WorldWideScience

Sample records for dry biomass distribution

  1. Influence of agricultural biomass burning on aerosol size distribution and dry deposition in southeastern Brazil.

    Science.gov (United States)

    Rocha, Gisele O; Allen, Andrew G; Cardoso, Arnaldo A

    2005-07-15

    The size distributed composition of ambient aerosols is used to explore seasonal differences in particle chemistry and to show that dry deposition fluxes of soluble species, including important plant nutrients, increase during periods of biomass (sugar cane trash) burning in São Paulo State, Brazil. Measurements were made at a single site centrally located in the State's sugar cane growing region but away from the immediate vicinity of burns, so that the airsampled was representative of the regional background. Calculation of ion equivalent balances showed that during burning periods smaller particles (Aitken and accumulation modes) were more acidic, containing higher concentrations of SO4(2-), oxalate, NO3-, HCOO-, CH3COO-, and CI-, but insufficient NH4+ and K+ to achieve neutrality. Larger particles showed an anion deficit due to the presence of unmeasured ions and comprised resuspended dusts modified by accumulation of nitrate, chloride, and organic anions. Increases of resuspended particles during the burning season were attributed to release of earlier deposits from the surfaces of burning vegetation as well as increased vehicle movement on unsurfaced roads. During winter months the relative contribution of combined emissions from road transport and industry diminished due to increased emissions from biomass combustion and other activities specifically associated with the harvest period. Positive increments in annual particulate dry deposition fluxes due to higher fluxes during the sugar cane harvest were 44.3% (NH4+), 42.1% (K+), 31.8% (Mg2+), 30.4% (HCOO-), 12.8% (CI-), 6.6% (CH3COO-), 5.2% (Ca2+), 3.8% (SO4(2-)), and 2.3% (NO3-). Na+ and oxalate fluxes were seasonally invariant. Annual aerosol dry deposition fluxes (kg ha(-1)) were 0.5 (Na+), 0.25 (NH4+), 0.39 (K+), 0.51 (Mg2+), 3.19 (Ca2+), 1.34 (Cl-), 4.47 (NO3-), 3.59 (SO4(2-)), 0.58 (oxalate), 0.71 (HCOO-), and 1.38 (CH3COO-). Contributions of this mechanism to combined aerosol dry deposition and

  2. Development of Solar Biomass Drying System

    OpenAIRE

    Atnaw Samson Mekbib; Bin Che Ku Yahya Che Ku Mohammad Faizal; Jama Oumer Abduaziz

    2017-01-01

    The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the ...

  3. [Vegetation biomass allocation and its spatial distribution after 20 years ecological restoration in a dry-hot valley in Yuanmou, Yunnan Province of Southwest China].

    Science.gov (United States)

    Li, Bin; Tang, Guo-Yong; Li, Kun; Gao, Cheng-Jie; Liu, Fang-Yan; Wang, Xiao-Fei

    2013-06-01

    By using layering harvest method, a comparative study was conducted on the biomass allocation and its spatial distribution of 20-year-old Eucalyptus camaldulensis plantation, Leucaena leucocephala plantation, and E. camaldulensis-L. leucocephala plantation in Yuanmou dry-hot valley of Yunnan Province, Southwest China. The stand biomass in the mixed E. camaldulensis-L. leucocephala plantation (82.99 t x hm(-2)) was between that of monoculture E. camaldulensis plantation (60.64 t x hm(-2)) and L. leucocephala plantation (127.79 t x hm(-2)). The individual tree biomass of E. camaldulensis in the mixed plantation (44.32 kg) was 49.8% higher than that in monoculture plantation (29.58 kg). The branch and leaf biomass of L. leucocephala (25.4%) in monoculture plantation was larger than that of E. camaldulensis (8.9%) in monoculture plantation, and the aboveground biomass distribution ratio (78.0%) of L. leucocephala (25.4%) was also higher than that of E. camaldulensis (73.4%). The roots of L. leucocephala in both monoculture and mixed plantations were mainly distributed in 0-40 cm soil layer, while those of E. camaldulensis in monoculture and mixed plantations were mainly found in 0-80 cm and 0-60 cm, respectively. The proportion of biomass allocated to roots including medium roots, small roots, and fine roots of L. leucocephala in mixed plantation was higher than that in monoculture plantation, but it was contrary for E. camaldulensis. It was suggested that introducing L. leucocephala in E. camaldulensis plantation promoted the growth of E. camaldulensis, especially for its aboveground biomass, and increased the amount of lateral roots in 0-20 cm soil layer, which had significance in soil and water conservation in the study area.

  4. Drying of willow biomass in supply chains

    NARCIS (Netherlands)

    Gigler, J.K.

    2000-01-01

    The drying process of willow ( Salix viminalis ) in biomass supply chains to energy plants is quantitatively described. Drying at particle level was modelled for chips and stems by a diffusion equation linked to the mass transfer of moisture to the air. Drying at bulk level is described by a deep be

  5. Drying of willow biomass in supply chains

    NARCIS (Netherlands)

    Gigler, J.

    2000-01-01

    The drying process of willow ( Salix viminalis ) in biomass supply chains to energy plants is quantitatively described. Drying at particle level was modelled for chips and stems by a diffusion equation linked to the mass transfer of moisture to the air. Drying at bulk

  6. Development of Solar Biomass Drying System

    Directory of Open Access Journals (Sweden)

    Atnaw Samson Mekbib

    2017-01-01

    Full Text Available The purpose of this paper focuses on the experimental pre-treatment of biomass in agricultural site using solar energy as power source and contribution of common use and efficiency solar dryer system for consumer. The main purpose of this design for solar cabinet dryer is to dry biomass via direct and indirect heating. Direct heating is the simplest method to dry biomass by exposing the biomass under direct sunlight. The solar cabinet dryer traps solar heat to increase the temperature of the drying chamber. The biomass absorbs the heat and transforms the moisture content within the biomass into water vapour and then leaves the chamber via the exhaust air outlet. This problem however can be solved by adopting indirect solar drying system. High and controllable temperatures can be achieved as a fan is used to move the air through the solar collector. This project has successfully created a solar cabinet dryer that combines both direct and indirect solar drying systems and functions to dry biomass as well as crops effectively and efficiently with minimal maintenance. Hence, it is indeed a substitution for conventional dryers which are affordable to local farmers.

  7. Catalytic gasification of dry and wet biomass

    NARCIS (Netherlands)

    van Rossum, G.; Potic, B.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2009-01-01

    Catalytic gasification of dry biomass and of wet biomass streams in hot compressed water are reviewed and discussed as potential technologies for the production of synthesis gas, hydrogen- and methane-rich gas. Next to literature data also new experimental results from our laboratory on catalytic

  8. Drying of peat and wood biomass. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Tapanainen, J. (Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). Poltto- ja Voiteluainelaboratorio)

    1982-06-01

    Peat drying agrees with the typical drying curve of capillary porous materials, where a constant rate zone and a zone of decreasing rate of drying are distinguished. It depends on the way of water binding, how easily the moisure of pea can be removed. Wood is a hygroscopic porous material, and its drying can be described with the aid of diffusion theory. Milled peat is usually dried artificially in flash driers. Drum driers are also used for peat to some extent. The best known indirectly heated equipment is Peco-drier, where saturated steam and hot water are used as heat transfer media. A back-pressure drier developed in Sweden is also suitable for peat drying. In this equipment, indirect drying with back-pressure steam from the turbine is applied. Wood biomass (chips, bark) can be dried for example by hot-grinding, vibrating conveyor or drum drying methods. Cascade and pneumatic driers are also used for drying bark.

  9. Distribution of Aboveground Live Biomass in the Amazon Basin

    Science.gov (United States)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  10. DRYING OF EMPTY FRUIT BUNCHES AS WASTED BIOMASS BY HYBRID SOLAR–THERMAL DRYING TECHNIQUE

    OpenAIRE

    H. H. Al-Kayiem; Y. Md Yunus

    2013-01-01

    Solar drying of EFB is highly feasible and economic, but the solar drying process is interrupted during cloudy or rainy days and also at night. In the present paper, a combined solar, as the main heat input, and biomass burner, as an auxiliary source of thermal energy, has been investigated experimentally to dry EFB. An experimental model consisting of a solar dryer integrated with a thermal backup unit was designed and fabricated. A series of experimental measurements were carried out in fou...

  11. DRYING OF EMPTY FRUIT BUNCHES AS WASTED BIOMASS BY HYBRID SOLAR–THERMAL DRYING TECHNIQUE

    Directory of Open Access Journals (Sweden)

    H. H. Al-Kayiem

    2013-12-01

    Full Text Available Solar drying of EFB is highly feasible and economic, but the solar drying process is interrupted during cloudy or rainy days and also at night. In the present paper, a combined solar, as the main heat input, and biomass burner, as an auxiliary source of thermal energy, has been investigated experimentally to dry EFB. An experimental model consisting of a solar dryer integrated with a thermal backup unit was designed and fabricated. A series of experimental measurements were carried out in four different drying modes, namely, open sun, mixed direct and indirect solar, thermal backup, and hybrid. The results from the four modes used to dry 2.5 kg of EFB were summarized and compared. The results indicated that the solar drying mode required around 52 to 80 hours to dry the EFB, while the open sun drying mode required 100 hours. Usage of the thermal backup as heat source reduced the drying time to 48–56 hours. With the hybrid mode, the drying time was considerably reduced to 24–32 hours. The results demonstrate that the combined solar and thermal backup effectively enhanced the drying performance. The application of a solar dryer with a biomass burner is practical for massive production of solid fuels from EFB.

  12. Spatial and temporal effects in drying biomass for energy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, T.; Khan, M.A.; Meng, Q. [Hawaii Univ., Honolulu, HI (United States)

    1996-10-01

    This study evaluates the impact of the moisture content of biomass on thermal efficiency and relative boiler size which directly represent the economic merits of biomass drying. A model for predicting the moisture content of bundled Leucaena (Leucocephala) trees under open environment was validated for tropical Hawaii. Cumulative precipitation and evapotranspiration (ET) are the major factors affecting the biomass moisture content change. ET was computed using Hargreave`s model, which requires only temperature and solar radiation data. Integration of these models made it possible to calculate the thermal efficiency and relative boiler size when using bundled trees as a fuel under a given drying regime and for a specific geographical location. A geographic information system provided the temperature and precipitation data required for evaluating the spatial variation in boiler efficiency and size for the 1440 km{sup 2} island of Kauai. Depending on the time of harvest, the Leucaena moisture content varied from 35 to 69% (on wet basis) following a period of 6 months of in-field drying. Boiler efficiency using fuelwood with this range of moisture content varied from 49 to 73%. Boiler relative size varied from 1.2 to 2.2 times the size required when Leucaena with 0% moisture content is used as a fuel. The spatial and temporal effects on the value of biomass were thus found to be important factors for various sites in the study area. The methods for quantifying the merit of biomass moisture management proposed in this paper demonstrate how GIS modeling can lead to appropriate decision-making capability in bioenergy. (Author)

  13. Conservative species drive biomass productivity in tropical dry forests

    NARCIS (Netherlands)

    Prado-Junior, Jamir A.; Schiavini, Ivan; Vale, Vagner S.; Sande, van der Masha T.; Lohbeck, Madelon; Poorter, Lourens

    2016-01-01

    Forests account for a substantial part of the terrestrial biomass storage and productivity. To better understand forest productivity, we need to disentangle the processes underlying net biomass change. We tested how above-ground net biomass change and its underlying biomass dynamics (biomass recr

  14. The release of organic compounds during biomass drying depends upon the feedstock and/or altering drying heating medium

    Energy Technology Data Exchange (ETDEWEB)

    Rupar, K.; Sanati, M. [Vaxjo University (Sweden). School of Biosciences and Process Technology

    2003-12-01

    The release of organic compounds during the drying of biomass is a potential environmental problem, it may contribute to air pollution or eutrophication. In many countries there are legal restrictions on the amounts of terpenes that may be released into the atmosphere. When considering bioenergy in future energy systems, it is important that information on the environmental effects is available. The emissions of organic compounds from different green and dried biofuels that have been dried in hot air and steam medium, were analyzed by using different techniques. Gas chromatography and gas chromatography mass spectrometry have been used to identify the organic matter. The terpene content was significantly affected by the following factors: changing of the drying medium and the way the same biomass was handled from different localities in Sweden. Comparison between spectra from dried and green fuels reveal that the main compounds emitted during drying are monoterpene and sesquiterpene hydrocarbons, while the emissions of diterpene hydrocarbons seem to be negligible. The relative proportionality between emitted monoterpene, diterpene and sesquiterpene change when the drying medium shifts from steam to hot air. The obtained result of this work implies a parameter optimization study of the dryer with regard to environmental impact. With assistance of this result it might be foreseen that choice of special drying medium, diversity of biomass and low temperature reduce the emissions. A thermo-gravimetric analyzer was used for investigating the biomass drying rate. (author)

  15. Distribution of mesozooplankton biomass in the global ocean

    Directory of Open Access Journals (Sweden)

    R. Moriarty

    2012-09-01

    Full Text Available Mesozooplankton are cosmopolitan within the sunlit layers of the global ocean. They are important in the classical food web, having a significant feedback to primary production through their consumption of phytoplankton and microzooplankton. They are also the primary contributor to vertical particle flux in the oceans. Through both they affect the biogeochemical cycling of carbon and other nutrients in the oceans. Little, however, is known about their global distribution and biomass. While global maps of mesozooplankton biomass do exist in the literature they are usually in the form of hand-drawn maps and the original data associated with these maps are not readily available. The dataset presented in this synthesis has been in development since the late 1990's, is an integral part of the Coastal & Oceanic Plankton Ecology, Production, & Observation Database (COPEPOD, and is now also part of a wider community effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. A total of 153 163 biomass values were collected, from a variety of sources, for mesozooplankton. Of those 2% were originally recorded as dry mass, 26% as wet mass, 5% as settled volume, and 68% as displacement volume. Using a variety of non-linear biomass conversions from the literature, the data have been converted from their original units to carbon biomass. Depth-integrated values were then used to calculate mesozooplankton global biomass. Global mesozooplankton biomass, to a depth of 200 m, had a mean of 5.9 μg C l−1, median of 2.7 μg C l−1 and a standard deviation of 10.6 μg C l−1. The global annual average estimate of mesozooplankton, based on the median value, was 0.19 Pg C. Biomass was highest in the Northern Hemisphere, but the general trend shows a slight decrease from polar oceans to temperate regions with values increasing again

  16. Distribution of mesozooplankton biomass in the global ocean

    Directory of Open Access Journals (Sweden)

    R. Moriarty

    2013-02-01

    Full Text Available Mesozooplankton are cosmopolitan within the sunlit layers of the global ocean. They are important in the pelagic food web, having a significant feedback to primary production through their consumption of phytoplankton and microzooplankton. In many regions of the global ocean, they are also the primary contributors to vertical particle flux in the oceans. Through both they affect the biogeochemical cycling of carbon and other nutrients in the oceans. Little, however, is known about their global distribution and biomass. While global maps of mesozooplankton biomass do exist in the literature, they are usually in the form of hand-drawn maps for which the original data associated with these maps are not readily available. The dataset presented in this synthesis has been in development since the late 1990s, is an integral part of the Coastal and Oceanic Plankton Ecology, Production, and Observation Database (COPEPOD, and is now also part of a wider community effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. A total of 153 163 biomass values were collected, from a variety of sources, for mesozooplankton. Of those 2% were originally recorded as dry mass, 26% as wet mass, 5% as settled volume, and 68% as displacement volume. Using a variety of non-linear biomass conversions from the literature, the data have been converted from their original units to carbon biomass. Depth-integrated values were then used to calculate an estimate of mesozooplankton global biomass. Global epipelagic mesozooplankton biomass, to a depth of 200 m, had a mean of 5.9 μg C L−1, median of 2.7 μg C L−1 and a standard deviation of 10.6 μg C L−1. The global annual average estimate of mesozooplankton in the top 200 m, based on the median value, was 0.19 Pg C. Biomass was highest in the Northern Hemisphere, and there were slight decreases from polar oceans (40

  17. Comparison between freeze and spray drying to obtain powder Rubrivivax gelatinosus biomass

    Directory of Open Access Journals (Sweden)

    Edson Francisco do Espírito Santo

    2013-03-01

    Full Text Available The use of colorants in products of animal origin is justified by the improvement in the color of foods since this attribute is considered a quality criterion. These additives can be produced using industrial effluents as substrates and appropriate organisms, such as Rubrivivax gelatinosus. Oxycarotenoids represent a class of carotenes responsible for the pigmentation of animals and vegetables. R. gelatinosus grows in fish industry effluent with the resulting production of a bacterial biomass containing oxycarotenoids. The purpose of this study was to compare the use of two drying processes - spray and freeze drying - to obtain powder biomass in terms of the process parameters (yield, productivity, and product recovery and the product characteristics (color, proximate composition, and oxycarotenoids. No difference was detected in the yield between these techniques, while productivity was higher using spray drying. Higher product recovery and moisture were achieved with freeze drying, while ash was higher with spray drying. The freeze dried biomass was redder, darker and less saturated than the spray dried biomass. No difference in oxycarotenoids was detected between the biomasses. Although it results in lower recovery rate, spray drying was faster and more productive, and it provided the same yield as freeze drying, which makes it the method of choice for obtaining R. gelatinosus biomass.

  18. Dry biomass distribution in a cerrado sensu stricto site in Brazil central Distribuição de biomassa seca em um sítio de cerrado sensu stricto no Brasil central

    Directory of Open Access Journals (Sweden)

    Ailton Teixeira do Vale

    2005-10-01

    Full Text Available The Cerrado has been the main source of firewood and charcoal in Brazil, but despite being one of the hot spots for conservation of the world's biodiversity, neither plantations of native species nor sustainable management has been adopted in the region. The aim of this work was to investigate the biomass distribution and the potential for energy production of the cerrado species. The study was conducted in a cerrado sensu stricto site at the Água Limpa Farm (15º 56'14'' S and 47º 46'08'' W in the Cerrado Biosphere Reserve. An area of 63.54ha was divided in 20 x 50m plots and, a random sample consisting of ten of these plots, representing 1.56% of the study-site, was assessed. All woody individuals from 5 cm diameter at 30 cm above ground level were identified and measured. Each individual was felled, the twigs thinner than 3cm were discarded while the larger branches and the trunks, both with bark, were weighted separately. After that, 2.5cm transverse sections of the trunk with bark were taken at 0, 25, 50, 75 and 100% of the length. A similar sample was also taken at the base of each branch. A total of 47 species in 35 genera and 24 families were found, with an average density of 673 individuals per ha. The diameter distribution showed a reversed-J shape with 67% of the individuals up to 13cm, while the maximum diameter was 32.30cm. Seven species represented 72% of the total biomass. In general, the species with higher production per tree were among those with higher production per ha. This content was distributed by diameter classes, reaching a maximum of 2.5ton/ha between 9 to 13cm and then, decreasing to 0.96 ton/ha between 29 to 33cm diameter. Carbon sequestering was 6.2ton/ha (until the actual stage of cerrado based on an average 50% carbon content in the dry matter. The heat combustion of the wood varied from 18,903kj/kg to 20,888kj/kg with an average of 19,942kj/kg. The smaller diameter classes fix more carbon due to the large

  19. 46 CFR 154.1150 - Distribution of dry chemical.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor....

  20. Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests

    NARCIS (Netherlands)

    Rozendaal, Danaë M.A.; Chazdon, Robin L.; Arreola-Villa, Felipe; Balvanera, Patricia; Bentos, Tony V.; Dupuy, Juan M.; Hernández-Stefanoni, J.L.; Jakovac, Catarina C.; Lebrija-Trejos, Edwin E.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo E.S.; Meave, Jorge A.; Mesquita, Rita C.G.; Mora, Francisco; Pérez-García, Eduardo A.; Romero-Pérez, I.E.; Saenz-Pedroza, Irving; Breugel, van Michiel; Williamson, G.B.; Bongers, Frans

    2016-01-01

    The magnitude of the carbon sink in second-growth forests is expected to vary with successional biomass dynamics resulting from tree growth, recruitment, and mortality, and with the effects of climate on these dynamics. We compare aboveground biomass dynamics of dry and wet Neotropical forests, b

  1. Biomass Resources Distribution in the Terrestrial Ecosystem of China

    Directory of Open Access Journals (Sweden)

    Na Li

    2015-07-01

    Full Text Available In this study, Moderate Resolution Imaging Spectroradiometer (MODIS data and the multiple linear regression model were used to estimate distribution of biomass resources in 2010. The establishment of models, developed using different vegetation biomass sample data, normalized difference vegetation index (NDVI, leaf area index (LAI, meteorological data, coordinates, terrain data, and statistical data. Results based on a cross-validation approach show that the model can explain 95.6% of the variance in biomass, with a relative estimation error of 67 g·m−2 for a range of biomass between 0–73,875 g·m−2. Spatial statistic results were consistent with the practical condition in most cases. The above- and below-ground biomass (ABGB of China was estimated to be 31.1 Pg (1 Pg = 1015 g in 2010. The forest ecosystem has the largest total biomass, which represents about 70% of the whole terrestrial ecosystem. The desert ecosystem has minimum biomass value. The Belowground Endowment (BRE varied differently in spatial distribution, with the high values occurring in the southeast and northeast. The low values were primarily distributed in north and northwest regions, where it is mostly desert and few plants. Biomass per capita indicates the availability of natural resources per capita. Tibet had the maximum biomass per capita (807 tone in 2010. Shanghai and Tianjin had the minimum biomass per capita, less than 500 kg. Shanghai, Tianjin, Guangzhou, Beijing, and Hainan had negative growth of biomass per capita.

  2. A numerical modelling approach for biomass field drying

    NARCIS (Netherlands)

    Bartzanas, T.; Bochtis, D.D.; Sørensen, C.G.; Sapounas, A.; Green, O.

    2010-01-01

    In grass conservation systems, the field drying process of cut grass is an important function since it determines subsequent losses and possible hazardous effects of during silage. The drying process of harvested grass was evaluated using two different numerical approaches. Firstly, an existing expe

  3. A numerical modelling approach for biomass field drying

    NARCIS (Netherlands)

    Bartzanas, T.; Bochtis, D.D.; Sørensen, C.G.; Sapounas, A.; Green, O.

