WorldWideScience

Sample records for dry etched bragg

  1. Monolithic mode-locked lasers with deeply dry etched Bragg mirror

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    gasmixture, gas flow, chamber pressure and the power supplied to the plasma2.Figure 1: SEM micrograph of a deeply etched 2nd order grating and waveguidein InP. 1K. yvind et al, Phot. Technology Letters 16, 975-977 (2004)2Y. Feurprier et al., J. Vac. Sci. A 16(3), 1552-1559 (1998)...... section, such as self-phase modulation. The solution to this problem is to integratethe laser with a wavelength selective Bragg grating. Another advantage of the gratingshould be lower noise. Deep Reactive Ion Etching (RIE) of the grating is a key for lowcostmass production of these lasers, making...... and high index regions (etched andunetched), is 240 nm for a 1st order grating and 480 nm for the 2nd order.Fabrication: The mask for the grating is formed by a combination of E-beam writing andUV-lithography. The resist pattern is transferred to a 100 nm SiO2-film, with a CHF3(Freon) based dry etch...

  2. Dry Etching

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yeom, Geun Young

    2016-01-01

    Production of large-area flat panel displays (FPDs) involves several pattern transfer and device fabrication steps that can be performed with dry etching technologies. Even though the dry etching using capacitively coupled plasma is generally used to maintain high etch uniformity, due to the need...... for the higher processing rates in FPDs, high-density plasma processing tools that can handle larger-area substrate uniformly are more intensively studied especially for the dry etching of polysilicon thin films. In the case of FPD processing, the current substrate size ranges from 730 × 920 mm (fourth...... generation) to 2,200 × 2,500 mm (eighth generation), and the substrate size is expected to increase further within a few years. This chapter aims to present relevant details on dry etching including the phenomenology, materials to be etched with the different recipes, plasma sources fulfilling the dry...

  3. Dry etching for microelectronics

    CERN Document Server

    Powell, RA

    1984-01-01

    This volume collects together for the first time a series of in-depth, critical reviews of important topics in dry etching, such as dry processing of III-V compound semiconductors, dry etching of refractory metal silicides and dry etching aluminium and aluminium alloys. This topical format provides the reader with more specialised information and references than found in a general review article. In addition, it presents a broad perspective which would otherwise have to be gained by reading a large number of individual research papers. An additional important and unique feature of this book

  4. Dry etching technology for semiconductors

    CERN Document Server

    Nojiri, Kazuo

    2015-01-01

    This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits.  The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes.  The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning ...

  5. Methods for dry etching semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Todd; Gross, Andrew John; Clews, Peggy J.; Olsson, Roy H.

    2016-11-01

    The present invention provides methods for etching semiconductor devices, such aluminum nitride resonators. The methods herein allow for devices having improved etch profiles, such that nearly vertical sidewalls can be obtained. In some examples, the method employs a dry etch step with a primary etchant gas that omits BCl.sub.3, a common additive.

  6. Dry etching technologies for reflective multilayer

    Science.gov (United States)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Kase, Yoshihisa; Yoshimori, Tomoaki; Muto, Makoto; Nonaka, Mikio; Iwami, Munenori

    2012-11-01

    We have developed a highly integrated methodology for patterning Extreme Ultraviolet (EUV) mask, which has been highlighted for the lithography technique at the 14nm half-pitch generation and beyond. The EUV mask is characterized as a reflective-type mask which is completely different compared with conventional transparent-type of photo mask. And it requires not only patterning of absorber layer without damaging the underlying multi reflective layers (40 Si/Mo layers) but also etching multi reflective layers. In this case, the dry etch process has generally faced technical challenges such as the difficulties in CD control, etch damage to quartz substrate and low selectivity to the mask resist. Shibaura Mechatronics ARESTM mask etch system and its optimized etch process has already achieved the maximal etch performance at patterning two-layered absorber. And in this study, our process technologies of multi reflective layers will be evaluated by means of optimal combination of process gases and our optimized plasma produced by certain source power and bias power. When our ARES™ is used for multilayer etching, the user can choose to etch the absorber layer at the same time or etch only the multilayer.

  7. Optical-Based Sensors for Monitoring Corrosion of Reinforcement Rebar via an Etched Cladding Bragg Grating

    Directory of Open Access Journals (Sweden)

    Faisal Rafiq Mahamd Adikan

    2012-11-01

    Full Text Available In this paper, we present the development and testing of an optical-based sensor for monitoring the corrosion of reinforcement rebar. The testing was carried out using an 80% etched-cladding Fibre Bragg grating sensor to monitor the production of corrosion waste in a localized region of the rebar. Progression of corrosion can be sensed by observing the reflected wavelength shift of the FBG sensor. With the presence of corrosion, the etched-FBG reflected spectrum was shifted by 1.0 nm. In addition, with an increase in fringe pattern and continuously, step-like drop in power of the Bragg reflected spectrum was also displayed.

  8. Advanced dry etching studies for micro- and nano-systems

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted

    Dry etching is a collective term used for controlled material removal by means of plasma generated ions. Dry etching includes several techniques, with reactive ion etching as one of the most used of its many derivatives. In this work inductively coupled plasma reactive ion etching has been applied...... beam etching in a boron trichloride plasma. The etch rates of sapphire in such a plasma can be up to a hundred times faster than rates in ion beam etching. The anisotropy of the etch can be controlled by changing the plasma conditions and fabrication of sloped sidewalls can be achieved. Reactive ion...... etching of polymers can be used for several purposes, such as polymer removal, surface properties alternation, or polymer structuring. For material removal any polymer can be etched in an oxygen plasma, including all the polymers used in this project, which include, SU-8, TOPAS®, PLLA, PCL, and PMMA...

  9. Note: Dissolved hydrogen detection in power transformer oil based on chemically etched fiber Bragg grating.

    Science.gov (United States)

    Jiang, Jun; Ma, Guo-ming; Song, Hong-tu; Zhou, Hong-yang; Li, Cheng-rong; Luo, Ying-ting; Wang, Hong-bin

    2015-10-01

    A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 μm could be as high as 0.060 pm/(μl/l), increased by more than 30% in comparison to un-etched FBG.

  10. Long all-active monolithic mode-locked lasers with surface-etched bragg gratings

    OpenAIRE

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4-mm-long monolithic InAlGaAsP–InP mode-locked lasers with integrated deeply surface etched distributed Bragg reflector (DBR) mirrors. The lasers produce 3.7-ps transform-limited Gaussian pulses with 10-mW average output power and 250-fs absolute timing jitter. The performance of the DBR lasers is compared to the performance of Fabry–PÉrot mode-locked lasers from the same wafer and to the performance of earlier reported long monolithic DBR mode-locked lasers and is found ...

  11. Long all-active monolithic mode-locked lasers with surface-etched bragg gratings

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4-mm-long monolithic InAlGaAsP–InP mode-locked lasers with integrated deeply surface etched distributed Bragg reflector (DBR) mirrors. The lasers produce 3.7-ps transform-limited Gaussian pulses with 10-mW average output power and 250-fs absolute timing jitter. The performance...... of the DBR lasers is compared to the performance of Fabry–PÉrot mode-locked lasers from the same wafer and to the performance of earlier reported long monolithic DBR mode-locked lasers and is found to be better....

  12. Low damage dry etch for III-nitride light emitters

    Science.gov (United States)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  13. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  14. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  15. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap E/sub g1/ in the presence of a second semiconductor material of a different composition and direct bandgap E/sub g2/, wherein E/sub g2/>E/sub g1/. The second semiconductor material is not substantially etched during the method, comprising subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons are not present, the photons being of an energy greater than E/sub g1/ but less than E/sub g2/, whereby the first semiconductor material is photochemically etched and the second material is substantially not etched.

  16. Dry etching technologies for the advanced binary film

    Science.gov (United States)

    Iino, Yoshinori; Karyu, Makoto; Ita, Hirotsugu; Yoshimori, Tomoaki; Azumano, Hidehito; Muto, Makoto; Nonaka, Mikio

    2011-11-01

    ABF (Advanced Binary Film) developed by Hoya as a photomask for 32 (nm) and larger specifications provides excellent resistance to both mask cleaning and 193 (nm) excimer laser and thereby helps extend the lifetime of the mask itself compared to conventional photomasks and consequently reduces the semiconductor manufacturing cost [1,2,3]. Because ABF uses Ta-based films, which are different from Cr film or MoSi films commonly used for photomask, a new process is required for its etching technology. A patterning technology for ABF was established to perform the dry etching process for Ta-based films by using the knowledge gained from absorption layer etching for EUV mask that required the same Ta-film etching process [4]. Using the mask etching system ARES, which is manufactured by Shibaura Mechatronics, and its optimized etching process, a favorable CD (Critical Dimension) uniformity, a CD linearity and other etching characteristics were obtained in ABF patterning. Those results are reported here.

  17. Channeling and diffusion in dry-etch damage

    Science.gov (United States)

    Rahman, M.

    1997-09-01

    At present channeling is accepted to be the primary mechanism causing defects deep within dry-etched material, with diffusion possibly modifying the final defect distribution. In this article detailed analytic expressions are presented incorporating both these mechanisms. The dominant parameter affecting damage depth is found to be the mean channeling length. We show how enhanced diffusion, e.g., by illumination, may increase the observed damage. We also study the effect of damage on depletion depths and suggest how the channeling length may be inferred from the etch-depth dependence of conductance or Raman spectroscopy measurements.

  18. Surface-etched distributed Bragg reflector lasers in photonic integrated circuits

    Science.gov (United States)

    Price, Raymond Kirk

    Semiconductor lasers have been used as a highly efficient, coherent source of light for commercial, industrial, and medical applications. Recently, much work has been done to engineer optical devices with a high degree of functionality. Photonic integrated circuits (PICs) achieve technology's twin goals of miniaturization and integration by implementing multiple optical functions on a single chip. This dissertation shows that asymmetric cladding surface-etched distributed Bragg reflector (ACSE-DBR) lasers are ideal candidates for monolithic photonic integration for the purpose of optical heterodyning. The active laser devices in these ACSE-DBR lasers exhibit high quantum efficiencies, tunable performance, and narrow spectral linewidths. The asymmetric cladding ridge waveguides are shown to provide low-loss routing structures, enabling monolithic integration of active and passive devices with a small layout footprint. This technology is applied to two specific purposes: a dual wavelength source for generating terahertz radiation via optical heterodyning, and high-power DBR laser arrays for spectral beam combining. A dual-wavelength PIC at 850 nm for the purpose of optical heterodyning is presented in this work. The engineering of the active and passive structures is extensively analyzed. These structures are shown to be ideally suited for high pulsed-power optical heterodyning applications. A high-power DBR laser array is also presented for use in spectral beam combining systems. The laser structure for this application is engineered for high-power applications. The engineering of the lateral optical guiding structure as well as the surface-etched grating is discussed.

  19. A temperature-insensitive cladding-etched Fiber Bragg grating using a liquid mixture with a negative thermo-optic coefficient.

    Science.gov (United States)

    Kim, Kwang Taek; Kim, In Soo; Lee, Cherl-Hee; Lee, Jonghun

    2012-01-01

    To compensate for the temperature dependency of a standard FBG, a cladding-etched FBG immersed with a liquid mixture having a negative thermo-optic coefficient is presented, and its characteristics are investigated. The Bragg wavelength of the cladding-etched FBG is shifted counter to the direction of the Bragg wavelength shift of a conventional FBG according to the mixing ratio of glycerin to water; thus, the temperature-dependent Bragg wavelength shift was almost compensated by using a liquid mixture of water (50%) and glycerin (50%) having the negative thermo-optic coefficient of -5 × 10(-4) °C(-1).

  20. Optimization of graphene dry etching conditions via combined microscopic and spectroscopic analysis

    OpenAIRE

    Prado,Mariana C.; Jariwala, Deep; Marks, Tobin J.; Hersam, Mark C.

    2013-01-01

    Single-layer graphene structures and devices are commonly defined using reactive ion etching and plasma etching with O2 or Ar as the gaseous etchants. Although optical microscopy and Raman spectroscopy are widely used to determine the appropriate duration of dry etching, additional characterization with atomic force microscopy (AFM) reveals that residual graphene and/or etching byproducts persist beyond the point where the aforementioned methods suggest complete graphene etching. Recognizing ...

  1. Simultaneous strain and temperature measurement with enhanced intrinsic sensitivity using etched polymer fibre Bragg gratings

    Science.gov (United States)

    Bhowmik, Kishore; Peng, Gang-Ding; Luo, Yanhua; Ambikairajah, Eliathamby; Rajan, Ginu

    2015-09-01

    A PMMA based single-mode polymer optical fibre is etched to different diameter and it is observed that etching can lead to change in the material properties of the fibre such as Young's modulus and thermal expansion coefficient. This can play a vital role in improving the intrinsic sensing capabilities based on etched polymer optical fibre. Thus, exploiting the different strain and temperature sensitivities exhibited by the etched and un-etched polymer FBGs and by using an FBG array, strain and temperature can be measured simultaneously and also with very high sensitivity.

  2. Deep anisotropic dry etching of silicon microstructures by high-density plasmas

    NARCIS (Netherlands)

    Blauw, M.A.

    2004-01-01

    This thesis deals with the dry etching of deep anisotropic microstructures in monocrystalline silicon by high-density plasmas. High aspect ratio trenches are necessary in the fabrication of sensitive inertial devices such as accellerometers and gyroscopes. The etching of silicon in fluorine-based

  3. Dry etched SiO2 Mask for HgCdTe Etching Process

    Science.gov (United States)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  4. Dry etching of single crystal PMN-PT piezoelectric material.

    OpenAIRE

    Agnus, Joël; Alexandru Ivan, Ioan; Queste, Samuel

    2011-01-01

    International audience; During the last decade, the applications of PMN-PT spread significantly. Unlike PZT, the appropriate microtechnologies for PMN-PT Piezo-MEMS aren't fully documented in the literature. This paper deals with the PMN-PT etching by inductively coupled plasma (ICP) technique, also known as DRIE. The paper quantitatively presents the etching parameters of PMN-PT by the Ar/C4F8 gas combination and reports some related useful experience.

  5. Fast patterning and dry-etch of SiNχ for high resolution nanoimprint templates

    Institute of Scientific and Technical Information of China (English)

    Shu Zhen; Wan Jing; Lu Bingrui; Xie Shenqi; Chen Yifang; Qu Xinping; Liu Ran

    2009-01-01

    We developed a simplified nanofabrication process for imprint templates by fast speed electron beam lithography (EBL) and a dry etch technique on a SiNx substrate, intended for large area manufacturing. To this end,the highly sensitive chemically amplified resist (CAR), NEB-22, with negative tone was used. The EBL process first defines the template pattern in NEB-22, which is then directly used as an etching mask in the subsequent reactive ion etching (RIE) on the SiNx to form the desired templates. The properties of both e-beam lithography and dry etch of NEB-22 were carefully studied, indicating significant advantages of this process with some drawbacks compared to when Cr was used as an etching mask. Nevertheless, our results open up a good opportunity to fabricate high resolution imprint templates with the prospect of wafer scale manufacturing.

  6. A new method of dry cleaning after plasma etching of MRAM materials

    Science.gov (United States)

    Kubo, Takuya; Kang, Song-Yun; Tokyo Electron Ltd. Team

    2015-09-01

    This paper describes a new method for dry cleaning after etching of MRAM materials. Problems such as repeatability or particle generation after etching of MRAM materials are due to the non-volatile nature of etch products. A new etch concept for MRAM is to etch each material such as carbon, metal, or silicon compounds step by step. There are 4 steps in this cleaning: 1) carbon removal by N2/H2, 2) metal removal by Ar, 3) silicon removal by CF4/O2, 4) carbon, oxygen, and fluorine removal by N2/H2. Etch repeatability and particle level reduction have been demonstrated to result from this cleaning method. Akasaka Biz Tower, 5-3-1 Akasaka Minato-ku, Tokyo 107-6325, Japan.

  7. HF-based clad etching of fibre Bragg grating and its utilization in concentration sensing of laser dye in dye–ethanol solution

    Indian Academy of Sciences (India)

    J Kumar; R Mahakud; O Prakash; S K Dixit

    2014-02-01

    This paper presents a fiber Bragg grating (FBG) based sensor to study the concentration of laser dye in dye–ethanol solution. The FBG used in this experiment is indigenously developed using 255 nm UV radiations from copper vapour laser. The cladding of the FBG was partially removed using HF-based etching to make FBG sensitive to changes in the surrounding refractive index. The experimental results on the shift of the Bragg peak wavelength with HF etching and different dye concentration in ethanol are presented. The Bragg wavelength shifted from 1534.670 nm to 1534.225 nm in 30 min and from this point to 1533.97 in the next 2 min. The clad-etched Bragg peak shifted almost linearly from 1534.056 nm to 1534.162 nm as surrounding dye concentration in ethanol changes from 0 mM to 1.5 mM. It was observed that sensitivity depends on the concentration of the solution and found to be 70 pm/mM.

  8. Continuous Process for the Etching, Rinsing and Drying of MEMS Using Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Min, Seon Ki; Han, Gap Su; You, Seong-sik [Korea University of Technology and Education, Cheonan (Korea, Republic of)

    2015-10-15

    The previous etching, rinsing and drying processes of wafers for MEMS (microelectromechanical system) using SC-CO{sub 2} (supercritical-CO{sub 2}) consists of two steps. Firstly, MEMS-wafers are etched by organic solvent in a separate etching equipment from the high pressure dryer and then moved to the high pressure dryer to rinse and dry them using SC-CO{sub 2}. We found that the previous two step process could be applied to etch and dry wafers for MEMS but could not confirm the reproducibility through several experiments. We thought the cause of that was the stiction of structures occurring due to vaporization of the etching solvent during moving MEMS wafer to high pressure dryer after etching it outside. In order to improve the structure stiction problem, we designed a continuous process for etching, rinsing and drying MEMS-wafers using SC-CO{sub 2} without moving them. And we also wanted to know relations of states of carbon dioxide (gas, liquid, supercritical fluid) to the structure stiction problem. In the case of using gas carbon dioxide (3 MPa, 25 .deg. C) as an etching solvent, we could obtain well-treated MEMS-wafers without stiction and confirm the reproducibility of experimental results. The quantity of rinsing solvent used could be also reduced compared with the previous technology. In the case of using liquid carbon dioxide (3 MPa, 5 .deg. C), we could not obtain well-treated MEMS-wafers without stiction due to the phase separation of between liquid carbon dioxide and etching co-solvent(acetone). In the case of using SC-CO{sub 2} (7.5 Mpa, 40 .deg. C), we had as good results as those of the case using gas-CO{sub 2}. Besides the processing time was shortened compared with that of the case of using gas-CO{sub 2}.

  9. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from the first material. The second material is not substantially etched during the method which comprises: subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons not present, the conditions also being such that the resultant electronic structure of the first semiconductor material under the photon flux is sufficient for the first material to undergo substantial photochemical etching under the conditions. The conditions also are such that the resultant electronic structure of the second semiconductor material under the photon flux is not sufficient for the second material to undergo substantial photochemical etching under the conditions.

  10. Fabrication of porous silicon based tunable distributed Bragg reflectors by anodic etching of irradiated silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vendamani, V.S. [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Department of Physics, Pondicherry University, Puducherry 605014 (India); Dang, Z.Y. [Department of Physics, Centre for Ion Beam Applications (CIBA), National University of Singapore, Singapore 117542 (Singapore); Ramana, P.; Pathak, A.P. [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Ravi Kanth Kumar, V.V. [Department of Physics, Pondicherry University, Puducherry 605014 (India); Breese, M.B.H. [Department of Physics, Centre for Ion Beam Applications (CIBA), National University of Singapore, Singapore 117542 (Singapore); Nageswara Rao, S.V.S., E-mail: svnsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2015-09-01

    Highlights: • Fabrication of tunable distributed Bragg reflectors (DBRs) by gamma/ion irradiation of Si and subsequent formation of porous silicon multilayers has been described. • The central wavelength and the width of the stop band are found to decrease with increase in irradiation fluence. • The Si samples irradiated with highest fluence of 2 × 10{sup 13} ions/cm{sup 2} (100 MeV Ag ions) and 60 kGy (gamma) showed a central reflection at λ = 476 nm and 544 nm respectively, in contrast to un-irradiated sample, where λ = 635 nm. • The observed changes in the central wavelengths are attributed to the density of defects generated by gamma and ion irradiation in c-Si. • This study is expected to provide useful information for fabricating tunable wave reflectors for optical communication and other device applications. - Abstract: We report a study on the fabrication of tunable distributed Bragg reflectors (DBRs) by gamma/ion irradiation of Si and subsequent formation of porous silicon multilayers. Porous Si multilayers with 50 bilayers were designed to achieve high intensity of reflection. The reflection spectra appear to have a broad continuous band between 400 and 800 nm with a distinct central wavelength corresponding to different wave reflectors. The central wavelength and the width of the stop band are found to decrease with increase in irradiation fluence. The Si samples irradiated with highest fluence of 2 × 10{sup 13} ions/cm{sup 2} (100 MeV Ag ions) and 60 kGy (gamma) showed a central reflection at λ = 476 nm and 544 nm respectively, in contrast to un-irradiated sample, where λ = 635 nm. The observed changes are attributed to the density of defects generated by gamma and ion irradiation in c-Si. These results suggest that the gamma irradiation is a convenient and alternative method to tune the central wavelength of reflection without creating high density of defects by high energy ion implantation. This study is expected to provide useful

  11. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.R.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  12. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  13. Deep dry-etch of silica in a helicon plasma etcher for optical waveguide fabrication

    Science.gov (United States)

    Li, W. T.; Bulla, D. A. P.; Love, J.; Luther-Davies, B.; Charles, C.; Boswell, R.

    2005-01-01

    Dry-etch of SiO2 layers using a CF4 plasma in a helicon plasma etcher for optical waveguide fabrication has been studied. Al2O3 thin films, instead of the conventional materials, such as Cr or photoresist, were employed as the masking materials. The Al2O3 mask layer was obtained by periodically oxidizing the surface of an Al mask in an oxygen plasma during the breaks of the SiO2 etching process. A relatively high SiO2/Al2O3 etching selectivity of ~100:1, compared with a SiO2/Al selectivity of ~15:1, was achieved under certain plasma condition. Such a high etching selectivity greatly reduced the required Al mask thickness from over 500 nm down to ~100 nm for etching over 5-μm-thick silica, which make it very easy to obtain the mask patterns with near vertical and very smooth sidewalls. Accordingly, silica wavegudies with vertical sidewalls whose roughness was as low as 10 nm were achieved. In addition, the mechanism of the profile transformation from a mask to the etched waveguide was analyzed numerically; and it was found that the slope angle of the sidewalls of the mask patterns only needed to be larger than 50° for achieving vertical sidewalls of the waveguides, if the etching selectivity was increased to 100.

  14. Fiber Bragg Grating Sensor to Monitor Stress Kinetics in Drying Process of Commercial Latex Paints

    Science.gov (United States)

    de Lourenço, Ivo; Possetti, Gustavo R. C.; Muller, Marcia; Fabris, José L.

    2010-01-01

    In this paper, we report a study about the application of packaged fiber Bragg gratings used as strain sensors to monitor the stress kinetics during the drying process of commercial latex paints. Three stages of drying with distinct mechanical deformation and temporal behaviors were identified for the samples, with mechanical deformation from 15 μm to 21 μm in the longitudinal film dimension on time intervals from 370 to 600 minutes. Drying time tests based on human sense technique described by the Brazilian Technical Standards NBR 9558 were also done. The results obtained shows that human sense technique has a limited perception of the drying process and that the optical measurement system proposed can be used to characterize correctly the dry-through stage of paint. The influence of solvent (water) addition in the drying process was also investigated. The paint was diluted with four parts paint and one part water (80% paint), and one part paint and one part water (50% paint). It was observed that the increase of the water ratio mixed into the paint decreases both the mechanical deformation magnitude and the paint dry-through time. Contraction of 5.2 μm and 10.4 μm were measured for concentrations of 50% and 80% of paint in the mixture, respectively. For both diluted paints the dry-through time was approximately 170 minutes less than undiluted paint. The optical technique proposed in this work can contribute to the development of new standards to specify the drying time of paint coatings. PMID:22399906

  15. Nanotexturing of GaN light-emitting diode material through mask-less dry etching

    Energy Technology Data Exchange (ETDEWEB)

    Dylewicz, Rafal; Khokhar, Ali Z; Rahman, Faiz [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Wasielewski, Radoslaw; Mazur, Piotr, E-mail: Faiz.Rahman@glasgow.ac.uk [Institute of Experimental Physics, University of Wroclaw, plac Maxa Borna 9, 50-204 Wroclaw (Poland)

    2011-02-04

    We describe a new technique for random surface texturing of a gallium nitride (GaN) light-emitting diode wafer through a mask-less dry etch process. This involves depositing a sub-monolayer film of silica nanospheres (typical diameter of 200 nm) and then subjecting the coated wafer to a dry etch process with enhanced physical bombardment. The silica spheres acting as nanotargets get sputtered and silica fragments are randomly deposited on the GaN epi-layer. Subsequently, the reactive component of the dry etch plasma etches through the exposed GaN surface. Silica fragments act as nanoparticles, locally masking the underlying GaN. The etch rate is much reduced at these sites and consequently a rough topography develops. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) inspections show that random topographic features at the scale of a few tens of nanometres are formed. Optical measurements using angle-resolved photoluminescence show that GaN light-emitting diode material thus roughened has the capability to extract more light from within the epilayers.

  16. Nanotexturing of GaN light-emitting diode material through mask-less dry etching

    Science.gov (United States)

    Dylewicz, Rafal; Khokhar, Ali Z.; Wasielewski, Radoslaw; Mazur, Piotr; Rahman, Faiz

    2011-02-01

    We describe a new technique for random surface texturing of a gallium nitride (GaN) light-emitting diode wafer through a mask-less dry etch process. This involves depositing a sub-monolayer film of silica nanospheres (typical diameter of 200 nm) and then subjecting the coated wafer to a dry etch process with enhanced physical bombardment. The silica spheres acting as nanotargets get sputtered and silica fragments are randomly deposited on the GaN epi-layer. Subsequently, the reactive component of the dry etch plasma etches through the exposed GaN surface. Silica fragments act as nanoparticles, locally masking the underlying GaN. The etch rate is much reduced at these sites and consequently a rough topography develops. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) inspections show that random topographic features at the scale of a few tens of nanometres are formed. Optical measurements using angle-resolved photoluminescence show that GaN light-emitting diode material thus roughened has the capability to extract more light from within the epilayers.

  17. Gate oxide punching thru mechanism in plasma dry etching

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The punching thru mechanism of gate oxide (thickness about 15A) was investi- gated. Because of the thin thickness of gate oxide, gate oxide punching thru may easily happen during the plasma process. It was found that what caused the punching thru was not only the selectivity of poly-silicon/oxide but also the pattern topography. We used the basic SRAM pattern to check this topography effect, and found that gate oxide located at the narrow spacing of two parallel serpentine lines was the most easily punched thru. What caused the topography effect was the starvation of oxygen in these places which were induced by the residue of poly-silicon and enhanced by electron shading effect. So, to solve the issue of gate oxide punching thru, firstly the selectivity should be enough, secondly we should pay attention to the etching pattern topography.

  18. Black Silicon formation using dry etching for solar cells applications

    Energy Technology Data Exchange (ETDEWEB)

    Murias, D. [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Reyes-Betanzo, C., E-mail: creyes@inaoep.mx [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Moreno, M.; Torres, A.; Itzmoyotl, A. [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Ambrosio, R.; Soriano, M. [Universidad Autonoma de Ciudad Juarez, Chihuahua (Mexico); Lucas, J. [Instituto Tecnologico de Tehuacan, Puebla (Mexico); Cabarrocas, P. Roca i [Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, CNRS, Palaiseau (France)

    2012-09-20

    A study on the formation of Black Silicon on crystalline silicon surface using SF{sub 6}/O{sub 2} and SF{sub 6}/O{sub 2}/CH{sub 4} based plasmas in a reactive ion etching (RIE) system is presented. The effect of the RF power, chamber pressure, process time, gas flow rates, and gas mixtures on the texture of silicon surface has been analyzed. Completely Black Silicon surfaces containing pyramid like structures have been obtained, using an optimized mask-free plasma process. Moreover, the Black Silicon surfaces have demonstrated average values of 1% and 4% for specular and diffuse reflectance respectively, feature that is suitable for the fabrication of low cost solar cells.

  19. Novel 3D microelectrodes and pipettes by wet and dry etching

    DEFF Research Database (Denmark)

    Dimaki, Maria; Vazquez, Patricia; Aimone, Alessandro;

    2012-01-01

    The purpose of this work is to develop novel 3D micro- and nanoelectrodes and pipettes by use of carefully optimised standard microfabrication techniques such as wet (by KOH) and dry silicon etching. Two types of electrodes have been fabricated and characterized: small nanoelectrodes to be used...

  20. Dry etching techniques for active devices based on hexagonal boron nitride epilayers

    Energy Technology Data Exchange (ETDEWEB)

    Grenadier, Samuel; Li, Jing; Lin, Jingyu; Jiang, Hongxing [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-11-15

    Hexagonal boron nitride (hBN) has emerged as a fundamentally and technologically important material system owing to its unique physical properties including layered structure, wide energy bandgap, large optical absorption, and neutron capture cross section. As for any materials under development, it is necessary to establish device processing techniques to realize active devices based on hBN. The authors report on the advancements in dry etching techniques for active devices based on hBN epilayers via inductively coupled plasma (ICP). The effect of ICP radio frequency (RF) power on the etch rate and vertical side wall profile was studied. The etching depth and angle with respect to the surface were measured using atomic force microscopy showing that an etching rate ∼1.25 μm/min and etching angles >80° were obtained. Profilometer data and scanning electron microscope images confirmed these results. This work demonstrates that SF{sub 6} is very suitable for etching hBN epilayers in RF plasma environments and can serve as a guide for future hBN device processing.

  1. Modeling a Dry Etch Process for Large-Area Devices

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.; Hebner, G.A.; Ruby, D.S.; Yang, P.

    1999-07-28

    There has been considerable interest in developing dry processes which can effectively replace wet processing in the manufacture of large area photovoltaic devices. Environmental and health issues are a driver for this activity because wet processes generally increase worker exposure to toxic and hazardous chemicals and generate large volumes of liquid hazardous waste. Our work has been directed toward improving the performance of screen-printed solar cells while using plasma processing to reduce hazardous chemical usage.

  2. Dry Etching Characteristics of MOVPE-Grown CdTe Epilayers in CH4, H2, Ar ECR Plasmas

    Science.gov (United States)

    Yasuda, K.; Niraula, M.; Araki, N.; Miyata, M.; Kitagawa, S.; Kojima, M.; Ozawa, J.; Tsubota, S.; Yamaguchi, T.; Agata, Y.

    2017-09-01

    Dry etching characteristics of single crystal (100) CdTe epitaxial layers grown on GaAs substrates were studied using CH4, H2, and Ar as process gases in an electron cyclotron resonance plasma. A smooth and anisotropic etching was obtained with CH4, H2, and Ar. No hydrocarbon polymer was found on the etched surface, which was confirmed by x-ray photoelectron spectroscopy measurement. Etching of the CdTe surface was also possible with H2 and Ar; however, no etching was observed in the absence of H2. Dependence of the etch rate on plasma gas composition and flow rates was studied. Mechanisms of etching with and without CH4 supply were also studied. Etched CdTe layers also showed no deterioration of electrical properties, which was confirmed by photoluminescence measurement at 4.2 K and Hall measurement at 300 K.

  3. Plasma-etching of 2D-poled glasses: A route to dry lithography

    Science.gov (United States)

    Alexandrov, S. E.; Lipovskii, A. A.; Osipov, A. A.; Reduto, I. V.; Tagantsev, D. K.

    2017-09-01

    The basis of a lithographic technique for producing glassy structures of diffractive optics, integrated optics, microfluidics, plasmonics, etc., is presented. The technique is based on the integration of two "dry" procedures: (1) glass polarization with structured (with relief surface) anodic electrode and (2) plasma-chemical etching of the poled glass. A pilot relief structure (that is, relief pattern 0.5 μm in depth) on the glass surface has been produced with the proposed technique.

  4. Monolithic mode-locked lasers with deeply dry etched Bragg mirror

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    Background: Semiconductor mode-locked lasers are attractive as components in futureultra high-speed telecommunication systems (160-640Gb/s); as picosecond pulse sources,clock-recovery devices and for demultiplexing in Optical Time Division Multiplexing(OTDM) systems. We have recently designed, fa...

  5. Combined dry plasma etching and online metrology for manufacturing highly focusing x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Berujon, S., E-mail: berujon@esrf.eu; Ziegler, E., E-mail: ziegler@esrf.eu; Cunha, S. da; Bonneau, F.; Baker, R.; Clement, J.-M.; Perez, M.; Thuaudet, S.; Malandrino, G.; Vivo, A.; Lantelme, B.; Barrett, R.; Susini, J. [European Synchrotron Radiation Facility, CS40220, 38043 Grenoble Cedex 9 (France)

    2016-07-27

    A new figuring station was designed and installed at the ESRF beamline BM05. It allows the figuring of mirrors within an iterative process combining the advantage of online metrology with dry etching. The complete process takes place under a vacuum environment to minimize surface contamination while non-contact surfacing tools open up the possibility of performing at-wavelength metrology and eliminating placement errors. The aim is to produce mirrors whose slopes do not deviate from the stigmatic profile by more than 0.1 µrad rms while keeping surface roughness in the acceptable limit of 0.1-0.2 nm rms. The desired elliptical mirror surface shape can be achieved in a few iterations in about a one day time span. This paper describes some of the important aspects of the process regarding both the online metrology and the etching process.

  6. Silicon Needles Fabricated by Highly Selective Anisotropic Dry Etching and Their Field Emission Current Characteristics

    Science.gov (United States)

    Kanechika, Masakazu; Mitsushima, Yasuichi

    2000-12-01

    A new process to fabricate a silicon needle, whose tip radius is about 5 nm and aspect ratio is about 7, was developed. The silicon needles were fabricated by highly selective anisotropic dry etching. The etching mask was oxygen precipitation, which was formed by nitrogen ion implantation and the subsequent oxidation. The process is simple enough to be integrated with complementary metal-oxide-semiconductor (CMOS) circuits. The density of the silicon needle can be controlled by adjusting the dose for nitrogen ion implantation. The position of the silicon needle can be controlled by adjusting the position for nitrogen ion implantation, because silicon needles are formed only in the nitrogen ion implantation area. Furthermore, using these silicon needles as micro emitters, a field emission diode was fabricated. The Fowler-Nordheim plot shows that the field around the tip of the silicon needles was highly enhanced.

  7. Dry etching of poly-Si/TaN/HfSiON gate stack for advanced complementarymetal-oxide-semiconductor devices

    Institute of Scientific and Technical Information of China (English)

    Li Yongliang; Xu Qiuxia

    2011-01-01

    A novel dry etching process of a poly-Si/TaN/HfSiON gate stack for advanced complementary metal-oxide-semiconductor (CMOS) devices is investigated.Our strategy to process a poly-Si/TaN/HfSiON gate stack is that each layer of gate stack is selectively etched with a vertical profile.First,a three-step plasma etching process is developed to get a vertical poly-Si profile and a reliable etch-stop on a TaN metal gate.Then different BCl3-based plasmas are applied to etch the TaN metal gate and find that BC13/Cl2/O2/Ar plasma is a suitable choice to get a vertical TaN profile.Moreover,considering that C12 almost has no selectivity to Si substrate,BCl3/Ar plasma is applied to etch HfSiON dielectric to improve the selectivity to Si substrate after the TaN metal gate is vertically etched off by the optimized BCl3/Cl2/O2/Ar plasma.Finally,we have succeeded in etching a poly-Si/TaN/HfSiON stack with a vertical profile and almost no Si loss utilizing these new etching technologies.

  8. Deep in situ dry-etch monitoring of III-V multilayer structures using laser reflectometry and reflectivity modeling

    CERN Document Server

    Moussa, H; Meriadec, C; Manin, L; Sagnes, I; Raj, R

    2002-01-01

    Deep reactive ion etching of III-V multilayer structures is an important issue for long wavelength vertical cavity surface emitting laser (VCSELs) where full laser structures are usually very thick. Test etchings were performed on GaAs/Al sub x Ga sub 1 sub - sub x As Bragg mirror structures and monitored using laser reflectometry at 651.4 nm. In order to perform very deep etching, up to 9 mu m, we designed and fabricated a special two-level mask made up of a thick nitride layer and a thin nickel layer. The etching rate is a complex function of many parameters and may change from run to run for similar structures. Therefore, it is important to have a method to control accurately the process in situ by continuously matching, experimental curves with the results of the reflectivity modeling. Here, we present a model, based on the Abeles matrix method, of the normal incidence reflectivity of a multilayer stack as a function of etch depth. Comparison between the model and the observed reflectivity variation durin...

  9. A Study of Parameters Related to the Etch Rate for a Dry Etch Process Using NF3/O2 and SF6/O2

    Directory of Open Access Journals (Sweden)

    Seon-Geun Oh

    2014-01-01

    Full Text Available The characteristics of the dry etching of SiNx:H thin films for display devices using SF6/O2 and NF3/O2 were investigated using a dual-frequency capacitively coupled plasma reactive ion etching (CCP-RIE system. The investigation was carried out by varying the RF power ratio (13.56 MHz/2 MHz, pressure, and gas flow ratio. For the SiNx:H film, the etch rates obtained using NF3/O2 were higher than those obtained using SF6/O2 under various process conditions. The relationships between the etch rates and the usual monitoring parameters—the optical emission spectroscopy (OES intensity of atomic fluorine (685.1 nm and 702.89 nm and the voltages VH and VL—were investigated. The OES intensity data indicated a correlation between the bulk plasma density and the atomic fluorine density. The etch rate was proportional to the product of the OES intensity of atomic fluorine (I(F and the square root of the voltages (Vh+Vl on the assumption that the velocity of the reactive fluorine was proportional to the square root of the voltages.

  10. Dry Etching of GaAs to Fabricate Via-Hole Grounds in Monolithic Microwave Integrated Circuits

    Directory of Open Access Journals (Sweden)

    D.S. Rawal

    2009-07-01

    Full Text Available This study investigates the dry etching of 60 mm dia, 200 mm deep holes for fabrication of through substrate via holes for grounding monolithic microwave integrated circuits (MMICs, on 3-inch dia semiinsulating GaAs wafer using RIE and ICP processes with CFC and non-CFC gas chemistry, respectively. The effect of various process parameters on GaAs etch rate and resultant etch profile was investigated. Two kinds of masks, photoresist and Ni, were used to etch GaAs and performance was compared by investigating effect on etch rate, etch depth, etch profile, and surface morphology. The etch profile, etch depth, and surface morphology of as-etched samples were characterised by scanning electron microscopy. The desired 200 mm deep strawberry profile was obtained at 40 mTorr for both RIE and ICP processes with an etch rate of ~1.3 mm/min and ~4 mm/min respectively. Ni metal mask was used for RIE process due to poor photoresist selectivity, whereas ICP process utilised photoresist as mask. The vias were then metallised by depositing a thin seed layer of Ti/Au (1000 Å using radio frequency sputtering and Au (~5 mm electroplated to connect the frontside pad and back side ground plane. The typical parasitic inductance offered by these via for RIE and ICP processes was ~76 pH and 83 pH respectively, which is well within the acceptable limits. The developed process was finally integrated to in-house MMIC production line.Defence Science Journal, 2009, 59(4, pp.363-370, DOI:http://dx.doi.org/10.14429/dsj.59.1535

  11. Effect of different air-drying time on the microleakage of single-step self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Horieh Moosavi

    2013-05-01

    Full Text Available Objectives This study evaluated the effect of three different air-drying times on microleakage of three self-etch adhesive systems. Materials and Methods Class I cavities were prepared for 108 extracted sound human premolars. The teeth were divided into three main groups based on three different adhesives: Opti Bond All in One (OBAO, Clearfil S3 Bond (CSB, Bond Force (BF. Each main group divided into three subgroups regarding the air-drying time: without application of air stream, following the manufacturer's instruction, for 10 sec more than manufacturer's instruction. After completion of restorations, specimens were thermocycled and then connected to a fluid filtration system to evaluate microleakage. The data were statistically analyzed using two-way ANOVA and Tukey-test (α = 0.05. Results The microleakage of all adhesives decreased when the air-drying time increased from 0 sec to manufacturer's instruction (p < 0.001. The microleakage of BF reached its lowest values after increasing the drying time to 10 sec more than the manufacturer's instruction (p < 0.001. Microleakage of OBAO and CSB was significantly lower compared to BF in all three drying time (p < 0.001. Conclusions Increasing in air-drying time of adhesive layer in one-step self-etch adhesives caused reduction of microleakage, but the amount of this reduction may be dependent on the adhesive components of self-etch adhesives.

  12. Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water.

    Science.gov (United States)

    Pham, Thanh Binh; Bui, Huy; Le, Huu Thang; Pham, Van Hoi

    2016-12-22

    The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG) sensing probe-which integrated in fiber laser structure-are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0-80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10(-3) nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB), narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work.

  13. Effect of moisture and drying time on the bond strength of the one-step self-etching adhesive system

    Directory of Open Access Journals (Sweden)

    Yoon Lee

    2012-08-01

    Full Text Available Objectives To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems. Materials and Methods Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (p = 0.05. Results All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength. Conclusions Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.

  14. Dry-plasma-free chemical etch technique for variability reduction in multi-patterning (Conference Presentation)

    Science.gov (United States)

    Kal, Subhadeep; Mohanty, Nihar; Farrell, Richard A.; Franke, Elliott; Raley, Angelique; Thibaut, Sophie; Pereira, Cheryl; Pillai, Karthik; Ko, Akiteru; Mosden, Aelan; Biolsi, Peter

    2017-04-01

    Scaling beyond the 7nm technology node demands significant control over the variability down to a few angstroms, in order to achieve reasonable yield. For example, to meet the current scaling targets it is highly desirable to achieve sub 30nm pitch line/space features at back-end of the line (BEOL) or front end of line (FEOL); uniform and precise contact/hole patterning at middle of line (MOL). One of the quintessential requirements for such precise and possibly self-aligned patterning strategies is superior etch selectivity between the target films while other masks/films are exposed. The need to achieve high etch selectivity becomes more evident for unit process development at MOL and BEOL, as a result of low density films choices (compared to FEOL film choices) due to lower temperature budget. Low etch selectivity with conventional plasma and wet chemical etch techniques, causes significant gouging (un-intended etching of etch stop layer, as shown in Fig 1), high line edge roughness (LER)/line width roughness (LWR), non-uniformity, etc. In certain circumstances this may lead to added downstream process stochastics. Furthermore, conventional plasma etches may also have the added disadvantage of plasma VUV damage and corner rounding (Fig. 1). Finally, the above mentioned factors can potentially compromise edge placement error (EPE) and/or yield. Therefore a process flow enabled with extremely high selective etches inherent to film properties and/or etch chemistries is a significant advantage. To improve this etch selectivity for certain etch steps during a process flow, we have to implement alternate highly selective, plasma free techniques in conjunction with conventional plasma etches (Fig 2.). In this article, we will present our plasma free, chemical gas phase etch technique using chemistries that have high selectivity towards a spectrum of films owing to the reaction mechanism ( as shown Fig 1). Gas phase etches also help eliminate plasma damage to the

  15. Dry Etching of Copper Phthalocyanine Thin Films: Effects on Morphology and Surface Stoichiometry

    OpenAIRE

    Brett, Michael J.; Dijken, Jaron G. Van

    2012-01-01

    We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, whi...

  16. Mask-free construction of three-dimensional silicon structures by dry etching assisted gray-scale femtosecond laser direct writing

    Science.gov (United States)

    Liu, Xue-Qing; Yu, Lei; Chen, Qi-Dai; Sun, Hong-Bo

    2017-02-01

    A mask-free micro/nano fabrication method is proposed for constructing arbitrary gradient height structures on silicon, combining gray-scale femtosecond laser direct writing (GS-FsLDW) with subsequent dry etching. Arbitrary two-dimensional patterns with a gradient concentration of oxygen atoms can be fabricated on the surface of undoped silicon wafer by FsLDW in air. After dry etching, various three-dimensional (3D) gradient height silicon structures are fabricated by controlling the laser power, scanning step, etching time, and etching power. As an example, a well-defined 3D Fresnel zone plate was fabricated on silicon wafer, which shows excellent focusing and imaging properties. The combination of high precision from dry etching and 3D fabrication ability on non-planar substrates of FsLDW, may broaden its applications in microelectronics, micro-optics, and microelectromechanical systems.

  17. Dry Etching of Copper Phthalocyanine Thin Films: Effects on Morphology and Surface Stoichiometry

    Directory of Open Access Journals (Sweden)

    Michael J. Brett

    2012-08-01

    Full Text Available We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure.

  18. Dry etching of copper phthalocyanine thin films: effects on morphology and surface stoichiometry.

    Science.gov (United States)

    Van Dijken, Jaron G; Brett, Michael J

    2012-08-24

    We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure.

  19. Photonic Crystal Fabrication in Lithium Nobate via Pattern Transfer Through Wet and Dry Etched Chromium Mask

    Science.gov (United States)

    2012-10-02

    generation system (NPGS, JC Nabity Lithography Systems) e-beam patterning software. Parame- ters (accelerating voltage, current, etc.) for each machine were...sample contained several patterns of varying size, each of which showed a different rate of expansion, or etching speed —larger features were etched...Optics, Eindhoven , The Netherlands, 11-13 June, 2008 ( Eindhoven Uni- versity of Technology, Department of Electrical Engineering, Division of

  20. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength.

  1. Cradle-to-gate life cycle assessment of the dry etching step in the manufacturing of photovoltaic cells

    Directory of Open Access Journals (Sweden)

    Otto Andersen

    2014-11-01

    Full Text Available A new photovoltaic silicon crystalline solar cell dry chemical etching process (DCEP is developed. It is an alternative to the current State-of-the-Art (SoA wet chemical etching process (WCEP, associated with relatively large environmental loadings in the form of high water consumption and emissions of greenhouse gases with high Global Warming Potential (GWP. In order to compare the environmental impacts of DCEP to the corresponding impacts from WCEP, a comparative attributional life cycle assessment (LCA is conducted. From the LCA it can be concluded that the DCEP will lead to 86% reduction in water consumption compared to WCEP (acidic, and 89% reduction compared to WCEP (alkaline. The emissions of greenhouse gases, as expressed by the GWP100 indicator of the etching step, are also reduced with 63% and 20% respectively, when compared with current SoA acidic and alkaline WCEP. The toxicity impacts are also assessed to be lower for the DCEP compared to WCEP technologies, although the uncertainty is relatively high for the applied toxicity indicators. All in all, DCEP can reduce the CO2eq emissions of solar photovoltaic systems production by 5-10%.

  2. Numerical study of capacitive coupled HBr/Cl2 plasma discharge for dry etch applications

    Science.gov (United States)

    Gul, Banat; Ahmad, Iftikhar; Zia, Gulfam; Aman-ur-Rehman

    2016-09-01

    HBr/Cl2 plasma discharge is investigated to study the etchant chemistry of this discharge by using the self-consistent fluid model. A comprehensive set of gas phase reactions (83 reactions) including primary processes such as excitation, dissociation, and ionization are considered in the model along with 24 species. Our findings illustrate that the densities of neutral species (i.e., Br, HCl, Cl, H, and H2) produced in the reactor are higher than charged species (i.e., Cl2+, Cl-, HBr+, and Cl+). Density profile of neutral and charged species followed bell shaped and double humped distributions, respectively. Increasing Cl2 fraction in the feedback gases (HBr/Cl2 from 90/10 to 10/90) promoted the production of Cl, Cl+, and Cl2+ in the plasma, indicating that chemical etching pathway may be preferred at high Cl-environment. These findings pave the way towards controlling/optimizing the Si-etching process.

  3. Optical refractive index biosensor using evanescently coupled lateral Bragg gratings on silicon-on-insulator

    Science.gov (United States)

    Mendez-Astudillo, Manuel; Takahisa, Hiroki; Okayama, Hideaki; Nakajima, Hirochika

    2016-08-01

    In this paper, we present a compact silicon-on-insulator optical biosensor based on lateral Bragg gratings evanescently coupled to a waveguide. The device is fabricated by electron-beam lithography and dry-etched in a single step with inductive coupled plasma reactive ion etching (ICP-RIE). Fully etched grating couplers are used to couple the light in and out of the chip, while lateral Bragg gratings are used as the sensing element of the device. A sensitivity of 22 nm/RIU is obtained by exposing the device to deionized water with different NaCl concentrations with a footprint area of 15 × 4 µm2 that allows for densely multiplexed solutions.

  4. Experimental and theoretical study of bragg-Fresnel optics etched on multilayer structures. Application: lenses for X-Ray imaging; Etude experimentale et theorique d`optiques de bragg-Fresnel gravees sur miroirs interferentiels multicouches. Application: lentilles pour l`imagerie X

    Energy Technology Data Exchange (ETDEWEB)

    Soullie, G.

    1996-10-01

    This work concerns the study of a new type of X-ray focusing optics known as Bragg-Fresnel lenses developed for imaging in the X and X-UV range. These optics, etched on multilayer structure, combine the focusing properties of zone plate with the Bragg reflection of multilayer used like support. Using synchrotron sources and a plasma source produced by a laser, we tested the efficiency and the spatial resolution of these lenses. With a monochromatic beam, we first obtained the image of a object by using the first order diffraction of an elliptical off-axis Bragg-Fresnel lens. By using only one part of a lens, the superposition of different diffraction orders in focal plane can be avoided, thus improving the image contrast. In order to evaluate the chromatic aberrations of these lenses, we have summed on the same image, three exposures at different energies in the band pass of the multilayer. To reduce these kind of aberrations, we used a system composed of two off-axis lenses. To simplify the alignment, we tested an elliptical off-axis lens associated with a lamellar grating. Thus we are able to validate the theoretical approximation of an off-axis Bragg-Fresnel lens to a variable spaced grating. Finally, to show the perturbation brought by the zeroth order, we successively imaged a laser plasma source with a centred and an off-axis elliptical lenses. As with the synchrotron source, a set of images of a test object enabled us to improve the spatial resolution. (author).

  5. Effect of wet vs. dry testing on the mechanical properties of hydrophilic self-etching primer polymers.

    Science.gov (United States)

    Hosaka, Keiichi; Tagami, Junji; Nishitani, Yoshihiro; Yoshiyama, Masahiro; Carrilho, Marcela; Tay, Franklin R; Agee, Kelli A; Pashley, David H

    2007-06-01

    Self-etching primers and adhesives contain very hydrophilic methacrylate monomers that result in high water sorptions by their polymers. Water sorption plasticizes the polymers and lowers their mechanical properties. The purpose of this work was to rank the hydrophilicity of a series of acidic primers by their Hoy's solubility parameters (delta) to determine if there was a significant relationship between the delta of polymers and their mechanical properties. A series of six acidic primer blends containing a fixed concentration of phenyl-P but variable amounts of 2-hydroxyethyl methacrylate (HEMA), 2,2 bi[4-(2-hydroxy-3-methacryloyloxy)propane (BisGMA), and triethylene-glycol dimethacrylate (TEGDMA) was formulated and their Hoy's solubility parameters calculated. The polymers were cast into small 'I' beams and light-cured. The modulus of elasticity (E) and ultimate tensile strength (UTS) were measured in dry polymers and after immersion in water for 24 h. The results showed significant correlations between E and UTS under dry or wet conditions. Both E and UTS fell significantly when the specimens were immersed in water. After water immersion, the E and UTS showed significant correlations with Hoy's delta(p) values. Both E and UTS correlated significantly with the BisGMA concentration of the polymers, either wet or dry. The percentage changes in E or UTS were significantly correlated with the water sorption of the polymers.

  6. Effect of a Cooling Step Treatment on a High-Voltage GaN LED During ICP Dry Etching

    Science.gov (United States)

    Lin, Yen-Sheng; Hsiao, Sheng-Yu; Tseng, Chun-Lung; Shen, Ching-Hsing; Chiang, Jung-Sheng

    2016-10-01

    In this study, a lower dislocation density for a GaN surface and a reduced current path are observed at the interface of a SiO2 isolation sidewall, using high-resolution transmission electron microscopy. This is grown using a 3-min cooling step treatment during inductivity coupled plasma dry etching. The lower forward voltage is measured, the leakage current decreases from 53nA to 32nA, and the maximum output power increases from 354.8 W to 357.2 W for an input current of 30 mA. The microstructure and the optoelectronic properties of high-voltage light-emitting-diodes is proven to be affected by the cooling step treatment, which allows enough time to release the thermal energy of the SiO2 isolation well.

  7. Effect of a Cooling Step Treatment on a High-Voltage GaN LED During ICP Dry Etching

    Science.gov (United States)

    Lin, Yen-Sheng; Hsiao, Sheng-Yu; Tseng, Chun-Lung; Shen, Ching-Hsing; Chiang, Jung-Sheng

    2017-02-01

    In this study, a lower dislocation density for a GaN surface and a reduced current path are observed at the interface of a SiO2 isolation sidewall, using high-resolution transmission electron microscopy. This is grown using a 3-min cooling step treatment during inductivity coupled plasma dry etching. The lower forward voltage is measured, the leakage current decreases from 53nA to 32nA, and the maximum output power increases from 354.8 W to 357.2 W for an input current of 30 mA. The microstructure and the optoelectronic properties of high-voltage light-emitting-diodes is proven to be affected by the cooling step treatment, which allows enough time to release the thermal energy of the SiO2 isolation well.

