAP) is increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP were investigated in water-saturated granular media. Experiments were carried out over a range of ionic strength (I{sub c}, 0-50 mM NaCl) conditions in the presence of 10 mg L{sup -1} humic acid. The transport of ARS-nHAP was found to decrease with increasing suspension I{sub c} in part, because of enhanced aggregation and chemical heterogeneity. The retention profiles (RPs) of ARS-nHAP exhibited hyperexponential shapes (a decreasing rate of retention with increasing transport distance) for all test conditions, suggesting that some of the attachment was occurring under unfavorable conditions. Surface charge heterogeneities on the collector surfaces and especially within the ARS-nHAP population were contributing causes for the hyperexponential RPs. Consideration of the effect(s) of I{sub c} in the presence of HA is needed to improve the efficacy of nHAP for scavenging metals and actinides in real soils and groundwater environments.

  12. Traffic and Granular Flow ’03

    CERN Document Server

    Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich

    2005-01-01

    These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...

  13. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    Science.gov (United States)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  14. Contact Angles of Water-repellent Porous Media Inferred by Tensiometer- TDR Probe Measurement Under Controlled Wetting and Drying Cycles

    DEFF Research Database (Denmark)

    Subedi, Shaphal; Komatsu, Ken; Komatsu, Toshiko;

    2013-01-01

    The time dependency of water repellency (WR) in hydrophobic porous media plays a crucial role for water infiltration processes after rainfall and for the long-term performance of capillary barrier systems. The contact angle (CA) of hydrophobic media normally decreases with continuous contact...... equipped with a mini-time domain reflectometry (TDR) coil probe under controlled wetting and drying in a water-repellent volcanic ash soil (VAS) and in sands coated with different hydrophobic agents. The contact angle (CA–SWRC) under imbibition was evaluated based on the inflection points on the water...... retention curves. For both water-repellent VAS and hydrophobized sand samples, the calculated CA–SWRC increased with increasing WR. This was determined from both the water drop penetration time and the initial contact angle (CAi) by the sessile drop method. Calculated CA–SWRC values ranged from 20° to 48...

  15. Ketahanan Hidup Sel Acetobacter xylinum pada Pengawetan secara Kering-Beku Menggunakan Medium Pembawa (Viability of A. xylinum Subjected to Freeze Drying Using Carrier Media

    Directory of Open Access Journals (Sweden)

    Noor Aini Habibah

    2009-03-01

    Full Text Available A research on the use of sucrose and lactose as carrier media to protect Acetobacter xylinum cell subjected to freeze drying has been done. The aim of the research was to know the number of the viable cells from dried culture and to know the concentration of the carrier medium that would give best result. The best result is sucrose at the concentration of 15% that produced 28.2 x 106 viable cells/ ml of rehidrated culture. The rehidrated culture used in the research was Schramm & Herstin medium. Key words : Acetobacter xylinum, freeze drying, carrier media

  16. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    Science.gov (United States)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  17. Tsunami generated by a granular collapse down a rough inclined plane

    CERN Document Server

    Viroulet, Sylvain; Kimmoun, Olivier

    2014-01-01

    In this Letter, we experimentally investigate the collapse of initially dry granular media into water and the subsequent impulse waves. We systematically characterize the influence of the slope angle and the granular material on the initial amplitude of the generated leading wave and the evolution of its amplitude during the propagation. The experiments show that whereas the evolution of the leading wave during the propagation is well predicted by a solution of the linearized Korteweg-de Vries equation, the generation of the wave is more complicated to describe. Our results suggest that the internal properties of the granular media and the interplay with the surrounding fluid are important parameters for the generation of waves at low velocity impacts. Moreover, the amplitude of the leading wave reaches a maximum value at large slope angle. The runout distance of the collapse is also shown to be smaller in the presence of water than under totally dry conditions. This study provides a first insight into tsunam...

  18. A new methodology for determination of macroscopic transport parameters in drying porous media

    Science.gov (United States)

    Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.

    2015-12-01

    Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.

  19. Effect of corn preparation methods on dry-grind ethanol production by granular starch hydrolysis and partitioning of spent beer solids.

    Science.gov (United States)

    Lamsal, B P; Wang, H; Johnson, L A

    2011-06-01

    Two corn preparation methods, rollermill flaking and hammermill grinding, were compared for efficient processing of corn into ethanol by granular starch hydrolysis and simultaneous fermentation by yeast Saccharomyces cerevisiae. Corn was either ground in a hammermill with different size screens or crushed in a smooth-surfaced rollermill at different roller gap settings. The partitioning of beer solids and size distribution of solids in the thin stillage were compared. The mean particle diameter d(50) for preparations varied with set-ups and ranged between 210 and 340 μm for ground corn, and 1180-1267 μm for flaked corn. The ethanol concentrations in beer were similar (18-19% v/v) for ground and flaked preparations, however, ethanol productivity increased with reduced particle size. Roller versus hammermilling of corn reduced solids in thin stillage by 28%, and doubled the volume percent of fines (d(50) ∼ 7 μm)in thin stillage and decreased coarse (d(50) ∼ 122 μm) by half compared to hammermilling.

  20. Vibrational dynamics of 3D granular media composed with polyhedral grains -- Din\\'amica vibracional de un medio granular 3D compuesto de part\\'iculas poli\\'edricas

    CERN Document Server

    Azema, Émilien; Peyroux, R; Dubois, Frédéric; Saussine, G

    2008-01-01

    By means of tree-dimensional contact dynamics simulations, we analyze the vibrational dynamics of a confined granular layer in response to harmonic forcing. The sample is composed of polyedric grains with a shape derived from digitalized ballast. The system involves a jammed state separating passive (loading) and active (unloading) states. We show that an approximate expression of the packing resistance force as a function of the displacement of the free retaining wall from the jamming position provides a good description of the dynamics. We study in detail the scaling of displacements and velocities with loading parameters. In particular, we find that, for a wide range of frequencies, the data collapse by scaling the displacements with the inverse square of frequency, the inverse of the force amplitude and the square of gravity. We show that the mean compaction rate increases linearly with frequency up to a characteristic frequency of 10 Hz and then it declines in inverse proportion to frequency.

  1. Period tripling causes rotating spirals in agitated wet granular layers.

    Science.gov (United States)

    Huang, Kai; Rehberg, Ingo

    2011-07-08

    Pattern formation of a thin layer of vertically agitated wet granular matter is investigated experimentally. Rotating spirals with three arms, which correspond to the kinks between regions with different colliding phases, are the dominating pattern. This preferred number of arms corresponds to period tripling of the agitated granular layer, unlike predominantly subharmonic Faraday crispations in dry granular matter. The chirality of the spatiotemporal pattern corresponds to the rotation direction of the spirals.

  2. Statistics of large contact forces in granular matter

    NARCIS (Netherlands)

    van Eerd, A.R.T.

    2008-01-01

    Granular materials such as sand have both liquid-like and solid-like properties similar to both liquids and solids. Dry sand in an hour-glass can flow just like water, while sand in a sand castle closely resembles a solid. Because of these interesting properties granular matter has received much att

  3. Long-range interactions in dilute granular systems

    NARCIS (Netherlands)

    Müller, Micha-Klaus

    2008-01-01

    In this thesis, on purpose, we focussed on the most challenging, longest ranging potentials. We analyzed granular media of low densities obeying 1/r long-range interaction potentials between the granules. Such systems are termed granular gases and differ in their behavior from ordinary gases by diss

  4. On pore-scale dynamics and patterns of salt precipitation in drying porous media resolved by X-ray microtomography

    Science.gov (United States)

    Norouzi Rad, M.; Shokri, N.

    2013-12-01

    change anymore, and salt continues to deposit on the already existing spots and, hence, the salt precipitation rate remains relatively constant due to the constant drying rate. Besides, we observed a higher precipitation rate in the case of glass bead at the early stages of precipitation. This is due to the presence of a fewer number of evaporation sites at the surface which reach the salt solubility limit earlier than the sand column. This phenomenon resulted in formation of thicker precipitated salt and more discrete efflorescence at the surface of glass beads compared to sand grains. After the precipitation transition, the precipitation rate was higher in sand because of the presence of more sites serving as preferential spots for evaporation and precipitation. Our results provide new insights regarding the physics of salt precipitation and its complex dynamics in porous media during evaporation.

  5. Helical Locomotion in a Granular Medium

    Science.gov (United States)

    Darbois Texier, Baptiste; Ibarra, Alejandro; Melo, Francisco

    2017-08-01

    The physical mechanisms that bring about the propulsion of a rotating helix in a granular medium are considered. A propulsive motion along the axis of the rotating helix is induced by both symmetry breaking due to the helical shape, and the anisotropic frictional forces undergone by all segments of the helix in the medium. Helix dynamics is studied as a function of helix rotation speed and its geometrical parameters. The effect of the granular pressure and the applied external load were also investigated. A theoretical model is developed based on the anisotropic frictional force experienced by a slender body moving in a granular material, to account for the translation speed of the helix. A good agreement with experimental data is obtained, which allows for predicting the helix design to propel optimally within granular media. These results pave the way for the development of an efficient sand robot operating according to this mode of locomotion.

  6. Stress Response of Granular Systems

    Science.gov (United States)

    Ramola, Kabir; Chakraborty, Bulbul

    2017-10-01

    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  7. Stress Response of Granular Systems

    Science.gov (United States)

    Ramola, Kabir; Chakraborty, Bulbul

    2017-08-01

    We develop a framework for stress response in two dimensional granular media, with and without friction, that respects vector force balance at the microscopic level. We introduce local gauge degrees of freedom that determine the response of contact forces between constituent grains on a given, disordered, contact network, to external perturbations. By mapping this response to the spectral properties of the graph Laplacian corresponding to the underlying contact network, we show that this naturally leads to spatial localization of forces. We present numerical evidence for localization using exact diagonalization studies of network Laplacians of soft disk packings. Finally, we discuss the role of other constraints, such as torque balance, in determining the stability of a granular packing to external perturbations.

  8. Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Baldo-Urrutia, A.M.; Hullebusch, van E.D.; Lens, P.N.L.

    2008-01-01

    The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and ethylenedi

  9. Technical note: Measurement and expression of granular filter ...

    African Journals Online (AJOL)

    Technical note: Measurement and expression of granular filter cleanliness. ... To aid the systematic analysis of filter media and the troubleshooting of problem filters, this paper firstly proposes a standard procedure for ... Article Metrics.

  10. Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Baldo-Urrutia, A.M.; Hullebusch, van E.D.; Lens, P.N.L.

    2008-01-01

    The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and

  11. Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Baldo-Urrutia, A.M.; Hullebusch, van E.D.; Lens, P.N.L.

    2008-01-01

    The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and ethylenedi

  12. Comparison of the compact dry TC and 3M petrifilm ACP dry sheet media methods with the spiral plate method for the examination of randomly selected foods for obtaining aerobic colony counts.

    Science.gov (United States)

    Ellis, P; Meldrum, R

    2002-02-01

    Two hundred thirty-six randomly selected food and milk samples were examined to obtain aerobic colony counts by two dry sheet media methods and a standard Public Health Laboratory Service spiral plate method. Results for 40 samples were outside the limits of detection for one or more of the tested methods and were not considered. (The limits of detection for the spiral plate method were 200 to 1 x 10(8) CFU/ml for the spiral plate method and 100 to 3 x 10(6) CFU/ml for the dry sheet media methods.) The remaining 196 sets of results were analyzed further. When the results from the three methods were compared, correlation coefficients were all >0.80 and slopes and intercepts were close to 1.0 and 0.0, respectively. Mean log values and standard deviations were very similar for all three methods. The results were evaluated according to published UK guidelines for ready-to-eat foods sampled at the point of sale, which include a quality acceptability assessment that is based on aerobic colony counts. Eighty-six percent of the comparable results gave the same verdict with regard to acceptability according to the aerobic colony count guidelines. Both dry sheet media methods were comparable to the spiral plate method and can be recommended for the examination of food.

  13. Dry phase reactor for generating medical isotopes

    Science.gov (United States)

    Mackie, Thomas Rockwell; Heltemes, Thad Alexander

    2016-05-03

    An apparatus for generating medical isotopes provides for the irradiation of dry-phase, granular uranium compounds which are then dissolved in a solvent for separation of the medical isotope from the irradiated compound. Once the medical isotope is removed, the dissolved compound may be reconstituted in dry granular form for repeated irradiation.

  14. Granular contact dynamics using mathematical programming methods

    DEFF Research Database (Denmark)

    Krabbenhoft, K.; Lyamin, A. V.; Huang, J.

    2012-01-01

    A class of variational formulations for discrete element analysis of granular media is presented. These formulations lead naturally to convex mathematical programs that can be solved using standard and readily available tools. In contrast to traditional discrete element analysis, the present...

  15. C. elegans in Complex Media

    CERN Document Server

    Shen, X N; Arratia, P E

    2011-01-01

    We experimentally studied the locomotion of the nematode C. elegans in both fluidic and granular media. In this fluid dynamics video, we show the motility gaits of the nematode in these two environments. The motility of the nematode C. elegans is investigated using particle tracking methods. Experimental results show that different transport patterns emerge from the fluidic and granular media during the nematode locomotion.

  16. Pulling rigid bodies through granular material

    Science.gov (United States)

    Kubik, Ryan; Dressaire, Emilie

    2016-11-01

    The need for anchoring systems in granular materials such as sand is present in the marine transportation industry, e.g. to layout moorings, keep vessels and docks fixed in bodies of water, build oil rigs, etc. The holding power of an anchor is associated with the force exerted by the granular media. Empirical evidence indicates that the holding power depends on the size and shape of the anchoring structure. In this model study, we use a two-dimensional geometry in which a rigid body is pulled through a granular media at constant velocity to determine the drag and lift forces exerted by a granular medium on a moving object. The method allows measuring the drag force and recording the trajectory of the rigid object through the sand. We systematically vary the size and geometry of the rigid body, the properties of the granular medium and the extraction speed. For different initial positions of a cylindrical object pulled horizontally through the medium, we record large variations in magnitude of the drag and a significant lift force that pulls the object out of the sand.

  17. On Granular Knowledge Structures

    CERN Document Server

    Zeng, Yi

    2008-01-01

    Knowledge plays a central role in human and artificial intelligence. One of the key characteristics of knowledge is its structured organization. Knowledge can be and should be presented in multiple levels and multiple views to meet people's needs in different levels of granularities and from different perspectives. In this paper, we stand on the view point of granular computing and provide our understanding on multi-level and multi-view of knowledge through granular knowledge structures (GKS). Representation of granular knowledge structures, operations for building granular knowledge structures and how to use them are investigated. As an illustration, we provide some examples through results from an analysis of proceeding papers. Results show that granular knowledge structures could help users get better understanding of the knowledge source from set theoretical, logical and visual point of views. One may consider using them to meet specific needs or solve certain kinds of problems.

  18. Grain- and Pore-level Analysis of Drainage in Fractionally-wet Granular Media using Synchrotron X-ray Computed Microtomography

    Science.gov (United States)

    Willson, C. S.; Bradley, S.; Thompson, K. E.

    2011-12-01

    Numerous lab- and field-scale experimental studies have shown the strong impact of wettability on multiphase flow constitutive relations and how increased water repellency can lead to preferential flow paths and a heterogeneous water distribution. In conjunction, theoretical and pore-scale modeling work has been performed seeking to improve our understanding of the impact of grain-level wettability properties. Advances in high-resolution X-ray computed tomography (XCT) techniques now make it possible to nondestructively image opaque materials providing previously hard-to-observe qualitative and quantitative data and information. Furthermore, the characteristics of synchrotron X-rays make it possible to monochromatize the incident energy allowing for both k-edge absorption differencing and segmentation of fluids and materials that have even slightly different chemical composition. Concurrent with these advances has been the development of methods to extract granular packing and pore network structure data from XCT images. In this talk, we will present results from a series of experiments designed to obtain grain-, pore- and fluid-scale details during the drainage of water in fractionally-wet glass bead systems. Here, two sets of glass beads were used each having slightly different chemical compositions and thus, different X-ray absorption properties. One set was treated so that the bead surface was water neutral while the other set remained hydrophilic. Three sets of drainage experiments were conducted on three fractionally-wet systems: 100, 90, and 75% hydrophilic by weight. First, traditional lab-scale drainage experiments were performed to obtain a baseline set of characteristic drainage curves for the three systms. Next, a set of tomography-scale (i.e., 5.5 mm inner diameter column) drainage experiments were conducted in the lab to ensure that the drainage curves in the smaller columns were consistent with the lab-scale curves. Finally, tomography-scale drainage

  19. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  20. Granular Solid-liquid Transition: Experiment and Simulation

    Science.gov (United States)

    Fei, M.; Xu, X.; Sun, Q.

    2015-12-01

    Granular media are amorphous materials, which differs from traditional solid or liquid. In different circumstance, granular behavior varies from solid-like to liquid-like, and the transitions between these regimes are always related to many complex natural progresses such as the failure of soil foundation and the occurrence of landslide and debris flow. The mechanic of elastic instability during the transition from solid-like to liquid-like regime, and the quantitative description of irreversible deformation during flow are the key problems to interpret these transition phenomena. In this work, we developed a continuum model with elastic stable condition and irreversible flow rule of granular material based on a thermal dynamical model, the Two-Granular-Temperature model (TGT). Since infinitesimal elastic deformation in solid-like regime and significant plastic large deformation in liquid-like regime can coexist in the granular solid-liquid transition process, the material point method (MPM) was used to build an effective numerical model. Collapse of rectangular granular pile contains both the transition from granular solid to granular liquid and the inverse process, thus in this work we carried out collapse experiment with clay particles, and simulated the experiment with our continuum model and an open-source DEM model YADE to study the transition processes. Results between experiment and simulations were compared and good agreements on collapse shape and velocity profiles were achieved, and the new model proposed in this work seems to work well on the description of granular solid-liquid transition.

  1. Wet granular matter a truly complex fluid

    CERN Document Server

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  2. Short communication: Effects of vacuum freeze-drying on inactivation of Cronobacter sakazakii ATCC29544 in liquid media with different initial inoculum levels.

    Science.gov (United States)

    Jiao, Rui; Gao, Jina; Zhang, Xiyan; Zhang, Maofeng; Chen, Jiren; Wu, Qingping; Zhang, Jumei; Ye, Yingwang

    2017-03-01

    Vacuum freeze-drying is an important food-processing technology for valid retention of nutrients and bioactive compounds. Cronobacter sakazakii has been reported to be associated with severe infections in neonates through consumption of contaminated powdered infant formula. In this study, effects of vacuum freeze-drying treatment for 12, 24, and 36 h on inactivation of C. sakazakii with different initial inoculum levels in sterile water, tryptic soy broth (TSB), skim milk, and whole milk were determined. Results indicated that the lethality rate of C. sakazakii in each sample increased with the extension of vacuum freeze-drying time. With initial inoculum levels of 10(2) and 10(3) cfu/mL, the survival of C. sakazakii in different liquid media was significantly affected by vacuum freeze-drying for 12, 24, and 36 h. In addition, the lethality rates of C. sakazakii in whole milk, skim milk, and TSB was significantly reduced compared with those in sterile water. Furthermore, whole milk showed the strongest protective role for C. sakazakii cells, followed by skim milk and TSB medium. Using the scanning electron microscope, the intracellular damage and obvious distortion of C. sakazakii cells were observed after vacuum freeze-drying for 24 and 36 h compared with the untreated sample, and the injured cells increased with the extension of vacuum-drying time. We concluded that inactivation of vacuum freeze-drying on C. sakazakii cells is related to the food matrix, and a combination with other methods for inactivating C. sakazakii is required for ensuring microbial safety of powdered infant formula. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Cystic Granular Cell Ameloblastoma

    OpenAIRE

    Thillaikarasi, Rathnavel; Balaji, Jayaram; Gupta, Bhawna; Ilayarja, Vadivel; Vani, Nandimandalam Venkata; Vidula, Balachander; Saravanan, Balasubramaniam; Ponniah, Irulandy

    2010-01-01

    Ameloblastoma is a locally aggressive benign epithelial odontogenic tumor, while unicystic ameloblastoma is a relatively less aggressive variant. Although rare in unicystic or cystic ameloblastoma, granular cell change in ameloblastoma is a recognized phenomenon. The purpose of the present article is to report a case of cystic granular cell ameloblastoma in 34-year old female.

  4. Discrete Element Modeling of Complex Granular Flows

    Science.gov (United States)

    Movshovitz, N.; Asphaug, E. I.

    2010-12-01

    Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes

  5. Bipotential continuum models for granular mechanics

    Science.gov (United States)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  6. On the submerging of a spherical intruder into granular beds

    Directory of Open Access Journals (Sweden)

    Wu Chuan-Yu

    2017-01-01

    Full Text Available Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM, we simulate the submerging process of a spherical projectile (an intruder into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed, we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.

  7. Granular flow over inclined channels with linear contraction

    CERN Document Server

    Tunuguntla, D R; Thornton, A R; Bokhove, O

    2015-01-01

    We consider dry granular flow down an inclined chute with a localised contraction theoretically and numerically. The flow regimes are predicted through a novel extended one-dimensional hydraulic theory. A discrete particle method validated empirical constitutive law is used to close this one-dimensional asymptotic model. The one-dimensional model is verified by solving the two-dimensional shallow granular equations through discontinuous Galerkin finite element method (DGFEM). For supercritical flows, the one-dimensional asymptotic theory surprisingly holds although the two-dimensional oblique granular jumps largely vary across the converging channel.

  8. Granular gas dynamics

    CERN Document Server

    Brilliantov, Nikolai

    2003-01-01

    While there is not yet any general theory for granular materials, significant progress has been achieved for dilute systems, also called granular gases. The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids. Care has been taken so as to present the material in a pedagogical and self-contained way and this volume will thus be particularly useful to nonspecialists and newcomers to the field.

  9. Congenital granular cell epulis.

    Science.gov (United States)

    Conrad, Rachel; Perez, Mia C N

    2014-01-01

    Congenital granular cell epulis is a rarely reported lesion of unknown histogenesis with a strong predilection for the maxillary alveolar ridge of newborn girls. Microscopically, it demonstrates nests of polygonal cells with granular cytoplasm, a prominent capillary network, and attenuated overlying squamous epithelium. The lesion lacks immunoreactivity for S-100, laminin, chromogranin, and most other markers except neuron-specific enolase and vimentin. Through careful observation of its unique clinical, histopathologic, and immunohistochemical features, this lesion can be distinguished from the more common adult granular cell tumor as well as other differential diagnoses.

  10. Erosion dynamics of a wet granular medium.

    Science.gov (United States)

    Lefebvre, Gautier; Jop, Pierre

    2013-09-01

    Liquid may give strong cohesion properties to a granular medium, and confer a solidlike behavior. We study the erosion of a fixed circular aggregate of wet granular matter subjected to a flow of dry grains inside a half-filled rotating drum. During the rotation, the dry grains flow around the fixed obstacle. We show that its diameter decreases linearly with time for low liquid content, as wet grains are pulled out of the aggregate. This erosion phenomenon is governed by the properties of the liquids. The erosion rate decreases exponentially with the surface tension while it depends on the viscosity to the power -1. We propose a model based on the force fluctuations arising inside the flow, explaining both dependencies: The capillary force acts as a threshold and the viscosity controls the erosion time scale. We also provide experiments using different flowing grains, confirming our model.

  11. Dry and wet deposition of polycyclic aromatic hydrocarbons and comparison with typical media in urban system of Shanghai, China

    Science.gov (United States)

    Wang, Qing; Liu, Min; Li, Ye; Liu, Yankun; Li, Shuwen; Ge, Rongrong

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) were studied in dry and wet deposition samples collected at urban and suburban sites of Shanghai, China from April 2014 to April 2015. Average wet deposition fluxes of PAHs were higher than dry deposition (62.6 ± 41.5 vs. 26.9 ± 14.4 μg/m2/day). However, dry deposition removed more PAHs than wet deposition (69% vs. 31%) due to much shorter durations of wet deposition. The highest dry and wet deposition fluxes were in fall and winter, respectively. The highest amount of dry deposition was in fall and the highest of wet deposition was in summer. The contribution of wet deposition to total deposited PAHs in Shanghai, East China was higher than that in northern China and lower than that in southern China. The difference can be explained by both precipitation amount and removal efficiency (washout ratio). Average dry deposition velocity and washout ratio of particle-associated PAHs were 5.2 cm/s and 5.8 × 104, respectively. Four sources of deposited PAHs were unraveled by positive matrix factorization (PMF) model: traffic, coal combustion, coking and volatilization, contributing 28.7%, 24.6%, 23.7% and 23.0%, respectively. More contribution of traffic and less coal combustion and volatilization were found at urban than at suburban site. As the connection between aerosol and surface soil, deposition had a different PAH composition from those in the two sides, containing more low MW PAHs. That arose the concern that dry deposition velocity and particle washout ratio could be overestimated if coarse particulate matter was excluded from the calculation. Although deposition has been considered as the predominant pathway of PAHs to urban surface system, the PAH composition in street dust differed drastically from that in deposition. This indicated that other sources (e.g. traffic) in urban system could have a greater contribution to PAHs than it had been identified in deposition samples.

  12. Evaluation of economically feasible, natural plant extract-based microbiological media for producing biomass of the dry rot biocontrol strain Pseudomonas fluorescens P22Y05 in liquid culture.

    Science.gov (United States)

    Khalil, Sadia; Ali, Tasneem Adam; Skory, Chris; Slininger, Patricia J; Schisler, David A

    2016-02-01

    The production of microbial biomass in liquid media often represents an indispensable step in the research and development of bacterial and fungal strains. Costs of commercially prepared nutrient media or purified media components, however, can represent a significant hurdle to conducting research in locations where obtaining these products is difficult. A less expensive option for providing components essential to microbial growth in liquid culture is the use of extracts of fresh or dried plant products obtained by using hot water extraction techniques. A total of 13 plant extract-based media were prepared from a variety of plant fruits, pods or seeds of plant species including Allium cepa (red onion bulb), Phaseolus vulgaris (green bean pods), and Lens culinaris (lentil seeds). In shake flask tests, cell production by potato dry rot antagonist Pseudomonas fluorescens P22Y05 in plant extract-based media was generally statistically indistinguishable from that in commercially produced tryptic soy broth and nutrient broth as measured by optical density and colony forming units/ml produced (P ≤ 0.05, Fisher's protected LSD). The efficacy of biomass produced in the best plant extract-based media or commercial media was equivalent in reducing Fusarium dry rot by 50-96% compared to controls. In studies using a high-throughput microbioreactor, logarithmic growth of P22Y05 in plant extract-based media initiated in 3-5 h in most cases but specific growth rate and the time of maximum OD varied as did the maximum pH obtained in media. Nutrient analysis of selected media before and after cell growth indicated that nitrogen in the form of NH4 accumulated in culture supernatants, possibly due to unbalanced growth conditions brought on by a scarcity of simple sugars in the media tested. The potential of plant extract-based media to economically produce biomass of microbes active in reducing plant disease is considerable and deserves further research.

  13. Quantitative Simulation of Granular Collapse Experiments with Visco-Plastic Models

    Science.gov (United States)

    Mangeney, A.; Ionescu, I. R.; Bouchut, F.; Roche, O.

    2014-12-01

    One of the key issues in landslide modeling is to define the appropriate rheological behavior of these natural granular flows. In particular the description of the static and of the flowing states of granular media is still an open issue. This plays a crucial role in erosion/deposition processes. A first step to address this issue is to derive models able to reproduce laboratory experiments of granular flows. We propose here a mechanical and numerical model of dry granular flows that quantitatively well reproduces granular column collapse over inclined planes, with rheological parameters directly derived from the laboratory experiments. We reformulate the so-called μ(I) rheology proposed by Jop et al. (2006) where I is the so-called inertial number in the framework of Drucker-Prager plasticity with yield stress and a viscosity η(||D||, p) depending on both the pressure p and the norm of the strain rate tensor ||D||. The resulting dynamic viscosity varies from very small values near the free surface and near the front to 1.5 Pa.s within the quasi-static zone. We show that taking into account a constant mean viscosity during the flow (η = 1 Pa.s here) provides results very similar to those obtained with the variable viscosity deduced from the μ(I) rheology, while significantly reducing the computational cost. This has important implication for application to real landslides and rock avalanches. The numerical results show that the flow is essentially located in a surface layer behind the front, while the whole granular material is flowing near the front where basal sliding occurs. The static/flowing interface changes as a function of space and time, in good agreement with experimental observations. Heterogeneities are observed within the flow with low and high pressure zones, localized small upward velocity zones and vortices near the transition between the flowing and static grains. These instabilities create 'sucking zones' and have some characteristics similar

  14. Granular computing: perspectives and challenges.

    Science.gov (United States)

    Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold

    2013-12-01

    Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.