    2010-01-01

    In grass conservation systems, the field drying process of cut grass is an important function since it determines subsequent losses and possible hazardous effects of during silage. The drying process of harvested grass was evaluated using two different numerical approaches. Firstly, an existing

  4. A study of energy balances in biomass drying and pelleting processes

    Energy Technology Data Exchange (ETDEWEB)

    Mani, S.; Sokhansanj, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2004-07-01

    Making pellets from biomass is considered to be the best way to use biomass as a replacement for fossil fuels. This study developed a simulation tool and a rotary biomass drying model to optimize unit operations for pellet production. A pelletizing plant layout was presented along with a table indicating the typical energy and power consumptions per ton of pellets produced. The importance of the drying process was discussed with reference to drying results for timothy grass, alfalfa stems and leaves. It was shown that a dryer control system can reduce energy consumption from 12 GJ/ton to 6.5 GJ/ton. This drop in energy consumption by nearly 50 per cent is due to a reduction in moisture from 70 per cent to 10 per cent. Future research will focus on reducing the environmental emissions from the biomass dryer. tabs., figs.

  5. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Science.gov (United States)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  6. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    Directory of Open Access Journals (Sweden)

    Dhanushkodi Saravanan

    2015-12-01

    Full Text Available Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  7. Enzymatic Hydrolysis of biomasses having a high dry matter (DM) content

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a process for liquefaction and saccharification of polysaccharide containing biomasses, having a relatively high dry matter content. The present invention combines enzymatic hydrolysis with a type of mixing relying on the principle of gravity ensuring that the bio......The present invention relates to a process for liquefaction and saccharification of polysaccharide containing biomasses, having a relatively high dry matter content. The present invention combines enzymatic hydrolysis with a type of mixing relying on the principle of gravity ensuring...

  8. Distribution of biomass of heterotrophic bacterioplankton in the Bohai Sea

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Distribution, variation and impact factors of biomass of bacterioplankton from April to May 1999in Bohai Sea were studied in DAPI method with epifluorescence microscopy. The biomass in surface waters showed a small day-night variation, varying from 0.13 to 2.51 μg/dm3 with an average of 0.84 μg/dm3. The biomass in bottom waters showed, however, a large variation, changing from 0.15 to 4.18 μg/dm3 with an average of 1.36 μg/dm3. The peak values occurred at 5 and 11 a.m. The bottom water biomass showed a significant correlation with particulate organic carbon (r=0.639, P<0.05). Heterotrophic bacterioplankton biomass was high in nearshore waters and low in offshore areas with a high biomass zone around Huanghe (Yellow) River mouth,showing the same distribution of nutrients. In vertical distribution, heterotrophic bacteria biomass in bottom waters was higher than that in surface water.

  9. DESIGN AND THERMAL PERFORMANCE OF THE SOLAR BIOMASS HYBRID DRYER FOR CASHEW DRYING

    Directory of Open Access Journals (Sweden)

    Saravanan Dhanuskodi

    2014-12-01

    Full Text Available Drying of Cashew nut to remove testa is one of the most energy-intensive processes of cashew nut process industry. For this reason a hybrid dryer consisting of a solar flat plate collector, a biomass heater and a drying chamber is designed and fabricated. 40 kg of Cashew nut with initial moisture of 9 % is used in the experiment. The performance test of the dryer is carried out in two modes of operation: hybrid-forced convection and hybrid-natural convection. Drying time and drying efficiency during these two modes of operation are estimated and compared with the sun drying. The system is capable of attaining drying temperature between 50º and 70ºC. In the hybrid forced drying, the required moisture content of 3% is achieved within 7 hours and the average system efficiency is estimated as 5.08%. In the hybrid natural drying, the required moisture content is obtained in 9 hours and the average system efficiency is 3.17%. The fuel consumption during the drying process is 0.5 kg/hr and 0.75 kg/hr for forced mode and natural mode, respectively. The drying process in the hybrid forced mode of operation is twice faster than the sun drying. The dryer can be operated in any climatic conditions: as a solar dryer on normal sunny days, as a biomass dryer at night time and as a hybrid dryer on cloudy days. Based on the experimental study, it is concluded that the developed hybrid dryer is suitable for small scale cashew nut farmers in rural areas of developing countries.

  10. Distribution characteristics of zooplankton biomass in the East China Sea

    Institute of Scientific and Technical Information of China (English)

    XU Zhaoli; CHAO Min; CHEN Yaqu

    2004-01-01

    On the basis of the data of oceanographic survey in the East China Sea in four seasons during 1997~2000 (23°30′~33°00′N,118°30′~ 128°E), the variation of total biomass and diet biomass of zooplankton and their spatial-temporal distribution and relationship with the fishing ground of Engraulisjaponicus are approached and analyzed. The results show that the average biomass is 65.32 mg/m3 in four seasons, autumn (86.18 mg/m3) being greater than summer (69.18 mg/m3) greater than s pring ( 55.67 mg/m3) greater than winter (50.33 mg/m3). The average value of diet zooplankton biomass is 40.9 mg/m3.The trends of horizontal distribution both in the total biomass and the diet biomass of zooplankton are similar. The high biomass region (250~500 mg/m3) is very limited, only accounting for 1% of the investigation area. Seasonal variation of the biomass is very remarkable in the west and north parts of East China Sea coastal waters ( 29°30′N, 125°E). The horizontal distribution of diet zooplankton depends on the abundance distribution of crustacean. The distribution of diet zooplankton is related to the fishing ground of Engraulis japonicus and the high-density area of young fish and larval. In spring, the central fishing ground of Engraulis japonicus (>100 kg/h) and the high-density area of young fish and larval (>100 individuals per net) are located at the same place of high-density (100~250 mg/m3)area of diet zooplankton in the middle-southern part of East China Sea or the edge of its waters.

  11. Variation of physiological growth indices, biomass and dry matter yield in some maize hybrids

    Directory of Open Access Journals (Sweden)

    SHUKRI FETAHU

    2014-06-01

    Full Text Available In order to determine variation of physiological growth indices, biomass and dry matter yield, for six maize hybrids (MH, it was set up a field trial on randomized complete block design (RCDB, with three replications, with 6 MH: BC38W, BC408, ZP434, NSSC444, ESP500 and LUCE, during the years 2010 and 2011 (Y, at Experimental Farm (EF, Faculty of Agriculture and Veterinary in Prishtina, located in geographical position: N 42º 38'97" and E 21º 08'45" and 570 MASL. Growth rate, biomass and dry matter of maize performance are depending from specific characteristics: maize hybrids (MH, environmental condition (EC and cropping system (CS. Information on silage maize yield can help silage growers and users, to choose hybrids that best fit their needs. The physiological growth indices, biomass and dry matter yield, were conducted according to the formula: (MH-6 x Y-2 x P4 x R3 =144 combinations. Hybrid selection for a specific location, suitable for the agro-ecological condition is one of the essential principles for improving yield for silage or grain, without increasing of cost of maize production. Means results for evaluated maize hybrids and parameters were: Absolute growth rate (AGRµ=5.43, crop growth rate (CGRµ=30.98, total plant biomass (TPBµ=585.39 g plant-1 and total dry matter (TDMµ=22.52 ton ha-1.The aim of this study was to determine physiological growth indices, biomass and dry matter yield, in suitable agro-ecological conditions of Kosovo. The obtained results were with wide range variability and high significant differences between hybrids and years on the level P, lower than 0.01.

  12. Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe.

    Science.gov (United States)

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals.

  13. Distribution characteristics of zooplankton biomass in the East China Sea

    Institute of Scientific and Technical Information of China (English)

    XU Zhaoli; CHAO Min; CHEN Yaqu

    2004-01-01

    On the basis of the data of oceanographic survey in the East China Sea in four seasons during 1997~2000 (23°30′~33°00′N,118°30′~ 128°E), the variation of total biomass and diet biomass of zooplankton and their spatial-temporal distribution and relationship with the fishing ground of Engraulis japonicus are approached and analyzed. The results show that the average biomass is 65.32 mg/m3 in four seasons, autumn (86.18 mg/m3) being greater than summer (69.18 mg/m3) greater than spring (55.67 mg/m3) greater than winter (50.33 mg/m3). The average value of diet zooplankton hiomass is 40.9 mg/m3.The trends of horizontal distribution both in the total biomass and the diet biomass of zooplankton are similar. The high biomass region (250~500 mg/m3) is very limited, only accounting for 1% of the investigation area. Seasonal variation of the biomass is very remarkable in the west and north parts of East China Sea coastal waters (29°30'N,125°E). The horizontal distribution of diet zooplankton depends on the abundance distribution of crustacean. The distribution of diet zooplankton is related to the fishing ground of Engraulis japonicus and the high-density area of young fish and larval. In spring, the central fishing ground of Engraulis japonicus (>100 kg/h) and the high-density area of young fish and larval (>100 individuals per net) are located at the same place of high-density (100~250 mg/m3)area of diet zooplankton in the middle-southern part of East China Sea or the edge of its waters.

  14. Evaluation of a solar-biomass-rock bed storage drying system, and its application for chilli drying

    Energy Technology Data Exchange (ETDEWEB)

    Augustus Leon, M.; Kumar, S. [Energy Field of Study, Asian Inst. of Tech. Klong Luang, Pathumthani (Thailand)

    2008-07-01

    A renewable energy-based air heating system that does not require a conventional auxiliary heater, but can still meet a daily load fraction exceeding 90% and supply hot air at a steady temperature and flow rate continuously for 24 hours a day, has been developed. It combines an unglazed transpired solar collector (UTC), rock bed, and a biomass gasifier stove with heat exchanger. The system utilises part of the rock bed to supply supplementary heat. The UTC supplies the required hot air during the day (to meet the load), and the stove-heat exchanger unit supplies hot air to the rock bed (to charge it), also during the daytime. The rock bed stores the thermal energy during the daytime, and supplies heat during off-sunshine hours - both during day and night. The system was evaluated by drying 22 kg of red chilli, using hot air at 60 C and 90 m{sup 3}/h, from an initial moisture content of 76.7% (w.b) to 8.4% over 32.5 hours of continuous drying. The dryer contributed to a reduction of 66% in drying time compared to open sun drying. The temperature of hot air supplied was stable at 60{+-}3 C for over 24 hours during the entire drying duration. Providing a load fraction of 91.6% during the 24-hour operation, the air heating system can successfully dry red chilli in a continuous drying operation, at required air temperature and flow rate, which can be maintained fairly constant. (orig.)

  15. Mechanism of Adsorptive Removal of Methylene Blue Using Dried Biomass of Rhizopus oryzae.

    Science.gov (United States)

    Dey, Manash Deep; Shukla, Ruchi; Bordoloi, Naba K; Doley, Robin; Mukhopadhyay, Rupak

    2015-09-01

    Adsorption is an efficient way to remove synthetic dyes from industrial effluent. Here, we show mechanism of adsorptive removal of cationic dye methylene blue (MB) from its aqueous solution using dried biomass of Rhizopus oryzae as a biosorbent. The optimum pH and temperature for adsorption was found to be 7.0 and 28 °C, respectively. Scanning electron microscopy (SEM) of the biomass suggested distinct changes in surface topology post-MB adsorption, while Fourier transform infrared (FTIR) study indicated chemical interaction between the surface of the biomass and MB. Chemical modification of -OH and -C=O groups of biomass reduced the MB adsorption and corroborated with the FTIR analyses. Kinetics study revealed that the adsorption rate was fast initially and reached equilibrium at 4 h following a pseudo-second-order-kinetics. The adsorption isotherm followed Freundlich isotherm model with n value of 1.1615.The dried biomass of R. oryzae can be used as a potent biosorbent for the removal of MB.

  16. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.

    Science.gov (United States)

    Patil, Prafulla D; Gude, Veera Gnaneswar; Mannarswamy, Aravind; Cooke, Peter; Munson-McGee, Stuart; Nirmalakhandan, Nagamany; Lammers, Peter; Deng, Shuguang

    2011-01-01

    The effect of microwave irradiation on the simultaneous extraction and transesterification (in situ transesterification) of dry algal biomass to biodiesel was investigated. A high degree of oil/lipid extraction from dry algal biomass and an efficient conversion of the oils/lipids to biodiesel were demonstrated in a set of well-designed experimental runs. A response surface methodology (RSM) was used to analyze the influence of the process variables (dry algae to methanol (wt/vol) ratio, catalyst concentration, and reaction time) on the fatty acid methyl ester conversion. Based on the experimental results and RSM analysis, the optimal conditions for this process were determined as: dry algae to methanol (wt/vol) ratio of around 1:12, catalyst concentration about 2 wt.%, and reaction time of 4 min. The algal biodiesel samples were analyzed with GC-MS and thin layer chromatography (TLC) methods. Transmission electron microscopy (TEM) images of the algal biomass samples before and after the extraction/transesterification reaction are also presented.

  17. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    Science.gov (United States)

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  18. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots

    Science.gov (United States)

    Reich, Peter B.; Lou, Yunjian; Bradford, John B.; Poorter, Hendrik; Perry, Charles H.; Oleksyn, Jacek

    2014-01-01

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  19. Zinc tolerance and zinc removal ability of living and dried biomass of Desmodesmus communis.

    Science.gov (United States)

    Novák, Zoltán; Jánószky, Mihály; B-Béres, Viktória; Nagy, Sándor Alex; Bácsi, István

    2014-12-01

    Effects of zinc on growth, cell morphology, oxidative stress, and zinc removal ability of the common phytoplankton species Desmodesmus communis were investigated at a concentration range of 0.25-160 mg L(-1) zinc. Cell densities and chlorophyll content decreased in treated cultures, changes in coenobia morphology and elevated lipid peroxidation levels appeared above 2.5 mg L(-1) zinc. The most effective zinc removal was observed at 5 mg L(-1) zinc concentration, while maximal amount of removed zinc appeared in 15 mg L(-1) zinc treated culture. Removed zinc is mainly bound on the cell surface. Dead biomass adsorbed more zinc than living biomass relative to unit of dry mass, but living biomass was more effective, relative to initial zinc content. This study comprehensively examines the zinc tolerance and removal ability of D. communis and demonstrates, in comparison with published literature, that these characteristics of different isolates of the same species can vary within a wide range.

  20. Volume and aboveground biomass models for dry Miombo woodland in Tanzania

    DEFF Research Database (Denmark)

    Mwakalukwa, Ezekiel Edward; Meilby, Henrik; Treue, Thorsten

    2014-01-01

    Tools to accurately estimate tree volume and biomass are scarce for most forest types in East Africa, including Tanzania. Based on a sample of 142 trees and 57 shrubs from a 6,065 ha area of dry miombo woodland in Iringa rural district in Tanzania, regression models were developed for volume...... and biomass of three important species, Brachystegia spiciformis Benth. (n=40), Combretum molle G. Don (n=41), and Dalbergia arbutifolia Baker (n=37) separately, and for broader samples of trees (28 species, n=72), shrubs (16 species, n=31), and trees and shrubs combined (44 species, n=104). Applied...... of the predictions tended to increase from general to species-specific models. Except for a few volume and biomass models developed for shrubs, all models had R2 values of 96–99%. Thus, the models appear robust and should be applicable to forests with similar site conditions, species, and diameter ranges....

  1. Global marine plankton functional type biomass distributions : Phaeocystis spp

    NARCIS (Netherlands)

    Vogt, M.; O'Brien, C.; Peloquin, J.; Schoemann, V.; Breton, E.; Estrada, M.; Gibson, J.; Karentz, D.; Van Leeuwe, M. A.; Stefels, J.; Widdicombe, C.; Peperzak, L.

    2012-01-01

    The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to

  2. Trophic structure and biomass distribution on two East Cape rocky ...

    African Journals Online (AJOL)

    1980-01-12

    Jan 12, 1980 ... Trophic structure and biomass distribution on two. East Cape rocky shores ... consist of sandy beaches with rocky shores restricted mainly to the area .... Figures 1 and 2, a simple energy flow diagram has been constructed for ...

  3. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  4. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    Science.gov (United States)

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology).

  5. Survey of Solvent type and drying of biomass effects on lipid extraction from Nannochloropsis Oculata for biodiesel production

    Directory of Open Access Journals (Sweden)

    Mohamad Malakootian

    2014-07-01

    Conclusion: The use of lyophilized method for dewatering and drying of biomass and diethyl ether as solvent for the extraction of lipids from biomass yielded more compared with other methods studied in this paper and would be more efficient in research works related to the production of biodiesel from microalgae’s lipid.

  6. Vegetation biomass allocation and its spatial distribution after 20 years ecological restoration in a dry-hot valley in Yuanmou, Yunnan Province of Southwest China%元谋干热河谷20年生人工恢复植被生物量分配与空间结构特征

    Institute of Scientific and Technical Information of China (English)

    李彬; 唐国勇; 李昆; 高成杰; 刘方炎; 王小菲

    2013-01-01

    By using layering harvest method,a comparative study was conducted on the biomass allocation and its spatial distribution of 20-year-old Eucalyptus camaldulensis plantation,Leucaena leucocephala plantation,and E.camaldulensis-L.leucocephala plantation in Yuanmou dry-hot valley of Yurman Province,Southwest China.The stand biomass in the mixed E.camaldulensis-L leucocephala plantation (82.99 t · hm-2) was between that of monoculture E.camaldulensis plantation (60.64 t · hm-2) and L leucocephala plantation (127.79 t · hm-2).The individual tree biomass of E.camaldulensis in the mixed plantation (44.32 kg) was 49.8% higher than that in monoculture plantation (29.58 kg).The branch and leaf biomass of L.leucocephala (25.4%) in monoculture plantation was larger than that of E.camaldulensis (8.9%) in monoculture plantation,and the aboveground biomass distribution ratio (78.0%) of L.leucocephala (25.4%) was also higher than that of E.camaldulensis (73.4%).The roots of L.leucocephala in both monoculture and mixed plantations were mainly distributed in 0-40 cm soil layer,while those of E.camaldulensis in monoculture and mixed plantations were mainly found in 0-80 cm and 0-60 cm,respectively.The proportion of biomass allocated to roots including medium roots,small roots,and fine roots of L.leucocephala in mixed plantation was higher than that in monoculture plantation,but it was contrary for E.camaldulensis.It was suggested that introducing L.leucocephala in E.camaldulensis plantation promoted the growth of E.camaldulensis,especially for its aboveground biomass,and increased the amount of lateral roots in 0-20 cm soil layer,which had significance in soil and water conservation in the study area.%采用分层收获法,对元谋干热河谷20年生赤桉、新银合欢纯林及其混交林的生物量分配与空间结构进行对比研究.结果表明:混交林林分生物量(82.99 t·hm-2)介于赤桉纯林(60.64 t ·hm-2)与新银合欢纯林(127.79 t·hm-2)之

  7. Biomass based micro-turbine plant and distribution network stability

    Energy Technology Data Exchange (ETDEWEB)

    Jurado, F.; Cano, A. [Jaen Univ., Linares (Spain). Dept. of Electrical Engineering; Carpio, J. [Universidad Nacional de Educacion a Distancia, Madrid (Spain). Dept. of Electrical and Computer Engineering

    2004-10-01

    Micro-turbine systems that enable the use of biomass are important for future technologies for electricity production. These distributed resources are dynamic devices, and when connected to the distribution system, they will affect its dynamic behavior. The micro-turbine is capable of providing effective load following service in the distribution system. However, the results also show that the micro-turbine system is not an uninterruptible power supply and does not protect the load from voltage instability while in a grid connect mode. (Author)

  8. Equilibrium and kinetic modelling of cadmium (II) biosorption by Dried Biomass Aphanothece sp. from aqueous phase

    Science.gov (United States)

    Awalina; Harimawan, A.; Haryani, G. S.; Setiadi, T.

    2017-05-01

    The Biosorption of cadmium (II) ions on dried biomass of Aphanothece sp.which previously grown in a photobioreactor system with atmospheric carbon dioxide fed input, was studied in a batch system with respect to initial pH, biomass concentration, contact time, and temperature. The biomass exhibited the highest cadmium (II) uptake capacity at 30ºC, initial pH of 8.0±0.2 in 60 minute and initial cadmium (II) ion concentration of 7.76 mg/L. Maximum biosorption capacities were 16.47 mg/g, 54.95 mg/g and 119.05 mg/g at range of initial cadmium (II) 0.96-3.63 mg/L, 1.99-8.10 mg/L and 6.48-54.38 mg/L, respectively. Uptake kinetics follows the pseudo-second order model while equilibrium is best described by Langmuir isotherm model. Isotherms have been used to determine thermodynamic parameter process (free energy change, enthalpy change and entropy change). FTIR analysis of microalgae biomass revealed the presence of amino acids, carboxyl, hydroxyl, sulfhydryl and carbonyl groups, which are responsible for biosorption of metal ions. During repeated sorption/desorption cycles, the ratio of Cd (II) desorption to biosorption decreased from 81% (at first cycle) to only 27% (at the third cycle). Nevertheless, due to its higher biosorption capability than other adsorbent, Aphanothece sp appears to be a good biosorbent for removing metal Cd (II) ions from aqueous phase.

  9. Forest Biomass Energy Resources in China: Quantity and Distribution

    Directory of Open Access Journals (Sweden)

    Caixia Zhang

    2015-11-01

    Full Text Available As one of the most important renewable and sustainable energy sources, the forest biomass energy resource has always been the focus of attention of scholars and policy makers. However, its potential is still uncertain in China, especially with respect to its spatial distribution. In this paper, the quantity and distribution of Chinese forest biomass energy resources are explored based mainly on forestry statistics data rather than forest resource inventory data used by most previous studies. The results show that the forest biomass energy resource in China was 169 million tons in 2010, of which wood felling and bucking residue (WFBR,wood processing residue (WPR, bamboo processing residue, fuel wood and firewood used by farmers accounted for 38%, 37%, 6%, 4% and 15%, respectively. The highest resource was located in East China, accounting for nearly 39.0% of the national amount, followed by the Southwest and South China regions, which accounted for 17.4% and 16.3%, respectively. At the provincial scale, Shandong has the highest distribution, accounting for 11.9% of total resources, followed by Guangxi and Fujian accounting for 10.3% and 10.2%, respectively. The actual wood-processing residue (AWPR estimated from the actual production of different wood products (considering the wood transferred between regions showed apparent differences from the local wood processing residue (LWPR, which assumes that no wood has been transferredbetween regions. Due to the large contribution of WPR to total forestry bioenergy resources, the estimation of AWPR will provide a more accurate evaluation of the total amount and the spatial distribution of forest biomass energy resources in China.