  8. Highly selective dry etching of polystyrene-poly(methyl methacrylate) block copolymer by gas pulsing carbon monoxide-based plasmas

    Science.gov (United States)

    Miyazoe, Hiroyuki; Jagtiani, Ashish V.; Tsai, Hsin-Yu; Engelmann, Sebastian U.; Joseph, Eric A.

    2017-05-01

    We propose a very selective PMMA removal method from poly(styrene-block-methyl methacrylate) (PS-b-PMMA) copolymer using gas pulsing cyclic etching. Flow ratio of hydrogen (H2) added to carbon monoxide (CO) plasma was periodically changed to control etch and deposition processes on PS. By controlling the process time of each etch and deposition step, full PMMA removal including etching of the neutral layer was demonstrated at 28 nm pitch, while PS thickness remained intact. This is more than 10 times higher etch selectivity than conventional continuous plasma etch processes using standard oxygen (O2), CO-H2 and CO-O2-based chemistries.

  9. Planarization and fabrication of bridges across deep grooves or holes in silicon using a dry film photoresist followed by an etch back

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, V.L.; Berenschot, Johan W.; Elwenspoek, Michael Curt

    A technique is presented that provides planarization after a very deep etching step in silicon. This offers the possibility for not only resist spinning and layer patterning but also for realization of bridges and cantilevers across deep grooves or holes. The technique contains a standard dry film

  10. High-Power and Low-Noise 10-GHz All-Active Monolithic Mode-Locked Lasers with Surface Etched Bragg Grating

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with integrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter.......We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with integrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter....

  11. Comparative analysis of barium titanate thin films dry etching using inductively coupled plasmas by different fluorine-based mixture gas.

    Science.gov (United States)

    Li, Yang; Wang, Cong; Yao, Zhao; Kim, Hong-Ki; Kim, Nam-Young

    2014-01-01

    In this work, the inductively coupled plasma etching technique was applied to etch the barium titanate thin film. A comparative study of etch characteristics of the barium titanate thin film has been investigated in fluorine-based (CF4/O2, C4F8/O2 and SF6/O2) plasmas. The etch rates were measured using focused ion beam in order to ensure the accuracy of measurement. The surface morphology of etched barium titanate thin film was characterized by atomic force microscope. The chemical state of the etched surfaces was investigated by X-ray photoelectron spectroscopy. According to the experimental result, we monitored that a higher barium titanate thin film etch rate was achieved with SF6/O2 due to minimum amount of necessary ion energy and its higher volatility of etching byproducts as compared with CF4/O2 and C4F8/O2. Low-volatile C-F compound etching byproducts from C4F8/O2 were observed on the etched surface and resulted in the reduction of etch rate. As a result, the barium titanate films can be effectively etched by the plasma with the composition of SF6/O2, which has an etch rate of over than 46.7 nm/min at RF power/inductively coupled plasma (ICP) power of 150/1,000 W under gas pressure of 7.5 mTorr with a better surface morphology.

  12. Alignment and Use of Self-Assembled Peptide Nanotubes as Dry-Etching Mask

    DEFF Research Database (Denmark)

    Andersen, Karsten Brandt; Castillo, Jaime; Bakmand, Tanya

    2012-01-01

    Self-assembled diphenylalanine peptide nanotubes provide a means of achieving nanostructured materials in a very simple and fast way. Recent discoveries have shown that this unique material, in addition to remaining stable under dry conditions, rapidly dissolves in water making it a promising can...

  13. Agile dry etching of compound semiconductors for science-based manufacturing using in-situ process control

    Energy Technology Data Exchange (ETDEWEB)

    ASHBY,CAROL I.; VAWTER,GREGORY A.; BREILAND,WILLIAM G.; BRUSKAS,LARRY A.; WOODWORTH,JOSEPH R.; HEBNER,GREGORY A.

    2000-02-01

    In-situ optical diagnostics and ion beam diagnostics for plasma-etch and reactive-ion-beam etch (RIBE) tools have been developed and implemented on etch tools in the Compound Semiconductor Research Laboratory (CSRL). The optical diagnostics provide real-time end-point detection during plasma etching of complex thin-film layered structures that require precision etching to stop on a particular layer in the structure. The Monoetch real-time display and analysis program developed with this LDRD displays raw and filtered reflectance signals that enable an etch system operator to stop an etch at the desired depth within the desired layer. The ion beam diagnostics developed with this LDRD will permit routine analysis of critical ion-beam profile characteristics that determine etch uniformity and reproducibility on the RIBE tool.

  14. High-Power and Low-Noise 10-GHz All-Active Monolithic Mode-Locked Lasers with Surface Etched Bragg Grating

    OpenAIRE

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2007-01-01

    We have fabricated 4.4 mm long monolithic InAlGaAsP/InP mode-locked lasers with integrated deeply surface etched DBR-mirrors. The lasers produce 3.7 ps transform-limited Gaussian pulses with 10 mW average power and 250 fs timing jitter.

  15. Fabrication of Light Extraction Efficiency of Organic Light-Emitting Diodes with 3D Aspherical Microlens by Using Dry Etching Process

    Directory of Open Access Journals (Sweden)

    Y. C. Chen

    2013-01-01

    Full Text Available organic light-emitting diode (OLED can enable a greater artificial contrast ratio and viewing angle compared to liquid crystal display (LCD because OLED pixels directly emit light. There is a shortcoming that the internal quantum efficiency can reach values close to 100%, but about 80% light disperses because of the difference among the refractive indices of the substrate, anode, indium tin oxide (ITO film, and air. In this paper, three dimensions aspherical microlens arrays (3D A-MLAs with substrate modifications are developed to simulate the optical luminous field by using FRED software. This study modified parameters of 3D A-MLAs such as the diameter, fill-factor, aspect ratio, dry etching parameters, and electroforming rates of microlens to improve the extraction efficiency of the OLED. In dry etching, not only the aspect ratio with better extraction rate can be obtained by reactive ion etching (RIE dry etching, but also an undercutting phenomenon can be avoided. The dimensions of 3D A-MLAs can be accurately controlled in the electroforming process used to make a nickel-cobalt (Ni-Co metal mold to achieve the designed dimensions. According to the measured results, the average luminance efficacy of the OLEDs with 3D A-MLAs can be enhanced.

  16. Monolithically integrated distributed Bragg reflector lasers for 1.5 μm operation with band gap shifted grating section

    Science.gov (United States)

    Ke, Maolong; Allan, B. D.; Liu, X. F.; Boyd, A.; Qiu, B. C.; Qian, Y. H.; Hamilton, C. J.; McDougall, S. D.; Kowalski, O. P.; Bryce, A. C.; De La Rue, R. M.; Marsh, J. H.

    2000-07-01

    The design and operation of long wavelength ridge waveguide distributed Bragg reflector lasers in both InGaAs-InGaAlAs and InGaAs-InGaAsP materials with deeply dry-etched surface gratings are presented. To our knowledge, quantum well intermixing was used for the first time in these systems to widen the band gap in the grating region, and significant improvement in performance is obtained from the distributed Bragg reflector (DBR) lasers with intermixed grating region.

  17. Fabrication of ultrahigh density metal-cell-metal crossbar memory devices with only two cycles of lithography and dry-etch procedures

    KAUST Repository

    Zong, Baoyu

    2013-05-20

    A novel approach to the fabrication of metal-cell-metal trilayer memory devices was demonstrated by using only two cycles of lithography and dry-etch procedures. The fabricated ultrahigh density crossbar devices can be scaled down to ≤70 nm in half-pitch without alignment issues. Depending on the different dry-etch mechanisms in transferring high and low density nanopatterns, suitable dry-etch angles and methods are studied for the transfer of high density nanopatterns. Some novel process methods have also been developed to eliminate the sidewall and other conversion obstacles for obtaining high density of uniform metallic nanopatterns. With these methods, ultrahigh density trilayer crossbar devices (∼2 × 1010 bit cm-2-kilobit electronic memory), which are composed of built-in practical magnetoresistive nanocells, have been achieved. This scalable process that we have developed provides the relevant industries with a cheap means to commercially fabricate three-dimensional high density metal-cell-metal nanodevices. © 2013 IOP Publishing Ltd.

  18. Investigation of chlorine-based etchants in wet and dry etching technology for an InP planar Gunn diode

    Science.gov (United States)

    Bai, Yang; Jia, Rui; Wu, De-Qi; Jin, Zhi; Liu, Xin-Yu; Lin, Mei-Yu

    2013-08-01

    Mesa etching technology is considerably important in the Gunn diode fabrication process. In this paper we fabricate InP Gunn diodes with two different kinds of chlorine-based etchants for the mesa etching for comparative study. We use two chlorine-based etchants, one is HCl-based solution (HCl/H3PO4), and the other is Cl2-based gas mixture by utilizing inductively coupled plasma system (ICP). The results show that the wet etching (HCl-based) offers low cost and approximately vertical sidewall, whilst ICP system (Cl2-based) offers an excellent and uniform vertical sidewall, and the over-etching is tiny on the top and the bottom of mesa. And the fabricated mesas of Gunn diodes have average etching rates of ~ 0.6 μm/min and ~ 1.2 μm/min, respectively. The measured data show that the current of Gunn diode by wet etching is lower than that by ICP, and the former has a higher threshold voltage. It provides a low-cost and reliable method which is potentially applied to the fabrication of chip terahertz sources.

  19. Investigation of chlorine-based etchants in wet and dry etching technology for an InP planar Gunn diode

    Institute of Scientific and Technical Information of China (English)

    Bai Yang; Jia Rui; Wu De-Qi; Jin Zhi; Liu Xin-Yu; Lin Mei-Yu

    2013-01-01

    Mesa etching technology is considerably important in the Gunn diode fabrication process.In this paper we fabricate InP Gunn diodes with two different kinds of chlorine-based etchants for the mesa etching for comparative study.We use two chlorine-based etchants,one is HCl-based solution (HCl/H3PO4),and the other is Cl2-based gas mixture by utilizing inductively coupled plasma system (ICP).The results show that the wet etching (HCl-based) offers low cost and approximately vertical sidewall,whilst ICP system (Cl2-based) offers an excellent and uniform vertical sidewall,and the over-etching is tiny on the top and the bottom of mesa.And the fabricated mesas of Gunn diodes have average etching rates of ~ 0.6 μm/min and ~ 1.2 μm/min,respectively.The measured data show that the current of Gunn diode by wet etching is lower than that by ICP,and the former has a higher threshold voltage.It provides a low-cost and reliable method which is potentially applied to the fabrication of chip terahertz sources.

  20. Fabrication of combined-scale nano- and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process

    DEFF Research Database (Denmark)

    Tanzi, Simone; Østergaard, Peter Friis; Matteucci, Marco;

    2012-01-01

    Microfabricated single-cell capture and DNA stretching devices have been produced by injection molding. The fabrication scheme employed deep reactive ion etching in a silicon substrate, electroplating in nickel and molding in cyclic olefin polymer. This work proposes technical solutions to fabric......Microfabricated single-cell capture and DNA stretching devices have been produced by injection molding. The fabrication scheme employed deep reactive ion etching in a silicon substrate, electroplating in nickel and molding in cyclic olefin polymer. This work proposes technical solutions...

  1. 设备综合效率在真空刻蚀机上的应用%The Application of OEE in Vacuum Dry Etch Machine

    Institute of Scientific and Technical Information of China (English)

    古枫; 黎明柱

    2015-01-01

    Vacuum dry etch machine is a very expensive machine,it is widely used in the semiconductor field to make IC,that is why it is so expensive. In this article,we will first introduce the structure and working theory of the vacuum dry etch machine to understand the operation features;then,through the usage of OEE tool on the vacuum dry etch machine,to effectively find out the reasons of low production efficiency of dry etch tool,and implement the right actions to improve it,and implement TPM to improve its OEE,and finally achieve the goal of increase production efficiency.%真空刻蚀机为一种昂贵的晶圆加工设备,在半导体领域有着广泛的应用,其设备主要用来加工晶圆上面的图形,从而制造电子元器件,因此,这种设备的价格也是非常昂贵的。文章首先通过介绍真空刻蚀机的基本构造以及工作原理,了解设备的运行及加工操作特点,然后通过对公司关键设备真空刻蚀机进行设备综合效率(OEE)工具的使用,有效地分析真空刻蚀机生产效率低下的原因,从而有针对性地进行改善与改造,加上执行TPM(Total Preventive Maintenance)来提升其设备综合效率,以达到生产线整体的生产效率提升的目的。

  2. Defect formation during chlorine-based dry etching and their effects on the electronic and structural properties of InP/InAsP quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Landesman, Jean-Pierre, E-mail: jean-pierre.landesman@univ-rennes1.fr [Institut de Physique de Rennes, CNRS-UMR 6251, Université Rennes 1, F-35042 Rennes (France); Jiménez, Juan; Torres, Alfredo [GdS Optronlab, Dpto. Fisica de la Materia Condensada, Universidad de Valladolid, 47011 Valladolid (Spain); Levallois, Christophe; Léger, Yoan; Beck, Alexandre [UMR FOTON, CNRS, INSA-Rennes, 20 avenue des buttes de Coësmes, F-35708 Rennes (France); Pommereau, Frédéric [III-V Lab, 1 Avenue Augustin Fresnel, RD128, F-91767 Palaiseau (France); Frigeri, Cesare [CNR-IMEM Istituto, Parco area delle Scienze 37/A, 43010 Parma (Italy); Rhallabi, Ahmed [Institut des Matériaux Jean-Rouxel, CNRS-UMR 6502, Université Nantes 1, F-44322 Nantes (France)

    2016-07-15

    The general objective is the investigation of the defects formed by dry etching tools such as those involved in the fabrication of photonic devices with III–V semiconductors. Emphasis is put on plasma exposures with chlorine-based chemistries. In addition to identifying these defects and describing their effects on the electro-optic and structural properties, the long-term target would be to predict the impact on the parameters of importance for photonic devices, and possibly include these predictions in their design. The work is first centered on explaining the experimental methodology. This methodology starts with the design and growth of a quantum well structure on indium phosphide, including ternary indium arsenide/phosphide quantum wells with graded arsenic/phosphor composition. These samples have then been characterized by luminescence methods (photo- and cathodoluminescence), high-resolution transmission electron microscopy, and secondary ion mass spectrometry. As one of the parameters of importance in this study, the authors have also included the doping level. The samples have been exposed to the etching plasmas for “short” durations that do not remove completely the quantum wells, but change their optical signature. No masking layer with lithographic features was involved as this work is purely oriented to study the interaction between the plasma and the samples. A significant difference in the luminescence spectra of the as-grown undoped and doped samples is observed. A mechanism describing the effect of the built-in electric field appearing as a consequence of the doping profile is proposed. This mechanism involves quantum confined Stark effect and electric-field induced carrier escape from the quantum wells. In the following part, the effects of exposure to various chlorine-based plasmas were explored. Differences are again observed between the undoped and doped samples, especially for chemistries containing silicon tetrachloride. Secondary ion

  3. Optimization of dry etching parameters for fabrication of polysilicon waveguides with smooth sidewall using a capacitively coupled plasma reactor.

    Science.gov (United States)

    Cheemalapati, Surya; Ladanov, Mikhail; Winskas, John; Pyayt, Anna

    2014-09-01

    In this paper, we demonstrate the optimization of a capacitively coupled plasma etching for the fabrication of a polysilicon waveguide with smooth sidewalls and low optical loss. A detailed experimental study on the influences of RF plasma power and chamber pressure on the roughness of the sidewalls of waveguides was conducted and waveguides were characterized using a scanning electron microscope. It was demonstrated that optimal combination of pressure (30 mTorr) and power (150 W) resulted in the smoothest sidewalls. The optical losses of the optimized waveguide were 4.1±0.6  dB/cm.

  4. The performances of silicon solar cell with core-shell p-n junctions of micro-nano pillars fabricated by cesium chloride self-assembly and dry etching

    Science.gov (United States)

    Liu, Jing; Zhang, Xinshuai; Dong, Gangqiang; Liao, Yuanxun; Wang, Bo; Zhang, Tianchong; Yi, Futing

    2014-03-01

    Silicon micro-nano pillars are cost-efficiently integrated using twice cesium chloride (CsCl) islands lithography technique and dry etching for solar cell applications. The micro PMMA islands are fabricated by inductively coupled plasma (ICP) dry etching with micro CsCl islands as masks, and the nano CsCl islands with nano sizes then are made on the surface of micro PMMA islands and silicon. By ICP dry etching with the mask of micro PMMA islands and nano CsCl islands, the micro-nano silicon pillars are made and certain height micro pillars are randomly positioned between dense arrays of nano pillars with different morphologies by controlling etching conditions. With 300 nm depth p-n junction detected by secondary-ion mass spectrometry (SIMS), the micro pillars of the diameter about 1 μm form the core-shell p-n junction to maximize utility of p-n junction interface and enable efficient free carrier collection, and the nano tapered pillars of 150 nm diameter are used to decrease reflection by a graded-refractive-index. Compared to single micro or nano pillar arrayed cells, the co-integrated solar cell with micro and nano pillars demonstrates improved photovoltaic characteristic that is a photovoltaic conversion efficiency (PCE) of 15.35 % with a short circuit current density ( J sc) of 38.40 mA/cm2 and an open circuit voltage ( V oc) of 555.7 mV, which benefits from the advantages of micro-nano pillar structures and can be further improved upon process optimization.

  5. Lateral electrochemical etching of III-nitride materials for microfabrication

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jung

    2017-02-28

    Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.

  6. Detection of Organic Vapors Based on Photoluminescent Bragg-Reflective Porous Silicon Interferomete.

    Science.gov (United States)

    Ahn, Jihoon; Cho, Bomin; Kim, Sungsoo; Sohn, Honglae

    2015-07-01

    Novel photoluminescent Bragg-reflective porous silicon, exhibiting dual optical properties, both the optical reflectivity and photoluminescence, was developed and used for sensing organic vapors. Photoluminescent Bragg-reflective porous silicon samples were prepared by an electrochemical etch of n-type silicon under the illumination. The etching solution consisted of a 3:1 volume mixture of aqueous 48% hydrofluoric acid and absolute ethanol. The typical etch parameters for the generation of photoluminescent Bragg-reflective porous silicon involved a periodic square wave current with 50 repeats. The surface of photoluminescent Bragg-reflective porous silicon was characterized by a FT-IR spectroscopy. Both reflectivity and photoluminescence were simultaneously measured under the exposure of organic vapors. The shift of reflection band to the longer wavelength and the quenching of photoluminescence under the exposure of various organic vapors were observed.

  7. Are Bragg Peaks Gaussian?

    Science.gov (United States)

    Hammouda, Boualem

    2014-01-01

    It is common practice to assume that Bragg scattering peaks have Gaussian shape. The Gaussian shape function is used to perform most instrumental smearing corrections. Using Monte Carlo ray tracing simulation, the resolution of a realistic small-angle neutron scattering (SANS) instrument is generated reliably. Including a single-crystal sample with large d-spacing, Bragg peaks are produced. Bragg peaks contain contributions from the resolution function and from spread in the sample structure. Results show that Bragg peaks are Gaussian in the resolution-limited condition (with negligible sample spread) while this is not the case when spread in the sample structure is non-negligible. When sample spread contributes, the exponentially modified Gaussian function is a better account of the Bragg peak shape. This function is characterized by a non-zero third moment (skewness) which makes Bragg peaks asymmetric for broad neutron wavelength spreads. PMID:26601025

  8. Fiber Bragg Grating Based Thermometry

    CERN Document Server

    Ahmed, Zeeshan; Guthrie, William; Quintavalle, John

    2016-01-01

    In recent years there has been considerable interest in developing photonic temperature sensors such as the Fiber Bragg gratings (FBG) as an alternative to resistance thermometry. In this study we examine the thermal response of FBGs over the temperature range of 233 K to 393 K. We demonstrate, in a hermetically sealed dry Argon environment, that FBG devices show a quadratic dependence on temperature with expanded uncertainties (k = 2) of ~500 mK. Our measurements indicate that the combined measurement uncertainty is dominated by uncertainty in determining the peak center fitting and by thermal aging of polyimide coated fibers.

  9. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application

    Directory of Open Access Journals (Sweden)

    Molina-Aldareguia Jon

    2011-01-01

    Full Text Available Abstract Nanostructuring of ultrathin HfO2 films deposited on GaAs (001 substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the various etching steps of the process and the resulting HfO2/GaAs pattern morphology, structure, and chemical composition. We show that the patterning process can be applied to fabricate uniform arrays of HfO2 mesa stripes with tapered sidewalls and linewidths of 100 nm. The exposed GaAs trenches were found to be residue-free and atomically smooth with a root-mean-square line roughness of 0.18 nm after plasma etching. PACS: Dielectric oxides 77.84.Bw, Nanoscale pattern formation 81.16.Rf, Plasma etching 52.77.Bn, Fabrication of III-V semiconductors 81.05.Ea

  10. Microtensile bond strength of a resin cement to feldpathic ceramic after different etching and silanization regimens in dry and aged conditions

    NARCIS (Netherlands)

    Brentel, Aline Scalone; Ozcan, Mutlu; Valandro, Luiz Felipe; Alarca, Lilian Guimaraes; Amaral, Regina; Bottino, Marco Antonio

    2007-01-01

    Objectives. This study evaluated the durability of bond strength between resin cement and a feldspathic ceramic submitted to different etching regimens with and without silane coupling agent application. Methods. Thirty-two blocks (6.4 mm x 6.4 mm x 4.8 mm) were fabricated using a microparticulate f

  11. Microtensile bond strength of a resin cement to feldpathic ceramic after different etching and silanization regimens in dry and aged conditions

    NARCIS (Netherlands)

    Brentel, Aline Scalone; Ozcan, Mutlu; Valandro, Luiz Felipe; Alarca, Lilian Guimaraes; Amaral, Regina; Bottino, Marco Antonio

    2007-01-01

    Objectives. This study evaluated the durability of bond strength between resin cement and a feldspathic ceramic submitted to different etching regimens with and without silane coupling agent application. Methods. Thirty-two blocks (6.4 mm x 6.4 mm x 4.8 mm) were fabricated using a microparticulate

  12. A survey on the reactive ion etching of silicon in microtechnology

    NARCIS (Netherlands)

    Jansen, Henricus V.; Gardeniers, Johannes G.E.; de Boer, Meint J.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    This article is a brief review of dry etching as applied to pattern transfer, primarily in silicon technology. It focuses on concepts and topics for etching materials of interest in micromechanics. The basis of plasma-assisted etching, the main dry etching technique, is explained and plasma system

  13. Bragg gratings in Topas

    DEFF Research Database (Denmark)

    Zhang, C.; Webb, D.J.; Kalli, K.

    We report for the first time fibre Bragg grating inscription in microstructured optical fibre fabricated from Topas® cyclic olefin copolymer. The temperature sensitivity of the grating was studied revealing a positive Bragg wavelength shift of approximately 0.8 nmK-1,the largest sensitivity yet...

  14. A comparative study of CF{sub 4}/O{sub 2}/Ar and C{sub 4}F{sub 8}/O{sub 2}/Ar plasmas for dry etching applications

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Inwoo [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-Ro, Sejong 339-700 (Korea, Republic of); Efremov, Alexander [Department of Electronic Devices & Materials Technology, State University of Chemistry & Technology, 7F. Engels St., 153000 Ivanovo (Russian Federation); Yeom, Geun Young [Department of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kwon, Kwang-Ho, E-mail: kwonkh@korea.ac.kr [Department of Control and Instrumentation Engineering, Korea University, 2511 Sejong-Ro, Sejong 339-700 (Korea, Republic of)

    2015-03-31

    The effect of the O{sub 2}/Ar mixing ratio in CF{sub 4}/O{sub 2}/Ar and C{sub 4}F{sub 8}/O{sub 2}/Ar inductively coupled plasmas with a 50% fluorocarbon gas content on plasma parameters and active species densities, which influence dry etching mechanisms, was analyzed. The investigation combined plasma diagnostics using Langmuir probes and zero-dimensional plasma modeling. It was found that, in both gas systems, the substitution of Ar for O{sub 2} results in a similar change in the ion energy flux but causes the opposite behavior for the F atom flux. The mechanisms of these phenomena are discussed with regards to plasma chemistry. - Highlights: • The goal was to conduct a comparative study of CF{sub 4}/O{sub 2}/Ar and C{sub 4}F{sub 8}/O{sub 2}/Ar plasmas. • The focus was on the parameters directly influencing dry etching mechanisms. • Model-based analysis for neutral species was used in this paper.

  15. Bragg grating chemical sensor with hydrogel as sensitive element

    Institute of Scientific and Technical Information of China (English)

    Xiaomei Liu(刘小梅); Shilie Zheng(郑史烈); Xianmin Zhang(章献民); Jun Cong(丛军); Kangsheng Chen(陈抗生); Jian Xu(徐坚)

    2004-01-01

    A novel fiber Bragg grating (FBG) based chemical sensor using hydrogel, a swellable polymer, as sensitive element is demonstrated. The sensing mechanism relies on the shift of Bragg wavelength due to the stress resulted from volume change of sensitive swellable hydrogel responding to the change of external environment. A polyacrylamide hydrogel fiber grating chemical sensor is made, and the experiments on its sensitivity to the salinity are performed. The sensitivity is low due to the less stress from the shrinking or swelling of hydrogels. Reducing the cross diameter of the grating through etching with hydrofluoric acid can greatly improve the sensitivity of the sensor.

  16. Fabrication of HfO2 patterns by laser interference nanolithography and selective dry etching for III-V CMOS application

    OpenAIRE

    2011-01-01

    Abstract Nanostructuring of ultrathin HfO2 films deposited on GaAs (001) substrates by high-resolution Lloyd's mirror laser interference nanolithography is described. Pattern transfer to the HfO2 film was carried out by reactive ion beam etching using CF4 and O2 plasmas. A combination of atomic force microscopy, high-resolution scanning electron microscopy, high-resolution transmission electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis was used to characterise the var...

  17. Monolithic Distributed Bragg Reflector Cavities in Al2O3 with Quality Factors Exceeding 106

    NARCIS (Netherlands)

    Bernhardi, E.H.; Lu, Q.; Wolferen, van H.A.G.M.; Wörhoff, K.; Ridder, de R.M.; Pollnau, M.

    2011-01-01

    >The design, fabrication, and characterization of surface relief Bragg gratings integrated with aluminum oxide ridge waveguides are reported. After patterning a photoresist layer by laser interference lithography, uniform gratings with a depth of 120 nm and a period of 507 nm were etched into the Si

  18. [Restoration of composite on etched stainless steel crowns. (1)].

    Science.gov (United States)

    Goto, G; Zang, Y; Hosoya, Y

    1990-01-01

    Object of investigation The retention of composite resin to etched stainless steel crowns was tested as a possible method for restoring primary anterior teeth. Method employed 1) SEM observation Stainless steel crowns (Sankin Manufacture Co.) were etched with an aqua resia to create surface roughness and undercut to retain the composite resin to the crowns. Etching times were 1, 2, 3, 5, 8, 10 and 20 minutes, then washed in a 70% alcohol solution using an ultrasonic washer and dried. A total of 96 etched samples and non etched control samples were observed through the scanning electron microscope (Hitachi 520). 2) Shear bond strength test Stainless steel crowns were etched in an aqua resia from 1 to 20 minutes, then washed and dried. Composite resin (Photo Clearfil A, Kuraray Co.) with the bonding agent was placed on the crowns and the shear bond strength was tested in 56 samples using an Autograph (DCS-500, Shimazu). Results 1) SEM observation showed that the etching surface of stainless steel crowns created surface roughness and undercut. The most desirable surface was obtained in the 3 to 5 minute etching time specimens. 2) The highest bond strength was obtained in a 3 minute etching specimen. It was 42.12 MPa, although 29.26 MPa in mean value. Conclusion Etching with an aqua resia increased the adherence of composite resin to the surface of stainless steel crowns.

  19. Deep and vertical silicon bulk micromachining using metal assisted chemical etching

    Science.gov (United States)

    Zahedinejad, Mohammad; Delaram Farimani, Saeed; Khaje, Mahdi; Mehrara, Hamed; Erfanian, Alireza; Zeinali, Firooz

    2013-05-01

    In this paper, a newfound and simple silicon bulk micromachining process based on metal-assisted chemical etching (MaCE) is proposed which opens a whole new field of research in MEMS technology. This method is anisotropic and by controlling the etching parameters, deep vertical etching, relative to substrate surface, can be achieved in micrometer size for oriented Si wafer. By utilizing gold as a catalyst and a photoresist layer as the single mask layer for etching, 60 µm deep gyroscope micromachined structures have been fabricated for 2 µm features. The results indicate that MaCE could be the only wet etching method comparable to conventional dry etching recipes in terms of achievable etch rate, aspect ratio, verticality and side wall roughness. It also does not need a vacuum chamber and the other costly instruments associated with dry etching techniques.

  20. Switchable Bragg gratings

    DEFF Research Database (Denmark)

    Marckmann, Carl Johan

    2003-01-01

    The subject of this ph.d. thesis was the development of an electrically switchable Bragg grating made in an optical waveguide using thermal poling to be applied within optical telecommunication systems. The planar waveguides used in this thesis were fabricated at the Micro- and Nanotechnology....... This result is very useful in the production of telecommunication devices since polarization independence of the second-order nonlinearity is wanted. In order to increase the second-order nonlinearity, it was found that the introduction of a high refractive index trapping layer was favorable. During...... the thesis, the thermal poling induced second-order nonlinearity was increased by approximately 64% making a silica based optical switch possible. Finally, a possible explanation to the very high, but short-lived, poling results obtained by some groups was discovered....

  1. Plasma etching an introduction

    CERN Document Server

    Manos, Dennis M

    1989-01-01

    Plasma etching plays an essential role in microelectronic circuit manufacturing. Suitable for researchers, process engineers, and graduate students, this book introduces the basic physics and chemistry of electrical discharges and relates them to plasma etching mechanisms. Throughout the volume the authors offer practical examples of process chemistry, equipment design, and production methods.

  2. 基于干法刻蚀技术的氮化镓MEMS加工工艺%Fabrication of GaN-Based MEMS Structures Using Dry-Etch Technique

    Institute of Scientific and Technical Information of China (English)

    杨振川; 吕佳楠; 闫桂珍; 陈敬

    2011-01-01

    氮化镓(GaN)材料已成功应用于光电子器件、高频功率器件等领域.近年来,由于GaN优异的材料特性,例如机械、热、化学稳定性以及生物兼容性等,使基于GaN的微机电系统(MEMS)得到了学术界的广泛关注.针对氮化镓MEMS结构的有效的图形化及释放技术是工艺研究的重点.设计、采用了一种全干法刻蚀技术,实现了(111)晶向硅衬底上的氮化镓基MEMS微结构的加工制造.利用提出的工艺方案,实现了多种悬浮GaN微结构的加工与测试表征实验.通过电子扫描显微镜(SEM)和光学轮廓仪进行了基本形貌表征;利用微拉曼光谱实验进行了加工结构的残余应力表征.%Besides the success in optoelectronic devices and high frequency power transistors, gallium nitride (GaN) is drawing intensive attentions superior mechanical, thermal and chemical stability and bio-compatibility. The effective means to pattern and release the GaN-based MEMS structures are of particular technological importance. In this paper, GaN-based MEMS microstructures were obtained on the (111) silicon substrate using a dry-etch-only fabrication technique. Various suspended GaN microstructures were fabricated by the proposed fabrication process and characterized through scanning electron microscope (SEM) and optical micro-profiler. To characterize the residual stress distribution of the fabricated microstructures, micro-Raman spectroscopy was employed.

  3. Fiber Bragg distributed chemical sensor

    NARCIS (Netherlands)

    Boersma, A.; Cheng, L.K.; Jansen, T.H.

    2010-01-01

    A distributed chemical sensor is developed by coating multiple Bragg gratings in a fibre with chemical selective responsive coatings. The optical response of the coated grating is optimised and the recoat process is very reproducible.

  4. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  5. Etching in microsystem technology

    CERN Document Server

    Kohler, Michael

    2008-01-01

    Microcomponents and microdevices are increasingly finding application in everyday life. The specific functions of all modern microdevices depend strongly on the selection and combination of the materials used in their construction, i.e., the chemical and physical solid-state properties of these materials, and their treatment. The precise patterning of various materials, which is normally performed by lithographic etching processes, is a prerequisite for the fabrication of microdevices.The microtechnical etching of functional patterns is a multidisciplinary area, the basis for the etching p

  6. Fiber Bragg Grating Sensor for Detection of Nitrate Concentration in Water

    Directory of Open Access Journals (Sweden)

    A. S. LALASANGI

    2011-02-01

    Full Text Available The concentrations of chemical species in drinking water are of great interest. We demonstrated etched fiber Bragg grating (FBG as a concentration sensor for nitrate by analyzing the Bragg wavelength shift with concentration of chemical solution. The FBG is fabricated by phase mask technique on single mode Ge-B co-doped photosensitive fiber. Sensitivity of FBGs to the surrounding solution concentration can be enhanced by reducing diameter of the cladding with 40 % HF solution. The maximum sensitivity achieved is 1.322 ´ 10-3 nm/ppm. The overall shift of Bragg wavelength is of the order of 6.611 ´ 10-2 nm for 10 to 50 ppm concentration.

  7. Colagem ortodôntica em esmalte com presença ou ausência de contaminação salivar: é necessário o uso de adesivo auto-condicionante ou de adesivo hidrofílico? Orthodontic bonding in dry and saliva contaminated enamel: is a self-etching primer or a moisture-insensitive primer necessary?

    Directory of Open Access Journals (Sweden)

    Cristiane Becher Rosa

    2008-06-01

    Full Text Available OBJETIVO: o objetivo deste trabalho foi avaliar a resistência ao cisalhamento da colagem ortodôntica de um adesivo hidrofílico (Transbond Moisture-Insensitive Primer, 3M Unitek, Monrovia, Califórnia, de um adesivo auto-condicionante (Transbond Self-Etching Primer, 3M Unitek, Monrovia, Califórnia, e sem uso de adesivo, em superfícies de esmalte secas ou contaminadas por saliva. METODOLOGIA: incisivos bovinos (60 foram divididos em 6 grupos: (1 controle sem contaminação salivar (sem adesivo, (2 controle com contaminação salivar (sem adesivo, (3 adesivo auto-condicionante sem contaminação salivar, (4 adesivo auto-condicionante com contaminação salivar antes do adesivo, (5 adesivo hidrofílico sem contaminação salivar e (6 adesivo hidrofílico com contaminação salivar antes do adesivo. Braquetes metálicos foram colados com compósito (Transbond XT, 3M Unitek, Monrovia, Califórnia. Após a colagem, os corpos-de prova foram armazenados a 37±1ºC em ambiente úmido até a realização do teste de cisalhamento. Diferença estatística foi determinada com valor de probabilidade de 0,05 ou menos (p AIM: The purpose of this study was to evaluate the shear bond strength of orthodontic bonding with the use of a hydrophilic primer (Transbond Moisture-Insensitive Primer, 3M Unitek, Monrovia, Calif., a self-etching primer (Transbond Plus Self-etching Primer, 3M Unitek, Monrovia, Calif. and without primer application, in dry and saliva contaminated enamel surfaces. METHODS: Bovine incisors (60 were divided into 6 groups: (1 uncontaminated control (no primer, (2 control with saliva contamination (no primer, (3 uncontaminated self-etching primer, (4 saliva contamination before self-etching primer, (5 uncontaminated hydrophilic primer and (6 saliva contamination before hydrophilic primer. Stainless steel brackets were bonded with composite resin (Transbond XT, 3M Unitek, Monrovia, Calif.. After bonding, all samples were stored at 37±1°C in a

  8. Polymer optical fiber bragg grating sensors

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, Scott Wu; Andresen, Søren

    2010-01-01

    Fiber-optical accelerometers based on polymer optical fiber Bragg gratings are reported. We have written fiber Bragg gratings for 1550 nm and 850 nm operations, characterized their temperature and strain response, and tested their performance in a prototype accelerometer....

  9. Bragg-case limited projection topography study of surface damage in diamond-crystal plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Krasnicki, S; Macrander, A T; Chu, Y S; Maj, J [Advanced Photon Source, Argonne National Laboratory, Argonne (United States)

    2005-05-21

    To characterize diamond monochromators for synchrotron radiation beamlines, images for a region 25 {mu}m below the surface were obtained. Topographical images of a Bragg-diffracted beam having a scattering angle (twice the Bragg angle) of 90 deg. were obtained from asymmetric reflections with a CCD area detector. A 25 {mu}m incident slit was used to section the sample topographically. Patchwork images for the full surface area, but limited in depth to the slit size, were assembled from microbeam images. The small extinction depths provided by the asymmetric reflection geometry, namely, 2.8 {mu}m and 3.5 {mu}m for ideal diamond crystals set for the (224) and (044) reflections, respectively, permitted data analyses for a region near the surface. The diamonds were synthetic type Ib (yellowish due to nitrogen impurities). They were in the shape of plates sized 6 x 5 mm and were 0.5 mm thick. Measurements were made using monochromatic bending magnet radiation at the Advanced Photon Source at 12.04 keV and 13.90 keV. Data obtained before and after chemical etching demonstrate that damage visible as contrast from saw grooves is largely removed by etching. Dislocation etch pits were observed after etching for the (111) surface but not for the (100) surface.

  10. Fiber Bragg distributed chemical sensor

    NARCIS (Netherlands)

    Boersma, A.; Saalmink, M.; Lucassen, T.; Wiegersma, S.; Jansen, T.H.; Jansen, R.; Cheng, L.K.

    2011-01-01

    A distributed chemical sensor is developed by coating multiple Bragg gratings in a single glass fiber with chemical responsive coatings. The composition of the coating is tuned to the target chemicals to be measured and the optical response of the coated grating is optimized by changing the coating

  11. Temperature-Insensitive Chemical Sensor with Twin Bragg Gratings in an Optical Fibre

    Institute of Scientific and Technical Information of China (English)

    SANG Xin-Zhu; YU Chong-Xiu; YAN Bin-Bin; MA Jian-Xin; MENG Zhao-Fang; Mayteevarunyoo T.; LU Nai-Guang

    2006-01-01

    To reduce temperature sensitivity of the fibre Bragg grating (FBG) chemical sensor, a simple method is proposed by measuring the peak wavelength difference between an etched FBG and an un-etched one in an optical fibre.Thermal characteristics and chemical sensitivity of the sensor are experimentally investigated. The experimental results indicate that the etched FBG and the rest one have almost the same thermal response, and concentration changes of the surrounding chemical solutions can be detected by measuring the peak wavelength difference between them. The sensor has been used to measure the concentrations of propylene glycol solutions and sugar solutions, and it could detect 0.7% and 0.45% concentration changes for them with an optical spectrum analyser in resolution of 10pm.

  12. Review of micromachining of ceramics by etching

    Institute of Scientific and Technical Information of China (English)

    H.T.TING; K.A.ABOU-EL-HOSSEIN; H.B.CHUA

    2009-01-01

    In the last two decades, there has been an enormous surge in interest in ceramic materials and, as a result, there have been significant advances in their development and applications. Their inherent properties, such as capability of operating at temperatures far above metals, high level of hardness and toughness, low coefficient of thermal expansion and high thermal conductivity rendered ceramics to be one of the leading engineering materials. Many research works have been conducted in the past few years on machining of advanced ceramics using different processing methods in order to obtain a better surface roughness, higher material removal rate and improved tool life. Micromachining using chemical etching is one of those methods that do not involve the problem of tool life and direct tool-work piece contact. However, only a few research works have been done on micromachining of ceramics using chemical etching. Hence, study of chemical machining of advanced ceramics is still needed as the process has found wide application in the industry because of its relative low operating costs. In this work, we summarize the recent progresses in machining of different types of advanced ceramics, material processing methods such as wet etching and dry etching, and finally the prospects for control of material removal rate and surface quality in the process of ceramic micromachining.

  13. Mid-infrared quantum cascade laser integrated with distributed Bragg reflector

    Science.gov (United States)

    Yoshinaga, Hiroyuki; Hashimoto, Jun-ichi; Mori, Hiroki; Tsuji, Yukihiro; Murata, Makoto; Ekawa, Mitsuru; Katsuyama, Tsukuru

    2016-02-01

    Quantum cascade lasers (QCLs) are promising as compact light sources in the mid-infrared region. In order to put them into a practical use, their relatively high threshold currents should be reduced. Facet reflectivity increase by distributed Bragg reflector (DBR) is effective for this purpose, but there have been few reports on DBR-integrated QCLs (DBRQCLs). In this paper, we report a successful operation of a DBR-QCL in 7 μm wavelength region. With the fabrication, an n-InP buffer layer, a core region consisting of AlInAs/GaInAs superlattices, an n-InP cladding layer, and an n-GaInAs contact layer were successively grown on an n-InP substrate using OMVPE in the first growth. Then, the wafer was processed into a mesa-stripe, and it was buried by an Fe-doped InP current-blocking layer to form a buriedheterostructure (BH) waveguide. After that, a DBR in which semiconductor-walls and air-gaps were alternately arranged was formed at the front or end of the cavity by dry-etching the epitaxial layers of the air-gap regions, and thus a DBRQCL was fabricated. A DBR-QCL chip (Mesa-width:10 μm, Cavity-legth:2 mm) which had a DBR-structure consisting of 1 pair of a 3λ/4-thick semiconductor-wall/3λ/4-thick air-gap at the front end and a high reflective facet at the rear end oscillated successfully under continuous-wave condition at 15°C. This is the first report on the InP-based DBR-QCL to our knowledge. The facet reflectivity at the DBR was 66%, which was about two times larger than that of the cleaved facet. This result clearly shows that the DBR-structure is effective for threshold current reduction of QCL.

  14. Investigations of Bragg reflectors in nanowire lasers

    CERN Document Server

    Svendsen, Guro Kristin; Skaar, Johannes

    2011-01-01

    The reflectivity of various Bragg reflectors in connection to waveguide structures, including nanowires, has been investigated using modal reflection and transmission matrices. A semi-analytical model was applied yielding increased understanding of the diffraction effects present in such gratings. Planar waveguides and nanowire lasers are considered in particular. Two geometries are compared; Bragg reflectors within the waveguides are shown to have significant advantages compared to Bragg reflectors in the substrate, when diffraction effects are significant.

  15. Overcoming Etch Challenges on a 6″ Hg1- x Cd x Te MBE on Si Wafer

    Science.gov (United States)

    Apte, Palash; Norton, Elyse; Robinson, Solomon

    2017-10-01

    The effect of increasing photoresist (PR) thickness on the inductively coupled plasma (ICP) dry etched characteristics of a 6″ (c.15 cm) molecular beam epitaxy Hg1- x Cd x Te/Si wafer is investigated. It is determined that the Hg1- x Cd x Te etch rate (ER) does not vary significantly with a change in the PR thickness. Also, the vertical ER of the PR is seen to be independent of the PR thickness, but the lateral ER is seen to reduce significantly with increased PR thickness. Indeed, very little reduction in the pixel mesa area post-dry etch is seen for the thicker PR. Consequently, the trench sidewall angle is also seen to vary as a function of the PR thickness. Since ICP is the more attractive choice for dry etching Hg1- x Cd x Te, this simple, cost-effective way to extend the capabilities of dry etching (larger mesa top area post-dry etch, ability to create tailor-made trench sidewall angles for optimal conformal passivation deposition, and potential for reduced dry etch damage) described here would allow for the fabrication of next generation infrared detectors with increased yield and reduced cost. Although similar results have been presented using the electron cyclotron resonance system to dry etch Hg1- x Cd x Te, to the best of our knowledge, this is the first time that such results have been presented using an ICP system.

  16. Novel diamantane polymer platform for enhanced etch resistance

    Science.gov (United States)

    Padmanaban, Munirathna; Chakrapani, Srinivasan; Lin, Guanyang; Kudo, Takanori; Parthasarathy, Deepa; Rahman, Dalil; Anyadiegwu, Clement; Antonio, Charito; Dammel, Ralph R.; Liu, Shenggao; Lam, Frederick; Waitz, Anthony; Yamagchi, Masao; Maehara, Takayuki

    2007-03-01

    The dominant current 193 nm photoresist platform is based on adamantane derivatives. This paper reports on the use of derivatives of diamantane, the next higher homolog of adamantane, in the diamondoid series, as monomers in photoresists. Due to their low Ohnishi number and incremental structural parameter (ISP), such molecules are expected to enhance dry etch stability when incorporated into polymers for resist applications. Starting from the diamantane parent, cleavable and non-cleavable acrylate/methacrylate derivatives of diamantane were obtained using similar chemical steps as for adamantane derivatization. This paper reports on the lithographic and etch performance obtained with a number of diamantane-containing monomers, such as 9-hydroxy-4-diamantyl methacrylate (HDiMA), 2-ethyl-2- diamantyl methacrylate (EDiMA), and 2-methyl-2-diamantyl methacrylate (MDiMA). The etch advantage, dry and wet lithographic performance of some of the polymers obtained from these diamantane-containing polymers are discussed.

  17. Spatial variation of the etch rate for deep etching of silicon by reactive ion etching

    DEFF Research Database (Denmark)

    Andersen, Bo Asp Møller; Hansen, Ole; Kristensen, Martin

    1997-01-01

    The macroscopic uniformity of deep etching into silicon by reactive ion etching (RIE) with a SF6-O-2 plasma was studied. The spatial variation of the etch rate across a 4 inch wafer in a single wafer system is a function of the process parameters and the configuration of the etch chamber. It was ......The macroscopic uniformity of deep etching into silicon by reactive ion etching (RIE) with a SF6-O-2 plasma was studied. The spatial variation of the etch rate across a 4 inch wafer in a single wafer system is a function of the process parameters and the configuration of the etch chamber....... It was found that, for a constant load of silicon exposed to the plasma, the etch rate variation can be controlled through the applied rf power, the chamber pressure, and the gas mixture. It was also found that the etch rate uniformity varies with the load of silicon exposed to the plasma. The result...... is a balance between the flux of neutral radicals and the flux of energetic ions to the surface. This balance is due to the RIE etch mechanism, which involves synergism between the two fluxes. (C) 1997 American Vacuum Society....

  18. Atomic Layer Etching : What can we learn from Atomic Layer Deposition?

    NARCIS (Netherlands)

    Faraz, T.; Roozeboom, F.; Knoops, H.C.M.; Kessels, W.M.M.

    2015-01-01

    Current trends in semiconductor device manufacturing impose extremely stringent requirements on nanoscale processing techniques, both in terms of accurately controlling material properties and in terms of precisely controlling nanometer dimensions. To take nanostructuring by dry etching to the next

  19. Inductively-coupled-plasma reactive ion etching of single-crystal β-Ga2O3

    Science.gov (United States)

    Zhang, Liheng; Verma, Amit; (Grace Xing, Huili; Jena, Debdeep

    2017-03-01

    Dry etching behavior of unintentionally-doped (\\bar{2}01) β-Ga2O3 has been studied in a BCl3/Ar chemistry using inductively-coupled-plasma reactive ion etching (ICP-RIE). The effects of various etch parameters like ICP and RIE powers, BCl3/Ar gas ratio and chamber pressure on etch rate are studied systematically. Higher ICP, RIE powers and lower pressure conditions are found to enhance the etch rate. A synergic etching mechanism between chemical and physical components is proposed and used to obtain fast Ga2O3 etch rates more than 160 nm/min, nearly-vertical sidewalls and smooth etched surfaces. The findings of this work will enable Ga2O3 vertical devices for power electronics.

  20. Sacrificial wafer bonding for planarization after very deep etching

    NARCIS (Netherlands)

    Spiering, V.L.; Spiering, V.L.; Berenschot, Johan W.; Elwenspoek, Michael Curt; Fluitman, J.H.J.

    1995-01-01

    A technique is presented that provides planarization after a very deep etching step in silicon. This offers the possibility for not only resist spinning and layer patterning but also for realization of bridges and cantilevers across deep grooves or holes. The technique contains a standard dry film

  1. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  2. Exciton-polaritons in Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Creatore, C [Department of Physics ' A. Volta' , Universita di Pavia, via Bassi 6, I-27100, Pavia (Italy); Mouchliadis, L; Langbein, W [School of Physics and Astronomy, Cardiff University, The Parade, CF24 3AA, Cardiff (United Kingdom); Biancalana, F [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bau 24, 91058 Erlangen (Germany); Osborne, S, E-mail: creatore@fisicavolta.unipv.i [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2010-02-01

    We study the strong coupling between photons and bulk excitons in a one-dimensional Bragg grating. The dispersion of the resulting Bragg-polariton states resembles the dispersion of quantum-well microcavity polaritons. We report on a parametric scattering process at two 'magic frequencies' occurring due to the strong excitonic nonlinearity.

  3. Research on Spectrum of Conditions of Dry CdTe. Solar Cells Under and Wet Etching%干湿法腐蚀工艺条件下CdTe薄膜光谱研究

    Institute of Scientific and Technical Information of China (English)

    宋慧瑾; 鄢强

    2012-01-01

    The surface of CdTe thin films was etched by plasma bombardment sputtering and corroded by methyl bromide. The two types of spectnam properties of CdTe thin films were compared under the two con- ditions. The results show that plasma bombardment sputtering can remove the surface oxide layer completely and make the partiches of the thin films more even and compact, which show that compared with methyl bromide corrosion, it can improve micro-roughness of the surface and improve the quality of the crystal par- ticles and the adhesion of the film.%采用等离子束溅射轰击刻蚀和溴甲醇腐蚀对CdTe薄膜表面进行后处理.对比研究了2种腐蚀条件下CdTe薄膜的光谱特性.结果表明:等离子束溅射轰击刻蚀可以彻底清除CdTe薄膜表面的氧化层,刻蚀后的CdTe薄膜颗粒更为均匀致密,等离子体刻蚀与溴甲醇腐蚀相比,可以改善CdTe薄膜表面的粗糙度,增强薄膜的附着力,改善薄膜的性能.

  4. Studies of CR-39 etch rates

    CERN Document Server

    Rana, M A

    2002-01-01

    A series of chemical etching experiments have been carried out on CR-39 detectors irradiated with fission fragments of sup 2 sup 5 sup 2 Cf to study the bulk and track etching characteristics. Experimental data has been analyzed to find out important track etch parameters. Both bulk and track etch rates are found to follow the Arrhenius equation which gives the variation of etch rate with temperature for a specific set of etching conditions. Activation energies for bulk and track etching have been determined by fitting Arrhenius equation to the experimental data. Other track etch parameters, e.g. critical angle of etching and track registration efficiency have also been determined using experimental data. Track etch parameters depend on properties of incident ion and etching conditions. Results describing the dependence of track etch parameters on etching conditions have been presented. These results are useful in the interpretation of track data.

  5. A 16x1 wavelength division multiplexer with integrated distributed Bragg reflector lasers and electroabsorption modulators

    Science.gov (United States)

    Young, M. G.; Koren, U.; Miller, B. I.; Newkirk, M. A.; Chien, M.; Zirngibl, M.; Dragone, C.; Tell, B.; Presby, H. M.; Raybon, G.

    1993-08-01

    We demonstrate the integrated operation of a 16x1 wavelength-division multiplexed (WDM) source with distributed Bragg reflector (DBR) lasers and electroabsorption modulators. By using repeated holographic exposures and wet chemical etching, 16 different wavelengths from 1.544 to 1.553 micron with an average channel spacing of 6 angstroms are obtained. A high-performance combiner is used to obtain a very uniform coupling into the single-output waveguide, and with the integration of an optical amplifier an average optical power of -8 dBm per channel is coupled into a single-mode fiber.

  6. Etching zircon age standards for fission-track analysis

    Energy Technology Data Exchange (ETDEWEB)

    Garver, J.I. E-mail: garverj@union.edu

    2003-02-01

    Nineteen laboratories that routinely measure fission-track ages in zircon were surveyed as to their principal methodology used for track revelation using chemical attack and counting procedures. The survey results show the following: (a) researchers in most labs count fission tracks with a optical microscope using at a total magnification between 1250x and 1600x ({approx}80%) with about an equal number using either a dry or oil objective (b) the majority of laboratories etch zircon with a KOH:NaOH eutectic heated in an oven between temperatures of 210 deg. C and 230 deg. C; (c) ag standards in zircon analysis do not have uniformly accepted etch times. Etching times for the widely used 28 Ma Fish Canyon Tuff (FCT) (4-60 h) and the lesser-used 16 Ma Buluk Tuff (13-55 h) vary significantly from lab to lab. Between {approx}220 deg. C and 230 deg. C, the principal range fo etching times for the FCT is between 20 and 30 h, and the mode for the Buluk Tuff is between 30 and 55 h. Three or fewer labs report etching times for the Tardee Rhyolite (22-40 h), the Bishop Tuff (10-46 h), and the Mt. Dromedary Banite (5-24 h). Variation in etching times may result in a bias in U-content which affects counting statistics. If etching is successful, strict criteria must be followed to ensure that the analyst only counts well-etched grains and that all tracks are successfully identified.

  7. Cross-fiber Bragg grating transducer

    Science.gov (United States)

    Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)

    2000-01-01

    A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.

  8. Bragg spectroscopy of strongly interacting Fermi gases

    Science.gov (United States)

    Lingham, M. G.; Fenech, K.; Peppler, T.; Hoinka, S.; Dyke, P.; Hannaford, P.; Vale, C. J.

    2016-10-01

    This article provides an overview of recent developments and emerging topics in the study of two-component Fermi gases using Bragg spectroscopy. Bragg scattering is achieved by exposing a gas to two intersecting laser beams with a slight frequency difference and measuring the momentum transferred to the atoms. By varying the Bragg laser detuning, it is possible to measure either the density or spin response functions which characterize the basic excitations present in the gas. Specifically, one can measure properties such as the dynamic and static structure factors, Tan's universal contact parameter and observe signatures for the onset of pair condensation locally within a gas.