  15. Shaken Granular Lasers

    CERN Document Server

    Folli, Viola; Leuzzi, Luca; Conti, Claudio

    2012-01-01

    Granular materials have been studied for decades, also driven by industrial and technological applications. These very simple systems, composed by agglomerations of mesoscopic particles, are characterized, in specific regimes, by a large number of metastable states and an extreme sensitivity (e.g., in sound transmission) on the arrangement of grains; they are not substantially affected by thermal phenomena, but can be controlled by mechanical solicitations. Laser emission from shaken granular matter is so far unexplored; here we provide experimental evidence that it can be affected and controlled by the status of motion of the granular, we also find that competitive random lasers can be observed. We hence demonstrate the potentialities of gravity affected moving disordered materials for optical applications, and open the road to a variety of novel interdisciplinary investigations, involving modern statistical mechanics and disordered photonics.

  16. Shaken granular lasers.

    Science.gov (United States)

    Folli, Viola; Puglisi, Andrea; Leuzzi, Luca; Conti, Claudio

    2012-06-15

    Granular materials have been studied for decades, driven by industrial and technological applications. These very simple systems, composed of agglomerations of mesoscopic particles, are characterized, in specific regimes, by a large number of metastable states and an extreme sensitivity (e.g., in sound transmission) to the arrangement of grains; they are not substantially affected by thermal phenomena, but can be controlled by mechanical solicitations. Laser emission from shaken granular matter is so far unexplored. Here we provide experimental evidence that laser emission can be affected and controlled by the status of the motion of the granular material; we also find that competitive random lasers can be observed. We hence demonstrate the potentialities of gravity-affected moving disordered materials for optical applications, and open the road to a variety of novel interdisciplinary investigations, involving modern statistical mechanics and disordered photonics.

  17. Accretion Dynamics on Wet Granular Materials.

    Science.gov (United States)

    Saingier, Guillaume; Sauret, Alban; Jop, Pierre

    2017-05-19

    Wet granular aggregates are common precursors of construction materials, food, and health care products. The physical mechanisms involved in the mixing of dry grains with a wet substrate are not well understood and difficult to control. Here, we study experimentally the accretion of dry grains on a wet granular substrate by measuring the growth dynamics of the wet aggregate. We show that this aggregate is fully saturated and its cohesion is ensured by the capillary depression at the air-liquid interface. The growth dynamics is controlled by the liquid fraction at the surface of the aggregate and exhibits two regimes. In the viscous regime, the growth dynamics is limited by the capillary-driven flow of liquid through the granular packing to the surface of the aggregate. In the capture regime, the capture probability depends on the availability of the liquid at the saturated interface, which is controlled by the hydrostatic depression in the material. We propose a model that rationalizes our observations and captures both dynamics based on the evolution of the capture probability with the hydrostatic depression.

  18. Similitude study of a moving bed granular filter

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. Brown; Huawei Shi; Gerald Colver; Saw-Choon Soo [Iowa State University, IA (United States)

    2003-12-10

    The goal of this study was to evaluate the performance of a moving bed granular filter designed for hot gas clean up. This study used similitude theory to devise experiments that were conducted at near-ambient conditions while simulating the performance of filters operated at elevated temperatures and pressures (850{sup o}C and 1000 kPa). These experiments revealed that the proposed moving bed granular filter can operate at high collection efficiencies, typically exceeding 99%, and low pressure drops without the need for periodic regeneration through the use of a continuous flow of fresh granular filter media in the filter. In addition, important design constraints were discovered for the successful operation of the proposed moving bed granular filter.

  19. A two-phase solid/fluid model for dense granular flows including dilatancy effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Koné, El-Hadj; Narbona-Reina, Gladys

    2016-04-01

    account for this transfer of fluid into and out of the mixture, a two-layer model is proposed with a fluid layer on top of the two-phase mixture layer. Mass and momentum conservation are satisfied for the two phases, and mass and momentum are transferred between the two layers. A thin-layer approximation is used to derive average equations. Special attention is paid to the drag friction terms that are responsible for the transfer of momentum between the two phases and for the appearance of an excess pore pressure with respect to the hydrostatic pressure. We present several numerical tests of two-phase granular flows over sloping topography that are compared to the results of the model proposed by {Pitman and Le} [2005]. In particular, we quantify the role of the fluid and compression/dilatation processes on granular flow velocity field and runout distance. F. Bouchut, E.D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase shallow debris flow model with energy balance, {ESAIM: Math. Modelling Num. Anal.}, 49, 101-140 (2015). F. Bouchut, E. D. Fernandez-Nieto, A. Mangeney, G. Narbona-Reina, A two-phase two-layer model for fluidized granular flows with dilatancy effects, {J. Fluid Mech.}, submitted (2016). R.M. Iverson, M. Logan, R.G. LaHusen, M. Berti, The perfect debris flow? Aggregated results from 28 large-scale experiments, {J. Geophys. Res.}, 115, F03005 (2010). R. Jackson, The Dynamics of Fluidized Particles, {Cambridges Monographs on Mechanics} (2000). E.B. Pitman, L. Le, A two-fluid model for avalanche and debris flows, {Phil.Trans. R. Soc. A}, 363, 1573-1601 (2005). S. Roux, F. Radjai, Texture-dependent rigid plastic behaviour, {Proceedings: Physics of Dry Granular Media}, September 1997. (eds. H. J. Herrmann et al.). Kluwer. Cargèse, France, 305-311 (1998).

  20. Failure of granular assemblies

    OpenAIRE

    Welker, Philipp

    2011-01-01

    This work investigates granular assemblies subjected to increasing external forces in the quasi-static limit. In this limit, the system’s evolution depends on static properties of the system, but is independent of the particles’ inertia. At the failure, which occurs at a certain value of the external forces, the particles’ motions increase quickly. In this thesis, the properties of granular systems during the weakening process and at the failure are investigated with the Discrete Element Meth...

  1. Rough-Granular Computing

    Institute of Scientific and Technical Information of China (English)

    Andrzej Skowron

    2006-01-01

    Solving complex problems by multi-agent systems in distributed environments requires new approximate reasoning methods based on new computing paradigms. One such recently emerging computing paradigm is Granular Computing(GC). We discuss the Rough-Granular Computing(RGC) approach to modeling of computations in complex adaptive systems and multiagent systems as well as for approximate reasoning about the behavior of such systems. The RGC methods have been successfully applied for solving complex problems in areas such as identification of objects or behavioral patterns by autonomous systems, web mining, and sensor fusion.

  2. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  3. Stabilization of Stormwater Biofilters: Impacts of Wetting and Drying Phases and the Addition of Organic Matter to Filter Media

    Science.gov (United States)

    Subramaniam, D. N.; Egodawatta, P.; Mather, P.; Rajapakse, J. P.

    2015-09-01

    Ripening period refers to a phase of stabilization in sand filters in water treatment systems that follow a new installation or cleaning of the filter. Intermittent wetting and drying, a unique property of stormwater biofilters, would similarly be subjected to a phase of stabilization. Suspended solids are an important parameter that is often used to monitor the stabilization of sand filters in water treatment systems. Stormwater biofilters, however, contain organic material that is added to the filter layer to enhance nitrate removal, the dynamics of which is seldom analyzed in stabilization of stormwater biofilters. Therefore, in this study of stormwater biofiltration in addition to suspended solids (turbidity), organic matter (TOC, DOC, TN, and TKN) was also monitored as a parameter for stabilization of the stormwater biofilter. One Perspex bioretention column (94 mm internal diameter) was fabricated with filter layer that contained 8 % organic material and fed with tapwater with different antecedent dry days (0-40 day) at 100 mL/min. Samples were collected from the outflow at different time intervals between 2 and 150 min and were tested for total organic carbon, dissolved organic carbon, total nitrogen, total Kjeldhal nitrogen, and turbidity. The column was observed to experience two phases of stabilization, one at the beginning of each event that lasted for 30 min, while the other phase was observed across subsequent events that are related to the age of filter.

  4. Lactobacillus pentosus DSM 16366 starter added to brine as freeze-dried and as culture in the nutritive media for Spanish style green olive production

    Directory of Open Access Journals (Sweden)

    Peres, Cidália

    2008-09-01

    Full Text Available Lactobacillus pentosus DSM 16366, a strain originally isolated from olive fermentation, was used as a starter culture for "Azeiteira" the preparation of Spanish style green olives. Inoculum was added to the fermentors as a freezedried starter culture or as a culture in the nutritive media. Lactic acid fermentation induction produced a more rapid acidification of brines and reduced the survival period of Enterobacteriaceae compared with the uninoculated process. The best results were obtained using the nutritive media as a culture carrier rather than the freeze-dried starter.En este trabajo se empleo el inóculo Lactobacillus pentosus DSM 16366 liofilizado y en caldo nutritivo para preparación de aceitunas "Azeiteira" tipo verde, estilo sevillano. En las salmueras inoculadas se observó una acidificación más rápida y reducción del periodo de supervivencia de las Enterobacteriaceae, especialmente cuando se aplicó el inóculo en caldo nutritivo.

  5. Effect of sorption kinetics on nickel toxicity in methanogenic granular sludge

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Catena, A.B.; Lens, P.N.L.

    2010-01-01

    This study investigates the effect of nickel speciation and its equilibrium kinetics on the nickel toxicity to methylotrophic methanogenic activity. Toxicity tests were done with anaerobic granular sludge in three different media containing variable concentrations of complexing ligands. A correlatio

  6. Entropy Maximization in the Force Network Ensemble for Granular Solids

    NARCIS (Netherlands)

    Tighe, B.P.; Van Eerd, A.R.T.; Vlugt, T.J.H.

    2008-01-01

    A long-standing issue in the area of granular media is the tail of the force distribution, in particular, whether this is exponential, Gaussian, or even some other form. Here we resolve the issue for the case of the force network ensemble in two dimensions. We demonstrate that conservation of the to

  7. Granular flow over inclined channels with constrictions

    Science.gov (United States)

    Tunuguntla, Deepak; Weinhart, Thomas; Thornton, Anthony; Bokhove, Onno

    2013-04-01

    Study of granular flows down inclined channels is essential in understanding the dynamics of natural grain flows like landslides and snow avalanches. As a stepping stone, dry granular flow over an inclined channel with a localised constriction is investigated using both continuum methods and particle simulations. Initially, depth-averaged equations of motion (Savage & Hutter 1989) containing an unknown friction law are considered. The shallow-layer model for granular flows is closed with a friction law obtained from particle simulations of steady flows (Weinhart et al. 2012) undertaken in the open source package Mercury DPM (Mercury 2010). The closed two-dimensional (2D) shallow-layer model is then width-averaged to obtain a novel one-dimensional (1D) model which is an extension of the one for water flows through contraction (Akers & Bokhove 2008). Different flow states are predicted by this novel one-dimensional theory. Flow regimes with distinct flow states are determined as a function of upstream channel Froude number, F, and channel width ratio, Bc. The latter being the ratio of the channel exit width and upstream channel width. Existence of multiple steady states is predicted in a certain regime of F - Bc parameter plane which is in agreement with experiments previously undertaken by (Akers & Bokhove 2008) and for granular flows (Vreman et al. 2007). Furthermore, the 1D model is verified by solving the 2D shallow granular equations using an open source discontinuous Galerkin finite element package hpGEM (Pesch et al. 2007). For supercritical flows i.e. F > 1 the 1D asymptotics holds although the two-dimensional oblique granular jumps largely vary across the converging channel. This computationally efficient closed 1D model is validated by comparing it to the computationally more expensiveaa three-dimensional particle simulations. Finally, we aim to present a quasi-steady particle simulation of inclined flow through two rectangular blocks separated by a gap

  8. The relative performance of geotextile and granular filters for containing PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Kalinovich, I.; Rutter, A.; Rowe, R.K.; Poland, J.S. [Queen' s Univ., Kingston, ON (Canada)

    2007-07-01

    This study examined the performance of geotextile and granular filters used with permanent barrier systems installed at a remediated polychlorinated biphenyl (PCB)-contaminated site on Resolution Island. The barrier system was installed to ensure that remaining soils at the site were not mobilized during periods of run-off. Three barriers were installed at the site, along with sediment traps and ponding areas to accommodate sediment loading. The filter box of the system consisted of 4 pairs of slots in which absorbent materials were placed. PCB contaminated soil was excavated from the site and flushed through a column at a constant flow rate and then filtered. Air was then blown through the column to dry the material inside. The column was then taken apart and samples were then analyzed using soxhlet extraction, gas chromatography, and an electron capture detector. Three geotextiles were examined in addition to absorbent booms and granulated activated carbon (GAC). Batch tests were conducted to evaluate adsorption of PCBs between 2 different types of GAC. Results of the study showed that geotextiles can minimize the escape of PCBs. However, GAC media were more durable and permeable. It was concluded that nonwoven geotextiles can be used to remove PCB-contaminated fines in combination with a granular, permeable reactive barrier system. 21 refs., 4 tabs., 1 fig.

  9. Rheology of wet granular materials in shear flow: experiments and discrete simulations

    Directory of Open Access Journals (Sweden)

    Badetti Michel

    2016-01-01

    Full Text Available The behaviour of wet granular media in shear flow is characterized by the dependence of apparent friction μ* and solid fraction ΦS on the reduced pressure P* and the inertia number I. Reduced pressure, P*= σ22a2/F0, compares the applied normal stress σ22 on grains of diameter a to the tensile strength of contact F0 (proportional to the surface tension Γ of the liquid and the beads diameter. A specifically modified rotational rheometer is used to characterize the response of model wet granular material (beads with diameter of submillimetric range to applied shear rate γ under controlled normal stress σ22. Discrete Element Method (DEM simulations in 3D are carried out in parallel and numerical results are compared with experimental ones. As P* is reduced, an increase of the apparent friction coefficient μ*=σ12/σ22, measured in the critical state and in slow flows with inertial effects is observed. While the agreement between experiments and simulations is good for dry materials as well as for wet materials in the quasistatic limit (I→0, some differences appear at finite I, for which some possible origins are discussed.

  10. What Is Dry Eye?

    Medline Plus

    Full Text Available ... information about eye health and preserving your vision. Privacy Policy Related New Dry Eye Treatment is a ... the Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media ...

  11. What Is Dry Eye?

    Medline Plus

    Full Text Available ... about eye health and preserving your vision. Privacy Policy Related New Dry Eye Treatment is a Tear- ... Academy Financial Relationships with Industry Medical Disclaimer Privacy Policy Terms of Service For Advertisers For Media Ophthalmology ...

  12. The effects of layers in dry snow on its passive microwave emissions using dense media radiative transfer theory based on the quasicrystalline approximation (QCA/DMRT)

    Science.gov (United States)

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    A model for the microwave emissions of multilayer dry snowpacks, based on dense media radiative transfer (DMRT) theory with the quasicrystalline approximation (QCA), provides more accurate results when compared to emissions determined by a homogeneous snowpack and other scattering models. The DMRT model accounts for adhesive aggregate effects, which leads to dense media Mie scattering by using a sticky particle model. With the multilayer model, we examined both the frequency and polarization dependence of brightness temperatures (Tb's) from representative snowpacks and compared them to results from a single-layer model and found that the multilayer model predicts higher polarization differences, twice as much, and weaker frequency dependence. We also studied the temporal evolution of Tb from multilayer snowpacks. The difference between Tb's at 18.7 and 36.5 GHz can be S K lower than the single-layer model prediction in this paper. By using the snowpack observations from the Cold Land Processes Field Experiment as input for both multi- and single-layer models, it shows that the multilayer Tb's are in better agreement with the data than the single-layer model. With one set of physical parameters, the multilayer QCA/DMRT model matched all four channels of Tb observations simultaneously, whereas the single-layer model could only reproduce vertically polarized Tb's. Also, the polarization difference and frequency dependence were accurately matched by the multilayer model using the same set of physical parameters. Hence, algorithms for the retrieval of snowpack depth or water equivalent should be based on multilayer scattering models to achieve greater accuracy. ?? 2008 IEEE.

  13. Going Public on Social Media

    Directory of Open Access Journals (Sweden)

    Greg Elmer

    2015-04-01

    Full Text Available This brief essay questions the disconnect between the financial goals of social media properties and the concerns of privacy advocates and other new media critics. It is argued that critics of social media often fail to recognize the financial imperative of social media companies, one that requires users to divulge and publicize ever more granular aspects of their daily lives, thoughts, and feelings.

  14. The rise of granular computing

    Institute of Scientific and Technical Information of China (English)

    YAO Yi-yu

    2008-01-01

    This paper has two purposes. One is to present a critical examination of the rise of granular computing and the other is to suggest a triarchic theory of granular computing. By examining the reasons, justifications, and motivations for the rise of granular computing, we may be able to fully appreciate its scope, goal and potential values. The results enable us to formulate a triarchic theory in the light of research results from many disciplines. The three components of the theory are labeled as the philosophy, the methodology, and the computation. The integration of the three offers a unified view of gran-ular computing as a way of structured thinking, a method of structured problem solving, and a paradigm of structured infor-mation processing, focusing on hierarchical granular structures. The triarchic theory is an important effort in synthesizing the various theories and models of granular computing.

  15. Three Perspectives of Granular Computing

    Institute of Scientific and Technical Information of China (English)

    Yiyu(Y.Y.) Yao

    2006-01-01

    As an emerging field of study, granular computing has received much attention. Many models, frameorks, methods and techniques have been proposed and studied. It is perhaps the time to seek for a general and unified view so that fundamental issues can be examined and clarified. This paper examines granular computing from three perspectives. By viewing granular computing as a way of structured thinking,we focus on its philosophical foundations in modeling human perception of the reality. By viewing granular computing as a method of structured problem solving, we examine its theoretical and methodological foundations in solving a wide range of real-world problems. By viewing granular computing as a paradigm of information processing,we turn our attention to its more concrete techniques. The three perspectives together offer a holistic view of granular computing.

  16. Self-assembled granular towers

    Science.gov (United States)

    Pacheco-Vazquez, Felipe; Moreau, Florian; Vandewalle, Nicolas; Dorbolo, Stephan; GroupResearch; Applications in Statistical Physics Team

    2013-03-01

    When some water is added to sand, cohesion among the grains is induced. In fact, only 1% of liquid volume respect to the total pore space of the sand is necessary to built impressive sandcastles. Inspired on this experience, the mechanical properties of wet piles and sand columns have been widely studied during the last years. However, most of these studies only consider wet materials with less than 35% of liquid volume. Here we report the spontaneous formation of granular towers produced when dry sand is poured on a highly wet sand bed: The impacting grains stick on the wet grains due to instantaneous liquid bridges created during the impact. The grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow sand towers. Actually, the towers can reach the maximum theoretical limit of stability predicted by previous models, only expected for low liquid volumes. The authors would like to thank FNRS and Conacyt Mexico for financial support. FPV is a beneficiary of a movility grant from BELSPO/Marie Curie and the University of Liege.

  17. A simplified approach to assess variations in Eustachian tubal ventilatory function by Bortnick-Miller apparatus in chronic otitis media cases (dry before surgery

    Directory of Open Access Journals (Sweden)

    Apoorva Kumar Pandey

    2011-01-01

    Full Text Available Aim: The aim of this study is to see the different functional gradings of Eustachian tube ventilatory function as assessed by Bortnick-Miller (B-M apparatus in chronically diseased middle ears (dry cases planned to undergo tympanoplasty and to correlate the results with the past experiences. Materials and Methods: This study consisted of 29 cases of chronic suppurative otitis media, inactive stage having central perforation. Tubal function was evaluated by B-M apparatus based on ability of tube assimilating the applied positive and negative pressure. Tubal opening pressure was noted after applying positive pressure while residual intratympanic pressure after 10 swallows was recorded after applying negative pressure. Results: This study revealed that results of tubal manometry in diseased ears cover a wide spectrum of normal function to partial/non-function. 51.72% of cases were able to equalize applied negative pressure, 41.39% partially equalizing, while 6.89% of cases were completely unable to equalize applied negative pressure. Conclusion: Our results of aspiration method with the help of BM apparatus explicitly suggest that tubal function in chronically diseased ears deviates from that of normal ears. It perpetually reflects that varied results of middle ear reconstructive surgeries could be anticipated in accordance with different tubal function gradings.

  18. Mathematical models of granular matter

    CERN Document Server

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  19. Type-2 fuzzy granular models

    CERN Document Server

    Sanchez, Mauricio A; Castro, Juan R

    2017-01-01

    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  20. The behaviour of free-flowing granular intruders

    Directory of Open Access Journals (Sweden)

    Wyburn Edward

    2017-01-01

    Full Text Available Particle shape affects both the quasi-static and dynamic behaviour of granular media. There has been significant research devoted to the flowability of systems of irregularly shaped particles, as well as the flow of grains around fixed intruders, however the behaviour of free flowing intruders within granular flows remains comparatively unexplored. Here, the effect of the shape of these intruder particles is studied, looking at the kinematic behaviour of the intruders and in particular their tendency of orientation. Experiments are carried out within the Stadium Shear Device, which is a novel apparatus able to continuously apply simple shear conditions to two-dimensional grain analogues. It is found that the intruder shows different behaviour to that of the bulk flow, and that this behaviour is strongly shape dependent. These insights could lead to the development of admixtures that alter the flowability of granular materials.

  1. Dry Eye

    Science.gov (United States)

    ... Eye > Facts About Dry Eye Facts About Dry Eye This information was developed by the National Eye ... the best person to answer specific questions. Dry Eye Defined What is dry eye? Dry eye occurs ...

  2. Granular flows : fluidization and anisotropy

    NARCIS (Netherlands)

    Wortel, Gerrit Herman

    2014-01-01

    This work discusses the flow of granular materials (e.g. sand). Even though a single particle is a simple object, the collective behavior of billions of particles can be very complex. In a surprisingly large amount of cases, it is not exactly known how a granular material behaves, and this while the

  3. Bulldozing of granular material

    CERN Document Server

    Sauret, A; Caulfield, C P; McElwaine, J N

    2014-01-01

    We investigate the bulldozing motion of a granular sandpile driven forwards by a vertical plate. The problem is set up in the laboratory by emplacing the pile on a table rotating underneath a stationary plate; the continual circulation of the bulldozed material allows the dynamics to be explored over relatively long times, and the variation of the velocity with radius permits one to explore the dependence on bulldozing speed within a single experiment. We measure the time-dependent surface shape of the dune for a range of rotation rates, initial volumes and radial positions, for four granular materials, ranging from glass spheres to irregularly shaped sand. The evolution of the dune can be separated into two phases: a rapid initial adjustment to a state of quasi-steady avalanching perpendicular to the blade, followed by a much slower phase of lateral spreading and radial migration. The quasi-steady avalanching sets up a well-defined perpendicular profile with a nearly constant slope. This profile can be scale...

  4. Jamming in granular materials

    Science.gov (United States)

    Behringer, Robert P.

    2015-01-01

    Granular materials are one of a class of materials which undergo a transition from mechanically unstable to mechanically stable states as key system parameters change. Pioneering work by Liu and Nagel and O'Hern et al. focused on models consisting of frictionless grains. In this case, density, commonly expressed in terms of the packing fraction, ϕ, is of particular importance. For instance, O'Hern et al. found that there is a minimum ϕ =ϕJ, such that below this value there are no jammed states, and that above this value, all stress-isotropic states are jammed. Recently, simulations and experiments have explored the case of grains with friction. This case is more subtle, and ϕ does not play such a simple role. Recently, several experiments have shown that there exists a range of relatively low ϕ's such that at the same ϕ it is possible to have jammed, unjammed, and fragile states in the sense of Cates et al. This review discusses some of this recent work, and contrasts the cases of jamming for frictionless and frictional granular systems.

  5. Performance evaluation of ALCAN-AASF50-ferric coated activated alumina and granular ferric hydroxide (GFH) for arsenic removal in the presence of competitive ions in an active well :Kirtland field trial - initial studies.

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Linnah L.; Krumhansl, James Lee; Siegel, Malcolm Dean; Khandaker, Nadim Reza

    2006-01-01

    This report documents a field trial program carried out at Well No.15 located at Kirtland Air Force Base, Albuquerque, New Mexico, to evaluate the performance of two relatively new arsenic removal media, ALCAN-AASF50 (ferric coated activated alumina) and granular ferric hydroxide (US Filter-GFH). The field trial program showed that both media were able to remove arsenate and meet the new total arsenic maximum contaminant level (MCL) in drinking water of 10 {micro}g/L. The arsenate removal capacity was defined at a breakthrough effluent concentration of 5 {micro}g/L arsenic (50% of the arsenic MCL of 10 {micro}g/L). At an influent pH of 8.1 {+-} 0.4, the arsenate removal capacity of AASF50 was 33.5 mg As(V)/L of dry media (29.9 {micro}g As(V)/g of media on a dry basis). At an influent pH of 7.2 {+-} 0.3, the arsenate removal capacity of GFH was 155 mg As(V)/L of wet media (286 {micro}g As(V)/g of media on a dry basis). Silicate, fluoride, and bicarbonate ions are removed by ALCAN AASF50. Chloride, nitrate, and sulfate ions were not removed by AASF50. The GFH media also removed silicate and bicarbonate ions; however, it did not remove fluoride, chloride, nitrate, and sulfate ions. Differences in the media performance partly reflect the variations in the feed-water pH between the 2 tests. Both the exhausted AASF50 and GFH media passed the Toxicity Characteristic Leaching Procedure (TCLP) test with respect to arsenic and therefore could be disposed as nonhazardous waste.

  6. Building designed granular towers one drop at a time

    Science.gov (United States)

    Chopin, Julien; Kudrolli, Arshad

    2012-02-01

    The impact of a drop on a surface leads to beautiful dynamical shapes that result from a subtle interplay between inertial effects, fluid properties and substrate characteristics. In this talk, we will present an experiment where the successive impacts of drops lead to surprisingly slender mechanically stable structures that we called granular towers. They are created by dripping a dense granular suspension on a liquid absorbing surface such as a blotter paper or a dry granular bed. These towers formed by rapid solidification of the drop upon impact are analogous to many natural structures found in nature including frozen lava flows, icicles and stalagmites. We find that the height can be determined by balancing the excess liquid flux and the drainage through the granular tower. The velocity impact, the free fall time and the density of the suspension are found to control the tower width and its detailed morphology. We show that these facts can be manipulated to obtain various symmetric, smooth, corrugated, zigzag, and chiral structures. Further, the shape of the tower can be used as a quick diagnostic tool to characterize the rheology of a granular suspension. [J. Chopin and A. Kudrolli, Phys. Rev. Lett. 107, 208304 (2011)

  7. Stress transmission and incipient yield flow in dense granular materials

    Science.gov (United States)

    Blumenfeld, Raphael

    2010-05-01

    Jammed granular matter transmits stresses non-uniformly like no conventional solid, especially when it is on the verge of failure. Jamming is caused by self-organization of granular matter under external loads, often giving rise to networks of force chains that support the loads non-uniformly. An ongoing debate in the literature concerns the correct way to model the static stress field in such media: good old elasticity theory or newcomer isostaticity theory. The two differ significantly and, in particular in 2D, isostaticity theory leads naturally to force chain solutions. More recently, it has been proposed that real granular materials are made of mixtures of regions, some behaving elastically and some isostatically. The theory to describe these systems has been named stato-elasticity. In this paper, I first present the rationale for stato-elasticity theory. An important step towards the construction of this theory is a good understanding of stress transmission in the regions of pure isostatic states. A brief description is given of recently derived general solutions for 2D isostatic regions with nonuniform structures, which go well beyond the over-simplistic picture of force chains. I then show how the static stress equations are related directly to incipient yield flow and derive the equations that govern yield and creep rheology of dense granular matter at the initial stages of failure. These equations are general and describe strains in granular materials of both rigid and compliant particles.

  8. Using a Time Granularity Table for Gradual Granular Data Aggregation

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    The majority of today’s systems increasingly require sophisticated data management as they need to store and to query large amounts of data for analysis and reporting purposes. In order to keep more “detailed” data available for longer periods, “old” data has to be reduced gradually to save space...... is 6 months old aggregate to 2 minutes level from 1 minute level and so on. The proposed solution introduces a time granularity based data structure, namely a relational time granularity table that enables long term storage of old data by maintaining it at different levels of granularity and effective...