  10. Biomass and nutrient dynamics associated with slash fires in neotropical dry forests

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, J.B.; Cummings, D.L. (Oregon State Univ., Corvallis (United States)); Sanford, R.L. Jr. (Univ. of Denver, CO (United States)); Salcedo, I.H.; Sampaio, E.V.S.B. (Universidade Federal do Pernambuco, Recife (Brazil))

    1993-01-01

    Unprecedented rates of deforestation and biomass burning in tropical dry forests are dramatically influencing biogeochemical cycles, resulting in resource depletion, declines in biodiversity, and atmospheric pollution. We quantified the effects of deforestation and varying levels of slash-fire severity on nutrient losses and redistribution in a second-growth tropical dry forest ([open quotes]Caatinga[close quotes]) near Serra Talhada, Pernambuco, Brazil. Total aboveground biomass prior to burning was [approx]74 Mg/ha. Nitrogen and phosphorus concentrations were highest in litter, leaves attached to slash, and fine wood debris (biomass, they accounted for [approx]60% of the aboveground pools of N and P. Three experimental fires were conducted during the 1989 burning season. Consumption was 78, 88, and 95% of the total aboveground biomass. As much as 96% of the prefire aboveground N and C pools and 56% of the prefire aboveground P pool was lost. Nitrogen losses exceeded 500 kg/ha and P losses exceeded 20 kg/ha in the fires of the greatest severity. With increasing fire severity, the concentrations of N and P in ash decreased while the concentration of Ca increased. Greater ecosystem losses of these nutrients occurred with increasing fire severity. Following fire, up to 47% of the residual aboveground N and 84% of the residual aboveground P were in the form of ash, quickly lost from the site via wind erosion. Fires appeared to have a minor immediate effect on total N, C, or P in the soils. However, soils in forests with no history of cultivation had significantly higher concentrations of C and P than second-growth forests. It would likely require a century or more of fallow for reaccumulation to occur. However, current fallow periods in this region are 15 yr or less. 38 refs., 2 figs., 7 tabs.

  11. Latitudinal distribution of trace gases from biomass burning emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ridder, Theo; Warneke, Thorsten [Institut fuer Umweltphysik, Universitaet Bremen, Otto-Hahn-Allee 1, 28359 Bremen (Germany); Gerbig, Christoph; Jordan, Armin; Rothe, Michael [Max-Planck-Institut fuer Biogeochemie, Hans-Knoell-Str. 10, 07745 Jena (Germany); Schrems, Otto [Alfred-Wegener-Institut fuer Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven (Germany)

    2009-07-01

    We study the latitudinal distribution of trace gases in the atmosphere with ground-based Fourier Transform InfraRed (FTIR) Spectrometry and in situ measurements. Our measurements have been performed during several ship cruises on the Atlantic (55 N - 30 S) between the years 1995 and 2005 on board of the research vessel Polarstern. Here we report on the latitudinal variability of trace gases originating from biomass burning emissions. We analyze the distribution of these gases for recent cruises and compare it to the results from former trips. Thereby we concentrate on the distribution of carbon monoxide (CO), which is a suitable tracer for biomass burning. We compare our data to in situ measurements, which have been accomplished during some of our cruises. In situ measurements have been performed by flask sampling and were analyzed by gas chromatography and mass spectrometry. In addition we studied the backward trajectories of air masses to reveal the origin of enhanced trace gas concentrations due to biomass burning emissions.

  12. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  13. Performance Analysis of Solar Assisted Fluidized Bed Dryer Integrated Biomass Furnace with and without Heat Pump for Drying of Paddy

    OpenAIRE

    M. Yahya

    2016-01-01

    The performances of a solar assisted fluidized bed dryer integrated biomass furnace (SA-FBDIBF) and a solar assisted heat pump fluidized bed dryer integrated biomass furnace (SAHP-FBDIBF) for drying of paddy have been evaluated, and also drying kinetics of paddy were determined. The SA-FBDIBF and the SAHP-FBDIBF were used to dry paddy from 11 kg with moisture content of 32.85% db to moisture content of 16.29% db (14% wb) under an air mass flow rate of 0.1037 kg/s within 29.73 minutes and 22.9...

  14. Monitoring the biomass accumulation of recombinant yeast cultures: offline estimations of dry cell mass and cell counts.

    Science.gov (United States)

    Palmer, Shane M; Kunji, Edmund R S

    2012-01-01

    Biomass is one of the most important parameters for process optimization, scale-up and control in recombinant protein production experiments. However, a standard unit of biomass remains elusive. Methods of biomass monitoring have increasingly been developed towards online, in situ techniques in order to advance process analysis and control. Offline, ex situ methods, such as dry cell mass determination and direct cell counts, remain the reference for determining cell mass and number, respectively, but this type of analysis is time consuming. In this chapter, protocols are presented for determining these offline measures of the biomass yield of recombinant yeast cultures.

  15. Volume and Aboveground Biomass Models for Dry Miombo Woodland in Tanzania

    Directory of Open Access Journals (Sweden)

    Ezekiel Edward Mwakalukwa

    2014-01-01

    Full Text Available Tools to accurately estimate tree volume and biomass are scarce for most forest types in East Africa, including Tanzania. Based on a sample of 142 trees and 57 shrubs from a 6,065 ha area of dry miombo woodland in Iringa rural district in Tanzania, regression models were developed for volume and biomass of three important species, Brachystegia spiciformis Benth. (n = 40, Combretum molle G. Don (n = 41, and Dalbergia arbutifolia Baker (n = 37 separately, and for broader samples of trees (28 species, n = 72, shrubs (16 species, n = 32, and trees and shrubs combined (44 species, n = 104. Applied independent variables were log-transformed diameter, height, and wood basic density, and in each case a range of different models were tested. The general tendency among the final models is that the fit improved when height and wood basic density were included. Also the precision and accuracy of the predictions tended to increase from general to species-specific models. Except for a few volume and biomass models developed for shrubs, all models had R2 values of 96–99%. Thus, the models appear robust and should be applicable to forests with similar site conditions, species, and diameter ranges.

  16. Moisture Distribution and Flow During Drying of Wood and Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zink-Sharp, Audrey; Hanna, Robert B.

    2001-12-28

    New understanding, theories, and techniques for moisture flow and distribution were developed in this research on wood and wood fiber. Improved understanding of the mechanisms of flake drying has been provided. Observations of flake drying and drying rate curves revealed that rate of moisture loss consisted of two falling rate periods and no constant rate drying period was observed. Convective heat transfer controls the first period, and bound water diffusion controls the second period. Influence of lower drying temperatures on bending properties of wood flakes was investigated. Drying temperature was found to have a significant influence on bending stiffness and strength. A worksheet for calculation of the energy required to dry a single strandboard flake was developed but has not been tested in an industrial setting yet. A more complete understanding of anisotropic transverse shrinkage of wood is proposed based on test results and statistical analysis. A simplified mod el of a wood cell's cross-section was drawn for calculating differential transverse shrinkage. The model utilizes cell wall thickness and microfibrillar packing density and orientation. In spite of some phenomena of cell wall structure not yet understood completely, the results might explain anisotropic transverse shrinkage to a major extent. Boundary layer theory was found useful for evaluating external moisture resistance during drying. Simulated moisture gradients were quire comparable to the actual gradients in dried wood. A mathematical procedure for determining diffusion and surface emission coefficients was also developed. Thermal conductivity models of wood derived from its anatomical structure were created and tested against experimental values. Model estimations provide insights into changes in heat transfer parameters during drying. Two new techniques for measuring moisture gradients created in wood during drying were developed. A new technique that utilizes optical properties of

  17. Global marine plankton functional type biomass distributions: Phaeocystis sp.

    Directory of Open Access Journals (Sweden)

    C. Widdicombe

    2012-05-01

    Full Text Available The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to carbon biomass using species-specific carbon conversion factors. Microscopic counts of single-celled and colonial Phaeocystis were obtained both through the mining of online databases and by accepting direct submissions (both published and unpublished from Phaeocystis specialists. We recorded abundance data from a total of 1595 depth-resolved stations sampled between 1955–2009. The quality-controlled dataset includes 5057 counts of individual Phaeocystis cells resolved to species level and information regarding life-stages from 3526 samples. 83% of stations were located in the Northern Hemisphere while 17% were located in the Southern Hemisphere. Most data were located in the latitude range of 50–70° N. While the seasonal distribution of Northern Hemisphere data was well-balanced, Southern Hemisphere data was biased towards summer months. Mean species- and form-specific cell diameters were determined from previously published studies. Cell diameters were used to calculate the cellular biovolume of Phaeocystis cells, assuming spherical geometry. Cell biomass was calculated using a carbon conversion factor for Prymnesiophytes (Menden-Deuer and Lessard, 2000. For colonies, the number of cells per colony was derived from the colony volume. Cell numbers were then converted to carbon concentrations. An estimation of colonial mucus carbon was included a posteriori, assuming a mean colony size for each species. Carbon content per cell ranged from 9 pg (single-celled Phaeocystis antarctica to 29 pg (colonial Phaeocystis globosa. Non-zero Phaeocystis cell biomasses (without mucus carbon range from 2.9 × 10−5 μg l−1 to 5.4 × 103 μg l−1, with a

  18. Global marine plankton functional type biomass distributions: Phaeocystis spp.

    Directory of Open Access Journals (Sweden)

    C. Widdicombe

    2012-09-01

    Full Text Available The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to carbon biomass using species-specific carbon conversion factors. Microscopic counts of single-celled and colonial Phaeocystis were obtained both through the mining of online databases and by accepting direct submissions (both published and unpublished from Phaeocystis specialists. We recorded abundance data from a total of 1595 depth-resolved stations sampled between 1955–2009. The quality-controlled dataset includes 5057 counts of individual Phaeocystis cells resolved to species level and information regarding life-stages from 3526 samples. 83% of stations were located in the Northern Hemisphere while 17% were located in the Southern Hemisphere. Most data were located in the latitude range of 50–70° N. While the seasonal distribution of Northern Hemisphere data was well-balanced, Southern Hemisphere data was biased towards summer months. Mean species- and form-specific cell diameters were determined from previously published studies. Cell diameters were used to calculate the cellular biovolume of Phaeocystis cells, assuming spherical geometry. Cell biomass was calculated using a carbon conversion factor for prymnesiophytes. For colonies, the number of cells per colony was derived from the colony volume. Cell numbers were then converted to carbon concentrations. An estimation of colonial mucus carbon was included a posteriori, assuming a mean colony size for each species. Carbon content per cell ranged from 9 pg C cell−1 (single-celled Phaeocystis antarctica to 29 pg C cell−1 (colonial Phaeocystis globosa. Non-zero Phaeocystis cell biomasses (without mucus carbon range from 2.9 × 10−5 to 5.4 × 103 μg C l−1, with a mean of 45.7 μg C

  19. Pilot scale harvesting, separation and drying of microalgae biomass from compact photo-bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Alberto Tadeu Martins; Luz Junior, Luiz Fernando de Lima [Dept. de Engenharia Quimica. Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mail: luzjr@ufpr.br; Mariano, Andre Bellin; Ghidini, Luiz Francisco Correa; Gnoatto, Victor Eduardo; Locatelli Junior, Vilson; Mello, Thiago Carvalho de; Vargas, Jose Viriato Coelho [Nucleo de Pesquisa e Desenvolvimento em Energia Autossustentavel (NPDEAS). Dept. de Engenharia Mecanica. Universidade Federal do Parana, Curitiba (Brazil)], E-mail: jvargas@demec.ufpr.br

    2010-07-01

    Bio diesel produced from microalgae lipids is gaining a substantial ground in the search for renewable energy sources. In order to optimize the operating conditions of a continuous process, several experiments were realized, both in laboratory and pilot scale. The microalgae cultivation can be conducted in a photo-bioreactor, a closed system which allows parameters control and necessarily involves the aquatic environment. Because of that, the use of separation unit operations is required. The process starts in a proposed compact photo-bioreactor, which consist of a chain of transparent tubes with 6 cm of diameter arranged in parallel where the cultivation media circulate with the help of a pump. This arrangement offers a closed culture with less risk of contamination and maintains a minimum contact with the environment. The microalgae grow inside the pipes under incidence of ambient light. In this paper, harvesting, separation and drying were studied, as part of the processes of a sustainable energy plant under construction at UFPR, as shown in Fig. 1. To control the production in a photo-bioreactor in continuous system, it is necessary to monitor the concentration of microalgae growth in suspension. To measure the cell concentration in this equipment, an optic sensor has been developed. The microalgae biomass separation from the culture media is achieved by microalgae flocculation. Several cultivation situations have been tested with different NaOH concentrations, increasing the pH to 10. The system was kept under agitation during the addition by an air pump into the tank. Thereafter the system was maintained static. After a short time, it was observed that the microalgae coagulated and settled. The clarified part water was removed, remaining a concentrated microalgae suspension. Our results suggest that pH increase is a suitable methodology for microalgae separation from the growth suspension. The microalgae sedimentation time was recorded, which allowed the

  20. Pilot scale harvesting, separation and drying of microalgae biomass from compact photo-bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Alberto Tadeu Martins; Luz Junior, Luiz Fernando de Lima [Dept. de Engenharia Quimica. Universidade Federal do Parana, Curitiba, PR (Brazil)], e-mail: luzjr@ufpr.br; Mariano, Andre Bellin; Ghidini, Luiz Francisco Correa; Gnoatto, Victor Eduardo; Locatelli Junior, Vilson; Mello, Thiago Carvalho de; Vargas, Jose Viriato Coelho [Nucleo de Pesquisa e Desenvolvimento em Energia Autossustentavel (NPDEAS). Dept. de Engenharia Mecanica. Universidade Federal do Parana, Curitiba (Brazil)], E-mail: jvargas@demec.ufpr.br

    2010-07-01

    Bio diesel produced from microalgae lipids is gaining a substantial ground in the search for renewable energy sources. In order to optimize the operating conditions of a continuous process, several experiments were realized, both in laboratory and pilot scale. The microalgae cultivation can be conducted in a photo-bioreactor, a closed system which allows parameters control and necessarily involves the aquatic environment. Because of that, the use of separation unit operations is required. The process starts in a proposed compact photo-bioreactor, which consist of a chain of transparent tubes with 6 cm of diameter arranged in parallel where the cultivation media circulate with the help of a pump. This arrangement offers a closed culture with less risk of contamination and maintains a minimum contact with the environment. The microalgae grow inside the pipes under incidence of ambient light. In this paper, harvesting, separation and drying were studied, as part of the processes of a sustainable energy plant under construction at UFPR, as shown in Fig. 1. To control the production in a photo-bioreactor in continuous system, it is necessary to monitor the concentration of microalgae growth in suspension. To measure the cell concentration in this equipment, an optic sensor has been developed. The microalgae biomass separation from the culture media is achieved by microalgae flocculation. Several cultivation situations have been tested with different NaOH concentrations, increasing the pH to 10. The system was kept under agitation during the addition by an air pump into the tank. Thereafter the system was maintained static. After a short time, it was observed that the microalgae coagulated and settled. The clarified part water was removed, remaining a concentrated microalgae suspension. Our results suggest that pH increase is a suitable methodology for microalgae separation from the growth suspension. The microalgae sedimentation time was recorded, which allowed the

  1. 直接加热式生物质回转干燥过程模拟%SIMULATION OF BIOMASS DRYING IN A DIRECT CONTACT ROTARY DRYER

    Institute of Scientific and Technical Information of China (English)

    奚英涛; 由长福

    2013-01-01

    通过分析回转干燥器内传热传质规律,建立生物质回转干燥过程的一维数学模型.利用基于随机颗粒轨道模型的物料体积流率公式计算干燥器内各传热面积大小,从而实现模型的求解.采用此模型预测物料温度、含水率及空气温度、湿度等在干燥器内部的轴向分布,计算结果与文献实验数据的对比结果表明该模型可用于实际生物质回转干燥过程的分析.干燥计算结果表明:物料在干燥器入口段干燥速率最大,直至物料含水率达到临界含水率后逐渐减小,物料中水分的蒸发主要发生在干燥器的前端.因此,要提高生物质物料的干燥程度,最直接有效的方法是提高物料入口段的干燥速率,可通过提高干燥空气入口温度等手段实现.%Heat and mass transfer process in a direct contact rotary dryer was analyzed, and a one-dimensional axial mathematical model of direct contact rotary drying of biomass was developed. The heat transfer areas in the rotary dryer was obtained through a formula of material volumetric flow based on a novel particulate trajectory model, thus the simulation of biomass drying in a direct contact rotary dryer was carried out. The model was used to predict the axial distribution of temperature and moisture of air and biomass in the dryer. The comparison of the simulation results and the experimental measurements showed that the model is suitable for analysis of process of biomass drying. It was shown that the drying rate of biomass is highest at the beginning of the dryer and doesn' t decrease until at the critical moisture content. Most moisture is evaporated at the beginning of the dryer. Therefore, in order to make the biomass drier, the most effective method is to improve the drying rate at the inlet section. This can be realized by increasing the temperature of inlet drying air.

  2. The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization

    Science.gov (United States)

    Sakamoto, Kimiko M.; Laing, James R.; Stevens, Robin G.; Jaffe, Daniel A.; Pierce, Jeffrey R.

    2016-06-01

    Biomass-burning aerosols have a significant effect on global and regional aerosol climate forcings. To model the magnitude of these effects accurately requires knowledge of the size distribution of the emitted and evolving aerosol particles. Current biomass-burning inventories do not include size distributions, and global and regional models generally assume a fixed size distribution from all biomass-burning emissions. However, biomass-burning size distributions evolve in the plume due to coagulation and net organic aerosol (OA) evaporation or formation, and the plume processes occur on spacial scales smaller than global/regional-model grid boxes. The extent of this size-distribution evolution is dependent on a variety of factors relating to the emission source and atmospheric conditions. Therefore, accurately accounting for biomass-burning aerosol size in global models requires an effective aerosol size distribution that accounts for this sub-grid evolution and can be derived from available emission-inventory and meteorological parameters. In this paper, we perform a detailed investigation of the effects of coagulation on the aerosol size distribution in biomass-burning plumes. We compare the effect of coagulation to that of OA evaporation and formation. We develop coagulation-only parameterizations for effective biomass-burning size distributions using the SAM-TOMAS large-eddy simulation plume model. For the most-sophisticated parameterization, we use the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) to build a parameterization of the aged size distribution based on the SAM-TOMAS output and seven inputs: emission median dry diameter, emission distribution modal width, mass emissions flux, fire area, mean boundary-layer wind speed, plume mixing depth, and time/distance since emission. This parameterization was tested against an independent set of SAM-TOMAS simulations and yields R2 values of 0.83 and 0.89 for Dpm and modal width, respectively. The

  3. Zooplankton biomass (displacement volume, dry mass, ash-free dry mass) data collected in Eastern Central Atlantic during CIPREA project from 1978-07-25 to 1978-09-12 by France (NODC Accession 0070783)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass (displacement volume, dry mass, and ashfree dry mass) data collected in Eastern Central Atlantic during CIPREA project in Jul - Sep 1978 by...

  4. Biomass distribution patterns of ecotones between forest and swamp in Changbai Mountain

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper studied the biomass distribution patterns of Larix olgensis/swamp ecotones and Betula platyphlla/swamp ecotones in Changbai Mountain so as to provide theory foundation for the management of these nature resources, by setting up sample belts, investigating initial data along the environmental gradients change, and establishing regression models. By means of regression models, the biomass of communities, layers, tree species and organs was calculated. In this system, it was found that the community biomass increased gradually along the environmental gradients change from swamp to forest in Changbai Mountain. Furthermore, the ecotoneal biomass distributed mainly over tree layer. The tree biomass distributed mainly in two or three dominate tree species.

  5. Distribution of zooplankton biomass and potential metabolic activities across the northern Benguela upwelling system

    Science.gov (United States)

    Fernández-Urruzola, I.; Osma, N.; Packard, T. T.; Gómez, M.; Postel, L.

    2014-11-01

    The distribution of zooplankton biomass and potential metabolic rates, in terms of electron transport system (ETS) and glutamate dehydrogenase (GDH), were analyzed along a cross-shelf transect in waters off Namibia. The highly variable dynamics of upwelling filaments promoted short-term fluctuations in the zooplankton biomass and metabolism. Maximum values were characteristically found over the shelf-break, where zooplankton biomass as dry mass (DM) reached peaks of 64.5 mg m- 3 within the upper 200 m in late August. Two weeks later, the zooplankton-DM decreased by more than a third (19 mg DM m- 3). Zooplankton potential respiration and NH4+ excretion averaged 234 μmol O2 m- 3 d- 1 and 169 μmol NH4+ m- 3 d- 1 in the Namibian shelf, respectively. High protein-specific ETS activities even in the low-chlorophyll waters outside the filament suggested a shift into greater omnivory seaward. In this light, zooplankton elemental and isotopic compositions were used to investigate the pelagic food web interactions. They evidenced spatial changes in the carbon resource for zooplankton as well as changes in the form of nitrogen that fueled the biological production in aging advected waters. Overall, both aspects of zooplankton metabolism impacted the primary productivity at a level less than 10% under all the different oceanographic conditions.

  6. Experiment, modeling and optimization of liquid phase adsorption of Cu(II) using dried and carbonized biomass of Lyngbya majuscula

    Science.gov (United States)

    Kushwaha, Deepika; Dutta, Susmita

    2017-05-01

    The present work aims at evaluation of the potential of cyanobacterial biomass to remove Cu(II) from simulated wastewater. Both dried and carbonized forms of Lyngbya majuscula, a cyanobacterial strain, have been used for such purpose. The influences of different experimental parameters viz., initial Cu(II) concentration, solution pH and adsorbent dose have been examined on sorption of Cu(II). Kinetic and equilibrium studies on Cu(II) removal from simulated wastewater have been done using both dried and carbonized biomass individually. Pseudo-second-order model and Langmuir isotherm have been found to fit most satisfactorily to the kinetic and equilibrium data, respectively. Maximum 87.99 and 99.15 % of Cu(II) removal have been achieved with initial Cu(II) concentration of 10 and 25 mg/L for dried and carbonized algae, respectively, at an adsorbent dose of 10 g/L for 20 min of contact time and optimum pH 6. To optimize the removal process, Response Surface Methodology has been employed using both the dried and carbonized biomass. Removal with initial Cu(II) concentration of 20 mg/L, with 0.25 g adsorbent dose in 50 mL solution at pH 6 has been found to be optimum with both the adsorbents. This is the first ever attempt to make a comparative study on Cu(II) removal using both dried algal biomass and its activated carbon. Furthermore, regeneration of matrix was attempted and more than 70% and 80% of the adsorbent has been regenerated successfully in the case of dried and carbonized biomass respectively upto the 3rd cycle of regeneration study.