  9. Hyperbolic Metamaterials with Bragg Polaritons

    Science.gov (United States)

    Sedov, Evgeny S.; Iorsh, I. V.; Arakelian, S. M.; Alodjants, A. P.; Kavokin, Alexey

    2015-06-01

    We propose a novel mechanism for designing quantum hyperbolic metamaterials with the use of semiconductor Bragg mirrors containing periodically arranged quantum wells. The hyperbolic dispersion of exciton-polariton modes is realized near the top of the first allowed photonic miniband in such a structure which leads to the formation of exciton-polariton X waves. Exciton-light coupling provides a resonant nonlinearity which leads to nontrivial topologic solutions. We predict the formation of low amplitude spatially localized oscillatory structures: oscillons described by kink shaped solutions of the effective Ginzburg-Landau-Higgs equation. The oscillons have direct analogies in gravitational theory. We discuss implementation of exciton-polariton Higgs fields for the Schrödinger cat state generation.

  10. Dry process for economic cell manufacturing

    Science.gov (United States)

    Donon, J.; Lauvray, H.; Aubril, P.; David, G.; Loubly, P.

    Plasma dry etching technologies and screen printing processes for the dopant and the contacts were employed in an attempt to develop a completely dry process for solar cell manufacturing. Plasma etching within a barrel reactor produced etch rates of 0.3 and 0.6 micron/min, compared with acid etching rates of 13 microns/min and basic etching rates of 5 microns/min. Ring etching was also carried out in a barrel reactor with 200 wafers positioned in a stack, power levels of 850 W, a CF4 + 8 pct O2 plasma, a flow rate of 200 cc/min, and a run time of 15 min. The ring etching process was also tested and proven to have good reproducibility. A doping paste was employed, together with a thermal treatment at 850 C for 1 hr, to obtain good diffusion homogeneity. The results included cell efficiencies more than half those from chemical etching with both monocrystalline and polycrystalline materials. The techniques are concluded to produce negligible pollution, waste little material, and be amenable to automation.

  11. Mode characteristics of hollow core Bragg fiber

    Institute of Scientific and Technical Information of China (English)

    Minning Ji; Zhidong Shi; Qiang Guo

    2005-01-01

    Analytical expression to calculate propagation constant and mode field of the hollow core Bragg fiber is derived. Numerical results are presented. It is shown that the fundamental mode of the hollow core Bragg fiber is circularly symmetric TE01 mode with no polarization degeneracy, while the higher order mode may be HE11, TM01, or TE02 etc.. This property is different from conventional optical fiber that its fundamental mode is the linearly polarized HE11 mode and is polarization degeneracy.

  12. Postoperative sensitivity of self etch versus total etch adhesive.

    Science.gov (United States)

    Yousaf, Ajmal; Aman, Nadia; Manzoor, Manzoor Ahmed; Shah, Jawad Ali; Dilrasheed

    2014-06-01

    To compare postoperative sensitivity following composite restoration placed in supra gingival class-V cavities using self etch adhesive and total etch adhesive. A randomized clinical trial. Operative Dentistry Department of Armed Forces Institute of Dentistry, Rawalpindi, from July to December 2009. A total of 70 patients having class-V supra gingival carious lesions were divided into two groups. Classes-V cavities not exceeding 3 mm were prepared. One treatment group was treated with self etch adhesive (adhe SE one Ivoclar) and the control group was treated with total-etch adhesive (Eco-Etch Ivoclar) after acid etching with 37% phosphoric acid. Light cured composite (Te-Econom Ivoclar) restoration was placed for both groups and evaluated for postoperative sensitivity immediately after restoration, after 24 hours and after one week. Data was recorded on visual analogue scale. Comparison of sensitivity between the two treatment groups on application cold stimulus after 24 hours of restoration showed significant difference; however, no statistically significant difference was observed at baseline, immediately after restoration and at 1 week follow-up with cold stimulus or compressed air application. Less postoperative sensitivity was observed at postoperative 24 hours assessment in restoration placed using SE adhesives compared to TE adhesives. Thus, the use of SE adhesives may be helpful in reducing postoperative sensitivity during 24 hours after restoration placement.

  13. Dry Eye

    Science.gov (United States)

    ... Eye > Facts About Dry Eye Facts About Dry Eye This information was developed by the National Eye ... the best person to answer specific questions. Dry Eye Defined What is dry eye? Dry eye occurs ...

  14. CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating

    Science.gov (United States)

    Shivananju, B. N.; Yamdagni, S.; Fazuldeen, R.; Sarin Kumar, A. K.; Hegde, G. M.; Varma, M. M.; Asokan, S.

    2013-06-01

    The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive.

  15. CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating.

    Science.gov (United States)

    Shivananju, B N; Yamdagni, S; Fazuldeen, R; Sarin Kumar, A K; Hegde, G M; Varma, M M; Asokan, S

    2013-06-01

    The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive.

  16. Silicon Deep Etching Techniques for MEMS Devices

    Institute of Scientific and Technical Information of China (English)

    WU Ying; OU Yi-hong; JIANG Yong-qing; LI Bin

    2003-01-01

    Silicon deep etching technique is the key fabrication step in the development of MEMS. The mask selectivity and the lateral etching control are the two primary factors that decide the result of deep etching process. These two factors are studied in this paper. The experimental results show that the higher selectivity can be gotten when F- gas is used as etching gas and Al is introduced as mask layer. The lateral etching problems can be solved by adjusting the etching condition, such as increasing the RF power, changing the gas composition and flow volume of etching machine.

  17. Strongly Dispersive Transient Bragg Grating for High Harmonics

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, J.; Spector, L.S.; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.; Gaarde, M.B.; /SLAC, PULSE /Louisiana State U.; McFarland, B.K.; Bucksbaum, P.H.; Guhr, Markus; /SLAC, PULSE /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept.

    2010-06-04

    We create a transient Bragg grating in a high harmonic generation medium using two counterpropagating pulses. The Bragg grating disperses the harmonics in angle and can diffract a large bandwidth with temporal resolution limited only by the source size.

  18. State of the art etch-and-rinse adhesives

    Science.gov (United States)

    Pashley, David H; Tay, Franklin R; Breschi, Lorenzo; Tjäderhane, Leo; Carvalho, Ricardo M; Carrilho, Marcela; Tezvergil-Mutluay, Arzu

    2013-01-01

    Etch-and-rinse adhesive systems are the oldest of the multi-generation evolution of resin bonding systems. In the 3-step version, they involve acid-etching, priming and application of a separate adhesive. Each step can accomplish multiple goals. This review explores the therapeutic opportunities of each separate step. Acid-etching, using 32-37% phosphoric acid (pH 0.1-0.4) not only simultaneously etches enamel and dentin, but the low pH kills many residual bacteria. Some etchants include anti-microbial compounds such as benzalkonium chloride that also inhibits matrix metalloproteinases (MMPs) in dentin. Primers are usually water and HEMA-rich solutions that ensure complete expansion of the collagen fibril meshwork and wet the collagen with hydrophilic monomers. However, water alone can re-expand dried dentin and can also serve as a vehicle for protease inhibitors or protein cross-linking agents that may increase the durability of resin-dentin bonds. In the future, ethanol or other water-free solvents may serve as dehydrating primers that may also contain antibacterial quaternary ammonium methacrylates to inhibit dentin MMPs and increase the durability of resin-dentin bonds. The complete evaporation of solvents is nearly impossible. Manufacturers may need to optimize solvent concentrations. Solvent-free adhesives can seal resin-dentin interfaces with hydrophobic resins that may also contain fluoride and antimicrobial compounds. Etch-and-rinse adhesives produce higher resin-dentin bonds that are more durable than most 1 and 2-step adhesives. Incorporation of protease inhibitors in etchants and/or cross-linking agents in primers may increase the durability of resin-dentin bonds. The therapeutic potential of etch-and-rinse adhesives has yet to be fully exploited. PMID:21112620

  19. Bragg Curve, Biological Bragg Curve and Biological Issues in Space Radiation Protection with Shielding

    Science.gov (United States)

    Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.

  20. Regenerative Electroless Etching of Silicon.

    Science.gov (United States)

    Kolasinski, Kurt W; Gimbar, Nathan J; Yu, Haibo; Aindow, Mark; Mäkilä, Ermei; Salonen, Jarno

    2017-01-09

    Regenerative electroless etching (ReEtching), described herein for the first time, is a method of producing nanostructured semiconductors in which an oxidant (Ox1 ) is used as a catalytic agent to facilitate the reaction between a semiconductor and a second oxidant (Ox2 ) that would be unreactive in the primary reaction. Ox2 is used to regenerate Ox1 , which is capable of initiating etching by injecting holes into the semiconductor valence band. Therefore, the extent of reaction is controlled by the amount of Ox2 added, and the rate of reaction is controlled by the injection rate of Ox2 . This general strategy is demonstrated specifically for the production of highly luminescent, nanocrystalline porous Si from the reaction of V2 O5 in HF(aq) as Ox1 and H2 O2 (aq) as Ox2 with Si powder and wafers.

  1. Triple Bragg diffraction in paratellurite crystal

    Science.gov (United States)

    Kotov, V. M.; Averin, S. V.; Voronko, A. I.; Kotov, E. V.; Tikhomirov, S. A.

    2017-07-01

    Triple Bragg diffraction in a paratellurite crystal has been considered for the case when the plane of diffraction is oblique to the optical axis of the crystal. It has been shown that effective photoelastic constants for isotropic and anisotropic diffraction depend on the inclination of the plane of diffraction insignificantly. Triple Bragg diffraction of 0.63-μm coherent radiation in paratellurite at a 47.3-MHz slow acoustic wave has been experimentally demonstrated. For an optical power of 0.69 W delivered to a piezoconverter, the relative intensities of diffraction orders equal 0.4, 0.4, 0.1, and 0.1, respectively.

  2. Sangac interferometer on the holographic bragg grating

    CERN Document Server

    Tikhonov, E A

    2015-01-01

    The ring interferometer with zero optical path difference known as Sagnac one is offered with a diffraction splitting of the entering light beam. As the beamsplitter, a transmission holographic Bragg grating is used. Conditions of normal operation of this interferometer achieve under the equal intensity of beam copies and the adjustable phase shift between them in its two interferometer shoulders. These conditions are met with the holographic grating, which provides the phase shift 180^0 on the central Bragg wavelength. Experimental approbation of the modified interferometer validates the expected results.

  3. Efficient iterative technique for designing bragg gratings

    DEFF Research Database (Denmark)

    Plougmann, Nikolai; Kristensen, Martin

    2004-01-01

    We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings.......We present a new iterative method for designing Bragg gratings based on the Levenberg-Marquardt method of minimizing a chi-squared merit function. It is effective for designing both weak and strong gratings and is particularly well suited for unchirped gratings....

  4. Silicon etching using only Oxygen at high temperature: An alternative approach to Si micro-machining on 150 mm Si wafers.

    Science.gov (United States)

    Chai, Jessica; Walker, Glenn; Wang, Li; Massoubre, David; Tan, Say Hwa; Chaik, Kien; Hold, Leonie; Iacopi, Alan

    2015-12-04

    Using a combination of low-pressure oxygen and high temperatures, isotropic and anisotropic silicon (Si) etch rates can be controlled up to ten micron per minute. By varying the process conditions, we show that the vertical-to-lateral etch rate ratio can be controlled from 1:1 isotropic etch to 1.8:1 anisotropic. This simple Si etching technique combines the main respective advantages of both wet and dry Si etching techniques such as fast Si etch rate, stiction-free, and high etch rate uniformity across a wafer. In addition, this alternative O2-based Si etching technique has additional advantages not commonly associated with dry etchants such as avoiding the use of halogens and has no toxic by-products, which improves safety and simplifies waste disposal. Furthermore, this process also exhibits very high selectivity (>1000:1) with conventional hard masks such as silicon carbide, silicon dioxide and silicon nitride, enabling deep Si etching. In these initial studies, etch rates as high as 9.2 μm/min could be achieved at 1150 °C. Empirical estimation for the calculation of the etch rate as a function of the feature size and oxygen flow rate are presented and used as proof of concepts.

  5. Quantificational Etching of AAO Template

    Institute of Scientific and Technical Information of China (English)

    Guojun SONG; Dong CHEN; Zhi PENG; Xilin SHE; Jianjiang LI; Ping HAN

    2007-01-01

    Ni nanowires were prepared by electrodeposition in porous anodized aluminum oxide (AAO) template from a composite electrolyte solution. Well-ordered Ni nanowire arrays with controllable length were then made by the partial removal of AAO using a mixture of phosphoric acid and chromic acid (6 wt pct H3PO4:1.8 wt pct H3CrO4). The images of Ni nanowire arrays were studied by scanning electron microscopy (SEM) to determine the relationship between etching time and the length of Ni nanowire arrays. The results indicate that the length of nanowires exposed from the template can be accurately controlled by controlling etching time.

  6. Dry technologies for the production of crystalline silicon solar cells; Trockentechnologien zur Herstellung von kristallinen Siliziumsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Rentsch, J.

    2005-04-15

    Within this work, dynamic plasma etching technologies for the industrial production of crystalline silicon solar cells has been investigated. The research activity can be separated into three major steps: the characterisation of the etching behaviour of a newly developed dynamic plasma etching system, the development and analysis of dry etching processes for solar cell production and the determination of the ecological and economical impacts of such a new technology compared to standard up to date technologies. The characterisation of the etching behaviour has been carried out for two different etching sources, a low frequency (110 kHz) and a microwave (2.45 GHz) plasma source. The parameter of interest was the delivered ion energy of each source mainly determining the reachable etch rate. The etch rate turned out to be the main most critical parameter concerning the reachable wafer throughput per hour. Other points of interest in characterisation of the etching system were the material of the transport carriers, the silicon load as well as the process temperatures. The development of different dry etching processes targets the design of a complete dry production process for crystalline silicon solar cells. Therefore etching processes for saw damage removal, texturing, edge isolation as well as etching of dielectric layers have been developed and optimised. The major benefits of a complete dry production process would be the reduction of handling steps in between process steps and therefore offers a large cost reduction potential. For multicrystalline silicon solar cells a cost reduction potential of 5 % compared to a standard wet chemical based reference process could be realized only including the dry etching of a phosphorus silicate glass layer after diffusion. Further reduction potential offers the implementation of a dry texturing process due to a significant efficiency increase. (orig.)

  7. Offset quantum-well method for tunable distributed Bragg reflector lasers and electro-absorption modulated distributed feedback lasers

    Institute of Scientific and Technical Information of China (English)

    Qiang Kan; Ying Ding; Lingjuan Zhao; Hongliang Zhu; Fan Zhou; Lufeng Wang; Baojun Wang; Wei Wang

    2005-01-01

    @@ A two-section offset quantum-well structure tunable laser with a tuning range of 7 nm was fabricated using offset quantum-well method. The distributed Bragg reflector (DBR) was realized just by selectively wet etching the multiquantum-well (MQW) layer above the quaternary lower waveguide. A threshold current of 32 mA and an output power of 9 mW at 100 mA were achieved. Furthermore, with this offset structure method, a distributed feedback (DFB) laser was integrated with an electro-absorption modulator (EAM),which was capable of producing 20 dB of optical extinction.

  8. Dry etch method for texturing silicon and device

    Energy Technology Data Exchange (ETDEWEB)

    Gershon, Talia S.; Haight, Richard A.; Kim, Jeehwan; Lee, Yun Seog

    2017-07-25

    A method for texturing silicon includes loading a silicon wafer into a vacuum chamber, heating the silicon wafer and thermal cracking a gas to generate cracked sulfur species. The silicon wafer is exposed to the cracked sulfur species for a time duration in accordance with a texture characteristic needed for a surface of the silicon wafer.

  9. Plasma Etching Improves Solar Cells

    Science.gov (United States)

    Bunyan, S. M.

    1982-01-01

    Etching front surfaces of screen-printed silicon photovoltaic cells with sulfur hexafluoride plasma found to increase cell performance while maintaining integrity of screen-printed silver contacts. Replacement of evaporated-metal contacts with screen-printed metal contacts proposed as one way to reduce cost of solar cells for terrestrial applications.

  10. Simultaneous temperature and refractive index measurement of liquid using a local micro-structured fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Ye Cao; Yinfei Yang; Xiufeng Yang; Zhengrong Tong

    2012-01-01

    An alternative solution for the simultaneous measurement of temperature and refractive index is presented. A local micro-structured fiber Bragg grating (LMSFBG) is formed as the sensing head, in which a standard grating is etched by HF. According to the phase shift theory, the main spectral change of the LMSFBG is the formation of a narrow allowed band, which is strongly dependent on the etching features and the surrounding refractive index. As such, the temperature and refractive index measurements can be achieved by the shifts of the double peaks and narrow allowed band, and their fitting linearity coefficients are 0.996 and 0.994, respectively. Thus, the reflection and transmission peaks of the LMSFBG have a good linear relationship with temperature and refractive index.%An alternative solution for the simultaneous measurement of temperature and refractive index is presented.A local micro-structured fiber Bragg grating (LMSFBG) is formed as the sensing head,in which a standard grating is etched by HF.According to the phase shift theory,the main spectral change of the LMSFBG is the formation of a narrow allowed band,which is strongly dependent on the etching features and the surrounding refractive index.As such,the temperature and refractive index measurements can be achieved by the shifts of the double peaks and narrow allowed band,and their fitting linearity coefficients are 0.996 and 0.994,respectively.Thus,the reflection and transmission peaks of the LMSFBG have a good linear relationship with temperature and refractive index.

  11. Atomic layer sensitive in-situ plasma etch depth control with reflectance anisotropy spectroscopy (RAS)

    Science.gov (United States)

    Doering, Christoph; Kleinschmidt, Ann-Kathrin; Barzen, Lars; Strassner, Johannes; Fouckhardt, Henning

    2017-06-01

    Reflectance anisotropy spectroscopy (RAS) allows for in-situ monitoring of reactive ion etching (RIE) of monocrystalline III-V semiconductor surfaces. Upon use of RAS the sample to be etched is illuminated with broad-band linearly polarized light under nearly normal incidence. Commonly the spectral range is between 1.5 and 5.5 eV. Typically the spectrally resolved difference in reflectivity for light of two orthogonal linear polarizations of light is measured with respect to time - for example for cubic lattices (like the zinc blende structures of most III-V semiconductors) polarizations along the [110] and the [-110] direction. Local anisotropies on the etch front cause elliptical polarization of the reflected light resulting in the RAS signal. The time and photon energy resolved spectra of RAS include reflectometric as well as interferometric information. Light with wavelengths well above 100 nm (even inside the material) can be successfully used to monitor surface abrasion with a resolution of some tens of nanometers. The layers being thinned out act as optical interferometers resulting in Fabry-Perot oscillations of the RAS-signal. Here we report on RAS measurements assessing the surface deconstruction during dry etching. For low etch rates our experimental data show even better resolution than that of the (slow) Fabry-Perot oscillations. For certain photon energies we detect monolayer-etch-related oscillations in the mean reflectivity, which give the best possible resolution in etch depth monitoring and control, i.e. the atomic scale.

  12. Results from modeling and simulation of chemical downstream etch systems

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

    1996-05-01

    This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

  13. Hybrid mask for deep etching

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-08-10

    Deep reactive ion etching is essential for creating high aspect ratio micro-structures for microelectromechanical systems, sensors and actuators, and emerging flexible electronics. A novel hybrid dual soft/hard mask bilayer may be deposited during semiconductor manufacturing for deep reactive etches. Such a manufacturing process may include depositing a first mask material on a substrate; depositing a second mask material on the first mask material; depositing a third mask material on the second mask material; patterning the third mask material with a pattern corresponding to one or more trenches for transfer to the substrate; transferring the pattern from the third mask material to the second mask material; transferring the pattern from the second mask material to the first mask material; and/or transferring the pattern from the first mask material to the substrate.

  14. Study of Thermal Electrical Modified Etching for Glass and Its Application in Structure Etching

    Directory of Open Access Journals (Sweden)

    Zhan Zhan

    2017-02-01

    Full Text Available In this work, an accelerating etching method for glass named thermal electrical modified etching (TEM etching is investigated. Based on the identification of the effect in anodic bonding, a novel method for glass structure micromachining is proposed using TEM etching. To validate the method, TEM-etched glasses are prepared and their morphology is tested, revealing the feasibility of the new method for micro/nano structure micromachining. Furthermore, two kinds of edge effect in the TEM and etching processes are analyzed. Additionally, a parameter study of TEM etching involving transferred charge, applied pressure, and etching roughness is conducted to evaluate this method. The study shows that TEM etching is a promising manufacture method for glass with low process temperature, three-dimensional self-control ability, and low equipment requirement.

  15. Study of Thermal Electrical Modified Etching for Glass and Its Application in Structure Etching.

    Science.gov (United States)

    Zhan, Zhan; Li, Wei; Yu, Lingke; Wang, Lingyun; Sun, Daoheng

    2017-02-10

    In this work, an accelerating etching method for glass named thermal electrical modified etching (TEM etching) is investigated. Based on the identification of the effect in anodic bonding, a novel method for glass structure micromachining is proposed using TEM etching. To validate the method, TEM-etched glasses are prepared and their morphology is tested, revealing the feasibility of the new method for micro/nano structure micromachining. Furthermore, two kinds of edge effect in the TEM and etching processes are analyzed. Additionally, a parameter study of TEM etching involving transferred charge, applied pressure, and etching roughness is conducted to evaluate this method. The study shows that TEM etching is a promising manufacture method for glass with low process temperature, three-dimensional self-control ability, and low equipment requirement.

  16. Stationary Light Pulses without Bragg Gratings

    CERN Document Server

    Lin, Yen-Wei; Peters, Thorsten; Liao, Wen-Te; Cho, Hung-Wen; Guan, Pei-Chen; Yu, Ite A

    2008-01-01

    The underlying mechanism of the stationary light pulse (SLP) was identified as a band gap being created by a Bragg grating formed by two counter-propagating coupling fields of similar wavelength. Here we present a more general view of the formation of SLPs, namely several balanced four-wave mixing processes sharing the same ground-state coherence. Utilizing this new concept we report the first experimental observation of a bichromatic SLP at wavelengths for which no Bragg grating can be established. We also demonstrate the production of a SLP directly from a propagating light pulse without prior storage. Being easily controlled externally makes SLPs a very versatile tool for low-light-level nonlinear optics and quantum information manipulation.

  17. Ground effects on magnetooptic Bragg cells

    Institute of Scientific and Technical Information of China (English)

    WEN Feng; WU BaoJian; QIU Kun

    2008-01-01

    Propagation equation of magnetostatic waves in an arbitrarily magnetized yttrium-iron-garnet/gadolinium-gallium-garnet waveguide coated with perfect metal planes is obtained using the method of the surface magnetic permeability. And ground effects on magnetooptic Bragg cells are investigated with the magnetooptic coupled-mode theory. Theoretical analysis indicates that, diffraction efficiency of guided optical waves can be improved by adjusting the spacing of the metal plane from the ferrite film, and ground effects on the diffraction efficiency will be enhanced using an appropriately tilted bias magnetic field. In the metal clad waveguide system, the magnetostatic wave frequency at which the diffraction efficiency peak is obtained corresponds to the "zero-dispersion" point. Performance of RF spectrum analyzers in this system can also be improved by comparing with the case of the sandwich waveguide. Therefore, magnetooptic Bragg cells with the metal clad waveguide are potential applications to the microwave communication and optical signal processing.

  18. Nanopores in track-etched polymer membranes characterized by small-angle x-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, T W; Schiedt, B; Severin, D; Trautmann, C [GSI Helmholtz Centre for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Pepy, G [Institute for Solid State Physics, SzFKI, POB 49, H-1525 Budapest (Hungary); Toulemonde, M [Center of Research on Ions Materials and Photonics (CIMAP), CEA, CNRS, ENSICAEN, University of Caen, BP 5133, Bd H Becquerel, 14070 Caen Cedex 5 (France); Apel, P Yu [Joint Institute for Nuclear Research, Joliot-Curie Street 6, Dubna (Russian Federation); Boesecke, P, E-mail: thomas.cornelius@esrf.fr [European Synchrotron Radiation Facility (ESRF), BP 220, 38043 Grenoble Cedex (France)

    2010-04-16

    Nanochannels and nanowires with diameters ranging from 30 to 400 nm were produced by etching ion tracks in thin polyarylate and polycarbonate foils. The shape and the size distribution of dry and wet nanochannels, as well as of nanowires grown therein, were examined by small-angle x-ray scattering. The x-ray intensity as a function of the scattering vector exhibits pronounced oscillations showing that both the channels and the wires have a highly cylindrical geometry and a very narrow size distribution. UV exposure before chemical etching significantly improves the monodispersity of the nanopores. For fixed etching conditions, the scattering patterns provide evidence that the diameter of dry and water-filled channels as well as for embedded nanowires are identical, demonstrating that the pores in the polymer are completely filled.

  19. Fort Bragg Embraces Groundbreaking Heat Pump Technology

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-03-01

    The U.S. Army’s Fort Bragg partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  20. Sampled phase-shift fiber Bragg gratings

    Institute of Scientific and Technical Information of China (English)

    Xu Wang(王旭); Chongxiu Yu(余重秀); Zhihui Yu(于志辉); Qiang Wu(吴强)

    2004-01-01

    A phase-shift fiber Bragg grating (FBG) with sampling is proposed to generate a multi-channel bandpass filter in the background of multi-channel stopbands. The sampled noire fiber gratings are analyzed by Fourier transform theory first, and then simulation and experiment are performed, the results show that transmission peaks are opened in every reflective channel, the spectrum shape of every channel is identical.It can be used to fabricate multi-wavelength distributed feedback (DFB) fiber laser.

  1. Optical true time delay based on contradirectional couplers with single sidewall-modulated Bragg gratings

    Science.gov (United States)

    Wang, Xu; Liao, Shasha; Dong, Jianji

    2016-11-01

    We propose and demonstrate optical true time delay using tapered SOI contradirectional couplers with single sidewallmodulated Bragg gratings. The contradirectional couplers consist of two tapered rib waveguides with different width, and the Bragg gratings are modulated in the inner sidewall of the wider one. The optical signal is launched from the wide waveguide and coupled to the narrow waveguide through the Bragg gratings structure. Along the direction of light propagation, the waveguide width varies linearly, so the reflection wavelength is different at different positions. Therefore, linear delay line can be realized within the grating passband using the present structure. In the simulation, grating period is 310nm and grating number is 2400, corresponding to the grating length of 744μm. Using 2.5D FDTD simulation, the current structure can realize optical group delay of 20ps within bandwidth of 18nm. The proposed device is fabricated on a 220nm SOI chip with Electron Beam Lithography (EBL) and Inductively Coupled Plasma (ICP) etching. In the experiment, continuous light is modulated by 10GHz radio-frequency signal and travel through the chip, which is finally detected by the oscilloscope. By adjusting the wavelength of input light, group delay of different wavelength are recorded by the oscilloscope. The experimental results show that group delay of 28ps is realized within the bandwidth of 20nm. In the end, the drift of the reflection spectrum and delay lines under different temperature are analyzed. The reflection spectrum drifts 0.1nm/°C and causes redshift of the corresponding delay line.

  2. Fabrication of Fiber Bragg Grating Coating with TiO2 Nanostructured Metal Oxide for Refractive Index Sensor

    Directory of Open Access Journals (Sweden)

    Shaymaa Riyadh Tahhan

    2017-01-01

    Full Text Available To increase the sensitivity of biosensor a new approach using an optical fiber Bragg grating (FBG coated with a suitable nanostructured metal oxide (NMO is proposed which is costly effective compared to other biosensors. Bragg grating was written on a D-shaped optical fiber by phase mask method using a 248 nm KrF excimer laser for a 5 min exposure time producing a grating with a period of 528 nm. Titanium dioxide (TiO2 nanostructured metal oxide was coated over the fiber for the purpose of increasing its sensing area. The etched D-shaped FBG was then coated with 312 nm thick TiO2 nanostructured layer to ensure propagating the radiation modes within the core. The final structure was used to sense deionized water and saline. The etched D-shaped FBG original sensitivity before coating to air-deionized water and to air-saline was 0.314 nm/riu and 0.142 nm/riu, respectively. After coating the sensitivity became 1.257 nm/riu for air-deionized water and 0.857 nm/riu for air-saline.

  3. Comparison of solvent evaporation in the self etch and total etch adhesives in different air draying times

    Directory of Open Access Journals (Sweden)

    Davari Abdolrahim

    2013-08-01

    Full Text Available   Background and Aims: Different adhesives with different solvents may have different solvent evaporation rates. The purpose of this study was to evaluate the solvent evaporation in the self etch and total etch adhesive in different air drying times.   Materials and Methods: Five adhesives were used in this study: Excite, Prime & Bond NT, UNO, Single Bond, SE Bond Primer. Twelve drops of each adhesive were used for each period of air drying (5, 15, 30 sec. The percentage of mass loss was measured during each test. Data were analized using two-way ANOVA and Tukey.   Results: Acetone base adhesives showed more loss of mass than other adhesives (P<0.01. P&B NT showed more loss of mass than other adhesives in all air drying times (P<0.01. Adhesives showed different evaporation rates in different air times (P<0.01.   Conclusion: Adhesives with acetone/water or alcohol/water solvent shows more stable behavior in comparison with adhesives containing pure aqueous solvents.

  4. SF6 plasma etching of silicon nanocrystals.

    Science.gov (United States)

    Liptak, R W; Devetter, B; Thomas, J H; Kortshagen, U; Campbell, S A

    2009-01-21

    An SF(6)-based plasma has been employed to perform in-flight etching of silicon nanocrystals (Si-NCs) after they were synthesized in an SiH(4)-based plasma. The photoluminescence of the Si-NCs blue-shifts after etching, indicating an etching-induced size reduction of the Si-NCs. It is shown that both the SF(6) plasma power and the flow rate can be utilized to control the etch rate (and thus the size reduction) of the Si-NCs. The SF(6) etched Si-NCs show only low concentrations of residual impurities other than fluorine. Quantum yields as high as 50% have been observed from these SF(6) etched Si-NCs despite oxidation.

  5. Etching of glass microchips with supercritical water.

    Science.gov (United States)

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-07

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  6. Selective etching of silicon carbide films

    Science.gov (United States)

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  7. Measuring water activity of aviation fuel using a polymer optical fiber Bragg grating

    Science.gov (United States)

    Zhang, Wei; Webb, David J.; Carpenter, Mark; Williams, Colleen

    2014-05-01

    Poly(methyl methacrylate) (PMMA) based polymer optical fiber Bragg gratings have been used for measuring water activity of aviation fuel. Jet A-1 samples with water content ranging from 100% ERH (wet fuel) to 10 ppm (dried fuel), have been conditioned and calibrated for measurement. The PMMA based optical fiber grating exhibits consistent response and a good sensitivity of 59±3pm/ppm (water content in mass). This water activity measurement allows PMMA based optical fiber gratings to detect very tiny amounts of water in fuels that have a low water saturation point, potentially giving early warning of unsafe operation of a fuel system.

  8. Etching.

    Science.gov (United States)

    1980-09-01

    4U c Z . CC 0.0 V 0-01w.0 OCMCC.Ca 0 II 4- 00 La-1 e - .- 0 04’ . £0 tO4 -u 41 ’ Dato C 5-4-00LLi1 c-1 C- - E-1 4-C0 V) -OU1 I~ rC ŔE 0 *z 0 LW 04 c...Z&.. 4.-c o x *C L )P0 A0 0 a54. U * 0 3 i;- L )I.. l C C -44.0 0 2 o; c 0. ama a- .u OE Voz 0 UL 0f ja - .a r DC L _j4 5c .,R r- C *.-* 0 - )W- . 0

  9. Black Germanium fabricated by reactive ion etching

    Science.gov (United States)

    Steglich, Martin; Käsebier, Thomas; Kley, Ernst-Bernhard; Tünnermann, Andreas

    2016-09-01

    A reactive ion etching technique for the preparation of statistical "Black Germanium" antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids' base edges are oriented along the crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis-NIR, the tapered Black Germanium surface structure suppresses interface reflection to structure in optoelectronics and IR optics.

  10. Silicon germanium mask for deep silicon etching

    KAUST Repository

    Serry, Mohamed

    2014-07-29

    Polycrystalline silicon germanium (SiGe) can offer excellent etch selectivity to silicon during cryogenic deep reactive ion etching in an SF.sub.6/O.sub.2 plasma. Etch selectivity of over 800:1 (Si:SiGe) may be achieved at etch temperatures from -80 degrees Celsius to -140 degrees Celsius. High aspect ratio structures with high resolution may be patterned into Si substrates using SiGe as a hard mask layer for construction of microelectromechanical systems (MEMS) devices and semiconductor devices.

  11. Vertical and Smooth, etching of InP by Cl2/CH4/Ar Inductively Coupled Plasma at Room Temperature

    Institute of Scientific and Technical Information of China (English)

    孙长征; 周进波; 熊兵; 王健; 罗毅

    2003-01-01

    We study the room-temperature dry, etching of InP by inductively coupled plasma (ICP) using Cl2/CH4/Ar mixtures. Etches were characterized in terms of anisotropy and surface roughness by scanning electron microscopy and atomic force microscopy, respectively. It is found that the flow ratio between Cl2 and CH4, ICP power, rf chuck power, and table temperature can greatly influence the, etching results. By adjusting, etching parameters,vertical sidewall and smooth surface can be obtained simultaneously, together with a moderate, etch rate and a good select ratio. The root-mean-square surface roughness is measured to be as low as 0.27nm. To the best of our knowledge, this is the best result for InP to date. The, etch rate is 855 nm/min, and the selectivity ratio over SiO2 is estimated to be higher than 15:1. The stoichiometry of the, etched surface has also been investigated by Auger electron spectroscopy. The, etched surface is found to manifest a slight P deficiency, and the ratio between P and In reaches the stoichiometric value within about 0.75nm depth into the surface.

  12. Distributed delay-line interferometer based on a Bragg grating in transmission mode

    CERN Document Server

    Preciado, Miguel A; Shu, Xuewen; Sugden, Kate

    2016-01-01

    A novel approach for a delay line interferometer (DLI) based purely on forward Bragg scattering is proposed. We have numerically and experimentally demonstrated that a Bragg grating can deliver the functionality of a DLI in its transmission mode along a single common interfering optical path, instead of the conventional DLI implementation with two interfering optical paths. As a proof of concept, a fiber Bragg grating has been designed and fabricated, showing the desired functionality in the transmission mode of the Bragg grating. The proposed "Bragg-DLI" approach is applicable to any kind of Bragg grating technology, such as volume Bragg gratings, dielectric mirrors, silicon photonics, and other optical waveguide based Bragg structures.

  13. Hyperbolic metamaterials based on Bragg polariton structures

    Science.gov (United States)

    Sedov, E. S.; Charukhchyan, M. V.; Arakelyan, S. M.; Alodzhants, A. P.; Lee, R.-K.; Kavokin, A. V.

    2016-07-01

    A new hyperbolic metamaterial based on a modified semiconductor Bragg mirror structure with embedded periodically arranged quantum wells is proposed. It is shown that exciton polaritons in this material feature hyperbolic dispersion in the vicinity of the second photonic band gap. Exciton-photon interaction brings about resonant nonlinearity leading to the emergence of nontrivial topological polaritonic states. The formation of spatially localized breather-type structures (oscillons) representing kink-shaped solutions of the effective Ginzburg-Landau-Higgs equation slightly oscillating along one spatial direction is predicted.

  14. Longitudinal coupling effect in microfiber Bragg gratings

    Science.gov (United States)

    Zhao, Ping; Zhang, Jihua; Wang, Guanghui; Jiang, Meng; Ping Shum, Perry; Zhang, Xinliang

    2012-10-01

    We theoretically present longitudinal coupling effect (LCE) in air-cladding microfiber Bragg gratings (MFBGs). Distinct from conventional weakly-guiding optical fibers, large longitudinal electric field (Ez) exists in wavelength-scale microfibers. Due to LCE, MFBG reflectivity can be reduced by more than 30% within the band-gap and the full width at half maximum (FWHM) is obviously narrowed. This theoretical analytical work is instructive to precisely design and fabricate MFBGs that are promising in the areas of optical sensing and nanophotonics.

  15. Fiber Bragg Grating Sensors for Harsh Environments

    Directory of Open Access Journals (Sweden)

    Stephen J. Mihailov

    2012-02-01

    Full Text Available Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments.

  16. Spatially Resolved Analysis of Bragg Selectivity

    Directory of Open Access Journals (Sweden)

    Tina Sabel

    2015-11-01

    Full Text Available This paper targets an inherent control of optical shrinkage in photosensitive polymers, contributing by means of spatially resolved analysis of volume holographic phase gratings. Point by point scanning of the local material response to the Gaussian intensity distribution of the recording beams is accomplished. Derived information on the local grating period and grating slant is evaluated by mapping of optical shrinkage in the lateral plane as well as through the depth of the layer. The influence of recording intensity, exposure duration and the material viscosity on the Bragg selectivity is investigated.

  17. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  18. Status of the OCS Bragg-Spectrometer for SODART

    DEFF Research Database (Denmark)

    Wiebicke, H.J.; Halm, I.; Christensen, Finn Erland;

    1998-01-01

    OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented.......OCS, the Bragg spectrometer for the SODART X-ray telescope onboard the SPECTRUM-RONTGEN-GAMMA (SRG) satellite has been completed. Preliminary results of his performance are presented....

  19. Experimental and theoretical study of Bragg-Fresnel focalizing optical systems engraved on multi layers interferential mirrors adapted to X and X-UV fields; Etude experimentale et theorique d`optiques focalisantes de type Bragg-Fresnel gravees sur des miroirs interferentiels multicouches adaptes aux domaines X et X-UV

    Energy Technology Data Exchange (ETDEWEB)

    Idir, M.

    1995-02-01

    This work concerns the study of a particular type of X-ray focusing optics known as Bragg-Fresnel lenses, formed through ion-etching of multilayered structures. Using the Super-ACO (LURE/Orsay) synchrotron storage ring, we tested several Bragg-Fresnel lenses having either linear or elliptical geometries (producing a line or a point focus, respectively). Diffraction profiles were first obtained for the linear lenses ion-etched on W/Si multilayers of nano-metric period. The experimental results were compared with our theoretical predictions. We next proposed and tested a solution to the problem superposing the different diffraction orders in the focal plane, that of fabricating Bragg-Fresnel lenses with an off-axis configuration, first for the linear and then the elliptical geometry. An experimental application, for an off-axis elliptical lens produced a focused X-ray spot of 5 x 10 microns{sup 2} for the Super-ACO synchrotron source. The same lens also produced a 1/3-size X-ray image of a grid-like object at 1750 eV using the first and third diffraction orders. (author).

  20. Low-loss slot waveguides with silicon (111 surfaces realized using anisotropic wet etching

    Directory of Open Access Journals (Sweden)

    Kapil Debnath

    2016-11-01

    Full Text Available We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI platform. Waveguides oriented along the (11-2 direction on the Si (110 plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.

  1. Low-loss slot waveguides with silicon (111) surfaces realized using anisotropic wet etching

    Science.gov (United States)

    Debnath, Kapil; Khokhar, Ali; Boden, Stuart; Arimoto, Hideo; Oo, Swe; Chong, Harold; Reed, Graham; Saito, Shinichi

    2016-11-01

    We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI) platform. Waveguides oriented along the (11-2) direction on the Si (110) plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.

  2. Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives

    OpenAIRE

    SABATINI, Camila

    2013-01-01

    Objective To evaluate the effect of optional phosphoric acid etching on the shear bond strength (SBS) of two self-etch adhesives to enamel and dentin. Material and Methods Ninety-six bovine mandibular incisors were ground flat to obtain enamel and dentin substrates. A two-step self-etch adhesive (FL-Bond II) and a one-step self-etch adhesive (BeautiBond) were applied with and without a preliminary acid etching to both the enamel and dentin. The specimens were equally and randomly assigned t...

  3. Anisotropic textured silicon obtained by stain-etching at low etching rates

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-DIaz, B [Departamento de Fisica Basica, Universidad de La Laguna, Avda, AstrofIsico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Guerrero-Lemus, R [Departamento de Fisica Basica, Universidad de La Laguna, Avda, AstrofIsico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Marrero, N [Departamento de Fisica Basica, Universidad de La Laguna, Avda, AstrofIsico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Hernandez-RodrIguez, C [Departamento de Fisica Basica, Universidad de La Laguna, Avda, AstrofIsico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Ben-Hander, F A [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, 28049 Madrid (Spain); MartInez-Duart, J M [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2006-02-21

    The structure, luminescence and etching kinetics for porous silicon stain-etched at different temperatures are studied. The results reveal that for temperatures below 10 deg. C and for short etching times, a novel anisotropic structure based on surface roughness preferentially oriented in the (100) direction is observed. At temperatures higher than 10 deg. C or large etching times, typical macropores and mesopores with non-preferential pore wall orientation are detected. The luminescence spectra of the samples with preferential surface roughness orientation are red-shifted with respect to the samples with typical isotropic orientation. The results are interpreted in terms of average etching rates and pore growth.

  4. Note: electrochemical etching of sharp iridium tips.

    Science.gov (United States)

    Lalanne, Jean-Benoît; Paul, William; Oliver, David; Grütter, Peter H

    2011-11-01

    We describe an etching procedure for the production of sharp iridium tips with apex radii of 15-70 nm, as determined by scanning electron microscopy, field ion microscopy, and field emission measurements. A coarse electrochemical etch followed by zone electropolishing is performed in a relatively harmless calcium chloride solution with high success rate.

  5. Spatiotemporal Response of Crystals in X-ray Bragg Diffraction

    CERN Document Server

    Shvyd'ko, Yuri

    2012-01-01

    The spatiotemporal response of crystals in x-ray Bragg diffraction resulting from excitation by an ultra-short, laterally confined x-ray pulse is studied theoretically. The theory presents an extension of the analysis in symmetric reflection geometry [1] to the generic case, which includes Bragg diffraction both in reflection (Bragg) and transmission (Laue) asymmetric scattering geometries. The spatiotemporal response is presented as a product of a crystal-intrinsic plane wave spatiotemporal response function and an envelope function defined by the crystal-independent transverse profile of the incident beam and the scattering geometry. The diffracted wavefields exhibit amplitude modulation perpendicular to the propagation direction due to both angular dispersion and the dispersion due to Bragg's law. The characteristic measure of the spatiotemporal response is expressed in terms of a few parameters: the extinction length, crystal thickness, Bragg angle, asymmetry angle, and the speed of light. Applications to...

  6. Dimensional Crossover in Bragg Scattering from an Optical Lattice

    CERN Document Server

    Slama, S; Ludewig, A; Köhler, M; Zimmermann, C; Courteille, P W; Courteille, Ph.W.

    2005-01-01

    We study Bragg scattering at 1D optical lattices. Cold atoms are confined by the optical dipole force at the antinodes of a standing wave generated inside a laser-driven high-finesse cavity. The atoms arrange themselves into a chain of pancake-shaped layers located at the antinodes of the standing wave. Laser light incident on this chain is partially Bragg-reflected. We observe an angular dependence of this Bragg reflection which is different to what is known from crystalline solids. In solids the scattering layers can be taken to be infinitely spread (3D limit). This is not generally true for an optical lattice consistent of a 1D linear chain of point-like scattering sites. By an explicit structure factor calculation we derive a generalized Bragg condition, which is valid in the intermediate regime. This enables us to determine the aspect ratio of the atomic lattice from the angular dependance of the Bragg scattered light.

  7. Variable Depth Bragg Peak Method for Single Event Effects Testing

    Science.gov (United States)

    Buchner, S.; Kanyogoro, N.; Foster, C.; O'Neill, P.

    2011-01-01

    Traditionally, accelerator SEE testing is accomplished by removing the tops of packages so that the IC chips are accessible to heavy ions. However, ICs in some advanced packages cannot be de-lidded so a different approach is used that involves grinding and/or chemically etching away part of the package and the chip from the back side. The parts are then tested from the back side with ions having sufficient range to reach the sensitive volume. More recently, the entire silicon substrate in an SOI/SRAM was removed, making it possible to use low-energy ions with shorter ranges. Where removal of part of the package is not possible, facilities at Michigan State, NASA Space Radiation Laboratory, GANIL (France) and GSI (Germany) offer high-energy heavy ions with long ranges so that the ions can reach the devices' sensitive volumes without much change in the LET. Unfortunately, a run will typically involve only one ion species having a single energy and LET due to the long time it takes to tune a new energy. The Variable Depth Bragg Peak (VDBP) method is similar to the above method in that it involves the use of high-energy heavy ions that are able to pass through the packaging material and reach the device, obviating the need to remove the package. However, the method provides a broad range of LETs from a single ion by inserting degraders in the beam that modify the ion energy and, therefore, the LET. The crux of the method involves establishing a fiduciary point for degrader thickness, i.e., where the Bragg peak is located precisely at the sensitive volume in the device, for which the measured SEU cross-section and the ion LET are both also maxima and can be calculated using a Monte-Carlo program, TRIM. Once the fiduciary point has been established, calibrated high density polyethylene (HDPE) degraders are inserted into or removed from the beam to vary the ion LET at the device in a known manner. After each change of degrader thickness, the SEU cross-section is measured

  8. Etching Behavior of Aluminum Alloy Extrusions

    Science.gov (United States)

    Zhu, Hanliang

    2014-11-01

    The etching treatment is an important process step in influencing the surface quality of anodized aluminum alloy extrusions. The aim of etching is to produce a homogeneously matte surface. However, in the etching process, further surface imperfections can be generated on the extrusion surface due to uneven materials loss from different microstructural components. These surface imperfections formed prior to anodizing can significantly influence the surface quality of the final anodized extrusion products. In this article, various factors that influence the materials loss during alkaline etching of aluminum alloy extrusions are investigated. The influencing variables considered include etching process parameters, Fe-rich particles, Mg-Si precipitates, and extrusion profiles. This study provides a basis for improving the surface quality in industrial extrusion products by optimizing various process parameters.

  9. Applications of total-etch adhesive bonding.

    Science.gov (United States)

    Strassler, Howard E

    2003-06-01

    The concept of total-etch adhesion for enamel and dentin is well accepted. Although new techniques with self-etching adhesives have been introduced, there needs to be more reported clinical trials before making a complete switch to these systems. Currently, the only adhesive systems with long-term data to support confidence and success with their clinical use are total-etch systems. Applications for using a total-etch adhesive bonding technique include sealants, orthodontic brackets, anterior composite resins, posterior composite resins, bonded dental silver amalgam, resin cementation with posts, all-metal, porcelain-metal, composite resin, and ceramic restorations, splinting, core foundations, and conservative treatment of the worn dentition. This article will review the concepts for clinical success with total-etch adhesion for a wide range of clinical applications.

  10. Graphene nanoribbons: Relevance of etching process

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, P., E-mail: psimonet@phys.ethz.ch; Bischoff, D.; Moser, A.; Ihn, T.; Ensslin, K. [Solid State Physics Laboratory, ETH Zurich, Zurich 8093 (Switzerland)

    2015-05-14

    Most graphene nanoribbons in the experimental literature are patterned using plasma etching. Various etching processes induce different types of defects and do not necessarily result in the same electronic and structural ribbon properties. This study focuses on two frequently used etching techniques, namely, O{sub 2} plasma ashing and O{sub 2 }+ Ar reactive ion etching (RIE). O{sub 2} plasma ashing represents an alternative to RIE physical etching for sensitive substrates, as it is a more gentle chemical process. We find that plasma ashing creates defective graphene in the exposed trenches, resulting in instabilities in the ribbon transport. These are probably caused by more or larger localized states at the edges of the ashed device compared to the RIE defined device.

  11. Composite cure monitoring with Bragg grating sensors

    Science.gov (United States)

    Slattery, Kerry T.; Corona-Bittick, Kelli; Dorr, Donald J.

    1998-03-01

    Residual stress is induced in fiber composite materials during the cure process because the thermal expansion coefficient of the fiber is generally much lower than that of the polymer matrix. The two materials are 'locked' together at the cure temperature. Then, as they cool, the matrix attempts to contract more than the fiber leading to tension in the matrix and compression in the fiber. This can lead to the formation of microcracks parallel to the fibers in thick composite piles or yarns. The magnitude of residual stress can be reduced by modifying the cure cycle; however, optimizing the cure cycle requires a complete understanding of the state of cure throughout the composite. This is a complex problem -- especially in thick composites. Pilot studies have been performed placing Bragg gratin sensors in glass fabric preforms and monitoring the response of the grating during resin infusion and cure. The typical response shows the initial thermal expansion of the Bragg grating, a rapid contraction of the grating as the resin gels, slower contraction during cure, and thermal contraction at the composite thermal expansion coefficient during cool down. This data is then sued with micromechanical models of the fiber/matrix interaction during cure to establish material parameters for cure simulation. Once verified, these cure simulation methods will be used to optimize tooling design and cure cycles in composite components.

  12. Silicon germanium as a novel mask for silicon deep reactive ion etching

    KAUST Repository

    Serry, Mohamed Y.

    2013-10-01

    This paper reports on the use of p-type polycrystalline silicon germanium (poly-Si1-xGex) thin films as a new masking material for the cryogenic deep reactive ion etching (DRIE) of silicon. We investigated the etching behavior of various poly-Si1-xGex:B (0Etching selectivity for silicon, silicon oxide, and photoresist was determined at different etching temperatures, ICP and RF powers, and SF6 to O2 ratios. The study demonstrates that the etching selectivity of the SiGe mask for silicon depends strongly on three factors: Ge content; boron concentration; and etching temperature. Compared to conventional SiO2 and SiN masks, the proposed SiGe masking material exhibited several advantages, including high etching selectivity to silicon (>1:800). Furthermore, the SiGe mask was etched in SF6/O2 plasma at temperatures ≥ - 80°C and at rates exceeding 8 μm/min (i.e., more than 37 times faster than SiO2 or SiN masks). Because of the chemical and thermodynamic stability of the SiGe film as well as the electronic properties of the mask, it was possible to deposit the proposed film at CMOS backend compatible temperatures. The paper also confirms that the mask can easily be dry-removed after the process with high etching-rate by controlling the ICP and RF power and the SF6 to O2 ratios, and without affecting the underlying silicon substrate. Using low ICP and RF power, elevated temperatures (i.e., > - 80°C), and an adjusted O2:SF6 ratio (i.e., ~6%), we were able to etch away the SiGe mask without adversely affecting the final profile. Ultimately, we were able to develop deep silicon- trenches with high aspect ratio etching straight profiles. © 1992-2012 IEEE.

  13. An In Vitro Evaluation of Leakage of Two Etch and Rinse and Two Self-Etch Adhesives after Thermocycling

    Directory of Open Access Journals (Sweden)

    Sabine Geerts

    2012-01-01

    interfaces. In our experiment Etch and Rinse adhesives remain better than Self-Etch adhesives at enamel interface. In addition, there was no statistical difference between 1-step (ADSE-1 and 2-step (ADSE Self-Etch adhesives.

  14. SILICON MICRO-TRENCH ETCHING USING HIGH-DENSITY PLASMA ETCHER

    Institute of Scientific and Technical Information of China (English)

    T.T. Sun; Z.G. Liu; H.C. Yu; M.B. Chen; J.M. Miao

    2005-01-01

    Dry etching of silicon is an essential process step for the fabrication of Microelectromechancal system (MEMS) The AZ7220 positive photo-resist was used as the etching mask and silicon micro-trenches were fabricated with a multiplexed inductively coupled plasma (ICP) etcher.The influence of resist pattern profile, and etch condition on sidewall roughness were investigated detail. The results show that the sidewall roughness of micro-trench depends on profiles of photo-resist pattern, the initial interface between the resist bottom surface and silicon surface heavily. The relationship between roughness and process optimization parameters are presented in the paper. The roughness of the sidewall has been decreased to a 20-50nm with this experiment.

  15. Profile Prediction and Fabrication of Wet-Etched Gold Nanostructures for Localized Surface Plasmon Resonance

    Directory of Open Access Journals (Sweden)

    Zhou Xiaodong

    2009-01-01

    Full Text Available Abstract Dispersed nanosphere lithography can be employed to fabricate gold nanostructures for localized surface plasmon resonance, in which the gold film evaporated on the nanospheres is anisotropically dry etched to obtain gold nanostructures. This paper reports that by wet etching of the gold film, various kinds of gold nanostructures can be fabricated in a cost-effective way. The shape of the nanostructures is predicted by profile simulation, and the localized surface plasmon resonance spectrum is observed to be shifting its extinction peak with the etching time. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9486-4 contains supplementary material, which is available to authorized users. Click here for file

  16. Nanoparticle-based etching of silicon surfaces

    Science.gov (United States)

    Branz, Howard; Duda, Anna; Ginley, David S.; Yost, Vernon; Meier, Daniel; Ward, James S.

    2011-12-13

    A method (300) of texturing silicon surfaces (116) such to reduce reflectivity of a silicon wafer (110) for use in solar cells. The method (300) includes filling (330, 340) a vessel (122) with a volume of an etching solution (124) so as to cover the silicon surface 116) of a wafer or substrate (112). The etching solution (124) is made up of a catalytic nanomaterial (140) and an oxidant-etchant solution (146). The catalytic nanomaterial (140) may include gold or silver nanoparticles or noble metal nanoparticles, each of which may be a colloidal solution. The oxidant-etchant solution (146) includes an etching agent (142), such as hydrofluoric acid, and an oxidizing agent (144), such as hydrogen peroxide. Etching (350) is performed for a period of time including agitating or stirring the etching solution (124). The etch time may be selected such that the etched silicon surface (116) has a reflectivity of less than about 15 percent such as 1 to 10 percent in a 350 to 1000 nanometer wavelength range.