  9. Modelling of a viscoplastic granular column collapse and comparison with experiments

    Science.gov (United States)

    Martin, Nathan; Ionescu, Ioan; Mangeney, Anne; Bouchut, François; Roche, Olivier; Farin, Maxime

    2015-04-01

    Landslides and, more generally, large scale granular flows, represent a wide variety of geophysical flows also including mud or debris flow and snow avalanches. In a continuum mechanics context, the accurate simulation of these flows strongly depends on the modelling of their rheology and their boundary conditions, namely the sliding law and processes of erosion. In particular the description of the static and of the flowing states of granular media is still an open issue. We focus here on the quantitative reproduction of laboratory experiments using a mechanical and numerical model of dry granular flows with the so-called μ(I) rheology associated to a Drucker-Prager plasticity criterion and a shear rate and pressure dependent viscosity η(||D||,p). A Coulomb type friction law is considered at the base of the flow. The modelling is achieved in a finite-element context using the software FreeFem++. The simulations are bidimensionnal and well reproduce quantitatively both the dynamical and final shapes of the deposit. The effects of the sidewalls of the experimental channel, neglected in 2D simulations, are investigated by introducing an extra term in the equations varying with the inverse of the width of the channel, providing an enhanced agreement with the experiments. The numerical results show that the flow is essentially located in a surface layer behind the front, while the whole granular material is flowing near the front where basal sliding occurs. The static/flowing interface changes as a function of space and time, in good agreement with experimental observations. The resulting dynamic viscosity varies from very small values near the free surface and near the front to 1.5Pa.s within the quasi-static zone. The results show a rather small yet computationnaly expensive difference between a constant viscosity model and a μ(I) rheology in the case of a rigid bed. This has important implication for application to real geophysical flows. The role of an erodible

  10. Geophysical granular and particle-laden flows: review of the field.

    Science.gov (United States)

    Hutter, Kolumban

    2005-07-15

    An introduction is given to the title theme, in general, and the specific topics treated in detail in the articles of this theme issue of the Philosophical Transactions. They fit into the following broader subjects: (i) dense, dry and wet granular flows as avalanche and debris flow events, (ii) air-borne particle-laden turbulent flows in air over a granular base as exemplified in gravity currents, aeolian transport of sand, dust and snow and (iii) transport of a granular mass on a two-dimensional surface in ripple formations of estuaries and rivers and the motion of sea ice.

  11. The Stabilizing Granular Soil with Slow-setting and Slight-expansive Cement

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ming-kai; SHENG Wei-guo; TIAN Zhong-qing

    2002-01-01

    According to the characteristics of granular soil, the technological requirements of the specialpurpose cement for stabilizing granular soil are pat forward to meet the demands of implementation of highway base engineering. A kind of slow-setting and slight-expansive cement is developed by the cross experiment method in slag-clinker-gypsum-alkaline system, the final setting time of the cement can be prolonged to 8 h, and it has properties of low dry shrirkage , high flexural strength and good crack resistance. The strength of granular soil stabilized by the cement is increased by 20% compared with that stabilized by Chinese 425-Grade slag cement.

  12. Liquefaction of a Horizontally Vibrated Granular Bed Friction, Dilation and Segregation

    CERN Document Server

    Tennakoon, S G K; Tennakoon, Sarath G.

    1997-01-01

    We present experimental observations of the onset of flow (liquefaction) for horizontally vibrated granular materials. As the acceleration increases above certain value, the top layer of granular material liquefies, while the remainder of the layer moves with the shaker in solid body motion. With increasing acceleration, more of the layer becomes fluidized. The initial bifurcation is backward, and the amount of hysteresis depends mainly on frictional properties of the granular media. A small amount of fluidization by gas flow lifts the hysteresis. Modest differences in the frictional properties of otherwise identical particles leads to rapid segregation.

  13. Assessment of the kinetic-frictional model for dense granular flow

    Institute of Scientific and Technical Information of China (English)

    Boon Ho Ng; Yulong Ding; Mojtaba Ghadiri

    2008-01-01

    This paper aims to quantitatively assess the application of kinetic-frictional model to simulate the motion of dry granular materials in dense condition, in particular, the annular shearing in Couette configuration. The weight of frictional stress was varied to study the contribution of the frictional stress in dense granular flows. The results show that the pure kinetic-theory-based computational fluid dynamics (CFD) model (without frictional stress) over-predicts the dominant solids motion of dense granular flow while adding frictional stress [Schaeffer, D. G. (1987). Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations, 66(1), 19-50] with the solids pressure of [Lun, C. KTK., Savage, S. B., Jeffrey, D. J., & Chepurniy, N. (1984). Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flow field. Journal of Fluid Mechanics, 140, 223-256] in the CFD model improves the simulation to better conform available experimental results. The results also suggest that frictional stress transmission plays an important role in dense granular flow and should not be neglected in granular flow simulations. Compatible simulation results to the experimental data are seen by increasing the weight of frictional stress to a factor of 1.25-1.5. These improved simulation results suggest the current constitutive relations (kinetic-frictional model) need to be improved in order to better reflect the real dense granular flow.

  14. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes.

    Science.gov (United States)

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Cheng, Xiang

    2015-01-13

    When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters. Inspired by this similarity, we integrate the physical insight from planetary sciences, the liquid marble model from fluid mechanics, and the concept of jamming transition from granular physics into a simple theoretical framework that quantitatively describes all of the main features of liquid-drop imprints in granular media. Our study sheds light on the mechanisms governing raindrop impacts on granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes.

  15. Advanced Granular System Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Spaceports of the future will utilize new granular materials in unique applications including insulation for cryogenic tanks and Lunar regolith processing for usable...

  16. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  17. Localizing energy in granular materials

    CERN Document Server

    Przedborski, Michelle A; Sen, Surajit

    2016-01-01

    A device for absorbing and storing short duration impulses in an initially uncompressed one-dimensional granular chain is presented. Simply stated, short regions of sufficiently soft grains are embedded in a hard granular chain. These grains exhibit long-lived standing waves of predictable frequencies regardless of the timing of the arrival of solitary waves from the larger matrix. We explore the origins, symmetry, and energy content of the soft region and its intrinsic modes.

  18. The dynamics of thin vibrated granular layers

    Energy Technology Data Exchange (ETDEWEB)

    Melby, P [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Vega Reyes, F [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Prevost, A [Laboratoire de Physique Statistique de l' Ecole Normale Superieure, CNRS-UMR 8550, 24 rue Lhomond, 75231 Paris cedex 05 (France); Robertson, R [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Kumar, P [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Egolf, D A [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Urbach, J S [Department of Physics, Georgetown University, Washington, DC 20057 (United States)

    2005-06-22

    We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vibrating vertically, with or without a confining lid. Previously reported results are reviewed, including the observation of homogeneous, disordered liquid-like states, an instability to a 'collapse' of motionless spheres on a perfect hexagonal lattice, and a fluctuating, hexagonally ordered state. In the presence of a confining lid we see a variety of solid phases at high densities and relatively high vibration amplitudes, several of which are reported for the first time in this article. The phase behaviour of the system is closely related to that observed in confined hard-sphere colloidal suspensions in equilibrium, but with modifications due to the effects of the forcing and dissipation. We also review measurements of velocity distributions, which range from Maxwellian to strongly non-Maxwellian depending on the experimental parameter values. We describe measurements of spatial velocity correlations that show a clear dependence on the mechanism of energy injection. We also report new measurements of the velocity autocorrelation function in the granular layer and show that increased inelasticity leads to enhanced particle self-diffusion.

  19. Nonlocal modeling of granular flows down inclines.

    Science.gov (United States)

    Kamrin, Ken; Henann, David L

    2015-01-07

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.

  20. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  1. Segregation induced fingering instabilities in granular avalanches

    Science.gov (United States)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    It is important to be able to predict the distance to which a hazardous natural granular flows (e.g. snow slab avalanches, debris-flows and pyroclastic flows) might travel, as this information is vital for accurate assessment of the risks posed by such events. In the high solids fraction regions of these flows the large particles commonly segregate to the surface, where they are transported to the margins to form bouldery flow fronts. In many natural flows these bouldery margins experience a much greater frictional force, leading to frontal instabilities. These instabilities create levees that channelize the flow vastly increasing the run-out distance. A similar effect can be observed in dry granular experiments, which use a combination of small round and large rough particles. When this mixture is poured down an inclined plane, particle size segregation causes the large particles to accumulate near the margins. Being rougher, the large particles experience a greater friction force and this configuration (rougher material in front of smoother) can be unstable. The instability causes the uniform flow front to break up into a series of fingers. A recent model for particle size-segregation has been coupled to existing avalanche models through a particle concentration dependent friction law. In this talk numerical solutions of this coupled system are presented and compared to both large scale experiments carried out at the USGS flume and more controlled small scale laboratory experiments. The coupled depth-averaged model captures the accumulation of large particles at the flow front. We show this large particle accumulation at the head of the flow can lead to the break-up of the initially uniform front into a series of fingers. However, we are unable to obtain a fully grid-resolved numerical solution; the width of the fingers decreases as the grid is refined. By considering the linear stability of a steady, fully-developed, bidisperse granular layer it is shown that

  2. Destabilization of confined granular packings due to fluid flow

    Science.gov (United States)

    Monloubou, Martin; Sandnes, Bjørnar

    2016-04-01

    Fluid flow through granular materials can cause fluidization when fluid drag exceeds the frictional stress within the packing. Fluid driven failure of granular packings is observed in both natural and engineered settings, e.g. soil liquefaction and flowback of proppants during hydraulic fracturing operations. We study experimentally the destabilization and flow of an unconsolidated granular packing subjected to a point source fluid withdrawal using a model system consisting of a vertical Hele-Shaw cell containing a water-grain mixture. The fluid is withdrawn from the cell at a constant rate, and the emerging flow patterns are imaged in time-lapse mode. Using Particle Image Velocimetry (PIV), we show that the granular flow gets localized in a narrow channel down the center of the cell, and adopts a Gaussian velocity profile similar to those observed in dry grain flows in silos. We investigate the effects of the experimental parameters (flow rate, grain size, grain shape, fluid viscosity) on the packing destabilization, and identify the physical mechanisms responsible for the observed complex flow behaviour.

  3. Wave propagation of spectral energy content in a granular chain

    Science.gov (United States)

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-06-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  4. Wave propagation of spectral energy content in a granular chain

    Directory of Open Access Journals (Sweden)

    Shrivastava Rohit Kumar

    2017-01-01

    Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.

  5. Stripping with dry ice

    Science.gov (United States)

    Malavallon, Olivier

    1995-04-01

    Mechanical-type stripping using dry ice (solid CO2) consists in blasting particles of dry ice onto the painted surface. This surface can be used alone or in duplex according to type of substrate to be treated. According to operating conditions, three physical mechanisms may be involved when blasting dry ice particles onto a paint system: thermal shock, differential thermal contraction, and mechanical shock. The blast nozzle, nozzle travel speed, blast angle, stripping distance, and compressed air pressure and media flow rate influence the stripping quality and the uniformity and efficiency obtained.

  6. Silo Collapse under Granular Discharge

    Science.gov (United States)

    Gutiérrez, G.; Colonnello, C.; Boltenhagen, P.; Darias, J. R.; Peralta-Fabi, R.; Brau, F.; Clément, E.

    2015-01-01

    We investigate, at a laboratory scale, the collapse of cylindrical shells of radius R and thickness t induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos sustain filling heights significantly above an estimation obtained by coupling standard shell-buckling and granular stress distribution theories. Two effects contribute to stabilize the structure: (i) below the critical filling height, a dynamical stabilization due to granular wall friction prevents the localized shell-buckling modes to grow irreversibly; (ii) above the critical filling height, collapse occurs before the downward sliding motion of the whole granular column sets in, such that only a partial friction mobilization is at play. However, we notice also that the critical filling height is reduced as the grain size d increases. The importance of grain size contribution is controlled by the ratio d /√{R t }. We rationalize these antagonist effects with a novel fluid-structure theory both accounting for the actual status of granular friction at the wall and the inherent shell imperfections mediated by the grains. This theory yields new scaling predictions which are compared with the experimental results.

  7. THE EFFICACY OF USING PHOSPHATE SOLUBILIZING MICROORGANISMS IN GRANULAR BIOFERTILIZERS WITH PHOSPHATE ORE

    Directory of Open Access Journals (Sweden)

    Dunaitsev I. A.

    2016-03-01

    Full Text Available Two granular formulations of phosphorus biofertilizers combining rock phosphate and two highly active phosphate solubilizing strains: Acinetobacter species 305 and Pseudomonas species 181а have been investigated. Granules of about 3 mm in size were obtained by contact-convective drying of a mixture of ground ore, concentrated biomass of two different strains, starch and glucose. Micro granules with size of 0.1- 0.5 mm were obtained by spray drying the biomass of two different strains and application of dried cells on the particles of the ground ore. Starch was used as a binder. In the model liquid medium it was shown that the microorganisms have retained the ability to solubilize mineral phosphates in granular formulations prepared. In laboratory pot trial on marigold (Tagetes patula it was demonstrated that both formulations of biofertilizer increased the dry weight of the plants to the same level as that of chemical fertilizer - double superphosphate, but were inferior in the concentration of phosphorus in plants. Both formulations exceeded the effectiveness of rock phosphate and biomass used as biofertilizers both separately and jointly. No significant differences were noted between the two strains and the two granular formulations both for plant dry weight, and the content of phosphorus therein. Both granular formulations of biofertilizer retained their structure and avoided aggregating over a year of storage at 4 oC. The average persistence of living cells in the microbeads was about 1.5%, in granules - 32 %

  8. Effect of Wetting and Contamination of Granular Beds During Sphere Impact

    KAUST Repository

    Kouraytem, Nadia

    2013-03-01

    This thesis presents results from an experimental study of the impact of dense solid spheres onto granular beds. The overall aim is to further our understanding of the dynamical response of granular materials to impact. In order to do this, we will study both the initial penetration stages and peak acceleration exerted on the sphere by using high-speed imaging. Another critical part is to measure the penetration depth of the sphere and calculate the corresponding depth-averaged stopping force. Both of these main focal points will be assessed for not only dry, but wet and “contaminated” grains, whereby the granular bed will be comprised of two distinct size ranges of base grains. In doing so, we aim to broadly determine whether contaminated grains or wet grains are more effective at increasing the tensile strength of granular materials.

  9. Granular cell ameloblastoma of mandible.

    Science.gov (United States)

    Jansari, Trupti R; Samanta, Satarupa T; Trivedi, Priti P; Shah, Manoj J

    2014-01-01

    Ameloblastoma is a neoplasm of odontogenic epithelium, especially of enamel organ-type tissue that has not undergone differentiation to the point of hard tissue formation. Granular cell ameloblastoma is a rare condition, accounting for 3-5% of all ameloblastoma cases. A 30-year-old female patient presented with the chief complaint of swelling at the right lower jaw region since 1 year. Orthopantomogram and computed tomography scan was suggestive of primary bone tumor. Histopathologically, diagnosis of granular cell ameloblastoma of right mandible was made.

  10. Traffic and Granular Flow '11

    CERN Document Server

    Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11

    2013-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena.   The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.

  11. Phase Diagram of Vertically Shaken Granular Matter

    CERN Document Server

    Eshuis, P; Lohse, D; Van der Meer, D; Van der Weele, K; Bos, Robert; Eshuis, Peter; Lohse, Detlef; Meer, Devaraj van der; Weele, Ko van der

    2006-01-01

    A shallow, vertically shaken granular bed in a quasi 2-D container is studied experimentally yielding a wider variety of phenomena than in any previous study: (1) bouncing bed, (2) undulations, (3) granular Leidenfrost effect, (4) convection rolls, and (5) granular gas. These phenomena and the transitions between them are characterized by dimensionless control parameters and combined in a full experimental phase diagram.

  12. Granular discharge rate for submerged hoppers

    Directory of Open Access Journals (Sweden)

    T. J. Wilson

    2014-10-01

    Full Text Available The discharge of spherical grains from a hole in the bottom of a right circular cylinder is measured with the entire system underwater. We find that the discharge rate depends on filling height, in contrast to the well-known case of dry non-cohesive grains. It is further surprising that the rate increases up to about twenty five percent, as the hopper empties and the granular pressure head decreases. For deep filling, where the discharge rate is constant, we measure the behavior as a function of both grain and hole diameters. The discharge rate scale is set by the product of hole area and the terminal falling speed of isolated grains. But there is a small-hole cutoff of about two and half grain diameters, which is larger than the analogous cutoff in the Beverloo equation for dry grains. Received: 11 September 2014, Accepted: 10 October 2014; Reviewed by: L. Staron, CNRS, Universite Pierre et Marie Curie, Institut Le Rond d'Alembert, Paris, France; Edited by: L. A. Pugnaloni; DOI: http://dx.doi.org/10.4279/PIP.060009 Cite as: T J Wilson, C R Pfeifer, N Meysingier, D J Durian, Papers in Physics 6, 060009 (2014

  13. Dynamic shear jamming in dense granular suspensions under extension

    Science.gov (United States)

    Majumdar, Sayantan; Peters, Ivo R.; Han, Endao; Jaeger, Heinrich M.

    2017-01-01

    Unlike dry granular materials, a dense granular suspension like cornstarch in water can strongly resist extensional flows. At low extension rates, such a suspension behaves like a viscous fluid, but rapid extension results in a response where stresses far exceed the predictions of lubrication hydrodynamics and capillarity. To understand this remarkable mechanical response, we experimentally measure the normal force imparted by a large bulk of the suspension on a plate moving vertically upward at a controlled velocity. We observe that, above a velocity threshold, the peak force increases by orders of magnitude. Using fast ultrasound imaging we map out the local velocity profiles inside the suspension, which reveal the formation of a growing jammed region under rapid extension. This region interacts with the rigid boundaries of the container through strong velocity gradients, suggesting a direct connection to the recently proposed shear-jamming mechanism.

  14. Penetration in bimodal, polydisperse granular material

    Science.gov (United States)

    Kouraytem, N.; Thoroddsen, S. T.; Marston, J. O.

    2016-11-01

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between δ =0.5 D0 and δ =7 D0 , which, for mono-modal media only, could be correlated in terms of the total drop height, H =h +δ , as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [ds˜O (30 ) μ m ] were added to the larger particles [dl˜O (200 -500 ) μ m ] , with a size ratio, ɛ =dl/ds , larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  15. Penetration in bimodal, polydisperse granular material

    KAUST Repository

    Kouraytem, N.

    2016-11-07

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  16. Discrete Element study of granular material - Bumpy wall interface behavior

    Science.gov (United States)

    El Cheikh, Khadija; Rémond, Sébastien; Pizette, Patrick; Vanhove, Yannick; Djelal, Chafika

    2016-09-01

    This paper presents a DEM study of a confined granular material sheared between two parallel bumpy walls. The granular material consists of packed dry spherical particles. The bumpiness is modeled by spheres of a given diameter glued on horizontal planes. Different bumpy surfaces are modeled by varying diameter or concentration of glued spheres. The material is sheared by moving the two bumpy walls at fixed velocity. During shear, the confining pressure applied on each bumpy wall is controlled. The effect of wall bumpiness on the effective friction coefficient and on the granular material behavior at the bumpy walls is reported for various shearing conditions. For given bumpiness and confining pressure that we have studied, it is found that the shear velocity does not affect the shear stress. However, the effective friction coefficient and the behavior of the granular material depend on the bumpiness. When the diameter of the glued spheres is larger than about the average grains diameter of the medium, the latter is uniformly sheared and the effective friction coefficient remains constant. For smaller diameters of the glued spheres, the effective friction coefficient increases with the diameter of glued spheres. The influence of glued spheres concentration is significant only for small glued spheres diameters, typically half of average particle diameter of the granular material. In this case, increasing the concentration of glued spheres leads to a decrease in effective friction coefficient and to shear localization at the interface. For different diameters and concentrations of glued spheres, we show that the effect of bumpiness on the effective friction coefficient can be characterized by the depth of interlocking.

  17. Gas flow within Martian soil: experiments on granular Knudsen compressors

    Science.gov (United States)

    Koester, Marc; Kelling, Thorben; Teiser, Jens; Wurm, Gerhard

    2017-09-01

    Thermal creep efficiently transports gas through Martian soil. To quantify the Martian soil pump we carried out laboratory analog experiments with illuminated granular media at low ambient pressure. We used samples of 1 μm to 5 μm SiO2 (quartz), basalt with a broad size distribution between 63 μm and 125 μm, and JSC-Mars 1A with a size fraction from 125 μm to 250 μm. The mean ambient pressure was varied between 50 Pa and 9000 Pa. Illumination was varied between 100 W/m2 and 6700 W/m2. The experiments confirm strong directed gas flows within granular and dusty soil and local sub-soil pressure variations. We find that Martian soil pumps can be described with existing models of thermal creep for capillaries, using the average grain size and light flux related temperatures.

  18. Quantifying Interparticle Forces and Heterogeneity in 3D Granular Materials.

    Science.gov (United States)

    Hurley, R C; Hall, S A; Andrade, J E; Wright, J

    2016-08-26

    Interparticle forces in granular materials are intimately linked to mechanical properties and are known to self-organize into heterogeneous structures, or force chains, under external load. Despite progress in understanding the statistics and spatial distribution of interparticle forces in recent decades, a systematic method for measuring forces in opaque, three-dimensional (3D), frictional, stiff granular media has yet to emerge. In this Letter, we present results from an experiment that combines 3D x-ray diffraction, x-ray tomography, and a numerical force inference technique to quantify interparticle forces and their heterogeneity in an assembly of quartz grains undergoing a one-dimensional compression cycle. Forces exhibit an exponential decay above the mean and partition into strong and weak networks. We find a surprising inverse relationship between macroscopic load and the heterogeneity of interparticle forces, despite the clear emergence of two force chains that span the system.

  19. Centrifuge Crater Scaling Experiment I. Dry Granular Soils.

    Science.gov (United States)

    1978-02-01

    obtained from the J1niversity of Jew Mexico Civil In qineerinq Research Facil ity (CERF) through the efforts of R. W. Henny of AFWL. However, as shown...I T iwi , I Deputy Chief of Staff for l[)S. & Plars ATTN: PM[ I I -I DeparEnertet of the Army ATTN: MOCA -ADL Navi Fi ili iit I..1 itii . oI A T N

  20. From Numeric Models to Granular System Modeling

    Directory of Open Access Journals (Sweden)

    Witold Pedrycz

    2015-03-01

    To make this study self-contained, we briefly recall the key concepts of granular computing and demonstrate how this conceptual framework and its algorithmic fundamentals give rise to granular models. We discuss several representative formal setups used in describing and processing information granules including fuzzy sets, rough sets, and interval calculus. Key architectures of models dwell upon relationships among information granules. We demonstrate how information granularity and its optimization can be regarded as an important design asset to be exploited in system modeling and giving rise to granular models. With this regard, an important category of rule-based models along with their granular enrichments is studied in detail.

  1. Experimental investigation of the Rowe's dilatancy law on an atypical granular medium from a municipal solid waste incineration bottom ash

    Science.gov (United States)

    Becquart, Frédéric; Abriak, Nor Edine

    2013-06-01

    Municipal Solid Waste Incineration (MSWI) bottom ashes are irregular granular media because of their origin and are very heterogeneous with a large quantity of angular particles of different chemical species. MSWI bottom ash is a renewable granular resource alternative to the use of non-renewable standard granular materials. Beneficial use of these alternative granular materials mainly lies in road engineering. However, the studies about mechanical properties of such granular media still remain little developed, those being mainly based on empirical considerations. In this paper, a study of mechanical behaviour of a MSWI bottom ash under axisymmetric triaxial loadings conditions is presented. Samples are initially dense after Proctor compaction, are saturated and tested in drained conditions, under different effective confining pressures ranging from 100 to 600 kPa. The evolutions of volumetric strains show an initial contracting phase followed by a dilatancy phase, more pronounced when the confining pressure is low. The stresses ratios at the characteristic state and at the critical state appear in good agreement and with a null rate of volume variation. The angles of internal friction and dilatancy of the studied MSWI bottom ash are estimated and are similar to conventional granular materials used especially in road engineering. The dilatancy law of Rowe is well experimentally verified on this irregular recycled granular material.

  2. Trace organics variation across the wastewater treatment system of a Class-B refinery and estimate of removal of refractory organics by add-on mixed-media filtration and granular activated carbon at pilot scale

    Energy Technology Data Exchange (ETDEWEB)

    Raphaelian, L. A.; Harrison, W.

    1978-06-01

    Wastewater at SOHIO's Toledo refinery was sampled every four hours for four successive days in December 1976. Effluents from the full-scale system (dissolved-air-flotation (DAF) unit and final clarifier for the activated-sludge unit) and an add-on pilot-scale unit (mixed-media filter and activated-carbon columns) were sampled for analysis of common wastewater parameters and trace organic compounds. Grab samples taken every four hours were composited daily. Organics were isolated into acid, base, and neutral fractions. Four-day composites of these daily extracts were analyzed by capillary-column gas chromatography/mass spectrometry. Some 304 compounds were identified in the neutral fraction of the DAF effluent and removal of these organics by the activated-sludge and add-on treatment units was estimated. Numerous data for the approximate concentration of organic compounds are presented. Common wastewater parameters are also presented for comparison to specific organics concentration data. The activated-sludge unit removed aromatic compounds better than it did nonaromatics whereas the activated-carbon unit was better at removal of nonaromatic compounds. Average percentage removal of those organics present in the DAF effluent was greater than 99 percent (activated sludge), approximately 0 percent (mixed-media filter), and less than 1 percent (activated carbon). Of the approximately 1 percent of trace organics remaining in the final-clarifier effluent, 81 percent (by weight) were removed by the activated carbon. Because of variations in extraction efficiencies, amount of sample injected, losses on the GC column and transfer lines, and other sources of error, these are only approximate removal estimates.

  3. Dry ice blasting

    Science.gov (United States)

    Lonergan, Jeffrey M.

    1992-04-01

    As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.

  4. Modeling multi-layer effects in passive microwave remote sensing of dry snow using Dense Media Radiative Transfer Theory (DMRT) based on quasicrystalline approximation

    Science.gov (United States)

    Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.

    2008-01-01

    The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.

  5. Impact of Wettability on Fracturing of Nano-Granular Materials

    Science.gov (United States)

    Trojer, M.; Juanes, R.

    2014-12-01

    Hydraulic fracturing, or fracking, is a well-known reservoir stimulation technique, by which the permeability of the near-wellbore region is enhanced through the creation of tensile fractures within the rock, formed in the direction perpendicular to the least principal stress. While it is well known that fracturing of granular media strongly depends on the type of media, the pore fluids, and the fracking fluids, the interplay between multiphase flow, wettability and fracture mechanics of shale-like (nano-granular) materials remains poorly understood. Here, we study experimentally the dynamics of multiphase-flow fracking in nano-porous media and its dependence on the wetting properties of the system. The experiments consist in saturating a thin bed of glass beads with a viscous fluid, injecting a less viscous fluid, and imaging the invasion morphology. We investigate three control parameters: the injection rate of the less-viscous invading phase, the confining stress, and the contact angle, which we control by altering the surface chemistry of the beads and the Hele-Shaw cell. We quantify the dynamic fracture pattern by means of particle image velocimetry (PIV), and elucidate the role of wettability on the emerging flow physics at the length scale of the viscous-frictional instability.

  6. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  7. Simulating granular materials by energy minimization

    Science.gov (United States)

    Krijgsman, D.; Luding, S.