  7. Residue distribution and biomass recovery following biomass harvest of plantation pine

    Science.gov (United States)

    Johnny Grace III; John Klepac; S. Taylor; Dana Mitchell

    2016-01-01

    Forest biomass is anticipated to play a significant role in addressing an alternative energy supply. However, the efficiencies of current state-of-the-art recovery systems operating in forest biomass harvests are still relatively unknown. Forest biomass harvest stands typically have higher stand densities and smaller diameter trees than conventional stands which may...

  8. Microbial Biomass C,N and P in Disturbed Dry Tropical Forest Soils, India

    Institute of Scientific and Technical Information of China (English)

    J.S.SINGH; D.P.SINGH; A.K.KASHYAP

    2010-01-01

    Variations in microbial biomass C(MB-C),N(MB-N)and P(MB-P)along a gradient of different dominant vegetation covers(natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems)in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g-1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period(summer season)and the minimum in wet period(rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant(P mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices(conversion of forest into savanna and grassland)caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites(grassland and savanna)compared to undisturbed forest ecosystems.

  9. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka.

    Science.gov (United States)

    Ali, Arshad; Mattsson, Eskil

    2017-01-01

    Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry

  10. Long-term changes in above ground biomass after disturbance in a neotropical dry forest, Hellshire Hills, Jamaica

    DEFF Research Database (Denmark)

    Niño, Milena; McLaren, Kurt P.; Meilby, Henrik

    2014-01-01

    We used data from experimental plots (control, partially cut and clear-cut) established in 1998, in a tropical dry forest (TDF) in Jamaica, to assess changes in above ground biomass (AGB) 10 years after disturbance. The treatments reduced AGB significantly in 1999 (partially cut: 37.6 %, clear-cu...

  11. Experimental studies on drying of Zingiber officinale, Curcuma longa l. and Tinospora cordifolia in solar-biomass hybrid drier

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, J.; Vijay, V.K. [Indian Institute of Technology, New Delhi (India). Center for Rural Development and Technology

    2005-11-01

    An integral type natural convection solar drier has been fabricated and coupled with a biomass stove. Experiments have been conducted to test the performance of the drier by drying of Zingiber officinale (ginger), Curcuma longa l. (turmeric) and Tinospora cordifolia (guduchi) during the summer climate in Delhi. It was found that, during the load test for ginger, 18 kg of fresh product with an initial moisture content of 319.74(db)% was dried to a final moisture content of 11.8(db)% within 33 h. Similarly, moisture content of turmeric and guduchi were reduced from 358.96 to 8.8 and 257.45 to 9.67(db)% during 36 and 48 h of drying, respectively. The drying of these products has also been studied under 'solar-only' and open sun in the same climatic conditions and the results indicate that for all the products, drying is faster, and is within 33-48 h in hybrid drier, against 72-120 h in 'solar-only' operation of the same drier and 192-288 h in open sun. Efficiency of the drier during its two mode (solar and biomass separately) of operation has been estimated and quality evaluation of under-studied products showed that developed drier is suitable for the drying of these products. The developed drier is a simple system, which can be manufactured locally and can be used for drying of other agricultural products. (author)

  12. Biomass distribution efficiency of rose cv. Charlotte grown in soil and substrates at second production peak

    Directory of Open Access Journals (Sweden)

    María Y González G

    2013-12-01

    Full Text Available Growing plants in substrates is an alternative for the production of roses under unfavorable soil conditions. The objective of this study was to determine the biomass distribution efficiency of rose cv. Charlotte grown in soil and substrates under greenhouse conditions until second production peak. In this trial, soil and substrates with 100% burned rice husk (100BR H; 65% burned rice husk: 35% coconut fiber (65BR H; 35% burned rice husk: 65% coconut fiber (35BR H; and 100% coconut fiber (100CF were used. The experimental design consisted of a randomized complete block design with three repetitions. Destructive sampling was carried out using whole plants and flowering stems at previously determined bud stages. Leaf area and dry matter in organs were measured and growth rate and physiological indexes were calculated. The assessed variables were fitted to logistic and exponential models. The plants grown in substrates with BR H (burned rice husk showed similar values regarding dry matter and fresh weight accumulation in organs. Plants in the soil treatment were the last ones to reach the different development stages of the flowering buds, while those that were grown in 100CF were the first ones. The treatments 35BR H and 100CF showed less growth of flowering stems, which was expressed in terms of relative dry matter increase per day. The plants grown in soil showed more dry matter in leaves and stems but less in flower buds. The 65BR H treatment showed some of the highest dry matter accumulations in leaves, stems and flower buds and also showed the highest leaf area ratio, leaf weight ratio, and specific leaf area values

  13. Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2017-01-01

    A novel system concept is presented for the thermochemical conversion of very wet biomasses such as sewage sludge and manure. The system integrates steam drying, solid oxide electrolysis cells (SOEC) and gasification for the production of synthetic natural gas (SNG). The system is analyzed....... The analysis shows that the total efficiency of the novel system is 69–70% depending on the biomass ash content, while the biomass to SNG energy ratio is 165%, which is near the theoretical maximum because electrolytic hydrogen is supplied to the synthesis gas. It is proposed to combine the novel system...... with an anaerobic digester for conversion of biomasses with high nitrogen content, such as sewage sludge. The organic nitrogen in the sewage sludge will be mineralized in the digester instead of ending up as N2 in the SNG product....

  14. [Aboveground architecture and biomass distribution of Quercus variabilis].

    Science.gov (United States)

    Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou

    2015-08-01

    The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline

  15. Statistical distributions of extreme dry spell in Peninsular Malaysia

    Science.gov (United States)

    Zin, Wan Zawiah Wan; Jemain, Abdul Aziz

    2010-11-01

    Statistical distributions of annual extreme (AE) series and partial duration (PD) series for dry-spell event are analyzed for a database of daily rainfall records of 50 rain-gauge stations in Peninsular Malaysia, with recording period extending from 1975 to 2004. The three-parameter generalized extreme value (GEV) and generalized Pareto (GP) distributions are considered to model both series. In both cases, the parameters of these two distributions are fitted by means of the L-moments method, which provides a robust estimation of them. The goodness-of-fit (GOF) between empirical data and theoretical distributions are then evaluated by means of the L-moment ratio diagram and several goodness-of-fit tests for each of the 50 stations. It is found that for the majority of stations, the AE and PD series are well fitted by the GEV and GP models, respectively. Based on the models that have been identified, we can reasonably predict the risks associated with extreme dry spells for various return periods.

  16. System and process for biomass treatment

    Science.gov (United States)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  17. Cu(II) binding by dried biomass of red, green and brown macroalgae.

    Science.gov (United States)

    Murphy, Vanessa; Hughes, Helen; McLoughlin, Peter

    2007-02-01

    Dried biomass of the marine macroalgae Fucus spiralis and Fucus vesiculosus (brown), Ulva spp. (comprising Ulva linza, Ulva compressa and Ulva intestinalis) and Ulva lactuca (green), Palmaria palmata and Polysiphonia lanosa (red) were studied in terms of their Cu(II) biosorption performance. This is the first study of its kind to compare Cu(II) uptake by these seaweeds in the South-East of Ireland. Potentiometric and conductimetric titrations revealed a variety of functionalities on the seaweed surface including carboxyl and amino groups, which are capable of metal binding. It was also found that, of the seaweeds investigated, F. vesiculosus contained the greatest number of acidic surface binding sites while Palmaria palmata contained the least. The metal uptake capacities of the seaweeds increased with increasing pH and kinetic behaviour followed a similar pattern for all seaweeds: a rapid initial sorption period followed by a longer equilibrium period. P. palmata reached equilibrium within 10min of exposure while F. vesiculosus required 60min. Correlation was found between the total number of acidic binding sites and the time taken to reach equilibrium. Fourier transform infra-red (FTIR) analysis of the seaweeds revealed the interaction of carboxyl, amino, sulphonate and hydroxyl groups on the seaweed surface with Cu(2+) ions while time course studies established the relative contribution of each of these groups in metal binding.

  18. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    Science.gov (United States)

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S.

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  19. Distributed renewable power from biomass and other waste fuels

    Science.gov (United States)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  20. Performance Analysis of Solar Assisted Fluidized Bed Dryer Integrated Biomass Furnace with and without Heat Pump for Drying of Paddy

    Directory of Open Access Journals (Sweden)

    M. Yahya

    2016-01-01

    Full Text Available The performances of a solar assisted fluidized bed dryer integrated biomass furnace (SA-FBDIBF and a solar assisted heat pump fluidized bed dryer integrated biomass furnace (SAHP-FBDIBF for drying of paddy have been evaluated, and also drying kinetics of paddy were determined. The SA-FBDIBF and the SAHP-FBDIBF were used to dry paddy from 11 kg with moisture content of 32.85% db to moisture content of 16.29% db (14% wb under an air mass flow rate of 0.1037 kg/s within 29.73 minutes and 22.95 minutes, with average temperatures and relative humidities of 80.3°C and 80.9°C and 12.28% and 8.14%, respectively. The average drying rate, specific energy consumption, and specific moisture extraction rate were 0.043 kg/minute and 0.050 kg/minute, 5.454 kWh/kg and 4.763 kWh/kg, and 0.204 kg/kWh and 0.241 kg/kWh for SA-FBDIBF and SAHP-FBDIBF, respectively. In SA-FBDIBF and SAHP-FBDIBF, the dryer thermal efficiencies were average values of 12.28% and 15.44%; in addition, the pickup efficiencies were 33.55% and 43.84% on average, whereas the average solar and biomass fractions were 10.9% and 10.6% and 36.6% and 30.4% for SA-FBDIBF and SAHP-FBDIBF, respectively. The drying of paddy occurred in the falling rate period. The experimental dimensionless moisture content data were fitted to three mathematical models. Page’s model was found best to describe the drying behaviour of paddy.

  1. [Spatial distribution of biomass burning and mortality among the elderly in a Brazilian Amazon region, 2001 - 2012].

    Science.gov (United States)

    Andrade, Valdir Soares de; Artaxo, Paulo Eduardo; Hacon, Sandra de Souza; Carmo, Cleber Nascimento do

    2017-01-01

    The burning of biomass has a significant impact on the Amazon ecosystem in the dry season due to the emissions of air pollutants. The effects on the health of the population, especially in the region of the arc of deforestation, has been the subject of recent studies. The scope of this study was to evaluate the spatial distribution of biomass burning and mortality from respiratory and cardiovascular diseases among the elderly in the state of Rondônia in the period from 2001 to 2012. Mortality data were obtained through the Mortality Information System of the Ministry of Health. Biomass burning data were provided by the National Institute for Space Research. The Kernel estimator was used. The highest mortality rates were observed in the central-east and south-east of Rondônia. The focuses of the fires were concentrated in the northern part of the state, though with a significant amount in other regions. The spatial distribution of the hot areas of mortality and fires were not directly associated. However, fires were observed in all municipalities in the state. Pollutants emitted from biomass burning can be transported thousands of kilometers from the source areas and influence the health of the elderly.

  2. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature.

    Directory of Open Access Journals (Sweden)

    Steven J Tuorto

    Full Text Available This report describes BioDry (patent pending, a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc., freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry "field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited.

  3. The Spatial Distribution of Forest Biomass in the Brazilian Amazon: A Comparison of Estimates

    Science.gov (United States)

    Houghton, R. A.; Lawrence, J. L.; Hackler, J. L.; Brown, S.

    2001-01-01

    The amount of carbon released to the atmosphere as a result of deforestation is determined, in part, by the amount of carbon held in the biomass of the forests converted to other uses. Uncertainty in forest biomass is responsible for much of the uncertainty in current estimates of the flux of carbon from land-use change. We compared several estimates of forest biomass for the Brazilian Amazon, based on spatial interpolations of direct measurements, relationships to climatic variables, and remote sensing data. We asked three questions. First, do the methods yield similar estimates? Second, do they yield similar spatial patterns of distribution of biomass? And, third, what factors need most attention if we are to predict more accurately the distribution of forest biomass over large areas? Amazonian forests (including dead and below-ground biomass) vary by more than a factor of two, from a low of 39 PgC to a high of 93 PgC. Furthermore, the estimates disagree as to the regions of high and low biomass. The lack of agreement among estimates confirms the need for reliable determination of aboveground biomass over large areas. Potential methods include direct measurement of biomass through forest inventories with improved allometric regression equations, dynamic modeling of forest recovery following observed stand-replacing disturbances (the approach used in this research), and estimation of aboveground biomass from airborne or satellite-based instruments sensitive to the vertical structure plant canopies.

  4. A lifetime perspective of biomass allocation in Quercus pubescens trees in a dry, alpine valley

    NARCIS (Netherlands)

    Slot, M.; Janse-ten Klooster, S.H.; Sterck, F.J.; Sass-Klaassen, U.; Zweifel, R.

    2012-01-01

    Plasticity of biomass allocation is a key to growth and survival of trees exposed to variable levels of stress in their lifetime. Most of our understanding of dynamic biomass allocation comes from seedling studies, but plasticity may be different in mature trees. We used stem analysis to reconstruct

  5. Forest Structure, Composition and Above Ground Biomass of Tree Community in Tropical Dry Forests of Eastern Ghats, India

    Directory of Open Access Journals (Sweden)

    Sudam Charan SAHU

    2016-03-01

    Full Text Available The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI of 40.72, while Combretaceae had the highest family importance value (FIV of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%, Madhuca indica (7.9%, Mangifera indica (6.9%, Terminalia alata (6.9% and Diospyros melanoxylon (4.4%, warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks scheme.

  6. Weather and climate impacts of biomass burning aerosols during the dry season in Amazonia

    Science.gov (United States)

    Kolusu, Seshagirirao; Marsham, John; Spracklen, Dominic; Parker, Douglas; Dalvi, Mohit; Johnson, Ben; Mann, Graham

    2016-04-01

    Amazonia is a major global source of biomass burning aerosols (BBA) with impacts on weather and climate. BBA can be represented in weather models, with satellite-observed fires used to provide emissions fields, but such emissions normally require tuning to give realistic aerosol fields in models. Here, we investigate the two-way coupling between BBA and regional weather during the South American Biomass Burning Analysis (SAMBBA) field campaign, using both a set of short-range (2-day) forecasts and nested 20-day runs with the Met Office Unified Model (MetUM). Short-range forecasts with parametrised convection show that BBA exert an overall cooling influence on the Earth-atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation: BBA reduce the clear-sky net radiation at the surface by 15 ± 1 W m-2 and reduces net top-of-atmosphere radiation by 8 ± 1 W m-2, with a direct atmospheric warming of 7 ± 1 W m-2. BBA-induced reductions in all-sky radiation are smaller in magnitude, but of the same sign. The differences in heating induced by BBA lead to a more anticyclonic circulation at 700 hPa. BBA cools the boundary layer, but warms air above, reducing the BL depth by around 19 m. Locally, on a 150 km scale, changes in precipitation reach around 4 mm day-1 due to changes in the location of convection, with BBA leading to fewer rain events that are more intense, which may be linked to the BBA changing the vertical profile of stability in the lower atmosphere. The localised changes in rainfall tend to average out to give a 5 % (0.06 mm day-1) decrease in total precipitation, but the change in regional water budget is dominated by decreased evapotranspiration from the reduced net surface fluxes (0.2 to 0.3 mm day-1). The results show that although including BBA either prognostoically, or through a climatology, improves forecasts, but differences between the impacts of prognostic and climatological aerosol are small

  7. Global marine plankton functional type biomass distributions: coccolithophores

    Directory of Open Access Journals (Sweden)

    C. J. O'Brien

    2012-07-01

    Full Text Available Coccolithophores are calcifying marine phytoplankton of the class Prymnesiophyceae. They are considered to play an import role in the global carbon cycle through the production and export of organic carbon and calcite. We have compiled observations of global coccolithophore abundance from several existing databases as well as individual contributions of published and unpublished datasets. We estimate carbon biomass using standardised conversion methods and provide estimates of uncertainty associated with these values. The database contains 58 384 individual observations at various taxonomic levels. This corresponds to 12 391 observations of total coccolithophore abundance and biomass. The data span a time period of 1929–2008, with observations from all ocean basins and all seasons, and at depths ranging from the surface to 500 m. Highest biomass values are reported in the North Atlantic, with a maximum of 501.7 μg C l−1. Lower values are reported for the Pacific (maximum of 79.4 μg C l−1 and Indian Ocean (up to 178.3 μg C l−1. Coccolithophores are reported across all latitudes in the Northern Hemisphere, from the Equator to 89° N, although biomass values fall below 3 μg C l−1 north of 70° N. In the Southern Hemisphere, biomass values fall rapidly south of 50° S, with only a single non-zero observation south of 60° S. Biomass values show a clear seasonal cycle in the Northern Hemisphere, reaching a maximum in the summer months (June–July. In the Southern Hemisphere the seasonal cycle is less evident, possibly due to a greater proportion of low-latitude data. The original and gridded datasets can be downloaded from Pangaea (http://doi.pangaea.de/10.1594/PANGAEA.785092.

  8. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa.

    Science.gov (United States)

    Colombaroli, Daniele; Ssemmanda, Immaculate; Gelorini, Vanessa; Verschuren, Dirk

    2014-09-01

    Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity. © 2014 John Wiley & Sons Ltd.

  9. Picoheterotroph (Bacteria and Archaea biomass distribution in the global ocean

    Directory of Open Access Journals (Sweden)

    M. R. Landry

    2012-09-01

    Full Text Available We compiled a database of 39 766 data points consisting of flow cytometric and microscopical measurements of picoheterotroph abundance, including both Bacteria and Archaea. After gridding with 1° spacing, the database covers 1.3% of the ocean surface. There are data covering all ocean basins and depths except the Southern Hemisphere below 350 m or from April until June. The average picoheterotroph biomass is 3.9 ± 3.6 μg C l−1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean inventory of about 1.3 × 1029 picoheterotroph cells. Surprisingly, the abundance in the coastal regions is the same as at the same depths in the open ocean. Using an average of published open ocean measurements for the conversion from abundance to carbon biomass of 9.1 fg cell−1, we calculate a picoheterotroph carbon inventory of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to biomass. Picoheterotroph biomass is ~2 times higher in the tropics than in the polar oceans. doi:10.1594/PANGAEA.779142

  10. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    Science.gov (United States)

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel.

  11. Dry matter and primary macroelements on the foliar biomass of sugarcane with different fertilizer rates of phosphorus

    Directory of Open Access Journals (Sweden)

    Juan Alejandro Villazón Gómez

    2016-07-01

    Full Text Available With the objective of determining the quantities of dry matter and primary macroelements on the foliar biomass of the sugar cane fertilized with different phosphorus rates was carried out a in an experiment in blocks at random (8 treatments x 6 replications on a Chromic Vertisol. Five plants per plot at the 3rd replication and crop cycle were cut before harvesting. To the sugarcane top of the samples were determined the percentages of dry matter, nitrogen, phosphorus and potassium; was carried out a count of sugarcane stalk in each plot to express the percentages in magnitudes of mass.An Analysis of Variance of simple classification and the test of multiple status of Duncan to 95 % of probability was executed. The yearly fertilizations with 50 and 25 kg ha-1 of phosphorus from the 1rst cycle and the application at the start of a cycle of 125 kg ha-1 showed the bigger dry matter contents and the second ratoons had the biggest influence in the matter production. It was appreciated that the influence of the crop cycle was bigger than that rates of phosphorus on the dry matter content. The rate of phosphorus and the crop cycle with bigger content of primary macroelements were those where the dry matter was in bigger quantities. In the interaction rates of phosphorus-crop cycle the bigger contents of phosphorus and potassium was obtained on the 2nd ratoon with yearly and to the start of crop cycle applications of phosphorus.

  12. Aged boreal biomass-burning aerosol size distributions from BORTAS 2011

    OpenAIRE

    K. M. Sakamoto; Allan, J.D.; Coe, H.; Taylor, J. W.; T. J. Duck; Pierce, J. R.

    2015-01-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number–size distributions in climate model inventories lead to uncertainties in the CCN (cloud condensation nuclei) concentrations and forcing estima...

  13. Approximations to the Non-Isothermal Distributed Activation Energy Model for Biomass Pyrolysis Using the Rayleigh Distribution

    Directory of Open Access Journals (Sweden)

    Dhaundiyal Alok

    2017-09-01

    Full Text Available This paper deals with the influence of some parameters relevant to biomass pyrolysis on the numerical solutions of the nonisothermal nth order distributed activation energy model using the Rayleigh distribution. Investigated parameters are the integral upper limit, the frequency factor, the heating rate, the reaction order and the scale parameters of the Rayleigh distribution. The influence of these parameters has been considered for the determination of the kinetic parameters of the non-isothermal nth order Rayleigh distribution from the experimentally derived thermoanalytical data of biomass pyrolysis.

  14. Optimization of biomass fuelled systems for distributed power generation using Particle Swarm Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, P. Reche; Reyes, N. Ruiz [Department of Telecommunication Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain); Gonzalez, M. Gomez [Junta of Andalusia, 23470 Maestro Francisco Yuste 2, Cazorla, Jaen (Spain); Jurado, F. [Department of Electrical Engineering, University of Jaen, 23700 EPS Linares, Jaen (Spain)

    2008-08-15

    With sufficient territory and abundant biomass resources Spain appears to have suitable conditions to develop biomass utilization technologies. As an important decentralized power technology, biomass gasification and power generation has a potential market in making use of biomass wastes. This paper addresses biomass fuelled generation of electricity in the specific aspect of finding the best location and the supply area of the electric generation plant for three alternative technologies (gas motor, gas turbine and fuel cell-microturbine hybrid power cycle), taking into account the variables involved in the problem, such as the local distribution of biomass resources, transportation costs, distance to existing electric lines, etc. For each technology, not only optimal location and supply area of the biomass plant, but also net present value and generated electric power are determined by an own binary variant of Particle Swarm Optimization (PSO). According to the values derived from the optimization algorithm, the most profitable technology can be chosen. Computer simulations show the good performance of the proposed binary PSO algorithm to optimize biomass fuelled systems for distributed power generation. (author)

  15. A method for enhanced control of biomass activity and distribution in biofilters

    Energy Technology Data Exchange (ETDEWEB)

    Song, J.H.; Kinney, K.A.