  17. Frequency shift of the Bragg and Non-Bragg backscattering from periodic water wave

    Science.gov (United States)

    Wen, Biyang; Li, Ke

    2016-08-01

    Doppler effect is used to measure the relative speed of a moving target with respect to the radar, and is also used to interpret the frequency shift of the backscattering from the ocean wave according to the water-wave phase velocity. The widely known relationship between the Doppler shift and the water-wave phase velocity was deduced from the scattering measurements data collected from actual sea surface, and has not been verified under man-made conditions. Here we show that this ob- served frequency shift of the scattering data from the Bragg and Non-Bragg water wave is not the Doppler shift corresponding to the water-wave phase velocity as commonly believed, but is the water-wave frequency and its integral multiple frequency. The power spectrum of the backscatter from the periodic water wave consists of serials discrete peaks, which is equally spaced by water wave frequency. Only when the water-wave length is the integer multiples of the Bragg wave, and the radar range resolution is infinite, does the frequency shift of the backscattering mathematically equal the Doppler shift according to the water-wave phase velocity.

  18. Single-mode interface states in heterostructure waveguides with Bragg and non-Bragg gaps

    Science.gov (United States)

    Fan, Ya-Xian; Sang, Tang-Qing; Liu, Ting; Xu, Lan-Lan; Tao, Zhi-Yong

    2017-01-01

    Interface states can always arise in heterostructures that consist of two or more (artificial) materials with topologically different energy bands. The gapped band structure can be classified by the Chern number (a topological invariant) generally or the Zak phase in one-dimensional periodic systems. Recently, topological properties have been employed to investigate the interface states occurring at the connecting regions of the heterostructures of mechanical isostatic lattices and acoustical waveguides. Here, we study this heterostructure phenomenon by carefully connecting two corrugated stainless steel waveguides with Bragg and non-Bragg gaps at approximately the same frequency. These two waveguide structures can be achieved by continuously varying their geometry parameters when a topological transition exists in the forbidden bands, in which the reflection impedance changes the sign. Furthermore, a localized single high-order mode has been observed at the interface because of the transverse mode interactions, which relate to the non-Bragg gaps created by the different transverse mode resonances. Such a localized acoustic single mode with very large enhanced intensity could find its applications in sound detection, biomedical imaging, and underwater sound control, and could also enrich our means of wave front manipulations in various engineering fields. PMID:28287173

  19. Electroless epitaxial etching for semiconductor applications

    Science.gov (United States)

    McCarthy, Anthony M.

    2002-01-01

    A method for fabricating thin-film single-crystal silicon on insulator substrates using electroless etching for achieving efficient etch stopping on epitaxial silicon substrates. Microelectric circuits and devices are prepared on epitaxial silicon wafers in a standard fabrication facility. The wafers are bonded to a holding substrate. The silicon bulk is removed using electroless etching leaving the circuit contained within the epitaxial layer remaining on the holding substrate. A photolithographic operation is then performed to define streets and wire bond pad areas for electrical access to the circuit.

  20. Catalyst-referred etching of silicon

    Directory of Open Access Journals (Sweden)

    Hideyuki Hara et al

    2007-01-01

    Full Text Available A Si wafer and polysilicon deposited on a Si wafer were planarized using catalyst-referred etching (CARE. Two apparatuses were produced for local etching and for planarization. The local etching apparatus was used to planarize polysilicon and the planarization apparatus was used to planarize Si wafers. Platinum and hydrofluoric acid were used as the catalytic plate and the source of reactive species, respectively. The processed surfaces were observed by optical interferometry, atomic force microscopy (AFM and scanning electron microscopy (SEM. The results indicate that the CARE-processed surface is flat and undamaged.

  1. Fano resonance between Mie and Bragg scattering in photonic crystals.

    Science.gov (United States)

    Rybin, M V; Khanikaev, A B; Inoue, M; Samusev, K B; Steel, M J; Yushin, G; Limonov, M F

    2009-07-10

    We report the observation of a Fano resonance between continuum Mie scattering and a narrow Bragg band in synthetic opal photonic crystals. The resonance leads to a transmission spectrum exhibiting a Bragg dip with an asymmetric profile, which can be tunably reversed to a Bragg rise. The Fano asymmetry parameter is linked with the dielectric contrast between the permittivity of the filler and the specific value determined by the opal matrix. The existence of the Fano resonance is directly related to disorder due to nonuniformity of a-SiO2 opal spheres. The theoretical "quasi-3D" model produces results in excellent agreement with the experimental data.

  2. Carbon nanotube coated fiber Bragg grating for photomechanical optic modulator.

    Science.gov (United States)

    Shivananju, B N; Suri, Ashish; Asokan, Sundarrajan; Misra, Abha

    2013-09-01

    We have demonstrated novel concept of utilizing the photomechanical actuation in carbon nanotubes (CNTs) to tune and reversibly switch the Bragg wavelength. When fiber Bragg grating coated with CNTs (CNT-FBG) is exposed externally to a wide range of optical wavelengths, e.g., ultraviolet to infrared (0.2-200 μm), a strain is induced in the CNTs which alters the grating pitch and refractive index in the CNT-FBG system resulting in a shift in the Bragg wavelength. This novel approach will find applications in telecommunication, sensors and actuators, and also for real time monitoring of the photomechanical actuation in nanoscale materials.

  3. Dispersion blue-shift in an aperiodic Bragg reflection waveguide

    CERN Document Server

    Fesenko, Volodymyr I

    2016-01-01

    A particular feature of an aperiodic design of cladding of Bragg reflection waveguides to demonstrate a dispersion blue-shift is elucidated. It is made on the basis of a comparative study of dispersion characteristics of both periodic and aperiodic configurations of Bragg mirrors in the waveguide system, wherein for the aperiodic configuration three procedures for layers alternating, namely Fibonacci, Thue-Morse and Kolakoski substitutional rules are considered. It was found out that, in a Bragg reflection waveguide with any considered aperiodic cladding, dispersion curves of guided modes appear to be shifted to shorter wavelengths compared to the periodic configuration regardless of the modes polarization.

  4. Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass.

    Science.gov (United States)

    McMillen, Ben; Li, Mingshan; Huang, Sheng; Zhang, Botao; Chen, Kevin P

    2014-06-15

    Bragg waveguides are fundamental components in photonic integrated circuits and are particularly interesting for mid-IR applications in high index, highly nonlinear materials. In this work, we present Bragg waveguides fabricated in bulk chalcogenide glass using an ultrafast laser. Waveguides with near circularly symmetric cross sections and low propagation loss are obtained through spatial and temporal beam shaping. Using a single-pass technique, the waveguide and Bragg structure are formed at the same time. First through sixth order gratings with strengths of up to 25 dB are realized, and performance is evaluated based on the modulation duty cycle of the writing beam.

  5. Modeling Component-based Bragg gratings Application: tunable lasers

    Directory of Open Access Journals (Sweden)

    Hedara Rachida

    2011-09-01

    Full Text Available The principal function of a grating Bragg is filtering, which can be used in optical fibers based component and active or passive semi conductors based component, as well as telecommunication systems. Their ideal use is with lasers with fiber, amplifiers with fiber or Laser diodes. In this work, we are going to show the principal results obtained during the analysis of various types of grating Bragg by the method of the coupled modes. We then present the operation of DBR are tunable. The use of Bragg gratings in a laser provides single-mode sources, agile wavelength. The use of sampled grating increases the tuning range.

  6. Solgel grating waveguides for distributed Bragg reflector lasers.

    Science.gov (United States)

    Fardad, M A; Luo, H; Beregovski, Y; Fallahi, M

    1999-04-01

    Solgel grating waveguides and their application to the fabrication of external-cavity distributed Bragg reflector (DBR) lasers are demonstrated. A new composition of aluminosilicate material is developed for the fabrication of single-mode waveguides and Bragg reflectors. An average loss of <0.2 dB/cm is measured in the single-mode waveguides at 1550 nm. The reflectors show filtering greater than 97% near 1530 nm, with a bandwidth of ~0.6 nm . The Bragg reflectors are used as feedback resonators for DBR lasers. Single-mode lasing with a sidemode suppression of better than 25 dB is demonstrated.

  7. Precise in situ etch depth control of multilayered III−V semiconductor samples with reflectance anisotropy spectroscopy (RAS equipment

    Directory of Open Access Journals (Sweden)

    Ann-Kathrin Kleinschmidt

    2016-11-01

    Full Text Available Reflectance anisotropy spectroscopy (RAS equipment is applied to monitor dry-etch processes (here specifically reactive ion etching (RIE of monocrystalline multilayered III–V semiconductors in situ. The related accuracy of etch depth control is better than 16 nm. Comparison with results of secondary ion mass spectrometry (SIMS reveals a deviation of only about 4 nm in optimal cases. To illustrate the applicability of the reported method in every day settings for the first time the highly etch depth sensitive lithographic process to form a film lens on the waveguide ridge of a broad area laser (BAL is presented. This example elucidates the benefits of the method in semiconductor device fabrication and also suggests how to fulfill design requirements for the sample in order to make RAS control possible.

  8. Influence of etching processes on electronic transport in mesoscopic InAs/GaSb quantum well devices

    Directory of Open Access Journals (Sweden)

    Atindra Nath Pal

    2015-07-01

    Full Text Available We report the electronic characterization of mesoscopic Hall bar devices fabricated from coupled InAs/GaSb quantum wells sandwiched between AlSb barriers, an emerging candidate for two-dimensional topological insulators. The electronic width of the etched structures was determined from the low field magneto-resistance peak, a characteristic signature of partially diffusive boundary scattering in the ballistic limit. In case of dry-etching the electronic width was found to decrease with electron density. In contrast, for wet etched devices it stayed constant with density. Moreover, the boundary scattering was found to be more specular for wet-etched devices, which may be relevant for studying topological edge states.

  9. Metal-coated Bragg grating reflecting fibre

    Science.gov (United States)

    Chamorovskiy, Yu. K.; Butov, O. V.; Kolosovskiy, A. O.; Popov, S. M.; Voloshin, V. V.; Vorob'ev, I. L.; Vyatkin, M. Yu.

    2017-03-01

    High-temperature optical fibres (OF) with fibre Bragg gratings (FBG) arrays written over a long length and in-line metal coating have been made for the first time. The optical parameters of the FBG arrays were tested by the optical frequency domain reflectometer (OFDR) method in a wide temperature range, demonstrating no degradation in reflection at heating up to 600 °C for a fibre with Al coating. The mechanical strength of the developed fibre was practically the same as "ordinary" OF with similar coating, showing the absence of the influence of FBG writing process on fibre strength. Further experiments are necessary to evaluate the possibility of further increases in the operational temperature range.

  10. Optical Fiber Bragg Grating Michelson Interferometer

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi; JIANG Tian-fu; LIU Li

    2006-01-01

    A new Michelson interferometer based on fiber Bragg grating(FBG) is demonstrated. FBGs are used as reflectors, and the laser is replaced by a broadband source as input light in this interferometer. To demodulate the signals, a 3×3 coupler is used as a splitter. By combining with software demodulation, the outer inter ference can be obtained from the outputs of the interferometer. This kind of in terferometer can also be wavelength-multiplexed easily by composing a series Michelson interferometer. The experiment results show that the clear interference fringe can be obtained by adjusting the path difference to make it less than interference length of FBG. The signals are also demodulated.

  11. Optical Properties of Topological Insulator Bragg Gratings

    CERN Document Server

    Crosse, J A

    2015-01-01

    Using the transfer matrix formalism, we study the transmission properties of a Bragg grating constructed from a layered axionic material. Such a material can be realized by a topological insulator subject to a time-symmetry breaking perturbation, such as an external magnetic field or surface magnetic impurities. Whilst the reflective properties of the structure are only negligibly changed by the presence of the axionic material, the grating induces Faraday and Kerr rotations in the transmitted and reflected light, respectively. These rotations are proportional to the number of layers and the strength of the time-symmetry breaking perturbation. In areas of low reflectivity the rotation angle of TE polarization decreases with increasing incidence angle while the TM polarization increases with increasing incidence angle with the converse occurring in areas of high reflectivity. The formalism and results will be useful in the development of optical and photonic devices based on topological insulators, devices whi...

  12. Holographic Recording and Applications of Multiplexed Volume Bragg Gratings in Photo-Thermo-Refractive Glass

    Science.gov (United States)

    2014-10-06

    applications of multiplexed volume bragg gratings in photo- thermo -refractive glass Volume Bragg grating (VBG) structures are capable of diffracting...research in the holographic recording of volume Bragg gratings in photo- thermo -refractive (PTR) glass has shown that these gratings are extremely...ABSTRACT Holographic recording and applications of multiplexed volume bragg gratings in photo- thermo -refractive glass Report Title Volume Bragg grating (VBG

  13. Freeze fracture and freeze etching.

    Science.gov (United States)

    Chandler, Douglas E; Sharp, William P

    2014-01-01

    Freeze fracture depends on the property of frozen tissues or cells, when cracked open, to split along the hydrophobic interior of membranes, thus revealing broad panoramas of membrane interior. These large panoramas reveal the three-dimensional contours of membranes making the methods well suited to studying changes in membrane architecture. Freshly split membrane faces are visualized by platinum or tungsten shadowing and carbon backing to form a replica that is then cleaned of tissue and imaged by TEM. Etching, i.e., removal of ice from the frozen fractured specimen by sublimation prior to shadowing, can also reveal the true surfaces of the membrane as well as the extracellular matrix and cytoskeletal networks that contact the membranes. Since the resolution of detail in the metal replicas formed is 1-2 nm, these methods can also be used to visualize macromolecules or macromolecular assemblies either in situ or displayed on a mica surface. These methods are available for either specimens that have been chemically fixed or specimens that have been rapidly frozen without chemical intervention.

  14. Semiconductor structure and recess formation etch technique

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.

  15. Effect of phosphoric acid etching on the shear bond strength of two self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Camila SABATINI

    2013-01-01

    Full Text Available Objective To evaluate the effect of optional phosphoric acid etching on the shear bond strength (SBS of two self-etch adhesives to enamel and dentin. Material and Methods Ninety-six bovine mandibular incisors were ground flat to obtain enamel and dentin substrates. A two-step self-etch adhesive (FL-Bond II and a one-step self-etch adhesive (BeautiBond were applied with and without a preliminary acid etching to both the enamel and dentin. The specimens were equally and randomly assigned to 4 groups per substrate (n=12 as follows: FL-Bond II etched; FL-Bond II un-etched; BeautiBond etched; BeautiBond un-etched. Composite cylinders (Filtek Z100 were bonded onto the treated tooth structure. The shear bond strength was evaluated after 24 hours of storage (37°C, 100% humidity with a testing machine (Ultra-tester at a speed of 1 mm/min. The data was analyzed using a two-way ANOVA and post-hoc Tukey's test with a significance level of p<0.05. A field emission scanning electron microscope was used for the failure mode analysis. Results Both adhesives evidenced a significant decrease in the dentin SBS with the use of an optional phosphoric acid-etching step (p<0.05. Preliminary phosphoric acid etching yielded significantly higher enamel SBS for FL-Bond II (p<0.05 only, but not for BeautiBond. FL-Bond II applied to un-etched dentin demonstrated the highest mean bond strength (37.7±3.2 MPa and BeautiBond applied to etched dentin showed the lowest mean bond strength (18.3±6.7 MPa among all tested groups (p<0.05. Conclusion The use of a preliminary acid-etching step with 37.5% phosphoric acid had a significant adverse effect on the dentin bond strength of the self-etch adhesives evaluated while providing improvement on the enamel bond strength only for FL-Bond II. This suggests that the potential benefit that may be derived from an additional etching step with phosphoric acid does not justify the risk of adversely affecting the bond strength to dentin.

  16. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  17. Dislocation Etching Solutions for Mercury Cadmium Selenide

    Science.gov (United States)

    2014-09-01

    manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer...dislocation—thus enabling EPD measurement of Hg1-xCdxSe. 15. SUBJECT TERMS Mercury cadmium selenide, etch pits, dislocations, preferential etching...by the US Army Research Laboratory and was accomplished under Cooperative Agreement # W911NF-12-2-0019. vi

  18. Plasma/Neutral-Beam Etching Apparatus

    Science.gov (United States)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  19. UV writing of advanced Bragg gratings in optical waveguides

    DEFF Research Database (Denmark)

    Jensen, Jesper Bo Damm

    2002-01-01

    The subject of this ph.d. thesis is the fabrication of Bragg gratings in optical waveguides. During the study Bragg gratings were written in both planar waveguides and optical fibers using pulsed or continuous-wave lasers operating in the ultraviolet (UV) range. The main result is the development...... of the novel polarization control method for UV writing of Bragg gratings with advanced apodization profiles including phase shifts. The principle of the polarization control method relies on a spatial separation of the s- and p-polarized components of a linearly polarized UV beam corresponding to half...... were then translated into a polarizer angle profile and the Bragg grating were written using a pulsed excimer laser. Only optical fibers were used in this part of the thesis. The high quality planar waveguides used during the study were produced in the cleanroom facility at the Microelectronic Center...

  20. Fiber optical Bragg grating sensors embedded in CFRP wires

    Science.gov (United States)

    Nellen, Philipp M.; Frank, Andreas; Broennimann, Rolf; Meier, Urs; Sennhauser, Urs J.

    1999-05-01

    Based on the example application of Emmenbridge, a newly built steel-concrete-composite bridge in Switzerland with 47 m long built-in carbon fiber reinforced polymer (CFRP) prestressing cables, we will present and analyze the process chain leading to a reliable surveillance of modern civil engineering structures with embedded fiber optical Bragg gratings. This consists first in the embedding of optical fibers and in-fiber Bragg gratings in long CFRP wires in an industrial environment, including fiber optical monitoring of the curing process. Then, various qualifying tests were done: annealing experiments for determining optical lifetime of the Bragg gratings used, dynamic and static tensile tests for estimating their mechanical lifetime under operation, push-out experiments to check adhesion of fiber/coating/matrix interfaces, and performance tests to determine strain and temperature sensitivity of the embedded Bragg gratings. Finally, the prestressing cables were equipped with the CFRP sensor wires and built into the bridge.

  1. Controlling the Multiport Nature of Bragg Diffraction in Atom Interferometry

    CERN Document Server

    Parker, Richard H; Estey, Brian; Zhong, Weicheng; Huang, Eric; Müller, Holger

    2016-01-01

    Bragg diffraction has been used in atom interferometers because it allows signal enhancement through multiphoton momentum transfer and suppression of systematics by not changing the internal state of atoms. Its multi-port nature, however, can lead to parasitic interferometers, allows for intensity-dependent phase shifts in the primary interferometers, and distorts the ellipses used for phase extraction. We study and suppress these unwanted effects. Specifically, phase extraction by ellipse fitting and the resulting systematic phase shifts are calculated by Monte Carlo simulations. Phase shifts arising from the thermal motion of the atoms are controlled by spatial selection of atoms and an appropriate choice of Bragg intensity. In these simulations, we found that Gaussian Bragg pulse shapes yield the smallest systematic shifts. Parasitic interferometers are suppressed by a "magic" Bragg pulse duration. The sensitivity of the apparatus was improved by the addition of AC Stark shift compensation, which permits d...

  2. Bragg-Fresnel optics: New field of applications

    Energy Technology Data Exchange (ETDEWEB)

    Snigirev, A. [ESRF, Grenoble (France)

    1997-02-01

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnel optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.

  3. Time/Wavelength Fiber Bragg Grating Multiplexing Sensor Array

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel time/wavelength-multiplexed fiber Bragg grating sensor array is presented. This type of sensor array has the advantages of more points for multi-point measurement, simple structure and low cost.

  4. Lasing and mode switching in circular Bragg nanoresonators

    OpenAIRE

    Scheuer, Jacob; Green, William M. J.; DeRose, Guy; Yariv, Amnon

    2005-01-01

    We demonstrate low-threshold lasing at telecommunications wavelengths from high quality circular semiconductor nanoresonators employing radial Bragg reflector single-mode emission and mode switching are observed at room temperature under optical pumping.

  5. Structural Health Monitoring Using Fiber Bragg Grating Sensor Matrix Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber Bragg Grating had been identified as very important elements, especially for strain measurements in smart structures. In many applications, arrays of FBG...

  6. White spot lesions: Does etching really matter?

    Science.gov (United States)

    Abufarwa, Moufida; Voorhees, Robert D; Varanasi, Venu G; Campbell, Phillip M; Buschang, Peter H

    2017-08-01

    The clinical significance of acid etching prior to orthodontic bonding is controversial. In the present study, we evaluated the effect of 15 seconds of acid etching on enamel demineralization. Twenty-seven human molars were sectioned and assigned to two groups. Under standardized conditions, the enamel surfaces were imaged using FluoreCam to obtain baseline data. Group 1 was etched using 37% phosphoric acid for 15 seconds, rinsed with water, and then imaged again; group 2 was only rinsed with water. Water rinse was collected for calcium chemical analysis using inductively-coupled plasma auger electron spectrometry. Both groups were subjected to 9 days of pH cycling, after which final FluoreCam images were obtained. Group 1 showed a significant increase in lesion area (P=.012), decrease in light intensity (P=.009), and decrease in impact (P=.007) after acid etching. The amount of calcium that leached out over the 15 seconds was 14 ppm ±2.4 (0.35 mmol/L±0.06). Following pH cycling, there was no statistically-significant between-group difference in overall enamel demineralization. Initial demineralization caused by 15 seconds of acid etching does not increase enamel susceptibility to further demineralization. This suggests that acid etching does not increase the risk of developing white spot lesions during orthodontics. © 2017 John Wiley & Sons Australia, Ltd.

  7. InGaN light-emitting diodes with embedded nanoporous GaN distributed Bragg reflectors

    Science.gov (United States)

    Shieh, Bing-Cheng; Jhang, Yuan-Chang; Huang, Kun-Pin; Huang, Wan-Chun; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2015-08-01

    InGaN-based light-emitting diodes (LEDs) with embedded conductive nanoporous GaN/undoped GaN (NP-GaN/u-GaN) distributed Bragg reflectors (DBRs) were demonstrated. Nanoporous GaN DBR structures were fabricated by pulsed 355 nm laser scribing and electrochemical etching processes. Heavily Si-doped n-type GaN:Si layers (n+-GaN) in an eight-period n+-GaN/u-GaN stack structure were transformed into a low-refractive-index, conductive nanoporous GaN structure. The measured center wavelength, peak reflectivity, and bandwidth of the nanoporous GaN DBR structure were 417 nm, 96.7%, and 34 nm, respectively. Resonance cavity modes of the photoluminescence spectra were observed in the treated LED structure with the nanoporous DBR structure.

  8. Air-Hybrid Distributed Bragg Reflector Structure for Improving the Light Output Power in AlGalnP-Based LEDs.

    Science.gov (United States)

    Oh, Hwa Sub; Ryu, Ho-Soung; Park, Sueng Ho; Jeong, Tak; Kim, Young Jin; Lee, Hyung Joo; Cho, Young Dae; Kwak, Joon-Seop; Baek, Jong Hyeob

    2015-07-01

    We investigated air gap-induced hybrid distributed Bragg reflectors (AH-DBRs) for use in high brightness and reliable AlGalnP-based light emitting diodes (LEDs). An air gap was inserted into the side of DBRs by selectively etching the Al(x),Ga1-xAs DBR structures. With the AH-DBR structures, the optical output power of LEDs was enhanced by 15% compared to LEDs having conventional DBRs, due to the effective reflection of obliquely incident light by the air gap structures. In addition, the electrical characteristics showed that the AH-DBR LED is a desirable structure for reducing the leakage current, as it suppresses unwanted surface recombinations.

  9. Dual-wavelength Y-branch distributed Bragg reflector diode laser at 785 nanometers for shifted excitation Raman difference spectroscopy.

    Science.gov (United States)

    Maiwald, Martin; Eppich, Bernd; Fricke, Jörg; Ginolas, Arnim; Bugge, Frank; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther

    2014-01-01

    A dual-wavelength Y-branch distributed Bragg reflector (DBR) diode laser at 785 nm is presented as an excitation light source for shifted excitation Raman difference spectroscopy (SERDS). The monolithic device was realized with deeply etched surface DBR gratings using one-step epitaxy. An optical output power of 140 mW was obtained in continuous-wave (CW) operation for each laser cavity, with emission wavelengths of the device at 784.50 and 785.12 nm. A spectral width of the laser emission of 30 pm (0.5 cm(-1)), including 95% of optical power, was measured. The mean spectral distance of both excitation lines is 0.63 nm (10.2 cm(-1)) over the whole operating range. Raman experiments using polystyrene as the test sample and ambient light as the interference source were carried out and demonstrate the suitability of the dual-wavelength diode laser for SERDS.

  10. Dry release of all-polymer structures

    DEFF Research Database (Denmark)

    Haefliger, D.; Nordstrøm, M.; Rasmussen, Peter Andreas

    2005-01-01

    We present a simple dry release technique which uses a thin fluorocarbon film for efficient removal of plastic microdevices from a mould or a handling substrate by reducing the adhesion between the two. This fluorocarbon film is deposited on the substrate in an advanced Si dry etch device utilising...... the C4F8 passivation plasma. Micromachined polymer chips made of SU-8 are removed from the handling substrate by lifting them off using mechanical tweezers. Effective release of chips of several mm(2) size within a few seconds and the lift-off of fragile, 5.5-mu m-thin cantilevers at a yield of almost...... 100% were demonstrated on wafer-scale. The fluorocarbon film showed excellent compatibility with metal etch processes and polymer baking and curing steps. It further facilitates demoulding of polydimethylsiloxane stamps suitable for soft-lithography....

  11. Polymeric waveguide Bragg grating filter using soft lithography

    Science.gov (United States)

    Kocabas, Askin; Aydinli, Atilla

    2006-10-01

    We use the soft lithography technique to fabricate a polymeric waveguide Bragg grating filter. Master grating structure is patterned by e-beam lithography. Using an elastomeric stamp and capillary action, uniform grating structures with very thin residual layers are transferred to the UV curable polymer without the use of an imprint machine. The waveguide layer based on BCB optical polymer is fabricated by conventional optical lithography. This approach provides processing simplicity to fabricate Bragg grating filters.

  12. Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensor

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time.......We fabricated an endlessly single mode and humidity insensitive Zeonex microstructured polymer optical fibre (mPOF) for fibre Bragg grating (FBG) temperature and strain sensors. We inscribed and characterise FBGs in Zeonex mPOF for the first time....

  13. Fibre Bragg Grating Components for Filtering, Switching and Lasing

    OpenAIRE

    2008-01-01

    Fibre Bragg gratings (FBGs) are key components for a vast number of applications in optical communication systems, microwave photonics systems, and optical sensors, etc. The main topic of this thesis is fibre Bragg grating fabrication and applications in direct microwave optical filtering, high speed switching and switchable dual-wavelength fibre lasers. First, a brief overview is given about the photosensitivity in optical fibre, basic FBG fabrication techniques, the popular coupled-mode the...

  14. Technical textiles with embedded fibre Bragg grating sensors

    Science.gov (United States)

    Bilro, L.; Cunha, H.; Pinto, J. L.; Nogueira, R. N.

    2009-10-01

    The characterization of fiber Bragg grating (FBG) sensors integrated on 2D and 3D mesh structures is presented. Several materials and configurations were tested, namely cork, foams, PVC, hexagonal 3D. Sensors were embedded between two substrates using textile lamination technique. Every sample was subjected to temperature variations and mechanical deformations. Through Bragg wavelength monitoring, thermal, deformation and pressure performance were evaluated. These results provide significant information to the conception of smart textiles.

  15. Development of Localized Plasma Etching System for Failure Analyses in Semiconductor Devices: (3)Etching-Monitoring Using Quadrupole Mass Spectrometry

    Science.gov (United States)

    Takahashi, Satoshi; Horie, Tomoyuki; Shirayama, Yuya; Yokosuka, Shuntaro; Kashimura, Kenta; Hayashi, Akihiro; Iwase, Chikatsu; Shimbori, Shun'ichiro; Tokumoto, Hiroshi; Naitoh, Yasuhisa; Shimizu, Tetsuo

    Quadrupole mass spectrometry (QMS) has been applied to monitor the etching processes in a localized plasma etching system. An inward plasma was employed for etching in which the etching gas was discharged in the narrow gap between the etched sample and the entrance of an evacuating capillary tube. As the etching products are immediately evacuated through the capillary, a QMS system equipped at the capillary exit is able to analyze the products without any loss in concentration via diffusion into the chamber. Two kinds of samples, thermally grown SiO2 on Si and spin-coated polyimide film on Si, were etched, and the chemical species in the evacuated etching gas were analyzed with QMS, which enables monitoring of the composition of the surface being etched. Samples of thermal SiO2 were etched with CF4 plasma. The peak height of the SiF3+ signal during the SiO2 etching was lower than that observed during etching of the silicon substrate, leading to endpoint detection. The endpoint detection of the polyimide film etching was conducted using two etching gases: pure O2 and pure CF4. When O2 was used, the endpoint was detected by the decrease of the mass peak attributed to CO. When CF4 was employed, the plasma was able to etch both the polyimide film and Si substrate. Then the endpoint was detected by the increase of the mass peak of SiF3+ produced by the etching of the Si substrate.

  16. Frequency-temperature sensitivity reduction with optimized microwave Bragg resonators

    Science.gov (United States)

    Le Floch, J.-M.; Murphy, C.; Hartnett, J. G.; Madrangeas, V.; Krupka, J.; Cros, D.; Tobar, M. E.

    2017-01-01

    Dielectric resonators are employed to build state-of-the-art low-noise and high-stability oscillators operating at room and cryogenic temperatures. A resonator temperature coefficient of frequency is one criterion of performance. This paper reports on predictions and measurements of this temperature coefficient of frequency for three types of cylindrically symmetric Bragg resonators operated at microwave frequencies. At room temperature, microwave Bragg resonators have the best potential to reach extremely high Q-factors. Research has been conducted over the last decade on modeling, optimizing, and realizing such high Q-factor devices for applications such as filtering, sensing, and frequency metrology. We present an optimized design, which has a temperature sensitivity 2 to 4 times less than current whispering gallery mode resonators without using temperature compensating techniques and about 30% less than other existing Bragg resonators. Also, the performance of a new generation single-layered Bragg resonator, based on a hybrid-Bragg-mode, is reported with a sensitivity of about -12 ppm/K at 295 K. For a single reflector resonator, it achieves a similar level of performance as a double-Bragg-reflector resonator but with a more compact structure and performs six times better than whispering-gallery-mode resonators. The hybrid resonator promises to deliver a new generation of high-sensitivity sensors and high-stability room-temperature oscillators.

  17. Nanometer scale vacuum lithography using plasma polymerization and plasma etching

    CERN Document Server

    Kim, S O

    1998-01-01

    Thin films of plasma polymerization were fabricated through plasma polymerization of interelectrode capacitively coupled gas flow system. After delineating the pattern with an accelerating voltage of 30kV, ranging the dose of 1 approx 500 mu C/cm sup 2 , the pattern was developed with a dry type and formed by plasma etching. By analyzing the molecule structure using FT-IR ( Fourier Transform-Infrared Spectrometry), it was confirmed that the thin films of PPMST (Plasma Polymerized Methylmethacrylate+Styrene+Tetramethyltin) contained the functional radicals of the MST (Methylmethacrylate sub S tyrene+Tetramethyltin) monomer. The Thin films of PPMST had a highly cross-linked structure resulting in a higher molecule weight than the conventional resist. The deposition rate of the PPMST thin films was 230 approx 600 A/min as a function of 50 approx 200 W power and 200 approx 60 A/min as a function 0.1 approx 0.7 Torr pressure. The etching rate of the thin films of PPMST was 875 approx 3520 A/min as a function of 50...

  18. Minimizing Reflectivity by Etching Microstructures in Mercury Cadmium Telluride (HgCdTe)

    Science.gov (United States)

    2013-02-01

    readout integrated circuit (ROIC) (figure 1) using a p-n junction, which collects the photocharge into pixels using electric fields, and indium bump ...by ICP, a dry etch technique (figure 4). The samples were first mounted to a Si wafer with Apiezon N adhesive and loaded into the plasma etcher...flowing helium (He) gas on the backside of the handle wafer . The kinetic energy of the ionized gases bombards the sample and physically removes

  19. Optical Effects Accompanying the Dynamical Bragg Diffraction in Linear 1D Photonic Crystals Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Anton Maydykovskiy

    2014-10-01

    Full Text Available We survey our recent results on the observation and studies of the effects accompanying the dynamical Bragg diffraction in one-dimensional photonic crystals (PhC. Contrary to the kinematic Bragg diffraction, the dynamical one considers a continuous interaction between the waves travelling within a spatially-periodic structure and is the most pronounced in the so called Laue geometry, leading to a number of exciting phenomena. In the described experiments, we study the PhC based on porous silicon or porous quartz, made by the electrochemical etching of crystalline silicon with the consequent thermal annealing. Importantly, these PhC are approximately hundreds of microns thick and contain a few hundreds of periods, so that the experiments in the Laue diffraction scheme are available. We discuss the effect of the temporal splitting of femtosecond laser pulses and show that the effect is quite sensitive to the polarization and the phase of a femtosecond laser pulse. We also show the experimental realization of the Pendular effect in porous quartz PhC and demonstrate the experimental conditions for the total spatial switching of the output radiation between the transmitted and diffracted directions. All described effects are of high interest for the control over the light propagation based on PhC structures.

  20. A new generation of self-etching adhesives: comparison with traditional acid etch technique.

    Science.gov (United States)

    Holzmeier, Marcus; Schaubmayr, Martin; Dasch, Walter; Hirschfelder, Ursula

    2008-03-01

    The aim of this study was to determine the shear bond strength (SBS), etching pattern and depth, and debonding performance of several market-leading, self-etching (SE) adhesives primarily used in restorative dentistry (iBond, Clearfil S(3) Bond, Clearfil Protect Bond, AdheSE, XenoIII), two experimental self-etching adhesives (exp. Bond 1, exp. Bond 2) and one experimental self-etching cement (SE Zement) used with and without prior phosphoric acid-etching, and to compare them to an orthodontic self-etching product (Transbond Plus SE Primer) and to traditional acid-etch technique (Transbond XT Primer, phosphoric acid) All adhesives were applied on pumiced and embedded bovine incisors following the manufacturers' instructions. Then one bracket each (coated with Transbond XT composite) was bonded (n = 20). Transbond XT was polymerized for 20 s from the incisal and gingival sides using a halogen device positioned at a constant 5 mm from and a 45 degrees angle to the specimen. The specimens were stored in distilled water for 24 h at 37 degrees C before measuring SBS. The ARI (adhesive remnant index) for all specimens was determined from the sheared-off brackets of each. After conditioning, the surface texture was morphologically evaluated from scanning electron microscope (SEM) images, while the etching depth was determined using a confocal laser-scanning microscope (CLSM). All groups were tested for normal distribution and analyzed by applying ANOVA, Kruskal-Wallis or the t test. In addition, a Bonferroni correction was used. The median values of the SBS tests were: SE Zement 3.0 MPa, SE Zement preceded by phosphoric acid etching 11.2 MPa, experimental bond 1: 7.4 MPa, experimental bond 2: 5.6 MPa, iBond 8.1 MPa, Clearfil S(3) Bond 14.1 MPa, Clearfil Protect Bond 16.6 MPa, Clearfil SE Bond 15.9 MPa, AdheSE 16.0 MPa, XenoIII 16.1 MPa, Transbond SE Primer 20.7 MPa, acid-etching+Transbond XT Primer 21.0 MPa. With the exception of iBond, we observed no significant

  1. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    Science.gov (United States)

    Megalini, Ludovico

    Group III-nitride is a remarkable material system to make highly efficient and high-power optoelectronics and electronic devices because of the unique electrical, physical, chemical and structural properties it offers. In particular, InGaN-based blue Laser Diodes (LDs) have been successfully employed in a variety of applications ranging from biomedical and military devices to scientific instrumentation and consumer electronics. Recently their use in highly efficient Solid State Lighting (SSL) has been proposed because of their superior beam quality and higher efficiency at high input power density. Tremendous advances in research of GaN semi-polar and non-polar crystallographic planes have led both LEDs and LDs grown on these non-basal planes to rival with, and with the promise to outperform, their equivalent c-plane counterparts. However, still many issues need to be addressed, both related to material growth and device fabrication, including a lack of conventional wet etching techniques. GaN and its alloys with InN and AlN have proven resistant essentially to all known standard wet etching techniques, and the predominant etching methods rely on chlorine-based dry etching (RIE). These introduce sub-surface damage which can degrade the electrical properties of the epitaxial structure and reduce the reliability and lifetime of the final device. Such reasons and the limited effectiveness of passivation techniques have so far suggested to etch the LD ridges before the active region, although it is well-known that this can badly affect the device performance, especially in narrow stripe width LDs, because the gain guiding obtained in the planar configuration is weak and the low index step and high lateral current leakage result in devices with threshold current density higher than devices whose ridge is etched beyond the active region. Moreover, undercut etching of III-nitride layers has proven even more challenging, with limitations in control of the lateral etch

  2. Polymerization monitoring in plasma etching systems

    Science.gov (United States)

    Kim, Jinsoo

    1999-11-01

    In plasma etching processes, the polymers used to enhance etch anisotropy and selectivity also deposit on various parts of the reaction chamber. This polymerization on reactor surface not only strongly affects the concentration of reactants in the plasma discharge, eventually changing the etching characteristics, but also can produce particulates which lower yield. This thesis explores the development of a direct in-situ polymerization monitoring sensor to minimize the drifts in plasma etching processes. In addition, polymerization dependencies on basic processing parameters and polymerization effects on etching characteristics have been explored for the first time using a direct in-situ sensor. The polymer buildup process is a strong function of parameters such as power, base pressure, and flow rate, and is also dependent on the reactor materials used, temperature, and the hydrogen/oxygen concentrations present. Experiments performed in an Applied Materials 8300 plasma etcher show a significant increase in polymerization with increased pressure and flow rates and a decrease as a function of power. These experiments provide insight into how the chamber state changes under the different processing recipes used for etching specific material layers and also suggest how the chamber seasoning process can best be carried out. The reactor surface, which serves as both a source and a sink for reactive gas species, not only strongly affects the concentration of reactants in the plasma discharge, eventually changing the etching characteristics, but also can produce particulates which lower yield. The etch rate and selectivity variations for specific silicon dioxide and silicon nitride etching recipes have been explored as a function of the polymer thickness on the reactor walls. The etch rates of nitride and polysilicon decrease dramatically with polymer thickness up to a thickness of 60nm, while the oxide etch rate remains virtually constant due to the polymerization

  3. Effect of pre-etching on sealing ability of two current self-etching adhesives

    Directory of Open Access Journals (Sweden)

    K Khosravi

    2005-05-01

    Full Text Available Background: We evaluated the effect of phosphoric acid etching on microleakage of two current self-etching adhesives on enamel margins in comparison to a conventional total- etch system. Methods: Sixty buccal class V cavities were made at the cemento-enamel junction with beveled enamel margins of extracted human premolar teeth and randomly divided into five groups (12 specimens in each group. Group 1 was applying with Clearfil SE bond, Group 2 with 35% phosphoric acid etching of enamel margins plus Clearfil SE bond, Group3 with I bond, Group 4 with 35% phosphoric acid etching of enamel margins plus I bond and Group5 with Scotchbond multi-purpose. All groups restored with a composite resins. After 24 hours storage with 100% humidity, the samples were thermocycled, immersed in a dye solution and sectioned buccoligually and enamel margins microleakage were evaluated on a scale of 0 to 2. Results: The differences between Groups 1 & 3 and Groups 3 & 4 were significant (P<0.05 but no significant differences between Groups1 & 2 or 1 & 5 were observed. Conclusion: The findings suggest that all-in-one adhesive systems need pre-etching enamel margins with phosphoric acid for effectively seal. Key words: Self-Etching Adhesives, Microleakage, Enamel, Total-Etch system

  4. An etching mask and a method to produce an etching mask

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to an etching mask comprising silicon containing block copolymers produced by self-assembly techniques onto silicon or graphene substrate. Through the use of the etching mask, nanostructures having long linear features having sub-10 nm width can be produced....

  5. Effect of pre-etching enamel on fatigue of self-etch adhesive bonds

    NARCIS (Netherlands)

    Erickson, R.L.; de Gee, A.J.; Feilzer, A.J.

    2008-01-01

    Objective. A previous study found that the shear bond strength (SBS) to bovine enamel for the self-etching adhesive Adper Prompt-L-Pop (PLP) was 75% of that found with the etch-and-rinse material SingleBond, while the comparative value for the shear fatigue limit (SFL) was only 58% at 10(5) load

  6. century drying

    Science.gov (United States)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  7. Dynamic fiber Bragg grating sensing method

    Science.gov (United States)

    Ho, Siu Chun Michael; Ren, Liang; Li, Hongnan; Song, Gangbing

    2016-02-01

    The measurement of high frequency vibrations is important in many scientific and engineering problems. This paper presents a novel, cost effective method using fiber optic fiber Bragg gratings (FBGs) for the measurement of high frequency vibrations. The method uses wavelength matched FBG sensors, with the first sensor acting as a transmission filter and the second sensor acting as the sensing portion. Energy fluctuations in the reflection spectrum of the second FBG due to wavelength mismatch between the sensors are captured by a photodiode. An in-depth analysis of the optical circuit is provided to predict the behavior of the method as well as identify ways to optimize the method. Simple demonstrations of the method were performed with the FBG sensing system installed on a piezoelectric transducer and on a wind turbine blade. Vibrations were measured with sampling frequencies up to 1 MHz for demonstrative purposes. The sensing method can be multiplexed for use with multiple sensors, and with care, can be retrofitted to work with FBG sensors already installed on a structure.

  8. Multipoint sensor based on fiber Bragg gratings

    Energy Technology Data Exchange (ETDEWEB)

    Mendez-Zepeda, O; Munoz-Aguirre, S; Beltran-Perez, G; Castillo-Mixcoatl, J, E-mail: mezeos9@yahoo.com [Facultad de Ciencias FIsico-Matematicas, BUAP Av. San Claudio y Rio Verde, Col. San Manuel, CU. C.P. 72570, Puebla, Puebla (Mexico)

    2011-01-01

    In some control and industrial measurement systems of physical variables (pressure, temperature, flow, etc) it is necessary one system and one sensor to control each process. On the other hand, there are systems such as PLC (Programmable Logic Control), which can process several signals simultaneously. However it is still necessary to use one sensor for each variable. Therefore, in the present work the use of a multipoint sensor to solve such problem has been proposed. The sensor consists of an optical fiber laser with two Fabry-Perot cavities constructed using fiber Bragg gratings (FBG). In the same system is possible to measure changes in two variables by detecting the intermodal separation frequency of each cavity and evaluate their amplitudes. The intermodal separation frequency depends on each cavity length. The sensor signals are monitored through an oscilloscope or a PCI card and after that acquired by PC, where they are analyzed and displayed. Results of the evaluation of the intermodal frequency separation peak amplitude behavior with FBG stretching are presented.

  9. Copper-assisted, anti-reflection etching of silicon surfaces

    Science.gov (United States)

    Toor, Fatima; Branz, Howard

    2014-08-26

    A method (300) for etching a silicon surface (116) to reduce reflectivity. The method (300) includes electroless deposition of copper nanoparticles about 20 nanometers in size on the silicon surface (116), with a particle-to-particle spacing of 3 to 8 nanometers. The method (300) includes positioning (310) the substrate (112) with a silicon surface (116) into a vessel (122). The vessel (122) is filled (340) with a volume of an etching solution (124) so as to cover the silicon surface (116). The etching solution (124) includes an oxidant-etchant solution (146), e.g., an aqueous solution of hydrofluoric acid and hydrogen peroxide. The silicon surface (116) is etched (350) by agitating the etching solution (124) with, for example, ultrasonic agitation, and the etching may include heating (360) the etching solution (124) and directing light (365) onto the silicon surface (116). During the etching, copper nanoparticles enhance or drive the etching process.

  10. Plasma etching a ceramic composite. [evaluating microstructure

    Science.gov (United States)

    Hull, David R.; Leonhardt, Todd A.; Sanders, William A.

    1992-01-01

    Plasma etching is found to be a superior metallographic technique for evaluating the microstructure of a ceramic matrix composite. The ceramic composite studied is composed of silicon carbide whiskers (SiC(sub W)) in a matrix of silicon nitride (Si3N4), glass, and pores. All four constituents are important in evaluating the microstructure of the composite. Conventionally prepared samples, both as-polished or polished and etched with molten salt, do not allow all four constituents to be observed in one specimen. As-polished specimens allow examination of the glass phase and porosity, while molten salt etching reveals the Si3N4 grain size by removing the glass phase. However, the latter obscures the porosity. Neither technique allows the SiC(sub W) to be distinguished from the Si3N4. Plasma etching with CF4 + 4 percent O2 selectively attacks the Si3N4 grains, leaving SiC(sub W) and glass in relief, while not disturbing the pores. An artifact of the plasma etching reaction is the deposition of a thin layer of carbon on Si3N4, allowing Si3N4 grains to be distinguished from SiC(sub W) by back scattered electron imaging.

  11. Facet selective etching of Au microcrystallites

    Institute of Scientific and Technical Information of China (English)

    Gangaiah Mettela and Giridhar U. Kulkarni

    2015-01-01

    High-symmetry crystals exhibit isotropic properties. Inducing anisotropy, e.g., by facet selective etching, is considered implausible in face-centered cubic (FCC) metals, particularly gold, which, in addition to being an FCC, is noble. We report for the first time the facet selective etching of Au microcrystals obtained in the form of cuboctahedra and pentagonal rods from the thermolysis of a gold- organic precursor. The selective etching of {111} and {100} facets was achieved using a capping method in which tetraoctylammonium cations selectively cap the {111} facets while Br- ions protect the {100} facets. The exposed facets are oxidized by O2/C1-, yielding a variety of interesting geometries. The facet selective etching of the Au microcrystallites is governed only by the nature of the facets; the geometry of the microcystallite does not appear to play a significant role. The etched surfaces appear rough, but a closer examination reveals well-defined corrugations that are indexable to high hkl values. Such surfaces exhibit enhanced Raman activity.

  12. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  13. First order Bragg grating filters in silicon on insulator waveguides

    Science.gov (United States)

    Waugh, Peter Michael

    2008-08-01

    The subject of this project is the design; analysis, fabrication and characterisation of first order Bragg Grating optical filters in Silicon-on-Insulator (SOI) planar waveguides. It is envisaged that this work will result in the possibility of Bragg Grating filters for use in Silicon Photonics. It is the purpose of the work to create as far as is possible flat surface waveguides so as to facilitate Thermo-Optic tuning and also the incorporation into rib-waveguide Silicon Photonics. The spectral response of the shallow Bragg Gratings was modelled using Coupled Mode Theory (CMT) by way of RSoft Gratingmod TM. Also the effect of having a Bragg Grating with alternate layers of refractive index of 1.5 and 3.5 was simulated in order to verify that Silica and Silicon layered Bragg Gratings could be viable. A series of Bragg Gratings were patterned on 1.5 micron SOI at Philips in Eindhoven, Holland to investigate the variation of grating parameters with a) the period of the gratings b) the mark to space ratio of the gratings and c) the length of the region converted to Bragg Gratings (i.e. the number of grating period repetitions). One set of gratings were thermally oxidised at Philips in Eindhoven and another set were ion implanted with Oxygen ions at the Ion Beam Facility, University of Surrey, England. The gratings were tested and found to give transmission minima at approximately 1540 nanometres and both methods of creating flat surfaces were found to give similar minima. Atomic Force Microscopy was applied to the grating area of the as-implanted samples in the Advanced Technology Institute, University of Surrey, which were found to have surface undulations in the order of 60 nanometres.

  14. Effect of collagen fibrils removal on shear bond strength of total etch and self etch adhesive systems

    Directory of Open Access Journals (Sweden)

    Pishevar L.

    2009-12-01

    Full Text Available "nBackground and Aim: Sodium hypochlorite can remove the organic phase of the demineralized dentin and it produces direct resin bonding with hydroxyapatite crystals. Therefore, the hydrolytic degradation of collagen fibrils which might affect the bonding durability is removed. The aim of this study was to evaluate the effect of collagen fibrils removal by 10% NaOCl on dentin shear bond strength of two total etch and self etch adhesive systems."nMaterials and Methods: Sixty extracted human premolar teeth were used in this study. Buccal surface of teeth were grounded until dentin was exposed. Then teeth were divided into four groups. According to dentin surface treatment, experimental groups were as follows: Group I: Single Bond (3M according to manufacture instruction, Group II: 10% NaOCl+Single bond (3M, Group III: Clearfil SE Bond (Kuraray according to manufacture instruction, and Group IV: Clearfil SE Bond primer. After that, the specimens were immersed in 50% acetone solution for removing extra monomer. Then the specimens were rinsed and dried. 10% NaOCl was applied and finally adhesive was used. Then composite was bonded to the treated surfaces using a 4 2 mm cylindrical plastic mold. Specimens were thermocycled for 500 cycles (5-55ºC. A shear load was employed by a universal testing machine with a cross head speed of 1mm/min. The data were analyzed for statistical significance with One-way ANOVA, Two-way ANOVA and Tukey HSD post-hoc tests."nResults: The mean shear bond strengths of groups were as follows: Single Bond=16.8±4.2, Clearfil SE Bond=23.7±4.07, Single Bond+NaOCl=10.5±4.34, Clearfil SE Bond+NaOCl=23.3±3.65 MPa. Statistical analysis revealed that using 10% NaOCl significantly decreased the shear bond strength in Single Bond group (P=0.00, but caused no significant difference in the shear bond strength in Clearfil SE Bond group (P=0.99."nConclusion: Based on the results of this study, NaOCl treatment did not improve the bond

  15. Bragg solitons in systems with separated nonuniform Bragg grating and nonlinearity

    Science.gov (United States)

    Ahmed, Tanvir; Atai, Javid

    2017-09-01

    The existence and stability of quiescent Bragg grating solitons are systematically investigated in a dual-core fiber, where one of the cores is uniform and has Kerr nonlinearity while the other one is linear and incorporates a Bragg grating with dispersive reflectivity. Three spectral gaps are identified in the system, in which both lower and upper band gaps overlap with one branch of the continuous spectrum; therefore, these are not genuine band gaps. However, the central band gap is a genuine band gap. Soliton solutions are found in the lower and upper gaps only. It is found that in certain parameter ranges, the solitons develop side lobes. To analyze the side lobes, we have derived exact analytical expressions for the tails of solitons that are in excellent agreement with the numerical solutions. We have analyzed the stability of solitons in the system by means of systematic numerical simulations. We have found vast stable regions in the upper and lower gaps. The effect and interplay of dispersive reflectivity, the group velocity difference, and the grating-induced coupling on the stability of solitons are investigated. A key finding is that a stronger grating-induced coupling coefficient counteracts the stabilization effect of dispersive reflectivity.

  16. Analytical model of plasma-chemical etching in planar reactor

    Science.gov (United States)

    Veselov, D. S.; Bakun, A. D.; Voronov, Yu A.; Kireev, V. Yu; Vasileva, O. V.

    2016-09-01

    The paper discusses an analytical model of plasma-chemical etching in planar diode- type reactor. Analytical expressions of etch rate and etch anisotropy were obtained. It is shown that etch anisotropy increases with increasing the ion current and ion energy. At the same time, etch selectivity of processed material decreases as compared with the mask. Etch rate decreases with the distance from the centre axis of the reactor. To decrease the loading effect, it is necessary to reduce the wafer temperature and pressure in the reactor, as well as increase the gas flow rate through the reactor.

  17. Long-period suspended silicon Bragg grating filter for hybrid near- and mid-infrared operation

    CERN Document Server

    Alonso-Ramos, Carlos; Benedikovic, Daniel; Vakarin, Vladyslav; Duran-Valdeiglesias, Elena; Perez-Galacho, Diego; Cassan, Eric; Marris-Morini, Delphine; Cheben, Pavel; Vivien, Laurent

    2016-01-01

    The large transparency window of silicon, covering the 1.1 um 8 um wavelength range, makes it a promising platform for the implementation of photothermal-based absorption spectrometers. These devices indirectly sense absorption in the mid-infrared (MIR) by using near-infrared (NIR) wavelengths, thereby enabling the realization of MIR absorption spectrometers without the need for MIR photodetectors. Nevertheless, due to their comparatively large index contrast and cross-sections, MIR Si strip waveguides are multi-mode at NIR wavelengths, hindering device implementation. Here we present, for the first time, an integrated Bragg grating waveguide filter for hybrid near- and mid-infrared operation. Specifically, the filter is implemented in a single-etch suspended silicon corrugated waveguide with an effectively single-mode operation in NIR region for a waveguide cross-section as large as 0.5 um x 1.1 um. At the same time, the waveguide supports single-mode propagation in MIR region. We demonstrate a long-period w...

  18. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    Science.gov (United States)

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  19. Micro-structured fiber Bragg gratings: optimization of the fabrication process.

    Science.gov (United States)

    Iadicicco, A; Campopiano, S; Paladino, D; Cutolo, A; Cusano, A

    2007-11-12

    This work has been devoted to present and demonstrate a novel approach for the fabrication of micro-structured fiber Bragg gratings (MSFBGs) with enhanced control of the geometric features and thus of the spectral properties of the final device. The investigated structure relies on the localized stripping of the cladding layer in a well defined region in the middle of the grating structure leading to the formation of a defect state in the spectral response. In order to fully explore the versatility of MSFBGs for sensing and communications applications, a technological assessment of the fabrication process aimed to provide high control of the geometrical features is required. To this aim, here, we demonstrate that the optimization of this device is possible by adopting a fabrication process based on polymeric coatings patterned by high resolution UV laser micromachining tools. The function of the polymeric coating is to act as mask for the HF based chemical etching process responsible for the cladding stripping. Whereas, UV laser micromachining provides a valuable method to accurately pattern the polymeric coating and thus obtain a selective stripping along the grating structure. Here, we experimentally demonstrate the potentiality of the proposed approach to realize reliable and cost efficient MSFBGs enabling the prototyping of advanced photonics devices based on this technology.