    2016-11-01

    Discrete element methods are extremely helpful in understanding the complex behaviors of granular media, as they give valuable insight into all internal variables of the system. In this paper, a novel discrete element method for performing simulations of granular media is presented, based on the minimization of the potential energy in the system. Contrary to most discrete element methods (i.e., soft-particle method, event-driven method, and non-smooth contact dynamics), the system does not evolve by (approximately) integrating Newtons equations of motion in time, but rather by searching for mechanical equilibrium solutions for the positions of all particles in the system, which is mathematically equivalent to locally minimizing the potential energy. The new method allows for the rapid creation of jammed initial conditions (to be used for further studies) and for the simulation of quasi-static deformation problems. The major advantage of the new method is that it allows for truly static deformations. The system does not evolve with time, but rather with the externally applied strain or load, so that there is no kinetic energy in the system, in contrast to other quasi-static methods. The performance of the algorithm for both types of applications of the method is tested. Therefore we look at the required number of iterations, for the system to converge to a stable solution. For each single iteration, the required computational effort scales linearly with the number of particles. During the process of creating initial conditions, the required number of iterations for two-dimensional systems scales with the square root of the number of particles in the system. The required number of iterations increases for systems closer to the jamming packing fraction. For a quasi-static pure shear deformation simulation, the results of the new method are validated by regular soft-particle dynamics simulations. The energy minimization algorithm is able to capture the evolution of the

  8. Granular starch hydrolysis for fuel ethanol production

    Science.gov (United States)

    Wang, Ping

    Granular starch hydrolyzing enzymes (GSHE) convert starch into fermentable sugars at low temperatures (≤48°C). Use of GSHE in dry grind process can eliminate high temperature requirements during cooking and liquefaction (≥90°C). In this study, GSHE was compared with two combinations of commercial alpha-amylase and glucoamylase (DG1 and DG2, respectively). All three enzyme treatments resulted in comparable ethanol concentrations (between 14.1 to 14.2% v/v at 72 hr), ethanol conversion efficiencies and ethanol and DDGS yields. Sugar profiles for the GSHE treatment were different from DG1 and DG2 treatments, especially for glucose. During simultaneous saccharification and fermentation (SSF), the highest glucose concentration for the GSHE treatment was 7% (w/v); for DG1 and DG2 treatments, maximum glucose concentration was 19% (w/v). GSHE was used in one of the fractionation technologies (enzymatic dry grind) to improve recovery of germ and pericarp fiber prior to fermentation. The enzymatic dry grind process with GSHE was compared with the conventional dry grind process using GSHE with the same process parameters of dry solids content, pH, temperature, time, enzyme and yeast usages. Ethanol concentration (at 72 hr) of the enzymatic process was 15.5% (v/v), which was 9.2% higher than the conventional process (14.2% v/v). Distillers dried grains with solubles (DDGS) generated from the enzymatic process (9.8% db) was 66% less than conventional process (28.3% db). Three additional coproducts, germ 8.0% (db), pericarp fiber 7.7% (db) and endosperm fiber 5.2% (db) were produced. Costs and amounts of GSHE used is an important factor affecting dry grind process economics. Proteases can weaken protein matrix to aid starch release and may reduce GSHE doses. Proteases also can hydrolyze protein into free amino nitrogen (FAN), which can be used as a yeast nutrient during fermentation. Two types of proteases, exoprotease and endoprotease, were studied; protease and urea

  9. 10,000 - A reason to study granular heat convection

    Energy Technology Data Exchange (ETDEWEB)

    Einav, I.; Rognon, P.; Gan, Y.; Miller, T.; Griffani, D. [Particles and Grains Laboratory, School of Civil Engineering, University of Sydney, Sydney, NSW 2006 (Australia)

    2013-06-18

    In sheared granular media, particle motion is characterized by vortex-like structures; here this is demonstrated experimentally for disks system undergoing indefinite deformation during simple shear, as often imposed by the rock masses hosting earthquake fault gouges. In traditional fluids it has been known for years that vortices represent a major factor of heat transfer enhancement via convective internal mixing, but in analyses of heat transfer through earthquake faults and base planes of landslides this has been continuously neglected. Can research proceed by neglecting heat convection by internal mixing? Our answer is astonishingly far from being yes.

  10. DEM modeling of flexible structures against granular material avalanches

    Science.gov (United States)

    Lambert, Stéphane; Albaba, Adel; Nicot, François; Chareyre, Bruno

    2016-04-01

    This article presents the numerical modeling of flexible structures intended to contain avalanches of granular and coarse material (e.g. rock slide, a debris slide). The numerical model is based on a discrete element method (YADE-Dem). The DEM modeling of both the flowing granular material and the flexible structure are detailed before presenting some results. The flowing material consists of a dry polydisperse granular material accounting for the non-sphericity of real materials. The flexible structure consists in a metallic net hanged on main cables, connected to the ground via anchors, on both sides of the channel, including dissipators. All these components were modeled as flexible beams or wires, with mechanical parameters defined from literature data. The simulation results are presented with the aim of investigating the variability of the structure response depending on different parameters related to the structure (inclination of the fence, with/without brakes, mesh size opening), but also to the channel (inclination). Results are then compared with existing recommendations in similar fields.

  11. Constitutive model development for flows of granular materials

    Science.gov (United States)

    Chialvo, Sebastian

    Granular flows are ubiquitous in both natural and industrial processes. When com- posed of dry, noncohesive particles, they manifest three different flow regimes---commonly referred to as the quasistatic, inertial, and intermediate regimes---each of which exhibits its own dependences on solids volume fraction, shear rate, and particle-level properties. The differences in these regimes can be attributed to microscale phenomena, with quasistatic flows being dominated by enduring, frictional contacts between grains, inertial flows by grain collisions, and intermediate flows by a combination of the two. Existing constitutive models for the solids-phase stress tend to focus on one or two regimes at a time, with a limited degree of success; the same is true of models for wall-boundary conditions for granular flows. Moreover, these models tend not to be based on detailed particle-level flow data, either from experiment or simulation. Clearly, a comprehensive modeling framework is lacking. The work in this thesis aims to address these issues by proposing continuum models constructed on the basis of discrete element method (DEM) simulations of granular shear flows. Specifically, we propose (a) a constitutive stress model that bridges the three dense flow regimes, (b) an modified kinetic-theory model that covers both the dense and dilute ends of the inertial regime, and (c) a boundary-condition model for dense, wall-bounded flows. These models facilitate the modeling of a wide range of flow systems of practical interest and provide ideas for further model development and refinement.

  12. Chemical stability of amorphous materials: specific and general media effects in the role of water in the degradation of freeze-dried zoniporide.

    Science.gov (United States)

    Luthra, Suman A; Shalaev, Evgenyi Y; Medek, Ales; Hong, Jinyang; Pikal, Michael J

    2012-09-01

    The objective of the present work was to determine whether hydrolysis in a model lyophile was influenced by general media effects with water-changing properties of the medium or via a specific mechanism of water as a reactant. Four formulations of zoniporide and sucrose (1:10) were prepared with variable amounts of sorbitol [0%-25% (w/v) of total solids). These formulations were then equilibrated at 6% and 11% relative humidity using saturated salt solutions. The lyophile cakes were analyzed by differential scanning calorimetery (DSC), (isothermal microcalorimetry (IMC), solid- state nuclear magnetic resonance (ssNMR) spectroscopy, and ultraviolet-visible diffuse reflectance (DFR) spectroscopy. DSC and IMC were used to assess the global molecular mobility. ssNMR relaxation times were measured to access local mobility. The DFR was used to determine the solid-state acidity expressed as the Hammett acidity function. Stability of samples was evaluated at 40°C by monitoring potency and purity by high-performance liquid chromatography (HPLC). Results were interpreted in terms of the various roles of water: media effect, plasticization, polarity, and reactant. The kinetics of hydrolysis was observed to be correlated with either/both specific "chemical" effects, that is, water reactant as well as media effect, specifically global molecular mobility of the matrix. Increase in reaction rate with increase in water content is not linear and is a weaker dependence than in some hydrolytic reactions in organic solvents. A moderate amount of an inert plasticizer, sorbitol, conferred additional stabilization, possibly by restricting the amplitude and frequency of fast motions that are on a small length scale.

  13. Influence of vibration on granular flowability and its mechanism of aided flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Regarding flowing granular media as weak transverse isotropic media, the phase velocity expressions of wave P, wave SH and wave SV were deduced, the propagation characteristics of waves in flowing granular media were analyzed. The experiments show that vibration has great influence on granular fluidity. The wavefront of wave P is elliptic or closely elliptic, the wavefront of wave SH is elliptic, and the wavefront of wave SV is not elliptic. Wave propagation in the granular flowing field attenuates layer after layer. The theory and experiment both substantiate that the density difference is the key factor which leads to the attenuation of vibrating energy. In terms of characteristics of wave propagation one can deduce that vibrating waves have less influence on flowability of granules when the amplitude and frequency are small. However, when the amplitude and frequency increase gradually, the eccentricity of ellipsoid, the viscosity resistance and inner friction among granules, and shear intensity of granules decrease, and the loosening coefficient of granules increases, which shows the granules have better flowability.

  14. Wave propagation in random granular chains.

    Science.gov (United States)

    Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H

    2012-03-01

    The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation.

  15. Relationship between electrical conductivity anisotropy and fabric anisotropy in granular materials during drained triaxial compressive tests: a numerical approach

    Science.gov (United States)

    Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing

    2017-07-01

    The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy

  16. Effect of a rigid gas diffusion media applied as distributor of reagents in a PEMFC in operation, part 1 : dry gases

    Energy Technology Data Exchange (ETDEWEB)

    Bautista-Rodriquez, C.M.; Rosas-Paleta, M.G.A.; Tapia-Pachuca, A.B. [Alter Energias Group, Puebla (Mexico); Rivera-Marquez, J.A. [Benemerita Univ. Autonoma de Puebla, Puebla (Mexico). Faculty of Chemical Engineering; Garcia de la Vega, J.R. [Uhde Engineering de Mexico, Mexico City (Mexico)

    2010-07-15

    During the operation of a proton exchange membrane fuel cell (PEMFC), several mass transport phenomena develop, generating a mechanical-physics resistance to some extent, implying limitations during operation. In a conventional fuel cell, the feeding reactive gases to the sites of reaction are performed by a series of elements, such as channels in the polar plates, diffusion layer on the electrodes and the active layer where it realizes the electrochemical semi reaction. Previous studies have reported and demonstrated the generation of gradients of concentration in reagents between the channels of distribution and diffusion layer, representing a limiting in the transport of reagents to the active sites as well as resistance to the mass transport of reagents as a result of the presence of water product in the pores of electrodes. This paper focused on lowering the resistance to mass transport by applying a rigid gas diffusion media with many macropores as distributor of reagents. The objective was to encourage the mass transport phenomena to the active sites on the electrodes. This paper described the experiment and presented the results of the study. The experiment involved the application of a rigid gas diffusion media as a reagents distributor with a serpentine channel distributor, both manufactured with mixes of carbon and graphite powder. The study showed that in general, the GDMR became a diffusion layer, integrating a composite electrode with the graphitized paper and catalyst coated membrane assembly. Under conditions of variable cathodic pressure, the response of the GDMR became a combined distribution plate (conductive and diffusion mass transport), favouring the increase in current density and power developed by the PEMFC in pressure function. 33 refs., 2 tabs., 14 figs.

  17. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  18. Numerical modelling of granular flows: a reality check

    Science.gov (United States)

    Windows-Yule, C. R. K.; Tunuguntla, D. R.; Parker, D. J.

    2016-07-01

    Discrete particle simulations provide a powerful tool for the advancement of our understanding of granular media, and the development and refinement of the multitudinous techniques used to handle and process these ubiquitous materials. However, in order to ensure that this tool can be successfully utilised in a meaningful and reliable manner, it is of paramount importance that we fully understand the degree to which numerical models can be trusted to accurately and quantitatively recreate and predict the behaviours of the real-world systems they are designed to emulate. Due to the complexity and diverse variety of physical states and dynamical behaviours exhibited by granular media, a simulation algorithm capable of closely reproducing the behaviours of a given system may be entirely unsuitable for other systems with different physical properties, or even similar systems exposed to differing control parameters. In this paper, we focus on two widely used forms of granular flow, for which discrete particle simulations are shown to provide a full, quantitative replication of the behaviours of real industrial and experimental systems. We identify also situations for which quantitative agreement may fail are identified, but important general, qualitative trends are still recreated, as well as cases for which computational models are entirely unsuitable. By assembling this information into a single document, we hope not only to provide researchers with a useful point of reference when designing and executing future studies, but also to equip those involved in the design of simulation algorithms with a clear picture of the current strengths and shortcomings of contemporary models, and hence an improved knowledge of the most valuable areas on which to focus their work.

  19. Evolution of shock instability in granular gases with viscoelastic collisions

    Science.gov (United States)

    Sirmas, Nick; Radulescu, Matei

    2014-12-01

    Shocks in granular media have been shown to develop instabilities. We address the role that early stages of shock development have on this type of instability. We look at the evolution of shock waves driven by a piston in a dilute system of smooth inelastic disks, using both discrete particle and continuum modelling. To mimic a realistic granular gas, viscoelastic collisions are approximated with an impact velocity threshold u* needed for inelastic collisions to occur. We show that behaviour of the shock evolution is dependent on the ratio of piston velocity to impact velocity threshold up/u*, and the coefficient of restitution ɛ. For up/u* = 2.0, we recover shock evolution behaving similar to that observed in purely inelastic media. This is characterized by a short period where the shock front pulls towards the piston before attaining a developed structure. No pullback is seen for up/u* = 1.0. Results show the onset of instability for these stronger shocks during this evolving stage. These results suggest that the early stages of shock evolution play an important role in the shock instability.

  20. Magnetically responsive dry fluids

    Science.gov (United States)

    Sousa, Filipa L.; Bustamante, Rodney; Millán, Angel; Palacio, Fernando; Trindade, Tito; Silva, Nuno J. O.

    2013-07-01

    Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid.Ferrofluids and dry magnetic particles are two separate classes of magnetic materials with specific niche applications, mainly due to their distinct viscosity and interparticle distances. For practical applications, the stability of these two properties is highly desirable but hard to achieve. Conceptually, a possible solution to this problem would be encapsulating the magnetic particles but keeping them free to rotate inside a capsule with constant interparticle distances and thus shielded from changes in the viscosity of the surrounding media. Here we present an example of such materials by the encapsulation of magnetic ferrofluids into highly hydrophobic silica, leading to the formation of dry ferrofluids, i.e., a material behaving macroscopically as a dry powder but locally as a ferrofluid where magnetic nanoparticles are free to rotate in the liquid. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01784b

  1. Perspicuity and Granularity in Refinement

    CERN Document Server

    Boiten, Eerke

    2011-01-01

    This paper reconsiders refinements which introduce actions on the concrete level which were not present at the abstract level. It draws a distinction between concrete actions which are "perspicuous" at the abstract level, and changes of granularity of actions between different levels of abstraction. The main contribution of this paper is in exploring the relation between these different methods of "action refinement", and the basic refinement relation that is used. In particular, it shows how the "refining skip" method is incompatible with failures-based refinement relations, and consequently some decisions in designing Event-B refinement are entangled.

  2. Quantum percolation in granular metals.

    Science.gov (United States)

    Feigel'man, M V; Ioselevich, A S; Skvortsov, M A

    2004-09-24

    Theory of quantum corrections to conductivity of granular metal films is developed for the realistic case of large randomly distributed tunnel conductances. Quantum fluctuations of intergrain voltages (at energies E much below the bare charging energy scale E(C)) suppress the mean conductance g (E) much more strongly than its standard deviation sigma(E). At sufficiently low energies E(*) any distribution becomes broad, with sigma(E(*)) approximately g (E(*)), leading to strong local fluctuations of the tunneling density of states. The percolative nature of the metal-insulator transition is established by a combination of analytic and numerical analysis of the matrix renormalization group equations.

  3. Theoretical model of granular compaction

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Naim, E. [Los Alamos National Lab., NM (United States); Knight, J.B. [Princeton Univ., NJ (United States). Dept. of Physics; Nowak, E.R. [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics]|[Univ. of Chicago, IL (United States). James Franck Inst.; Jaeger, H.M.; Nagel, S.R. [Univ. of Chicago, IL (United States). James Franck Inst.

    1997-11-01

    Experimental studies show that the density of a vibrated granular material evolves from a low density initial state into a higher density final steady state. The relaxation towards the final density follows an inverse logarithmic law. As the system approaches its final state, a growing number of beads have to be rearranged to enable a local density increase. A free volume argument shows that this number grows as N = {rho}/(1 {minus} {rho}). The time scale associated with such events increases exponentially e{sup {minus}N}, and as a result a logarithmically slow approach to the final state is found {rho} {infinity} {minus}{rho}(t) {approx_equal} 1/lnt.

  4. Toward generalized continuum models of granular soil and granular soil-tire interaction: A combined discrete element and thermomicromechanical continuum analysis of densely packed assemblies

    Science.gov (United States)

    2007-04-30

    of papers containing this body of work have described this as a highly innovative approach at the cutting edge of international geomechanics research...for publication in world-leading journals in granular media mechanics, multi-scale modelling, and experimental and theoretical geomechanics research...international geomechanics research”  “an innovative direction for modelling particulate systems”  “should be very useful, enriching the knowledge

  5. Localization and instability in sheared granular materials: Role of friction and vibration

    CERN Document Server

    Kothari, Konik R

    2016-01-01

    Shear banding and stick-slip instabilities have been long observed in sheared granular materials. Yet, their microscopic underpinnings, interdependencies and variability under different loading conditions have not been fully explored. Here, we use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in sheared, dry, granular materials. We consider frictional and frictionless grains as well as presence and absence of acoustic vibrations. Our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for frictional grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of...

  6. Equilibrium and column adsorption studies of 2,4-dinitroanisole (DNAN) on surface modified granular activated carbons.

    Science.gov (United States)

    Boddu, V M; Abburi, K; Fredricksen, A J; Maloney, S W; Damavarapu, R

    2009-02-01

    2,4-Dinitroanisole (DNAN) is used as a component extensively in the development of insensitive munitions. This may result in release of DNAN into the environment. Here, the results are reported of a study on the removal characteristics of DNAN through adsorption on granular activated carbon (GAC), chitosan coated granular activated carbon (CGAC), acid treated granular activated carbon (AGAC) and alkali treated granular activated carbon (BGAC) under equilibrium and column flow conditions. The effect of pH, contact time, concentration of DNAN, and presence of electrolytes on the uptake of DNAN by the adsorbents was investigated. The equilibrium data were fitted to different types of adsorption isotherms. The data were further analysed on the basis of Lagergren first-order, pseudo second-order and intraparticle diffusion kinetic models. Breakthrough curves were obtained based on column flow results. All the adsorbents were capable of removing about 99% of DNAN from aqueous media, except CGAC which adsorbed about 87% of DNAN.

  7. Two Classes of Models of Granular Computing

    Institute of Scientific and Technical Information of China (English)

    Daowu Pei

    2006-01-01

    This paper reviews a class of important models of granular computing which are induced by equivalence relations, or by general binary relations, or by neighborhood systems, and propose a class of models of granular computing which are induced by coverings of the given universe.

  8. Granular cell tumors of the tracheobronchial tree.

    NARCIS (Netherlands)

    Maten, van der J; Blaauwgeers, JL; Sutedja, G.; Kwa, HB; Postmus, P.E.; Wagenaar, SS

    2003-01-01

    OBJECTIVE: To describe the population-based incidence and clinical characteristics of granular cell tumors of the tracheobronchial tree. METHODS: All newly registered tracheobronchial granular cell tumors in the Dutch Network and National Database for Pathology for 10 consecutive years (1990-1999) w

  9. Some open problems in granular matter mechanics

    Institute of Scientific and Technical Information of China (English)

    Qicheng Sun; Guangqian Wang; Kaiheng Hu

    2009-01-01

    Granular matter is a large assemblage of solid particles,which is fundamentally different from any other type of matters,such as solid and liquid.Most models presented for granular matter are phenomenological and are only suitable for solving engineering problems.Many fundamental mechanical problems remain open.By analyzing characteristics of internal state structure,we propose that granularmatter is intrinsically multiscale,i.e.microscale of particle size,mesoscale of force chain,and macroscale of the bulk of granular matter.The correlations among difference scales would be crucial.The mesoscale force chain network is determined by both particle properties and macroscopic boundary conditions.The evolution of the force the chain network contributes to macroscopic mechanical properties of granular matter.In addition,we discuss the drawbacks in simplifying contact forces in the current models,and the difficulties in analyzing the interaction of interstitial fluid in wet granular matter.As an appropriate application of granular matter,debris flow can be studied with granular matter mechanics;meanwhile,debris flow brings more challenges which certainly motivate future studies on granular matter.(C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  10. Characterization of Unbound Granular Materials for Pavements

    NARCIS (Netherlands)

    Araya, A.A.

    2011-01-01

    This research is focused on the characterization of the mechanical behavior of unbound granular road base materials (UGMs). An extensive laboratory investigation is described, in which various methods for determination of the mechanical properties of granular materials are examined for their applica

  11. DEM simulation of granular flows in a centrifugal acceleration field

    Science.gov (United States)

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  12. Traffic and Granular Flow’05

    CERN Document Server

    Pöschel, Thorsten; Kühne, Reinhart; Schreckenberg, Michael; Wolf, Dietrich

    2007-01-01

    The conference series Tra?c and Granular Flow has been established in 1995 and has since then been held biannually. At that time, the investigation of granular materials and tra?c was still somewhat exotic and was just starting to become popular among physicists. Originally the idea behind this conference series was to facilitate the c- vergence of the two ?elds, inspired by the similarities of certain phenomena and the use of similar theoretical methods. However, in recent years it has become clear that probably the di?erences between the two systems are much more interesting than the similarities. Nevertheless, the importance of various interrelations among these ?elds is still growing. The workshop continues to o?er an opportunity to stimulate this interdisciplinary research. Over the years the spectrum of topics has become much broader and has included also problems related to topics ranging from social dynamics to - ology. The conference manages to bring together people with rather di?erent background, r...

  13. Modeling Size Polydisperse Granular Flows

    Science.gov (United States)

    Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.

    2014-11-01

    Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.

  14. Dry Etching

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yeom, Geun Young

    2016-01-01

    Production of large-area flat panel displays (FPDs) involves several pattern transfer and device fabrication steps that can be performed with dry etching technologies. Even though the dry etching using capacitively coupled plasma is generally used to maintain high etch uniformity, due to the need...... for the higher processing rates in FPDs, high-density plasma processing tools that can handle larger-area substrate uniformly are more intensively studied especially for the dry etching of polysilicon thin films. In the case of FPD processing, the current substrate size ranges from 730 × 920 mm (fourth...... generation) to 2,200 × 2,500 mm (eighth generation), and the substrate size is expected to increase further within a few years. This chapter aims to present relevant details on dry etching including the phenomenology, materials to be etched with the different recipes, plasma sources fulfilling the dry...

  15. Effects of cohesion on the flow patterns of granular materials in spouted beds

    Science.gov (United States)

    Zhu, Runru; Li, Shuiqing; Yao, Qiang

    2013-02-01

    Two-dimensional spouted bed, capable to provide both dilute granular gas and dense granular solid flow patterns in one system, was selected as a prototypical system for studying granular materials. Effects of liquid cohesion on such kind of complex granular patterns were studied using particle image velocimetry. It is seen that the addition of liquid oils by a small fraction of 10-3-10-2 causes a remarkable narrowing (about 15%) of the spout area. In the dense annulus, as the liquid fraction increases, the downward particle velocity gradually decreases and approaches a minimum where, at a microscopic grain scale, the liquid bridge reaches spherical regimes with a maximum capillarity. Viscous lubrication effect is observed at a much higher fraction but is really weak with respect to the capillary effect. In the dilute spout, in contrast to the dry grains, the wet grains have a lightly smaller acceleration in the initial 1/3 of the spout, but have a dramatically higher acceleration in the rest of the spout. We attribute the former to the additional work needed to overcome interparticle cohesion during particle entrainment at the spout-annulus interface. Then, using mass and momentum balances, the latter is explained by the relative higher drag force resulting from both higher gas velocities and higher voidages due to spout narrowing in the wet system. The experimental findings will provide useful data for the validation of discrete element simulation of cohesive granular-fluid flows.

  16. BOOK REVIEW: Kinetic Theory of Granular Gases

    Science.gov (United States)

    Trizac, Emmanuel

    2005-11-01

    restitution coefficients, that are again velocity dependent. This seems to be the price of a consistent approach, which does not lend itself to much insight. In addition, the behaviour of driven systems is not addressed, whereas in the realm of granular media, force-free systems are the exception rather than the rule. The differences between constant ɛ and visco-elastic models is presumably less pronounced in the driven case. Study of driven systems also reveals that the rheology of granular gases is intrinsically non-Newtonian, which is a key feature. Finally, the powerful direct simulation Monte Carlo technique is not described, whereas it is an important tool, particularly relevant for the physics of the Boltzmann equation, and straightforward to implement in its simplest version. N Brilliantov and T Pöschel concentrate on the (equally relevant) molecular dynamics method instead. In conclusion, the book fills a gap in the field. The companion webpage from where molecular dynamics and symbolic algebra programs can be downloaded is also useful.

  17. Research on Displacement Flow of Internal Moisture in Porous Media During Rapid Drying Process%快速干燥过程中多孔介质内部

    Institute of Scientific and Technical Information of China (English)

    王馨; 王海; 施明恒; 虞维平

    2001-01-01

    提出了简化的弯通道模型.根据多孔物料的结构和干燥过程的特点,通过实验观测湿分在一定压力差作用下的迁移行为,着重研究快速干燥过程中多孔介质内部湿分的挤压流动现象.实验结果表明在一恒定温度下,当干燥物料两端的压力差逐渐增大时,湿分由物料内部到达外表面所需的时间逐渐减小且在相同的压力差降下,时间减小的幅度越来越小.在相同的压力差下,当液体温度升高时,湿分由物料内部到达外表面所需的时间随之减小.%In this paper, the authors put forward the idea that thedisplacement flow in capillary structure under pressure gradient is the main mechanism of high intense and rapid drying process. In this paper, both analytical and experimental studies are carried out to clarify the displacement process and its characteristic. A simplified displacement flow model is proposed and the time of the moisture migration is calculated. A one-dimentional displacement flow test device is built up and a set of experiments under different pressure gradients and temperatures are conducted. Glass beads of 0.8mm diameter are used as the porous material. The experiment results show that under a constant temperature, as the pressure gradient is getting greater, the time for moisture to reach the external surface from the internal is getting smaller and the range of time reducing is getting smaller too. On the other hand, under the same pressure gradient, as the liquid temperature increases, the time for moisture from the internal to the external surface decreases.

  18. Microwave drying of granules containing a moisture-sensitive drug: a promising alternative to fluid bed and hot air oven drying.

    Science.gov (United States)

    Chee, Sze Nam; Johansen, Anne Lene; Gu, Li; Karlsen, Jan; Heng, Paul Wan Sia

    2005-07-01

    The impact of microwave drying and binders (copolyvidone and povidone) on the degradation of acetylsalicylic acid (ASA) and physical properties of granules were compared with conventional drying methods. Moist granules containing ASA were prepared using a high shear granulator and dried with hot air oven, fluid bed or microwave (static or dynamic bed) dryers. Percent ASA degradation, size and size distribution, friability and flow properties of the granules were determined. Granules dried with the dynamic bed microwave dryer showed the least amount of ASA degradation, followed by fluid bed dryer, static bed microwave oven and hot air oven. The use of microwave drying with a static granular bed adversely affected ASA degradation and drying capability. Dynamic bed microwave dryer had the highest drying capability followed by fluid bed, static bed microwave dryer and conventional hot air oven. The intensity of microwave did not affect ASA degradation, size distribution, friability and flow properties of the granules. Mixing/agitating of granules during drying affected the granular physical properties studied. Copolyvidone resulted in lower amount of granular residual moisture content and ASA degradation on storage than povidone, especially for static bed microwave drying. In conclusion, microwave drying technology has been shown to be a promising alternative for drying granules containing a moisture-sensitive drug.

  19. Study on Taste Quality of Post-drying Paddy

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xian-zhe; XIA Ji-qing

    2003-01-01

    The degradation mechanism of post-paddy was studied.The higher is the paddy drying temperature,the faster is the drying rate.If the drying temperature exceed 45 ℃,the rice taste ratio is quickly decrease.When drying temperature exceeds 45 ℃,chaos arrangement starch and hard to dissolved cell wall and starch granular will appear inside rice.With drying temperature increasing,the fat acid content of rice increases,results in a higher degree of rice aging and restrains starch gelatinizing.Those are essence factor which lead to post-drying rice taste decrease.In order to protect post-drying rice taste quality,drying temperature for paddy should below 45 ℃.

  20. Numerical Simulations of Granular Processes

    Science.gov (United States)

    Richardson, Derek C.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis; Yu, Yang; Matsumura, Soko

    2014-11-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a completely different gravitational environment than on the Earth. Understanding and modeling these motions can aid in the interpretation of imaged surface features that may exhibit signatures of constituent material properties. Also, upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the parallelized N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). Ongoing and recently completed projects include: impacts into granular materials using different projectile shapes [5]; possible tidal resurfacing of asteroid Apophis during its 2029 encounter [6]; the Brazil-nut effect in low gravity [7]; and avalanche modeling.Acknowledgements: DCR acknowledges NASA (grants NNX08AM39G, NNX10AQ01G, NNX12AG29G) and NSF (AST1009579). PM acknowledges the French agency CNES. SRS works on the NEOShield Project funded under the European Commission’s FP7 program agreement No. 282703. SM acknowledges support from the Center for Theory and Computation at U Maryland and the Dundee Fellowship at U Dundee. Most simulations were performed using the YORP cluster in the Dept. of Astronomy at U Maryland and on the Deepthought High-Performance Computing Cluster at U Maryland.References: [1] Richardson, D.C. et al. 2000, Icarus 143, 45; [2] Stadel, J. 2001, Ph.D. Thesis, U Washington; [3] Schwartz, S.R. et al. 2012, Gran

  1. Beneath Our Feet: Strategies for Locomotion in Granular Media

    Science.gov (United States)

    Hosoi, A. E.; Goldman, Daniel I.