    1999-07-01

    Long-term performance of vapor-phase bioreactors can be unreliable because of uneven distribution of biomass and microbial activity throughout the bioreactors. One method to improve biomass distribution and maintain high removal efficiencies for continuous long-term use is to operate the bioreactor in a directionally-switching (DS) mode, in which the contaminant inlet is periodically switched between the top and bottom of the reactor column. The objective of this study was to evaluate the effect of DS operation on biomass distribution and activity. Two identical lab-scale biofilters were operated for 96 days at an inlet toluene concentration of 200 ppmv and an EBCT of 1 minute. One bioreactor operated in a unidirectional (UD) mode where the air stream was continuously fed to the bottom of the reactor, and the other operated in a DS mode in which the direction of the air stream through the bioreactor was reversed every 3 days. After an initial acclimation period, toluene removal efficiencies of over 99.9% were achieved in both bioreactors for over 40 days of operation. However, toluene removal efficiencies in the UD biofilter declined after 70 days and the pressure drop across the reactor increased quickly, whereas the DS reactor maintained relatively stable operation throughout the same period. The biomass distribution determined by volatile solids and plate counts indicates that the biomass was well distributed in the DS reactor, while excess biomass accumulated in the inlet section of the UD bioreactor. INT (iodonitrotetrazolium chloride) formazan assays were performed to estimate the biomass activity along the length of both bioreactors. These results reveal that biomass activity was more evenly distributed and sustained in the DS bioreactor, but in the UD bioreactor most of the bioactivity was confined to the front half of the bed.

  16. Effect of Drying Methods on Moisture Distribution of Paddy Rice

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Variation during IR and heated-air drying process and effect on milling quality with moisture difference of paddy rice were investigated. The results indicate that the moisture SD (Standard Deviation) decreases during IR (Infrared Radiation) and heated-air (HA) drying process, and moisture uniform level for the paddy rice dried by IR treatment is higher than that by heated-air treatment. No matter IR or HA, the higher initial SD of MCs is, the bigger of the variable of the SDR value will be at the beginning stage of dried paddy storage.

  17. Distribution of known macrozooplankton abundance and biomass in the global ocean

    Directory of Open Access Journals (Sweden)

    R. Moriarty

    2012-04-01

    Full Text Available Macrozooplankton are an important link between higher and lower trophic levels in the oceans. They serve as the primary food for fish, reptiles, birds and mammals in some regions, and play a role in the export of carbon from the surface to the intermediate and deep ocean. Little, however, is known of their global distribution and biomass. Here we compiled a dataset of macrozooplankton abundance and biomass observations for the global ocean from a collection of four datasets. We harmonise the data to common units, calculate additional carbon biomass where possible, and bin the dataset in a global 1 × 1 degree grid. This dataset is part of a wider effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. Over 387 700 abundance data and 1330 carbon biomass data have been collected from pre-existing datasets. A further 34 938 abundance data were converted to carbon biomass data using species-specific length frequencies or using species-specific abundance to carbon biomass data. Depth-integrated values are used to calculate known epipelagic macrozooplankton biomass concentrations and global biomass. Global macrozooplankton biomass has a mean of 8.4 μg C l−1, median of 0.15 μg C l−1 and a standard deviation of 63.46 μg C l−1. The global annual average estimate of epipelagic macrozooplankton, based on the median value, is 0.02 Pg C. Biomass is highest in the tropics, decreasing in the sub-tropics and increasing slightly towards the poles. There are, however, limitations on the dataset; abundance observations have good coverage except in the South Pacific mid latitudes, but biomass observation coverage is only good at high latitudes. Biomass is restricted to data that is originally given in carbon or to data that can be converted from abundance to carbon. Carbon conversions from abundance are restricted in

  18. [Spatial distribution of aboveground biomass of shrubs in Tianlaochi catchment of the Qilian Mountains].

    Science.gov (United States)

    Liang, Bei; Di, Li; Zhao, Chuan-Yan; Peng, Shou-Zhang; Peng, Huan-Hua; Wang, Chao

    2014-02-01

    This study estimated the spatial distribution of the aboveground biomass of shrubs in the Tianlaochi catchment of Qilian Mountains based on the field survey and remote sensing data. A relationship model of the aboveground biomass and its feasibly measured factors (i. e. , canopy perimeter and plant height) was built. The land use was classified by object-oriented technique with the high resolution image (GeoEye-1) of the study area, and the distribution of shrub coverage was extracted. Then the total aboveground biomass of shrubs in the study area was estimated by the relationship model with the distribution of shrub coverage. The results showed that the aboveground biomass of shrubs in the study area was 1.8 x 10(3) t and the aboveground biomass per unit area was 1598.45 kg x m(-2). The distribution of shrubs mainly was at altitudes of 3000-3700 m, and the aboveground biomass of shrubs on the sunny slope (1.15 x 10(3) t) was higher than that on the shady slope (0.65 x 10(3) t).

  19. Shifts in biomass and productivity for a subtropical dry forest in response to simulated elevated hurricane disturbances

    Science.gov (United States)

    Holm, Jennifer A.; Van Bloem, Skip J.; Larocque, Guy R.; Shugart, Herman H.

    2017-02-01

    Caribbean tropical forests are subject to hurricane disturbances of great variability. In addition to natural storm incongruity, climate change can alter storm formation, duration, frequency, and intensity. This model-based investigation assessed the impacts of multiple storms of different intensities and occurrence frequencies on the long-term dynamics of subtropical dry forests in Puerto Rico. Using the previously validated individual-based gap model ZELIG-TROP, we developed a new hurricane damage routine and parameterized it with site- and species-specific hurricane effects. A baseline case with the reconstructed historical hurricane regime represented the control condition. Ten treatment cases, reflecting plausible shifts in hurricane regimes, manipulated both hurricane return time (i.e. frequency) and hurricane intensity. The treatment-related change in carbon storage and fluxes were reported as changes in aboveground forest biomass (AGB), net primary productivity (NPP), and in the aboveground carbon partitioning components, or annual carbon accumulation (ACA). Increasing the frequency of hurricanes decreased aboveground biomass by between 5% and 39%, and increased NPP between 32% and 50%. Decadal-scale biomass fluctuations were damped relative to the control. In contrast, increasing hurricane intensity did not create a large shift in the long-term average forest structure, NPP, or ACA from that of historical hurricane regimes, but produced large fluctuations in biomass. Decreasing both the hurricane intensity and frequency by 50% produced the highest values of biomass and NPP. For the control scenario and with increased hurricane intensity, ACA was negative, which indicated that the aboveground forest components acted as a carbon source. However, with an increase in the frequency of storms or decreased storms, the total ACA was positive due to shifts in leaf production, annual litterfall, and coarse woody debris inputs, indicating a carbon sink into the

  20. Dry matter and primary macroelements on the foliar biomass of sugarcane with different fertilizer rates of phosphorus

    Directory of Open Access Journals (Sweden)

    Juan Alejandro Villazón Gómez

    2016-01-01

    Full Text Available The research consisted of determining the quantities of dry matter and primary macroelements on the foliar biomass that contributes to the soil the sugarcane fertilized with different fertilizer rates of potassium in an experiment with a design in complete blocks at random (8 treatments x 6 repetitions on a Chromic Vertisol. Five plants were cut in the furrows 2 and 3 of the plots of the 3rd repetition before the harvest of each one of the four ratoons. To the sugarcane top of the samples were determined the percentages of dry matter, nitrogen, phosphorus and potassium; was carried out a count of sugarcane stalk in each plot to express the percentages in magnitudes of mass. An analysis of variance of simple classification was executed and means were compared by Duncan test at 95 % of confidence. The treatment V was the one of bigger dry matter content, with 11.04 t ha-1. The 2nd ratoon showed the bigger dry matter content in the sugarcane tops, with 11.13 t ha-1. In the interactions the bigger influence of the sugarcane stubble phase on the dry matter can be appreciated. The treatment V was the one of bigger nutrient content, with 83, 16 and 197 kg of NPK, respectively. In the case of nitrogen the best interaction was the treatment V in the 3rd ratoon, in the phosphorus also the treatment V in the 2nd and 3rd ratoons and the treatment IV in the 4th ratoon, in potassium the interaction of the treatment V in the 2nd ratoon.

  1. Comparison between freeze and spray drying to obtain powder Rubrivivax gelatinosus biomass

    OpenAIRE

    2013-01-01

    The use of colorants in products of animal origin is justified by the improvement in the color of foods since this attribute is considered a quality criterion. These additives can be produced using industrial effluents as substrates and appropriate organisms, such as Rubrivivax gelatinosus. Oxycarotenoids represent a class of carotenes responsible for the pigmentation of animals and vegetables. R. gelatinosus grows in fish industry effluent with the resulting production of a bacterial biomass...

  2. A Life Cycle Assessment on a Fuel Production Through Distributed Biomass Gasification Process

    Science.gov (United States)

    Dowaki, Kiyoshi; Eguchi, Tsutomu; Ohkubo, Rui; Genchi, Yutaka

    In this paper, we estimated life cycle inventories (energy intensities and CO2 emissions) on the biomass gasification CGS, Bio-H2, Bio-MeOH (methanol) and Bio-DME (di-methyl ether), using the bottom-up methodology. CO2 emissions and energy intensities on material's chipping, transportation and dryer operation were estimated. Also, the uncertainties on the moisture content of biomass materials and the transportation distance to the plant were considered by the Monte Carlo simulation. The energy conversion system was built up by gasification through the BLUE Tower process, with either CGS, PSA (Pressure Swing Absorption) system or the liquefaction process. In our estimation, the biomass materials were the waste products from Japanese Cedar. The uncertainties of moisture content and transportation distance were assumed to be 20 to 50 wt.% and 5 to 50 km, respectively. The capability of the biomass gasification plant was 10 t-dry/d, that is, an annual throughput of 3,000 t-dry/yr. The production energy in each case was used as a functional unit. Finally, the energy intensities of 1.12 to 3.09 MJ/MJ and CO2 emissions of 4.79 to 88.0 g-CO2/MJ were obtained. CGS case contributes to the environmental mitigation, and Bio-H2 and/or Bio-DME cases have a potential to reduce CO2 emissions, compared to the conventional ones.

  3. Experimental Research of Moisture Evaporation Process from Biomass in a Drying Chamber

    Directory of Open Access Journals (Sweden)

    Bulba E.E.

    2015-01-01

    Full Text Available Presented mass evaporation rate hardwood (birch, aspen, maple, poplar derived from experimental studies. The dependence of temperature on evaporation mass rate and calculated the accommodation coefficient for the respective temperature ranges are obtained. Analyzed the temperature of drying conditions relevant species hardwood.

  4. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas

    NARCIS (Netherlands)

    Namgail, T.; Rawat, G.S.; Mishra, C.; Wieren, van S.E.; Prins, H.H.T.

    2012-01-01

    A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood.We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western

  5. Evaluation of the Environmental DNA Method for Estimating Distribution and Biomass of Submerged Aquatic Plants.

    Science.gov (United States)

    Matsuhashi, Saeko; Doi, Hideyuki; Fujiwara, Ayaka; Watanabe, Sonoko; Minamoto, Toshifumi

    2016-01-01

    The environmental DNA (eDNA) method has increasingly been recognized as a powerful tool for monitoring aquatic animal species; however, its application for monitoring aquatic plants is limited. To evaluate eDNA analysis for estimating the distribution of aquatic plants, we compared its estimated distributions with eDNA analysis, visual observation, and past distribution records for the submerged species Hydrilla verticillata. Moreover, we conducted aquarium experiments using H. verticillata and Egeria densa and analyzed the relationships between eDNA concentrations and plant biomass to investigate the potential for biomass estimation. The occurrences estimated by eDNA analysis closely corresponded to past distribution records, and eDNA detections were more frequent than visual observations, indicating that the method is potentially more sensitive. The results of the aquarium experiments showed a positive relationship between plant biomass and eDNA concentration; however, the relationship was not always significant. The eDNA concentration peaked within three days of the start of the experiment in most cases, suggesting that plants do not release constant amounts of DNA. These results showed that eDNA analysis can be used for distribution surveys, and has the potential to estimate the biomass of aquatic plants.

  6. Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris.

    Directory of Open Access Journals (Sweden)

    Maurizio Chioccioli

    Full Text Available Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750 for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary

  7. Integrating remote sensing and spatial statistics to model herbaceous biomass distribution in a tropical savanna

    NARCIS (Netherlands)

    Mutanga, O.; Rugege, D.

    2006-01-01

    Modelling herbaceous biomass is critical for an improved understanding of wildlife feeding patterns and distribution as well as for the development of early warning systems for fire management. Most savannas in South Africa are characterized by complex stand structure and abundant vegetation species

  8. Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia

    Science.gov (United States)

    Berner, L. T.; Beck, P. S. A.; Loranty, M. M.; Alexander, H. D.; Mack, M. C.; Goetz, S. J.

    2012-10-01

    Climate change and land-use activities are increasing fire activity across much of the Siberian boreal forest, yet the climate feedbacks from forest disturbances remain difficult to quantify due to limited information on forest biomass distribution, disturbance regimes and post-disturbance ecosystem recovery. Our primary objective here was to analyse post-fire accumulation of Cajander larch (Larix cajanderi Mayr.) aboveground biomass for a 100 000 km2 area of open forest in far northeastern Siberia. In addition to examining effects of fire size and topography on post-fire larch aboveground biomass, we assessed regional fire rotation and density, as well as performance of burned area maps generated from MODIS satellite imagery. Using Landsat imagery, we mapped 116 fire scar perimeters that dated c. 1966-2007. We then mapped larch aboveground biomass by linking field biomass measurements to tree shadows mapped synergistically from WorldView-1 and Landsat 5 satellite imagery. Larch aboveground biomass tended to be low during early succession (≤ 25 yr, 271 ± 26 g m-2, n = 66 [mean ± SE]) and decreased with increasing elevation and northwardly aspect. Larch aboveground biomass tended to be higher during mid-succession (33-38 yr, 746 ± 100 g m-2, n = 32), though was highly variable. The high variability was not associated with topography and potentially reflected differences in post-fire density of tree regrowth. Neither fire size nor latitude were significant predictors of post-fire larch aboveground biomass. Fire activity was considerably higher in the Kolyma Mountains (fire rotation = 110 yr, fire density = 1.0 ± 1.0 fires yr-1 × 104 km-2) than along the forest-tundra border (fire rotation = 792 yr, fire density = 0.3 ± 0.3 fires yr-1 × 104 km-2). The MODIS burned area maps underestimated the total area burned in this region from 2000-2007 by 40%. Tree shadows mapped jointly using high and medium resolution satellite imagery were strongly associated (r2 ≈ 0

  9. Microwave drying of biomass and its effect on pyrolysis characteristics%生物质微波干燥及其对热解的影响

    Institute of Scientific and Technical Information of China (English)

    王贤华; 陈汉平; 张世红; 朱波; 杨海平

    2011-01-01

    通过与常规热风干燥方式比较,研究生物质微波干燥过程及其对热解的影响,以探索在生物质快速热解液化工艺中采用微波干燥技术进行原料预处理的可行性.干燥实验表明,微波炉的干燥速率明显大于烘箱(5倍以上),同时在微波快速干燥过程中,原料内部的孔隙结构得到了改善.热天平上干燥样品的热解表明,微波干燥处理有利于生物质的热解,特别是纤维素和半纤维素的热解,并且能在一定程度上抑制生物油蒸汽的二次裂解反应,从而使实际流化床热解液化装置中的生物油产率有所提高.研究表明,将微波干燥技术用于生物质热解液化的原料预处理过程在技术上和经济上均具有可行性.%The influence of microwave drying on the pyrolysis of biomass was investigated compared with conventional air drying. The aim of this work is to seek the feasibility of using microwave drying technique in fast pyrolysis of biomass during pretreatment of the feedstock. The drying tests show that the drying rate of microwave oven is far faster than that of electrical oven. The inner pore characteristics of dried biomass are improved at higher drying rate. The thermogravimetric and kinetic analysis indicate that the microwave drying treatment promote the decomposition of biomass, especially cellulose and hemicellulose, and prevent the secondary reactions of primary vapor to a certain extent at the same time. As a result, the yield of bio-oil from biomass pyrolysis in a fluidized-bed reactor increases slightly. Thus microwave drying is a technically and economically feasible pretreatment method for fast pyrolysis of biomass and more in-depth works are needed to be carried out next step.

  10. Removal of zinc by live, dead, and dried biomass of Fusarium spp. isolated from the abandoned-metal mine in South Korea and its perspective of producing nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Velmurugan, Palanivel; Shim, Jaehong; You, Youngnam; Choi, Songho; Kamala-Kannan, Seralathan; Lee, Kui-Jae [Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); Kim, Hee Joung [Institute of Environmental Research, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Oh, Byung-Taek, E-mail: btoh@jbnu.ac.kr [Division of Biotechnology, Advanced institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of)

    2010-10-15

    Bioremediation is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using biomass from various microorganisms like algae, fungi and bacteria. In this study biosorption of zinc onto live, dead and dried biomass of Fusarium spp. was investigated as a function of initial zinc(II) concentration, pH, temperature, agitation and inoculum volume. It was observed that dried, dead and live biomass efficiently removed zinc at 60 min at an initial pH of 6.0 {+-} 0.3. Temperature of 40 deg. C was optimum at agitation speed of 150 or 200 rpm. The initial metal concentration (10-320 mg L{sup -1}) significantly influenced the biosorption of the fungi. Overall, biosorption was high with 30-60% by dried, live and dead biomass. In addition to this, the potential of Fusarium spp. to produce zinc nanocrystals was determined by transmission electron microscopy, energy-dispersive spectroscopy, X-ray diffraction and fourier transform infrared spectroscopy, which showed that dead biomass was not significantly involved in production of zinc nanocrystals.

  11. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas

    Science.gov (United States)

    Namgail, T.; Rawat, G.S.; Mishra, C.; van Wieren, S.E.; Prins, H.H.T.

    2012-01-01

    A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood. We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western Himalaya. We used generalized linear and generalized additive models to assess the relationship between these vegetation parameters and altitude. We found a hump-shaped relationship between aboveground phytomass and altitude. We suspect that this is engendered by low rainfall and trampling/excessive grazing at lower slopes by domestic livestock, and low temperature and low nutrient levels at higher slopes. We also found a unimodal relationship between plant species-richness and altitude at a single mountain as well as at the scale of entire Ladakh. The species-richness at the single mountain peaked between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Perhaps biotic factors such as grazing and precipitation are, respectively, important in generating this pattern at the single mountain and entire Ladakh. ?? 2011 The Author(s).

  12. The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys

    Directory of Open Access Journals (Sweden)

    Lisa L. Dreesens

    2014-07-01

    Full Text Available Contrary to earlier assumptions, molecular evidence has demonstrated the presence of diverse and localized soil bacterial communities in the McMurdo Dry Valleys of Antarctica. Meanwhile, it remains unclear whether fungal signals so far detected in Dry Valley soils using both culture-based and molecular techniques represent adapted and ecologically active biomass or spores transported by wind. Through a systematic and quantitative molecular survey, we identified significant heterogeneities in soil fungal communities across the Dry Valleys that robustly correlate with heterogeneities in soil physicochemical properties. Community fingerprinting analysis and 454 pyrosequencing of the fungal ribosomal intergenic spacer region revealed different levels of heterogeneity in fungal diversity within individual Dry Valleys and a surprising abundance of Chytridiomycota species, whereas previous studies suggested that Dry Valley soils were dominated by Ascomycota and Basidiomycota. Critically, we identified significant differences in fungal community composition and structure of adjacent sites with no obvious barrier to aeolian transport between them. These findings suggest that edaphic fungi of the Antarctic Dry Valleys are adapted to local environments and represent an ecologically relevant (and possibly important heterotrophic component of the ecosystem.

  13. The Distribution and Identity of Edaphic Fungi in the McMurdo Dry Valleys

    Science.gov (United States)

    Dreesens, Lisa L.; Lee, Charles K.; Cary, S. Craig

    2014-01-01

    Contrary to earlier assumptions, molecular evidence has demonstrated the presence of diverse and localized soil bacterial communities in the McMurdo Dry Valleys of Antarctica. Meanwhile, it remains unclear whether fungal signals so far detected in Dry Valley soils using both culture-based and molecular techniques represent adapted and ecologically active biomass or spores transported by wind. Through a systematic and quantitative molecular survey, we identified significant heterogeneities in soil fungal communities across the Dry Valleys that robustly correlate with heterogeneities in soil physicochemical properties. Community fingerprinting analysis and 454 pyrosequencing of the fungal ribosomal intergenic spacer region revealed different levels of heterogeneity in fungal diversity within individual Dry Valleys and a surprising abundance of Chytridiomycota species, whereas previous studies suggested that Dry Valley soils were dominated by Ascomycota and Basidiomycota. Critically, we identified significant differences in fungal community composition and structure of adjacent sites with no obvious barrier to aeolian transport between them. These findings suggest that edaphic fungi of the Antarctic Dry Valleys are adapted to local environments and represent an ecologically relevant (and possibly important) heterotrophic component of the ecosystem. PMID:25079129

  14. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  15. Particle aggregation at the edges of anticyclonic eddies and implications for distribution of biomass

    Directory of Open Access Journals (Sweden)

    A. Samuelsen

    2012-06-01

    Full Text Available Acoustic measurements show that the biomass of zooplankton and mesopelagic fish is redistributed by mesoscale variability and that the signal extends over several hundred meters depth. The mechanisms governing this distribution are not well understood, but influences from both physical (i.e. redistribution and biological processes (i.e. nutrient transport, primary production, active swimming, etc. are likely. This study examines how hydrodynamic conditions and basic vertical swimming behavior act to distribute biomass in an anticyclonic eddy. Using an eddy-resolving 2.3 km-resolution physical ocean model as forcing for a particle-tracking module, particles representing passively floating organisms and organisms with vertical swimming behavior are released within an eddy and monitored for 20 to 30 days. The role of hydrodynamic conditions on the distribution of biomass is discussed in relation to the acoustic measurements. Particles released close to the surface tend, in agreement with the observations, to accumulate around the edge of the eddy, whereas particles released at depth gradually become distributed along the isopycnals. After a month they are displaced several hundreds meters in the vertical with the deepest particles found close to the eddy center and the shallowest close to the edge. There is no evidence of aggregation of particles along the eddy rim in the last simulation. The model results points towards a physical mechanism for aggregation at the surface, however biological processes cannot be ruled out using the current modeling tool.