  20. Single beam determination of porosity and etch rate in situ during etching of porous silicon

    Science.gov (United States)

    Foss, S. E.; Kan, P. Y. Y.; Finstad, T. G.

    2005-06-01

    A laser reflection method has been developed and tested for analyzing the etching of porous silicon (PS) films. It allows in situ measurement and analysis of the time dependency of the etch rate, the thickness, the average porosity, the porosity profile, and the interface roughness. The interaction of an infrared laser beam with a layered system consisting of a PS layer and a substrate during etching results in interferences in the reflected beam which is analyzed by the short-time Fourier transform. This method is used for analysis of samples prepared with etching solutions containing different concentrations of HF and glycerol and at different current densities and temperatures. Variations in the etch rate and porosity during etching are observed, which are important effects to account for when optical elements in PS are made. The method enables feedback control of the etching so that PS films with a well-controlled porosity are obtainable. By using different beam diameters it is possible to probe interface roughness at different length scales. Obtained porosity, thickness, and roughness values are in agreement with values measured with standard methods.

  1. Laser-induced back-side etching with liquid and the solid hydrocarbon absorber films of different thicknesses

    Science.gov (United States)

    Ehrhardt, M.; Lorenz, P.; Yunxiang, P.; Bayer, L.; Han, B.; Zimmer, K.

    2017-04-01

    Laser-induced backside wet and dry etching (LIBWE and LIBDE) are methods for high-quality surface patterning of transparent dielectrics that making use of an additional absorber material attached to the rear side that is ablated in a confined configuration. Due to the manifold of the involved processes, the mechanism of the etching process and the parameter influence on the material removal process are multifaceted and not fully understood yet. In the present paper, we investigate the influence of the confinement to the backside etching process by studying the impact of the thickness of the attached liquid or solid absorber within a range of 12-125 and 0.2-11.7 μm, respectively. It was found that for the liquid and solid absorbers, the etching rate increases with the thickness of the absorber layer and saturates exceeding a certain value, which depends on the used laser fluence. Moreover, the incubation of etching depends on the absorber thickness. The comparison of the etching results of a similar thickness of the liquid and the solid absorber layers shows that the phase of the absorber (liquid or solid) does not influence the back-side etching process. Time-resolved shadowgraph images of the process indicate that with higher absorber layer thickness, the interaction time and strength of the laser-induced processes at the sample surface increase. The results suggest that confinement of the rear side attached absorber ablation influences the impact of the laser-induced secondary processes to the strength of the material modifications and, therefore, the etching rate.

  2. CHANGES IN VALUES MEASURED WITH DIAGNOdent FOR ENAMEL AND DENTIN OF DECIDUOUS TEETH ETCHED FOR DIFFERENT TIME INTERVALS.

    Directory of Open Access Journals (Sweden)

    Vladimir E. Panov

    2014-09-01

    Full Text Available Introduction: Dental caries continues to affect a large percentage of children and currently advises that if diagnosed at an early stage can be reversed with minimally invasive treatments. There a large number of methods for early diagnostics. Purpose: The aim of the presented in vitro study was to evaluate the effectiveness of the laser fluorescent device DIAGNOdent pen in measuring changes in the level of mineralization of intact deciduous teeth enamel surfaces etched for different intervals and of intact dentin etched for 30 seconds. Material and methods: The study was performed on extracted children teeth. DIAGNOdent was used to measure the values of laser fluorescence of intact enamel and dentinal surfaces. Samples were treated with 37% H2PO3 etched for 5 sec., 30 sec. and 60 sec. for enamel surfaces and 30 sec. for dentinal. Teeth were rinsed, dried and measured again with DIAGNOdent. Results: After etching the enamel surfaces for 5 sec., 30 sec. and 60 sec. an average increase of 1.55 (0.85-2.2 was detected. The detected average values of increase of laser fluorescence for the enamel were 0.85 for 5 sec. ethching; 1.6 for 30 sec. and 2.2 for 60 sec. The average increase in the dentine was 3.5. Conclusions: Based on the limitations of the conducted study it may be concluded that the changes in the degree of mineralization of deciduous tooth structures can be detected by DIAGNOdent. Enamel etching for 5 sec., 30 sec. and 60 sec. lead to a comparative degree of change in the laser fluorescence. The obtained values after 30 sec. of etching revealed almost a double increase compared to 5 sec. etching and 3-fold for those at the 60 sec. The measured changes after etching in the dentin were better expressed than those in the enamel.

  3. Etching patterns on the micro‐ and nanoscale

    DEFF Research Database (Denmark)

    Michael-Lindhard, Jonas; Herstrøm, Berit; Stöhr, Frederik;

    2014-01-01

    in a liquid reacts with material from the substrate is the ability to fine‐tune the etch process. In wet processing the removal of material generally occurs indiscriminately of direction in the substrate ‐ hence in all directions. This puts a strong limitation on what may be achieved in terms of designs...... and polymer injection molding. High precision patterns of, for instance microfluidic devices, are etched intosilicon which is then electroplated with nickel that will serve as a stamp in the polymer injection molding tool where thousands of devices may be replicated. In addition to silicon and its derived...

  4. Electrical field-induced faceting of etched features using plasma etching of fused silica

    Science.gov (United States)

    Huff, M.; Pedersen, M.

    2017-07-01

    This paper reports a previously unreported anomaly that occurs when attempting to perform deep, highly anisotropic etches into fused silica using an Inductively-Coupled Plasma (ICP) etch process. Specifically, it was observed that the top portion of the etched features exhibited a substantially different angle compared to the vertical sidewalls that would be expected in a typical highly anisotropic etch process. This anomaly has been termed as "faceting." A possible explanation of the mechanism that causes this effect and a method to eradicate it has been developed. Additionally, the method to eliminate the faceting is demonstrated. It is theorized that this faceting is a result of the interaction of the electro-potential electrical fields that surround the patterned nickel layers used as a hard mask and the electrical fields directing the high-energy ions from the plasma to the substrate surface. Based on this theory, an equation for calculating the minimum hard mask thickness required for a desired etch depth into fused silica to avoid faceting was derived. As validation, test samples were fabricated employing hard masks of thicknesses calculated based on the derived equation, and it was found that no faceting was observed on these samples, thereby demonstrating that the solution performed as predicted. Deep highly anisotropic etching of fused silica, as well as other forms of silicon dioxide, including crystalline quartz, using plasma etching, has an important application in the fabrication of several MEMS, NEMS, microelectronic, and photonic devices. Therefore, a method to eliminate faceting is an important development for the accurate control of the dimensions of deep and anisotropic etched features of these devices using ICP etch technology.

  5. Dry Mouth

    Science.gov (United States)

    ... Use a fluoride rinse or brush-on fluoride gel before bedtime. See your dentist at least twice yearly to have your teeth examined and plaque removed, to help prevent tooth decay. Several herbal remedies have been used historically to treat dry ...

  6. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    Energy Technology Data Exchange (ETDEWEB)

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  7. Fabrication et applications des reseaux de Bragg ultra-longs

    Science.gov (United States)

    Gagne, Mathieu

    This thesis presents the principal accomplishments realized during the PhD project. The thesis is presented by publication format and is a collection of four published articles having fiber Bragg gratings as a central theme. First achieved in 1978, UV writing of fiber Bragg gratings is nowadays a common and mature technology being present in both industry and academia. The property of reflecting light guided by optical fibers lead to diverse applications in telecommunication, lasers as well as several types of sensors. The conventional fabrication technique is generally based on the use of generally expensive phase masks which determine the obtained characteristics of the fiber Bragg grating. The fiber being photosensitive at those wavelengths, a periodic pattern can be written into it. The maximal length, the period, the chirp, the index contrast and the apodisation are all characteristics that depend on the phase mask. The first objective of the research project is to be able to go beyond this strong dependance on the phase mask without deteriorating grating quality. This is what really sets apart the technique presented in this thesis from other long fiber Bragg grating fabrication techniques available in the literature. The fundamental approach to obtain ultra long fiber Bragg gratings of arbitrary profile is to replace the scheme of scanning a UV beam across a phase mask to expose a fixed fiber by a scheme where the UV beam and phase mask are fixed and where the fiber is moving instead. To obtain a periodic index variation, the interference pattern itself must be synchronized with the moving fiber. Two variations of this scheme were implanted: the first one using electro-optical phase modulator placed in each arm of a Talbot interferometer and the second one using a phase mask mounted on a piezo electric actuator. A new scheme that imparts fine movements of the interferometer is also implemented for the first time and showed to be essential to achieve high

  8. Optimal design of radial Bragg cavities and lasers.

    Science.gov (United States)

    Ben-Bassat, Eyal; Scheuer, Jacob

    2015-07-01

    We present a new and optimal design approach for obtaining maximal confinement of the field in radial Bragg cavities and lasers for TM polarization. The presented approach outperforms substantially the previously employed periodic and semi-periodic design schemes of such lasers. We show that in order to obtain maximal confinement, it is essential to consider the complete reflection properties (amplitude and phase) of the propagating radial waves at the interfaces between Bragg layers. When these properties are taken into account, we find that it is necessary to introduce a wider ("half-wavelength") layer at a specific radius in the "quarter-wavelength" radial Bragg stack. It is shown that this radius corresponds to the cylindrical equivalent of Brewster's angle. The confinement and field profile are calculated numerically by means of transfer matrix method.

  9. Applications of distributed fiber Bragg grating sensors in civil engineering

    Science.gov (United States)

    Nellen, Philipp M.; Broennimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1995-09-01

    We report on civil engineering applications of wavelength multiplexed optical-fiber Bragg grating arrays produced directly on the draw tower for testing and surveying advanced structures and material like carbon fiber reinforced concrete elements and prestressing tendons. We equipped a 6 m X 0.9 m X 0.5 m concrete cantilever beam reinforced with carbon fiber lamellas with fiber Bragg grating sensors. Static and dynamic strain levels up to 1500 micrometers /m were measured with a Michelson interferometer used as Fourier spectrometer with resolutions of about 10 micrometers /m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optic results. We used the fiber sensors in two different arrangements: some Bragg grating array elements measured the local strain while others were configured in an extensometric way to measure moderate strain over 0.1-1 m.

  10. A plating method for metal coating of fiber Bragg grating

    Institute of Scientific and Technical Information of China (English)

    Yulong Li; Hua Zhang; Yan Feng; Gang Peng

    2009-01-01

    We present a method for metal coating optical fiber and in-fiber Bragg grating. The technology process which is based on electroless plating and electroplating method is described in detail. The fiber is firstly coated with a thin copper or nickel plate with electroless plating method. Then, a thicker nickel plate is coated on the surface of the conductive layer. Under the optimum conditions, the surfaces of chemical plating and electroplating coatings are all smooth and compact. There is no visible defect found in the cross-section. Using this two-step metallization method, the in-fiber Bragg grating can be well protected and its thermal sensitivity can be enhanced. After the metallization process, the fiber sensor is successfully embedded in the 42CrMo steel by brazing method. Thus a smart metal structure is achieved. The embedding results show that the plating method for metallization protection of in-fiber Bragg grating is effective.

  11. Damage behaviors of fiber Bragg grating sensor in fabrication

    Science.gov (United States)

    Tang, Liqun; Sang, Dengfeng; Chen, Jinming; Yang, Bao; Liu, Yiping

    2008-11-01

    It is has been noted that for fiber Bragg grating sensor (FBGS), the tensile strengths of fiber Bragg grating sensors (FBGSs) were decreased after the gratings were written, which may reduce the sensor's measurement range obviously. In this paper, we focused on the damage behaviours of FBGS after fabrication experimentally. Firstly, the tensile tests were carried to measure the tensile strengths of naked optical fiber, decoated optical fiber and optical fiber with Bragg gratings to learn deduction of the tensile strength of optical fiber in the cases respectively. Further, the microscope photography was used to observe the surfaces of optical fiber with or without exposure of excimer laser. The main conclusion is that the UV pulse is the main contribution to reduce the strength remarkably, and the mechanical decoating method also can induce the surface damage on the optical fiber.

  12. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Manuel Rosenberger

    2015-02-01

    Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.

  13. High sensitivity fiber Bragg grating pressure difference sensor

    Institute of Scientific and Technical Information of China (English)

    Haiwei Fu(傅海威); Junmei Fu(傅君眉); Xueguang Qiao(乔学光)

    2004-01-01

    Based on the effect of fiber Bragg grating (FBG) pressure difference sensitivity enhancement by encapsulating the FBG with uniform strength beam and metal bellows, a FBG pressure difference sensor is proposed, and its mechanism is also discussed. The relationship between Bragg wavelength and the pressure difference is derived, and the expression of the pressure difference sensitivity coefficient is also given. It is indicated that there is good linear relation between the Bragg wavelength shift and the pressure difference of the sensor. The theoretical and experimental pressure difference sensitivity coefficients are 38.67 and 37.6 nm/MPa, which are 12890 and 12533 times of that of the bare FBG, respectively. The pressure difference sensitivity and dynamic range can be easily changed by changing the size, Young's modulus, and Poisson's ratio of the beam and the bellows.

  14. Fiber Bragg filters For laser- and multicore fibers

    Science.gov (United States)

    Becker, Martin; Elsmann, Tino; Lorenz, Adrian; Rothhardt, Manfred

    2017-05-01

    Fiber Bragg gratings (FBGs) have widespread applications in security, information, structural health monitoring, and biophotonics. In telecom applications, FBG inscription has reached a high level of maturity, but remains mainly limited to germanium doped photosensitive single mode fibers. Special applications, like filtering in light harvesting fibers or resonator mirrors for fiber lasers have to deal with special aspects which make the design and realization of FBGs a challenging task. One aspect is the extended wavelength range of these applications. Another aspect is the increasing demand to inscribe fiber Bragg gratings in non-photosensitive germanium-free fibers. Therefore, novel concepts of photosensitivity are proposed. Finally, to increase the amount of captured light the size of the fiber core and the numerical aperture have also to be increased. This goes along with multimode operation and prevents good filtering properties of Bragg gratings.

  15. Shear Bond Strength of Saliva Contaminated and Re-etched All-in-One Adhesive to Enamel

    Directory of Open Access Journals (Sweden)

    M. Khoroushi

    2008-12-01

    Full Text Available Objective: The aim of this study was to investigate the effect of phosphoric acid re-etching of an enamel surface treated via a one-bottle adhesive system on shear bond strength between resin composite and the enamelsurface in different stages of adhesive application.Materials and Methods: Extracted intact premolars (n=84 were divided into sevengroups (n=12. In the control group 1, the adhesive i-Bond was used according to the manufacturer's instructions, with nocontamination. In groups 2 to 4, the conditioned and saliva, contaminated enamel was blot dried only, rinsed,and blot dried, rinsed blot dried and re-etched, respectively. In groups 5, 6and 7 cured adhesive was contaminated with saliva and then rinsed and blot-dried, blot dried only and rinsed, blot-dried and re-etched respectively. In groups 3, 4, 6 and 7 the adhesive was reapplied. Afterward, Z100 compos-ite cylinders were bonded to the enamel surfaces. The samples were thermocycled (5°C and 55°C, 30 s, dwelling time: 10 s, 500 cycles. Finally, the samples were sheared using Dartec testing machine and shear bond strength data were subjected to one-way ANOVA analysis and Tukey's HSD test.Results: There were statistically significant differences among groups 1 and 5-7. The samples in groups 1 and 4 demonstrated higher bond strengths than those in the other groups.Conclusion: Using phosphoric acid etching may be effective, only where contamination occurs prior to curing of the adhesive. After curing of the adhesive, none of the methods in this study would be preferred.

  16. Dislocation in heteroepitaxial diamond visualized by hydrogen plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, K.; Kodama, H. [Department of Electrical Engineering and Electronics, Aoyama Gakuin University, Sagamihara 229-0206 (Japan); Suzuki, K. [TOPLAS ENGINEERING Co., Ltd., Chofu, Tokyo 182-0006 (Japan); Sawabe, A. [Department of Electrical Engineering and Electronics, Aoyama Gakuin University, Sagamihara 229-0206 (Japan)

    2016-02-01

    The classification of etch pits formed by hydrogen plasma etching on heteroepitaxial diamond has been done by cross-sectional transmission electron microscope (TEM). We demonstrated that the origin of etch pit was mainly [001] threading dislocation. From invisibility criterion of dislocation contrast in TEM observation, this dislocation was identified as edge and 45° mixed dislocation. The correlation between dislocation types and etch pit shape was discussed. - Highlights: • The etch pits formed by plasma etching on heteroepitaxial diamond have been clarified by TEM. • The origin of etch pit was mainly [001] threading dislocation. • These dislocations were identified as edge and 45° mixed type. • The correlation between dislocation types and etch pit shape.

  17. Irregular shaping of polystyrene nanosphere array by plasma etching

    National Research Council Canada - National Science Library

    Luo, Hao; Liu, Tingting; Ma, Jun; Wang, Wei; Li, Heng; Wang, Pengwei; Bai, Jintao; Jing, Guangyin

    2013-01-01

    .... Here, by plasma etching, the controllable tailoring of the nanosphere is realized and its morphology dependence on the initial shape, microscopic roughness, and the etching conditions is investigated quantitatively...

  18. Effect of enamel etching time on roughness and bond strength

    National Research Council Canada - National Science Library

    Barkmeier, Wayne W; Erickson, Robert L; Kimmes, Nicole S; Latta, Mark A; Wilwerding, Terry M

    2009-01-01

    The current study examined the effect of different enamel conditioning times on surface roughness and bond strength using an etch-and-rinse system and four self-etch adhesives. Surface roughness (Ra...

  19. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Written By: Kierstan Boyd Reviewed By: ... your eyes do not produce enough tears, it is called dry eye. Dry eye is also when ...

  20. Fabrication of optical filters based on polymer asymmetric Bragg couplers.

    Science.gov (United States)

    Chuang, Wei-Ching; Lee, An-Chen; Chao, Ching-Kong; Ho, Chi-Ting

    2009-09-28

    In this work, we successfully developed a process to fabricate dual-channel polymeric waveguide filters based on an asymmetric Bragg coupler (ABC) using holographic interference techniques, soft lithography, and micro molding. At the cross- and self-reflection Bragg wavelengths, the transmission dips of approximately -16.4 and -11.5 dB relative to the 3 dB background insertion loss and the 3 dB transmission bandwidths of approximately 0.6 and 0.5 nm were obtained from an ABC-based filter. The transmission spectrum overlaps when the effective index difference between two single waveguides is less than 0.002.

  1. New cobweb-structure hollow Bragg optical fibers

    Institute of Scientific and Technical Information of China (English)

    YU Rong-jin; ZHANG Yong-qiang; ZHANG Bing; WANG Chao-ran; WU Chang-qi

    2007-01-01

    A new type of Bragg fibers,i.e. hollow-core cobweb-structured optical fibers,which can be used to the low-loss transmission from visible to near infrared region (0.65 μm-1.55 μm),terahertz wave (200 μm-480 μm) and circular-polarization-maintaining single-mode transmission are investigated. Results show that the hollow-core cobweb-structured fibers have less loss than other hollow-core Bragg fibers. The fibers can be constituted by using the plastics or glasses with large absorption losses.

  2. Optimizing optical Bragg scattering for single-photon frequency conversion

    CERN Document Server

    Lefrancois, Simon; Eggleton, Benjamin J

    2014-01-01

    We develop a systematic theory for optimising single-photon frequency conversion using optical Bragg scattering. The efficiency and phase-matching conditions for the desired Bragg scattering conversion as well as spurious scattering and modulation instability are identified. We find that third-order dispersion can suppress unwanted processes, while dispersion above the fourth order limits the maximum conversion efficiency. We apply the optimisation conditions to frequency conversion in highly nonlinear fiber, silicon nitride waveguides and silicon nanowires. Efficient conversion is confirmed using full numerical simulations. These design rules will assist the development of efficient quantum frequency conversion between multicolour single photon sources for integration in complex quantum networks.

  3. Tensile-strained germanium microdisks with circular Bragg reflectors

    Science.gov (United States)

    El Kurdi, M.; Prost, M.; Ghrib, A.; Elbaz, A.; Sauvage, S.; Checoury, X.; Beaudoin, G.; Sagnes, I.; Picardi, G.; Ossikovski, R.; Boeuf, F.; Boucaud, P.

    2016-02-01

    We demonstrate the combination of germanium microdisks tensily strained by silicon nitride layers and circular Bragg reflectors. The microdisks with suspended lateral Bragg reflectors form a cavity with quality factors up to 2000 around 2 μm. This represents a key feature to achieve a microlaser with a quasi-direct band gap germanium under a 1.6% biaxial tensile strain. We show that lowering the temperature significantly improves the quality factor of the quasi-radial modes. Linewidth narrowing is observed in a range of weak continuous wave excitation powers. We finally discuss the requirements to achieve lasing with these kind of structures.

  4. Single and Multiple Phase Shifts Tilted Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Christophe Caucheteur

    2009-01-01

    Full Text Available The spectral behavior of single and multiple phase shifts tilted fiber Bragg gratings has been experimentally investigated. To this aim, a simple and cost-effective postprocessing technique based on local thermal treatment was used to create arbitrary phase shifts along the tilted grating structure. In particular, UV written tilted fiber Bragg gratings were treated by the electric arc discharge to erase the refractive index modulation in well-defined regions. We demonstrate that these defects give rise to interference pattern for all modes, and thus defect states can be achieved within all the attenuation bands, enabling a simple wavelength independent spectral tailoring of this class of devices.

  5. TrackEtching - A Java based code for etched track profile calculations in SSNTDs

    Science.gov (United States)

    Muraleedhara Varier, K.; Sankar, V.; Gangadathan, M. P.

    2017-09-01

    A java code incorporating a user friendly GUI has been developed to calculate the parameters of chemically etched track profiles of ion-irradiated solid state nuclear track detectors. Huygen's construction of wavefronts based on secondary wavelets has been used to numerically calculate the etched track profile as a function of the etching time. Provision for normal incidence and oblique incidence on the detector surface has been incorporated. Results in typical cases are presented and compared with experimental data. Different expressions for the variation of track etch rate as a function of the ion energy have been utilized. The best set of values of the parameters in the expressions can be obtained by comparing with available experimental data. Critical angle for track development can also be calculated using the present code.

  6. Comparison of Self-Etch Primers with Conventional Acid Etching System on Orthodontic Brackets

    Science.gov (United States)

    Zope, Amit; Zope-Khalekar, Yogita; Chitko, Shrikant S.; Kerudi, Veerendra V.; Patil, Harshal Ashok; Jaltare, Pratik; Dolas, Siddhesh G

    2016-01-01

    Introduction The self-etching primer system consists of etchant and primer dispersed in a single unit. The etching and priming are merged as a single step leading to fewer stages in bonding procedure and reduction in the number of steps that also reduces the chance of introduction of error, resulting in saving time for the clinician. It also results in smaller extent of enamel decalcification. Aim To compare the Shear Bond Strength (SBS) of orthodontic bracket bonded with Self-Etch Primers (SEP) and conventional acid etching system and to study the surface appearance of teeth after debonding; etching with conventional acid etch and self-etch priming, using stereomicroscope. Materials and Methods Five Groups (n=20) were created randomly from a total of 100 extracted premolars. In a control Group A, etching of enamel was done with 37% phosphoric acid and bonding of stainless steel brackets with Transbond XT (3M Unitek, Monrovia, California). Enamel conditioning in left over four Groups was done with self-etching primers and adhesives as follows: Group B-Transbond Plus (3M Unitek), Group C Xeno V+ (Dentsply), Group D-G-Bond (GC), Group E-One-Coat (Coltene). The Adhesive Remnant Index (ARI) score was also evaluated. Additionally, the surface roughness using profilometer were observed. Results Mean SBS of Group A was 18.26±7.5MPa, Group B was 10.93±4.02MPa, Group C was 6.88±2.91MPa while of Group D was 7.78±4.13MPa and Group E was 10.39±5.22MPa respectively. In conventional group ARI scores shows that over half of the adhesive was remaining on the surface of tooth (score 1 to 3). In self-etching primer groups ARI scores show that there was no or minor amount of adhesive remaining on the surface of tooth (score 4 and 5). SEP produces a lesser surface roughness on the enamel than conventional etching. However, statistical analysis shows significant correlation (p<0.001) of bond strength with surface roughness of enamel. Conclusion All groups might show clinically

  7. Dopant Selective Reactive Ion Etching of Silicon Carbide

    Science.gov (United States)

    Okojie, Robert (Inventor)

    2016-01-01

    A method for selectively etching a substrate is provided. In one embodiment, an epilayer is grown on top of the substrate. A resistive element may be defined and etched into the epilayer. On the other side of the substrate, the substrate is selectively etched up to the resistive element, leaving a suspended resistive element.

  8. Comparative Analysis of in vitro Performance of Total-Etch and Self-Etch Adhesives

    Directory of Open Access Journals (Sweden)

    Timur V. Melkumyan

    2016-12-01

    Full Text Available The aim of the study was in vitro assessment of shear bond strength and micro-leakage after application of total-etch and self-etch adhesive systems. Materials and Methods: Four adhesive systems were chosen for assessment of adhesion performance: Contax (DMG, GmbH, Bond Force (Tokuyama Dental Corp. Japan Mfr, Te-Econom Bond (Ivoclar Vivadent, Liechtenstein and Swisstec SL Bond (Coltene, Switzerland. The assessment of bond strength was performed on 20 tooth samples, which were prepared in accordance with the UltraTest technique for shear bond strength (SBS estimation. The test was conducted at a crosshead speed of 1.0 mm/min and results were fixed in kilograms. The assessment of SBS was performed on enamel and dentin separately. Microleakage assessment of self-etch and total-etch adhesive systems was performed on 20 extracted non-carious upper human premolars with immersion in 1% methylene blue solution after thermocycling. Results: Good SBS results and microleakage values on the dentin substrate were obtained after application of the Contax self-etch bonding agent. But the values of bond strength to enamel and the extent of dye penetration within the composite-enamel interface were still better with the total-etch approach.

  9. Microtensile bond strength of etch and rinse versus self-etch adhesive systems.

    Science.gov (United States)

    Hamouda, Ibrahim M; Samra, Nagia R; Badawi, Manal F

    2011-04-01

    The aim of this study was to compare the microtensile bond strength of the etch and rinse adhesive versus one-component or two-component self-etch adhesives. Twelve intact human molar teeth were cleaned and the occlusal enamel of the teeth was removed. The exposed dentin surfaces were polished and rinsed, and the adhesives were applied. A microhybride composite resin was applied to form specimens of 4 mm height and 6 mm diameter. The specimens were sectioned perpendicular to the adhesive interface to produce dentin-resin composite sticks, with an adhesive area of approximately 1.4 mm(2). The sticks were subjected to tensile loading until failure occurred. The debonded areas were examined with a scanning electron microscope to determine the site of failure. The results showed that the microtensile bond strength of the etch and rinse adhesive was higher than that of one-component or two-component self-etch adhesives. The scanning electron microscope examination of the dentin surfaces revealed adhesive and mixed modes of failure. The adhesive mode of failure occurred at the adhesive/dentin interface, while the mixed mode of failure occurred partially in the composite and partially at the adhesive/dentin interface. It was concluded that the etch and rinse adhesive had higher microtensile bond strength when compared to that of the self-etch adhesives.

  10. Dentin diffusion of HEMA released from etch-and-rinse and self-etch bonding systems.

    Science.gov (United States)

    Rathke, Andreas; Alt, Andreas; Gambin, Nadin; Haller, Bernd

    2007-12-01

    The aim of this in vitro study was to determine the diffusion of 2-hydroxyethyl methacrylate (HEMA) released from different bonding systems (BS) through dentin. Occlusal cavities with a remaining dentin thickness (RDT) of 0.5 mm (n=90) and 0.25 mm (n=80), respectively, were prepared in dentin discs of non-carious human molars. Artificial pulp chambers were attached to the pulpal side of each dentin disc. Bonding systems were applied with (Clearfil SE Bond, OptiBond FL, OptiBond Solo Plus) or without (AdheSE, Adper Prompt L-Pop, Clearfil SE Bond, OptiBond FL, OptiBond Solo Plus Self Etch, Xeno III) prior phosphoric acid etching. HEMA was detected by gas chromatography/mass spectrometry (n=10 per BS and RDT). The highest mean HEMA concentration was found in the 0.25 mm RDT group treated with OptiBond FL (13.3 microg) and the lowest mean HEMA concentration was detected in the 0.5 mm RDT group treated with AdheSE (0.5 microg). At 0.25 mm RDT the quantities of HEMA recovered in the artificial pulp chambers were significantly higher than at 0.5 mm RDT, except for Clearfil SE Bond. Etching with phosphoric acid increased the detected HEMA quantities compared with self-etch BS. In deep cavity preparations, etching with phosphoric acid should be avoided in favor of the use of self-etch BS.

  11. Four-year water degradation of a total-etch and two self-etching adhesives bonded to dentin

    NARCIS (Netherlands)

    A.I. Abdalla; A.J. Feilzer

    2008-01-01

    Objectives: To evaluate effect of direct and indirect water storage on the microtensile dentin bond strength of one total-etch and two self-etching adhesives. Methods: The adhesive materials were: one total-etch adhesive; ‘Admira Bond’ and two selfetch adhesives; ‘Clearfil SE Bond’ and ‘Hybrid Bond’

  12. Four-year water degradation of a total-etch and two self-etching adhesives bonded to dentin

    NARCIS (Netherlands)

    Abdalla, A.I.; Feilzer, A.J.

    2008-01-01

    Objectives: To evaluate effect of direct and indirect water storage on the microtensile dentin bond strength of one total-etch and two self-etching adhesives. Methods: The adhesive materials were: one total-etch adhesive; ‘Admira Bond’ and two selfetch adhesives; ‘Clearfil SE Bond’ and ‘Hybrid

  13. Plasma etching on large-area mono-, multi- and quasi-mono crystalline silicon

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    We use plasma etched Black Si (BS)[1][2] nanostructures to achieve low reflectance due to the resulting graded refractive index at the Si-air interface. The goal of this investigation is to develop a suitable texturing method for Si solar cells. Branz et al. [3]report below 3% average reflectance...... advantages such as; (i) excellent light trapping, (ii) dry, single-sided and scalable process method and (iii) etch independence on crystallinity of Si, RIE-texturing has so far not been proven superior to standard wet texturing, primarily as a result of lower power conversion efficiency due to increased...... using maskless RIE in a O2 and SF6 plasma, and the surface topology was optimized for solar cell applications by varying gas flows, pressure, power and process time. The starting substrates were 156x156 mm p-type, CZ mono-, multi- and quasi-mono crystalline Si wafers, respectively, with a thickness...

  14. Fort Bragg and the Red-Cockaded Woodpecker: A Content Analysis of Selected Local Newspapers’ Coverage of Fort Bragg’s Endangered Species Protection Efforts

    Science.gov (United States)

    1993-11-01

    woodpecker species? 3) How did the amount and tone of coverage differ between Fort Bragg’s command information newspaper, the Paraglide , and the civilian...to Fort * Bragg and its potential to offer a sample of local newspaper articles not inspired by a prepared media release. The Paraglide , a weekly...newspapers yielded 15 stories (241 paragraphs, 15 headlines) from the Fort Bragg Paraglide , 37 stories (666 paragraphs, 36 headlines) from the

  15. The research on conformal acid etching process of glass ceramic

    Science.gov (United States)

    Wang, Kepeng; Guo, Peiji

    2014-08-01

    A series of experiments have been done to explore the effect of different conditions on the hydrofluoric acid etching. The hydrofluoric acid was used to etch the glass ceramic called "ZERODUR", which is invented by SCHOTT in Germany. The glass ceramic was processed into cylindrical samples. The hydrofluoric acid etching was done in a plastic beaker. The concentration of hydrofluoric acid and the etching time were changed to measure the changes of geometric tolerance and I observed the surface using a microscope in order to find an appropriate condition of hydrofluoric acid etching.

  16. SU-8 etching in inductively coupled oxygen plasma

    DEFF Research Database (Denmark)

    Rasmussen, Kristian Hagsted; Keller, Stephan Sylvest; Jensen, Flemming

    2013-01-01

    Structuring or removal of the epoxy based, photo sensitive polymer SU-8 by inductively coupled plasma reactive ion etching (ICP-RIE) was investigated as a function of plasma chemistry, bias power, temperature, and pressure. In a pure oxygen plasma, surface accumulation of antimony from the photo......-initiator introduced severe roughness and reduced etch rate significantly. Addition of SF6 to the plasma chemistry reduced the antimony surface concentration with lower roughness and higher etch rate as an outcome. Furthermore the etch anisotropy could be tuned by controlling the bias power. Etch rates up to 800 nm...

  17. Optimization of Apodized Chirped Fiber Bragg Grating for Dispersion Compensation

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Multiwavelength chirped fiber Bragg grating (MCFBG) is a more valuable approach to chromatic dispersion compensation. And adjusting the structure of FBG will optimize the performance of dispersion compensator in 8×10Gb/s DWDM network, which is proved by simulating calculation.

  18. Development of variable-magnification X-ray Bragg optics.

    Science.gov (United States)

    Hirano, Keiichi; Yamashita, Yoshiki; Takahashi, Yumiko; Sugiyama, Hiroshi

    2015-07-01

    A novel X-ray Bragg optics is proposed for variable-magnification of an X-ray beam. This X-ray Bragg optics is composed of two magnifiers in a crossed arrangement, and the magnification factor, M, is controlled through the azimuth angle of each magnifier. The basic properties of the X-ray optics such as the magnification factor, image transformation matrix and intrinsic acceptance angle are described based on the dynamical theory of X-ray diffraction. The feasibility of the variable-magnification X-ray Bragg optics was verified at the vertical-wiggler beamline BL-14B of the Photon Factory. For X-ray Bragg magnifiers, Si(220) crystals with an asymmetric angle of 14° were used. The magnification factor was calculated to be tunable between 0.1 and 10.0 at a wavelength of 0.112 nm. At various magnification factors (M ≥ 1.0), X-ray images of a nylon mesh were observed with an air-cooled X-ray CCD camera. Image deformation caused by the optics could be corrected by using a 2 × 2 transformation matrix and bilinear interpolation method. Not only absorption-contrast but also edge-contrast due to Fresnel diffraction was observed in the magnified images.

  19. Effect of polymer coating on leakage losses in Bragg fibers.

    Science.gov (United States)

    Uspenskii, Yu A; Uzorin, E E; Vinogradov, A V; Likhachev, M E; Semjonov, S L; Bubnov, M M; Dianov, E M; Jamier, R; Février, S

    2007-05-15

    It is found that the reflection of leaky radiation from the interface between the outer silica cladding and the coating polymer greatly modifies the loss spectrum of Bragg fibers. A simple model that describes this effect is proposed and confirmed by measurement and computation.

  20. Bragg grating fiber optic sensing for bridges and other structures

    Science.gov (United States)

    Measures, Raymond M.; Alavie, A. Tino; Maaskant, Robert; Huang, Shang Yuan; LeBlanc, Michel

    1994-09-01

    We have demonstrated that fiber optic intracore Bragg grating sensors are able to measure the strain relief experienced over an extended period of time by both steel and carbon composite tendons within the concrete deck support girders of a recently constructed two span highway bridge. This is the first bridge in the world to test the prospects of using carbon fiber composite tendons to replace steel tendons. This unique set of measurements was accomplished with an array of 15 Bragg grating fiber optic sensors that were embedded within the precast concrete girders during their construction. We have also demonstrated that these same sensors can measure the change in the internal strain within the girders associated with both static and dynamic loading of the bridge with a truck. We are now studying the ability of Bragg grating fiber optic sensors to measure strong strain gradients and thereby provide a warning of debonding of any Bragg grating sensor from its host structure...one of the most important failure modes for any fiber optic strain sensor.

  1. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  2. Birefringent Bragg Gratings in Highly-Nonlinear Photonic Crystal Fiber

    Institute of Scientific and Technical Information of China (English)

    Kevin Cook; John Canning; John Holdsworth

    2008-01-01

    Efficient writing of Bragg gratings in 12-ring highly-nonlinear photonic crystal fibers is described. Experimental and numerical investigations are performed to reveal the optimum angle for coupling UV writing light to the core. Furthermore, we show that the formation of a strongly briefringent grating is at a particular angle of orientation.

  3. Crystal clear the autobiographies of Sir Lawrence and Lady Bragg

    CERN Document Server

    Thomson, Patience

    2015-01-01

    The main body of this book contains the hitherto unpublished autobiographies of both William Lawrence Bragg, an innovative scientist who won the Nobel Prize for Physics in 1915, and his wife, Alice, a Mayor of Cambridge and National Chairman of Marriage Guidance. Their autobiographies give unusual insights into the lives and times of two distinguished people and the real personalities behind their public appearance.

  4. Monolithic integrated optic fiber Bragg grating sensor interrogator

    Science.gov (United States)

    Mendoza, Edgar A.; Esterkin, Yan; Kempen, Cornelia; Sun, Songjian

    2010-04-01

    Fiber Bragg gratings (FBGs) are a mature sensing technology that has gained rapid acceptance in civil, aerospace, chemical and petrochemical, medicine, aviation and automotive industries. Fiber Bragg grating sensors can be use for a variety of measurements including strain, stress, vibration, acoustics, acceleration, pressure, temperature, moisture, and corrosion distributed at multiple locations within the structure using a single fiber element. The most prominent advantages of FBGs are: small size and light weight, multiple FBG transducers on a single fiber, and immunity to radio frequency interference. A major disadvantage of FBG technology is that conventional state-of-the-art fiber Bragg grating interrogation systems are typically bulky, heavy, and costly bench top instruments that are assembled from off-the-shelf fiber optic and optical components integrated with a signal electronics board into an instrument console. Based on the need for a compact FBG interrogation system, this paper describes recent progress towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-TransceiverTM) system based on multi-channel monolithic integrated optic sensor microchip technology. The integrated optic microchip technology enables the monolithic integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogators systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm small form factor (SFF) package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation.

  5. The Goos-Hänchen effect at Bragg diffraction.

    Science.gov (United States)

    Tamasaku, Kenji; Ishikawa, Tetsuya

    2002-07-01

    The strong incident-angle dependence of the phase of complex reflectivity causes a shift of the reflected beam from the geometrically expected path. This effect, known as the Goos-Hänchen effect in the visible region, was observed for Bragg-case diffraction in the hard X-ray region. The shift was found to be in good agreement with the theory.

  6. A highly sensitive fiber Bragg grating diaphragm pressure transducer

    Science.gov (United States)

    Allwood, Gary; Wild, Graham; Lubansky, Alex; Hinckley, Steven

    2015-10-01

    In this work, a novel diaphragm based pressure transducer with high sensitivity is described, including the physical design structure, in-depth analysis of optical response to changes in pressure, and a discussion of practical implementation and limitations. A flat circular rubber membrane bonded to a cylinder forms the body of the transducer. A fiber Bragg grating bonded to the center of the diaphragm structure enables the fractional change in pressure to be determined by analyzing the change in Bragg wavelength of the reflected spectra. Extensive evaluation of the physical properties and optical characteristics of the transducer has been performed through experimentation, and modeling using small deformation theory. The results show the transducer has a sensitivity of 0.116 nm/kPa, across a range of 15 kPa. Ultra-low cost interrogation of the optical signal was achieved through the use of an optically mismatched Bragg grating acting as an edge filter to convert the spectral change into an intensity change. A numerical model of the intensity based interrogation was implemented in order to validate the experimental results. Utilizing this interrogation technique and housing both the sensing and reference Bragg gratings within the main body of the transducer means it is effectively temperature insensitive and easily connected to electronic systems.

  7. Inductively coupled plasma etching of GaN using SiCl{sub 4}/Cl{sub 2}/Ar for submicron-sized features fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Dylewicz, R.; Patela, S. [Photonics Group, Faculty of Microsystem Electronics and Photonics, Wroclaw University of Technology, ul. Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Hogg, R.A.; Fry, P.W.; Parbrook, P.J.; Airey, R.; Tahraoui, A. [Department of Electronic and Electrical Engineering, EPSRC National Center for III-V Technologies, University of Sheffield, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD (United Kingdom)

    2007-06-15

    In this paper we report the optimization of the fabrication process of a grating coupler, which is fully integrated with a GaN planar waveguide. To our knowledge, this is the first report of a grating-assisted optical coupler in gallium nitride. ICP dry etching of n-doped GaN layers was investigated, where SiCl{sub 4}/Cl{sub 2}/Ar gas mixture was used under different etching conditions. We report n-GaN ICP etching ratio of 520-2680 Aa min{sup -1} as well as etching selectivity of GaN over SiO{sub 2} from 3 to 8, in the most cases. Grating ridge and grating groove width as well as the sidewalls slope were evaluated by SEM microscope. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Chemical etching of deformation sub-structures in quartz

    Science.gov (United States)

    Wegner, M. W.; Christie, J. M.

    1983-02-01

    Chemical etching of dislocations has been studied in natural and synthetic quartz single crystals, in deformed synthetic quartz and in naturally and experimentally deformed quartzites. The ability of different etchants to produce polished or preferentially etched surfaces on quartz is described. Dislocation etching was achieved on all crystal planes examined by using a saturated solution of ammonium bifluoride as the etchant. Appropriate etching times were determined for etching quartzites for grain size, subgrain boundaries, deformation lamellae, dislocations and twins. Growth and polished surfaces of synthetic single crystal quartz were similarly etched and dislocation etch pits, characteristic of various orientations were found. The use of ammonium bifluoride proved to be expecially advantageous for the basal plane, producing a polished surface with etch pits, suitable for dislocation etch pit counting. “Double” etch pits have been found on Dauphiné twin boundaries on the basal plane and the first order prism, using this etchant. Slip lines and deformation bands were suitably etched on deformed synthetic crystal surfaces for identification of the slip planes. Other acidic etchants have been explored and their application to the study of deformation structures in quartz crystals is discussed.

  9. Surface engineering of SiC via sublimation etching

    Science.gov (United States)

    Jokubavicius, Valdas; Yazdi, Gholam R.; Ivanov, Ivan G.; Niu, Yuran; Zakharov, Alexei; Iakimov, Tihomir; Syväjärvi, Mikael; Yakimova, Rositsa

    2016-12-01

    We present a technique for etching of SiC which is based on sublimation and can be used to modify the morphology and reconstruction of silicon carbide surface for subsequent epitaxial growth of various materials, for example graphene. The sublimation etching of 6H-, 4H- and 3C-SiC was explored in vacuum (10-5 mbar) and Ar (700 mbar) ambient using two different etching arrangements which can be considered as Si-C and Si-C-Ta chemical systems exhibiting different vapor phase stoichiometry at a given temperature. The surfaces of different polytypes etched under similar conditions are compared and the etching mechanism is discussed with an emphasis on the role of tantalum as a carbon getter. To demonstrate applicability of such etching process graphene nanoribbons were grown on a 4H-SiC surface that was pre-patterned using the thermal etching technique presented in this study.

  10. Highly selective etching of SnO2 absorber in binary mask structure for extreme ultra-violet lithography.

    Science.gov (United States)

    Lee, Soo Jin; Jung, Chang Yong; Park, Sung Jin; Hwangbo, Chang Kweun; Seo, Hwan Seok; Kim, Sung Soo; Lee, Nae-Eung

    2012-04-01

    Among the core EUVL (extreme ultra-violet lithography) technologies for nanoscale patterning below the 30 nm node for Si chip manufacturing, new materials and fabrication processes for high-performance EUVL masks are of considerable importance due to the use of new reflective optics. In this work, the selective etching of SnO2 (tin oxide) as a new absorber material, with high EUV absorbance due to its large extinction coefficient, for the binary mask structure of SnO2 (absorber layer)/Ru (capping/etch stop layer)/Mo-Si multilayer (reflective layer)/Si (substrate), was investigated. Because infinitely high selectivity of the SnO2 layer to the Ru ESL is required due to the ultrathin nature of the Ru layer, various etch parameters were assessed in the inductively coupled Cl2/Ar plasmas in order to find the process window required for infinitely high etch selectivity of the SnO2 layer. The results showed that the gas flow ratio and V(dc) value play an important role in determining the process window for the infinitely high etch selectivity of SnO2 to Ru ESL. The high EUV-absorbance SnO2 layer, patternable by a dry process, allows a smaller absorber thickness, which can mitigate the geometric shadowing effects observed for high-performance binary EUVL masks.

  11. Block copolymer templated etching on silicon.

    Science.gov (United States)

    Qiao, Yinghong; Wang, Dong; Buriak, Jillian M

    2007-02-01

    The use of self-assembled polymer structures to direct the formation of mesoscopic (1-100 nm) features on silicon could provide a fabrication-compatible means to produce nanoscale patterns, supplementing conventional lithographic techniques. Here we demonstrate nanoscale etching of silicon, applying standard aqueous-based fluoride etchants, to produce three-dimensional nanoscale features with controllable shapes, sizes, average spacing, and chemical functionalization. The block copolymers serve to direct the silicon surface chemistry by controlling the spatial location of the reaction as well as concentration of reagents. The interiors of the resulting etched nanoscale features may be selectively functionalized with organic monolayers, metal nanoparticles, and other materials, leading to a range of ordered arrays on silicon.

  12. Wafer scale oblique angle plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Burckel, David Bruce; Jarecki, Jr., Robert L.; Finnegan, Patrick Sean

    2017-05-23

    Wafer scale oblique angle etching of a semiconductor substrate is performed in a conventional plasma etch chamber by using a fixture that supports a multiple number of separate Faraday cages. Each cage is formed to include an angled grid surface and is positioned such that it will be positioned over a separate one of the die locations on the wafer surface when the fixture is placed over the wafer. The presence of the Faraday cages influences the local electric field surrounding each wafer die, re-shaping the local field to be disposed in alignment with the angled grid surface. The re-shaped plasma causes the reactive ions to follow a linear trajectory through the plasma sheath and angled grid surface, ultimately impinging the wafer surface at an angle. The selected geometry of the Faraday cage angled grid surface thus determines the angle at with the reactive ions will impinge the wafer.

  13. Characterization of aluminum surfaces: Sorption and etching

    Science.gov (United States)

    Polkinghorne, Jeannette Clera

    Aluminum, due to its low density and low cost, is a key material for future lightweight applications. However, like other structural materials, aluminum is subject to various forms of corrosion damage that annually costs the United States approximately 5% of its GNP [1]. The main goal is to investigate the effects of various solution anions on aluminum surfaces, and specifically probe pit initiation and inhibition. Using surface analysis techniques including X-ray photoelectron spectroscopy, Auger electron spectroscopy, and scanning electron microscopy, results have been correlated with those obtained from electrochemical methods and a radiolabeling technique developed in the Wieckowski laboratory. Analysis of data has indicated that important variables include type of anion, solution pH, and applied electrode potential. While aggressive anions such as chloride are usually studied to elucidate corrosion processes to work ultimately toward inhibition, its corrosive properties can be successfully utilized in the drive for higher energy and smaller-scale storage devices. Fundamental information gained regarding anion interaction with the aluminum surface can be applied to tailor etch processes. Standard electrochemical techniques and SEM are respectively used to etch and analyze the aluminum substrate. Aluminum electrolytic capacitors are comprised of aluminum anode foil covered by an anodically grown aluminum oxide dielectric film, electrolytic paper impregnated with electrolyte, and aluminum cathode foil. Two main processes are involved in the fabrication of aluminum electrolytic capacitors, namely etching and anodic oxide formation. Etching of the anode foil results in a higher surface area (up to 20 times area enlargement compared to unetched foil) that translates into a higher capacitance gain, permitting more compact and lighter capacitor manufacture. Anodic oxide formation on the anode, creates the required dielectric to withstand high voltage operation. A

  14. Crystallographic orientation dependent etching of graphene layers

    Energy Technology Data Exchange (ETDEWEB)

    Nemes-Incze, Peter; Biro, Laszlo Peter [Research Institute for Technical Physics and Materials Science, PO. Box 49, 1525 Budapest (Hungary); Magda, Gabor [Budapest University of Technology and Economics (BME), PO Box 91, 1521 Budapest (Hungary); Kamaras, Katalin [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, PO Box 49, 1525, Budapest (Hungary)

    2010-04-15

    Graphene has gripped the scientific community ever since its discovery in 2004, with very promising electronic properties and hopes to integrate graphene into nanoelectronic devices. For graphene to make its way into electronic devices, two major obstacles have to be overcome: reproducible preparation of large area graphene samples and patterning techniques to obtain functional components. In this paper we present a graphene etching technique, which is crystallographic orientation selective and allows for the patterning of graphene layers using a chemical reduction process. The process involves the reduction of the SiO{sub 2} support by the carbon in the graphene itself. This reaction only occurs at the sample edges and does not result in the degradation of the graphene crystal lattice itself. However, we have observed evidence of strong hole doping in our etched samples. This etching technique opens up new possibilities in graphene patterning and modification. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Track etching technique in membrane technology

    Energy Technology Data Exchange (ETDEWEB)

    Apel, P. E-mail: apel@lnr.jinr.ru

    2001-06-01

    Track membrane (TM) technology is an example of industrial application of track etching technique. Track-etch membranes offer distinct advantages over conventional membranes due to their precisely determined structure. Their pore size, shape and density can be varied in a controllable manner so that a membrane with the required transport and retention characteristics can be produced. The use of heavy ion accelerators made it possible to vary LET of track-forming particles, angle distribution of pore channels and pore lengths. So far the track formation and etching process has been studied in much detail for several polymeric materials. Today we understand determining factors and have numerous empirical data enabling us to manufacture any particular product based on polyethylene terephthalate (PET) or polycarbonate (PC) films. Pore shape can be made cylindrical, conical, funnel-like, or cigar-like at will. A number of modification methods has been developed for creating TMs with special properties and functions. Applications of 'conventional' track membranes can be categorized into three groups: process filtration, cell culture, and laboratory filtration. The use in biology stands out among other areas. Nuclear track pores find diverse applications as model systems and as templates for the synthesis of micro- and nanostructures.

  16. ZERODUR: bending strength data for etched surfaces

    Science.gov (United States)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  17. Transport through track etched polymeric blend membrane

    Indian Academy of Sciences (India)

    Kamlendra Awasthi; Vaibhav Kulshreshtha; B Tripathi; N K Acharya; M Singh; Y K Vijay

    2006-06-01

    Polymer blends of polycarbonate (PC) and polysulphone (PSF) having thickness, 27 m, are prepared by solution cast method. The transport properties of pores in a blend membrane are examined. The pores were produced in this membrane by a track etching technique. For this purpose, a thin polymer membrane was penetrated by a single heavy ion of Ni7+ of 100 MeV, followed by preferential chemical etching of the ion track. Ion permeation measurements show that pores in polymeric membrane are charged or neutralized, which depends upon the variation in concentration of the solvent. The – curve at concentration, N/10, shows that the pores are negatively charged, whereas at concentration, N/20, the linear nature of – curve indicates that the pores approach towards neutralized state and on further concentration, N/40, the pores become fully neutralized, consequently the rectifier behaviour of pores has been omitted. The gas permeability of hydrogen and carbon dioxide of this membrane was measured with increasing etching time. The permeability was measured from both the sides. Permeability at the front was larger than the permeability at the back which shows asymmetric behaviour of membranes.

  18. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Written By: Kierstan Boyd ... your vision. Privacy Policy Related New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  19. Minimizing lateral domain collapse in etched poly(3-hexylthiophene)-block-polylactide thin films for improved optoelectronic performance.

    Energy Technology Data Exchange (ETDEWEB)

    Botiz, I.; Martinson, A. B. F.; Darling, S. B.; Argonne-Northwestern Solar Energy Research Center

    2010-02-10

    Thin films of poly(3-hexylthiophene)-block-polylactide block copolymer exhibiting ordered lamellar morphology have been selectively etched to produce structured films that could be used in fabrication of idealized bulk heterojunctions for organic or hybrid solar energy devices. Etched poly(3-hexylthiophene) films, after being rinsed in water to remove degraded polylactide fragments, were dried using various drying approaches that reduce or alleviate surface tension forces generated during liquid evaporation from the film. As emphasized by atomic force microscopy, X-ray diffraction, and emission photoluminescence, a reduction in domain collapse leads to improved molecular ordering in the plane perpendicular to the substrate and enhanced photoluminescence quenching when paired with fullerene C{sub 60} hydroxide electron acceptors.

  20. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... Dry Eye Dry Eye Treatment What Is Dry Eye? Written By: Kierstan Boyd Reviewed By: Brenda Pagan- ...

  1. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué Es el Ojo Seco? ...