    2015-01-01

    “If you find yourself in a hole, stop digging.” Although Denis Healey's famous adage ( Metcalfe 2007 ) may offer sound advice for politicians, it is less relevant to worms, clams, and other higher organisms that rely on their digging ability for survival. In this article, we review recent work on the development of simple models that elucidate the fundamental principles underlying digging and burrowing strategies employed by biological systems. Four digging regimes are identified based on dimensionless digger size and the dimensionless inertial number. We select biological organisms to represent three of the four regimes: razor clams, sandfish, and nematodes. Models for all three diggers are derived and discussed, and analogies are drawn to low-Reynolds number swimmers.

  2. Fluidization of granular media wetted by liquid 4He.

    Science.gov (United States)

    Huang, K; Sohaili, M; Schröter, M; Herminghaus, S

    2009-01-01

    We explore experimentally the fluidization of vertically agitated polymethylmethacrylate spheres wetted by liquid 4He . By controlling the temperature around the lambda point, we change the properties of the wetting liquid from a normal fluid (helium I) to a superfluid (helium II). For wetting by helium I, the critical acceleration for fluidization (Gamma_{c}) shows a steep increase close to the saturation of the vapor pressure in the sample cell. For helium II wetting, Gamma_{c} starts to increase at about 75% saturation, indicating that capillary bridges are enhanced by the superflow of the unsaturated helium film. Above saturation, Gamma_{c} enters a plateau regime where the capillary force between particles is independent of the bridge volume. The plateau value is found to vary with temperature and shows a peak at 2.1K , which we attribute to the influence of the specific heat of liquid helium.

  3. Dynamics of the Contact Stress in Granular Media

    Science.gov (United States)

    Glam, B.; Britan, A.; Ben-Dor, G.; Igra, O.; Goldenberg, A.

    2004-07-01

    Experiments were conducted in a vertical shock tube with an optically transparent single straight chain of 20-mm diameter discs made of epoxy. The dynamic time dependent fringe patterns of the stress in the contact points between the discs were registered using a Q-switched YAG laser, a transmission polariscope and CCD cameras. The main details of the experiment, the data acquisition and the computer aid processing are briefly discussed first. Thereafter the stress wave propagation and its reflection at the chain boundaries are analyzed based on the results of photo elastic experiments and their comparison with those obtained using strain gauges.

  4. Optimizing packing fraction in granular media composed of overlapping spheres.

    Science.gov (United States)

    Roth, Leah K; Jaeger, Heinrich M

    2016-01-28

    What particle shape will generate the highest packing fraction when randomly poured into a container? In order to explore and navigate the enormous search space efficiently, we pair molecular dynamics simulations with artificial evolution. Arbitrary particle shape is represented by a set of overlapping spheres of varying diameter, enabling us to approximate smooth surfaces with a resolution proportional to the number of spheres included. We discover a family of planar triangular particles, whose packing fraction of ϕ ∼ 0.73 is among the highest experimental results for disordered packings of frictionless particles. We investigate how ϕ depends on the arrangement of spheres comprising an individual particle and on the smoothness of the surface. We validate the simulations with experiments using 3D-printed copies of the simplest member of the family, a planar particle consisting of three overlapping spheres with identical radius. Direct experimental comparison with 3D-printed aspherical ellipsoids demonstrates that the triangular particles pack exceedingly well not only in the limit of large system size but also when confined to small containers.

  5. Sudden Chain Energy Transfer Events in Vibrated Granular Media

    Science.gov (United States)

    Rivas, Nicolás; Ponce, Suomi; Soto, Rodrigo; Cordero, Patricio; Mujica, Nicolás; Risso, Dino; Gallet, Basille

    2012-02-01

    In a mixture of two species of grains of equal size but different mass, placed in a vertically vibrated shallow box, there is spontaneous segregation. Once the system is at least partly segregated and clusters of the heavy particles have formed, there are sudden peaks of the horizontal kinetic energy of the heavy particles, that is otherwise small. Together with the energy peaks the clusters rapidly expand and the segregation is partially lost. The process repeats once segregation has taken place again, either randomly or with some regularity in time depending on the experimental or numerical parameters. An explanation for these events is provided based on the existence of a fixed point for an isolated particle bouncing with only vertical motion. The horizontal energy peaks occur when the energy stored in the vertical motion is partly transferred into horizontal energy through a chain reaction of collisions between heavy particles.

  6. Dynamical heterogeneities in glasses colloids and granular media

    CERN Document Server

    2011-01-01

    Most everyday solid materials, from plastics to cosmetic gels, exist in a non-crystalline, amorphous form: they are glasses. Yet we are still seeking an explanation as to what glasses really are and to why they form. Here, leading experts present broad perspectives on one of the deepest mysteries of condensed matter physics.

  7. Modeling intragranular diffusion in low-connectivity granular media

    Science.gov (United States)

    Ewing, Robert P.; Liu, Chongxuan; Hu, Qinhong

    2012-03-01

    Characterizing the diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase is still challenging despite decades of study. Many disparities between observation and theory could be attributed to low connectivity of the intragranular pores. The presence of low connectivity indicates that a useful conceptual framework is percolation theory. The present study was initiated to develop a percolation-based finite difference (FD) model, and to test it rigorously against both random walk (RW) simulations of diffusion starting from nonequilibrium, and data on Borden sand published by Ball and Roberts (1991a,b) and subsequently reanalyzed by Haggerty and Gorelick (1995) using a multirate mass transfer (MRMT) approach. The percolation-theoretical model is simple and readily incorporated into existing FD models. The FD model closely matches the RW results using only a single fitting parameter, across a wide range of pore connectivities. Simulation of the Borden sand experiment without pore connectivity effects reproduced the MRMT analysis, but including low pore connectivity effects improved the fit. Overall, the theory and simulation results show that low intragranular pore connectivity can produce diffusive behavior that appears as if the solute had undergone slow sorption, despite the absence of any sorption process, thereby explaining some hitherto confusing aspects of intragranular diffusion.

  8. GRANULOMETRIC COMPOSITION OF GRANULAR STARCH SWEETENERS

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available There was developed a technology to produce starch sweeteners in granular form, which allows to obtain ready product in dry freeflowing state, without separation of mother liquor with valuable nutritional components, for short period of time. During granulation dextrose is crystallized on the surface of seed granules and it increases their size up to determined value, after that granules are destroyed, forming new centers of granules formation. The sizes of granules are in the range of 3–7 mm. The analysis of experimental data shows, that density of granules is decrease with increase of size of granules. Increasing the load for crushing granules at increase of their size is connected with increase of strength due to its mass increase. However, with increase of granule size the specific load per unit of cross-sectional area (tensile strength is decreased. With increase of moisture content of granules the load for destruction is decreased. The tensile strength is decreased with increase of granule size and moisture content. The value of the optimal average granule size is determined using experimental data on change of critical stress arising inside of granules of different size, from the action of load, determined experimentally for each granule, and specific load in granules of seed layer from external forces at mixing of granule layer. Substituting the known values corresponding to experimental installation, in equations, obtained based on experimental data, we find optimal average size of granule for existing boundary conditions, obtained in the experimental installation d = 3,78 mm. The size of granule at starch sweeteners production could be change in certain limits depending on the height of seed layer of granules in granulator. The greater height of seed layer, the smaller average size of granules obtained at granulation.

  9. Instabilities in granular gas–solid flows

    Science.gov (United States)

    Gómez González, Rubén; Garzó, Vicente

    2017-04-01

    A linear stability analysis of the hydrodynamic equations with respect to the homogeneous cooling state is performed to study the conditions for stability of a suspension of solid particles immersed in a viscous gas. The dissipation in such systems arises from two different sources: inelasticity in particle collisions and viscous friction dissipation due to the influence of the gas phase on the solid particles. The starting point is a suspension model based on the (inelastic) Enskog kinetic equation. The effect of the interstitial gas phase on the dynamics of grains is modeled though a viscous drag force. The study is carried out in two different steps. First, the transport coefficients of the system are obtained by solving the Enskog equation by means of the Chapman–Enskog method up to first order in spatial gradients. Explicit expressions for the Navier–Stokes transport coefficients are obtained in terms of the volume fraction, the coefficient of restitution and the friction coefficient characterizing the amplitude of the external force. Once the transport properties are known, then the corresponding linearized hydrodynamic equations are solved to get the dispersion relations. In contrast to previous studies (Garzó et al 2016 Phys. Rev. E 93 012905), the hydrodynamic modes are analytically obtained as functions of the parameter space of the system. For a d-dimensional system, as expected linear stability shows d  ‑  1 transversal (shear) modes and a longitudinal ‘heat’ mode to be unstable with respect to long enough wavelength excitations. The results also show that the main effect of the gas phase is to decrease the value of the critical length L c (beyond which the system becomes unstable) with respect to its value for a dry granular fluid. Comparison with direct numerical simulations for L c shows a qualitative good agreement for conditions of practical interest.

  10. 76 FR 4936 - Granular Polytetrafluoroethylene Resin From Italy

    Science.gov (United States)

    2011-01-27

    ... COMMISSION Granular Polytetrafluoroethylene Resin From Italy AGENCY: United States International Trade... antidumping duty order on granular polytetrafluoroethylene resin (``granular PTFE resin'') from Italy. DATES... on granular PTFE resin from Italy and Japan (75 FR 67082-67083 and 67105-67108, November 1,...

  11. 21 CFR 133.145 - Granular cheese for manufacturing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Granular cheese for manufacturing. 133.145 Section... Standardized Cheese and Related Products § 133.145 Granular cheese for manufacturing. Granular cheese for manufacturing conforms to the definition and standard of identity prescribed for granular cheese by § 133.144...

  12. Shear failure of granular materials

    Science.gov (United States)

    Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian

    2012-02-01

    Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  13. Wet granular walkers and climbers

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Z S; Steinberger, A; Seemann, R; Herminghaus, S, E-mail: audrey.steinberger@ens-lyon.fr [Max Planck Institute for Dynamics and Self-Organization, Bunsenstrasse 10, D-37073 Goettingen (Germany)

    2011-05-15

    Mechanisms of locomotion in microscopic systems are of great interest not only for technological applications but also for the sake of understanding, and potentially harnessing, processes far from thermal equilibrium. Downscaling is a particular challenge and has led to a number of interesting concepts, including thermal ratchet systems and asymmetric swimmers. Here we present a granular ratchet system employing a particularly robust mechanism that can be implemented in various settings. The system consists of wetted spheres of different sizes that adhere to each other, and are subject to a symmetric oscillating, zero average external force field. An inherent asymmetry in the mutual force network leads to force rectification and hence to locomotion. We present a simple model that accounts for the observed behaviour, underscores its robustness and suggests a potential scalability of the concept.

  14. Kinetic approach to granular gases.

    Science.gov (United States)

    Puglisi, A; Loreto, V; Marini Bettolo Marconi, U; Vulpiani, A

    1999-05-01

    We address the problem of the so-called "granular gases," i.e., gases of massive particles in rapid movement undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the stationary state is the result of the balance between the dissipation and the random forces which inject energies. These models exhibit a genuine thermodynamic limit, i.e., at fixed density the mean values of kinetic energy and dissipated energy per particle are independent of the number N of particles, for large values of N. One has two regimes: when the typical relaxation time tau of the driving Brownian process is small compared with the mean collision time tau(c) the spatial density is nearly homogeneous and the velocity probability distribution is Gaussian. In the opposite limit tau>tau(c) one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability distribution strongly deviates from the Gaussian one. Simulations performed in one and two dimensions under the Stosszahlansatz Boltzmann approximation confirm the scenario. Furthermore, we analyze the instabilities bringing to the spatial and the velocity clusterization. Firstly, in the framework of a mean-field model, we explain how the existence of the inelasticity can lead to a spatial clusterization; on the other hand, we discuss, in the framework of a Langevin dynamics treating the collisions in a mean-field way, how a non-Gaussian distribution of velocity can arise. The comparison between the numerical and the analytical results exhibits an excellent agreement.

  15. Element test experiments and simulations: from dry towards cohesive powders

    NARCIS (Netherlands)

    Imole, O.I.; Kumar, N.; Luding, S.; Onate, E.; Owen, D.R.J.

    2011-01-01

    Findings from experiments and particle simulations for dry and cohesive granular materials are presented with the goal to reach quantitative agreement between simulations and experiments. Results for the compressibility, tested with the FT4 Powder Rheometer are presented. The first simulation result

  16. Linguistic granular model: design and realization

    Institute of Scientific and Technical Information of China (English)

    YUE Shihong; LI Ping; SONG Zhihuan

    2005-01-01

    A new linguistic granular model is proposed and the effect of its parameters on the output is analyzed. The design of the model consists of two stages: using conditional fuzzy clustering for information granular, and integrating all information granules to final output. The integrating tool is fuzzy integral based on fuzzy measure, and the generalization of fuzzy integral increases flexibility of the linguistic granular model greatly. A heuristic algorithm to determine the parameters in the fuzzy integral is used to realize the linguistic model. Two experiments verify the feasibility of the proposed model.

  17. Energy decay in a granular gas collapse

    Science.gov (United States)

    Almazán, Lidia; Serero, Dan; Salueña, Clara; Pöschel, Thorsten

    2017-01-01

    An inelastic hard ball bouncing repeatedly off the ground comes to rest in finite time by performing an infinite number of collisions. Similarly, a granular gas under the influence of external gravity, condenses at the bottom of the confinement due to inelastic collisions. By means of hydrodynamical simulations, we find that the condensation process of a granular gas reveals a similar dynamics as the bouncing ball. Our result is in agreement with both experiments and particle simulations, but disagrees with earlier simplified hydrodynamical description. Analyzing the result in detail, we find that the adequate modeling of pressure plays a key role in continuum modeling of granular matter.

  18. Granular-relational data mining how to mine relational data in the paradigm of granular computing ?

    CERN Document Server

    Hońko, Piotr

    2017-01-01

    This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining r...

  19. century drying

    Science.gov (United States)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  20. Angle of repose and segregation in cohesive granular matter*

    Science.gov (United States)

    Kudrolli, Arshad

    2002-03-01

    We study the effect of fluids on the angle of repose and the segregation of granular matter in two experimental systems. In the regime where the volume fraction of the introduced fluid (liquid) is small, liquid bridges between particles are formed thus giving rise to cohesive forces between particles. In the first series of experiments, we pour the mixture of granular matter and liquid from a reservoir into a silo and imaging the resulting pile through the transparent glass side walls [1]. The angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturate at a value that depends on the size of the particles. The viscosity of the fluid is observed to have a significant effect on the angle of repose and the extent of segregation. Similar phenomena is observed in both the angle of repose and the maximum angle of stability, when the granular-fluid mixture is placed inside a horizontal cylindrical container and rotated. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. Preferential clumping of small particles causes layering to occur when the size of the clumps of small particles exceeds the size of large particles. We also report experiments in which the particles are poured into a silo filled with a fluid to understand the limit of maximum volume fraction of the fluid. In this case the angle of repose is observed to be unchanged from the dry case. However, the segregation is observed to decrease with an increase in the viscosity of the fluid. * Work in collaboration with Azadeh Samadani, and funded by NSF under Grant No. DMR-9983659. [1]: A. Samadani and A. Kudrolli, Phys. Rev. Lett. 85, 5102 (2000); Phys. Rev. E 64, 051301 (2001).

  1. The distribution of saturated clusters in wetted granular materials

    Science.gov (United States)

    Li, Shuoqi; Hanaor, Dorian; Gan, Yixiang

    2017-06-01

    The hydro-mechanical behaviour of partially saturated granular materials is greatly influenced by the spatial and temporal distribution of liquid within the media. The aim of this paper is to characterise the distribution of saturated clusters in granular materials using an optical imaging method under different water drainage conditions. A saturated cluster is formed when a liquid phase fully occupies the pore space between solid grains in a localized region. The samples considered here were prepared by vibrating mono-sized glass beads to form closely packed assemblies in a rectangular container. A range of drainage conditions were applied to the specimen by tilting the container and employing different flow rates, and the liquid pressure was recorded at different positions in the experimental cell. The formation of saturated clusters during the liquid withdrawal processes is governed by three competing mechanisms arising from viscous, capillary, and gravitational forces. When the flow rate is sufficiently large and the gravity component is sufficiently small, the viscous force tends to destabilize the liquid front leading to the formation of narrow fingers of saturated material. As the water channels along these liquid fingers break, saturated clusters are formed inside the specimen. Subsequently, a spatial and temporal distribution of saturated clusters can be observed. We investigated the resulting saturated cluster distribution as a function of flow rate and gravity to achieve a fundamental understanding of the formation and evolution of such clusters in partially saturated granular materials. This study serves as a bridge between pore-scale behavior and the overall hydro-mechanical characteristics in partially saturated soils.

  2. Conjugate gradient type algorithms for frictional multi-contact problems: applications to granular materials

    OpenAIRE

    Renouf, Mathieu; Alart, Pierre

    2005-01-01

    International audience; This paper presents gradient type algorithms to solve frictional multi contact problems written as quasi optimization problems. A single loop scheme formally close to the classical conjugate gradient method is proposed with some adap tations of the iterate corrections and gradient projections. Since the convergence is difficult to prove, various tests in the field of granular media are performed with comparison with the non linear Gauss Seidel scheme.

  3. Risk factors analysis for non dry ear after radical mastoidectomy for chronic suppurative oti-tis media%慢性化脓性中耳炎患者乳突根治术后出现不干耳的危险因素分析

    Institute of Scientific and Technical Information of China (English)

    郑树国

    2015-01-01

    目的:探讨慢性化脓性中耳炎患者行乳突根治术后不干耳的危险因素。方法回顾性分析我院行乳突根治术的120例慢性中耳炎患者临床资料,应用Logistic回归模型分析年龄、性别、病程、吸烟史、药物过敏史、鼻咽部炎症状况、中耳炎类型以及致病菌等因素对术后不干耳的影响。结果干耳组与不干耳组患者年龄、性别、病程、药物过敏史、鼻咽部炎症状况等差异无统计学意义( P>0.05);不干耳组中吸烟者比例以及骨疡型中耳炎患者比例高于干耳组,胆脂瘤中耳炎比例低于干耳组,差异均有统计学意义( P<0.05);两组患者的常见致病菌构成差异亦有统计学意义( P<0.05)。 Logistic回归分析显示,吸烟史、中耳炎类型、致病菌与慢性化脓性中耳炎患者术后不干耳显著相关( OR值分别为8.201、10.801和7.273)。结论术前中耳炎类型、吸烟史以及真菌感染是慢性化脓性中耳炎患者行乳突根治术后不干耳的危险因素,针对这些因素,术前应积极做好充分准备。%Objective To investigate the risk factors of non dry ear after radical mastoidectomy for chronic suppurative otitis media.Methods Clinical data of 120 patients with chronic otitis media (COM),who were treated with radical mastoidectomy in our hospital,were retrospectively analyzed.The effects of age,gender,disease duration,smoking history,drug allergies history,nasopharynx inflammatory conditions ,otitis media types and pathogens in postoperative non dry ear were analyzed by using the Logistic regression a -nalysis.Results There was no significant difference in age ,gender,disease duration,drug allergies and nasopharynx inflammatory be-tween the dry ear and non dry ear groups .The proportions of smokers and COM with osteitis in the non dry ear groups were significantly higher than that in the dry ear group while the proportion of

  4. Microbiological aspects of granular methanogenic sludge

    NARCIS (Netherlands)

    Dolfing, J.

    1987-01-01

    The settling characteristics of anaerobic sludge are enhanced by the formation of microbial conglomerates. Various types of conglomerates having different structures, were distinguished in the present study, viz. granules, pellets and flocs (chapter 1). Granular methanogenic sludge, often

  5. Sliding through a superlight granular medium.

    Science.gov (United States)

    Pacheco-Vázquez, F; Ruiz-Suárez, J C

    2009-12-01

    We explore the penetration dynamics of an intruder in a granular medium composed of expanded polystyrene spherical particles. Three features distinguish our experiment from others studied so far in granular physics: (a) the impact is horizontal, decoupling the effects of gravity and the drag force; (b) the density of the intruder rho(i) is up to 350 times larger than the density of the granular medium rho(m); and (c) the way the intruder moves through the material, sliding at the bottom of the column with small friction. Under these conditions we find that the final penetration D scales with (rho(i)/rho(m)) and the drag force Fd and D saturate with the height of the granular bed.

  6. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  7. [Granular cell tumor of the larynx].

    Science.gov (United States)

    Modrzyński, M; Wróbel, B; Zawisza, E; Drozd, K

    1999-09-01

    Granular cell tumor is an unusual growth of probably neuroectodermal histogenesis, first reported by Abrikossoff in 1926 with the name of myoblastenmyoma. Authors described a case of a 54 year man with laryngeal seat of granular-cell myoblastoma. In this case Abrikossoff tumor was located in the right vocal chord. The tumor was treated successfully surgically by microlaryngoscopy. The etiology, clinical features and diagnostic difficulties are discussed.

  8. Small-signal analysis of granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  9. Flow and fracture in water-saturated, unconstrained granular beds

    Directory of Open Access Journals (Sweden)

    Germán eVaras

    2015-06-01

    Full Text Available The injection of gas in a liquid-saturated granular bed gives rise to a wide variety of invasion patterns. Many studies have focused on constrained porous media, in which the grains are fixed in the bed and only the interstitial fluid flows when the gas invades the system. With a free upper boundary, however, the grains can be entrained by the ascending gas or fluid motion, and the competition between the upward motion of grains and sedimentation leads to new patterns. We propose a brief review of the experimental investigation of the dynamics of air rising through a water-saturated, unconstrained granular bed, in both two and three dimensions. After describing the invasion pattern at short and long time, a tentative regime-diagram is proposed. We report original results showing a dependence of the fluidized zone shape, at long times, on the injection flow rate and grain size. A method based on image analysis makes it possible to detect not only the fluidized zone profile in the stationary regime, but also to follow the transient dynamics of its formation. Finally, we describe the degassing dynamics inside the fluidized zone, in the stationary regime. Depending on the experimental conditions, regular bubbling, continuous degassing, intermittent regime or even spontaneous flow-to-fracture transition are observed.

  10. High-efficiency filtration in dry/semi-dry FGD plants

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, Florin [Evonik Fibres GmbH, Monza (Italy)

    2012-07-01

    Dry/semi-dry FGD plants are associated, in general, with a fabric filter plant. The paper highlights the importance of specific fibre properties like cross section and titre associated with the filtration requirements and the filter material chemical resistance for dry/semi-dry FGD process conditions in coal-fired boiler bag houses. References related to dry/semi-dry FGD plants applied to coal-fired boilers around the world are presented and include the performance evaluation of these plants, the type of filter media, plant design specifications, process parameters and particulate emission efficiency. (orig.)

  11. DISCRETE AND CONTINUUM MODELLING OF GRANULAR FLOW

    Institute of Scientific and Technical Information of China (English)

    H. P. Zhu; Y. H. WU; A. B. Yu

    2005-01-01

    This paper analyses three popular methods simulating granular flow at different time and length scales:discrete element method (DEM), averaging method and viscous, elastic-plastic continuum model. The theoretical models of these methods and their applications to hopper flows are discussed. It is shown that DEM is an effective method to study the fundamentals of granular flow at a particle or microscopic scale. By use of the continuum approach, granular flow can also be described at a continuum or macroscopic scale. Macroscopic quantities such as velocity and stress can be obtained by use of such computational method as FEM. However, this approach depends on the constitutive relationship of materials and ignores the effect of microscopic structure of granular flow. The combined approach of DEM and averaging method can overcome this problem. The approach takes into account the discrete nature of granular materials and does not require any global assumption and thus allows a better understanding of the fundamental mechanisms of granular flow. However, it is difficult to adapt this approach to process modelling because of the limited number of particles which can be handled with the present computational capacity, and the difficulty in handling non-spherical particles.Further work is needed to develop an appropriate approach to overcome these problems.

  12. Granular filters for water treatment: heterogeneity and diagnostic tools

    DEFF Research Database (Denmark)

    Lopato, Laure Rose

    the last barrier against disinfection resistant protozoan pathogens and this has led to increased regulation of the filtration process. To be able to produce high-quality filtrate in a constant and reliable manner while meeting stricter drinking water guideline values, it is important to be able...... to be able to observe the physical state of the filter. The aim of this PhD study is to contribute to the understanding and optimization of the granular media filtration process. The focus of the work is to develop methodologies and diagnostic tools to analyze the physical state of rapid filters and improve....... Similarly, despite the importance of nitrification in groundwater treatment, the removal of ammonium and the determination of the kinetics of nitrification have been insufficiently researched in full-scale filters. A tool is developed to describe nitrification quantitatively on full-scale filters under real...

  13. Fluctuations of Internal Energy Flow in a Vibrated Granular Gas

    Science.gov (United States)

    Puglisi, Andrea; Visco, Paolo; Barrat, Alain; Trizac, Emmanuel; van Wijland, Frédéric

    2005-09-01

    The nonequilibrium fluctuations of power flux in a fluidized granular media have been recently measured in an experiment [Phys. Rev. Lett. 92, 164301 (2004)PRLTAO0031-900710.1103/PhysRevLett.92.164301], which was announced to be a verification of the fluctuation relation (FR) by Gallavotti and Cohen. An effective temperature was also identified and proposed to be a useful probe for such nonequilibrium systems. We explain these results in terms of a two-temperature Poisson process. Within this model, supported by independent molecular dynamics simulations, power flux fluctuations do not satisfy the FR and the nature of the effective temperature is clarified. In the pursuit of a hypothetical global quantity fulfilling the FR, this points to the need of considering candidates other than the power flux.

  14. Micromechanics of Seismic Wave Propagation in Granular Rocks

    Science.gov (United States)

    Nihei, Kurt Toshimi

    1992-09-01

    This thesis investigates the details of seismic wave propagation in granular rocks by examining the micromechanical processes which take place at the grain level. Grain contacts are identified as the primary sites of attenuation in dry and fluid-saturated rocks. In many sedimentary rocks such as sandstones and limestones, the process of diagenesis leaves the grains only partially cemented together. When viewed at the micron scale, grain contacts are non-welded interfaces similar in nature to large scale joints and faults. Using a lumped properties approximation, the macroscopic properties of partially cemented grain contacts are modeled using a displacement-discontinuity boundary condition. This model is used to estimate the magnitude and the frequency dependence of the grain contact scattering attenuation for an idealized grain packing geometry. Ultrasonic P- and S-wave group velocity and attenuation measurements on sintered glass beads, alundum, and Berea sandstones were performed to determine the effects of stress, frequency, and pore fluid properties in granular materials with sintered and partially sintered grain contacts. P - and S-wave attenuation displayed the same overall trends for tests with n-decane, water, silicone oil, and glycerol. The magnitudes of the attenuation coefficients were, in general, higher for S-waves. The experimental measurements reveal that viscosity-dependent attenuation dominates in material with sintered grain contacts. Viscosity-dependent attenuation is also observed in Berea sandstone but only at hydrostatic stresses in excess of 15 MPa where the grain contacts are highly stiffened. Fluid surface chemistry-related attenuation was observed in Berea sandstone loaded uniaxially. These measurements suggest that attenuation in fluid-saturated rocks with partially cemented grain contacts is dependent on both the fluid properties and the state of stress at the grain contacts. A numerical method for simulating seismic wave propagation in

  15. Dry Mouth

    Science.gov (United States)

    ... Use a fluoride rinse or brush-on fluoride gel before bedtime. See your dentist at least twice yearly to have your teeth examined and plaque removed, to help prevent tooth decay. Several herbal remedies have been used historically to treat dry ...

  16. Driven fragmentation of granular gases.

    Science.gov (United States)

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  17. Evaluation of economically feasible, natural plant extract-based microbiological media for producing biomass of the dry rot biocontrol strain Pseudomonas fluorescens P22Y05 in liquid culture

    Science.gov (United States)

    The production of microbial biomass in liquid media often represents an indispensable step in the research and development of bacterial and fungal strains. Costs of commercially prepared nutrient media or purified media components, however, can represent a significant hurdle to conducting research i...