  16. Effect of biomass pretreatment on the product distribution and composition resulting from the hydrothermal liquefaction of short rotation coppice willow

    DEFF Research Database (Denmark)

    Grigoras, Ionela; Stroe, Rodica-Elisabeta; Sintamarean, Iulia-Maria

    2017-01-01

    from the HTL of willow and proposes short rotation coppice as an alternative biomass feedstock for biofuels production. Alkaline–thermal pretreatment, besides making high dry matter pumpable feedstock slurries, also led to an increase in the production of the bio-crude product with an oxygen content......A major challenge for the implementation of hydrothermal liquefaction (HTL) as a continuous process is the formulation of lignocellulosic feedstock, which is prone to phase separation into water and biomass parts when pressurized. One approach to remedy such phase separation is to reduce the dry...

  17. The potential for spatial distribution indices to signal thresholds in marine fish biomass.

    Science.gov (United States)

    Reuchlin-Hugenholtz, Emilie; Shackell, Nancy L; Hutchings, Jeffrey A

    2015-01-01

    The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management.

  18. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass.

    Science.gov (United States)

    Mishra, Ashutosh; Tripathi, Brahma Dutt; Rai, Ashwani Kumar

    2016-10-01

    The present study represents the first attempt to investigate the biosorption potential of Fenton modified Hydrilla verticillata dried biomass (FMB) in removing chromium(VI) and nickel(II) ions from wastewater using up-flow packed-bed column reactor. Effects of different packed-bed column parameters such as bed height, flow rate, influent metal ion concentration and particle size were examined. The outcome of the column experiments illustrated that highest bed height (25cm); lowest flow rate (10mLmin(-1)), lowest influent metal concentration (5mgL(-1)) and smallest particle size range (0.25-0.50mm) are favourable for biosorption. The maximum biosorption capacity of FMB for chromium(VI) and nickel(II) removal were estimated to be 89.32 and 87.18mgg(-1) respectively. The breakthrough curves were analyzed using Bed Depth Service Time (BDST) and Thomas models. The experimental results obtained agree to both the models. Column regeneration experiments were also carried out using 0.1M HNO3. Results revealed good reusability of FMB during ten cycles of sorption and desorption. Performance of FMB-packed column in treating secondary effluent was also tested under identical experimental conditions. Results demonstrated significant reduction in chromium(VI) and nickel(II) ions concentration after the biosorption process.

  19. Distribution, biomass and local importance of tamarind trees in south-western Madagascar

    Directory of Open Access Journals (Sweden)

    Tahiry Ranaivoson

    2015-07-01

    Full Text Available The multipurpose tamarind (Tamarindus indica L. tree is important for people’s livelihood and considered as sacred in the Mahafaly region of south-western Madagascar. However, the ongoing overexploitation of this species has caused a decline of tamarind trees. In this study, the species distribution, changes in tamarind biomass and the role of traditional taboos for the conservation of this species were determined to identify opportunities and constraints for its conservation and appropriate land management planning. Semi-structured interviews (N=63 were conducted in 10 villages in the study region to obtain information regarding the utilization of tamarind trees. During field surveys, the diameter at breast height (DBH, height, wood volume and wood biomass were measured for already felled trees (N=25. Additionally, 318 trees were inventoried by measuring their DBH, height and GPS location. Using high resolution satellite images from 2004/2005 and 2012 the crown areas of all tamarind trees in six village areas were identified. Allometric equations were established to predict their wood biomass from DBH, crown surface and wood volume. Tamarind trees are mainly used as supplementary food, as well as for traditional ceremonies, charcoal production and medicinal purposes. Altogether, 0.06–0.35 trees ha−1 were observed. A regression analysis yielded high coefficients of determination for the relationships between DBH and wood biomass (r2=0.98, DBH and crown area (r2=0.72, and crown area and wood biomass (r2=0.71. From 2004/2005 to 2012, wood biomass losses of 12%–90% were caused by charcoal production and slash and burn agriculture. The traditionally sacred status of the tree has become insufficient to secure its conservation in the Mahafaly region.

  20. Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha x piperita L.).

    Science.gov (United States)

    Rohloff, Jens; Dragland, Steinar; Mordal, Ruth; Iversen, Tor-Henning

    2005-05-18

    In the period from 2000 to 2002, studies on peppermint (Mentha x piperita) herb and essential oil (EO) production have been conducted at Planteforsk, Apelsvoll Research Centre Div. Kise in Norway. The trials were aimed at finding the optimal harvest date and suitable drying methods to maximize EO yield and to obtain a desirable oil quality. Peppermint plants from the first production year (2000 and 2001) and the second production year (2002) were harvested during flowering at three developmental stages (early, full, and late bloom). Biomass and leaf production were recorded, and the water content of the plant material was detected after the application of different drying methods: instantaneous drying at 30, 50, and 70 degrees C and prewilting (ground drying) for 1 or 5 days followed by final drying at 30 degrees C. Finally, plant samples were transferred to The Plant Biocentre at NTNU, Trondheim, Norway, for hydrodistillation and gas chromatography-mass spectrometry (GC-MS) analyses of the EOs. Peppermint oil yield increased from early to full bloom and late bloom (average of all years and drying methods except for 50 and 70 degrees C: 2.95, 4.13 and 4.20 L/daa, respectively) as an effect of biomass production and leaf growth. The flavor-impact compounds, menthol and menthone, reached their optimum at full bloom (43-54 and 12-30%, respectively). Prewilting led to slight decreased EO levels after 1 day (7.7%) and 5 days of ground drying (1.5%) and no EO quality changes, compared to direct drying at 30 degrees C. The plant weight (H2O content) was drastically decreased to the average under 80 and 45% in all years, thus reducing the energy supply and costs for the necessary final drying step.

  1. 祁连山高山灌丛生物量及其分配特征%Alpine shrubs biomass and its distribution characteristics in Qilian Mountains

    Institute of Scientific and Technical Information of China (English)

    金铭; 李毅; 王顺利; 张学龙; 雷蕾

    2012-01-01

    Qilian Mountains is the main reflection of the productivity of the ecosystem, the main measure of the structure and function of the community. And because the biomass of the shrubs is impacted by the elevation gradient and environmental factors, including the limitation of the field investigation in the high altitude, the response process made by shrub biomass to the elevation gradient is not clear. So, this study took the alpine shrubs at the elevation of 3 300 - 3 700 m in the Pailugou Catchment of the Qilian Mountains as the research object, the plot, subplot harvesting method and mining trenches method were used to observe the total biomass and organic biomass of the shrubs with various elevation gradients and also to analyze the relationship between the distribution characteristics of the shrubs biomass and environmental factors. The aim of this paper is to provide important theoretical basis and data for the protection of ecological environment of watershed and the response of alpine shrub to global climate change. Taking the alpine shrubs above timberline of Picea crassifolia in the Qilian Mountains as a test object, the traditional harvesting method and mining trenches method were used to observe the alpine shrubs organic biomass. The dry weight data and distribution characteristics of the leaf biomass, shoot biomass, fibrous root biomass, rootlet biomass, and thick root biomass were analyzed. The results show that the total biomass of alpine shrubs in the Qilian Mountains is 12 869. 39 ±3 306. 16 kg/hm2( Mean ± Sd,n = 10) , for the distribution of the organic biomass, the stem takes the biggest part which accounts for 32. 21 % , the ratio of leaf biomass, fibrous root biomass, rootlet biomass, thick root biomass are 15. 70% 、14. 06%、11.13% and 26. 90% separately. In the different altitudes the ratio of the organic biomass is with significant difference, the average value of aboveground biomass is 6 097. 17kg/hm2, and underground biomass is 6 772. 22 kg/hm2

  2. Distribution, density, and biomass of introduced small mammals in the southern mariana islands

    Science.gov (United States)

    Wiewel, A.S.; Adams, A.A.Y.; Rodda, G.H.

    2009-01-01

    Although it is generally accepted that introduced small mammals have detrimental effects on island ecology, our understanding of these effects is frequently limited by incomplete knowledge of small mammal distribution, density, and biomass. Such information is especially critical in the Mariana Islands, where small mammal density is inversely related to effectiveness of Brown Tree Snake (Boiga irregularis) control tools, such as mouse-attractant traps. We used mark-recapture sampling to determine introduced small mammal distribution, density, and biomass in the major habitats of Guam, Rota, Saipan, and Tinian, including grassland, Leucaena forest, and native limestone forest. Of the five species captured, Rattus diardii (sensu Robins et al. 2007) was most common across habitats and islands. In contrast, Mus musculus was rarely captured at forested sites, Suncus murinus was not captured on Rota, and R. exulans and R. norvegicus captures were uncommon. Modeling indicated that neophobia, island, sex, reproductive status, and rain amount influenced R. diardii capture probability, whereas time, island, and capture heterogeneity influenced S. murinus and M. musculus capture probability. Density and biomass were much greater on Rota, Saipan, and Tinian than on Guam, most likely a result of Brown Tree Snake predation pressure on the latter island. Rattus diardii and M. musculus density and biomass were greatest in grassland, whereas S. murinus density and biomass were greatest in Leucaena forest. The high densities documented during this research suggest that introduced small mammals (especially R. diardii) are impacting abundance and diversity of the native fauna and flora of the Mariana Islands. Further, Brown Tree Snake control and management tools that rely on mouse attractants will be less effective on Rota, Saipan, and Tinian than on Guam. If the Brown Tree Snake becomes established on these islands, high-density introduced small mammal populations will likely

  3. Effect of soluble polymer binder on particle distribution in a drying particulate coating.

    Science.gov (United States)

    Buss, Felix; Roberts, Christine C; Crawford, Kathleen S; Peters, Katharina; Francis, Lorraine F

    2011-07-01

    Soluble polymer is frequently added to inorganic particle suspensions to provide mechanical strength and adhesiveness to particulate coatings. To engineer coating microstructure, it is essential to understand how drying conditions and dispersion composition influence particle and polymer distribution in a drying coating. Here, a 1D model revealing the transient concentration profiles of particles and soluble polymer in a drying suspension is proposed. Sedimentation, evaporation and diffusion govern particle movement with the presence of soluble polymer influencing the evaporation rate and solution viscosity. Results are summarized in drying regime maps that predict particle accumulation at the free surface or near the substrate as conditions vary. Calculations and experiments based on a model system of poly(vinyl alcohol) (PVA), silica particles and water reveal that the addition of PVA slows the sedimentation and diffusion of the particles during drying such that accumulation of particles at the free surface is more likely.

  4. Patterns of biomass and carbon distribution across a chronosequence of Chinese pine (Pinus tabulaeformis forests.

    Directory of Open Access Journals (Sweden)

    Jinlong Zhao

    Full Text Available Patterns of biomass and carbon (C storage distribution across Chinese pine (Pinus tabulaeformis natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb, and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0-100 cm were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha-1 for the young stand to 344.8 Mg·ha-1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha-1 in the middle-aged stand to 3.5 Mg·ha-1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha-1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha-1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale.

  5. Patterns of Biomass and Carbon Distribution across a Chronosequence of Chinese Pine (Pinus tabulaeformis) Forests

    Science.gov (United States)

    Wang, Luoxin; Yu, Xiaowen; Zhao, Weihong; Song, Xiaoshuai; Zhang, Yanlei; Chen, Feng; Sun, Yu; He, Tengfei; Han, Hairong

    2014-01-01

    Patterns of biomass and carbon (C) storage distribution across Chinese pine (Pinus tabulaeformis) natural secondary forests are poorly documented. The objectives of this study were to examine the biomass and C pools of the major ecosystem components in a replicated age sequence of P. tabulaeformis secondary forest stands in Northern China. Within each stand, biomass of above- and belowground tree, understory (shrub and herb), and forest floor were determined from plot-level investigation and destructive sampling. Allometric equations using the diameter at breast height (DBH) were developed to quantify plant biomass. C stocks in the tree and understory biomass, forest floor, and mineral soil (0–100 cm) were estimated by analyzing the C concentration of each component. The results showed that the tree biomass of P. tabulaeformis stands was ranged from 123.8 Mg·ha–1 for the young stand to 344.8 Mg·ha–1 for the mature stand. The understory biomass ranged from 1.8 Mg·ha–1 in the middle-aged stand to 3.5 Mg·ha–1 in the young stand. Forest floor biomass increased steady with stand age, ranging from 14.9 to 23.0 Mg·ha–1. The highest mean C concentration across the chronosequence was found in tree branch while the lowest mean C concentration was found in forest floor. The observed C stock of the aboveground tree, shrub, forest floor, and mineral soil increased with increasing stand age, whereas the herb C stock showed a decreasing trend with a sigmoid pattern. The C stock of forest ecosystem in young, middle-aged, immature, and mature stands were 178.1, 236.3, 297.7, and 359.8 Mg C ha–1, respectively, greater than those under similar aged P. tabulaeformis forests in China. These results are likely to be integrated into further forest management plans and generalized in other contexts to evaluate C stocks at the regional scale. PMID:24736660

  6. Combined Use of Active and Passive Remote Sensing for Mapping Distribution and Biomass of Coastal Mangroves

    Science.gov (United States)

    Aslan, A.; Rahman, A. F.; Warren, M.; Robeson, S. M.; Darusman, T.

    2014-12-01

    Remote sensing provides a potentially fast, cost-effective, and efficient tool for mapping and monitoring mangroves located in relatively inaccessible areas where field measurements are often difficult and expensive. In this study, we examined the utility of combining Landsat-8 (LDCM), ALOS-PALSAR, and SRTM satellite imagery for mapping mangrove species composition, its canopy height and biomass distribution in the Mimika District of Papua, Indonesia. Image segmentation of ALOS-PALSAR radar data were used to delineate mangrove areas, while flexible statistical expert-based classification of spectral signatures from Landsat-8 (LDCM) images were used to classify mangrove associations. The overall accuracy of mangrove mapping for the entire area was 94.38% with kappa coefficient of 0.94 when validated with field data and QuickBird image data with 2.44 m spatial resolution. Mangrove height and biomass were mapped using the SRTM-based elevation, which were calibrated with field-measured canopy height via regression models. There was a strong linear relationship between the SRTM data and field-measured vegetation height (r = 0.87 and adjusted R2 = 0.76). A bootstrap simulation of 10,000 runs with replacement resulted in an error of 3.03 m (RMSE) and 2.33 m (MAE) for mean tree height over 30 m pixels. SRTM-derived canopy height and plot-level biomass from the 22 mangrove plots showed a strong non-linear relationship with an R2=0.75. Our results showed that mangrove standing biomass in the Mimika District varies from 70.32 Mg/ha to 511.80 Mg/ha with mean biomass error of 65.23 Mg/ha (RMSE) and 58.10 Mg/ha (MAE) over a pixel of 90 m. This study explored a set of reliable methodologies which can be applied for mapping and monitoring mangrove dynamics of large areas in Indonesia.

  7. Distribution pattern of picoplankton carbon biomass linked to mesoscale dynamics in the southern gulf of Mexico during winter conditions

    Science.gov (United States)

    Linacre, Lorena; Lara-Lara, Rubén; Camacho-Ibar, Víctor; Herguera, Juan Carlos; Bazán-Guzmán, Carmen; Ferreira-Bartrina, Vicente

    2015-12-01

    In order to characterize the carbon biomass spatial distribution of autotrophic and heterotrophic picoplankton populations linked to mesoscale dynamics, an investigation over an extensive open-ocean region of the southern Gulf of Mexico (GM) was conducted. Seawater samples from the mixed layer were collected during wintertime (February-March 2013). Picoplankton populations were counted and sorted using flow cytometry analyses. Carbon biomass was assessed based on in situ cell abundances and conversion factors from the literature. Approximately 46% of the total picoplankton biomass was composed of three autotrophic populations (Prochlorococcus, Synechococcus, and pico-eukaryotes), while 54% consisted of heterotrophic bacteria populations. Prochlorococcus spp. was the most abundant pico-primary producer (>80%), and accounted for more than 60% of the total pico-autotrophic biomass. The distribution patterns of picoplankton biomass were strongly associated with the mesoscale dynamics that modulated the hydrographic conditions of the surface mixed layer. The main features of the carbon distribution pattern were: (1) the deepening of picoplankton biomass to layers closer to the nitracline base in anticyclonic eddies; (2) the shoaling of picoplankton biomass in cyclonic eddies, constraining the autoprokaryote biomasses to the upper layers, as well as accumulating the pico-eukaryote biomass in the cold core of the eddies; and (3) the increase of heterotrophic bacteria biomass in frontal regions between counter-paired anticyclonic and cyclonic eddies. Factors related to nutrient preferences and light conditions may as well have contributed to the distribution pattern of the microbial populations. The findings reveal the great influence of the mesoscale dynamics on the distribution of picoplankton populations within the mixed layer. Moreover, the significance of microbial components (especially Prochlorococcus) in the southern GM during winter conditions was revealed

  8. PBL Aerosols SE of Mexico City in the dry Season: Biomass Burning and Windblown Dust and its Impact on Photolysis Frequencies

    Science.gov (United States)

    Junkermann, W.; Grutter, M.; Baumgardner, D.; Steinbrecher, R.

    2007-05-01

    During the dry season in March 2006 airborne investigations on aerosol distributions, ultraviolet actinic radiation and ozone profiles were performed southeast of Mexico City using an ultralight aircraft as a mobile platform. The area investigated covered the rural area southeast of Mexico City, the Chalco Valley, Huexca and Atlixco south of the volcano Popocatepetl, east of Paso de Cortés to the airport of Puebla and the pass between Puebla and Mexico City north of the volcano Ixtachiuatl. The Chalco valley is the main venting valley of the Mexico City basin to the south. Intense biomass burning was observed on both slopes of the volcanoes leading to strong pyrocumulus cloud production in the northern part of the national reserve and above the motorway Puebla-Mexico. Fine particle (> 10 nm) numbers reached up to 80000/cm3 close to the burning plumes with significant reduction to ~ 30-40000/cm3 in the Chalco valley where coarse particles (> 300 nm) dominated the total mass. Dust devils transporting coarse soil particles up to elevations of more than 4000 m a.s.l. were frequently observed. Particles and air masses of pollution sources in the area can be characterized by aerosol size distributions and/or spectral absorption from multi-wavelength aethalometer measurements as well as from ozone mixing ratios and meteorological data measured onboard. The aerosol impact on photolysis rates and air chemistry is derived from vertical profiles of actinic radiation in the JO1D and JNO2 spectral regimes at 300 nm and 380 nm, respectively. Profiles were flown on both sides of the volcano ridge, south of Popocatepetl and above Tenango del Aire where aircraft measurements were supported by ceilometer aerosol vertical profiles.

  9. Aged boreal biomass-burning aerosol size distributions from BORTAS 2011

    Science.gov (United States)

    Sakamoto, K. M.; Allan, J. D.; Coe, H.; Taylor, J. W.; Duck, T. J.; Pierce, J. R.

    2015-02-01

    Biomass-burning aerosols contribute to aerosol radiative forcing on the climate system. The magnitude of this effect is partially determined by aerosol size distributions, which are functions of source fire characteristics (e.g. fuel type, MCE) and in-plume microphysical processing. The uncertainties in biomass-burning emission number-size distributions in climate model inventories lead to uncertainties in the CCN (cloud condensation nuclei) concentrations and forcing estimates derived from these models. The BORTAS-B (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellite) measurement campaign was designed to sample boreal biomass-burning outflow over eastern Canada in the summer of 2011. Using these BORTAS-B data, we implement plume criteria to isolate the characteristic size distribution of aged biomass-burning emissions (aged ~ 1-2 days) from boreal wildfires in northwestern Ontario. The composite median size distribution yields a single dominant accumulation mode with Dpm = 230 nm (number-median diameter) and σ = 1.5, which are comparable to literature values of other aged plumes of a similar type. The organic aerosol enhancement ratios (ΔOA / ΔCO) along the path of Flight b622 show values of 0.09-0.17 μg m-3 ppbv-1 (parts per billion by volume) with no significant trend with distance from the source. This lack of enhancement ratio increase/decrease with distance suggests no detectable net OA (organic aerosol) production/evaporation within the aged plume over the sampling period (plume age: 1-2 days), though it does not preclude OA production/loss at earlier stages. A Lagrangian microphysical model was used to determine an estimate of the freshly emitted size distribution corresponding to the BORTAS-B aged size distributions. The model was restricted to coagulation and dilution processes based on the insignificant net OA production/evaporation derived from the ΔOA / ΔCO enhancement ratios. We

  10. Particle aggregation in anticyclonic eddies and implications for distribution of biomass

    Directory of Open Access Journals (Sweden)

    A. Samuelsen

    2012-01-01

    Full Text Available Acoustic measurements show that the biomass of zooplankton and mesopelagic fish is redistributed by mesoscale variability and that the signal extends over several hundred meters depth. The mechanisms governing this distribution are not well understood, but influences from both physical (i.e. physical redistribution and biological processes (i.e. nutrient transport, primary production, active swimming, etc. are likely. This study examines how hydrodynamic conditions and basic vertical swimming behavior act to distribute biomass in an anticyclonic eddy. Using an eddy-resolving 2.3 km-resolution physical ocean model as forcing for a particle-tracking module, particles representing passively floating organisms and organisms with vertical swimming behavior are released within an eddy and monitored for 20 to 30 days. The role of hydrodynamic conditions on the distribution of biomass is discussed in relation to the acoustic measurements. Particles released close to the surfaces tend, in agreement with the observations, to accumulate around the edge of the eddy, whereas particles released at depth tend to distribute along the isopycnals. After a month they are displaced several hundreds meters in the vertical with the deepest particles found close to the eddy center, but there is no evidence of aggregation of particles along the eddy rim. All in all, the particle redistribution appears to result from a complex mixture of strain and vertical velocity. The simplified view where the vertical velocity in eddies is regarded as uniform and symmetric around the eddy center is therefore not a reliable representation of the eddy dynamics.