  2. Ionoacoustic characterization of the proton Bragg peak with submillimeter accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Assmann, W., E-mail: walter.assmann@lmu.de; Reinhardt, S.; Lehrack, S.; Edlich, A.; Thirolf, P. G.; Parodi, K. [Department for Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748 (Germany); Kellnberger, S.; Omar, M.; Ntziachristos, V. [Institute for Biological and Medical Imaging, Technische Universität München and Helmholtz Zentrum München, Ingolstädter Landstrasse 1, Neuherberg 85764 (Germany); Moser, M.; Dollinger, G. [Institute for Applied Physics and Measurement Technology, Universität der Bundeswehr, Werner-Heisenberg-Weg 39, Neubiberg 85577 (Germany)

    2015-02-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams in tissue (ionoacoustics). Aim of this work was to study experimentally the achievable position resolution of ionoacoustics under idealized conditions using high frequency ultrasonic transducers and a specifically selected probing beam. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity and length. The acoustic signal of single proton pulses was measured by different PZT-based ultrasound detectors (3.5 and 10 MHz central frequencies). The proton dose distribution in water was calculated by Geant4 and used as input for simulation of the generated acoustic wave by the matlab toolbox k-WAVE. Results: In measurements from this study, a clear signal of the Bragg peak was observed for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Bragg peak position measurements were reproducible within ±30 μm and agreed with Geant4 simulations to better than 100 μm. The ionoacoustic signal pattern allowed for a detailed analysis of the Bragg peak and could be well reproduced by k-WAVE simulations. Conclusions: The authors have studied the ionoacoustic signal of the Bragg peak in experiments using a 20 MeV proton beam with its correspondingly localized energy deposition, demonstrating submillimeter position resolution and providing a deep insight in the correlation between the acoustic signal and Bragg peak shape. These results, together with earlier experiments and new simulations (including the results in this study) at higher energies, suggest ionoacoustics as a technique for range verification in particle therapy at locations, where the tumor can be localized by ultrasound

  3. Histologic Evaluation of Human Pulp Response to Total Etch and Self Etch Adhesive Systems

    OpenAIRE

    Malekipour, Mohammad Reza; Razavi, Sayed Mohammad; Khazaei, Saber; Kazemi, Shantia; Behnamanesh, Maryam; Shirani, Farzaneh

    2013-01-01

    Background To investigate pulp response to the application of two types adhesive systems (total-etch and self-etch) in human premolar teeth. Materials and Methods Cavities limited to enamel walls in all margins with 2.5 mm depth were prepared on buccal surfaces of thirty three human premolars. The cavities were treated with the following adhesive. Single Bond (SB) and Prompt L-Pop (PLP). The teeth were extracted after 30 days and prepared due to histological technique. Results Pulp responses ...

  4. Methods of removal of defects arising at liquid etching of polycrystalline silicon

    Directory of Open Access Journals (Sweden)

    Ivanchykou A. E.

    2008-02-01

    Full Text Available The paper presents a model of generation of defects having the form of spots on the surface of the polycrystalline silicon during processing of semiconductor wafers with hydrofluoric acid based etchant, and a model of removal of such defects in chemical solutions. The authors investigate how the centrifuge speed during drying and the relief of structures, produced on the plate, effect the number of defects. It is shown that there is a possibility to remove defects by chemical treatment in the peroxide-ammonia solutions (PAS and also by sequence of chemical cleaning in Karo mixture, SiO2 etching and treatment in PAS.

  5. Extreme ultraviolet lithography mask etch study and overview

    Science.gov (United States)

    Wu, Banqiu; Kumar, Ajay; Chandrachood, Madhavi; Sabharwal, Amitabh

    2013-04-01

    An overview of extreme ultraviolet lithography (EUVL) mask etch is presented and a EUVL mask etch study was carried out. Today, EUVL implementation has three critical challenges that hinder its adoption: extreme ultraviolet (EUV) source power, resist resolution-line width roughness-sensitivity, and a qualified EUVL mask. The EUVL mask defect challenges result from defects generated during blank preparation, absorber and multilayer deposition processes, as well as patterning, etching and wet clean processes. Stringent control on several performance criteria including critical dimension (CD) uniformity, etch bias, micro-loading, profile control, defect control, and high etch selectivity requirement to capping layer is required during the resist pattern duplication on the underlying absorber layer. EUVL mask absorbers comprise of mainly tantalum-based materials rather than chrome- or MoSi-based materials used in standard optical masks. Compared to the conventional chrome-based absorbers and phase shift materials, tantalum-based absorbers need high ion energy to obtain moderate etch rates. However, high ion energy may lower resist selectivity, and could introduce defects. Current EUVL mask consists of an anti-reflective layer on top of the bulk absorber. Recent studies indicate that a native oxide layer would suffice as an anti-reflective coating layer during the electron beam inspection. The absorber thickness and the material properties are optimized based on optical density targets for the mask as well as electromagnetic field effects and optics requirements of the patterning tools. EUVL mask etch processes are modified according to the structure of the absorber, its material, and thickness. However, etch product volatility is the fundamental requirement. Overlapping lithographic exposure near chip border may require etching through the multilayer, resulting in challenges in profile control and etch selectivity. Optical proximity correction is applied to further

  6. Self-etching adhesives increase collagenolytic activity in radicular dentin.

    Science.gov (United States)

    Tay, Franklin R; Pashley, David H; Loushine, Robert J; Weller, R Norman; Monticelli, Francesca; Osorio, Raquel

    2006-09-01

    Endogenous matrix metalloproteinases (MMPs) release from crown dentin and their activation results in degradation of hybrid layers created by dentin adhesives. This study tested the hypothesis that instrumented intraradicular dentin possesses latent collagenolytic activity that is activated by mild self-etching adhesives. Root dentin shavings were produced from 50 cleaned and shaped, saline-irrigated root canals using Gates Glidden drills and rinsed with sodium azide to prevent bacterial growth. Dried dentin powder aliquots were treated with two clinically-relevant MMP inhibitors, 2% chlorhexidine for 10 minutes and 17% EDTA for 1 minute. Additional dentin powder was mixed with Clearfil Liner Bond 2V or Clearfil Tri-S Bond for 1 minute followed by extracting the adhesives with acetone. Dentin powder was also treated with 2% chlorhexidine for 10 minutes before or after adhesive application. Collagenolytic activities of the nine groups were assayed with a fluorometer in 96-well plates, by recording the changes in fluorescence before and after addition of fluorescein-labeled type I collagen. Epoxy resin-embedded powders were examined with TEM for the extent of demineralization. Instrumented, mineralized intraradicular dentin possessed low but detectable collagenolytic activity that was inhibited by chlorhexidine (p dentin powder and activated latent MMPs, with 14- to 15-fold increases in collagenolytic activities (p MMPs without denaturing these enzymes, and may adversely affect the longevity of bonded root canal fillings and posts.

  7. Er:YAG laser radiation etching of enamel

    Science.gov (United States)

    Dostalova, Tatjana; Jelinkova, Helena; Krejsa, Otakar; Hamal, Karel; Kubelka, Jiri; Prochazka, Stanislav

    1996-12-01

    This study compares the effects of acid treatment and Er:YAG laser radiation on the enamel. The permanent human molars were used. Oval cavities in the buccal surface were prepared and the edges of cavities were irradiated by Er:YAG radiation. The energy of laser was 105 mJ and repetition rate 1 Hz. The radiation was focused by CaF2 lens and the sample was placed in the focus. Ten samples were etched by 35 percent phosphoric acid during 60 s. Than cavities were filled with composite resin following manufacturers directions. By laser etching the structure enamel in section was rougher. The optimal connection between the enamel and composite resin was achieved in 75 percent by acid etching and in 79.2 percent by Er:YAG laser etching. Er:YAG laser etching could be alternative method for etching of enamel.

  8. Polyimide-coated fiber Bragg grating for relative humidity sensing

    Science.gov (United States)

    Lin, Yao; Gong, Yuan; Wu, Yu; Wu, Huijuan

    2015-03-01

    A fiber-optic humidity sensor has been fabricated by coating a moisture sensitive polymer film to the fiber Bragg grating (FBG). The Bragg wavelength of the polyimide-coated FBG changes while it is exposed to different humidity conditions due to the volume expansion of the polyimide coating. The characteristics of sensors, including sensitivity, temporal response, and hysteresis, were improved by controlling the coating thickness and the degree of imidization during the thermal curing process of the polyimide. In the relative humidity (RH) condition ranging from 11.3% RH to 97.3% RH, the sensitivity of the sensor was about 13.5 pm/% RH with measurement uncertainty of ±1.5% RH.

  9. Planar Bragg Grating Sensors—Fabrication and Applications: A Review

    Directory of Open Access Journals (Sweden)

    I. J. G. Sparrow

    2009-01-01

    Full Text Available We discuss the background and technology of planar Bragg grating sensors, reviewing their development and describing the latest developments. The physical operating principles are discussed, relating device operation to user requirements. Recent performance of such devices includes a planar Bragg grating sensor design which allows refractive index resolution of 1.9×10−6 RIU and temperature resolution of 0.03∘C. This sensor design is incorporated into industrialised applications allowing the sensor to be used for real time sensing in intrinsically safe, high-pressure pipelines, or for insertion probe applications such as fermentation. Initial data demonstrating the ability to identify solvents and monitor long term industrial processes is presented. A brief review of the technology used to fabricate the sensors is given along with examples of the flexibility afforded by the technique.

  10. Multiple Bragg reflection by a thick mosaic crystal.

    Science.gov (United States)

    Wuttke, Joachim

    2014-09-01

    Symmetric Bragg-case reflections from a thick, ideally imperfect, crystal slab are studied mostly by analytical means. The scattering transfer function of a thin mosaic layer is derived and brought into a form that allows for analytical approximations or easy quadrature. The Darwin-Hamilton equations are generalized, lifting the restriction of wavevectors to a two-dimensional scattering plane. A multireflection expansion shows that wavevector diffusion can be studied independently of the real-space coordinate. Combining analytical arguments and Monte Carlo simulations, multiple Bragg reflections are found to result in a minor correction of the reflected intensity, a moderate broadening of the reflected azimuth angle distribution, a considerable modification of the polar angle distribution, and a noticeable shift and distortion of rocking curves.

  11. Influence of Humidity on Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Ander Montero

    2014-01-01

    Full Text Available We demonstrate the influence of the relative humidity (RH on the wavelength of fiber Bragg grating sensors (FBGS, performing tests with five FBGS at different humidity and temperature conditions. These tests were performed in a climate chamber whose RH changes according to a scheduled profile from 30% to 90%, in steps of 10%. These profiles were repeated for a wide range of temperatures from 10∘C to 70∘C, in steps of 10∘C. Two different types of instrumentation methods have been tested, spot welding and epoxy bonding, in two different materials, steel and carbon fiber reinforced polymer (CFRP. We discuss the results for each type of sensor and instrumentation method by analyzing the linearity of the Bragg wavelength with RH and temperature.

  12. Andreev-Bragg Reflection from an Amperian Superconductor.

    Science.gov (United States)

    Baireuther, P; Hyart, T; Tarasinski, B; Beenakker, C W J

    2015-08-28

    We show how an electrical measurement can detect the pairing of electrons on the same side of the Fermi surface (Amperian pairing), recently proposed by Patrick Lee for the pseudogap phase of high-Tc cuprate superconductors. Bragg scattering from the pair-density wave introduces odd multiples of 2k(F) momentum shifts when an electron incident from a normal metal is Andreev reflected as a hole. These Andreev-Bragg reflections can be detected in a three-terminal device, containing a ballistic Y junction between normal leads (1, 2) and the superconductor. The cross-conductance dI1/dV2 has the opposite sign for Amperian pairing than it has either in the normal state or for the usual BCS pairing.

  13. Localized topological states in Bragg multihelicoidal fibers with twist defects

    Science.gov (United States)

    Alexeyev, C. N.; Lapin, B. P.; Milione, G.; Yavorsky, M. A.

    2016-06-01

    We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry of the fiber's refractive index. We have shown that this effect has a pronounced crossover behavior. We have also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes. According to this principle, such systems have to possess topological activity, that is, the ability to change the topological charge of the incoming field, and operate in the Bragg regime.

  14. Reduction of Bragg-grating-induced coupling to cladding modes

    DEFF Research Database (Denmark)

    Berendt, Martin Ole; Bjarklev, Anders Overgaard; Soccolich, C.E.

    1999-01-01

    We discuss fiber designs that have been suggested for the reduction of Bragg-grating induced coupling to cladding modes. The discussion is based on a theoretical approach that includes the effect of asymmetry in the UV-induced index grating, made by UV-side writing. Experimental results from...... gratings in a depressed-cladding fiber are compared with simulations. The model gives good agreement with the measured transmission spectrum and accounts for the pronounced coupling to asymmetrical cladding modes, even when the grating is written with the smallest possible blaze. The asymmetry causing...... this is accounted for by the unavoidable attenuation of the UV light. It is found for the considered fiber designs that a high numerical-aperture fiber increases the spectral separation between the Bragg resonance and the onset of cladding-mode losses. A depressed-cladding fiber reduces the coupling strength...

  15. Multiplexing technique using amplitude-modulated chirped fiber Bragg gratings

    Science.gov (United States)

    Wong, Allan C. L.; Childs, Paul A.; Peng, Gang-Ding

    2007-07-01

    We propose a new multiplexing technique using amplitude-modulated chirped fiber Bragg gratings that have an identical center Bragg wavelength. Each grating is inscribed with a unique amplitude modulation that allows them to be multiplexed with complete overlapping within a certain bandwidth. To demodulate the multiplexed signal, the discrete wavelet transform is employed. Concurrently, a wavelet denoising technique is used to reduce the noise. This proposed multiplexing technique has been verified through strain measurements. Experimental results showed that for strains applied up to 1250 μɛ the absolute error and cross-talk are within ±20 μɛ and 16 μɛ, respectively. A strain resolution of 4 μɛ is obtained.

  16. Round Robin for Optical Fiber Bragg Grating Metrology.

    Science.gov (United States)

    Rose, A H; Wang, C M; Dyer, S D

    2000-01-01

    NIST has administered the first round robin of measurements for optical fiber Bragg gratings. We compared the measurement of center wavelength, bandwidth, isolation, minimum relative transmittance, and relative group delay among several grating types in two industry groups, telecommunications and sensors. We found that the state of fiber Bragg grating metrology needs improvement in most areas. Specifically, when tunable lasers are used a filter is needed to remove broadband emissions from the laser. The linear slope of relative group delay measurements is sensitive to drift and systematic bias in the rf-modulation technique. The center wavelength measurement had a range of about 27 pm in the sensors group and is not adequate to support long-term structural monitoring applications.

  17. Photonic crystal distributed feedback fiber lasers with Bragg gratings

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    Two new types of optical fibers, where air-holes are running down their length, are considered for making fiber lasers with Bragg gratings. The mode areas for pump and signal in these fiber lasers may be either larger or smaller compared to the corresponding mode areas for fiber lasers based on s...... on standard step index fibers. This makes possible realization of fiber lasers with a low pump threshold (small mode area), and fiber lasers suitable for high-power applications (large mode area)......Two new types of optical fibers, where air-holes are running down their length, are considered for making fiber lasers with Bragg gratings. The mode areas for pump and signal in these fiber lasers may be either larger or smaller compared to the corresponding mode areas for fiber lasers based...

  18. Comparative evaluation of self-etching primers and phosphoric acid effectiveness on composite to enamel bond: an in vitro study.

    Science.gov (United States)

    Patil, Basanagouda S; Rao, Bk Raghavendra; Sharathchandra, Sm; Hegde, Reshma; Kumar, G Vinay

    2013-09-01

    The aim of the present study was to investigate the effectiveness of the one total-etch self-priming adhesive, one two-step self-etching primer adhesive, and one 'all-in-one' self-etching adhesive system on the adhesion of a resin composite to enamel. Thirty-six freshly extracted human mandibular molars were selected for this study. A fat area about 5 mm in diameter was created on the exposed mesial surface of enamel of each tooth by moist grinding with 320, 420 and 600 grit silicon carbide paper. Twelve teeth were randomly assigned into three groups. In group 1, Adper Easy One (3M ESPE), a one step self-etching primer adhesive was applied and light curing unit for 10 seconds. In group 2, Adper SE Plus, a two-step self-etching primer with bottle A containing the aqueous primer and bottle B containing the acidic adhesive was applied and light cured for 10 seconds. Group 3 (control)-etchant 37% phosphoric acid is applied to the surface for 15 seconds and rinsed with water and air dried and adhesive (single bond 2) is applied to the surface and tube is placed and light cured for 20 seconds. Composite material (Z350) was placed in the tube and light cured for 40 seconds in all the groups. Bond strength testing was done using universal testing machine at the enamel-composite interface. The debonded enamel surface was evaluated in stereomicroscope to assess the cohesive, adhesive or mixed fracture. Data was statistically analyzed by one way analysis of variance (ANOVA). Group 1 performed least among all groups with a mean score of 19.46 MPa. Group 2 had a mean score of 25.67 MPa. Group 3 had a mean score of 27.16 MPa. Under the conditions of this in vitro study, the bond strength values of the two-step self-etching primer systems tested were similar to the total-etch. And, one step self-etching primers have lower bond strength compared to the total-etch.

  19. Track-etched membrane: dynamics of pore formation

    Science.gov (United States)

    Ferain, E.; Legras, R.

    1994-02-01

    The dynamics of pore formation during etching of heavy ion (Ar 9+ - 4.5 MeV/amu) irradiated bisphenol-A polycarbonate (PC) and polyethylene terephthalate (PET) films is determined by a conductivity cell. This work presents the theoretical basis of this method and describes the experimental procedure. The obtained results allow the determination of the track ( Vt) and bulk ( Vg) etch rates, and an estimate of the damage zone diameter in PC before etching.

  20. Bulk molybdenum field emitters by inductively coupled plasma etching.

    Science.gov (United States)

    Zhu, Ningli; Cole, Matthew T; Milne, William I; Chen, Jing

    2016-12-07

    In this work we report on the fabrication of inductively coupled plasma (ICP) etched, diode-type, bulk molybdenum field emitter arrays. Emitter etching conditions as a function of etch mask geometry and process conditions were systematically investigated. For optimized uniformity, aspect ratios of >10 were achieved, with 25.5 nm-radius tips realised for masks consisting of aperture arrays some 4.45 μm in diameter and whose field electron emission performance has been herein assessed.

  1. Modification of etching patterns in bovine dental enamel.

    Science.gov (United States)

    Lees, S; Trombly, P L; Skobe, Z; Gariepy, E E; Trull, A F

    1979-08-01

    It is presumed that the etching pattern is controlled by the residual organic content of dental enamel. Pretreatment with 1.ON NaOH sould remove the organic material and modify the etching pattern. SEM studies and other tests for physical and chemical properties show that the predicted modification of the etching pattern, when the tooth surface is pretreated with NaOH solution, occurs apparently without other changes or properties.

  2. Plasma etching on large-area mono-, multi- and quasi-mono crystalline silicon

    DEFF Research Database (Denmark)

    Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk; Boisen, Anja

    2013-01-01

    We use plasma etched Black Si (BS)[1][2] nanostructures to achieve low reflectance due to the resulting graded refractive index at the Si-air interface. The goal of this investigation is to develop a suitable texturing method for Si solar cells. Branz et al. [3]report below 3% average reflectance...... for their 16.8% efficient black Si cell using a metal-assisted, chemical etching method on FZ mono-crystalline Si substrates. Yoo et al. [4] use RIE similar to this work on large-area, multi-crystalline Si cells and achieve a 16.1% efficiency despite a relatively high reflectance of 13.3%. Despite several...... advantages such as; (i) excellent light trapping, (ii) dry, single-sided and scalable process method and (iii) etch independence on crystallinity of Si, RIE-texturing has so far not been proven superior to standard wet texturing, primarily as a result of lower power conversion efficiency due to increased...

  3. Nonlinear pulse propagation in birefringent fiber Bragg gratings.

    Science.gov (United States)

    Pereira, S; Sipe, J

    1998-11-23

    We present two sets of equations to describe nonlinear pulse propagation in a birefringent fiber Bragg grating. The first set uses a coupled-mode formalism to describe light in or near the photonic band gap of the grating. The second set is a pair of coupled nonlinear Schroedinger equations. We use these equations to examine viable switching experiments in the presence of birefringence. We show how the birefringence can both aid and hinder device applications.

  4. Anderson localization in Bragg-guiding arrays with negative defects

    CERN Document Server

    Lobanov, Valery E; Vysloukh, Victor A; Torner, Lluis

    2012-01-01

    We show that Anderson localization is possible in waveguide arrays with periodically-spaced defect waveguides having lower refractive index. Such localization is mediated by Bragg reflection, and it takes place even if diagonal or off-diagonal disorder affects only defect waveguides. For off-diagonal disorder the localization degree of the intensity distributions monotonically grows with increasing disorder. In contrast, under appropriate conditions, increasing diagonal disorder may result in weaker localization.

  5. Bragg optics computer codes for neutron scattering instrument design

    Energy Technology Data Exchange (ETDEWEB)

    Popovici, M.; Yelon, W.B.; Berliner, R.R. [Missouri Univ. Research Reactor, Columbia, MO (United States); Stoica, A.D. [Institute of Physics and Technology of Materials, Bucharest (Romania)

    1997-09-01

    Computer codes for neutron crystal spectrometer design, optimization and experiment planning are described. Phase space distributions, linewidths and absolute intensities are calculated by matrix methods in an extension of the Cooper-Nathans resolution function formalism. For modeling the Bragg reflection on bent crystals the lamellar approximation is used. Optimization is done by satisfying conditions of focusing in scattering and in real space, and by numerically maximizing figures of merit. Examples for three-axis and two-axis spectrometers are given.

  6. Optical parameters of the tunable Bragg reflectors in squid

    OpenAIRE

    Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.

    2013-01-01

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryt...

  7. Simulation of Novel Tunable Nonlinear Chirped Fiber Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-min; YU Zhong-yuan; ZHANG Xiao-guang; YU Li; YANG Bo-jun

    2003-01-01

    A novel tunable chirped fiber Bragg grating technology is proposed and simulated numerically by Matlab. If we adhere a uniform fiber grating with super magnetostrictive film and expose them in a non-uniform magnetic field, the period of the grating can be changed with the strain imposed on it by the magnetostrictive effect .The chirped characteristics can be tuned by changing the magnetic filed which is very flexible in designing.

  8. Moiré Fibre Bragg Grating Written on Strained Fibres

    Institute of Scientific and Technical Information of China (English)

    孙磊; 冯新焕; 刘艳格; 张伟刚; 袁树忠; 开桂云; 董孝义

    2004-01-01

    Moiré fibre Bragg gratings are made in a single mode fibre and a polarization-maintaining fibre respectively, using an excimer KrF laser and a phase mask. Two gratings are written at the same location of the optical fibre. The wavelength spacing can be finely tuned from 0 to 1.86nm by straining the optical fibre during UV illumination.

  9. Fiber Bragg Gratings Embedded in 3D-Printed Scaffolds

    CERN Document Server

    Liacouras, Peter; Choudhry, Khazar; Strouse, G F; Ahmed, Zeeshan

    2015-01-01

    In recent years there has been considerable interest in utilizing embedded fiber optic based sensors for fabricating smart materials. One of the primary motivations is to provide real-time information on the structural integrity of the material so as to enable proactive actions that prevent catastrophic failure. In this preliminary study we have examined the impact of embedding on the temperature-dependent response of fiber Bragg gratings.

  10. Fiber Bragg Grating Pressure Sensor Based on Corrugated Diaphragm

    Institute of Scientific and Technical Information of China (English)

    FU Hai-wei; FU Jun-mei; QIAO Xue-guang

    2004-01-01

    A kind of fiber Bragg grating pressure sensor based on corrugated diaphragm is proposed. The relationship between the central wavelength of reflective wave of FBG and pressure is given, and the expression of the pressure sensitivity coefficient is also given. Within the range from results agree with the theoretical analysis. It is indicated that the expected pressure sensitivity of the sensor can be obtained by optimizing the size and mechanical parameters of the corrugated diaphragm.

  11. Fiber Bragg grating pressure sensor with enhanced sensitivity

    Institute of Scientific and Technical Information of China (English)

    Wentao Zhang; Lihui Liu; Fang Li; Yuliang Liu

    2007-01-01

    @@ A novel fiber Bragg grating (FBG) pressure sensor with the enhanced sensitivity has been demonstrated. A piston-like diaphragm with a hard core in the center is used to enhance the sensitivity. Both the theoretical analysis and the experimental result show that the radius of the hard core has significant effect on the pressure sensitivity. When the radius of the hard core is 1.5 mm, a pressure sensitivity of 7.23 nm/MPa has been achieved.

  12. Coupling between counterpropagating cladding modes in fiber Bragg gratings.

    Science.gov (United States)

    Sáez-Rodriguez, D; Cruz, J L; Díez, A; Andrés, M V

    2011-04-15

    We present an experimental demonstration of energy transfer between counterpropagating cladding modes in a fiber Bragg grating (FBG). A strong FBG written in a standard photosensitive optical fiber is illuminated with a single cladding mode, and the power transferred between the forward propagating cladding mode and different backward propagating cladding modes is measured by using two auxiliary long period gratings. Resonances between cladding modes having 30 pm bandwidth and 8 dB rejection have been observed.

  13. Degradation of the Bragg peak due to inhomogeneities.

    Science.gov (United States)

    Urie, M; Goitein, M; Holley, W R; Chen, G T

    1986-01-01

    The rapid fall-off of dose at the end of range of heavy charged particle beams has the potential in therapeutic applications of sparing critical structures just distal to the target volume. Here we explored the effects of highly inhomogeneous regions on this desirable depth-dose characteristic. The proton depth-dose distribution behind a lucite-air interface parallel to the beam was bimodal, indicating the presence of two groups of protons with different residual ranges, creating a step-like depth-dose distribution at the end of range. The residual ranges became more spread out as the interface was angled at 3 degrees, and still more at 6 degrees, to the direction of the beam. A second experiment showed little significant effect on the distal depth-dose of protons having passed through a mosaic of teflon and lucite. Anatomic studies demonstrated significant effects of complex fine inhomogeneities on the end of range characteristics. Monoenergetic protons passing through the petrous ridges and mastoid air cells in the base of skull showed a dramatic degradation of the distal Bragg peak. In beams with spread out Bragg peaks passing through regions of the base of skull, the distal fall-off from 90 to 20% dose was increased from its nominal 6 to well over 32 mm. Heavy ions showed a corresponding degradation in their ends of range. In the worst case in the base of skull region, a monoenergetic neon beam showed a broadening of the full width at half maximum of the Bragg peak to over 15 mm (compared with 4 mm in a homogeneous unit density medium). A similar effect was found with carbon ions in the abdomen, where the full width at half maximum of the Bragg peak (nominally 5.5 mm) was found to be greater than 25 mm behind gas-soft-tissue interfaces. We address the implications of these data for dose computation with heavy charged particles.

  14. Generation of polarization entangled photon pairs in Bragg reflection waveguides

    OpenAIRE

    Vallés Marí, Adam

    2012-01-01

    Integrated optics, nonlinear optics, quantum optics [ANGLÈS] We report the observation of polarization entangled photon pairs generated by means of type-II spontaneous parametric down-conversion (SPDC) within an AlGaAs Bragg reflection waveguide (BRW). Even though SPDC in BRW had been observed before, the photons detected were not entangled in the polarization degree of freedom. As a necessary previous step, we also characterized the phase-matching properties of the waveguides designed by ...

  15. Photonic bandgap narrowing in conical hollow core Bragg fibers

    Energy Technology Data Exchange (ETDEWEB)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  16. Mode splitting effect in FEMs with oversized Bragg resonators

    Energy Technology Data Exchange (ETDEWEB)

    Peskov, N. Yu.; Sergeev, A. S. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Kaminsky, A. K.; Perelstein, E. A.; Sedykh, S. N. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Kuzikov, S. V. [Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Nizhegorodsky State University, Nizhny Novgorod (Russian Federation)

    2016-07-15

    Splitting of the fundamental mode in an oversized Bragg resonator with a step of the corrugation phase, which operates over the feedback loop involving the waveguide waves of different transverse structures, was found to be the result of mutual influence of the neighboring zones of the Bragg scattering. Theoretical description of this effect was developed within the framework of the advanced (four-wave) coupled-wave approach. It is shown that mode splitting reduces the selective properties, restricts the output power, and decreases the stability of the narrow-band operating regime in the free-electron maser (FEM) oscillators based on such resonators. The results of the theoretical analysis were confirmed by 3D simulations and “cold” microwave tests. Experimental data on Bragg resonators with different parameters in a 30-GHz FEM are presented. The possibility of reducing the mode splitting by profiling the corrugation parameters is shown. The use of the mode splitting effect for the output power enhancement by passive compression of the double-frequency pulse generated in the FEM with such a resonator is discussed.

  17. High frequency strain measurements with fiber Bragg grating sensors

    Science.gov (United States)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  18. Advanced plasma etching processes for dielectric materials in VLSI technology

    Science.gov (United States)

    Wang, Juan Juan

    Manufacturable plasma etching processes for dielectric materials have played an important role in the Integrated Circuits (IC) industry in recent decades. Dielectric materials such as SiO2 and SiN are widely used to electrically isolate the active device regions (like the gate, source and drain from the first level of metallic interconnects) and to isolate different metallic interconnect levels from each other. However, development of new state-of-the-art etching processes is urgently needed for higher aspect ratio (oxide depth/hole diameter---6:1) in Very Large Scale Integrated (VLSI) circuits technology. The smaller features can provide greater packing density of devices on a single chip and greater number of chips on a single wafer. This dissertation focuses on understanding and optimizing of several key aspects of etching processes for dielectric materials. The challenges are how to get higher selectivity of oxide/Si for contact and oxide/TiN for vias; tight Critical Dimension (CD) control; wide process margin (enough over-etch); uniformity and repeatability. By exploring all of the parameters for the plasma etch process, the key variables are found and studied extensively. The parameters investigated here are Power, Pressure, Gas ratio, and Temperature. In particular, the novel gases such as C4F8, C5F8, and C4F6 were studied in order to meet the requirements of the design rules. We also studied CF4 that is used frequently for dielectric material etching in the industry. Advanced etch equipment was used for the above applications: the medium-density plasma tools (like Magnet-Enhanced Reactive Ion Etching (MERIE) tool) and the high-density plasma tools. By applying the Design of Experiments (DOE) method, we found the key factors needed to predict the trend of the etch process (such as how to increase the etch rates, selectivity, etc.; and how to control the stability of the etch process). We used JMP software to analyze the DOE data. The characterization of the

  19. State of the art etch-and-rinse adhesives

    OpenAIRE

    Pashley, David H.; Tay, Franklin R.; Breschi, Lorenzo; Tjäderhane, Leo; Carvalho, Ricardo M.; Carrilho, Marcela; Tezvergil-Mutluay, Arzu

    2010-01-01

    Etch-and-rinse adhesive systems are the oldest of the multi-generation evolution of resin bonding systems. In the 3-step version, they involve acid-etching, priming and application of a separate adhesive. Each step can accomplish multiple goals. This review explores the therapeutic opportunities of each separate step. Acid-etching, using 32-37% phosphoric acid (pH 0.1-0.4) not only simultaneously etches enamel and dentin, but the low pH kills many residual bacteria. Some etchants include anti...

  20. Effects of etching time on enamel bond strengths.

    Science.gov (United States)

    Triolo, P T; Swift, E J; Mudgil, A; Levine, A

    1993-12-01

    This study evaluated the effects of etching time on bond strengths of composite to enamel. Proximal surfaces of extracted molars were etched with either a conventional etchant (35% phosphoric acid) or one of two dentin/enamel conditioners, 10% maleic acid (Scotchbond Multi-Purpose Etchant), or a solution of oxalic acid, aluminum nitrate, and glycine (Gluma 1 & 2 Conditioner). Each agent was applied for 15, 30, or 60 seconds. Specimens etched with 35% phosphoric acid had the highest mean bond strengths at each etching time. At the manufacturer's recommended application times, the other two agents gave significantly lower shear bond strengths than phosphoric acid.

  1. Broadband transmission in hollow-core Bragg fibers with geometrically distributed multilayered cladding.

    Science.gov (United States)

    Hu, Dora Juan Juan; Alagappan, Gandhi; Yeo, Yong-Kee; Shum, Perry Ping; Wu, Ping

    2010-08-30

    For the first time, the quasiperiodic Bragg fibers with geometrically distributed multilayered cladding are proposed and analyzed. We demonstrate that hollow-core Bragg fibers with quasiperiodic dielectric multilayer cladding can achieve low loss transmission over a broadband wavelength range of more than an octave (from 0.81 μm to 1.7 μm). The periods of the Bragg blocks follows a geometrical progression with a common ratio rcladding can significantly modify the characteristics of the fiber, leading to a broadening of the guiding range compared to a hollow Bragg fiber with uniform periodic multilayer cladding structure. In general, a larger r value results in a broader guiding range. More Bragg blocks in the cladding and more unit cells in each Bragg block lead to a lower fiber modal loss.

  2. An introduction to Bragg diffraction-based cold atom interferometry gravimeter

    Institute of Scientific and Technical Information of China (English)

    HU; Qingqing; YANG; Jun; LUO; Yukun; JIA; Aiai; WEI; Chunhua; LI; Zehuan

    2015-01-01

    This paper presents a new type of cold atom interferometry gravimeter based on Bragg diffraction,w hich is able to increase the gravity m easurem ent sensitivity and stability of com m on Ram an atom gravim eters significantly. By com paring w ith Ram an transition,the principles and advantages of Bragg diffraction-based atom gravim eters have been introduced. The theoretical m odel for a tim e-dom ain Bragg atom gravim eter has been constructed. Som e key technical requirem ents for an n-order Bragg diffraction-based atom gravim eter have been deduced,including the tem perature of atom cloud,the diam eter,curvature radius,frequency,intensity,and tim ing sequence of Bragg lasers,etc. The analysis results are verified by the existing experim ental data in discussion. The present study provides a good reference for the understanding and construction of a Bragg atom gravim eter.

  3. Pre-etching vs. grinding in promotion of adhesion to intact enamel using self-etch adhesives.

    Science.gov (United States)

    Nazari, Amir; Shimada, Yasushi; Sadr, Alireza; Tagami, Junji

    2012-01-01

    This study was aimed to determine the effectiveness of grinding and pre-etching in promotion of adhesion to human intact enamel using the self-etch adhesive (SEA) Adper Easy Bond (3M ESPE). Etch-and-rinse adhesive Adper Single Bond (3M ESPE) served as control. Composite cylinders (AP-X Kuraray) were built and after 24 h micro-shear bond strengths (MSBS) were measured. Bonding interfaces were evaluated under scanning electron microscope (SEM). For evaluation of average roughness (Ra) and morphological analysis, treated enamel surfaces were observed under SEM and confocal laser scanning microscope (CLSM) with 3D surface profiling. Highest bond strengths were obtained by pre-etching and grinding showed a less significant role. Phosphoric acid (PA) etching compare to grinding created significantly rougher surface (Ra: 0.72 and 0.43 µm respectively). Therefore, this study recommends pre-etching the intact enamel prior to application of the adhesive instead of grinding.

  4. A new concept for spatially divided Deep Reactive Ion Etching with ALD-based passivation

    NARCIS (Netherlands)

    Roozeboom, F.; Kniknie, B.J.; Lankhorst, A.M.; Winands, G.; Knaapen, R.; Smets, M.; Poodt, P.W.G.; Dingemans, G.; Keuning, W.; Kessels, W.M.M.

    2012-01-01

    Conventional Deep Reactive Ion Etching (DRIE) is a plasma etch process with alternating half-cycles of 1) Si-etching with SF6 to form gaseous SiFx etch products, and 2) passivation with C4F8 that polymerizes as a protecting fluorocarbon deposit on the sidewalls and bottom of the etched features. In

  5. Fabrication of High Quality Broadband Type IIA Chirped Fiber Bragg Gratings

    Institute of Scientific and Technical Information of China (English)

    SANG Xin-zhu; YU Chong-xiu; YAN Bin-bin; MA Jian-xin; LU Nai-guang

    2006-01-01

    Chirped fiber Bragg gratings have found many applications in optical communication and sensing systems. High quality filters based on chirped fiber Bragg gratings with reflection bandwidth of 2.6 and 32nm and high reflectivity are demonstrated experimentally with 2 and 4cm long phase masks, respectively. These filters with flat reflection band and high reflectivity are achieved by writing type IIA chirped Bragg gratings.

  6. Influence of Non-uniform Temperature Field on Spectra of Fibre Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan; HE Xing-Fang; YUAN Jie; YIN Li-Qun; FANG Xiao-Yong; CAO Mao-Sheng

    2009-01-01

    We simulate the spectrum characteristics of fibre Bragg grating (FBG) with non-uniform temperature using the transmission matrix method, and the results are analysed. It is found that firstly the modulated coefficient of average refractive index is a very important parameter that influences the spectrum characteristic of the fibre Bragg grating, and secondly the spectrum curves are different in different temperature fields at the same parameter. Hence, we can determine the metrical temperature by analysing the spectrum of fibre Bragg grating.

  7. Range Riders and Game Wardens: A Brief History of Fort Bragg’s Forest Ranger Program

    Science.gov (United States)

    2006-07-01

    19 Figure 29: Ranger Roger Fish, 1971 (photo comrtesy of the Fort Bragg Paraglide , Photo by CliffRhodes...20 Figure 30: Ranger M.C. Windley, 1971 (photo courte.Dy ofthe Fort Bragg Paraglide , photo by Chff Rhodes) ............... 20 Figure 31: Evelyn...Ellington, 1971 (photo courtegy of the Fort Bragg Paraglide ,photo by Ckff Rhodes) ..................... 21 Figure 32: Ranger’s wife feeding a young

  8. Femtosecond direct-write überstructure waveguide Bragg gratings in ZBLAN.

    Science.gov (United States)

    Gross, Simon; Ams, Martin; Lancaster, David G; Monro, Tanya M; Fuerbach, Alexander; Withford, Michael J

    2012-10-01

    Strong waveguide Bragg gratings (10.5 dB transmission dip) were fabricated using the femtosecond (fs) laser direct-write technique in ZBLAN glass. The Bragg gratings are based on depressed cladding waveguides and consist of planes, periodic according to the Bragg condition, which are constructed from a transverse hexagonal lattice of smaller point features. Such gratings are a key step toward the realization of mid-infrared monolithic waveguide lasers using the fs laser direct-write technique.

  9. A Nanoscale Plasma Etching Process for Pole Tip Recession of Perpendicular Recording Magnetic Head

    Directory of Open Access Journals (Sweden)

    Shoubin LIU

    2016-05-01

    Full Text Available The pole tip of perpendicular recording head is constructed in a stacked structure with materials of NiCoFe, NiFe, Al2O3 and AlTiC. The surfaces of different materials are set at different heights below the air-bearing surface of slider. This paper presented a plasma dry etching process for Pole Tip Recession (PTR based on an ion beam etching system. Ar and O2 mixed plasma at small incident angles have a high removal rate to the nonmagnetic material. It was utilised to etch the reference surface until it reaches the MT value. Low-energy Ar plasma at a small incident angle removes materials with selective ratios of 1 : 1.6 : 2.5 : 2.9 (AlTiC/Al2O3/NiCoFe/NiFe. It was selected to form the PTR. High-energy Ar plasma at a large incident angle exhibits almost same removal rates for all materials. It was adopted to make overall removal while keeping the recessed profile. An atomic force microscope (AFM was used for measuring the recessed heights of pole tip and the MT value of the base surface. A transmission electronic microscopy (TEM was chosen to examine the thickness of subsurface damage. A batch of production showed that the recessed heights can be successfully nanofabricated with the three-step plasma etching process.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12953

  10. The wettability between etching solutions and the surface of multicrystalline silicon wafer during metal-assisted chemical etching process

    Science.gov (United States)

    Niu, Y. C.; Liu, Z.; Liu, X. J.; Gao, Y.; Lin, W. L.; Liu, H. T.; Jiang, Y. S.; Ren, X. K.

    2017-01-01

    In order to investigate the wettability of multicrystalline silicon (mc-Si) with the etching solutions during metal-assisted chemical etching process, different surface structures were fabricated on the p-type multi-wire slurry sawn mc-Si wafers, such as as-cut wafers, polished wafers, and wafers etched in different solutions. The contact angles of different etching solutions on the surfaces of the wafers were measured. It was noted that all contact angles of etching solutions were smaller than the corresponding ones of deionized water, but the contact angles of different etching solutions were quite different. Among the contact angles of the etching solutions of AgNO3-HF, H2O2-HF, TMAH and HNO3-HF, the contact angle of TMAH solution was much larger than the others and that of HNO3-HF solution was much smaller. It is suggested that the larger contact angle may lead to an unevenly etching of silicon wafer due to the long retention of big bubbles on the wafers in the etching reaction, which should be paid attention to and overcome.

  11. Etching with atomic precision by using low electron temperature plasma

    Science.gov (United States)

    Dorf, L.; Wang, J.-C.; Rauf, S.; Monroy, G. A.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.

    2017-07-01

    There has been a steady increase in sub-nm precision requirement for many critical plasma etching processes in the semiconductor industry. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in conventional radio-frequency (RF) plasma processing systems, even during layer-by-layer or ‘atomic layer’ etch. To meet these increasingly stringent requirements, it is necessary to have an accurate control over ion energy and ion/radical composition during plasma processing. In this work, a new plasma etch system designed to facilitate atomic precision plasma processing is presented. An electron sheet beam parallel to the substrate surface is used to produce a plasma in this system. This plasma has a significantly lower electron temperature T e ~ 0.3 eV and ion energy E i  plasmas. Electron beam plasmas also have a higher ion-to-radical ratio compared to RF plasmas, so this plasma etch system employs an independent radical source for accurate control over relative ion and radical concentrations. A low frequency RF bias capability that allows control of ion energy in the 2-50 eV range is another important component of this plasma etch system. The results of etching of a variety of materials and structures in this low-electron temperature plasma system are presented in this study: (1) layer-by-layer etching of p-Si at E i ~ 25-50 eV using electrical and gas cycling is demonstrated; (2) continuous etching of epi-grown µ-Si in Cl2-based plasmas is performed, showing that surface damage can be minimized by keeping E i  etching at low E i.

  12. Anisotropy of synthetic diamond in catalytic etching using iron powder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junsha [College of Materials Science and Engineering, Hunan University, Hunan 410082 (China); Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan); Wan, Long, E-mail: wanlong1799@163.com [College of Materials Science and Engineering, Hunan University, Hunan 410082 (China); Chen, Jing [College of Materials Science and Engineering, Hunan University, Hunan 410082 (China); Yan, Jiwang [Department of Mechanical Engineering, Keio University, Yokohama 223-8522 (Japan)

    2015-08-15

    Highlights: • Synthetic diamond crystallites were etched using iron without requiring hydrogen. • The effect of temperature on the etching behaviour was demonstrated. • The anisotropy of etching on different crystal planes was investigated. • The extent of etching on diamond surface was examined quantitatively. • A schematic model for diamond etching by iron is being proposed. - Abstract: This paper demonstrated a novel technique for catalytic etching of synthetic diamond crystallites using iron (Fe) powder without flowing gas. The effect of temperature on the etching behaviour on different crystal planes of diamond was investigated. The surface morphology and surface roughness of the processed diamond were examined by scanning electron microscope (SEM) and laser-probe surface profiling. In addition, the material composition of the Fe-treated diamond was characterized using micro-Raman spectroscopy and the distribution of chemical elements and structural changes on Fe-loaded diamond surfaces were analyzed by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. Results showed that at the same temperature the {1 0 0} plane was etched faster than the {1 1 1} plane, and that the etching rate of both {1 0 0} and {1 1 1} plane increased with temperature. The etch pits on {1 0 0} plane were reversed pyramid with flat {1 1 1} walls, while the etch holes on {1 1 1} plane were characterized with flat bottom. It was also demonstrated that graphitization of diamond and subsequent carbon diffusion in molten iron were two main factors resulting in the removal of carbon from the diamond surface.

  13. Long-term bond strength of adhesive systems applied to etched and deproteinized dentin

    Directory of Open Access Journals (Sweden)

    Ninoshka Uceda-Gómez

    2007-12-01

    Full Text Available The aim of this study was to evaluate the early and 12-month bond strength of two adhesive systems (Single Bond-SB and One Step-OS applied to demineralized dentin (WH and demineralized/NaOCl-treated dentin (H. Twenty flat dentin surfaces were exposed, etched, rinsed and slightly dried. For the H groups, a solution of 10% NaOCl was applied for 60 s, rinsed (15 s and slightly dried. The adhesives were applied according to the manufacturer's instructions and composite resin crowns were incrementally constructed. After 24 h (water-37ºC, the specimens was sectioned in order to obtain resin-dentin sticks (0.8 mm². The specimens were tested in microtensile (0.5 mm/min immediately (IM or after 12 months of water storage (12M. The data (MPa were subjected to ANOVA and Tukey's test (a=0.05. Only the main factors adhesive and time were significant (p=0.004 and p=0.003, respectively. SB (42.3±9.1 showed higher bond strengths than OS (33.6±11.6. The mean bond strength for IM-group (42.5±8.7 was statistically superior to 12M (33.3±11.8. The use of 10% NaOCl, after acid etching, did not improve the immediate and the long-term resin-dentin bond strength.

  14. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors

    Science.gov (United States)

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-07-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n+-GaN) in the 12-period n+-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface.

  15. Electronegativity-dependent tin etching from thin films

    NARCIS (Netherlands)

    Pachecka, M.; Sturm, J.M.; Kruijs, van de R.W.E.; Lee, C.J.; Bijkerk, F.

    2016-01-01

    The influence of a thin film substrate material on the etching of a thin layer of deposited tin (Sn) by hydrogen radicals was studied. The amount of remaining Sn was quantified for materials that cover a range of electronegativities. We show that, for metals, etching depends on the relative electron

  16. Orthodox etching of HVPE-grown GaN

    Energy Technology Data Exchange (ETDEWEB)

    Weyher, J.L.; Lazar, S.; Macht, L.; Liliental-Weber, Z.; Molnar,R.J.; Muller, S.; Nowak, G.; Grzegory, I.

    2006-08-10

    Orthodox etching of HVPE-grown GaN in molten eutectic of KOH + NaOH (E etch) and in hot sulfuric and phosphoric acids (HH etch) is discussed in detail. Three size grades of pits are formed by the preferential E etching at the outcrops of threading dislocations on the Ga-polar surface of GaN. Using transmission electron microscopy (TEM) as the calibration tool it is shown that the largest pits are formed on screw, intermediate on mixed and the smallest on edge dislocations. This sequence of size does not follow the sequence of the Burgers values (and thus the magnitude of the elastic energy) of corresponding dislocations. This discrepancy is explained taking into account the effect of decoration of dislocations, the degree of which is expected to be different depending on the lattice deformation around the dislocations, i.e. on the edge component of the Burgers vector. It is argued that the large scatter of optimal etching temperatures required for revealing all three types of dislocations in HVPE-grown samples from different sources also depends upon the energetic status of dislocations. The role of kinetics for reliability of etching in both etches is discussed and the way of optimization of the etching parameters is shown.

  17. Microstructure, composition, and etching topography of dental ceramics.

    Science.gov (United States)

    Della Bona, Alvaro; Anusavice, Kenneth J

    2002-01-01

    Topographic analysis of etched ceramics provides qualitative surface structure information that affects micromechanical retention mechanisms. This study tested the hypothesis that the etching mechanism changes according to the type of etchant and the ceramic microstructure and composition. Quantitative and qualitative analyses of 15 dental ceramics were performed using scanning electron microscopy, back-scattered imaging, X-ray diffraction, optical profilometry, and wavelength dispersive spectroscopy based on Phi-Rho-Z correction. All ceramic specimens were polished to 1 micron with diamond compound, and the following etchants and etching times were used: ammonium bifluoride (ABF) for 1 minute, 9.6% hydrofluoric acid (HF) for 2 minutes, and 4% acidulated phosphate fluoride (APF) for 2 minutes. HF produced an irregular etching pattern in which pores were the characteristic topographic feature. ABF-etched ceramic surfaces showed mostly grooves, and APF etchant caused a buildup of surface precipitate. Core ceramics showed less topographic change after etching because of their high alumina content and low chemical reactivity. The observations suggest that the etching mechanism is different for the three etchants, with HF producing the most prominent etching pattern on all dental ceramics examined.

  18. Reactive ion etching of quartz and Pyrex for microelectronic applications

    Science.gov (United States)

    Zeze, D. A.; Forrest, R. D.; Carey, J. D.; Cox, D. C.; Robertson, I. D.; Weiss, B. L.; Silva, S. R. P.

    2002-10-01

    The reactive ion etching of quartz and Pyrex substrates was carried out using CF4/Ar and CF4/O2 gas mixtures in a combined radio frequency (rf)/microwave (μw) plasma. It was observed that the etch rate and the surface morphology of the etched regions depended on the gas mixture (CF4/Ar or CF4/O2), the relative concentration of CF4 in the gas mixture, the rf power (and the associated self-induced bias) and microwave power. An etch rate of 95 nm/min for quartz was achieved. For samples covered with a thin metal layer, ex situ high resolution scanning electron microscopy and atomic force microscopy imaging indicated that, during etching, surface roughness is produced on the surface beneath the thin metallic mask. Near vertical sidewalls with a taper angle greater than 80° and smooth etched surfaces at the nanometric scale were fabricated by carefully controlling the etching parameters and the masking technique. A simulation of the electrostatic field distribution was carried out to understand the etching process using these masks for the fabrication of high definition features.

  19. Versatile apparatus for etching scanning tunneling microscope tips

    Science.gov (United States)

    Fiering, J. O.; Ellis, F. M.

    1990-12-01

    We have developed an apparatus for easy and consistent etching of small tips suitable for use with a scanning tunneling microscope. Its unique features are free access to the etching region and a continuous supply of electrolyte for the production of many tips in succession.

  20. Silicon nanowire photodetectors made by metal-assisted chemical etching

    Science.gov (United States)

    Xu, Ying; Ni, Chuan; Sarangan, Andrew

    2016-09-01

    Silicon nanowires have unique optical effects, and have potential applications in photodetectors. They can exhibit simple optical effects such as anti-reflection, but can also produce quantum confined effects. In this work, we have fabricated silicon photodetectors, and then post-processed them by etching nanowires on the incident surface. These nanowires were produced by a wet-chemical etching process known as the metal-assisted-chemical etching, abbreviated as MACE. N-type silicon substrates were doped by thermal diffusion from a solid ceramic source, followed by etching, patterning and contact metallization. The detectors were first tested for functionality and optical performance. The nanowires were then made by depositing an ultra-thin film of gold below its percolation thickness to produce an interconnected porous film. This was then used as a template to etch high aspect ratio nanowires into the face of the detectors with a HF:H2O2 mixture.

  1. Optimize Etching Based Single Mode Fiber Optic Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2014-02-01

    Full Text Available This paper presents a description of etching process for fabrication single mode optical fiber sensors. The process of fabrication demonstrates an optimized etching based method to fabricate single mode fiber (SMF optic sensors in specified constant time and temperature. We propose a single mode optical fiber based temperature sensor, where the temperature sensing region is obtained by etching its cladding diameter over small length to a critical value. It is observed that the light transmission through etched fiber at 1550 nm wavelength optical source becomes highly temperature sensitive, compared to the temperature insensitive behavior observed in un-etched fiber for the range on 30ºC to 100ºC at 1550 nm. The sensor response under temperature cycling is repeatable and, proposed to be useful for low frequency analogue signal transmission over optical fiber by means of inline thermal modulation approach.

  2. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  3. Effects of Etch-and-Rinse and Self-etch Adhesives on Dentin MMP-2 and MMP-9

    Science.gov (United States)

    Mazzoni, A.; Scaffa, P.; Carrilho, M.; Tjäderhane, L.; Di Lenarda, R.; Polimeni, A.; Tezvergil-Mutluay, A.; Tay, F.R.; Pashley, D.H.; Breschi, L.

    2013-01-01

    Auto-degradation of collagen matrices occurs within hybrid layers created by contemporary dentin bonding systems, by the slow action of host-derived matrix metalloproteinases (MMPs). This study tested the null hypothesis that there are no differences in the activities of MMP-2 and -9 after treatment with different etch-and-rinse or self-etch adhesives. Tested adhesives were: Adper Scotchbond 1XT (3M ESPE), PQ1 (Ultradent), Peak LC (Ultradent), Optibond Solo Plus (Kerr), Prime&Bond NT (Dentsply) (all 2-step etch-and-rinse adhesives), and Adper Easy Bond (3M ESPE), Tri-S (Kuraray), and Xeno-V (Dentsply) (1-step self-etch adhesives). MMP-2 and -9 activities were quantified in adhesive-treated dentin powder by means of an activity assay and gelatin zymography. MMP-2 and MMP-9 activities were found after treatment with all of the simplified etch-and-rinse and self-etch adhesives; however, the activation was adhesive-dependent. It is concluded that all two-step etch-and-rinse and the one-step self-etch adhesives tested can activate endogenous MMP-2 and MMP-9 in human dentin. These results support the role of endogenous MMPs in the degradation of hybrid layers created by these adhesives. PMID:23128110

  4. Clinical effectiveness of self-etching adhesives with or without selective enamel etching in noncarious cervical lesions: A systematic review

    Directory of Open Access Journals (Sweden)

    Wei Qin

    2014-12-01

    Conclusion: Previous enamel etching resulted in fewer marginal defects and marginal discoloration, compared with using the SE approach alone. For restoration retention, the differences between the two groups were not significant. Additional longer follow ups and large-scale investigations are expected to assess possible advantages of selective enamel etching in NCCL restorations.

  5. Thermal neutron dosimetry using electrochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Su, S.J.; Sanders, M.E.; Morgan, K.Z.

    1979-07-10

    This study demonstrates the feasibility of using high LET particle radiators to determine the thermal neutron dose by reaction particle registration in low background polycarbonate foils using electrochemical etching. When used in conjunction with the already proven fast neutron recoil particle track registration technique, a viable fast and thermal neutron dosimeter is realized with the advantages of being: non-fading, insensitive to low LET radiation reactions, inexpensive in both processing and materials, useable over a wide dose range, a permanant record and good reproducibility, highly sensitive, and tissue equivalent and a dose equivalent response over a wide range. Most importantly, it finally provides a simple and reliable dosimeter for both the fast and thermal neutron components.

  6. A nontransferring dry adhesive with hierarchical polymer nanohairs

    KAUST Repository

    Jeong, H. E.