  18. NMR measurement of the magnetic field correlation function in porous media.

    Science.gov (United States)

    Cho, H; Song, Yi-Qiao

    2008-01-18

    The structure factor provides a fundamental characterization of porous and granular materials as it is the key for solid crystals via measurements of x-ray and neutron scattering. Here, we demonstrate that the structure factor of the granular and porous media can be approximated by the pair correlation function of the inhomogeneous internal magnetic field, which arises from the susceptibility difference between the pore filling liquid and the solid matrix. In-depth understanding of the internal field is likely to contribute to further development of techniques to study porous and granular media.

  19. Controlling mixing and segregation in time periodic granular flows

    Science.gov (United States)

    Bhattacharya, Tathagata

    Segregation is a major problem for many solids processing industries. Differences in particle size or density can lead to flow-induced segregation. In the present work, we employ the discrete element method (DEM)---one type of particle dynamics (PD) technique---to investigate the mixing and segregation of granular material in some prototypical solid handling devices, such as a rotating drum and chute. In DEM, one calculates the trajectories of individual particles based on Newton's laws of motion by employing suitable contact force models and a collision detection algorithm. Recently, it has been suggested that segregation in particle mixers can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. Further, it has been hypothesized that, for a rotating drum, the effectiveness of this technique can be linked to the probability distribution of the number of times a particle passes through the flowing layer per rotation of the drum. In the first portion of this work, various configurations of solid mixers are numerically and experimentally studied to investigate the conditions for improved mixing in light of these hypotheses. Besides rotating drums, many studies of granular flow have focused on gravity driven chute flows owing to its practical importance in granular transportation and to the fact that the relative simplicity of this type of flow allows for development and testing of new theories. In this part of the work, we observe the deposition behavior of both mono-sized and polydisperse dry granular materials in an inclined chute flow. The effects of different parameters such as chute angle, particle size, falling height and charge amount on the mass fraction distribution of granular materials after deposition are investigated. The simulation results obtained using DEM are compared with the experimental findings and a high degree of agreement is observed. Tuning of the underlying contact force parameters allows the achievement

  20. Mechanics of granular environments; Mecanique des milieux granulaires

    Energy Technology Data Exchange (ETDEWEB)

    Lanier, J. [Universite Joseph-Fourier, Grenoble I, 38 (France)

    2001-07-01

    This book aims at presenting different aspects of the behaviour of granular materials as encountered in natural environments (mainly soils), in industries involving the handling of granular products (cereals..) or powders (chemistry, metal industry..). It brings together the contributions of various specialists of physics and mechanics: mechanics of collisions between solids; gravity flows; grain flows; solid transport as example of two-phase granular flow; wave propagation inside a model of granular environment; propagation of waves in soils; enrockments and stability of rocky slopes; soils behaviour; coupled heat and mass transfers in granular environments; thermo-mechanical properties of granular environments. (J.S.)

  1. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Written By: Kierstan Boyd Reviewed By: ... your eyes do not produce enough tears, it is called dry eye. Dry eye is also when ...

  2. Insight into the dynamics of granular column collapse using Discrete Element Methods and laboratory experiments

    Science.gov (United States)

    Martin, Hugo; Mangeney, Anne; Farin, Maxime; Richard, Patrick

    2016-04-01

    The mechanical behavior of granular flows is still an open issue. In particular, quantitative agreement between the detailed dynamics of the flow and laboratory experiments is necessary to better constrain the performance and limits of the models. We propose here to compare quantitatively the flow profiles and the force during granular column collapse simulated using Discrete Element Models and laboratory experiments. These small scale experiments are performed with dry granular material released initially from a cylinder on a sloping plane. The flow profiles and the acoustic signal generated by the granular impacts and stresses on the plane are recorded systematically [Farin et al., 2015]. These experiments are simulated using the Discrete Element Method Modys [Richard et al., 2000]. We show that the effect of the removing gate should be taken into account in the model in order to quantatively reproduce the flow dynamics. Furthermore we compare the simulated and observed acoustic signals that are generated by the fluctuating stresses exerted by the grains on the substrate in different frequency bands. [1] P. Richard et Luc Oger. 2000 Etude de la géométrie de milieux granulaires modèles tridimensionnels par simulation numérique. [2] Farin, M., Mangeney, A., Toussaint, R., De Rosny, J., Shapiro, N., Dewez, T., Hibert, C., Mathon, C., Sedan, O., Berger. 2015, Characterization of rockfalls from seismic signal: insights from laboratory experiments

  3. Fluctuation-dissipation relations for motions of center of mass in driven granular fluids under gravity.

    Science.gov (United States)

    Wakou, Jun'ichi; Isobe, Masaharu

    2012-06-01

    We investigated the validity of fluctuation-dissipation relations in the nonequilibrium stationary state of fluidized granular media under gravity by two independent approaches, based on theory and numerical simulations. A phenomenological Langevin-type theory describing the fluctuation of center of mass height, which was originally constructed for a one-dimensional granular gas on a vibrating bottom plate, was generalized to any dimensionality, even for the case in which the vibrating bottom plate is replaced by a thermal wall. The theory predicts a fluctuation-dissipation relation known to be satisfied at equilibrium, with a modification that replaces the equilibrium temperature by an effective temperature defined by the center of mass kinetic energy. To test the validity of the fluctuation-dissipation relation, we performed extensive and accurate event-driven molecular dynamics simulations for the model system with a thermal wall at the bottom. The power spectrum and response function of the center of mass height were measured and closely compared with theoretical predictions. It is shown that the fluctuation-dissipation relation for the granular system is satisfied, especially in the high-frequency (short time) region, for a wide range of system parameters. Finally, we describe the relationship between systematic deviations in the low-frequency (long time) region and the time scales of the driven granular system.

  4. Convection and segregation in fluidised granular systems exposed to two-dimensional vibration

    Science.gov (United States)

    Windows-Yule, C. R. K.

    2016-03-01

    Convection and segregation in granular systems not only provide a rich phenomenology of scientifically interesting behaviours but are also crucial to numerous ‘real-world’ processes ranging from important and widely used industrial procedures to potentially cataclysmic geophysical phenomena. Simple, small-scale experimental or simulated test systems are often employed by researchers in order to gain an understanding of the fundamental physics underlying the behaviours of granular media. Such systems have been the subject of extensive research over several decades, with numerous system geometries and manners of producing excitation explored. Energy is commonly provided to granular assemblies through the application of vibration—the simplicity of the dynamical systems produced and the high degree of control afforded over their behaviour make vibrated granular beds a valuable canonical system by which to explore a diverse range of phenomena. Although a wide variety of vibrated systems have been explored in the existing literature, the vast majority are exposed to vibration along only a single spatial direction. In this paper, we study highly fluidised systems subjected to strong, multi-directional driving, providing a first insight into the dynamics and behaviours of these systems which may potentially hold valuable new information relevant to important industrial and natural processes. With a particular focus on the processes of convection and segregation, we analyse the various states and phase transitions exhibited by our system, detailing a number of previously unobserved dynamical phenomena and system states.

  5. Emission and drying kinetics of paper mill sludge during contact drying process

    Institute of Scientific and Technical Information of China (English)

    Wen-yi DENG; Xiao-dong LI; Jian-hua YAN; Fei WANG; Sheng-yong LU; Yong CHI; Ke-fa CEN

    2009-01-01

    The emission and contact drying kinetics of the paper mill sludge (PMS) were studied through experiments carried out in a paddle dryer. To get a better understanding of its drying mechanism, a penetration model developed by Tsotsas and Schlunder (1986) was used to simulate the drying kinetics of the PMS. The result indicated that this kinetics could be divided into three phases: pasty, lumpy and granular phases, and could be successfully simulated by the penetration model as the related sludge parameters were integrated into the model. The emission rate curves of the volatile compounds (VCs) were interrelated to the drying rate curve of the PMS, especially for volatile fatty acids (VFAs) and ammonia in this study.

  6. Microstructure evolution during impact on granular matter.

    Science.gov (United States)

    Kondic, L; Fang, X; Losert, W; O'Hern, C S; Behringer, R P

    2012-01-01

    We study the impact of an intruder on a dense granular material. The process of impact and interaction between the intruder and the granular particles is modeled using discrete element simulations in two spatial dimensions. In the first part of the paper we discuss how the intruder's dynamics depends on (1) the intruder's properties, including its size, shape and composition, (2) the properties of the grains, including friction, polydispersity, structural order, and elasticity, and (3) the properties of the system, including its size and gravitational field. It is found that polydispersity and related structural order, and frictional properties of the granular particles, play a crucial role in determining impact dynamics. In the second part of the paper we consider the response of the granular system itself. We discuss the force networks that develop, including their topological evolution. The influence of friction and structural order on force propagation, including the transition from hyperbolic-like to elastic-like behavior is discussed, as well as the affine and nonaffine components of the grain dynamics. Several broad observations include the following: tangential forces between granular particles are found to play a crucial role in determining impact dynamics; both force networks and particle dynamics are correlated with the dynamics of the intruder itself. © 2012 American Physical Society

  7. CO2 (dry ice) cleaning system

    Science.gov (United States)

    Barnett, Donald M.

    1995-03-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  8. Granular computing with multiple granular layers for brain big data processing.

    Science.gov (United States)

    Wang, Guoyin; Xu, Ji

    2014-12-01

    Big data is the term for a collection of datasets so huge and complex that it becomes difficult to be processed using on-hand theoretical models and technique tools. Brain big data is one of the most typical, important big data collected using powerful equipments of functional magnetic resonance imaging, multichannel electroencephalography, magnetoencephalography, Positron emission tomography, near infrared spectroscopic imaging, as well as other various devices. Granular computing with multiple granular layers, referred to as multi-granular computing (MGrC) for short hereafter, is an emerging computing paradigm of information processing, which simulates the multi-granular intelligent thinking model of human brain. It concerns the processing of complex information entities called information granules, which arise in the process of data abstraction and derivation of information and even knowledge from data. This paper analyzes three basic mechanisms of MGrC, namely granularity optimization, granularity conversion, and multi-granularity joint computation, and discusses the potential of introducing MGrC into intelligent processing of brain big data.

  9. Perfect fluid flow from granular jet impact

    CERN Document Server

    Ellowitz, Jake; Zhang, Wendy W

    2012-01-01

    Experiments on the impact of a densely-packed jet of non-cohesive grains onto a fixed target show that the impact produces an ejecta sheet comprised of particles in collimated motion. The ejecta sheet leaves the target at a well-defined angle whose value agrees quantitatively with the sheet angle produced by water jet impact. Motivated by these experiments, we examine the idealized problem of dense granular jet impact onto a frictionless target in two dimensions. Numerical results for the velocity and pressure fields within the granular jet agree quantitatively with predictions from an exact solution for 2D perfect-fluid impact. This correspondence demonstrates that the continuum limit controlling the coherent collective motion in dense granular impact is Euler flow.

  10. Computational Granular Dynamics Models and Algorithms

    CERN Document Server

    Pöschel, Thorsten

    2005-01-01

    Computer simulations not only belong to the most important methods for the theoretical investigation of granular materials, but also provide the tools that have enabled much of the expanding research by physicists and engineers. The present book is intended to serve as an introduction to the application of numerical methods to systems of granular particles. Accordingly, emphasis is placed on a general understanding of the subject rather than on the presentation of the latest advances in numerical algorithms. Although a basic knowledge of C++ is needed for the understanding of the numerical methods and algorithms in the book, it avoids usage of elegant but complicated algorithms to remain accessible for those who prefer to use a different programming language. While the book focuses more on models than on the physics of granular material, many applications to real systems are presented.

  11. Compaction dynamics of wet granular packings

    Science.gov (United States)

    Vandewalle, Nicolas; Ludewig, Francois; Fiscina, Jorge E.; Lumay, Geoffroy

    2013-03-01

    The extremely slow compaction dynamics of wet granular assemblies has been studied experimentally. The cohesion, due to capillary bridges between neighboring grains, has been tuned using different liquids having specific surface tension values. The characteristic relaxation time for compaction τ grows strongly with cohesion. A kinetic model, based on a free volume kinetic equations and the presence of a capillary energy barrier (due to liquid bridges), is able to reproduce quantitatively the experimental curves. This model allows one to describe the cohesion in wet granular packing. The influence of relative humidity (RH) on the extremely slow compaction dynamics of a granular assembly has also been investigated in the range 20 % - 80 % . Triboelectric and capillary condensation effects have been introduced in the kinetic model. Results confirm the existence of an optimal condition at RH ~ 45 % for minimizing cohesive interactions between glass beads.

  12. Ultrasound features of orbital granular cell tumor.

    Science.gov (United States)

    Ayres, Bernadete; Miller, Neil R; Eberhart, Charles G; Dibernardo, Cathy W

    2009-01-01

    The authors report the echographic characteristics of a rare orbital granular cell tumor and correlate these findings with histopathology. A 56-year-old woman presented with proptosis. Complete ophthalmic and ultrasound examinations were performed. Ultrasound revealed an oval, well-outlined orbital mass in the intraconal space with low-medium reflectivity and regular internal structure. An orbitotomy with complete excision of the tumor was performed. Histopathologic evaluation showed sheets and nests of cells with abundant eosinophilic and granular cytoplasm in a uniform distribution throughout the lesion. The echographic characteristics correlated well with the morphologic surgical findings and the histologic architecture. This is the first report describing the echographic characteristics of orbital granular cell tumor.

  13. 11th Traffic and Granular Flow Conference

    CERN Document Server

    Daamen, Winnie

    2016-01-01

    The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...

  14. Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles.

    Science.gov (United States)

    Mazouchova, Nicole; Gravish, Nick; Savu, Andrei; Goldman, Daniel I

    2010-06-23

    Biological terrestrial locomotion occurs on substrate materials with a range of rheological behaviour, which can affect limb-ground interaction, locomotor mode and performance. Surfaces like sand, a granular medium, can display solid or fluid-like behaviour in response to stress. Based on our previous experiments and models of a robot moving on granular media, we hypothesize that solidification properties of granular media allow organisms to achieve performance on sand comparable to that on hard ground. We test this hypothesis by performing a field study examining locomotor performance (average speed) of an animal that can both swim aquatically and move on land, the hatchling Loggerhead sea turtle (Caretta caretta). Hatchlings were challenged to traverse a trackway with two surface treatments: hard ground (sandpaper) and loosely packed sand. On hard ground, the claw use enables no-slip locomotion. Comparable performance on sand was achieved by creation of a solid region behind the flipper that prevents slipping. Yielding forces measured in laboratory drag experiments were sufficient to support the inertial forces at each step, consistent with our solidification hypothesis.

  15. Performance of Anammox granular sludge bed reactor started up with nitrifying granular sludge

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; LIN Feng-mei; HU Bao-lan; CHEN Jian-song

    2004-01-01

    The anaerobic ammonia oxidation(Anammox) granular sludge bed reactor was started up successfully withnitrifying granular sludge. During the operation, the nitrifying granular sludge was gradually converted into Anammoxgranular sludge with good settling property and high conversion activity. The Anammox reactor worked well with theshortest HRT of 2.43 h. Under the condition that HRT was 6.39 h and influent concentration of ammonia and nitritewas 10 mmol/L, the removal of ammonia and nitrite was 97.17% and 100.00%, respectively. Corresponding

  16. Impulse absorption by horizontal magnetic granular chain

    Directory of Open Access Journals (Sweden)

    Dingxin Leng

    2016-02-01

    Full Text Available The granular medium is known as a protecting material for shock mitigation. We study the impulse absorption of an alignment of magnetic spheres placed horizontally under a non-uniform magnetic field. The phenomenon of the wave dispersion is presented. This system can absorb 85% ∼ 95% (88% ∼ 98% of the incident peak force (energy under the applied magnetic field strength in 0.1 T ∼ 1.0 T. The shock attenuation capacities are enhanced by the increment of field strength. With an intelligent control system, it is conceivable that the magnetic granular chain may offer possibilities in developing adaptive shock protectors.

  17. International Workshop on Traffic and Granular Flow

    CERN Document Server

    Herrmann, Hans; Schreckenberg, Michael; Wolf, Dietrich; Social, Traffic and Granular Dynamics

    2000-01-01

    "Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.

  18. A kinetic approach to granular gases

    OpenAIRE

    Puglisi, A.; Loreto, V.; Marconi, U. Marini Bettolo; Vulpiani, A.

    1998-01-01

    We address the problem of the so-called ``granular gases'', i.e. gases of massive particles in rapid movement undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the stationary state is the result of the balance between the dissipation and the random forces which inject energies. These models exhibit a genuine thermodynamic limit, i.e. at fixed density the mean values of kinetic energy and dissipated energy per particle are independent of the num...

  19. Challenges in Predicting Planetary Granular Mechanics

    Science.gov (United States)

    Metzger, Philip T.

    2005-01-01

    Through the course of human history, our needs in agriculture, habitat construction, and resource extraction have driven us to gain more experience working with the granular materials of planet Earth than with any other type of substance in nature, with the possible exception being water. Furthermore, throughout the past two centuries we have seen a dramatic and ever growing interest among scientists and engineers to understand and predict both its static and rheological properties. Ironically, however, despite this wealth of experience we still do not have a fundamental understanding of the complex physical phenomena that emerge even as just ordinary sand is shaken, squeezed or poured. As humanity is now reaching outward through the solar system, not only robotic ally but also with our immediate human presence, the need to understand and predict granular mechanics has taken on a new dimension. We must learn to farm, build and mine the regoliths of other planets where the environmental conditions are different than on Earth, and we are rapidly discovering that the effects of these environmental conditions are not trivial. Some of the relevant environmental features include the regolith formation processes throughout a planet's geologic and hydrologic history, the unknown mixtures of volatiles residing within the soil, the relative strength of gravitation, d the atm9spheric pressure and its seasonal variations. The need to work with soils outside our terrestrial experience base provides us with both a challenge and an opportunity. The challenge is to learn how to extrapolate our experience into these new planetary conditions, enabling the engineering decisions that are needed right now as we take the next few steps in solar system exploration. The opportunity is to use these new planetary environments as laboratories that will help us to see granular mechanics in new ways, to challenge our assumptions, and to help us finally unravel the elusive physics that lie

  20. Granular Impact Dynamics: Acoustics and Fluctuations

    CERN Document Server

    Clark, Abram H

    2012-01-01

    In the corresponding fluid dynamics video, created for the APS DFD 2012 Gallery of Fluid Motion, we show high-speed videos of 2D granular impact experiments, where an intruder strikes a collection of bidisperse photoelastic disks from above. We discuss the force beneath the intruder, which is strongly fluctuating in space and time. These fluctuations correspond to acoustic pulses which propagate into the medium. Analysis shows that this process, in our experiments, is dominated by collisions with grain clusters. The energy from these collisions is carried into the granular medium along networks of grains, where is it dissipated.

  1. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  2. 76 FR 39896 - Granular Polytetrafluoroethylene Resin From Italy

    Science.gov (United States)

    2011-07-07

    ... COMMISSION Granular Polytetrafluoroethylene Resin From Italy Determination On the basis of the record \\1... antidumping duty order on granular polytetrafluoroethylene resin from Italy would be likely to lead to... Granular Polytetrafluoroethylene Resin from Italy: Investigation No. 731-TA-385 (Third Review). By order...

  3. Mechanical and Structural Behavior of Granular Material Packed Beds for Space Life Support System Applications

    Science.gov (United States)

    Malla, Ramesh B.; Anandakumar, Ganesh

    2005-01-01

    Long-term human mission to space, such as living in International Space Station (ISS), Lunar, and Martian bases, and travel to Mars, must m ake use of Advanced Life Support Systems (ALSS) to generate and recycle critical life supporting elements like oxygen and water. Oxygen Gen eration Assembly (OGA) and Water Processor Assembly (WPA), critical c omponents of ALSS, make use of series of granular material packed beds for generation and recycling of oxygen and water. Several granular m aterials can be used for generation, recycling, processing and recovery of oxygen and water. For example, they may include soft bed media, e.g. ion exchange resins for oxygen generation assembly and hard bed media such as, activated alumina, magchem (Magnesium oxide) and activa ted carbon to remove organic species like ethanol, methanol, and urea from wastewater in Water recovery/processing assembly. These beds are generally packed using a plate-spring mechanism to provide sufficien t compaction to the bed media throughout the course of operation. This paper presents results from an experimental study of a full-scale, 3 8.1 cm (15 inches) long and 3.7 cm (1.44 inches) diameter. activated alumina bed enclosed in a cylinder determining its force-displacement behavior, friction mobilizing force, and axial normal stress distribu tion under various axially applied loads and at different levels of packing. It is observed that force-displacement behavior is non-linear for low compaction level and becomes linear with increase in compaction of the bed media. Axial normal stress distribution along the length of the bed media decreased non-linearly with increase in depth from the loading end of the granular media. This paper also presents experimental results on the amount of particulates generated corresponding to various compaction levels. Particulates generated from each of the tests were measured using standard US sieves. It was found that the p articulates and the overall displacement of

  4. 2D ultra-fast MRI of granular dispersion by a liquid jet

    Science.gov (United States)

    Peng, Yunan; Sederman, Andrew J.; Ramaioli, Marco; Hughes, Eric; Gladden, Lynn F.; Mantle, Mick D.

    2017-06-01

    This paper illustrates the application of ultra-fast magnetic resonance imaging (MRI) as a noninvasive tool to study the dispersion of a dry, static granular bed by the injection of a liquid. Spatial distributions of undispersed grains (poppy seeds) and injected water were independently imaged at sub-millimetre resolution in 2D with ultra-fast MRI techniques. A liquid jet was observed above the bottom injection orifice, complementing optical imaging. Co-registration of the grains and water images enables the interaction of the static grains and of the liquid jet to be observed for the first time in situ. This visualization of the dispersion process can be used to identify optimal process parameters for a fast and uniform dispersion and to validate quantitatively numerical granular-fluid simulations [1].

  5. Discrete Element Simulation of Collision-Rich Dynamics of Wet Granular Flows Down an Inclined Channel

    Institute of Scientific and Technical Information of China (English)

    CHANG Wei-Tze; HSIEH Shang-Hsien; YANG Fu-Ling; CHEN Chuin-Shan

    2008-01-01

    This paper proposes a numerical scheme that employs the discrete element method (DEM) to simulate the motion of a wet granular flow down an inclined channel.To account for the liquid influences on the dynamics between paired particles,this paper presents a wet soft-sphere contact model with liquid-modified parameters.The developed scheme takes full advantage of DEM and avoids the expensive simula-tion of the solid-liquid interactions with conventional Navier-Stokes equation solver.This wet contact model has been implemented in an in-housed parallel discrete objects simulation system-KNIGHT and ANNE/IRIS口to compute the dynamic behaviors of both dry and wet granular particles flowing down an in-dined channel.

  6. Hydrodynamic description of a vibrofluidized granular bed driven at high frequency

    Science.gov (United States)

    Sheikh, Nadeem A.; Manzoor, Shehryar; Mahabat Khan, Muhammad; Ali, Muzaffar

    2016-08-01

    Results are reported for a dry granular bed vertically excited at high and low frequencies with constant peak base velocity. Previous experimental data sets using Nuclear Magnetic Resonance are used for comparison at low (~38 Hz) and high (~11 kHz) vibration frequencies. Packing fractions and granular temperatures are compared against hydrodynamic and molecular dynamics simulation models. At low frequency hydrodynamic and MD simulations results show the presence of a heat wave. Whilst at high frequencies soft sphere potential based MD simulations highlight the role of finite duration collisions between particles and the vibrating wall. In this region the timescales of vibration and collision duration are not well separated, as observed in experimental results.

  7. Fiber bundle models for stress release and energy bursts during granular shearing

    Science.gov (United States)

    Michlmayr, Gernot; Or, Dani; Cohen, Denis

    2012-12-01

    Fiber bundle models (FBMs) offer a versatile framework for representing transitions from progressive to abrupt failure in disordered material. We report a FBM-based description of mechanical interactions and associated energy bursts during shear deformation of granular materials. For strain-controlled shearing, where elements fail in a sequential order, we present analytical expressions for strain energy release and failure statistics. Results suggest that frequency-magnitude characteristics of fiber failure vary considerably throughout progressive shearing. Predicted failure distributions were in good agreement with experimentally observed shear stress fluctuations and associated bursts of acoustic emissions. Experiments also confirm a delayed release of acoustic emission energy relative to shear stress buildup, as anticipated by the model. Combined with data-rich acoustic emission measurements, the modified FBM offers highly resolved contact-scale insights into granular media dynamics of shearing processes.

  8. Percolation study for the capillary ascent of a liquid through a granular soil

    CERN Document Server

    Cárdenas-Barrantes, M A; Araujo, N A M

    2016-01-01

    Capillary rise plays a crucial role in the construction of road embankments in flood zones, where hydrophobic compounds are added to the soil to suppress the rising of water and avoid possible damage of the pavement. Water rises through liquid bridges, menisci and trimers, whose width and connectivity depends on the maximal half-length {\\lambda} of the capillary bridges among grains. Low {\\lambda} generate a disconnect structure, with small clusters everywhere. On the contrary, for high {\\lambda}, create a percolating cluster of trimers and enclosed volumes that form a natural path for capillary rise. Hereby, we study the percolation transition of this geometric structure as a function of {\\lambda} on a granular media of monodisperse spheres in a random close packing. We determine both the percolating threshold {\\lambda}_{c} = (0.049 \\pm 0.004)R (with R the radius of the granular spheres), and the critical exponent of the correlation length {\

  9. Influence of loading pulse duration on dynamic load transfer in a simulated granular medium

    Science.gov (United States)

    Shukla, A.; Sadd, M. H.; Xu, Y.; Tai, Q. M.

    1993-11-01

    AN EXPERIMENTAL and numerical investigation was conducted to study the dynamic response of granular media when subjected to impact loadings with different periods or wavelengths. The granular medium was simulated by a one-dimensional assembly of circular disks arranged in a straight single chain. In the experimental study, the dynamic loading was produced using projectile impact from a gas gun onto one end of the granular assembly, and the measured wave signal was collected using strain gages. The numerical simulations were conducted using the distinct element method. It was found from the experiments and numerical simulations that input waves with a short period (τ ≈ 90 μs) will propagate in this granular medium with little waveform change under steady amplitude attenuation ; whereas longer waves (τ $̆200 μs) will propagate with significant waveform dispersion. For these longer wavelength signals, the smooth waveform will undergo separation into a series of short oscillatory signals, and this rearrangement of energy allows a portion of the transmitted signal to increase in amplitude during the initial phases of propagation. Thus the granular medium acts as a nonlinear wave guide, and local microstructure and contact nonlinearity will allow input signals of sufficiently long wavelength to excite resonant sub-units of the medium to produce this observed ringing separation. Following a modeling scheme originally proposed by NESTERENKO[J. Appl. Mech. Tech. Phys. 5,733 (1983)], a nonlinear wave equation model was developed which is related to soliton dynamics and leads to travelling wave solutions of specific wavelength found in our experimental and numerical studies.

  10. Discrete element modelling of granular materials

    NARCIS (Netherlands)

    Van Baars, S.

    1996-01-01

    A new model is developed by the author, which does not use the equations of motion but the equations of equilibrium to describe granular materials. The numerical results show great similarities with reality and can generally be described by an advanced Mohr-Coulomb model. However, many contacts betw

  11. Micromechanical study of plasticity of granular materials

    NARCIS (Netherlands)

    Kruyt, N.P.

    2010-01-01

    Plastic deformation of granular materials is investigated from the micromechanical viewpoint, in which the assembly of particles and interparticle contacts is considered as a mechanical structure. This is done in three ways. Firstly, by investigating the degree of redundancy of the system by compari

  12. Localized fluidization in a granular medium.

    Science.gov (United States)

    Philippe, P; Badiane, M

    2013-04-01

    We present here experimental results on the progressive development of a fluidized zone in a bed of grains, immersed in a liquid, under the effect of a localized upward flow injected through a small orifice at the bottom of the bed. Visualization inside the model granular medium consisting of glass beads is made possible by the combined use of two optical techniques: refractive index matching between the liquid and the beads and planar laser-induced fluorescence. Gradually increasing the injection rate, three regimes are successively observed: static bed, fluidized cavity that does not open to the upper surface of the granular bed, and finally fluidization over the entire height of the granular bed inside a fluidized chimney. The phase diagram is plotted and partially interpreted using a model previously developed by Zoueshtiagh and Merlen [F. Zoueshtiagh and A. Merlen, Phys. Rev. E 75, 053613 (2007)]. A typical sequence, where the flow rate is first increased and then decreased back to zero, reveals a strong hysteretic behavior since the stability of the fluidized cavity is considerably strengthened during the defluidization phase. This effect can be explained by the formation of force arches within the granular packing when the chimney closes up at the top of the bed. A study of the expansion rate of the fluidized cavity was also conducted as well as the analysis of the interaction between two injection orifices with respect to their spacing.