  11. Distribution and organoleptic impact of sotolon enantiomers in dry white wines.

    Science.gov (United States)

    Pons, Alexandre; Lavigne, Valérie; Landais, Yannick; Darriet, Philippe; Dubourdieu, Denis

    2008-03-12

    The enantiomers of sotolon, a flavor compound typical of oxidized white wines, were separated by preparative HPLC to determine their perception thresholds and distribution in wines. The enantiomeric ratios of chiral sotolon were evaluated in several dry white wines using gas chromatography and a chiral column (beta-cyclodextrin) connected to a 2 m precolumn (BP20). The perception threshold of (S)-sotolon (0.8 microg/L) in model wine solution was 100 times lower than that of the (R) form (89 microg/L), indicating that (S)-sotolon contributes to the characteristic aroma of prematurely aged dry white wines. Both enantiomers are detected in white wines. Analysis of commercial dry white wines from various vintages and origins revealed three types of distribution patterns: the racemic form, an excess of R, and an excess of S. The proportions found in these wines may be partially explained by the slow racemization kinetics (20 months) of optically active sotolon.

  12. Co-pyrolysis of low rank coals and biomass: Product distributions

    Energy Technology Data Exchange (ETDEWEB)

    Soncini, Ryan M.; Means, Nicholas C.; Weiland, Nathan T.

    2013-10-01

    Pyrolysis and gasification of combined low rank coal and biomass feeds are the subject of much study in an effort to mitigate the production of green house gases from integrated gasification combined cycle (IGCC) systems. While co-feeding has the potential to reduce the net carbon footprint of commercial gasification operations, the effects of co-feeding on kinetics and product distributions requires study to ensure the success of this strategy. Southern yellow pine was pyrolyzed in a semi-batch type drop tube reactor with either Powder River Basin sub-bituminous coal or Mississippi lignite at several temperatures and feed ratios. Product gas composition of expected primary constituents (CO, CO{sub 2}, CH{sub 4}, H{sub 2}, H{sub 2}O, and C{sub 2}H{sub 4}) was determined by in-situ mass spectrometry while minor gaseous constituents were determined using a GC-MS. Product distributions are fit to linear functions of temperature, and quadratic functions of biomass fraction, for use in computational co-pyrolysis simulations. The results are shown to yield significant nonlinearities, particularly at higher temperatures and for lower ranked coals. The co-pyrolysis product distributions evolve more tar, and less char, CH{sub 4}, and C{sub 2}H{sub 4}, than an additive pyrolysis process would suggest. For lignite co-pyrolysis, CO and H{sub 2} production are also reduced. The data suggests that evolution of hydrogen from rapid pyrolysis of biomass prevents the crosslinking of fragmented aromatic structures during coal pyrolysis to produce tar, rather than secondary char and light gases. Finally, it is shown that, for the two coal types tested, co-pyrolysis synergies are more significant as coal rank decreases, likely because the initial structure in these coals contains larger pores and smaller clusters of aromatic structures which are more readily retained as tar in rapid co-pyrolysis.

  13. Dry season distribution of hydroids in a small tropical estuary, Pernambuco, Brazil

    NARCIS (Netherlands)

    Calder, D.R.; Maÿal, E.M.

    1998-01-01

    Hydroid distribution patterns along a horizontal ecocline in the Rio Formoso/Rio Ariquindá/Rio Porto Alegre system, a small and seasonally poikilohaline estuary on the tropical northeast coast of Brazil, were investigated. Collecting was undertaken during the dry season, in November 1993, by diving

  14. Model to predict inhomogeneous protein-sugar distribution in powders prepared by spray drying

    NARCIS (Netherlands)

    Grasmeijer, Niels; Frijlink, Henderik W.; Hinrichs, Wouter L. J.

    2016-01-01

    A protein can be stabilized by spray drying an aqueous solution of the protein and a sugar, thereby incorporating the protein into a glassy sugar matrix. For optimal stability, the protein should be homogeneously distributed inside the sugar matrix. The aim of this study was to develop a model that

  15. Dry season distribution of hydroids in a small tropical estuary, Pernambuco, Brazil

    NARCIS (Netherlands)

    Calder, D.R.; Maÿal, E.M.

    1998-01-01

    Hydroid distribution patterns along a horizontal ecocline in the Rio Formoso/Rio Ariquindá/Rio Porto Alegre system, a small and seasonally poikilohaline estuary on the tropical northeast coast of Brazil, were investigated. Collecting was undertaken during the dry season, in November 1993, by diving

  16. Prediction of product distribution in fine biomass pyrolysis in fluidized beds based on proximate analysis.

    Science.gov (United States)

    Kim, Sung Won

    2015-01-01

    A predictive model was satisfactorily developed to describe the general trends of product distribution in fluidized beds of lignocellulosic biomass pyrolysis. The model was made of mass balance based on proximate analysis and an empirical relationship with operating parameters including fluidization hydrodynamics. The empirical relationships between product yields and fluidization conditions in fluidized bed pyrolyzers were derived from the data of this study and literature. The gas and char yields showed strong functions of temperature and vapor residence time in the pyrolyzer. The yields showed a good correlation with fluidization variables related with hydrodynamics and bed mixing. The predicted product yields based on the model well accorded well with the experimental data.

  17. Carbon concentrations and carbon pool distributions in dry, moist, and cold mid-aged forests of the Rocky Mountains

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham; David Adams

    2010-01-01

    Although "carbon” management may not be a primary objective in forest management, influencing the distribution, composition, growth, and development of biomass to fulfill multiple objectives is; therefore, given a changing climate, managing carbon could influence future management decisions. Also, typically, the conversion from total biomass to total carbon is 50...

  18. Biomassa microbiana em amostras de solos secadas ao ar e reumedecidas Microbial biomass in air dried and rewetted soil samples

    Directory of Open Access Journals (Sweden)

    Antônio Samarão Gonçalves

    2002-05-01

    Full Text Available O objetivo do trabalho foi avaliar a viabilidade do condicionamento de amostras como terra fina secada ao ar (TFSA por curto período, para a determinação do carbono da biomassa microbiana (BMS-C, pelo método da fumigaçãoextração, e verificar a respiração microbiana basal (RB do solo. O condicionamento como TFSA, procedendo-se à fumigação para a análise da BMS-C imediatamente ou 24 horas após o reumedecimento, proporcionou valores de BMS-C para os solos Podzólicos, Latossolo Vermelho-Amarelo álico e Orgânico, semelhantes aos valores dos seus controles. Os solos Glei Pouco Húmico e Vertissolo apresentaram valores de BMS-C similares aos do controle a partir de 24 horas de incubação; o solo Planossolo arenoso apresentou valores similares aos do controle com 72 horas, e a Rendizina, com 168 horas de incubação. Na maioria dos solos, a RB determinada na TFSA apresentou valores maiores do que os do tratamento-controle, quando avaliada imediatamente ou 24 horas após o reumedecimento a 60% da capacidade máxima de retenção de água, seguida de queda e manutenção em níveis semelhantes ao do controle nos períodos subseqüentes. O précondicionamento, de curta duração, como TFSA, é promissor para a determinação da BMS-C, quando níveis e períodos adequados de reumedecimento são adotados.The objective of this work was to evaluate the utilization of short term air dried soil samples in a determination of soil microbial biomass (SMB-C, by a fumigationextraction method, and soil microbial basal respiration (BR. Zero time or 24 hours rewetting incubation period before fumigation procedure gave values of SMB-C similar to those of the control for the Podzolic soils, Allic RedYellow Latosol and Organic soil. Low Humic Gley and Vertisol soils gave values of SMB-C similar to those of the control for periods of incubation equal or higher than 24 hours. Planosol (sandy soil and Rendzina soils gave values of SMB-C similar to the

  19. The conversion of biomass to ethanol using geothermal energy derived from hot dry rock to supply both the thermal and electrical power requirements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W.

    1997-10-01

    The potential synergism between a hot dry rock (HDR) geothermal energy source and the power requirements for the conversion of biomass to fuel ethanol is considerable. In addition, combining these two renewable energy resources to produce transportation fuel has very positive environmental implications. One of the distinct advantages of wedding an HDR geothermal power source to a biomass conversion process is flexibility, both in plant location and in operating process is flexibility, both in plant location and in operating conditions. The latter obtains since an HDR system is an injection conditions of flow rate, pressure, temperature, and water chemistry are under the control of the operator. The former obtains since, unlike a naturally occurring geothermal resource, the HDR resource is very widespread, particularly in the western US, and can be developed near transportation and plentiful supplies of biomass. Conceptually, the pressurized geofluid from the HDR reservoir would be produced at a temperature in the range of 200{degrees} to 220{degrees}c. The higher enthalpy portion of the geofluid thermal energy would be used to produce a lower-temperature steam supply in a countercurrent feedwater-heater/boiler. The steam, following a superheating stage fueled by the noncellulosic waste fraction of the biomass, would be expanded through a turbine to produce electrical power. Depending on the lignin fraction of the biomass, there would probably be excess electrical power generated over and above plant requirements (for slurry pumping, stirring, solids separation, etc.) which would be available for sale to the local power grid. In fact, if the hybrid HDR/biomass system were creatively configured, the power plant could be designed to produce daytime peaking power as well as a lower level of baseload power during off-peak hours.

  20. 'Oorja' in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households.

    Science.gov (United States)

    Thurber, Mark C; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2014-04-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 "Oorja" stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of "agricultural waste" to make

  1. Equipment for biomass. Dryers. Drying, crushing, aggregating of agro-industrial products; Materiels pour la biomasse, les secheurs, sechage, broyage, agglomeration de produits agro-industriels

    Energy Technology Data Exchange (ETDEWEB)

    Deur, O. [Promill, 28 - Serville (France)

    1997-12-31

    The French society Promill has developed complete units for the drying, crushing and aggregating of agro-industrial products (beet roots, agricultural wastes, lucerne, maize, etc.). Drying is conducted in a three-pass drum, using any type of fuel (fuel oil, gas, electric power, coal), and ensuring a thermal yield of 680 kCal/kg and ash emission rates complying with French and European legislation. Granulation is conducted with vapour addition, with a granulate flowrate reaching 15 T/h. Crushing is carried out in a hammer mill

  2. Influence of atmospheric dry deposition of inorganic nutrients on phytoplankton biomass in the coastal Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Yadav, K.; Sarma, V.V.S.S.; Rao, D.B.; DileepKumar, M.

    suggests that atmospheric deposition of nutrients enhances phytoplankton biomass in waters along the central east coast of India during the winter monsoon period, in particular, supporting the hypothesis stated above...

  3. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis

    Science.gov (United States)

    This paper reviews chemistry, processes and application of hydrothermcally carbonized biomass wastes. Potential feedstock for the hydrothermal carbonization (HTC) includes variety of the non-traditional renewable wet agricultural and municipal waste streams. Pyrolysis and HTC show a comparable calor...

  4. Dry season biomass estimation as an indicator of rangeland quantity using multi-scale remote sensing data

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2014-10-01

    Full Text Available For grazing, biomass is the main indicator of rangeland quantity, which is crucial to determine the amount of food available for animals (grazers), including livestock. Livestock production in the rural communities of the world, including Africa...

  5. Biomass equipments. Dryers. Drying, crushing, agglomeration of agro-industrial products; Materiels pour la biomasse. Les secheurs, sechage, broyage, agglomeration de produits agro-industriels

    Energy Technology Data Exchange (ETDEWEB)

    Deur, O. [Promill (France)

    1997-12-31

    This paper describes the French Promill Company activity in the design and manufacturing of complete drying-crushing-agglomerating units for agro-industrial products (pulp of beet, lucerne, etc..). The paper focusses on the thermal and mechanical efficiency of the high temperature dryer and on the pulp granulating squeezer. (J.S.)

  6. [Spatial distribution of Tamarix ramosissima aboveground biomass and water consumption in the lower reaches of Heihe River, Northwest China].

    Science.gov (United States)

    Peng, Shou-Zhang; Zhao, Chuan-Yan; Peng, Huan-Hua; Zheng, Xiang-Lin; Xu, Zhong-Lin

    2010-08-01

    Based on the field observation on the Tamarix ramosissima populations in the lower reaches of Heihe River, the relationship models between the aboveground biomass of T. ramosissima and its morphological features (basal diameter, height, and canopy perimeter) were built. In the mean time, the land use/cover of the study area was classified by the decision tree classification with high resolution image (QuickBird), the distribution of T. ramosissima was extracted from classification map, and the morphological feature (canopy perimeter) of T. ramosissima was calculated with ArcGIS 9.2. On the bases of these, the spatial distribution of T. ramosissima aboveground biomass in the study area was estimated. Finally, the spatial distribution of the water consumption of T. ramosissima in the study area was calculated by the transpiration coefficient (300) and the aboveground biomass. The results showed that the aboveground biomass of T. ramosissima was 69644.7 t, and the biomass per unit area was 0.78 kg x m(-2). Spatially, the habitats along the banks of Heihe River were suitable for T. ramosissima, and thus, this tree species had a high biomass. The total amount of water consumption of T. ramosissima in the study area was 2.1 x 10(7) m3, and the annual mean water consumption of T. ramosissima ranged from 30 mm to 386 mm.

  7. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil

    Science.gov (United States)

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon

    2014-01-01

    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples. PMID:24823670

  8. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  9. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions.

    Directory of Open Access Journals (Sweden)

    Trevor James Morgan

    Full Text Available The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C and four residence times (between ~1.2 and 12 s. The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals on pyrolysis products is: 1 to increase the dry bio-oil yield, 2 to decrease the amount of undetected material, 3 to produce a slight increase in CO yield or no change, 4 to slightly decrease CO2 yield or no change, and 5 to produce a more stable bio-oil (less aging. Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena.

  10. Fast Pyrolysis of Tropical Biomass Species and Influence of Water Pretreatment on Product Distributions

    Science.gov (United States)

    Morgan, Trevor James; Turn, Scott Q.; Sun, Ning; George, Anthe

    2016-01-01

    The fast pyrolysis behaviour of pretreated banagrass was examined at four temperatures (between 400 and 600 C) and four residence times (between ~1.2 and 12 s). The pretreatment used water washing/leaching to reduce the inorganic content of the banagrass. Yields of bio-oil, permanent gases and char were determined at each reaction condition and compared to previously published results from untreated banagrass. Comparing the bio-oil yields from the untreated and pretreated banagrass shows that the yields were greater from the pretreated banagrass by 4 to 11 wt% (absolute) at all reaction conditions. The effect of pretreatment (i.e. reducing the amount of ash, and alkali and alkali earth metals) on pyrolysis products is: 1) to increase the dry bio-oil yield, 2) to decrease the amount of undetected material, 3) to produce a slight increase in CO yield or no change, 4) to slightly decrease CO2 yield or no change, and 5) to produce a more stable bio-oil (less aging). Char yield and total gas yield were unaffected by feedstock pretreatment. Four other tropical biomass species were also pyrolyzed under one condition (450°C and 1.4 s residence time) for comparison to the banagrass results. The samples include two hardwoods: leucaena and eucalyptus, and two grasses: sugarcane bagasse and energy-cane. A sample of pretreated energy-cane was also pyrolyzed. Of the materials tested, the best feedstocks for fast pyrolysis were sugarcane bagasse, pretreated energy cane and eucalyptus based on the yields of 'dry bio-oil', CO and CO2. On the same basis, the least productive feedstocks are untreated banagrass followed by pretreated banagrass and leucaena. PMID:26978265

  11. Energy from biomass: Wood-fuelled sewage sludge drying plant; Energetische Nutzung von Biomasse am Beispiel einer holzbefeuerten Klaerschlammtrocknungsanlage. Planung, Bau und erste Betriebserfahrung

    Energy Technology Data Exchange (ETDEWEB)

    Burgtorf, J. [Saarberg-Oekotechnik GmbH, Saarbruecken (Germany)

    1998-09-01

    A unique concept was developed for the drying plant of Biowaerme-Braeunlingen GmbH (BWB): The heat for drying sewage sludge is generated by a wood chip furnace with staggered grate, and the waste heat from plume condensation is fed into a district heating system supplying a neighbouring commercial and trade center. (orig./SR) [Deutsch] Fuer die Trocknungsanlage der Biowaerme-Braeunlingen GmbH (BWB) wurde ein bisher einmaliges Konzept entwickelt: Die zur Trocknung der kommunalen Klaerschlaemme des Kreises erforderliche Waerme wird durch ein Holzhackschnitzelheizwerk mit Treppenrostfeuerung erzeugt und die bei der Kondensation der Brueden anfallende Abwaerme wird in einem Fernwaermenetz zur Versorgung des umliegenden Gewerbegebietes genutzt. (orig./SR)

  12. Distribution of Cenozoic plant relicts in China explained by drought in dry season.

    Science.gov (United States)

    Huang, Yongjiang; Jacques, Frédéric M B; Su, Tao; Ferguson, David K; Tang, Hui; Chen, Wenyun; Zhou, Zhekun

    2015-09-15

    Cenozoic plant relicts are those groups that were once widespread in the Northern Hemisphere but are now restricted to some small isolated areas as a result of drastic climatic changes. They are good proxies to study how plants respond to climatic changes since their modern climatic requirements are known. Herein we look at the modern distribution of 65 palaeoendemic genera in China and compare it with the Chinese climatic pattern, in order to find a link between the plant distribution and climate. Central China and Taiwan Island are shown to be diversity centres of Cenozoic relict genera, consistent with the fact that these two regions have a shorter dry season with comparatively humid autumn and spring in China. Species distribution models indicate that the precipitation parameters are the most important variables to explain the distribution of relict genera. The Cenozoic wide-scale distribution of relict plants in the Northern Hemisphere is therefore considered to be linked to the widespread humid climate at that time, and the subsequent contraction of their distributional ranges was probably caused by the drying trend along with global cooling.

  13. Nutritional value of dried fermentation biomass, hydrolyzed porcine intestinal mucosa products, and fish meal fed to weanling pigs.

    Science.gov (United States)

    Sulabo, R C; Mathai, J K; Usry, J L; Ratliff, B W; McKilligan, D M; Moline, J D; Xu, G; Stein, H H

    2013-06-01

    Dried fermentation biomass (DFB) and hydrolyzed porcine intestinal mucosa are co-products of L-Lys • HCl production and heparin extraction, respectively. Three experiments were conducted to determine standardized ileal digestibility (SID) of AA (Exp. 1), concentration of DE and ME (Exp. 2), and standardized total tract digestibility (STTD) of P (Exp. 3) in DFB and 2 hydrolyzed porcine intestinal mucosa products (PEP50 and PEP2+), and compare these values with values for fish meal. In Exp. 1, 12 ileal cannulated barrows (BW = 11.5 ± 1.1 kg) were allotted to a replicated 6 × 6 Latin square design with 6 diets and 6 periods. A N-free diet, diet based on soybean meal (SBM), and 4 diets based on a combination of SBM and DFB, PEP50, PEP2+, or fish meal were formulated. With the exception of Lys, there were no differences in SID of indispensable AA between DFB and fish meal. Except for Thr, no differences in SID of indispensable AA between PEP50 and fish meal were observed, but SID of all indispensable AA, except Lys and Trp, was less (P < 0.05) in PEP2+ than in the other ingredients. In Exp. 2, 40 barrows (BW = 12.8 ± 1.4 kg) were allotted to 5 diets with 8 pigs/diet. A basal diet containing 96.4% corn and 4 diets containing corn and DFB, PEP50, PEP2+, or fish meal were formulated. The DE (5,445 kcal/kg DM) and ME (5,236 kcal/kg DM) in DFB were greater (P < 0.01) than in PEP50 (4,758 and 4,512 kcal/kg DM for DE and ME, respectively) and fish meal (4,227 and 3,960 kcal/kg DM for DE and ME, respectively). Also, DE in DFB was greater (P < 0.01) than in PEP2+ (4,935 kcal/kg DM), but ME in DFB was not different from that in PEP2+ (4,617 kcal/kg DM). Furthermore, DE in PEP50 and PEP2+ were greater (P < 0.01) than in fish meal, but ME did not differ from that in fish meal. In Exp. 3, 40 barrows (BW = 12.4 ± 1.3 kg) were randomly allotted to 5 diets with 8 pigs/diet. A P-free diet and 4 diets in which the sole source of P was from DFB, PEP50, PEP2+, or fish meal were

  14. Evaluating the use of plant hormones and biostimulators in forage pastures to enhance shoot dry biomass production by perennial ryegrass (Lolium perenne L.).

    Science.gov (United States)

    Zaman, Mohammad; Kurepin, Leonid V; Catto, Warwick; Pharis, Richard P

    2016-02-01

    Fertilisation of established perennial ryegrass forage pastures with nitrogen (N)-based fertilisers is currently the most common practice used on farms to increase pasture forage biomass yield. However, over-fertilisation can lead to undesired environmental impacts, including nitrate leaching into waterways and increased gaseous emissions of ammonia and nitrous oxide to the atmosphere. Additionally, there is growing interest from pastoral farmers to adopt methods for increasing pasture dry matter yield which use 'natural', environmentally safe plant growth stimulators, together with N-based fertilisers. Such plant growth stimulators include plant hormones and plant growth promotive microorganisms such as bacteria and fungi ('biostimulators', which may produce plant growth-inducing hormones), as well as extracts of seaweed (marine algae). This review presents examples and discusses current uses of plant hormones and biostimulators, applied alone or together with N-based fertilisers, to enhance shoot dry matter yield of forage pasture species, with an emphasis on perennial ryegrass.

  15. Hydroacoustic estimates of fish biomass and spatial distributions in shallow lakes

    Science.gov (United States)

    Lian, Yuxi; Huang, Geng; Godlewska, Małgorzata; Cai, Xingwei; Li, Chang; Ye, Shaowen; Liu, Jiashou; Li, Zhongjie

    2017-03-01

    We conducted acoustical surveys with a horizontal beam transducer to detect fish and with a vertical beam transducer to detect depth and macrophytes in two typical shallow lakes along the middle and lower reaches of the Changjiang (Yangtze) River in November 2013. Both lakes are subject to active fish management with annual stocking and removal of large fish. The purpose of the study was to compare hydroacoustic horizontal beam estimates with fish landings. The preliminary results show that the fish distribution patterns differed in the two lakes and were affected by water depth and macrophyte coverage. The hydroacoustically estimated fish biomass matched the commercial catch very well in Niushan Lake, but it was two times higher in Kuilei Lake. However, acoustic estimates included all fish, whereas the catch included only fish >45 cm (smaller ones were released). We were unable to determine the proper regression between acoustic target strength and fish length for the dominant fish species in the two lakes.