    2009-03-20

    We present a simple yet robust method for fabricating angled, hierarchically patterned high-aspect-ratio polymer nanohairs to generate directionally sensitive dry adhesives. The slanted polymeric nanostructures were molded from an etched polySi substrate containing slanted nanoholes. An angled etching technique was developed to fabricate slanted nanoholes with flat tips by inserting an etch-stop layer of silicon dioxide. This unique etching method was equipped with a Faraday cage system to control the ion-incident angles in the conventional plasma etching system. The polymeric nanohairs were fabricated with tailored leaning angles, sizes, tip shapes, and hierarchical structures. As a result of controlled leaning angle and bulged flat top of the nanohairs, the replicated, slanted nanohairs showed excellent directional adhesion, exhibiting strong shear attachment (approximately 26 N/cm(2) in maximum) in the angled direction and easy detachment (approximately 2.2 N/cm(2)) in the opposite direction, with a hysteresis value of approximately 10. In addition to single scale nanohairs, monolithic, micro-nanoscale combined hierarchical hairs were also fabricated by using a 2-step UV-assisted molding technique. These hierarchical nanoscale patterns maintained their adhesive force even on a rough surface (roughness <20 microm) because of an increase in the contact area by the enhanced height of hierarchy, whereas simple nanohairs lost their adhesion strength. To demonstrate the potential applications of the adhesive patch, the dry adhesive was used to transport a large-area glass (47.5 x 37.5 cm(2), second-generation TFT-LCD glass), which could replace the current electrostatic transport/holding system with further optimization.

  7. Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology.

    Science.gov (United States)

    Wang, Shunquan; Zhou, Changhe; Ru, Huayi; Zhang, Yanyan

    2005-07-20

    Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well.

  8. Homogeneous luminescent stain etched porous silicon elaborated by a new multi-step stain etching method

    Energy Technology Data Exchange (ETDEWEB)

    Hajji, M., E-mail: mhajji2001@yahoo.fr [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopôle de Borj-Cédria BP 95, Hammam-Lif 2050 (Tunisia); Institut Supérieur d’Electronique et de Communication de Sfax, route Menzel Chaker Km 0.5, BP 868, Sfax 3018 (Tunisia); Khalifa, M.; Slama, S. Ben; Ezzaouia, H. [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopôle de Borj-Cédria BP 95, Hammam-Lif 2050 (Tunisia)

    2013-11-01

    This paper presents a new method to produce porous silicon which derived from the conventional stain etching (SE) method. But instead of one etching step that leads to formation of porous layer, the substrate is subjected to an initial etching step with a duration Δt{sub 0} followed by a number of supplementary short steps that differs from a layer to another. The duration of the initial step is just the necessary time to have a homogenous porous layer on the whole surface of the substrate. It was found that this duration is largely dependent of the doping type and level of the silicon substrate. The duration of supplementary steps was kept as short as possible to prevent the formation of bubbles on the silicon surface during silicon dissolution which leads generally to inhomogeneous porous layers. It is found from surface investigation by atomic force microscopy (AFM) that multistep stain etching (MS-SE) method allows to produce homogeneous porous silicon nanostructures compared to the conventional SE method. The chemical composition of the obtained porous layers has been evaluated using Fourier transform infrared spectroscopy (FTIR). Photoluminescence (PL) measurement shows that porous layers produced by SE and MS-SE methods have comparable spectra indicating that those layers are composed of nanocrystallites with comparable sizes. But the intensity of photoluminescence of layer elaborated by MS-SE method is higher than that elaborated by the SE method. Total reflectance characteristics show that the presented method allows the production of porous silicon layers with controllable thicknesses and optical properties. Results for porous silicon layers elaborated on heavily doped n-type silicon show that the reflectance can be reduced to values less than 3% in the major part of the spectrum.

  9. Smelling in chemically complex environments: an optofluidic Bragg fiber array for differentiation of methanol adulterated beverages.

    Science.gov (United States)

    Yildirim, Adem; Ozturk, Fahri Emre; Bayindir, Mehmet

    2013-07-02

    A novel optoelectronic nose for analysis of alcohols (ethanol and methanol) in chemically complex environments is reported. The cross-responsive sensing unit of the optoelectronic nose is an array of three distinct hollow-core infrared transmitting photonic band gap fibers, which transmit a specific band of IR light depending on their Bragg mirror structures. The presence of alcohol molecules in the optofluidic core quenches the fiber transmissions if there is an absorption band of the analyte overlapping with the transmission band of the fiber; otherwise they remain unchanged. The cumulative response data of the fiber array enables rapid, reversible, and accurate discrimination of alcohols in chemically complex backgrounds such as beer and fruit juice. In addition, we observed that humidity of the environment has no effect on the response matrix of the optoelectronic nose, which is rarely achieved in gas-sensing applications. Consequently, it can be reliably used in virtually any environment without precalibration for humidity or drying the analytes. Besides the discussed application in counterfeit alcoholic beverages, with its superior sensor parameters, this novel concept proves to be a promising contender for many other applications including food quality control, environmental monitoring, and breath analysis for disease diagnostics.

  10. Crystal growth vs. conventional acid etching: A comparative evaluation of etch patterns, penetration depths, and bond strengths

    Directory of Open Access Journals (Sweden)

    Devanna Raghu

    2008-01-01

    Full Text Available The present study was undertaken to investigate the effect on enamel surface, penetration depth, and bond strength produced by 37% phosphoric acid and 20% sulfated polyacrylic acid as etching agents for direct bonding. Eighty teeth were used to study the efficacy of the etching agents on the enamel surface, penetration depth, and tensile bond strength. It was determined from the present study that a 30 sec application of 20% sulfated polyacrylic acid produced comparable etching topography with that of 37% phosphoric acid applied for 30 sec. The 37% phosphoric acid dissolves enamel to a greater extent than does the 20% sulfated polyacrylic acid. Instron Universal testing machine was used to evaluate the bond strengths of the two etching agents. Twenty percent sulfated polyacrylic acid provided adequate tensile bond strength. It was ascertained that crystal growth can be an alternative to conventional phosphoric acid etching as it dissolves lesser enamel and provides adequate tensile bond strength.

  11. E-beam inspection of EUV mask defects: To etch or not to etch?

    Science.gov (United States)

    Bonam, Ravi; Tien, Hung-Yu; Park, Chanro; Halle, Scott; Wang, Fei; Corliss, Daniel; Fang, Wei; Jau, Jack

    2014-04-01

    EUV Lithography is aimed to be inserted into mainstream production for sub-20nm pattern fabrication. Unlike conventional optical lithography, frequent defectivity monitors (adders, repeaters etc.) are required in EUV lithography. Due to sub-20nm pattern and defect dimensions e-beam inspection of critical pattern areas is essential for yield monitor. In previous work we showed sub-10nm defect detection sensitivity1 on patterned resist wafers. In this work we report 8-10× improvement in scan rates of etched patterns compared to resist patterns without loss in defect detection sensitivity. We observed good etch transfer of sub-10nm resist features. A combination of smart scan strategies with improved etched pattern scan rates can further improve throughput of e-beam inspection. An EUV programmed defect mask with Line/Space, Contact patterns was used to evaluate printability of defects and defect detection (Die-Die and Die-Database) capability of the e-beam inspection tool. Defect inspection tool parameters such as averaging, threshold value were varied to assess its detection capability and were compared to previously obtained results on resist patterns.

  12. Bragg x-ray survey spectrometer for ITER.

    Science.gov (United States)

    Varshney, S K; Barnsley, R; O'Mullane, M G; Jakhar, S

    2012-10-01

    Several potential impurity ions in the ITER plasmas will lead to loss of confined energy through line and continuum emission. For real time monitoring of impurities, a seven channel Bragg x-ray spectrometer (XRCS survey) is considered. This paper presents design and analysis of the spectrometer, including x-ray tracing by the Shadow-XOP code, sensitivity calculations for reference H-mode plasma and neutronics assessment. The XRCS survey performance analysis shows that the ITER measurement requirements of impurity monitoring in 10 ms integration time at the minimum levels for low-Z to high-Z impurity ions can largely be met.

  13. Supercontinuum generation in a Bragg fiber:a novel proposal

    Institute of Scientific and Technical Information of China (English)

    Bishnu P.Pal; Sonali Dasgupta; M.R.Shenoy; Alexej Sysoliatin

    2006-01-01

    @@ We propose a silica-core dispersion-decreasing Bragg fiber (DDBF) of mode effective area as large as 55 μm2 for supercontinuum (SC) generation at the pump wavelength of 1 060 nm.Using a fast and simple matrix method to model propagation in the DDBF,we have presented a general criterion to obtain the shortest length of the DDBF that would result in a broad SC spectrum.The proposed DDBF design should be amenable for reproducible fabrication through the well-developed MCVD fiber manufacturing technology and the concept has potential for realization as a practical device.

  14. Optical parameters of the tunable Bragg reflectors in squid.

    Science.gov (United States)

    Ghoshal, Amitabh; Demartini, Daniel G; Eck, Elizabeth; Morse, Daniel E

    2013-08-06

    Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte

  15. Structural Health Monitoring of Bridges with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Francisco Navarro-Henríquez

    2014-11-01

    Systems with fiber optic sensors FBG (Fiber Bragg Grating are consolidated in the Structural Health Monitoring (SMH of bridges, Nondestructive Testing (NDT static and dynamic measurements of deformation, displacement, deflection, temperature and vibration. This article provides a brief introduction to the technology and the fundamentals of fiber optic sensors, also present comparative advantages over its traditional counterpart is presented. Their characteristics are described and measurement graphics are presented as an application example of the FBG sensors. Finally, some key aspects to consider for proper use in the field are mentioned.

  16. Q-switched distributed-Bragg-reflector ytterbium laser

    Science.gov (United States)

    Ouslimani, H.; Bastard, L.; Broquin, J.-E.

    2013-03-01

    A passively Q-switched distributed-Bragg-reflector laser made in glass integrated optics technology, and operating around 1030 nm, is designed, realized and investigated. The laser is formed by an ion-exchanged single mode waveguide realized in an Ytterbium doped phosphate glass. The Q-switching behavior is obtained by hybridizing a saturable absorber film on the waveguides. This allows the realization of a short and simple laser cavity having both pulsed and a narrow linewidth emission. Its experimental characterization leads to the observation of a stable repetition rate of 12.5 kHz and a stable pulse duration of 9.2 ns FWHM.

  17. Application of the Transmission Bragg Gratings for Vibration Monitoring

    CERN Document Server

    Tikhonov, E A

    2010-01-01

    It is shown that the optical-electronic system consisted of the transmission Bragg grating, a laser and the intermediate sensitive to the vibrations mirror can detect the vibrations, when touched by them laser beam scan will exceed the angular divergence of the beam. The mathematical model of the sensor of the vibrations presented in the form of Taylor series describes the system response taking into account the operating point, in particular, describes the effect of the doubling of the modulation frequency response relative to the frequency of acting vibrations.

  18. Silicon waveguide polarization rotation Bragg grating with resonator cavity section

    Science.gov (United States)

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2017-04-01

    Bragg grating with resonator cavity that converts the input polarization to orthogonal polarization is reported. The device works similar to a Fabry–Pérot or ring resonators and very narrow polarization independent wavelength peak can be generated. The transfer matrix methods are used to examine the device characteristics. A 0.2-nm-wide polarization independent transmission wavelength peak was obtained by experiment. We also show theoretically using finite-difference-time-domain method that a flat-top response can be obtained by a two cavity structure.

  19. Passive Temperature-Compensating Technique for Microstructured Fiber Bragg Gratings

    CERN Document Server

    Huy, Minh Châu Phan; Dewynter, Véronique; Ferdinand, Pierre; Pagnoux, Dominique; Dussardier, Bernard; Blanc, Wilfried; 10.1109/JSEN.2008.926169

    2010-01-01

    The thermal drift of the characteristic wavelength of fiber Bragg gratings (FBGs) photowritten in the core of microstructured fibers (MOFs) is significantly reduced by inserting a liquid of suitable refractive index into their holes. For instance, the spectral range of variations is divided by a factor of 4 over a temperature range larger than 20\\degree C in a six-hole MOF, and the maximum sensitivity is reduced. Such passive FBG temperature compensation technique is of great interest for applications involving accurate sensing free of thermal effects.

  20. Dynamic gate algorithm for multimode fiber Bragg grating sensor systems

    DEFF Research Database (Denmark)

    Ganziy, Denis; Jespersen, O.; Woyessa, Getinet

    2015-01-01

    We propose a novel dynamic gate algorithm (DGA) for precise and accurate peak detection. The algorithm uses a threshold-determined detection window and center of gravity algorithm with bias compensation. We analyze the wavelength fit resolution of the DGA for different values of the signal......-to-noise ratio and different peak shapes. Our simulations and experiments demonstrate that the DGA method is fast and robust with better stability and accuracy than conventional algorithms. This makes it very attractive for future implementation in sensing systems, especially based on multimode fiber Bragg...

  1. Design of Broadband Single Fundamental Mode Hollow Core Bragg Fibre

    Institute of Scientific and Technical Information of China (English)

    LIN Chen-Xi; ZHANG Wei; HUANG Yi-Dong; PENG Jiang-De

    2008-01-01

    The condition of the single fundamental mode(HE11)transmission in hollow core Bragg fibres is investigated theoretically by the transfer matrix method.The influences of core size and cladding parameters on the single HE11 mode bandwidth are analysed,showing that the maximal bandwidth is more sensirive to the core size than the cladding.The numerical results show that sufficiently broad bandwidth of single HE11 mode transmission can be achieved by proper fibre design.A simple and fast method based on improved hollow metal waveguide model js proposed to optimize fibre structure parameters for the maximal single HE11 mode bandwidth.

  2. Development of pulse laser processing for mounting fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umebidai Kidugawa Kyoto 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, 65-20 Kizaki Tsuruga Fukui 914-8585 (Japan); Technical Research and Development Institute, Kumagai Gumi Co., Ltd., 2-1 Tsukudo, Shinjuku Tokyo 162-8557 (Japan)

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  3. Fiber-bragg grating-loop ringdown method and apparatus

    Science.gov (United States)

    Wang, Chuji

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  4. Ultrafast laser inscribed fiber Bragg gratings for sensing applications

    Science.gov (United States)

    Mihailov, Stephen J.

    2016-05-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on femtosecond infrared laser-material processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This tutorial paper will present a review of some of the more recent developments.

  5. Development of pulse laser processing for mounting fiber Bragg grating

    Science.gov (United States)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi

    2012-07-01

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  6. The NRL OSO-4 Bragg crystal spectrometer instrument

    Science.gov (United States)

    Meekins, J. F.

    1972-01-01

    Two Bragg crystal spectrometers were placed on the OSO-4 satellite to study solar flare plasmas by their spectral emissions. The solar flare plasma parameters were measured with these spectrometers, which together covered a total wavelength range of 0.6 to 8.4 A. With these instruments, knowledge could be gained into the mechanisms governing the plasma behavior in the high temperature-low density regime of flare production and in solar evolution and elemental abundances in the sun. However, spacecraft limitations forced many restrictions on the design of the instrument, so the final instrument could not measure all the solar flare plasma state parameters.

  7. Photoluminescence and X-ray Diffraction of Distributed Bragg Reflector

    Institute of Scientific and Technical Information of China (English)

    LI Lin; LI Yong-da; LIU Wen-li; LU Bin; JU Guo-xian; ZHANG Yong-ming; HAO Yong-qin; SU Wei; ZHONG Jing-chang

    2004-01-01

    Spectral and structural characteristics of distributed Bragg reflector (DBR) in vertical-cavity surface-emitting lasers were studied with photoluminescence and double- crystal X- ray diffraction measurement. The expected high quality epitaxial DBR structure was verified. In the X- ray double- crystal rocking curves of DBR the zeroth- order peak, the first and second order satellite peaks were measured.Splitting of diffraction peak appeared in the rocking curves was analyzed. The effects of introduced deep energy levels on the structural perfection and optical properties were discussed.

  8. Underwater Acoustic Sensors Based on Fiber Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Giuseppe Parente

    2009-06-01

    Full Text Available We report on recent results obtained with a fiber optic hydrophone based on the intensity modulation of the laser light in a FBG (Fiber Bragg Grating under the influence of the sound pressure. In order to control the behavior of the hydrophone in terms of sensitivity and bandwidth, FBGs have been coated with proper materials, characterized by different elastic modulus and shapes. In particular, new experiments have been carried out using a cylindrical geometry with two different coating, showing that the sensitivity is not influenced by the shape but by the transversal dimension and the material characteristics of the coating.

  9. Microfiber-Based Bragg Gratings for Sensing Applications: A Review

    Directory of Open Access Journals (Sweden)

    Jun-Long Kou

    2012-06-01

    Full Text Available Microfiber-based Bragg gratings (MFBGs are an emerging concept in ultra-small optical fiber sensors. They have attracted great attention among researchers in the fiber sensing area because of their large evanescent field and compactness. In this review, the basic techniques for the fabrication of MFBGs are introduced first. Then, the sensing properties and applications of MFBGs are discussed, including measurement of refractive index (RI, temperature, and strain/force. Finally a summary of selected MFBG sensing elements from previous literature are tabulated.

  10. A porous silicon Bragg grating waveguide by direct laser writing

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Ilaria; Iodice, Mario; Coppola, Giuseppe; Rendina, Ivo; De Stefano, Luca [National Council of Research, Institute for Microelectronic and Microsystems, Department of Naples, Via P Castellino 111, I-80131 Naples (Italy); Marino, Antigone [Department of Physics, ' Federico II' University of Naples, Via Cinthia, I-80126 Naples (Italy)], E-mail: ilaria.rea@na.imm.cnr.it

    2008-09-10

    We have designed, fabricated and characterized a porous silicon-based Bragg grating integrated in an optical waveguide, by using a low cost and fast technique, direct laser writing. A periodic optical structure with a pitch of 10 {mu}m, resonant in the near-infrared wavelength region, has been obtained. The simulated transmission spectra, calculated by the transfer matrix method and waveguide modal computation, are in good qualitative agreement with the experimental ones. The waveguide transmission losses have been quantified as 22 dB cm{sup -1}.

  11. Polymer Optical Fibre Bragg Grating Humidity Sensor at 100ºC

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2016-01-01

    We have demonstrated a polymer optical fibre Bragg grating humidity sensor that can be operated up to 100ºC. The sensor has been fabricated from a polycarbonate (PC) microstructured polymer optical fibre Bragg grating (mPOFBG). PC mPOFBG gave a relative humidity (RH) sensitivity of 6.95±0.83 pm...

  12. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches

    DEFF Research Database (Denmark)

    Zubel, Michal G.; Sugden, Kate; Webb, David J.

    2016-01-01

    This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing...

  13. New multiplexing scheme for monitoring fiber optic Bragg grating sensors in the coherence domain

    OpenAIRE

    Dakin, J.P.; Ecke, W.; Rothardt, M.; Schauer, J; Usbeck, K.; Willsch, R.

    1997-01-01

    A new multiplexing scheme for monitoring fiber optic Bragg gratings in the coherence domain has been developed. Grating pairs with different grating distances are distributed along a fiber line, and interference between their reflections is monitored with a scanning Michelson interferometer. The Bragg wavelength of the individual sensor elements is determined from the interference signal frequency

  14. Numerical Simulation of Bragg Reflection Based on Linear Waves Propagation over A Series of Rectangular Seabed

    Institute of Scientific and Technical Information of China (English)

    Chih-Chung WEN; Li-Hung TSAI

    2008-01-01

    A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key parameters of the Bragg reflection including the peak coefficient of primary Bragg reflection, its corresponding relative wavelength, and the bandwidth, have shown to be effective in describing the characteristics of the primary Bragg reflection. The characteristics of the Bragg reflection were investigated under the various conditions comprising number, height, and spacing interval of a series of rectangular seabed. The results reveal that the peak of Bragg reflection increases with the increase of rectangular seabed height and number, the bandwidth and the shift value of the Bragg reflection depend on the increase of the rectangular seabed height as well as the decrease of rectangular seabed number, and the relative rectangular seabed spacing in the rang of 3 and 4 could produce higher Bragg reflection. Finally, a correlative and regressive analysis is performed by use of the calculated data. Based on the results of the analysis, empirical equations were established. Our study results can provide an appropriate choice of a series of rectangular seabed field for a practical design.

  15. Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity

    DEFF Research Database (Denmark)

    Pospori, Andreas; Marques, C. A. F.; Saez-Rodriguez, D.

    2017-01-01

    An investigation of the thermal annealing effects on the strain, stress, and force sensitivities of polymer optical fiber Bragg grating sensors is performed. We demonstrate for the first time that the fiber annealing can enhance both stress and force sensitivities of Bragg grating sensors, with t...

  16. Simultaneous demodulation of polarization mode coupling and fiber Bragg grating within a polarization maintaining fiber

    Science.gov (United States)

    Zhao, Yanshuang; Liu, Yanlei; Zhang, Jianzhong; Yang, Jun; Canning, John; Peng, G. D.; Chen, Yujin; Yuan, Libo

    2015-09-01

    We propose a simultaneous demodulation scheme of polarization mode coupling and fiber Bragg grating in a polarization maintaining fiber based on a white light interferometer. A polarization maintaining fiber with two inscribed fiber Bragg gratings is used to demonstrate the feasibility.

  17. Usage of fiber Bragg grating sensors in low earth orbit environment

    NARCIS (Netherlands)

    Park, S.-O.; Moon, J.-B.; Lee, Y.-G.; Kim, C.-G.; Bhowmik, S.

    2008-01-01

    It is widely known that materials exposed to the severe low earth orbit (LEO) environment undergo degradations. For the evaluation of fiber Bragg grating (FBG) sensors in the LEO environment, the reflective spectrum change and the Bragg wavelength shift of FBG sensor were measured during aging

  18. Dynamic strain measurement of hydraulic system pipeline using fibre Bragg grating sensors

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-04-01

    Full Text Available Fatigue failure is a serious problem in hydraulic piping systems installed in the machinery and equipment working in harsh operational conditions. To alleviate this problem, health monitoring of pipes can be conducted by measuring and analysing vibration-induced strain. Fibre Bragg grating is considered as a promising sensing approach for dynamic load monitoring. In this article, dynamic strain measurements based on fibre Bragg grating sensors for small-bore metal pipes have been investigated. The quasi-distributed strain sensing of fibre Bragg grating sensors is introduced. Two comparison experiments were carried out under vibration and impact loads among the methods of electrical strain gauge, piezoelectric accelerometer and fibre Bragg grating sensor. Experimental results indicate that fibre Bragg grating sensor possesses an outstanding ability to resist electromagnetic interference compared with strain gauge. The natural frequency measurement results, captured by fibre Bragg grating sensor, agree well with the modal analysis results obtained from finite element analysis. In addition, the attached fibre Bragg grating sensor brings a smaller impact on the dynamic characteristics of the measured pipe than the accelerometer due to its small size and lightweight. Fibre Bragg grating sensors have great potential for the quasi-distributed measurement of dynamic strain for the dynamic characteristic research and health monitoring of hydraulic system pipeline.

  19. High-Quality Monolithic Distributed Bragg Reflector Cavities and Lasers in Alumina Channel Waveguides

    NARCIS (Netherlands)

    Bernhardi, Edward; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    2011-01-01

    The design, fabrication, and characterization of surface relief Bragg gratings integrated with aluminum oxide ridge waveguides are reported. The grating lengths varied between 1.25 mm and 4.75 mm and were used to create various distributed Bragg reflector (DBR) cavities. The measured grating induced

  20. Modulation of Transmission Spectra of Anodized Alumina Membrane Distributed Bragg Reflector by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Zheng WenJun

    2009-01-01

    Full Text Available Abstract We have successfully prepared anodized alumina membrane distributed Bragg reflector (DBR using electrochemical anodization method. The transmission peak of this distributed Bragg reflector could be easily and effectively modulated to cover almost any wavelength range of the whole visible spectrum by adjusting anodization temperature.

  1. Usage of fiber Bragg grating sensors in low earth orbit environment

    NARCIS (Netherlands)

    Park, S.-O.; Moon, J.-B.; Lee, Y.-G.; Kim, C.-G.; Bhowmik, S.

    2008-01-01

    It is widely known that materials exposed to the severe low earth orbit (LEO) environment undergo degradations. For the evaluation of fiber Bragg grating (FBG) sensors in the LEO environment, the reflective spectrum change and the Bragg wavelength shift of FBG sensor were measured during aging cycle

  2. Optical Properties of High Sensitivity Fiber Bragg Grating on Temperature Sensor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper, the spectrum shift properties of the center reflection wavelength detected to be based on the FBG sensor with ambient temperature change. The basic theoretical methods and numerical simulation for the spectral properties of uniform Bragg grating is analyzed by using coupling mode theory which is optical properties of high sensitivity fiber Bragg grating on temperature sensor in accordance with experiment.

  3. MEMS accelerometers utilizing resonant microcantilevers with interrogated single-mode waveguides and Bragg gratings

    Science.gov (United States)

    Carpenter, L. G.; Holmes, C.; Gates, J. C.; Smith, P. G. R.

    2013-03-01

    We have demonstrated two monolithically integrated Bragg grating based accelerometers, both with the optical path and mechanical structure being made from the same substrate. The unique fabrication techniques, Direct UV Writing and precision dicing, used to create the glass microcantilevers are discussed. We show experimental results from two different Bragg grating based interrogation systems, one utilizing a single Gaussian apodized Bragg grating and the other utilizes two spectrally matched Bragg gratings forming a Fabry-Pérot interferometer. Sinusoidal accelerations were applied to both devices and their sensitivities were found to be 0.67+/-0.035 mV/g and 14.0+/-0.44 mV/g for the single Bragg grating and Fabry-Pérot interferometer respectively.

  4. Discourse on the Characterization of Waveguide Distributed Bragg Reflectors for Application to Nonlinear Optics

    Science.gov (United States)

    Grieco, Andrew Lewis

    Precise characterization of waveguide parameters is necessary for the successful design of nonlinear photonic devices. This dissertation contains a description of methods for the experimental characterization of distributed Bragg reflectors for use in nonlinear optics and other applications. The general coupled-mode theory of Bragg reflection arising from a periodic dielectric perturbation is developed from Maxwell's equations. This theory is then applied to develop a method of characterizing the fundamental parameters that describe Bragg reflection by comparing the spectral response of Bragg reflector resonators. This method is also extended to characterize linear loss in waveguides. A model of nonlinear effects in Bragg reflector resonators manifesting in bistability is also developed, as this phenomenon can be detrimental to the characterization method. Specific recommendations are made regarding waveguide fabrication and experimental design to reduce sources of experimental error.

  5. Patterned Platinum Etching Studies in an Argon High Density Plasma

    Science.gov (United States)

    Delprat, Sébastien; Chaker, Mohamed; Margot, Joëlle; Pépin, Henri; Tan, Liang; Smy, Tom

    1998-10-01

    A high-density surface-wave Ar plasma operated in the low pressure regime is used to study pure physical etching characteristics of platinum thin films. The platinum samples are RF biased so as to obtain a maximum DC self-bias voltage of 150 V. The sputter-etching characteristics are investigated as a function of the magnetic field intensity, the self-bias voltage and the gas pressure. At 1 mtorr, the etch rate is found to be a unique linear function of both the self-bias voltage and the ion density, independently of the magnetic field intensity value. However, even though the ion density increases, the etch rate is found to decrease with increasing pressure. In the low pressure regime, etch rates as high as 2000 A/min are obtained with a good selectivity over resist. Without any optimization of the etching process, we were able to etch 0.5 micron Pt trenches, 0.6 micron thick yielding fence-free profiles and sidewall angles (75º) that already meets the present industrial requirements of NVRAM technology.

  6. Model of wet chemical etching of swift heavy ions tracks

    Science.gov (United States)

    Gorbunov, S. A.; Malakhov, A. I.; Rymzhanov, R. A.; Volkov, A. E.

    2017-10-01

    A model of wet chemical etching of tracks of swift heavy ions (SHI) decelerated in solids in the electronic stopping regime is presented. This model takes into account both possible etching modes: etching controlled by diffusion of etchant molecules to the etching front, and etching controlled by the rate of a reaction of an etchant with a material. Olivine ((Mg0.88Fe0.12)2SiO4) crystals were chosen as a system for modeling. Two mechanisms of chemical activation of olivine around the SHI trajectory are considered. The first mechanism is activation stimulated by structural transformations in a nanometric track core, while the second one results from neutralization of metallic atoms by generated electrons spreading over micrometric distances. Monte-Carlo simulations (TREKIS code) form the basis for the description of excitations of the electronic subsystem and the lattice of olivine in an SHI track at times up to 100 fs after the projectile passage. Molecular dynamics supplies the initial conditions for modeling of lattice relaxation for longer times. These simulations enable us to estimate the effects of the chemical activation of olivine governed by both mechanisms. The developed model was applied to describe chemical activation and the etching kinetics of tracks of Au 2.1 GeV ions in olivine. The estimated lengthwise etching rate (38 µm · h‑1) is in reasonable agreement with that detected in the experiments (24 µm · h‑1).

  7. Particle precipitation in connection with KOH etching of silicon

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Christensen, Carsten; Pedersen, Casper

    2004-01-01

    This paper considers the precipitation of iron oxide particles in connection with the KOH etching of cavities in silicon wafers. The findings presented in this paper suggest that the source to the particles is the KOH pellets used for making the etching solution. Experiments show that the precipi...... of the change in free energy of adsorption, the Pourbaix diagram, the electrochemical double- layer thickness and silicon dopant type, and concentration. (C) 2004 The Electrochemical Society.......This paper considers the precipitation of iron oxide particles in connection with the KOH etching of cavities in silicon wafers. The findings presented in this paper suggest that the source to the particles is the KOH pellets used for making the etching solution. Experiments show...... that the precipitation is independent of KOH etching time, but that the amount of deposited material varies with dopant type and dopant concentration. The experiments also suggest that the precipitation occurs when the silicon wafers are removed from the KOH etching solution and not during the etching procedure. When...

  8. SU-E-T-146: Beam Energy Spread Estimate Based On Bragg Peak Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Anferov, V; Derenchuk, V; Moore, R [ProNova Solutions, Knoxville, TN (United States); Schreuder, A [Provision Healthcare Partners, Knoxville, TN (United States)

    2015-06-15

    Purpose: ProNova is installing and commissioning a two room proton therapy system in Knoxville, TN. Beam energy out of the 230MeV cyclotron was measured on Jan 24, 2015. Cyclotron beam was delivered into a Zebra multi layered IC detector calibrated in terms of penetration range in water. The analysis of the measured Bragg peak determines penetration range in water which can be subsequently converted into proton beam energy. We extended this analysis to obtain an estimate of the beam energy spread out of the cyclotron. Methods: Using Monte Carlo simulations we established the correlation between Bragg peak shape parameters (width at 50% and 80% dose levels, distal falloff) and penetration range for a monoenergetic proton beam. For large uniform field impinging on a small area detector, we observed linear dependence of each Bragg peak parameter on beam penetration range as shown in Figure A. Then we studied how this correlation changes when the shape of Bragg peak is distorted by the beam focusing conditions. As shown in Figure B, small field size or diverging beam cause Bragg peak deformation predominantly in the proximal region. The distal shape of the renormalized Bragg peaks stays nearly constant. This excludes usage of Bragg peak width parameters for energy spread estimates. Results: The measured Bragg peaks had an average distal falloff of 4.86mm, which corresponds to an effective range of 35.5cm for a monoenergetic beam. The 32.7cm measured penetration range is 2.8cm less. Passage of a 230MeV proton beam through a 2.8cm thick slab of water results in a ±0.56MeV energy spread. As a final check, we confirmed agreement between shapes of the measured Bragg peak and one generated by Monte-Carlo code for proton beam with 0.56 MeV energy spread. Conclusion: Proton beam energy spread can be estimated using Bragg peak analysis.

  9. Power modulated temperature sensor with inscribed fibre Bragg gratings

    Science.gov (United States)

    Mądry, M.; Markowski, K.; Jędrzejewski, K.; Bereś-Pawlik, E.

    2016-12-01

    The Fibre Bragg Grating (FBG) based temperature optical sensor has been designed and demonstrated. FBGs have been modelled and fabricated so as to convert the Bragg wavelength shift into the intensity domain. The main experimental setup consists of a filtering FBG and two scanning FBGs, respectively, left and right scanning FBG, whereby scanning FBGs are symmetrically located on the slopes of the filtering FBG. Such an approach allows for the modulation of power for the propagating optical signal depending on the ambient temperature at the scanning FBG location. A positive or negative change of power is determined by the spectral response of the FBG. Experimental research of the scanning FBGs' sensitivities emphasized that the key issue is the filtering FBG. A different level of sensitivity could be achieved due to the spectral characteristic of the filtering FBG. Omitting advanced and high-cost devices, the FBG-based temperature sensor is presented. The FBG-based sensor setup could yield resolution of 1°C for the range of temperature 0.5°C to 52.5°C. The experimental study has been performed as a base for an easy-placed sensor system to monitor external parameters in real environment.

  10. Widely Tunable Distributed Bragg Reflectors Integrated into Nanowire Waveguides.

    Science.gov (United States)

    Fu, Anthony; Gao, Hanwei; Petrov, Petar; Yang, Peidong

    2015-10-14

    Periodic structures with dimensions on the order of the wavelength of light can tailor and improve the performance of optical components, and they can enable the creation of devices with new functionalities. For example, distributed Bragg reflectors (DBRs), which are created by periodic modulations in a structure's dielectric medium, are essential in dielectric mirrors, vertical cavity surface emitting lasers, fiber Bragg gratings, and single-frequency laser diodes. This work introduces nanoscale DBRs integrated directly into gallium nitride (GaN) nanowire waveguides. Photonic band gaps that are tunable across the visible spectrum are demonstrated by precisely controlling the grating's parameters. Numerical simulations indicate that in-wire DBRs have significantly larger reflection coefficients in comparison with the nanowire's end facet. By comparing the measured spectra with the simulated spectra, the index of refraction of the GaN nanowire waveguides was extracted to facilitate the design of photonic coupling structures that are sensitive to phase-matching conditions. This work indicates the potential to design nanowire-based devices with improved performance for optical resonators and optical routing.

  11. Design of vibration sensor based on fiber Bragg grating

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong

    2017-06-01

    Fiber grating is a kind of new type of fiber optic light source device which has been rapidly changing in the refractive index of the core in recent years. Especially, it can realize the high precision of the external parameters by means of the special structure design and the encapsulation technology [1, 2]. In this paper, a fiber grating vibration sensor which is suitable for vibration monitoring in key areas is designed based on the technical background of vibration monitoring system. The sensor uses a single beam structure and pastes the fiber Bragg grating (FBG) to measure the vibration wavelength on the surface. When the vibration is simply harmonic vibration, the Bragg reflection wavelength will change periodically, and the periodic variation of the wavelength curve can be measured by the fiber grating demodulator, then the correctness of the experimental results is verified. In this paper, through the analysis of the data measured by the demodulator, the MATLAB software is used to verify the data, and the different frequency domains, the modes, and the phase frequency curves are obtained. The measurement range is 0 Hz-100 Hz, and the natural frequency is 90.6 Hz.

  12. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  13. Multilayer Bragg Fresnel zone plate for coherent HHG radiation

    Energy Technology Data Exchange (ETDEWEB)

    Spaeth, Christian; Schmidt, Juergen [Fakultaet fuer Physik, Ludwig Maximilians Universitaet Muenchen, Garching (Germany); Hofstetter, Michael [Max Planck Institut fuer Quantenoptik, Garching (Germany); Krausz, Ferenc; Kleineberg, Ulf [Fakultaet fuer Physik, Ludwig Maximilians Universitaet Muenchen, Garching (Germany); Max Planck Institut fuer Quantenoptik, Garching (Germany)

    2010-07-01

    Coherent diffractive imaging in the (soft) X-ray regime is an emerging new lens-less X-ray microscopy technique with the future potential of molecular or even atomic resolution, because it is ultimately limited by the wavelength of the illuminating radiation and not by the imaging quality of the X-ray lens. However, this technique depends on the availability of coherent x-ray sources as well as optics for spectral filtering and focusing. We describe the development fabrication and testing of a reflective multilayer Bragg Fresnel phase zone plate for focusing coherent XUV radiation at 13 nm wavelength from a High Harmonic Generation source. This X-ray optical device serves for spectral filtering as well as sub-micron focusing of the HH spectrum in a single element for largely reduced losses. Large zone plate structures (conventional, spiral) matching the HH beam size are recorded by e-beam lithography in ultrathin HSQ e-beam resist and over-coated with a reflective Mo/Si multilayer by ion beam deposition. By accurately matching the groove depth of the diffractive structure to odd multiples of the quarter Bragg wavelength, the total diffraction efficiency can be improved by a factor of 4 theoretically compared to amplitude structures.

  14. Fiber Bragg grating sensor-based communication assistance device

    Science.gov (United States)

    Padma, Srivani; Umesh, Sharath; Pant, Shweta; Srinivas, Talabattula; Asokan, Sundarrajan

    2016-08-01

    Improvements in emergency medicine in the form of efficient life supporting systems and intensive care have increased the survival rate in critically injured patients; however, in some cases, severe brain and spinal cord injuries can result in a locked-in syndrome or other forms of paralysis, and communication with these patients may become restricted or impossible. The present study proposes a noninvasive, real-time communication assistive methodology for those with restricted communication ability, employing a fiber Bragg grating (FBG) sensor. The communication assistive methodology comprises a breath pattern analyzer using an FBG sensor, which acquires the exhalation force that is converted into strain variations on a cantilever. The FBG breath pattern analyzer along with specific breath patterns, which are programmed to give specific audio output commands, constitutes the proposed fiber Bragg grating sensor-based communication assistive device. The basic communication can be carried out by instructing the patients with restricted communication ability to perform the specific breath patterns. The present approach is intended to be an alternative to the common approach of brain-computer interface in which an instrument is utilized for learning of brain responses.

  15. Sealing effectiveness of etch-and-rinse vs self-etching adhesives after water aging: influence of acid etching and NaOCl dentin pretreatment.

    Science.gov (United States)

    Monticelli, Francesca; Toledano, Manuel; Silva, Ana Simoes; Osorio, Estrella; Osorio, Raquel

    2008-06-01

    To determine the marginal leakage of Class V restorations bonded with etch-and-rinse and self-etching adhesives applied after different dentin pretreatments over a maximum storage time of 24 months. Standardized mixed Class V cavities (5 mm x 3 mm and 2 mm deep) were cut on the buccal and lingual surfaces of 180 human molars. Two self-etching adhesive systems, Adper Prompt L-Pop (3M ESPE) and Clearfil SE Bond (Kuraray), and one etch-and-rinse bonding agent (One Step, Bisco) were applied as follows: 1. according to manufacturers' instructions; 2. after 37% H3PO4 etching for 15 s; 3. after 37% H3PO4 etching for 15 s and 5% NaOCl aq application for 2 min. Teeth were stored for 24 h, 6, 12, and 24 months in saline solution at 37 degrees C before being stained in 0.5% solution of basic fuchsine. Dye penetration was scored on a 0 to 3 ordinal scale and analyzed with the Kruskal-Wallis H test (p < 0.05), Mann-Whitney U-test (p < 0.01), and Wilcoxon paired test (p < 0.05). Significant differences exist after using the tested adhesives at dentin and enamel margins. Adhesive type and substrate pretreatment had a significant effect on the long-term sealing of Class V restorations, and aging increased leakage overtime. The extent of leakage at the enamel margins was lower than that at dentin margins. One Step recorded the best results after 24 months. Optimal adhesion of restorative materials to enamel and dentin is hampered by a reduction in marginal seal over time. Alternative dentinal treatments (etching or collagen removal) might increase bonding efficacy, depending on the adhesive system used.

  16. Anisotropic etching of tungsten-nitride with ICP system

    CERN Document Server

    Lee, H G; Moon, H S; Kim, S H; Ahn, J; Sohn, S

    1998-01-01

    Inductively Coupled Plasma ion streaming etching of WN sub x film is investigated for preparing x-ray mask absorber patterns. SF sub 6 gas plasma provides for effective etching of WN sub x , and the addition of Ar and N sub 2 results in higher dissociation of SF sub 6 and sidewall passivation effect, respectively. Microloading effect observed for high aspect ratio patterns is minimized by multi-step etching and O sub 2 plasma treatment process. As a result, 0.18 mu m WN sub x line and space patterns with vertical sidewall profile are successfully fabricated.

  17. Parametric study on the solderability of etched PWB copper

    Energy Technology Data Exchange (ETDEWEB)

    Hosking, F.M.; Stevenson, J.O.; Hernandez, C.L.

    1996-10-01

    The rapid advancement of interconnect technology has resulted in a more engineered approach to designing and fabricating printed wiring board (PWB) surface features. Recent research at Sandia National Laboratories has demonstrated the importance of surface roughness on solder flow. This paper describes how chemical etching was used to enhance the solderability of surfaces that were normally difficult to wet. The effects of circuit geometry, etch concentration, and etching time on solder flow are discussed. Surface roughness and solder flow data are presented. The results clearly demonstrate the importance of surface roughness on the solderability of fine PWB surface mount features.

  18. Can previous acid etching increase the bond strength of a self-etching primer adhesive to enamel?

    Directory of Open Access Journals (Sweden)

    Ana Paula Morales Cobra Carvalho

    2009-06-01

    Full Text Available Because a greater research effort has been directed to analyzing the adhesive effectiveness of self etch primers to dentin, the aim of this study was to evaluate, by microtensile testing, the bond strength to enamel of a composite resin combined with a conventional adhesive system or with a self-etching primer adhesive, used according to its original prescription or used with previous acid etching. Thirty bovine teeth were divided into 3 groups with 10 teeth each (n= 10. In one of the groups, a self-etching primer (Clearfil SE Bond - Kuraray was applied in accordance with the manufacturer's instructions and, in the other, it was applied after previous acid etching. In the third group, a conventional adhesive system (Scotchbond Multipurpose Plus - 3M-ESPE was applied in accordance with the manufacturer's instructions. The results obtained by analysis of variance revealed significant differences between the adhesive systems (F = 22.31. The self-etching primer (Clearfil SE Bond presented lower enamel bond strength values than the conventional adhesive system (Scotchbond Multipurpose Plus (m = 39.70 ± 7.07 MPa both when used according to the original prescription (m = 27.81 ± 2.64 MPa and with previous acid etching (m = 25.08 ± 4.92 MPa.

  19. Investigation of electrochemical etch differences in AlGaAs heterostructures using Cl{sub 2} ion beam assisted etching

    Energy Technology Data Exchange (ETDEWEB)

    Anglin, Kevin, E-mail: kevin.r.anglin@gmail.com; Goodhue, William D. [Massachusetts Institute of Technology Lincoln Laboratory, 244 Wood St., Lexington, Massachusetts 02420 and Department of Physics and Applied Physics, University of Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854 (United States); Swint, Reuel B.; Porter, Jeanne [Massachusetts Institute of Technology Lincoln Laboratory, 244 Wood St., Lexington, Massachusetts 02420 (United States)

    2015-03-15

    A deeply etched, anisotropic 45° and 90° mirror technology is developed for Al{sub x}Ga{sub 1−x}As heterostructures using a Cl{sub 2} ion beam assisted etching system. When etching vertically, using a conductive low-erosion Ni mask, electrochemical etch differences between layers with various Al mole fractions caused nonuniform sidewall profiles not seen in semi-insulating GaAs test samples. These variations, based on alloy composition, were found to be negligible when etching at a 45°. A Si{sub 3}N{sub 4}-Ni etch mask is designed in order to electrically isolate charge buildup caused by the incoming Ar{sup +} ion beam to the Ni layer, preventing conduction to the underlying epitaxial layers. This modification produced smoothly etched facets, up to 8 μm in depth, enabling fabrication of substrate–surface-emitting slab-coupled optical waveguide lasers and other optoelectronic devices.

  20. 多层等离子体蚀刻技术的研究%Novel Technique for Multi-Partitioned Plasma Etching

    Institute of Scientific and Technical Information of China (English)

    于斌斌; 袁军堂; 汪振华; 薛志松; 黄云林

    2013-01-01

    A novel technique, tnulti-partitioned plasma etching, was developed to simultaneously etch GaN wafers with reactive ion beams in the multi-partitioned reactor. In the newly-developed technique, the vacuum chamber was divided into multiple partitions (three or more partitions) ,each of which acts as a separate plasma etching unit, with its own gas inlet,sample holder,and electrodes.The etching capacity was considerably scaled up.The photo-resist was dry etched with the lab-built,multi-partition etching setup.The impacts of the etching conditions,including the pressure,geometry of the partition, ratio of oxygen and argon flow rates, etc. on the etching rate were experimentally evaluated. The results show the average etching rate and uniformity can be up to 14.395 nm/min and 9.8% ,respectively,under the optimized condi-tions:a pressure of 40 Pa,a RF power of 600 W,an O2/Ar ratio of 1/2;a continuous etching time of 20 min in the three partitions with the bottom-up separations of 50,55 and 60 mm.%干法刻蚀现已成为微小高深宽比结构加工与微细图形制作的重要手段.提出了一种新的干法刻蚀技术一多层等离子体蚀刻,充分利用腔体的空间布局,布置多层电极,并采用分层送气装置输送放电气体,实现多层同时进行刻蚀,可成倍提高产能.采用该技术刻蚀光阻为例,从空间与时间两个角度分析了工艺参数对刻蚀速率与均匀性的影响规律与作用机理.实验结果表明,极板间距为50/55/60mm(由下向上),工作压力为40Pa,R[O2:Ar]为1/2,RF功率为600W时,整炉次刻蚀速率均值为14.395nm/min,均匀性为9.8%,此时工艺最为合理.

  1. The role of etching in bonding to enamel: a comparison of self-etching and etch-and-rinse adhesive systems.

    Science.gov (United States)

    Erickson, Robert L; Barkmeier, Wayne W; Latta, Mark A

    2009-11-01

    Etch and resin infiltration morphologies were compared for three self-etch adhesive (SEA) systems and eleven model etch-and-rinse (ERA) systems using various phosphoric acid (PA) concentrations with Adper Single Bond Plus (SB) adhesive. Matches for the morphologies were made between each SEA system and one of the PA/SB systems and bond strength measurements were made for all the systems. The hypothesis was that similar morphology would result in similar bond strength assuming micro-mechanical bonding is the mechanism of adhesion. Three specimens were prepared on polished (4000 grit) human enamel for each adhesive system to examine etch and resin infiltration morphology by SEM. For the latter, the adhesive systems were bonded using recommended methods and the enamel was dissolved in acid to reveal the resin. The etch patterns for the SEA systems were determined by rinsing off the material with water and acetone. Polished (4000 grit) human enamel was used with each adhesive system to determine 24-h resin composite to enamel shear bond strengths (SBS). A minimum of 10 specimens were used for each group. Data were analyzed by a one factor ANOVA and Fisher's PLSD post hoc test. The SBS to polished enamel for two of the three SEA systems were statistically significantly greater (penamel.

  2. Effect of moisture, saliva, and blood contamination on the shear bond strength of brackets bonded with a conventional bonding system and self-etched bonding system

    Science.gov (United States)

    Prasad, Mandava; Mohamed, Shamil; Nayak, Krishna; Shetty, Sharath Kumar; Talapaneni, Ashok Kumar

    2014-01-01

    Background: The success of bonding brackets to enamel with resin bonding systems is negatively affected by contamination with oral fluids such as blood and saliva. The new self-etch primer systems combine conditioning and priming agents into a single application, making the procedure more cost effective. Objective: The purpose of the study was to investigate the effect of moisture, saliva and blood contamination on shear bond strength of orthodontic brackets bonded with conventional bonding system and self-etch bonding system. Materials and Methods: Each system was examined under four enamel surface conditions (dry, water, saliva, and blood), and 80 human teeth were divided into two groups with four subgroups each of 10 according to enamel surface condition. Group 1 used conventional bonding system and Group 2 used self-etched bonding system. Subgroups 1a and 2a under dry enamel surface conditions; Subgroups 1b and 2b under moist enamel surface condition; Subgroups 3a and 3b under saliva enamel surface condition and Subgroup 4a and 4b under blood enamel surface condition. Brackets were bonded, and all the samples were then submitted to a shear bond test with a universal testing machine with a cross head speed of 1mm/sec. Results: The results showed that the contamination reduced the shear bond strength of all groups. In self-etch bonding system water and saliva had significantly higher bond strength when compared to other groups. Conclusion: It was concluded that the blood contamination showed lowest bond strength from both bonding systems. Self-etch bonding system resulted in higher bond strength than conventional bonding system under all conditions except the dry enamel surface. PMID:24678210

  3. Selective Dry Etch for Defining Ohmic Contacts for High Performance ZnO TFTs

    Science.gov (United States)

    2014-03-27

    junction transistor CD critical dimension CVD chemical vapor deposition d.u. dimensionless unit DC direct current DI deionized water DRIE deep reactive...QuickLot process, the PR was exposed for 1.9 seconds on the MA6 mask aligner (10mW/cm2, λ = 365-405 nm), developed with 1:5 ratio of 351 and deionized water ...Platinum Si Silicon SiH4 Silane SiO2 Silicon dioxide Ta Tantalum Ti Titanium TiW Titanium tungsten alloy (10:90) W Tungsten ZnO Zinc oxide 76

  4. Laterally coupled distributed feedback lasers emitting at 2 μm with quantum dash active region and high-duty-cycle etched semiconductor gratings

    Science.gov (United States)

    Papatryfonos, Konstantinos; Saladukha, Dzianis; Merghem, Kamel; Joshi, Siddharth; Lelarge, Francois; Bouchoule, Sophie; Kazazis, Dimitrios; Guilet, Stephane; Le Gratiet, Luc; Ochalski, Tomasz J.; Huyet, Guillaume; Martinez, Anthony; Ramdane, Abderrahim

    2017-02-01

    Single-mode diode lasers on an InP(001) substrate have been developed using InAs/In0.53Ga0.47As quantum dash (Qdash) active regions and etched lateral Bragg gratings. The lasers have been designed to operate at wavelengths near 2 μm and exhibit a threshold current of 65 mA for a 600 μm long cavity, and a room temperature continuous wave output power per facet >5 mW. Using our novel growth approach based on the low ternary In0.53Ga0.47As barriers, we also demonstrate ridge-waveguide lasers emitting up to 2.1 μm and underline the possibilities for further pushing the emission wavelength out towards longer wavelengths with this material system. By introducing experimentally the concept of high-duty-cycle lateral Bragg gratings, a side mode suppression ratio of >37 dB has been achieved, owing to an appreciably increased grating coupling coefficient of κ ˜ 40 cm-1. These laterally coupled distributed feedback (LC-DFB) lasers combine the advantage of high and well-controlled coupling coefficients achieved in conventional DFB lasers, with the regrowth-free fabrication process of lateral gratings, and exhibit substantially lower optical losses compared to the conventional metal-based LC-DFB lasers.

  5. Erbium doped stain etched porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Diaz-Herrera, B. [Departamento de Energia Fotovoltaica, Instituto Tecnologico de Energias Renovables (ITER), Poligono Industrial de Granadilla, 38611 S/C Tenerife (Spain); Guerrero-Lemus, R. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain)], E-mail: rglemus@ull.es; Mendez-Ramos, J.; Rodriguez, V.D. [Departamento de Fisica Fundamental, Experimental Electronica y Sistemas, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Hernandez-Rodriguez, C. [Departamento de Fisica Basica, Universidad de La Laguna, Avda. Astrofisico Francisco Sanchez, 38204 La Laguna, S/C de Tenerife (Spain); Martinez-Duart, J.M. [Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, 28049 Cantoblanco, Madrid (Spain)

    2008-01-15

    In this work a simple erbium doping process applied to stain etched porous silicon layers (PSLs) is proposed. This doping process has been developed for application in porous silicon solar cells, where conventional erbium doping processes are not affordable because of the high processing cost and technical difficulties. The PSLs were formed by immersion in a HF/HNO{sub 3} solution to properly adjust the porosity and pore thickness to an optimal doping of the porous structure. After the formation of the porous structure, the PSLs were analyzed by means of nitrogen BET (Brunauer, Emmett and Teller) area measurements and scanning electron microscopy. Subsequently, the PSLs were immersed in a saturated erbium nitrate solution in order to cover the porous surface. Then, the samples were subjected to a thermal process to activate the Er{sup 3+} ions. Different temperatures and annealing times were used in this process. The photoluminescence of the PSLs was evaluated before and after the doping processes and the composition was analyzed by Fourier transform IR spectroscopy.

  6. Marginal permeability of self-etch and total-etch adhesive systems.

    Science.gov (United States)

    Owens, Barry M; Johnson, William W; Harris, Edward F

    2006-01-01

    This study evaluated microleakage in vitro of self-etch and multi-step, total-etch adhesive systems. Ninety-six extracted non-carious human molars were randomly assigned to eight groups (n=12) and restored with different adhesive systems: Optibond Solo Plus, iBond, Adper Prompt L-Pop, Xeno III, Simplicity, Nano-Bond, Adper Scotchbond Multi-Purpose and Touch & Bond. Each group was treated following the manufacturer's instructions. Class V cavities were prepared on the facial or lingual surfaces of each tooth with coronal margins in enamel and apical margins in cementum (dentin). The teeth were restored with Z-100 resin composite. After polishing with Sof-Lex disks, the teeth were thermocycled for 1000 cycles and coated with nail varnish to within 1.0 mm of the restoration. The teeth were stained in 1% methylene blue dye for 24 hours and sectioned from the facial to lingual surface. Dye penetration (microleakage) was examined with a 20x binocular microscope. Enamel and dentin margin leakage was scored on a 0 to 3 ordinal scale. Data were analyzed using Kruskal-Wallis Analysis of Variance and Mann-Whitney U tests. Comparison of the adhesive groups at the enamel margin revealed: 1) Adper Scotchbond Multi-Purpose exhibited significantly less leakage than the other adhesive groups (except iBond); 2) among the self-etch adhesive groups, iBond exhibited significantly less leakage than Nano-Bond and 3) the other adhesive groups clustered intermediately. In contrast, there were no significant differences among the adhesive groups when the dentin margin was evaluated. A Wilcoxin signed rank test showed significantly less leakage at the enamel margins compared to the dentin margins of the eight adhesive systems tested. All data were submitted to statistical analysis at p<0.05 level of significance.