  13. Experimental velocity distributions in a granular submonolayer

    Science.gov (United States)

    Cadillo-Martínez, Alejandra T.; Sánchez, Rodrigo

    2017-01-01

    Experimental speed distributions are obtained for driven granular submonolayers of binary mixtures of single spheres and dimers of spheres. The results are well-described by a distribution originally developed for a single-species one-dimensional system. This suggests that such a distribution may be extended to other mixtures such as systems exhibiting aggregation and dissociation.

  14. Scales and kinetics of granular flows.

    Science.gov (United States)

    Goldhirsch, I.

    1999-09-01

    When a granular material experiences strong forcing, as may be the case, e.g., for coal or gravel flowing down a chute or snow (or rocks) avalanching down a mountain slope, the individual grains interact by nearly instantaneous collisions, much like in the classical model of a gas. The dissipative nature of the particle collisions renders this analogy incomplete and is the source of a number of phenomena which are peculiar to "granular gases," such as clustering and collapse. In addition, the inelasticity of the collisions is the reason that granular gases, unlike atomic ones, lack temporal and spatial scale separation, a fact manifested by macroscopic mean free paths, scale dependent stresses, "macroscopic measurability" of "microscopic fluctuations" and observability of the effects of the Burnett and super-Burnett "corrections." The latter features may also exist in atomic fluids but they are observable there only under extreme conditions. Clustering, collapse and a kinetic theory for rapid flows of dilute granular systems, including a derivation of boundary conditions, are described alongside the mesoscopic properties of these systems with emphasis on the effects, theoretical conclusions and restrictions imposed by the lack of scale separation. (c) 1999 American Institute of Physics.

  15. Anomalous intruder response in diverse granular systems

    NARCIS (Netherlands)

    Oyarte Galvez, Loreto Alejandra

    2017-01-01

    The definition of granular matter is extremely broad; any collection of conglomeration of particles larger than 100 micrometers can be considered as part of this group, and virtually the entire universe is composed of them. Examples are found in many fields, e.g. in nature (dunes, avalanches,

  16. On the granular stress-geometry equation

    Science.gov (United States)

    DeGiuli, Eric; Schoof, Christian

    2014-01-01

    Using discrete calculus, we derive the missing stress-geometry equation for rigid granular materials in two dimensions, in the mean-field approximation. We show that i) the equation imposes that the voids cannot carry stress, ii) stress transmission is generically elliptic and has a quantitative relation to anisotropic elasticity, and iii) the packing fabric plays an essential role.

  17. Granular materials interacting with thin flexible rods

    Science.gov (United States)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2017-04-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  18. Granular avalanches down inclined and vibrated planes

    Science.gov (United States)

    Gaudel, Naïma; Kiesgen de Richter, Sébastien; Louvet, Nicolas; Jenny, Mathieu; Skali-Lami, Salaheddine

    2016-09-01

    In this article, we study granular avalanches when external mechanical vibrations are applied. We identify conditions of flow arrest and compare with the ones classically observed for nonvibrating granular flows down inclines [Phys. Fluids 11, 542 (1999), 10.1063/1.869928]. We propose an empirical law to describe the thickness of the deposits with the inclination angle and the vibration intensity. The link between the surface velocity and the depth of the flow highlights a competition between gravity and vibrations induced flows. We identify two distinct regimes: (a) gravity-driven flows at large angles where vibrations do not modify dynamical properties but the deposits (scaling laws in this regime are in agreement with the literature for nonvibrating granular flows) and (b) vibrations-driven flows at small angles where no flow is possible without applied vibrations (in this last regime, the flow behavior can be properly described by a vibration induced activated process). We show, in this study, that granular flows down inclined planes can be finely tuned by external mechanical vibrations.

  19. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials sh

  20. Mechanical properties of wet granular materials

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Z; Geromichalos, D; Herminghaus, S; Kohonen, M M; Mugele, F; Scheel, M; Schulz, M; Schulz, B; Schier, Ch; Seemann, R; Skudelny, A

    2005-03-09

    We elaborate on the impact of liquids upon the mechanical properties of granular materials. We find that most of the experimental and simulation results may be accounted for by a simple model assuming frictionless, spherical grains, with a hysteretic attractive interaction between neighbouring grains due to capillary forces.

  1. Granular materials interacting with thin flexible rods

    Science.gov (United States)

    Neto, Alfredo Gay; Campello, Eduardo M. B.

    2016-01-01

    In this work, we develop a computational model for the simulation of problems wherein granular materials interact with thin flexible rods. We treat granular materials as a collection of spherical particles following a discrete element method (DEM) approach, while flexible rods are described by a large deformation finite element (FEM) rod formulation. Grain-to-grain, grain-to-rod, and rod-to-rod contacts are fully permitted and resolved. A simple and efficient strategy is proposed for coupling the motion of the two types (discrete and continuum) of materials within an iterative time-stepping solution scheme. Implementation details are shown and discussed. Validity and applicability of the model are assessed by means of a few numerical examples. We believe that robust, efficiently coupled DEM-FEM schemes can be a useful tool to the simulation of problems wherein granular materials interact with thin flexible rods, such as (but not limited to) bombardment of grains on beam structures, flow of granular materials over surfaces covered by threads of hair in many biological processes, flow of grains through filters and strainers in various industrial segregation processes, and many others.

  2. Granular cell tumour of the urinary bladder

    Directory of Open Access Journals (Sweden)

    Christoph von Klot

    2012-04-01

    Full Text Available With only 16 cases reported in the literature, the mostly benign granular cell tumour of the urinary bladder is exceptionally rare. We present the case of a 68-year old patient with one of these lesions demonstrating our histological findings including several immunohistochemical stainings used to differentiate between other more common entities.

  3. Clinical characteristics of granular myringitis treated with castellani solution.

    Science.gov (United States)

    Kim, Young Ho

    2011-08-01

    Aim of the study is to observe clinical manifestations of granular myringitis (GM) treated with castellani solution. Twenty-four patients (18 women and 6 men; mean age, 49.7 years; range, 9-77 years) diagnosed with GM and treated with castellani solution were enrolled retrospectively. Topical treatment using castellani solution with or without curettage of a granular lesion and serial otoendoscopy-aided photographic documentation of the tympanic membrane were performed. Outpatient follow-up period ranged from 3 to 72 months and the mean follow-up period was 14.4 months. GM was classified into marginal/non-marginal type and ulcerative/polypoid subtype using a new scale. According to the scale used in this study, the marginal and ulcerative GM was the predominant type of GM lesion. Bacterial cultures of ear discharges from 19 patients revealed Staphylococcus, Corynebacterium and Providencia stuartii in 12, 5, and 1 patient, respectively and no growth of bacteria in one patient. Of 24 patients, 23 showed complete resolution of GM after treatment with castellani solution. However, one patient had a persistent, small, dry, deepithelialized lesion and eight others required more than 3 months for complete recovery owing to a persistent residual lesion. There was recurrence in two patients but the lesion resolved after additional castellani treatment. Topical application of castellani solution is a simple and effective treatment for GM. This study suggests a potential of castellani solution for treatment of GM with a serial photographic documentation and novel classification scale for description of lesions. A sufficiently long follow-up period is essential to confirm a complete recovery of GM.

  4. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Written By: Kierstan Boyd ... your vision. Privacy Policy Related New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  5. Granular analyzing of weapon SoS demand description

    Institute of Scientific and Technical Information of China (English)

    Zhao Qingsong; Yang Kewei; Chen Yingwu; Li Mengjun

    2009-01-01

    The systematism of weapon combat is the typical characteristic of a modern battlefield. The process of combat is complex and the demand description of weapon system of systems (SOS) is difficult. Granular analyzing is an important method for solving the complex problem in the world. Granular thinking is introduced into the demand description of weapon SoS. Granular computing and granular combination based on a relation of compatibility is proposed. Based on the level of degree and degree of detail, the granular resolution of weapon SoS is defined and an example is illustrated at the end.

  6. Spray Drying Processing: granules production and drying kinetics of droplets; El proceso de secado por atomizacion: formacion de granulos y cinetica de secado de gotas

    Energy Technology Data Exchange (ETDEWEB)

    Mondragon, R.; Julia, J. E.; Barba, A.; Jarque, J. C.

    2013-09-01

    Spray drying is a unit operation very common in many industrial processes. For each particular application, the resulting granulated material must possess determined properties that depend on the conditions in which the spray drying processing has been carried out, and whose dependence must be known in order to optimize the quality of the material obtained. The large number of variables that influence on the processes of matter and energy transfer and on the formation of granular material has required a detailed analysis of the drying process. Over the years there have been many studies on the spray drying processing of all kind of materials and the influence of process variables on the drying kinetics of the granulated material properties obtained. This article lists the most important works published for both the spray drying processing and the drying of individual droplets, as well as studies aimed at modeling the drying kinetics of drops. (Author)

  7. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... Dry Eye Dry Eye Treatment What Is Dry Eye? Written By: Kierstan Boyd Reviewed By: Brenda Pagan- ...

  8. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué Es el Ojo Seco? ...

  9. Use of gamma radiation for preparation of nutrient culture media

    Energy Technology Data Exchange (ETDEWEB)

    Speranskaya, I.D.; Tumanyan, M.A.; Mironova, L.L.

    1977-01-01

    A technique was developed for sterilization of nutrient culture media using ..gamma..-radiation. For this purpose, dry preparations were exposed to 3 to 6 Mrad radiation, then dissolved in sterile distilled water. The quality of media and solutions thus obtained is as good as that of preparations sterilized by filtration. The advantage of the proposed sterilization method is that liquid media can be rapidly prepared and dry sterile media can be stored at room temperature for long periods of time.

  10. Drying of peat and wood biomass. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Tapanainen, J. (Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). Poltto- ja Voiteluainelaboratorio)

    1982-06-01

    Peat drying agrees with the typical drying curve of capillary porous materials, where a constant rate zone and a zone of decreasing rate of drying are distinguished. It depends on the way of water binding, how easily the moisure of pea can be removed. Wood is a hygroscopic porous material, and its drying can be described with the aid of diffusion theory. Milled peat is usually dried artificially in flash driers. Drum driers are also used for peat to some extent. The best known indirectly heated equipment is Peco-drier, where saturated steam and hot water are used as heat transfer media. A back-pressure drier developed in Sweden is also suitable for peat drying. In this equipment, indirect drying with back-pressure steam from the turbine is applied. Wood biomass (chips, bark) can be dried for example by hot-grinding, vibrating conveyor or drum drying methods. Cascade and pneumatic driers are also used for drying bark.

  11. Bit Patterned Magnetic Recording: Theory, Media Fabrication, and Recording Performance

    OpenAIRE

    Albrecht, Thomas R.; Arora, Hitesh; Ayanoor-Vitikkate, Vipin; Beaujour, Jean-Marc; Bedau, Daniel; Berman, David; Bogdanov, Alexei L.; Chapuis, Yves-Andre; Cushen, Julia; Dobisz, Elizabeth E.; Doerk, Gregory; Gao, He; Grobis, Michael; Gurney, Bruce; Hanson, Weldon

    2015-01-01

    Bit Patterned Media (BPM) for magnetic recording provide a route to densities $>1 Tb/in^2$ and circumvents many of the challenges associated with conventional granular media technology. Instead of recording a bit on an ensemble of random grains, BPM uses an array of lithographically defined isolated magnetic islands, each of which stores one bit. Fabrication of BPM is viewed as the greatest challenge for its commercialization. In this article we describe a BPM fabrication method which combine...

  12. Scaling of granular convective velocity and timescale of asteroidal resurfacing

    Science.gov (United States)

    Yamada, Tomoya; Ando, Kousuke; Morota, Tomokatsu; Katsuragi, Hiroaki

    Granular convection is one of the well-known phenomena observed in a vertically vibrated granular bed. Recently, the possbile relation between granular convection and asteroidal surface processes has been discussed. The granular convection on the surface of small asteroids might be induced by seismic vibration resulting from meteorite impacts. To quantitatively evaluate the timescale of asteroidal resurfacing by granular convection, the granular convective velocity under various conditions must be revealed. As a first step to approach this problem, we experimentally study the velocity scaling of granular convection using a vertically vibrated glass-beads layer. By systematic experiments, a scaling form of granular convective velocity has been obtained. The obtained scaling form implies that the granular convective velocity can be written by a power-law product of two characteristic velocity components: vibrational and gravitational velocities. In addition, the system size dependence is also scaled. According to the scaling form, the granular convective velocity is almost proportional to gravitatinal acceleration. Using this scaling form, we have estimated the resurfacing timescale on small asteroid surface.

  13. Media education.

    Science.gov (United States)

    Strasburger, Victor C

    2010-11-01

    The American Academy of Pediatrics recognizes that exposure to mass media (eg, television, movies, video and computer games, the Internet, music lyrics and videos, newspapers, magazines, books, advertising) presents health risks for children and adolescents but can provide benefits as well. Media education has the potential to reduce the harmful effects of media and accentuate the positive effects. By understanding and supporting media education, pediatricians can play an important role in reducing harmful effects of media on children and adolescents.

  14. Discrete Element Method simulations of standing jumps in granular flows down inclines

    Directory of Open Access Journals (Sweden)

    Méjean Ségolène

    2017-01-01

    Full Text Available This paper describes a numerical set-up which uses Discrete Element Method to produce standing jumps in flows of dry granular materials down a slope in two dimensions. The grain-scale force interactions are modeled by a visco-elastic normal force and an elastic tangential force with a Coulomb threshold. We will show how it is possible to reproduce all the shapes of the jumps observed in a previous laboratory study: diffuse versus steep jumps and compressible versus incompressible jumps. Moreover, we will discuss the additional measurements that can be done thanks to discrete element modelling.

  15. Applying MDL to Learning Best Model Granularity

    CERN Document Server

    Gao, Q; Vitanyi, P; Gao, Qiong; Li, Ming; Vitanyi, Paul

    2000-01-01

    The Minimum Description Length (MDL) principle is solidly based on a provably ideal method of inference using Kolmogorov complexity. We test how the theory behaves in practice on a general problem in model selection: that of learning the best model granularity. The performance of a model depends critically on the granularity, for example the choice of precision of the parameters. Too high precision generally involves modeling of accidental noise and too low precision may lead to confusion of models that should be distinguished. This precision is often determined ad hoc. In MDL the best model is the one that most compresses a two-part code of the data set: this embodies ``Occam's Razor.'' In two quite different experimental settings the theoretical value determined using MDL coincides with the best value found experimentally. In the first experiment the task is to recognize isolated handwritten characters in one subject's handwriting, irrespective of size and orientation. Based on a new modification of elastic...

  16. Traffic and Granular Flow ’07

    CERN Document Server

    Chevoir, François; Gondret, Philippe; Lassarre, Sylvain; Lebacque, Jean-Patrick; Schreckenberg, Michael

    2009-01-01

    This book covers several research fields, all of which deal with transport. Three main topics are treated: road traffic, granular matter, and biological transport. Different points of view, i.e. modelling, simulations, experiments, and phenomenological observations, are considered. Sub-topics include: highway or urban vehicular traffic (dynamics of traffic, macro/micro modelling, measurements, data analysis, security issues, psychological issues), pedestrian traffic, animal traffic (e.g. social insects), collective motion in biological systems (molecular motors...), granular flow (dense flows, intermittent flows, solid/liquid transition, jamming, force networks, fluid and solid friction), networks (biological networks, urban traffic, the internet, vulnerability of networks, optimal transport networks) and cellular automata applied to the various aforementioned fields.

  17. Velocity distributions in dilute granular systems.

    Science.gov (United States)

    van Zon, J S; MacKintosh, F C

    2005-11-01

    We investigate the idea that velocity distributions in granular gases are determined mainly by eta, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases as functions of eta, concentration phi, and particle number N with various heating mechanisms. For a wide range of parameters, we find Gaussian velocity distributions for uniform heating and non-Gaussian velocity distributions for boundary heating. Comparison between these results and velocity distributions obtained by other heating mechanisms and for a simple model of a granular gas without spatial degrees of freedom, shows that uniform and boundary heating can be understood as different limits of q, with q>1 and q < or approximately 1 respectively. We review the literature for evidence of the role of q in the recent experiments.

  18. Evaluating Energy Flux in Vibrofluidized Granular Bed

    Directory of Open Access Journals (Sweden)

    N. A. Sheikh

    2013-01-01

    Full Text Available Granular flows require sustained input of energy for fluidization. A level of fluidization depends on the amount of heat flux provided to the flow. In general, the dissipation of the grains upon interaction balances the heat inputs and the resultant flow patterns can be described using hydrodynamic models. However, with the increase in packing fraction, the heat fluxes prediction of the cell increases. Here, a comparison is made for the proposed theoretical models against the MD simulations data. It is observed that the variation of packing fraction in the granular cell influences the heat flux at the base. For the elastic grain-base interaction, the predictions vary appreciably compared to MD simulations, suggesting the need to accurately model the velocity distribution of grains for averaging.

  19. Mathematics and Mechanics of Granular Materials

    CERN Document Server

    Hill, James M

    2005-01-01

    Granular or particulate materials arise in almost every aspect of our lives, including many familiar materials such as tea, coffee, sugar, sand, cement and powders. At some stage almost every industrial process involves a particulate material, and it is usually the cause of the disruption to the smooth running of the process. In the natural environment, understanding the behaviour of particulate materials is vital in many geophysical processes such as earthquakes, landslides and avalanches. This book is a collection of current research from some of the major contributors in the topic of modelling the behaviour of granular materials. Papers from every area of current activity are included, such as theoretical, numerical, engineering and computational approaches. This book illustrates the numerous diverse approaches to one of the outstanding problems of modern continuum mechanics.

  20. Compaction of granular material inside confined geometries

    Science.gov (United States)

    Marks, Benjy; Sandnes, Bjornar; Dumazer, Guillaume; Eriksen, Jon Alm; Måløy, Knut Jørgen

    2015-06-01

    In both nature and the laboratory, loosely packed granular materials are often compacted inside confined geometries. Here, we explore such behaviour in a quasi-two dimensional geometry, where parallel rigid walls provide the confinement. We use the discrete element method to investigate the stress distribution developed within the granular packing as a result of compaction due to the displacement of a rigid piston. We observe that the stress within the packing increases exponentially with the length of accumulated grains, and show an extension to current analytic models which fits the measured stress. The micromechanical behaviour is studied for a range of system parameters, and the limitations of existing analytic models are described. In particular, we show the smallest sized systems which can be treated using existing models. Additionally, the effects of increasing piston rate, and variations of the initial packing fraction, are described.

  1. A model for collisions in granular gases

    OpenAIRE

    Brilliantov, Nikolai V.; Spahn, Frank; Hertzsch, Jan-Martin; Poeschel, Thorsten

    2002-01-01

    We propose a model for collisions between particles of a granular material and calculate the restitution coefficients for the normal and tangential motion as functions of the impact velocity from considerations of dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz impact theory are included in the present model as special cases. We find that the type of collision (smooth, reflecting or sticky) is determined by the impact velocity and...

  2. Convection in horizontally shaken granular material

    OpenAIRE

    Saluena, Clara; Poeschel, Thorsten

    1998-01-01

    In horizontally shaken granular material different types of pattern formation have been reported. We want to deal with the convection instability which has been observed in experiments and which recently has been investigated numerically. Using two dimensional molecular dynamics we show that the convection pattern depends crucial on the inelastic properties of the material. The concept of restitution coefficient provides arguments for the change of the behaviour with variing inelasticity.

  3. Structure and stability of methanogenic granular sludge.

    OpenAIRE

    Grotenhuis, J.T.C.

    1992-01-01

    Immobilization of anaerobic bacteria was essential for the development of high rate anaerobic systems for the treatment of waste waters. The most widely applied anaerobic reactor type in which solids retention time is uncoupled from the hydraulic retention time is the Upflow Anaerobic Sludge Blanket (UASB) reactor. In this reactor type methanogenic granular sludge is formed by self-immobilization of methanogenic consortia. The aim of the work presented in this thesis was to study microbiologi...

  4. Preliminary Results of a Microgravity Investigation to Measure Net Charge on Granular Materials

    Science.gov (United States)

    Green, Robert D.; Myers, Jerry G.; Hansen, Bonnie L.

    2003-01-01

    Accurate characterization of the electrostatic charge on granular materials has typically been limited to materials with diameters on the order of 10 microns and below due to high settling velocities of larger particles. High settling velocities limit both the time and the acceptable uncertainty with which a measurement can be made. A prototype device has been developed at NASA Glenn Research Center (GRC) to measure coulombic charge on individual particles of granular materials that are 50 to 500 microns in diameter. This device, a novel extension of Millikan's classic oil drop experiment, utilizes the NASA GRC 2.2 second drop tower to extend the range of electrostatic charge measurements to accommodate moderate size granular materials. A dielectric material with a nominal grain diameter between 1.06 and 250 microns was tribocharged using a dry gas jet, suspended in a 5x10x10 cm enclosure during a 2.2 second period of microgravity and exposed to a known electric field. The response was recorded on video and post processed to allow tracking of individual particles. By determining the particle trajectory and velocity, estimates of the coulombic charge were made. Over 30 drops were performed using this technique and the analysis showed that first order approximations of coulombic charge could successfully be obtained, with the mean charge of 3.4E-14 coulombs measured for F-75 Ottawa quartz sand. Additionally, the measured charge showed a near-Gaussian distribution, with a standard deviation of 2.14E -14 coulombs.

  5. Coupled granular/continuous medium for thermally stable perpendicular magnetic recording

    Energy Technology Data Exchange (ETDEWEB)

    Sonobe, Y. E-mail: sonobe@almaden.ibm.com; Weller, D.; Ikeda, Y.; Takano, K.; Schabes, M.E.; Zeltzer, G.; Do, H.; Yen, B.K.; Best, M.E

    2001-10-01

    We studied coupled granular/continuous (CGC) perpendicular media consisting of a continuous multilayer structure and a granular layer. The addition of Co/Pt multilayers decreased the nucleation field from 200 to -1800 Oe and increased the squareness from 0.9 to 1.0. The moment decay at room temperature was significantly reduced from -4.8% to -0.05% per decade. At elevated temperatures, strong exchange coupling between a granular layer and a continuous layer is needed for thermal stability. The exchange-coupled continuous layer reduces thermal demagnetization as it effectively increases the grain size, tightens the grain distribution, and prevents the reversal of individual grains. Magnetic Force Microscope image showed a larger magnetic cluster size for the CGC structure. Compared to the CoCr{sub 18}Pt{sub 12} medium, the CGC medium had 2.3 dB higher output. However, the noise for the CGC medium increased with the recording density, while the noise for the CoCr{sub 18}Pt{sub 12} medium remained constant from 4 to 15 kfc/mm. Further optimization and noise reduction are still required for future high density recording.

  6. Transport analogy for segregation and granular rheology

    Science.gov (United States)

    Liu, Siying; McCarthy, Joseph J.

    2017-08-01

    Here, we show a direct connection between density-based segregation and granular rheology that can lead to insight into both problems. Our results exhibit a transition in the rate of segregation during simple shear that occurs at I ˜0.5 and mimics a coincident regime change in flow rheology. We propose scaling arguments that support a packing fraction criterion for this transition that can both explain our segregation results as well as unify existing literature studies of granular rheology. By recasting a segregation model in terms of rheological parameters, we establish an approach that not only collapses results for a wide range of conditions, but also yields a direct relationship between the coordination number z and the segregation velocity. Moreover, our approach predicts the precise location of the observed regime change or saturation. This suggests that it is possible to rationally design process operating conditions that lead to significantly lower segregation extents. These observations can have a profound impact on both the study of granular flow or mixing as well as industrial practice.

  7. Mechanics of Granular Materials (MGM) Flight Hardware

    Science.gov (United States)

    1997-01-01

    A test cell for the Mechanics of Granular Materials (MGM) experiment is shown in its on-orbit configuration in Spacehab during preparations for STS-89. The twin locker to the left contains the hydraulic system to operate the experiment. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. Mechanics of Granular Materials (MGM) experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditons that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. Note: Because the image on the screen was muted in the original image, its brightness and contrast are boosted in this rendering to make the test cell more visible. Credit: NASA/Marshall Space Flight Center (MSFC)

  8. Rough – Granular Computing knowledge discovery models

    Directory of Open Access Journals (Sweden)

    Mohammed M. Eissa

    2016-11-01

    Full Text Available Medical domain has become one of the most important areas of research in order to richness huge amounts of medical information about the symptoms of diseases and how to distinguish between them to diagnose it correctly. Knowledge discovery models play vital role in refinement and mining of medical indicators to help medical experts to settle treatment decisions. This paper introduces four hybrid Rough – Granular Computing knowledge discovery models based on Rough Sets Theory, Artificial Neural Networks, Genetic Algorithm and Rough Mereology Theory. A comparative analysis of various knowledge discovery models that use different knowledge discovery techniques for data pre-processing, reduction, and data mining supports medical experts to extract the main medical indicators, to reduce the misdiagnosis rates and to improve decision-making for medical diagnosis and treatment. The proposed models utilized two medical datasets: Coronary Heart Disease dataset and Hepatitis C Virus dataset. The main purpose of this paper was to explore and evaluate the proposed models based on Granular Computing methodology for knowledge extraction according to different evaluation criteria for classification of medical datasets. Another purpose is to make enhancement in the frame of KDD processes for supervised learning using Granular Computing methodology.

  9. Morphological clues to wet granular pile stability

    Science.gov (United States)

    Scheel, M.; Seemann, R.; Brinkmann, M.; di Michiel, M.; Sheppard, A.; Breidenbach, B.; Herminghaus, S.

    2008-03-01

    When a granular material such as sand is mixed with a certain amount of liquid, the surface tension of the latter bestows considerable stiffness to the material, which enables, for example, sand castles to be sculpted. The geometry of the liquid interface within the granular pile is of extraordinary complexity and strongly varies with the liquid content. Surprisingly, the mechanical properties of the pile are largely independent of the amount of liquid over a wide range. We resolve this puzzle with the help of X-ray microtomography, showing that the remarkable insensitivity of the mechanical properties to the liquid content is due to the particular organization of the liquid in the pile into open structures. For spherical grains, a simple geometric rule is established, which relates the macroscopic properties to the internal liquid morphologies. We present evidence that this concept is also valid for systems with non-spherical grains. Hence, our results provide new insight towards understanding the complex physics of a large variety of wet granular systems including land slides, as well as mixing and agglomeration problems.

  10. Granular dampers: does particle shape matter?

    Science.gov (United States)

    Pourtavakoli, Hamzeh; Parteli, Eric J. R.; Pöschel, Thorsten

    2016-07-01

    By means of particle-based numerical simulations using the discrete element method, we address the question of how the performance of granular dampers is affected by the shape of the granular particles. In consistence with previous experiments performed with nearly spherical particles we find that independently of the particles’ shape, the granular system is characterized by a gas-like regime for small amplitudes of the container’s oscillation and by a collect-and-collide regime for large amplitude forcing. Both regimes are separated by an optimal operation mode—the critical amplitude of the damping oscillation for which the energy dissipation is maximal—which is independent of the particle shape for given conditions of particle mass, material properties and number of particles. However, in the gas-like regime, we find that spherical particles lead to more efficient energy dissipation compared to complex shaped particles of the same mass. In this regime, a dependence on the damper’s efficiency on the particle shape is found.

  11. Small solar system bodies as granular systems

    Science.gov (United States)

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  12. Structural characterization of submerged granular packings

    Science.gov (United States)

    Jakšić, Z. M.; Šćepanović, J. R.; Lončarević, I.; Budinski-Petković, Lj.; Vrhovac, S. B.; Belić, A.

    2014-12-01

    We consider the impact of the effective gravitational acceleration on microstructural properties of granular packings through experimental studies of spherical granular materials saturated within fluids of varying density. We characterize the local organization of spheres in terms of contact connectivity, distribution of the Delaunay free volumes, and the shape factor (parameter of nonsphericity) of the Voronoï polygons. The shape factor gives a clear physical picture of the competition between less and more ordered domains of particles in experimentally obtained packings. As the effective gravity increases, the probability distribution of the shape factor becomes narrower and more localized around the lowest values of the shape factor corresponding to regular hexagon. It is found that curves of the pore distributions are asymmetric with a long tail on the right-hand side, which progressively reduces while the effective gravity gets stronger for lower densities of interstitial fluid. We show that the distribution of local areas (Voronoï cells) broadens with decreasing value of the effective gravity due to the formation of lose structures such as large pores and chainlike structures (arches or bridges). Our results should be particularly helpful in testing the newly developed simulation techniques involving liquid-related forces associated with immersed granular particles.