  7. Effect of postoperative bleaching on microleakage of etch-and-rinse and self-etch adhesives

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2011-01-01

    Full Text Available Background: Bleaching the discoloured teeth may affect the tooth/composite interface. The aim of this in vitro experimental study was to evaluate the effect of vital tooth bleaching on microleakage of existent class V composite resin restorations bonded with three dental bonding agents. Methods : Class V cavities were prepared on buccal surfaces of 72 intact, extracted human anterior teeth with gingival margins in dentin and occlusal margins in enamel, and randomly divided into 3 groups. Cavities in the three groups were treated with Scotch bond Multi-Purpose, a total etch system and Prompt L-Pop and iBond, two self-etch adhesives. All teeth were restored with Z250 resin composite material and thermo-cycled. Each group was equally divided into the control and the bleached subgroups (n = 12. The bleached subgroups were bleached with 15% carbamide peroxide gel for 8 hours a day for 15 days. Microleakage scores were evaluated on the incisal and cervical walls. Data were analyzed using Kruskal-Wallis, Mann-Whitney and Bonferroni post-hoc tests (α = 0.05. Results: Bleaching with carbamide peroxide gel significantly increased the microleakage of composite restorations in Prompt L-Pop group at dentinal walls (P = 0.001. Bleaching had no effect on microleakage of restorations in the Scotch bond Multi-Purpose and iBond groups. Conclusion: Vital tooth bleaching with carbamide peroxide gel has an adverse effect on marginal seal of dentinal walls of existent composite resin restorations bonded with prompt L-Pop self-etch adhesive.

  8. Polishing of quartz by rapid etching in ammonium bifluoride.

    Science.gov (United States)

    Vallin, Orjan; Danielsson, Rolf; Lindberg, Ulf; Thornell, Greger

    2007-07-01

    The etch rate and surface roughness of polished and lapped AT-cut quartz subjected to hot (90, 110, and 130 degrees C), concentrated (50, 65, 80 wt %) ammonium bi-fluoride have been investigated. Having used principal component analysis to verify experimental solidity and analyze data, we claim with confidence that this parameter space does not, as elsewhere stated, allow for a polishing effect or even a preserving setting. Etch rates were found to correlate well, and possibly logarithmically, with temperature except for the hottest etching applied to lapped material. Roughness as a function of temperature and concentration behaved well for the lapped material, but lacked systematic variation in the case of the polished material. At the lowest temperature, concentration had no effect on etch rate or roughness. Future efforts are targeted at temperatures and concentrations closer to the solubility limit.

  9. Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2006-12-01

    This report describes a study designed to explore the different properties of two different chalcogenide materials, As2S3 and As24S38Se38, when subjected to photolithographic wet-etching techniques. Chalcogenide glasses are made by combining chalcogen elements S, Se, and Te with Group IV and/or V elements. The etchant was selected from the literature and was composed of sodium hydroxide, isopropyl alcohol, and deionized water and the types of chalcogenide glass for study were As2S3 and As24S38Se38. The main goals here were to obtain a single variable etch rate curve of etch depth per time versus NaOH overall solution concentration in M and to see the difference in etch rate between a given etchant when used on the different chalcogenide stoichiometries. Upon completion of these two goals, future studies will begin to explore creating complex, integrated photonic devices via these methods.

  10. Cryogenic rf test of the first plasma etched SRF cavity

    CERN Document Server

    Upadhyay, J; Popović, S; Valente-Feliciano, A -M; Im, D; Phillips, L; Vušković, L

    2016-01-01

    Plasma etching has a potential to be an alternative processing technology for superconducting radio frequency (SRF) cavities. An apparatus and a method are developed for plasma etching of the inner surfaces of SRF cavities. To test the effect of the plasma etching on the cavity rf performance, a 1497 MHz single cell SRF cavity is used. The single cell cavity is mechanically polished, buffer chemically etched afterwards and rf tested at cryogenic temperatures for a baseline test. This cavity is then plasma processed. The processing was accomplished by moving axially the inner electrode and the gas flow inlet in a step-wise manner to establish segmented plasma processing. The cavity is rf tested afterwards at cryogenic temperatures. The rf test and surface condition results are presented.

  11. What's new in dentine bonding? Self-etch adhesives.

    Science.gov (United States)

    Burke, F J Trevor

    2004-12-01

    Bonding to dentine is an integral part of contemporary restorative dentistry, but early systems were not user-friendly. The introduction of new systems which have a reduced number of steps--the self-etch adhesives--could therefore be an advantage to clinicians, provided that they are as effective as previous adhesives. These new self-etch materials appear to form hybrid layers as did the previous generation of materials. However, there is a need for further clinical research on these new materials. Advantages of self-etch systems include, no need to etch and rinse, reduced post-operative sensitivity and low technique sensitivity. Disadvantages include, the inhibition of set of self- or dual-cure resin materials and the need to roughen untreated enamel surfaces prior to bonding.

  12. GaN Nanowires Synthesized by Electroless Etching Method

    KAUST Repository

    Najar, Adel

    2012-01-01

    Ultra-long Gallium Nitride Nanowires is synthesized via metal-electroless etching method. The morphologies and optical properties of GaN NWs show a single crystal GaN with hexagonal Wurtzite structure and high luminescence properties.

  13. Bond efficacy and interface morphology of self-etching adhesives to ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; El Zohairy, A.A.; Mohsen, M.M.A.; Feilzer, A.J.

    2010-01-01

    Purpose: This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Materials and Methods: Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray) an

  14. Bond efficacy and interface morphology of self-etching adhesives to ground enamel

    NARCIS (Netherlands)

    Abdalla, A.I.; El Zohairy, A.A.; Mohsen, M.M.A.; Feilzer, A.J.

    2010-01-01

    Purpose: This study compared the microshear bond strengths to ground enamel of three one-step self-etching adhesive systems, a self-etching primer system and an etch-and-rinse adhesive system. Materials and Methods: Three self-etching adhesives, Futurabond DC (Voco), Clearfil S Tri Bond (Kuraray)

  15. Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures

    Science.gov (United States)

    Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.

    2016-03-01

    Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.

  16. Comparison of the Schaake and Benson Etches to Delineate Dislocations in HgCdTe Layers

    Science.gov (United States)

    Farrell, S.; Rao, Mulpuri V.; Brill, G.; Chen, Y.; Wijewarnasuriya, P.; Dhar, N.; Benson, J. D.; Harris, K.

    2013-11-01

    The morphology and classification of etch pits in molecular beam epitaxy-grown (211) HgCdTe/CdTe/Si layers were investigated using the Schaake and Benson etch pit density (EPD) etches. The two EPD etches were compared and shown to have a 1:1 correlation in the etch pits that were produced. Close examination of the shape of the etch pits via scanning electron microscopy shows that several distinguishable classifications of etch pits are revealed using both etches. Samples subjected to thermal cycle annealing (TCA) treatment show a nonuniform reduction in etch pit populations according to the classification defined in this study. In particular, a class of etch pits called "fish shaped" are completely absent after TCA and can account for up to one-third of the total reduction in EPD.

  17. Etching Rate of Silicon Dioxide Using Chlorine Trifluoride Gas

    Science.gov (United States)

    Miura, Yutaka; Kasahara, Yu; Habuka, Hitoshi; Takechi, Naoto; Fukae, Katsuya

    2009-02-01

    The etching rate behavior of silicon dioxide (SiO2, fused silica) using chlorine trifluoride (ClF3) gas is studied at substrate temperatures between 573 and 1273 K at atmospheric pressure in a horizontal cold-wall reactor. The etching rate increases with the ClF3 gas concentration, and the overall reaction is recognized to be of the first order. The change of the etching rate with increasing substrate temperature is nonlinear, and the etching rate tends to approach a constant value at temperatures exceeding 1173 K. The overall rate constant is estimated by numerical calculation, taking into account the transport phenomena in the reactor, including the chemical reaction at the substrate surface. The activation energy obtained in this study is 45.8 kJ mol-1, and the rate constant is consistent with the measured etching rate behavior. A reactor system in which there is minimum etching of the fused silica chamber by ClF3 gas can be achieved using an IR lamp heating unit and a chamber cooling unit to maintain a sufficiently low temperature of the chamber wall.

  18. Bond strength with various etching times on young permanent teeth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.N.; Lu, T.C. (School of Dentistry, National Defense Medical Center, Taipei, Taiwan (China))

    1991-07-01

    Tensile bond strengths of an orthodontic resin cement were compared for 15-, 30-, 60-, 90-, or 120-second etching times, with a 37% phosphoric acid solution on the enamel surfaces of young permanent teeth. Fifty extracted premolars from 9- to 16-year-old children were used for testing. An orthodontic composite resin was used to bond the bracket directly onto the buccal surface of the enamel. The tensile bond strengths were tested with an Instron machine. Bond failure interfaces between bracket bases and teeth surfaces were examined with a scanning electron microscope and calculated with mapping of energy-dispersive x-ray spectrometry. The results of tensile bond strength for 15-, 30-, 60-, or 90-second etching times were not statistically different. For the 120-second etching time, the decrease was significant. Of the bond failures, 43%-49% occurred between bracket and resin interface, 12% to 24% within the resin itself, 32%-40% between resin and tooth interface, and 0% to 4% contained enamel fragments. There was no statistical difference in percentage of bond failure interface distribution between bracket base and resin, resin and enamel, or the enamel detachment. Cohesive failure within the resin itself at the 120-second etching time was less than at other etching times, with a statistical significance. To achieve good retention, to decrease enamel loss, and to reduce moisture contamination in the clinic, as well as to save chairside time, a 15-second etching time is suggested for teenage orthodontic patients.

  19. Influence of copper foil polycrystalline structure on graphene anisotropic etching

    Science.gov (United States)

    Sharma, Kamal P.; Mahyavanshi, Rakesh D.; Kalita, Golap; Tanemura, Masaki

    2017-01-01

    Anisotropic etching of graphene and other two dimensional materials is an important tool to understand the growth process as well as enabling fabrication of various well-defined structures. Here, we reveal the influence of copper foil polycrystalline structure on anisotropic etching process of as-synthesized graphene. Graphene crystals were synthesized on the polycrystalline Cu foil by a low-pressure chemical vapor deposition (LPCVD) system. Microscopic analysis shows difference in shape, size and stripes alignment of graphene crystals with dissimilar nucleation within closure vicinity of neighboring Cu grains. Post-growth etching of such graphene crystals also significantly affected by the crystallographic nature of Cu grains as observed by the field emission scanning electron microscope (FE-SEM) and electron back scattered diffraction (EBSD) analysis. Hexagonal hole formation with anisotropic etching is observed to be independent of the stripes and wrinkles in the synthesized graphene. We also observed variation in etched pattern of the graphene depending on the base Cu grain orientations, attributing to difference in nucleation and growth process. The findings can facilitate to understand the nature of microscopic etched pattern depending on metal catalyst crystallographic structure.

  20. Etching of germanium-tin using ammonia peroxide mixture

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yuan; Ong, Bin Leong; Wang, Wei; Gong, Xiao; Liang, Gengchiau; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Zhang, Zheng; Pan, Jisheng [Institute of Material Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634 (Singapore); Tok, Eng-Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-12-28

    The wet etching of germanium-tin (Ge{sub 1-x}Sn{sub x}) alloys (4.2% < x < 16.0%) in ammonia peroxide mixture (APM) is investigated. Empirical fitting of the data points indicates that the etch depth of Ge{sub 1-x}Sn{sub x} is proportional to the square root of the etch time t and decreases exponentially with increasing x for a given t. In addition, X-ray photoelectron spectroscopy results show that increasing t increases the intensity of the Sn oxide peak, whereas no obvious change is observed for the Ge oxide peak. This indicates that an accumulation of Sn oxide on the Ge{sub 1-x}Sn{sub x} surface decreases the amount of Ge atoms exposed to the etchant, which accounts for the decrease in etch rate with increasing etch time. Atomic force microscopy was used to examine the surface morphologies of the Ge{sub 0.918}Sn{sub 0.082} samples. Both root-mean-square roughness and undulation periods of the Ge{sub 1-x}Sn{sub x} surface were observed to increase with increasing t. This work provides further understanding of the wet etching of Ge{sub 1-x}Sn{sub x} using APM and may be used for the fabrication of Ge{sub 1-x}Sn{sub x}-based electronic and photonic devices.

  1. Self-etch primers and conventional acid-etch technique for orthodontic bonding: a systematic review and meta-analysis.

    Science.gov (United States)

    Fleming, Padhraig S; Johal, Ama; Pandis, Nikolaos

    2012-07-01

    The use of self-etch primers has increased steadily because of their time savings and greater simplicity; however, overall benefits and potential disadvantages and harms have not been assessed systematically. In this study, we reviewed randomized controlled trials to assess the risk of attachment failure, bonding time, and demineralization adjacent to attachments between 1-stage (self-etch) and 2-stage (acid etch) bonding in orthodontic patients over a minimum follow-up period of 12 months. Data sources were electronic databases including MEDLINE, EMBASE, the Cochrane Oral Health Group's Trials Register, and CENTRAL, without language restrictions. Unpublished literature was searched on ClinicalTrials.gov, the National Research Register, and Pro-Quest Dissertation Abstracts and Thesis database. Authors were contacted when necessary, and reference lists of the included studies were screened. Search terms included randomized controlled trial, controlled clinical trial, random allocation, double-blind method, single-blind method, orthodontics, self-etch, SEP, primer, and bonding agent. Randomized clinical trials directly comparing self-etch and acid-etch primers with respect to the predefined outcomes and including patients with full-arch, fixed, and bonded orthodontic appliances (not banded) with follow-up periods of at least 12 months were included. Using predefined forms, 2 authors undertook independent data extraction with conflict resolution by the third author. Randomized clinical trial quality assessment based on the Cochrane Risk of Bias tool was also used. Eleven studies met the inclusion criteria; 6 were excluded because of a high risk of bias. In total, 1721 brackets bonded with acid-etch and 1723 with self-etch primer techniques were included in the quantitative synthesis. Relatively low statistical and clinical heterogeneity was observed among the 5 randomized clinical trials (n = 3444 brackets) comparing acid-etch with self-etch primers. A random effects

  2. Dispersion properties of a nanophotonic Bragg waveguide with finite aperiodic cladding

    CERN Document Server

    Fesenko, Volodymyr I; Shulika, Oleksiy V; Sukhoivanov, Igor A

    2015-01-01

    A comprehensive analysis of guided modes of a novel type of a planar Bragg reflection waveguide which consists of a low refractive index guiding layer sandwiched between two finite aperiodic mirrors is presented. The layers in the mirrors are aperiodically arranged according to the Kolakoski substitution rule. In such a waveguide light is confined inside the core by Bragg reflection from the mirrors, while dispersion characteristics of guided modes strongly depend on aperiodicity of the cladding. Using the transfer matrix formalism bandgap conditions, dispersion characteristics and mode profiles of the guided modes of such Bragg reflection waveguide are studied.

  3. Phase-sensitive detection of Bragg scattering at 1D optical lattices

    CERN Document Server

    Slama, S; Deh, B; Ludewig, A; Zimmermann, C; Courteille, P W; Courteille, Ph.W.

    2004-01-01

    We report on the observation of Bragg scattering at 1D atomic lattices. Cold atoms are confined by optical dipole forces at the antinodes of a standing wave generated by the two counter-propagating modes of a laser-driven high-finesse ring cavity. By heterodyning the Bragg-scattered light with a reference beam, we obtain detailed information on phase shifts imparted by the Bragg scattering process. Being deep in the Lamb-Dicke regime, the scattered light is not broadened by the motion of individual atoms. In contrast, we have detected signatures of global translatory motion of the atomic grating.

  4. Compressive and tensile strain sensing using a polymer planar Bragg grating.

    Science.gov (United States)

    Rosenberger, M; Hessler, S; Belle, S; Schmauss, B; Hellmann, R

    2014-03-10

    A polymer planar Bragg grating sensor is used for measuring both mechanical compressive and tensile strain. The planar waveguide with integrated Bragg grating is fabricated in bulk Polymethylmethacrylate in a single writing step using combined amplitude and phase mask technique. After butt coupling of a single-mode optical fiber the planar structure can be applied for measuring both mechanical tensile and compressive strain alongside the integrated waveguide without the need of further modifications. In this respect, we particularly report for the first time compressive strain measurements using a polymer Bragg grating. Furthermore, the sensitivity of the sensor against tensile and compressive strain, its reproducibility and hysteresis are investigated and discussed.

  5. Resonant THz sensor for paper quality monitoring using THz fiber Bragg gratings

    CERN Document Server

    Yan, Guofeng; Mikulic, Predrag; Bock, Wojtek J; Skorobogatiy, Maksim

    2013-01-01

    We report fabrication of THz fiber Bragg gratings (TFBG) using CO2 laser inscription on subwavelength step-index polymer fibers. A fiber Bragg grating with 48 periods features a ~4 GHz-wide stop band and ~15 dB transmission loss in the middle of a stop band. The potential of such gratings in design of resonant sensor for monitoring of paper quality is demonstrated. Experimental spectral sensitivity of the TFBG-based paper thickness sensor was found to be ~ -0.67 GHz / 10 um. A 3D electromagnetic model of a Bragg grating was used to explain experimental findings.

  6. Development and Application of Fiber Bragg Grating Clinometer

    Science.gov (United States)

    Guo, Xin; Li, Wen; Wang, Wentao; Feng, Xiaoyu

    2017-06-01

    Using FBG (fiber bragg grating) technology in clinometers can solve the technological problem facing by wireless transmission devices like big data transfer volume and poor stability, which has been receiving more and more attention. This paper discusses a new clinometer that is designed and transformed based on upgrading current clinometers, installing fiber grating strain gauges and fiber thermometers, and carrying out studies on such aspects as equipment upgrading, on-site setting, and data acquisition and analysis. In addition, it brings up the method of calculating displacement change based on wavelength change; this method is used in safety monitoring of the right side slope of Longyong Expressway ZK56+860 ~ ZK56+940 Section. Data shows that the device is operating well with a higher accuracy, and the slope is currently in a steady state. The equipment improvement and the method together provide reference data for safety analysis of the side slope.

  7. Remote (250 km Fiber Bragg Grating Multiplexing System

    Directory of Open Access Journals (Sweden)

    Manuel Lopez-Amo

    2011-09-01

    Full Text Available We propose and demonstrate two ultra-long range fiber Bragg grating (FBG sensor interrogation systems. In the first approach four FBGs are located 200 km from the monitoring station and a signal to noise ratio of 20 dB is obtained. The second improved version is able to detect the four multiplexed FBGs placed 250 km away, offering a signal to noise ratio of 6–8 dB. Consequently, this last system represents the longest range FBG sensor system reported so far that includes fiber sensor multiplexing capability. Both simple systems are based on a wavelength swept laser to scan the reflection spectra of the FBGs, and they are composed by two identical-lengths optical paths: the first one intended to launch the amplified laser signal by means of Raman amplification and the other one is employed to guide the reflection signal to the reception system.

  8. High Sensitivity Polymer Optical Fiber-Bragg-Grating-Based Accelerometer

    DEFF Research Database (Denmark)

    Stefani, Alessio; Andresen, Søren; Yuan, Wu

    2012-01-01

    We report on the fabrication and characterization of the first accelerometer based on a polymer optical fiber Bragg grating (FBG) for operation at both 850 and 1550 nm. The devices have a flat frequency response over a 1-kHz bandwidth and a resonance frequency of about 3 kHz. The response is linear...... up to at least 15 g and sensitivities as high as 19 pm/g (shift in resonance wavelength per unit acceleration) have been demonstrated. Given that 15 g corresponds to a strain of less than 0.02% and that polymer fibers have an elastic limit of more than 1%, the polymer FBG accelerometer can measure...... very strong accelerations. We compare with corresponding silica FBG accelerometers and demonstrate that using polymer FBGs improves the sensitivity by more than a factor of four and increases the figure of merit, defined as the sensitivity times the resonance frequency squared....

  9. [INVITED] New advances in polymer fiber Bragg gratings

    Science.gov (United States)

    Nogueira, Rogério; Oliveira, Ricardo; Bilro, Lúcia; Heidarialamdarloo, Jamshid

    2016-04-01

    During the last years, fiber Bragg gratings (FBGs) written in polymer optical fibers (POFs) have been pointed as an interesting alternative to silica FBGs for applications in sensors and in optical access networks. In order to use such components in real applications, the manipulation of POFs, as well as the increase of quality in the production of FBGs has to be achieved. In this article some of the recent advances regarding these two aspects are reported and include recent developments to produce smooth POFs end face with high quality, benefiting the current splicing process and the inscription of high quality FBGs in a few seconds. Furthermore, additional characterizations to strain, temperature, pressure, and humidity are also shown.

  10. Femtosecond soliton diode on heterojunction Bragg-grating structure

    CERN Document Server

    Deng, Zhigui; Li, Hongji; Fu, Shenhe; Liu, Yikun; Xiang, Ying; Li, Yongyao

    2016-01-01

    We numerically propose a scheme for realizing an all-optical femtosecond soliton diode based on a tailored heterojunction Bragg grating, which is designed by two spatially asymmetric chirped cholesteric liquid crystals. Our simulations demonstrate that with the consideration of optical nonlinearity, not only the femtosecond diode effect with nonreciprocal transmission ratio up to 120 can be achieved, but also the optical pulse evolving into soliton which maintains its shape during propagation through the sample is observed. Further, the influence of pulse width and the carrier wavelength to the femtosecond diode effect is also discussed in detail. Our demonstrations might suggest a new direction for experimentally realizing the femtosecond soliton diode based on the cholesteric liquid crystals.

  11. Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides

    Directory of Open Access Journals (Sweden)

    M. P. Bulk

    2008-01-01

    Full Text Available The refractive index modulation associated with the implantation of oxygen or silicon into waveguides formed in silicon-on-insulator (SOI has been investigated to determine the feasibility of producing planar, implantation induced Bragg grating optical filters. A two-dimensional coupled mode theory-based simulation suggests that relatively short grating lengths, on the order of a thousand microns, can exhibit sufficient wavelength suppression, of >10 dB, using the implantation technique. Fabricated planar implanted slab-guided SOI waveguides demonstrated an extinction of −10 dB for TE modes and −6 dB for TM modes for the case of oxygen implantation. Extinctions of −5 dB and −2 dB have been demonstrated with silicon implantation.

  12. Radial arterial compliance measurement by fiber Bragg grating pulse recorder.

    Science.gov (United States)

    Sharath, U; Shwetha, C; Anand, K; Asokan, S

    2014-12-01

    In the present work, we report a novel, in vivo, noninvasive technique to determine radial arterial compliance using the radial arterial pressure pulse waveform (RAPPW) acquired by fiber Bragg grating pulse recorder (FBGPR). The radial arterial compliance of the subject can be measured during sphygmomanometric examination by the unique signatures of arterial diametrical variations and the beat-to-beat pulse pressure acquired simultaneously from the RAPPW recorded using FBGPR. This proposed technique has been validated against the radial arterial diametrical measurements obtained from the color Doppler ultrasound. Two distinct trials have been illustrated in this work and the results from both techniques have been found to be in good agreement with each other.

  13. A Magnetostrictive Composite-Fiber Bragg Grating Sensor

    Directory of Open Access Journals (Sweden)

    Jefferson F. D. F. Araújo

    2010-08-01

    Full Text Available This paper presents a light and compact optical fiber Bragg Grating sensor for DC and AC magnetic field measurements. The fiber is coated by a thick layer of a magnetostrictive composite consisting of particles of Terfenol-D dispersed in a polymeric matrix. Among the different compositions for the coating that were tested, the best magnetostrictive response was obtained using an epoxy resin as binder and a 30% volume fraction of Terfenol-D particles with sizes ranging from 212 to 300 µm. The effect of a compressive preload in the sensor was also investigated. The achieved resolution was 0.4 mT without a preload or 0.3 mT with a compressive pre-stress of 8.6 MPa. The sensor was tested at magnetic fields of up to 750 mT under static conditions. Dynamic measurements were conducted with a magnetic unbalanced four-pole rotor

  14. Compact Single-Mode Distributed Bragg Reflector Fiber Laser

    Institute of Scientific and Technical Information of China (English)

    XUE Yi-Yuan; AN Hong-Lin; FU Li-Bin; LIN Xiang-Zhi; LIU Hong-Du

    2000-01-01

    A compact single-mode distributed Bragg reflector (DBR) fiber laser with narrow spectral linewidth is investigated. Firstly, based on our theoretical analysis the single longitudinal mode operation domain is obtained. Then, a single-mode DBR fiber laser of 7.9cm long with master oscillator power amplifier (MOPA) configuration is designed and constructed to operate in the single-mode domain. The fiber laser is pumped by a semiconductor laser at 975.5nm. The master oscillator operates at 1556.91 nm with a cw output power of 1.43mW for a pump power of 55.35 mW. Its slope efficiency is 2.7% and the spectral linewidth is less than 1.2MHz (instrument resolution limited). With the MOPA configuration the laser output power and slope efficiency are increased to 7.8mW and 16.9%, respectively.

  15. Energy Efficient Textile Drying

    OpenAIRE

    Brunzell, Lena

    2006-01-01

    Traditionally, textiles were dried outdoors with the wind and the sun enhancing the drying process. Tumble dryers offer a fast and convenient way of drying textiles independent of weather conditions. Tumble dryers, however, consume large amounts of electrical energy. Over 4 million tumble dryers are sold each year in Europe and a considerable amount of energy is used for drying of clothes. Increasing energy costs and the awareness about environmental problems related to a large energy use has...

  16. Plasma etching and ashing: a technique for demonstrating internal structures of helminths using scanning electron microscopy.

    Science.gov (United States)

    Veltkamp, C J; Chubb, J C

    2006-03-01

    Plasma etching and ashing for demonstrating the three-dimensional ultrastructure of the internal organs of helminths is described. Adult worms of the cestode Caryophyllaeides fennica were dehydrated through an ethanol series, critical point dried (Polaron E3000) and sputter coated with 60% gold-palladium (Polaron E5100) and glued to a standard scanning electron microscope (SEM) stub positioned as required for ashing. After initial SEM viewing of worm surfaces for orientation, stubs were placed individually in the reactor chamber of a PT7150 plasma etching and ashing machine. Worms were exposed to a radio frequency (RF) potential in a low pressure (0.2 mbar) oxygen atmosphere at room temperature. The oxidation process was controlled by varying the times of exposure to the RF potential between 2 to 30 min, depending on the depth of surface tissue to be removed to expose target organs or tissues. After each exposure the oxidized layer was blown from the surface with compressed air, the specimen sputter-coated, and viewed by SEM. The procedure was repeated as necessary, to progressively expose successive layers. Fine details of organs, cells within, and cell contents were revealed. Ashing has the advantage of providing three dimensional images of the arrangement of organs that are impossible to visualize by any other procedure, for example facilitating testes counts in cestodes. Both freshly-fixed and long-term stored helminths can be ashed. Ashing times to obtain the desired results were determined by trial so that some duplicate material was needed.

  17. Fabrication of novel III-N and III-V modulator structures by ECR plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Pearton, S.J.; Abernathy, C.R.; MacKenzie, J.D. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1995-12-01

    Quantum well microdisk laser structures have been fabricated in the GaN/InGaN, GaAs/AlGaAs and GaAs/InGaP systems using a combination of ECR dry etching (Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar, BCl{sub 3}/Ar or CH{sub 4}/H{sub 2}/Ar plasma chemistries respectively) and subsequent wet chemical etching of a buffer layer underlying the quantum wells. While wet etchants such as HF/H{sub 2}O and HCl/HNO{sub 3}/H{sub 2} O are employed for AlGaAs and InGaP, respectively, a new KOH based solution has been developed for AlN which is completely selective over both GaN and InGaN. Typical mask materials include PR or SiN{sub x}, while the high surface recombination velocity of exposed AlGaAs ({approximately} 10{sup 5} cm{center_dot}sec {sup {minus}1}) requires encapsulation with ECR-CVD SiN{sup x} to stabilize the optical properties of the modulators.

  18. Tunable Nanoantennas for Surface Enhanced Infrared Absorption Spectroscopy by Colloidal Lithography and Post-Fabrication Etching

    Science.gov (United States)

    Chen, Kai; Duy Dao, Thang; Nagao, Tadaaki

    2017-03-01

    We fabricated large-area metallic (Al and Au) nanoantenna arrays on Si substrates using cost-effective colloidal lithography with different micrometer-sized polystyrene spheres. Variation of the sphere size leads to tunable plasmon resonances in the middle infrared (MIR) range. The enhanced near-fields allow us to detect the surface phonon polaritons in the natural SiO2 thin layers. We demonstrated further tuning capability of the resonances by employing dry etching of the Si substrates with the nanoantennas acting as the etching masks. The effective refractive index of the nanoantenna surroundings is efficiently decreased giving rise to blueshifts of the resonances. In addition, partial removal of the Si substrates elevates the nanoantennas from the high-refractive-index substrates making more enhanced near-fields accessible for molecular sensing applications as demonstrated here with surface-enhanced infrared absorption (SEIRA) spectroscopy for a thin polymer film. We also directly compared the plasmonic enhancement from the Al and Au nanoantenna arrays.

  19. Planar waveguide Bragg grating sensors for composite monitoring

    Science.gov (United States)

    Teigell Benéitez, Nuria; Missinne, Jeroen; Chiesura, Gabriele; Luyckx, Geert; Degrieck, Joris; Van Steenberge, Geert

    2016-04-01

    Composite materials are extensively used in a wide array of application markets by virtue of their strength, stiffness and lightness. Many composite structures are replaced today not only after failure but also before, for precautionary reasons. Adding optical sensing intelligence to these structures not only prolongs their lifetime but also significantly reduces the use of raw materials and energy. The use of optical based sensors offer numerous advantages i.e. integrability, high sensitivity, compactness and electromagnetic immunity. Most sensors integrated in composites are based on silica fibers with Bragg gratings. However, polymers are an interesting alternative because they present several advantages. They have high values in the opticalconstants involved in sensing, are cost-effective and allow larger elongations than silica. Moreover, planar optical waveguides represent an interesting approach to be further integrated e.g. in circuits. We present a comparison between Ormocer®-based and epoxy-based polymer waveguide Bragg grating sensors. Both polymers were screened for their compatibility with composite production processes and for their sensitivity to measure temperature and stress. Ormocer®-based sensors were found to exhibit a very high sensitivity (-250 pm/°C) for temperature sensing, while the epoxy-based sensors, although less sensitive (-90 pm/°C) were more compatible with the epoxy-based composite production process. In terms of sensitivity to measure stress, both materials were found to be analogous with measured values of (2.98 pm/μepsilon) for the epoxy-based and (3.00 pm/μepsilon) for Ormocer®-based sensors.

  20. Adhesive capability of total-etch, self-etch, and self-adhesive systems for fiber post cementation

    Science.gov (United States)

    Theodor, Y.; Koesmaningati, H.; Gita, F.

    2017-08-01

    The aim of this study was to analyze whether self-etch and self-adhesive systems are comparable to the total-etch system for fiber post cementation. This experimental laboratory study, which was approved by an ethics committee, was performed using 27 mandibular premolar teeth randomly divided into three groups. Fiber post cementation was done using three different adhesive systems. Specimens were prepared with a thickness of 5 mm, which was measured from the cervical to medial areas of the root, and stored for 24 h in saline solution at room temperature. A push-out test was performed using a universal testing machine (Shimidzu AG-5000E) with a crosshead speed of 0.5 mm/min. The results of one way ANOVA bivariate testing showed that the total-etch and self-etch systems have comparable adhesion capability (padhesive system has the lowest adhesion capability (p>0.05). With easier application, the self-etch system has a comparable adhesion capability to the total-etch system.

  1. Optical Characterization of Chemically Etched Nanoporous Silicon Embedded in Sol-Gel Matrix

    Directory of Open Access Journals (Sweden)

    A. S. Al Dwayyan

    2012-01-01

    Full Text Available Nanoporous (NPs silicon fabricated by chemical etching process in HF acid was first separated in tetrahydrofuran (THF solvent and then incorporated into SiO2 matrix. The matrix was prepared by sol gel process in which dimethylformamide (DMF was used as drying chemical control additive (DCCA to form crack-free dried sample. We examined the optical properties of NPs in three medium which are solvent, sol, and dried sol gel. Our observations reveal that absorption spectra of NPs silicon in THF are modified with respect to the spectra in sol gel. Significant stability in PL of NPs silicon in the sol gel is observed. Influence of matrix environment on peaks of NPs is also discussed. Surface morphology is characterized by field emission scanning electron microscopy (FESEM which shows that the NPs silicon in THF is similar to the sol gel but becomes aggregation particle to particle. Presence of Si nanoparticles in THF and sol is confirmed by Transmission electron microscopy (TEM. The NPs silicons have mono dispersive and high crystalline nature with spherical shape of around 5 nm in sizes.

  2. Chemical etching to dissolve dislocation cores in multicrystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Gregori, N.J. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Murphy, J.D., E-mail: john.murphy@materials.ox.ac.uk [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom); Sykes, J.M.; Wilshaw, P.R. [Department of Materials, University of Oxford, 16 Parks Road, Oxford OX1 3PH (United Kingdom)

    2012-08-01

    Multicrystalline silicon wafers are used for approximately half of all solar cells produced at present. These wafers typically have dislocation densities of up to {approx}10{sup 6} cm{sup -2}. Dislocations and associated impurities act as strong recombination centres for electron-hole pairs and are one of the major limiting factors in multicrystalline silicon substrate performance. In this work we have explored the possibility of using chemical methods to etch out the cores of dislocations from mc-Si wafers. We aim to maximise the aspect ratio of the depth of the etched structure to its diameter. We first investigate the Secco etch (1K{sub 2}Cr{sub 2}O{sub 7} (0.15 M): 2HF (49%)) as a function of time and temperature. This etch removes material from dislocation cores much faster than grain boundaries or the bulk, and produces tubular holes at dislocations. Aspect ratios of up to {approx}7:1 are achieved for {approx}15 {mu}m deep tubes. The aspect ratio decreases with tube depth and for {approx}40 {mu}m deep tubes is just {approx}2:1, which is not suitable for use in bulk multicrystalline silicon photovoltaics. We have also investigated a range of etches based on weaker oxidising agents. An etch comprising 1I{sub 2} (0.01 M): 2HF (49%) attacked dislocation cores, but its etching behaviour was extremely slow (<0.1 {mu}m/h) and the pits produced had a low aspect ratio (<2:1).

  3. Range and etching behaviour of swift heavy ions in polymers

    Science.gov (United States)

    Singh, Lakhwant; Singh, Mohan; Samra, Kawaljeet Singh; Singh, Ravinder

    Aliphatic (CR-39) and aromatic (Lexan polycarbonate) polymers have been irradiated with a variety of heavy ions such as 58Ni, 93Nb, 132Xe, 139La, 197Au, 208Pb, 209Bi, and 238U having energy ranges of 5.60-8.00 MeV/n in order to study the range and etching kinetics of heavy ion tracksE The ion fluence (range ˜104-105 ions/cm2) was kept low to avoid the overlapping of etched tracks. The measured values of maximum etched track length were corrected due to bulk etching and over etching to obtain the actual range. The experimental results of range profiles were compared with those obtained by the most used procedures employed in obtaining range and stopping power. The range values of present ions have been computed using the semiempirical codes (SRIM-98, SRIM-2003.26, and LISE++:0-[Hub90]) in order to check their accuracy. The merits and demerits of the adopted formulations have been highlighted in the present work. It is observed that the range of heavy ions is greater in aromatic polymers (Lexan polycarbonate) as compared to the aliphatic polymers (CR-39) irradiated with similar ions having same incident energies. The SRIM-98 and SRIM2003.26 codes don't show any significant trend in deviations, however, LISE++:0-[Hub90] code provides overall good agreement with the experimental values. The ratio of track etch rate (along projectile trajectory) to the bulk etch rate has also been studied as a function of energy loss of heavy ions in these polymers.

  4. Anisotropic fluorocarbon plasma etching of silicon/silicon germanide heterostructures and plasma etching-induced sidewall damage

    Science.gov (United States)

    Ding, Ruhang

    Plasma etching is a critical tool in the fabrication of Si/SiGe heterostructure quantum devices, but with challenges addressed herein, including (1) control of etch profiles and (2) damage to etched feature sidewalls that affects device performance. (1) Fluorocarbon-based plasma etching often results in device profiles with undercuts due to preferential etching of SiGe over silicon. A C4F8/N2/Ar etch plasma gas mixture introduced here has been successfully used to achieve straight sidewalls through heterostructure layers by formation of a fluorocarbon inhibitor film on feature sidewalls to prevent undercutting. (2) Chemical and structural changes in the semiconductor at feature sidewalls associated with plasma-surface interactions are considered damage, as they affect band structure and electrical conduction in the active region of the device, known as the 2-dimensional electron gas (2DEG). In experiments designed to better understand the mechanisms of plasma-induced sidewall damage, damage to straight wires was characterized both by the width of a non-conductive "sidewall depletion" region at the device sidewall, and by the noise level factor, gamma H/N, determined from spectra of low frequency noise. Observed increases in sidewall depletion width with increasing etch depth are tentatively attributed to the increase in total number of defects with increased plasma exposure time. Excess negative charge incorporated into the fluorocarbon inhibitor film could be another contributing factor. Other factors considered, including defects at the bottom of etched features as well as leakage current bypassing the wire, are ruled out as their contribution is expected to diminish as the distance between the 2DEG and feature bottom increases. The noise level factor, gammaH /N, shows a maximum with increasing etch depth, possibly the result of two competing effects: increasing ion dose and decreasing leakage current. The noise level shows a minimum at an ion bombardment energy

  5. Dry vacuum pumps

    Science.gov (United States)

    Sibuet, R.

    2008-05-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R&D/industries, merits over conventional pumps and future growth scope will be discussed.

  6. Fiber Bragg Grating Measuring System for Simultaneous Monitoring of Temperature and Humidity in Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Carlo Massaroni

    2017-04-01

    Full Text Available During mechanical ventilation, the humidification of the dry air delivered by the mechanical ventilator is recommended. Among several solutions, heated wire humidifiers (HWHs have gained large acceptance to be used in this field. The aim of this work is to fabricate a measuring system based on fiber Bragg grating (FBG for the simultaneous monitoring of gas relative humidity (RH and temperature, intended to be used for providing feedback to the HWHs’ control. This solution can be implemented using an array of two FBGs having a different center wavelength. Regarding RH monitoring, three sensors have been fabricated by coating an FBG with two different moisture-sensitive and biocompatible materials: the first two sensors were fabricated by coating the grating with a 3 mm × 3 mm layer of agar and agarose; to investigate the influence of the coating thickness to the sensor response, a third sensor was developed with a 5 mm × 5 mm layer of agar. The sensors have been assessed in a wide range of RH (up to 95% during both an ascending and a subsequent descending phase. Only the response of the 3 mm × 3 mm-coated sensors were fast enough to follow the RH changes, showing a mean sensitivity of about 0.14 nm/% (agar-coated and 0.12 nm/% (agarose-coated. The hysteresis error was about <10% in the two sensors. The contribution of temperature changes on these RH sensors was negligible. The temperature measurement was performed by a commercial FBG insensitive to RH changes. The small size of these FBG-based sensors, the use of biocompatible polymers, and the possibility to measure both temperature and RH by using the same fiber optic embedding an array of two FBGs make intriguing the use of this solution for application in the control of HWHs.

  7. Real-time weigh-in-motion measurement using fiber Bragg grating sensors

    Science.gov (United States)

    Huang, Ying; Palek, Leonard; Strommen, Robert; Worel, Ben; Chen, Genda

    2014-03-01

    Overloading truck loads have long been one of the key reasons for accelerating road damage, especially in rural regions where the design loads are expected to be small and in the cold regions where the wet-and-dry cycle places a significant role. To control the designed traffic loads and further guide the road design in future, periodical weight stations have been implemented for double check of the truck loads. The weight stations give chances for missing measurement of overloaded vehicles, slow down the traffic, and require additional labors. Infrastructure weight-in-motion sensors, on the other hand, keep consistent traffic flow and monitor all types of vehicles on roads. However, traditional electrical weight-in-motion sensors showed high electromagnetic interference (EMI), high dependence on environmental conditions such as moisture, and relatively short life cycle, which are unreliable for long-term weigh-inmotion measurements. Fiber Bragg grating (FBG) sensors, with unique advantages of compactness, immune to EMI and moisture, capability of quasi-distributed sensing, and long life cycle, will be a perfect candidate for long-term weigh-in-motion measurements. However, the FBG sensors also surfer from their frangible nature of glass materials for a good survive rate during sensor installation. In this study, the FBG based weight-in-motion sensors were packaged by fiber reinforced polymer (FRP) materials and further validated at MnROAD facility, Minnesota DOT (MnDOT). The design and layout of the FRP-FBG weight-in-motion sensors, their field test setup, data acquisition, and data analysis will be presented. Upon validation, the FRP-FBG sensors can be applied weigh-in-motion measurement to assistant road managements.

  8. Anomalously high noise levels in a fibre Bragg grating semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Kurnosov, V D; Kurnosov, K V [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2015-01-31

    Taking into account gain nonlinearity allows one to obtain anomalously high noise levels in a fibre Bragg grating laser diode. This paper examines the effect of the gain nonlinearity due to spectral hole burning on noise characteristics. (lasers)

  9. A design method based on photonic crystal theory for Bragg concave diffraction grating

    Science.gov (United States)

    Du, Bingzheng; Zhu, Jingping; Mao, Yuzheng; Li, Bao; Zhang, Yunyao; Hou, Xun

    2017-02-01

    A design method based on one-dimensional photonic crystal theory (1-D PC theory) is presented to design Bragg concave diffraction grating (Bragg-CDG) for the demultiplexer. With this design method, the reflection condition calculated by the 1-D PC theory can be matched perfectly with the diffraction condition. As a result, the shift of central wavelength of diffraction spectra can be improved, while keeping high diffraction efficiency. Performances of Bragg-CDG for TE and TM-mode are investigated, and the simulation results are consistent with the 1-D PC theory. This design method is expected to be applied to improve the accuracy and efficiency of Bragg-CDG after further research.

  10. High Power Compact Single-Frequency Volume Bragg Er-Doped Fiber Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is based on successful results of Phase I project where it was shown that the use of volume Bragg gratings in PTR glass as selectors of transverse and...

  11. Extending Bragg peak of heavy ion beam and melanoma cell inactivation measurement

    Institute of Scientific and Technical Information of China (English)

    LiQiang; WeiZeng-Quan; 等

    1998-01-01

    A rotating range modulator was designed and manufactured.which is applied to extend Bragg peak of heavy ion beam.Bragg curves of 75MeV/u 16O and 75MeV/u 12C ion beams through this range modulator were measured respectively and two evident spread-out Bragg peaks corresponding to the modulated beams above are shown.In addition,inactivation effect of the modulated 75MeV/u 16O ion beam at nine different penetration depths on melanoma cells(B16) was measured.Results indicate that lethal effects at the spread-out Bragg peak region are larger than at the plateau of the particle beam entrance.

  12. Excitation of surface electromagnetic waves in a graphene-based Bragg grating.

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; Zeng, Shuwen; Shang, Jingzhi; Yong, Ken-Tye; Yu, Ting

    2012-01-01

    Here, we report the fabrication of a graphene-based Bragg grating (one-dimensional photonic crystal) and experimentally demonstrate the excitation of surface electromagnetic waves in the periodic structure using prism coupling technique. Surface electromagnetic waves are non-radiative electromagnetic modes that appear on the surface of semi-infinite 1D photonic crystal. In order to fabricate the graphene-based Bragg grating, alternating layers of high (graphene) and low (PMMA) refractive index materials have been used. The reflectivity plot shows a deepest, narrow dip after total internal reflection angle corresponds to the surface electromagnetic mode propagating at the Bragg grating/air boundary. The proposed graphene based Bragg grating can find a variety of potential surface electromagnetic wave applications such as sensors, fluorescence emission enhancement, modulators, etc.

  13. A fiber Bragg based semi distributed pressure sensor system for in-vivo vascular applications

    NARCIS (Netherlands)

    Nieuwland, R.A.; Cheng, L.K.; Lemmen, M.H.J.; Oostenbrink, R.H.; Harmsma, P.J.; Schreuder, J.J.

    2014-01-01

    An overview of a fiber Bragg based sensor system, developed for in-vivo vascular pressure and temperature sensing, is presented. The focus is on sensor miniaturization and interrogator optimization to reach a viable sensor system.

  14. High-speed two-dimensional laser scanner based on Bragg gratings stored in photothermorefractive glass.

    Science.gov (United States)

    Yaqoob, Zahid; Arain, Muzammil A; Riza, Nabeel A

    2003-09-10

    A high-speed free-space wavelength-multiplexed optical scanner with high-speed wavelength selection coupled with narrowband volume Bragg gratings stored in photothermorefractive (PTR) glass is reported. The proposed scanner with no moving parts has a modular design with a wide angular scan range, accurate beam pointing, low scanner insertion loss, and two-dimensional beam scan capabilities. We present a complete analysis and design procedure for storing multiple tilted Bragg-grating structures in a single PTR glass volume (for normal incidence) in an optimal fashion. Because the scanner design is modular, many PTR glass volumes (each having multiple tilted Bragg-grating structures) can be stacked together, providing an efficient throughput with operations in both the visible and the infrared (IR) regions. A proof-of-concept experimental study is conducted with four Bragg gratings in independent PTR glass plates, and both visible and IR region scanner operations are demonstrated.

  15. Effects of the Facet Reflectivity of a Laser Diode on Fiber Bragg Grating Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    Honggang; Yu; Chang-Qing; Xu; Na; Li; Zhilin; Peng; Jacek; Wojcik; Peter; Mascher

    2003-01-01

    Effects of facet reflectivity of a laser diode on the performance of fiber Bragg grating semiconductor lasers are studied experimentally. Facet reflectivity of less than 10-4 is necessary to obtain stable oscillation wavelength.

  16. An investigation of interface transferring mechanism of surface-bonded fiber Bragg grating sensors

    Science.gov (United States)

    Wu, Rujun; Fu, Kunkun; Chen, Tian

    2017-08-01

    Surface-bonded fiber Bragg grating sensor has been widely used in measuring strain in materials. The existence of fiber Bragg grating sensor affects strain distribution of the host material, which may result in a decrease in strain measurement accuracy. To improve the measurement accuracy, a theoretical model of strain transfer from the host material to optical fiber was developed, incorporating the influence of the fiber Bragg grating sensor. Subsequently, theoretical predictions were validated by comparing with data from finite element analysis and the existing experiment [F. Ansari and Y. Libo, J. Eng. Mech. 124(4), 385-394 (1998)]. Finally, the effect of parameters of fiber Bragg grating sensors on the average strain transfer rate was discussed.

  17. Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors

    Energy Technology Data Exchange (ETDEWEB)

    Abbaneo, D.; Abbas, M. [CERN, Geneva (Switzerland); Abbrescia, M. [INFN Bari and University of Bari, Bari (Italy); Abdelalim, A.A. [Helwan University & CTP, Cairo (Egypt); Abi Akl, M. [Texas A& M University at Qatar, Doha (Qatar); Aboamer, O. [Academy of Scientific Research and Technology – Egyptian Network of High Energy Physics, ASRT-ENHEP, Cairo (Egypt); Acosta, D. [University of Florida, Gainesville (United States); Ahmad, A. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Ahmed, W. [Helwan University & CTP, Cairo (Egypt); Ahmed, W. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Aleksandrov, A. [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Aly, R. [Helwan University & CTP, Cairo (Egypt); Altieri, P. [INFN Bari and University of Bari, Bari (Italy); Asawatangtrakuldee, C. [Peking University, Beijing (China); Aspell, P. [CERN, Geneva (Switzerland); Assran, Y. [Academy of Scientific Research and Technology – Egyptian Network of High Energy Physics, ASRT-ENHEP, Cairo (Egypt); Awan, I. [National Center for Physics, Quaid-i-Azam University Campus, Islamabad (Pakistan); Bally, S. [CERN, Geneva (Switzerland); Ban, Y. [Peking University, Beijing (China); Banerjee, S. [Saha Institute of Nuclear Physics, Kolkata (India); and others

    2016-07-11

    A novel approach which uses Fiber Bragg Grating (FBG) sensors has been utilized to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.

  18. Monolithic distributed Bragg reflector cavities in Al2O3 with quality factors exceeding one million

    NARCIS (Netherlands)

    Bernhardi, Edward; van Wolferen, Hendricus A.G.M.; Worhoff, Kerstin; de Ridder, R.M.; Pollnau, Markus

    Monolithic distributed Bragg reflector (DBR) cavities with quality factors exceeding one million have been realized in aluminum oxide channel waveguides. This technology enabled the successful demonstration of the first DBR laser in this waveguide platform.

  19. Tunable channel drop filters consisting of a tilted Bragg grating and a mode sorting polymer waveguide.

    Science.gov (United States)

    Park, Tae-Hyun; Shin, Jin-Soo; Huang, Guanghao; Chu, Woo-Sung; Oh, Min-Cheol

    2016-03-21

    Optical wavelength filters with large tuning range and narrow bandwidth are crucial for enhancing the capability of WDM communication systems. A polymeric tunable filter for C-band, comprising a tilted Bragg grating and a mode sorting waveguide junction is proposed in this work. For dropping a certain wavelength signal, the tilted Bragg grating reflects an odd mode into an even mode and then the reflected even mode propagates towards an output port of the asymmetric Y-junction due to the mode sorting. Consequently, the output port is separated from the input port, which is not possible in an ordinary Bragg reflector. The tilted Bragg reflector with an odd-even mode coupling efficiency of 61% exhibited a maximum reflectivity of 95% for a grating of 6 mm. A linear wavelength tuning of over 10 nm was achieved for an applied thermal power of 312 mW.

  20. Fiber Bragg Grating (FBG) sensors as flatness and mechanical stretching sensors

    CERN Document Server

    Abbaneo, D.; Abbrescia, M.; Abdelalim, A.A.; Abi Akl, M.; Aboamer, O.; Acosta, D.; Ahmad, A.; Ahmed, W.; Ahmed, W.; Aleksandrov, A.; Aly, R.; Altieri, P.; Asawatangtrakuldee, C.; Aspell, P.; Assran, Y.; Awan, I.; Bally, S.; Ban, Y.; Banerjee, S.; Barashko, V.; Barria, P.; Bencze, G.; Beni, N.; Benussi, L.; Bhopatkar, V.; Bianco, S.; Bos, J.; Bouhali, O.; Braghieri, A.; Braibant, S.; Buontempo, S.; Calabria, C.; Caponero, M.; Caputo, C.; Cassese, F.; Castaneda, A.; Cauwenbergh, S.; Cavallo, F.R.; Celik, A.; Choi, M.; Choi, S.; Christiansen, J.; Cimmino, A.; Colafranceschi, S.; Colaleo, A.; Conde Garcia, A.; Czellar, S.; Dabrowski, M.M.; De Lentdecker, G.; De Oliveira, R.; De Robertis, G.; Dildick, S.; Dorney, B.; Elmetenawee, W.; Endroczi, G.; Errico, F.; Fenyvesi, A.; Ferry, S.; Furic, I.; Giacomelli, P.; Gilmore, J.; Golovtsov, V.; Guiducci, L.; Guilloux, F.; Gutierrez, A.; Hadjiiska, R.M.; Hassan, A.; Hauser, J.; Hoepfner, K.; Hohlmann, M.; Hoorani, H.; Iaydjiev, P.; Jeng, Y.G.; Kamon, T.; Karchin, P.; Korytov, A.; Krutelyov, S.; Kumar, A.; Kim, H.; Lee, J.; Lenzi, T.; Litov, L.; Loddo, F.; Madorsky, A.; Maerschalk, T.; Maggi, M.; Magnani, A.; Mal, P.K.; Mandal, K.; Marchioro, A.; Marinov, A.; Masod, R.; Majumdar, N.; Merlin, J.A.; Mitselmakher, G.; Mohanty, A.K.; Mohamed, S.; Mohapatra, A.; Molnar, J.; Muhammad, S.; Mukhopadhyay, S.; Naimuddin, M.; Nuzzo, S.; Oliveri, E.; Pant, L.M.; Paolucci, P.; Park, I.; Passeggio, G.; Passamonti, L.; Pavlov, B.; Philipps, B.; Piccolo, D.; Pierluigi, D.; Postema, H.; Puig Baranac, A.; Radi, A.; Radogna, R.; Raffone, G.; Ranieri, A.; Rashevski, G.; Riccardi, C.; Rodozov, M.; Rodrigues, A.; Ropelewski, L.; RoyChowdhury, S.; Russo, A.; Ryu, G.; Ryu, M.S.; Safonov, A.; Salva, S.; Saviano, G.; Sharma, A.; Sharma, A.; Sharma, R.; Shah, A.H.; Shopova, M.; Sturdy, J.; Sultanov, G.; Swain, S.K.; Szillasi, Z.; Talvitie, J.; Tatarinov, A.; Tuuva, T.; Tytgat, M.; Vai, I.; Van Stenis, M.; Venditti, R.; Verhagen, E.; Verwilligen, P.; Vitulo, P.; Volkov, S.; Vorobyev, A.; Wang, D.; Wang, M.; Yang, U.; Yang, Y.; Yonamine, R.; Zaganidis, N.; Zenoni, F.; Zhang, A.

    2016-01-01

    A novel approach which uses Fibre Bragg Grating (FBG) sensors has been utilised to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.