  13. Small solar system bodies as granular systems

    Directory of Open Access Journals (Sweden)

    Hestroffer Daniel

    2017-01-01

    Full Text Available Asteroids and other Small Solar System Bodies (SSSBs are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining. In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  14. Magnetic properties of soft layer/FePt-MgO exchange coupled composite Perpendicular recording media

    Institute of Scientific and Technical Information of China (English)

    Yin Jin-Hua; Takao Suzuki; Pan Li-Qing

    2008-01-01

    The magnetic properties of exchange coupled composite(ECC)media that are composed of perpendicular magnetic recording media FePt-MgO and two kinds of soft layers have been studied by using an x-ray diffractometer,a polar Kerr magneto-optical system(PMOKE)and a vibrating sample magnetometer(VSM).The results show that ECC media can reduce the coercivities of perpendicular magnetic recording media FePt-MgO.The ECC media with granular-type soft layers have weaker exchange couplings between magnetic grains and the magnetization process,for ECC media of this kind mainly follow the Stoner-Wohlfarth model.

  15. INVESTIGATION OF INNER SHEAR RESISTANCE OF GEOGRIDS BUILT UNDER GRANULAR PROTECTION LAYERS AND RAILWAY BALLAST

    Directory of Open Access Journals (Sweden)

    Sz. Fischer

    2015-10-01

    Full Text Available Purpose. Using adequate granular materials and layer structures in the railway super- and substructure is able to stabilise railway track geometry. For this purpose special behaviour of above materials has to be determined, e.g. inner shear resistance. Inner shear resistance of granular media with and without geogrid reinforcement in different depths is not known yet. Methodology. The author developed a special laboratory method to measure and define inner shear resistance of granular materials, it is called «multi-level shear box test». This method is adequate to determine inner shear resistance (pushing force vs. depth (distance from the «zero» surface. Two different granular materials: andesite railway ballast (31.5/63 mm and andesite railway protection layer material (0/56 mm, and seven different types of geogrids (GG1…GG7 were used during the tests. Findings. Values of inner shear resistance functions of andesite railway ballast without geogrid reinforcement and reinforced with different types of geogrids and andesite granular protection layer in function of the vertical distance from the geogrid plane were determined with multi-layer shear box tests when the material aggregation is uncompacted and compacted. Only the compacted sample was tested in case of the 0/56 mm protection layer. Cubic polynomial regression functions fitted on the mean values of the measurements are described graphically. Determination coefficients with values of R2>0.97 were resulted in all the cases of regression functions. Based on the polynomial regression functions fitted on the mean values of the test results, three increasing factors were determined in function of the distance measured from the geogrid. Increasing factor «A», «B» and «D». Originality. Multi-level shear box test, developed by the author, is certified unequivocally adequate for determining inner shear resistance of reinforced and unreinforced granular materials, e.g. railway ballast

  16. Energy Content & Spectral Energy Representation of Wave Propagation in a Granular Chain

    Science.gov (United States)

    Shrivastava, Rohit; Luding, Stefan

    2017-04-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Studying the energy as well as spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing for the study of internal structure of solids. Wave propagation through granular materials is often accompanied by energy attenuation which is quantified by Quality factor and this parameter has often been used to characterize material properties, hence, determining the Quality factor (energy attenuation parameter) can also help in determining the properties of the material [3], studied experimentally in [2]. The study of Energy content (Kinetic, Potential and Total Energy) of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain can assist in understanding the energy attenuation due to disorder as a function of propagation distance. The spectral analysis of the energy signal can assist in understanding dispersion as well as attenuation due to scattering in different frequencies (scattering attenuation). The selection of one-dimensional granular chain also helps in studying only the P-wave attributes of the wave and removing the influence of shear or rotational waves. Granular chains with different mass distributions have been studied, by randomly selecting masses from normal, binary and uniform distributions and the standard deviation of the distribution is considered as the disorder parameter, higher standard deviation means higher disorder and lower standard deviation means lower disorder [1]. For obtaining macroscopic/continuum properties, ensemble averaging has been invoked. Instead of analyzing deformation-, velocity- or stress

  17. The role of fluid viscosity in an immersed granular collapse

    Directory of Open Access Journals (Sweden)

    Yang Geng Chao

    2017-01-01

    Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  18. Mutiscale Modeling of Segregation in Granular Flows

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Modeling and simulation of segregation phenomena in granular flows are investigated. Computational models at different scales ranging from particle level (microscale) to continuum level (macroscale) are employed in order to determine the important microscale physics relevant to macroscale modeling. The capability of a multi-fluid model to capture segregation caused by density difference is demonstrated by simulating grain-chaff biomass flows in a laboratory-scale air column and in a combine harvester. The multi-fluid model treats gas and solid phases as interpenetrating continua in an Eulerian frame. This model is further improved by incorporating particle rotation using kinetic theory for rapid granular flow of slightly frictional spheres. A simplified model is implemented without changing the current kinetic theory framework by introducing an effective coefficient of restitution to account for additional energy dissipation due to frictional collisions. The accuracy of predicting segregation rate in a gas-fluidized bed is improved by the implementation. This result indicates that particle rotation is important microscopic physics to be incorporated into the hydrodynamic model. Segregation of a large particle in a dense granular bed of small particles under vertical. vibration is studied using molecular dynamics simulations. Wall friction is identified as a necessary condition for the segregation. Large-scale force networks bearing larger-than-average forces are found with the presence of wall friction. The role of force networks in assisting rising of the large particle is analyzed. Single-point force distribution and two-point spatial force correlation are computed. The results show the heterogeneity of forces and a short-range correlation. The short correlation length implies that even dense granular flows may admit local constitutive relations. A modified minimum spanning tree (MST) algorithm is developed to asymptotically recover the force statistics in the

  19. Granular computing analysis and design of intelligent systems

    CERN Document Server

    Pedrycz, Witold

    2013-01-01

    Information granules, as encountered in natural language, are implicit in nature. To make them fully operational so they can be effectively used to analyze and design intelligent systems, information granules need to be made explicit. An emerging discipline, granular computing focuses on formalizing information granules and unifying them to create a coherent methodological and developmental environment for intelligent system design and analysis. Granular Computing: Analysis and Design of Intelligent Systems presents the unified principles of granular computing along with its comprehensive algo

  20. Preliminary 2D numerical modeling of common granular problems

    Science.gov (United States)

    Wyser, Emmanuel; Jaboyedoff, Michel

    2017-04-01

    Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical

  1. Experimental Observation of Kink in a Perfect Bidimensional Granular System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng; MIAO Guo-Qing; HUANG Kai; YUN Yi; WEI Rong-Jue

    2005-01-01

    @@ The kink formation in a vertical vibrated granular layer has been widely studied in three-dimensional systems, but there are few if any experimental reports on bidimensional granular layers. We report the kink formation newly found in a perfect bidimensional granular system. We measure the range of the driving frequencies and dimensionless accelerations for kinks. Furthermore, we observe a heaping process, which is caused by co-operative action of the kink-associated convection and the sidewall-associated convection.

  2. The respective roles of bulk friction and slip velocity during a granular mass flow

    Science.gov (United States)

    Staron, Lydie

    2016-04-01

    Catastrophic granular mass flows form an important natural hazard. Mitigation has motivated numerous studies on the properties of natural granular flows, and in particular, their ability to travel long distances away from the release point. The mobility of granular flows is commonly characterised through the definition of rheological properties and effective friction. Yet, it is widely accepted that the description in term of effective friction may include various lubrication effects, softening at the base of the flow and large slip velocities being a most likely one. In this case, flow bulk properties may obliterate the flow boundary conditions. In this contribution, we investigate how disentangling bulk properties from boundary conditions may improve our understanding of the flow. Using discrete simulations, we induce increasing slip velocities in different flow configurations. We show that increased mobility may be achieved without changing bulk properties. The results are interpreted in terms of a Robin-Navier slip condition and implemented in a continuum Navier-Stokes solver. We quantify the respective role of rheological bulk properties and boundary conditions in the general behaviour of a transient mass flow. We show that omitting the description of boundary conditions leads to misinterpretation of the flow properties. The outcome is discussed in terms of models reliability. References P.-Y. Lagrée et al, The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with the mu(I) rheology, J. Fluid Mech. 686, 378-408 (2011) L. Staron and E. Lajeunesse, Understanding how the volume affects the mobility of dry debris flows, Geophys. Res. Lett. 36, L12402 (2009) L. Staron, Mobility of long-runout rock flows: a discrete numerical investigation, Geophys. J. Int. 172, 455-463 (2008)

  3. Head-on collisions of dense granular jets

    CERN Document Server

    Ellowitz, Jake

    2015-01-01

    When a dense stream of dry, non-cohesive grains hits a fixed target, a collimated sheet is ejected from the impact region, very similar to what happens for a stream of water. In this study, as a continuation of the investigation why such remarkably different incident fluids produce such similar ejecta, we use discrete particle simulations to collide two unequal-width granular jets head-on in two dimensions. In addition to the familiar coherent ejecta, we observe that the impact produces a far less familiar quasi-steady-state corresponding to a uniformly translating free surface and flow field. Upon repeating such impacts with multiple continuum fluid simulations, we show that this translational speed is controlled only by the total energy dissipation rate to the power $1.5$, and is independent of the details of the jet composition. Our findings, together with those from impacts against fixed targets, challenge the principle of scattering in which material composition is inferred from observing the ejecta prod...

  4. Media Pedagogy: Media Education, Media Socialisation and Educational Media

    Directory of Open Access Journals (Sweden)

    Lars Qvortrup

    2007-07-01

    Full Text Available The aim of this paper is to examine the relationship between education and media. These two concepts can be combined in three ways: one can think of media education, i.e. education in the subject of mass media. One can think of media socialisation, i.e. education within the context of a media society in which pupils and students are experienced media users. Finally, one can think of educational media, i.e. media used for educational purposes.After having specified these three subject areas, the paper focuses on the third subject: Media used for educational purposes. According to the paper teaching can be defined as a specialised form of communication, and the basic point of the paper is that all communication is mediated. One cannot talk about such a thing as “non-mediated” communication. Also talking or touching implies media: Language or body language.Consequently, the introduction of new, digital media for teaching does not imply to make teaching more artificial or non-authentic. The introduction of new, digital media for teaching implies that other and older educational media are re-mediated.

  5. GRANULAR CELL TUMOR OF BREAST (CYTOLOGICAL DIAGNOSIS CONFIRMED BY HISTOPATHOLOGY

    Directory of Open Access Journals (Sweden)

    Divvya

    2014-10-01

    Full Text Available Granular cell tumor is a tumor derived from Schwann cells of peripheral nerves and it can occur throughout the body. About 5% of granular cell tumors occur in breast and are mostly benign in nature. We report a case of 30 year old female who presented with a swelling in right breast which on histo pathological examination revealed features consistent with granular cell tumor. This case is highlighted to reveal the importance of histopathology in differentiating granular cell tumor from carcinoma breast which is difficult based on clinical, radiological and cytological examination alone.

  6. Media Komunitas dan Media Literacy

    Directory of Open Access Journals (Sweden)

    Pawito .

    2013-12-01

    Full Text Available Abstract:This essay deals with community media in relation to media literacy. After a short discussion on a number of community media characters is made the essay goes further with somewhat detail theoretical presumptions of the roles of media community with respect primarily to the development as Amartya Sen mentioned about. The author suggests that community media may play some significant roles in the development including (a disseminating information (from varieties of perspective, (b facilitating public discussion, (c helping to reach solutions of problems, (d encouraging participations, and (e encouraging the development of media literacy. Regarding the last point the author remarks that media community may have a dual-roles i.e facilitating community’s member in media participation and facilitating community’s member in media education.

  7. Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments

    Science.gov (United States)

    Panien, Marion; Schreurs, Guido; Pfiffner, Adrian

    2006-09-01

    The mechanical behaviour of several dry granular materials is investigated through ring-shear tests, grain characterisation, and simple analogue experiments analysed by X-ray computed tomography. An improved knowledge of granular materials is essential to determine their suitability as analogues for upper crustal rocks in experimental models and to compare analogue and numerical experiments. The ring-shear tests show that the granular materials have an elastic/frictional plastic behaviour with strain-hardening preceding failure at peak strength, followed by strain softening until a dynamic-stable value is reached. This is similar to the behaviour exhibited by experimentally deformed rocks. The physical characteristics of the grains determine the amount of diffuse deformation before failure, the percentage of strain softening and act on the thickness of the shear zones before broadening. Initial shear zone width in extensional and contractional experiments is between 11 and 16 times the mean grain size. The angle of internal friction defining one of the mechanical properties of granular materials and thus fault dip is not only related to physical characteristics of the grains and to the handling technique used (e.g. sieving or pouring), but also to the overburden and to the experimental setup used.

  8. Media violence.

    Science.gov (United States)

    Strasburger, V C

    1999-01-01

    For decades, media violence has been viewed as largely a Western problem. New studies indicate that Indian children have increasing access to the media and that media violence will subject them to the same problems as Western children: imitation, desensitization, fear, and inappropriate attitudes about violence and aggression. Solutions exist but will have to be implemented within the next decade to protect Indian children and adolescents from the harmful effects of media violence.

  9. A performance -based method for granular based method for granular -paste mix design

    NARCIS (Netherlands)

    Hoornahad, H.; Koenders, E.A.B.

    2014-01-01

    In this paper a performance-based method for the design of granular-paste mixtures will be proposed. Focus will be on the selection and proportioning of constituents to produce a mixture with a pre-defined shape holding ability. Shape holding ability of mixtures will be characterized by the shape

  10. How granular vortices can help understanding rheological and mixing properties of dense granular flows

    Directory of Open Access Journals (Sweden)

    Rognon Pierre

    2017-01-01

    Full Text Available Dense granular flows exhibit fascinating kinematic patterns characterised by strong fluctuations in grain velocities. In this paper, we analyse these fluctuations and discuss their possible role on macroscopic properties such as effective viscosity, non-locality and shear-induced diffusion. The analysis is based on 2D experimental granular flows performed with the stadium shear device and DEM simulations. We first show that, when subjected to shear, grains self-organised into clusters rotating like rigid bodies. The average size of these so-called granular vortices is found to increase and diverge for lower inertial numbers, when flows decelerate and stop. We then discuss how such a microstructural entity and its associated internal length scale, possibly much larger than a grain, may be used to explain two important properties of dense granular flows: (i the existence of shear-induced diffusion of grains characterised by a shear-rate independent diffusivity and (ii the development of boundary layers near walls, where the viscosity is seemingly lower than the viscosity far from walls.

  11. Numerical simulations of granular dynamics II. Particle dynamics in a shaken granular material

    CERN Document Server

    Murdoch, Naomi; Richardson, Derek C; Nordstrom, Kerstin; Berardi, Christian R; Green, Simon F; Losert, Wolfgang

    2013-01-01

    Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties. We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration. We then extend our investigations to assess how self-gravity and external gravity affect collect...

  12. Media Technology

    Directory of Open Access Journals (Sweden)

    Zhou Gang

    2016-01-01

    Full Text Available Modern colleges are faced with the dual pressures of university reform and international competition, how to overcome difficulties, to play the role of modern English teaching in colleges and colleges to enhance the core competitiveness of colleges, colleges and colleges modern English teaching problems to be solved. Based on the current situation of modern colleges in the premise of the Modern media platform fully demonstrated the characteristics and viability of the Modern media English teaching, the necessity of modern English teaching of college Modern media. Discusses the Modern media targeting English teaching and important role is in the English teaching to guide the development of modern colleges modern media.

  13. Pion showers in highly granular calorimeters

    Indian Academy of Sciences (India)

    Jaroslav Cvach; on behalf of the CALICE Collaboration

    2012-10-01

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA algorithm based up to now on the simulated data only. Next, the properties of hadron showers were compared to different physics lists of GEANT4 version 9.3.

  14. Unifying Suspension and Granular flows near Jamming

    Directory of Open Access Journals (Sweden)

    DeGiuli Eric

    2017-01-01

    Full Text Available Rheological properties of dense flows of hard particles are singular as one approaches the jamming threshold where flow ceases, both for granular flows dominated by inertia, and for over-damped suspensions. Concomitantly, the lengthscale characterizing velocity correlations appears to diverge at jamming. Here we review a theoretical framework that gives a scaling description of stationary flows of frictionless particles. Our analysis applies both to suspensions and inertial flows of hard particles. We report numerical results in support of the theory, and show the phase diagram that results when friction is added, delineating the regime of validity of the frictionless theory.

  15. Kinetics of Nitrogen Diffusion in Granular Manganese

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-zhu; XU Chu-shao; ZHAO Yue-ping

    2008-01-01

    The kinetics and the influence of time on granular manganese nitriding were studied by means of a vacuum resistance furnace, X-ray diffraction technique, and LECO TC-436 oxygen/nitrogen determinator. The longer the nitriding time, the more the nitrogen pickup. Except for a trace of oxide MnO that developed, the metal manganese could thoroughly be nitrided to form Mn4N and a little ζ-phase (the stoichiometric components as Mn2N) with the nitriding time lasting. A kinetic model is developed to reveal the nitriding situation and agrees well with the experimental results.

  16. Speckle visibility spectroscopy and variable granular fluidization.

    Science.gov (United States)

    Dixon, P K; Durian, D J

    2003-05-09

    We introduce a dynamic light scattering technique capable of resolving motion that changes systematically, and rapidly, with time. It is based on the visibility of a speckle pattern for a given exposure duration. Applying this to a vibrated layer of glass beads, we measure the granular temperature and its variation with phase in the oscillation cycle. We observe several transitions involving jammed states, where the grains are at rest during some portion of the cycle. We also observe a two-step decay of the temperature on approach to jamming.

  17. Fluidization of a horizontally driven granular monolayer.

    Science.gov (United States)

    Heckel, Michael; Sack, Achim; Kollmer, Jonathan E; Pöschel, Thorsten

    2015-06-01

    We consider the transition of a horizontally vibrated monodisperse granular monolayer between its condensed state and its three-dimensional gaseous state as a function of the vibration parameters, amplitude, and frequency as well as particle number density. The transition is characterized by an abrupt change of the dynamical state which leaves its fingerprints in several measurable quantities including dissipation rate, sound emission, and a gap size which characterizes the sloshing motion of the material. The transition and its pronounced hysteresis is explained through the energy due to the collective motion of the particles relative to the container.

  18. Longitudinal Viscous Flow in Granular Gases

    OpenAIRE

    Santos, Andres

    2008-01-01

    The flow characterized by a linear longitudinal velocity field $u_x(x,t)=a(t)x$, where $a(t)={a_0}/({1+a_0t})$, a uniform density $n(t)\\propto a(t)$, and a uniform temperature $T(t)$ is analyzed for dilute granular gases by means of a BGK-like model kinetic equation in $d$ dimensions. For a given value of the coefficient of normal restitution $\\alpha$, the relevant control parameter of the problem is the reduced deformation rate $a^*(t)=a(t)/\

  19. Sensors for the CMS High Granularity Calorimeter

    CERN Document Server

    Maier, Andreas Alexander

    2017-01-01

    The CMS experiment is currently developing high granularity calorimeter endcapsfor its HL-LHC upgrade. The design foresees silicon sensors as the active material for the high radiation region close to the beampipe. Regions of lower radiation are additionally equipped with plastic scintillator tiles. This technology is similar to the calorimeter prototypes developed in the framework of the Linear Collider by the CALICE collaboration. The current status of the silicon sensor development is presented. Results of single diode measurements are shown as well as tests of full 6-inch hexagonal sensor wafers. A short summary of test beam results concludes the article.

  20. Archimedes' principle in fluidized granular systems.

    Science.gov (United States)

    Huerta, D A; Sosa, Victor; Vargas, M C; Ruiz-Suárez, J C

    2005-09-01

    We fluidize a granular bed in a rectangular container by injecting energy through the lateral walls with high-frequency sinusoidal horizontal vibrations. In this way, the bed is brought to a steady state with no convection. We measured buoyancy forces on light spheres immersed in the bed and found that they obey Archimedes' principle. The buoyancy forces decrease when we reduce the injected energy. By measuring ascension velocities as a function of gamma, we can evaluate the frictional drag of the bed; its exponential dependence agrees very well with previous findings. Rising times of the intruders ascending through the bed were also measured, they increase monotonically as we increase the density.

  1. Starting to move through a granular medium

    Energy Technology Data Exchange (ETDEWEB)

    Costantino, D. J. [Pennsylvania State University; Scheidemantel, T. [Pennsylvania State University; Stone, Matthew B [ORNL; Conger, C. [Pennsylvania State University; Klein, K. [Pennsylvania State University; Lohr, M. [Pennsylvania State University; Modig, Z. [Pennsylvania State University; Schiffer, P. [Pennsylvania State University

    2008-01-01

    We explore the process of initiating motion through a granular medium by measuring the force required to push a flat circular plate upward from underneath the medium. In contrast to previous measurements of the drag and penetration forces, which were conducted during steady state motion, the initiation force has a robust dependence on the diameter of the grains forming the pile. We attribute this dependence to the requirement for local dilation of the grains around the circumference of the plate, as evidenced by an observed linear dependence of the initiation force on the plate diameter.

  2. Brine Transport Experiments in Granular Salt

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  3. Uphill solitary waves in granular flows

    Science.gov (United States)

    Martínez, E.; Pérez-Penichet, C.; Sotolongo-Costa, O.; Ramos, O.; Måløy, K. J.; Douady, S.; Altshuler, E.

    2007-03-01

    We have experimentally observed uphill solitary waves in the surface flow on a granular material. A heap is constructed by injecting sand between two vertical glass plates separated by a distance much larger than the average grain size, with an open boundary. As the heap reaches the open boundary, solitary fluctuations appear on the flowing layer and move “up the hill” (i.e., against the direction of the flow). We explain the phenomenon in the context of stop-and-go traffic models.

  4. Flow and segregation in sheared granular slurries

    Science.gov (United States)

    Barentin, C.; Azanza, E.; Pouligny, B.

    2004-04-01

    We study the behaviour of a granular slurry, i.e., a very concentrated suspension of heavy (denser than the fluid) and polydisperse particles sheared between two parallel-plane circular disks. For small gaps, the slurry behaves as a 2d system with a characteristic radial size segregation of particles. For large gaps, the slurry responds as a 3d system, with considerable vertical segregation and a concomitant 2-phase (fluid, solid) flow structure. The thickness ζ of the fluid phase is the 2d-3d gap crossover. Surprisingly, ζ is found to be nearly unaffected by very large changes in the particle size distribution.

  5. Modelling of dc characteristics for granular semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  6. Nonlinear Phononic Periodic Structures and Granular Crystals

    Science.gov (United States)

    2012-02-10

    of the advanced delay equation (13) and they compared the numerically obtained solutions with those of approximated PDEs. Recently, Starosvetsky... KdV ), a nonlinear partial differential equation , and have been discovered in myriad systems and discrete nonlinear lattices of all the above types...granular chain, and derived the following KdV equation : t 0 0 1/2 2 2 2 2 0 0 0 0 0 0, 2 6 , , . 6 xx x xc uc A R c R c Rc m σξ ξ γξ ξξ ξ δ γ σ δ

  7. Gravity-driven dense granular flows

    Energy Technology Data Exchange (ETDEWEB)

    ERTAS,DENIZ; GREST,GARY S.; HALSEY,THOMAS C.; DEVINE,DOV; SILBERT,LEONARDO E.

    2000-03-29

    The authors report and analyze the results of numerical studies of dense granular flows in two and three dimensions, using both linear damped springs and Hertzian force laws between particles. Chute flow generically produces a constant density profile that satisfies scaling relations suggestive of a Bagnold grain inertia regime. The type for force law has little impact on the behavior of the system. Failure is not initiated at the surface, consistent with the absence of surface flows and different principal stress directions at vs. below the surface.

  8. Numerical simulations of granular dynamics II: Particle dynamics in a shaken granular material

    Science.gov (United States)

    Murdoch, Naomi; Michel, Patrick; Richardson, Derek C.; Nordstrom, Kerstin; Berardi, Christian R.; Green, Simon F.; Losert, Wolfgang

    2012-05-01

    Surfaces of planets and small bodies of our Solar System are often covered by a layer of granular material that can range from a fine regolith to a gravel-like structure of varying depths. Therefore, the dynamics of granular materials are involved in many events occurring during planetary and small-body evolution thus contributing to their geological properties. We demonstrate that the new adaptation of the parallel N-body hard-sphere code pkdgrav has the capability to model accurately the key features of the collective motion of bidisperse granular materials in a dense regime as a result of shaking. As a stringent test of the numerical code we investigate the complex collective ordering and motion of granular material by direct comparison with laboratory experiments. We demonstrate that, as experimentally observed, the scale of the collective motion increases with increasing small-particle additive concentration. We then extend our investigations to assess how self-gravity and external gravity affect collective motion. In our reduced-gravity simulations both the gravitational conditions and the frequency of the vibrations roughly match the conditions on asteroids subjected to seismic shaking, though real regolith is likely to be much more heterogeneous and less ordered than in our idealised simulations. We also show that collective motion can occur in a granular material under a wide range of inter-particle gravity conditions and in the absence of an external gravitational field. These investigations demonstrate the great interest of being able to simulate conditions that are to relevant planetary science yet unreachable by Earth-based laboratory experiments.

  9. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  10. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  11. Convective and segregative mechanisms in vibrofluidised granular systems

    NARCIS (Netherlands)

    Windows-Yule, Kit

    2015-01-01

    Granular materials display a host of fascinating behaviours both remarkably similar to and strikingly different from those exhibited by classical solids, liquids and gases. Due to the ubiquity of granular materials, and their far-reaching importance in multitudinous natural and industrial processes,

  12. An investigation into clustering and segregation in granular materials

    NARCIS (Netherlands)

    Gonzalez Briones, J.S.L.

    2013-01-01

    In this thesis, I studied the dynamics of granular matter by means of theory, simulations, and experiments. I studied how patterns emerge from a seemly unrelated ensemble of grains in different configurations. I focused on cluster formations in free cooling granular gases, developed an algorithm for

  13. Convective and segregative mechanisms in vibrofluidised granular systems

    NARCIS (Netherlands)

    Windows-Yule, C.R.

    2015-01-01

    Granular materials display a host of fascinating behaviours both remarkably similar to and strikingly different from those exhibited by classical solids, liquids and gases. Due to the ubiquity of granular materials, and their far-reaching importance in multitudinous natural and industrial processes,

  14. A Granular Computing Model Based on Tolerance relation

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-yin; HU Feng; HUANG Hai; WU Yu

    2005-01-01

    Granular computing is a new intelligent computing theory based on partition of problem concepts. It is an important problem in Rough Set theory to process incomplete information systems directly. In this paper, a granular computing model based on tolerance relation for processing incomplete information systems is developed. Furthermore, a criteria condition for attribution necessity is proposed in this model.

  15. Granularity of ATLAS Tile Calorimeter studied through simulations

    CERN Document Server

    Romero Hernandez, Anabel Cristina

    2015-01-01

    A small study, done through simulations, of the energy resolution of ATLAS Tile Calorimeter dependence on granularity is presented. The results could indicate that finer granularity of the calorimeter gives better energy resolution, although it would require better statistics to be sure.

  16. Schema Design Alternatives for Multi-Granular Data Warehousing

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    that the schema designs are intended to simply store data at the same single level of granularity. This paper on the other hand, presents several extended dimensional data warehousing schema design alternatives to store both detail and aggregated data at different levels of granularity. The paper presents three...

  17. Discrete and continuum descriptions of shaken granular matter

    NARCIS (Netherlands)

    Rivas Abud, Nicolás

    2015-01-01

    The subject of this thesis is the dynamics of granular materials. Granular matter is defined as collections of macroscopic, dissipative particles. The size of the individual particles (grains) must be large enough so that thermal fluctuations may be ignored. The loss of kinetic energy at every grain

  18. Surface effects in the acetylation of granular potato starch

    NARCIS (Netherlands)

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  19. Nonlinear instability and convection in a vertically vibrated granular bed

    NARCIS (Netherlands)

    Shukla, P.; Ansari, I.H.; van der Meer, Roger M.; Lohse, Detlef; Alam, M.

    2014-01-01

    The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis of the hydrodynamic equations. The base state is assumed to be quasi-steady and the effect of harmonic

  20. 75 FR 67105 - Granular Polytetrafluoroethylene Resin From Italy and Japan

    Science.gov (United States)

    2010-11-01

    ... COMMISSION Granular Polytetrafluoroethylene Resin From Italy and Japan AGENCY: United States International... granular polytetrafluoroethylene resin from Italy and Japan. SUMMARY: The Commission hereby gives notice... polytetrafluoroethylene resin from Italy and Japan would be likely to lead to continuation or recurrence of...