  16. Species-specific fine root biomass distribution alters competition in mixed forests under climate change

    Science.gov (United States)

    Reyer, Christopher; Gutsch, Martin; Lasch, Petra; Suckow, Felicitas; Sterck, Frank; Mohren, Frits

    2010-05-01

    The importance of mixed forests in European silviculture has increased due to forest conversion policies and multifunctional forest management. Concurrently, evidences for substantial impacts of climate change on forest ecosystems accumulate. Projected drier and warmer conditions alter the water relations of tree species, their growth and ultimately their inter-specific competition in mixed stands. Process-based models are scientific tools to study the impact of climate change on and to deepen the understanding of the functioning of these systems based on ecological mechanisms. They allow for long-term, stand-level studies of forest dynamics which could only be addressed with great difficulty in an experimental or empirical setup. We used the process-based forest model 4C to simulate inter-specific competition in mixed stands of Douglas-fir (Pseudotsuga menziesii) and Common beech (Fagus sylvatica) as well as Scots pine (Pinus sylvestris) and Sessile / Pedunculate oak (Quercus petraea and Quercus robur) under a) historical climate for model verification and b) under climate change scenario realizations of the climate model STAR 2.0 in Brandenburg, Germany. Some of the climate change scenario realizations feature a substantially drier and warmer summer climate which decreases the climatic water balance during the growing season. We assumed species-specific fine root biomass distributions which feature broadleaved fine roots in deeper soil layers and coniferous fine roots in upper soil layers according to several root excavation studies from mixed stands. The stands themselves were constructed from yield tables of the contributing species. The model verification provided good results for the basal area predictions under the historical climate. Under climate change, the number of days when the tree water demand exceeded the soil water supply was higher for the coniferous species than for broadleaved species. Furthermore, after 45 simulation years the basal area

  17. Biomass production and small-scale testing of freeze-dried lactic acid bacteria starter strains for cassava fermentations

    CSIR Research Space (South Africa)

    Edward, VA

    2011-03-01

    Full Text Available to complete the biomass production stage (Table 3), whichmay be a disadvantage in terms of the overall production costs as a consequence of higher energy requirements. From an economical point of view, clearly the L. plantarum-group strains (i.e., L... Université Nationale du Bénin, Abomey-Calavi, 01 Cotonou, Bénin g Food Sciences Biomass production and small-scale tes starter strains for cassava fermentations Vinodh A. Edward a,b,c,*, Melanie Huch d, Carine Dort Petrus J. Van Zyl a, Suren Singh b...

  18. Estimating aboveground biomass in Kalahari woodlands: inferring soil erosional and distributional processes

    Science.gov (United States)

    Wingate, Vladimir

    2017-04-01

    Maps which accurately quantify vegetation carbon, or above ground biomass (AGB) and its changes, are not only essential for ecosystem monitoring, but also for understanding controls on ecosystem carbon, associated soil organic carbon (SOC) and the global carbon cycle. Throughout the rangelands of Namibia, two vegetation cover change processes are widespread, firstly, deforestation and forest degradation, and secondly, the encroachment of the herbaceous and grassy layers by woody strata. Both processes effect a range of key ecosystem services, including SOC dynamics by facilitating erosion and altering soil re-distributional processes. Yet, the spatial and temporal intensity of these vegetation change processes and hence their effect on SOC, remain poorly quantified. This study therefore aims to distinguish and map the extent of both deforestation and woody thickening and associated AGB changes, and gain an understanding of the spatial distribution of land degradation risk areas. We map AGB at two periods (2007 and 2015) for part of the Namibian Kalahari woodland savannah, by modelling forest inventory measurements as a function of a fusion of radar and optical satellite imagery. We then process a change detection and validate both individual and change maps using independent field and satellite data. Results show widespread increases and declines in both areal extent and quantity of AGB, suggesting (i) important vegetation change processes (i.e. both deforestation and woody thickening), and (ii) associated changes in soil quality. Indeed, woody thickening has been found to mask land degradation, through the replacement of herbaceous layers with hardy shrubs, leading to increases in erosional processes. These results are in agreement with previous studies, which identify both extensive greening and small-scale deforestation. Keywords: Soil Organic Carbon, Erosion, deposition, Above Ground Biomass; Savannah; Rangeland; Carbon; Remote Sensing; Change detection

  19. Value of Distributed Preprocessing of Biomass Feedstocks to a Bioenergy Industry

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T Wright

    2006-07-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system and the front-end of a biorefinery. Its purpose is to chop, grind, or otherwise format the biomass into a suitable feedstock for conversion to ethanol and other bioproducts. Many variables such as equipment cost and efficiency, and feedstock moisture content, particle size, bulk density, compressibility, and flowability affect the location and implementation of this unit operation. Previous conceptual designs show this operation to be located at the front-end of the biorefinery. However, data are presented that show distributed preprocessing at the field-side or in a fixed preprocessing facility can provide significant cost benefits by producing a higher value feedstock with improved handling, transporting, and merchandising potential. In addition, data supporting the preferential deconstruction of feedstock materials due to their bio-composite structure identifies the potential for significant improvements in equipment efficiencies and compositional quality upgrades. Theses data are collected from full-scale low and high capacity hammermill grinders with various screen sizes. Multiple feedstock varieties with a range of moisture values were used in the preprocessing tests. The comparative values of the different grinding configurations, feedstock varieties, and moisture levels are assessed through post-grinding analysis of the different particle fractions separated with a medium-scale forage particle separator and a Rototap separator. The results show that distributed preprocessing produces a material that has bulk flowable properties and fractionation benefits that can improve the ease of transporting, handling and conveying the material to the biorefinery and improve the biochemical and thermochemical conversion processes.

  20. Comparison of Surfactant Distributions in Pressure-Sensitive Adhesive Films Dried from Dispersion under Lab-Scale and Industrial Drying Conditions.

    Science.gov (United States)

    Baesch, S; Siebel, D; Schmidt-Hansberg, B; Eichholz, C; Gerst, M; Scharfer, P; Schabel, W

    2016-03-01

    Film-forming latex dispersions are an important class of material systems for a variety of applications, for example, pressure-sensitive adhesives, which are used for the manufacturing of adhesive tapes and labels. The mechanisms occurring during drying have been under intense investigations in a number of literature works. Of special interest is the distribution of surfactants during the film formation. However, most of the studies are performed at experimental conditions very different from those usually encountered in industrial processes. This leaves the impact of the drying conditions and the resulting influence on the film properties unclear. In this work, two different 2-ethylhexyl-acrylate (EHA)-based adhesives with varying characteristics regarding glass transition temperature, surfactants, and particle size distribution were investigated on two different substrates. The drying conditions, defined by film temperature and mass transfer in the gas phase, were varied to emulate typical conditions encountered in the laboratory and industrial processes. Extreme conditions equivalent to air temperatures up to 250 °C in a belt dryer and drying rates of 12 g/(m(2)·s) were realized. The surfactant distributions were measured by means of 3D confocal Raman spectroscopy in the dry film. The surfactant distributions were found to differ significantly with drying conditions at moderate film temperatures. At elevated film temperatures the surfactant distributions are independent of the investigated gas side transport coefficients: the heat and mass transfer coefficient. Coating on substrates with significantly different surface energies has a large impact on surfactant concentration gradients, as the equilibrium between surface and bulk concentration changes. Dispersions with higher colloidal stability showed more homogeneous lateral surfactant distributions. These results indicate that the choice of the drying conditions, colloidal stability, and substrates is crucial

  1. Family Differences Influence the Aboveground Biomass of Loblolly Pine Plantations

    Science.gov (United States)

    P.E. Pope; D.L. Graney

    1979-01-01

    We compared the aboveground biomass of 4 half-sib families of loblolly pine (Pinus taeda L.) 11 years after planting. Total dry weights differed significantly among families in plantations on the same soil type with the same site index. Differences in biomass resulted from differences in stem form and branch size. Distribution of growth -the proportion of tree weight...

  2. Estimating root biomass and distribution after fire in a Great Basin woodland using cores and pits

    Science.gov (United States)

    Benjamin M. Rau; Dale W. Johnson; Jeanne C. Chambers; Robert R. Blank; Annmarie Lucchesi

    2009-01-01

    Quantifying root biomass is critical to an estimation and understanding of ecosystem net primary production, biomass partitioning, and belowground competition. We compared 2 methods for determining root biomass: a new soil-coring technique and traditional excavation of quantitative pits. We conducted the study in an existing Joint Fire Sciences demonstration area in...

  3. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  4. Variations in soil properties, species composition, diversity and biomass of herbaceous species due to ruminant dung residue in a seasonally dry tropical environment of India

    Directory of Open Access Journals (Sweden)

    Preeti Verma

    2015-05-01

    Full Text Available Ruminants directly or indirectly influence nutrient cycling and vegetation structure in grassland ecosystems. We assessed the impact of natural cattle dung deposition on soil attributes and the resulting effects on species composition, species diversity and biomass of herbaceous vegetation in a natural grassland in the seasonally dry tropical environment of Banaras Hindu University, India. For this 72 plots of 1 × 1 m [12 locations × 2 treatments (dung residue and control × 3 replicates] were selected in January 2013 and soil and vegetation samples collected. A total of 74 species belonging to 66 genera and 25 families were recorded. Principal Component Analysis (PCA ordination revealed that the dung residue (DP and control (CP plots were distinctly different in terms of soil attributes and species composition. The k-dominance plot showed greater species diversity in DPs than CPs, with higher soil nutrients and moisture and lower soil pH in DPs than CPs. Similarly, DPs showed more herbaceous species and greater biomass than CPs. This trend can be explained by the positive responses of forbs, erect plants, annuals, large-statured, non-native and non-leguminous species to dung residue, while increased biomass can be partly due to cattle preferentially not grazing areas adjacent to a dung pat. Overall, the study showed that deposition of dung during grazing by cattle stimulates growth of pasture species and increases species diversity. Therefore cattle dung could be used as a sustainable alternative to chemical fertilizers to manage soil pH, species composition and diversity, and forage production in the seasonally dry tropical grasslands of India, which are nutrient- and moisture-limited.Keywords: Animal manure, herbaceous vegetation, plant functional attributes, soil pH, species change.DOI: 10.17138/TGFT(3112-128 

  5. Effects of simulated acid rain on the morphology, phenology and dry biomass of a local variety of maize (Suwan-1) in Southwestern Nigeria.

    Science.gov (United States)

    Macaulay, Babajide Milton; Enahoro, Gloria Ebarunosen

    2015-10-01

    Effects of acid rain on the morphology, phenology and dry biomass of maize (Suwan-1 variety) were investigated. The maize seedlings were subjected to different pH treatments (1.0, 2.0, 3.0, 4.0, 5.0 and 6.0) of simulated acid rain (SAR) with pH 7.0 as the control for a period of 90 days. The common morphological defects due to SAR application were necrosis and chlorosis. It was observed that necrosis increased in severity as the acidity increased whilst chlorosis was dominant as the acidity decreased. SAR encouraged rapid floral and cob growth but with the consequence of poor floral and cob development in pH 1.0 to 3.0 treatments. The result for the dry biomass indicates that pH treatments 2.0 to 7.0 for total plant biomass were not significantly different (P > 0.05) from one another, but were all significantly higher (P acid rain but with pronounced morphological and phenological defects which, however, have the capacity to reduce drastically the market value of the crop. Therefore, it may be concluded that Suwan-1 tolerated acid rain in terms of the parameters studied at pH 4.0 to 7.0 which makes it a suitable crop in acid rain-stricken climes. This research could also serve as a good reference for further SAR studies on maize or other important cereals.

  6. Effect of incorporation of walnut cake (Juglans regia in concentrate mixture on degradation of dry matter, organic matter and production of microbial biomass in vitro in goat

    Directory of Open Access Journals (Sweden)

    Mohsin Ahmad Mir

    2015-10-01

    Full Text Available Aim: This study was carried out to investigate the effect of incorporation of different level of walnut cake in concentrate mixture on in vitro dry matter degradation in order to determine its level of supplementation in ruminant ration. Materials and Methods: Walnut cake was used @ 0, 10, 15, 20, 25 and 30% level to formulate an iso-nitrogenous concentrate mixtures and designated as T1, T2, T3, T4, T5 and T6 respectively. The different formulae of concentrate mixtures were used for in vitro gas production studies using goat rumen liquor with wheat straw in 40:60 ratio. Proximate composition, fiber fractionation and calcium and phosphrous content of walnut cake were estimated. Result: The per cent IVDMD value of T1 and T2 diets was 68.42 ± 1.20 and 67.25 ± 1.37 respectively which was found highest (P<0.05 T3, T4, T5 and T6. Similar trend was also found for TDOM and MBP. Inclusion of walnut cake at 10% level in the concentrate mixture does not affect in vitro dry matter digestibility (IVDMD, truly degradable organic matter (TDOM, mg/200 mg DM, total gas production, microbial biomass production (MBP and efficiency of microbial biomass production (EMP. Conclusion: It is concluded that walnut cake incorporation up to 10% level in the iso -nitrogenous concentrate mixture has no any negative effect on in vitro digestibility of dry matter (DM, TDOM, MBP, EMP and total gas production in goat.

  7. Dry season distribution of land crabs, Gecarcinus quadratus (Crustacea: Gecarcinidae), in Corcovado National Park, Costa Rica.

    Science.gov (United States)

    Griffiths, Megan E; Mohammad, Basma A; Vega, Andres

    2007-03-01

    The land crab Gecarcinus quadratus is an engineering species that controls nutrient cycling in tropical forests. Factors regulating their coastal distribution are not fully understood. We quantified land crab distribution during the dry season at Sirena Field Station in Corcovado National Park, Costa Rica, and found that land crab burrow density decreases with increasing distance from the ocean. Leaf litter depth and tree seedling density are negatively correlated with land crab burrow density. Burrows are strongly associated with sand substrate and burrow density is comparatively low in clay substrate. Results suggest that G. quadratus is limited to a narrow coastal zone with sand substrate, and this distribution could have profound effects on plant community structure.

  8. Differential effects of two strains of Rhizophagus intraradices on dry biomass and essential oil yield and composition in Calamintha nepeta

    Directory of Open Access Journals (Sweden)

    Roxana P Colombo

    Full Text Available The aim of this work was to determine the effects of two geographically different strains of Rhizophagus intraradices (M3 and GA5 on the total biomass and essential oil (EO yield and composition of Calamintha nepeta, with or without phosphorus (P fertilization, under greenhouse conditions.The plant biomass was not significantly affected by any of the treatments, showing higher values in control plants. Strains had a differential response in their root colonization rates: M3 reduced these parameters while GA5 did not modify them. Both strains affected EO yield in absence of P fertilization: M3 promoted EO yield in C. nepeta plants and GA5 resulted in negative effects. The percentage composition of EO was not significantly modified by either strain or P fertilization. M3 strain could be a potential fungal bioinoculant for production and commercialization of C. nepeta in the aromatic plant market.

  9. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Directory of Open Access Journals (Sweden)

    Wei-Dong Huang

    Full Text Available BACKGROUND: Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV, and battery electric vehicles (BEV. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. SIGNIFICANCE: In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year, through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  10. Energy efficiency analysis: biomass-to-wheel efficiency related with biofuels production, fuel distribution, and powertrain systems.

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements--biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case--corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens.

  11. Energy Efficiency Analysis: Biomass-to-Wheel Efficiency Related with Biofuels Production, Fuel Distribution, and Powertrain Systems

    Science.gov (United States)

    Huang, Wei-Dong; Zhang, Y-H Percival

    2011-01-01

    Background Energy efficiency analysis for different biomass-utilization scenarios would help make more informed decisions for developing future biomass-based transportation systems. Diverse biofuels produced from biomass include cellulosic ethanol, butanol, fatty acid ethyl esters, methane, hydrogen, methanol, dimethyether, Fischer-Tropsch diesel, and bioelectricity; the respective powertrain systems include internal combustion engine (ICE) vehicles, hybrid electric vehicles based on gasoline or diesel ICEs, hydrogen fuel cell vehicles, sugar fuel cell vehicles (SFCV), and battery electric vehicles (BEV). Methodology/Principal Findings We conducted a simple, straightforward, and transparent biomass-to-wheel (BTW) analysis including three separate conversion elements -- biomass-to-fuel conversion, fuel transport and distribution, and respective powertrain systems. BTW efficiency is a ratio of the kinetic energy of an automobile's wheels to the chemical energy of delivered biomass just before entering biorefineries. Up to 13 scenarios were analyzed and compared to a base line case – corn ethanol/ICE. This analysis suggests that BEV, whose electricity is generated from stationary fuel cells, and SFCV, based on a hydrogen fuel cell vehicle with an on-board sugar-to-hydrogen bioreformer, would have the highest BTW efficiencies, nearly four times that of ethanol-ICE. Significance In the long term, a small fraction of the annual US biomass (e.g., 7.1%, or 700 million tons of biomass) would be sufficient to meet 100% of light-duty passenger vehicle fuel needs (i.e., 150 billion gallons of gasoline/ethanol per year), through up to four-fold enhanced BTW efficiencies by using SFCV or BEV. SFCV would have several advantages over BEV: much higher energy storage densities, faster refilling rates, better safety, and less environmental burdens. PMID:21765941

  12. Energy from Biomass for Conversion of Biomass

    Science.gov (United States)

    Abolins, J.; Gravitis, J.

    2009-01-01

    Along with estimates of minimum energy required by steam explosion pre-treatment of biomass some general problems concerning biomass conversion into chemicals, materials, and fuels are discussed. The energy necessary for processing biomass by steam explosion auto-hydrolysis is compared with the heat content of wood and calculated in terms of the amount of saturated steam consumed per unit mass of the dry content of wood biomass. The fraction of processed biomass available for conversion after steam explosion pre-treatment is presented as function of the amount of steam consumed per unit mass of the dry content of wood. The estimates based on a simple model of energy flows show the energy required by steam explosion pre-treatment of biomass being within 10% of the heat content of biomass - a realistic amount demonstrating that energy for the process can be supplied from a reasonable proportion of biomass used as the source of energy for steam explosion pre-treatment.

  13. Influence of dry mixing and distribution of conductive additives in cathodes for lithium ion batteries

    Science.gov (United States)

    Bauer, Werner; Nötzel, Dorit; Wenzel, Valentin; Nirschl, Hermann

    2015-08-01

    Conductive additives, like carbon black or graphite, are essential components of lithium ion batteries due to the limited electrical conductivity of most electrode materials. However, there is still a lack of knowledge about the optimized distribution of these materials within the electrode. A dry mixing process is used in order to prepare a conductive coating by depositing carbon black on the surface of Li(Ni1/3Mn1/3Co1/3)O2 (NMC) cathode particles. It is demonstrated that this - from a theoretically point of view - favorable distribution does not allow the preparation of working electrodes without taking into account the role of the binder. After adding an organic binder to the slurry, the polymer deposits on top of the carbon shell during drying and inhibits the conductive contact between the particles. This can be avoided by a fraction of distributed carbon particles which are associated with the binder phase providing conductive paths through the isolating organic material. It is shown that carbon black and graphite are principally fulfilling this task, but both materials are leading to varying processing behavior and electrode properties.

  14. Drying of brick as a function of heat flows and analysis of moisture and temperature distributions

    DEFF Research Database (Denmark)

    Svendsen, Sv Aa Højgaard; Rudbeck, Claus Christian; Bunch-Nielsen, Tommy

    1997-01-01

    In order to investigate the driving mechanisms for frost damages in brickwork, laboratory tests has been performed on a test brick wall. These test include monitoring of temperature and moisture distribution in the wall as function of the influence of driving rain, wind speed and solar radiation....... After the initial tests the surface of the wall was treated with mortar and a new series of test was performed. The wall with and without treatment performed almost equal during the influence of driving rain, and during the later drying phase, the difference was equally small....

  15. Biomass distributions in dwarf tree, krummholz, and tundra vegetation in the alpine treeline ecotone

    OpenAIRE

    2015-01-01

    Alpine treeline ecotones are expected to respond to climate change with shifts in biomass patterns and carbon dynamics; however, the nature of these shifts and the current structure of carbon storage at treeline remain poorly understood. Biomass at treeline sites in Glacier National Park (GNP), Montana was measured in different aboveground carbon pools. Notably large proportions of biomass were recorded in compartments of dead material (~64% in upright tree cover, ~82% in krummholz). The stor...

  16. Biomass Gasification Behavior in an Entrained Flow Reactor: Gas Product Distribution and Soot Formation

    DEFF Research Database (Denmark)

    Qin, Ke; Jensen, Peter Arendt; Lin, Weigang

    2012-01-01

    % at the optimal conditions of 1400 °C with steam addition. The biomass carbon that was not converted to gas in the gasification process only appeared as soot particles in the syngas in all of the experiments, except for the two experiments performed at 1000 °C, where a very small amount of char was also left......Biomass gasification and pyrolysis were studied in a laboratory-scale atmospheric pressure entrained flow reactor. Effects of operating parameters and biomass types on the syngas composition were investigated. In general, the carbon conversion during biomass gasification was higher than 90...

  17. The influence of the fractal particle size distribution on the mobility of dry granular materials

    Directory of Open Access Journals (Sweden)

    Vallejo Luis E.

    2017-01-01

    Full Text Available This study presents an experimental analysis on the influence of the particle size distribution (psd on the mobility of dry granular materials. The psd obeys a power law of the form: N(L>d=kd-Df, where N is the number of particles with diameter L greater than a given diameter d, k is a proportionality constant, and Df is the fractal dimension of the psd. No laboratory or numerical study has been conducted to date analysing how a fractal psd influences the mobility of granular flows as in the case of rock avalanches. In this study, the flow characteristics of poly-dispersed granular materials that have a fractal psd were investigated in the laboratory. Granular mixtures having different fractal psd values were placed in a hollow cylinder. The cylinder was lifted and the distance of flow of the mixture was measured with respect to the original position of the cylinder. It was determined that the distance of flow of the mixtures was directly related to their fractal psd values. That is, the larger the distance of flow of the mixture, the larger is the fractal psd of the granular mixture tested. Thus, the fractal psd in dry granular mixtures seems to have a large influence on the easiness by which dry granular mixtures move in the field.

  18. Contribution of biomass and biofuel emissions to trace gas distributions in Asia during the TRACE-P experiment

    Science.gov (United States)

    Woo, Jung-Hun; Streets, David G.; Carmichael, Gregory R.; Tang, Youhua; Yoo, Bongin; Lee, Won-Chan; Thongboonchoo, Narisara; Pinnock, Simon; Kurata, Gakuji; Uno, Itsushi; Fu, Qingyan; Vay, Stephanie; Sachse, Glen W.; Blake, Donald R.; Fried, Alan; Thornton, Donald C.

    2003-11-01

    A comprehensive emission inventory with enhanced spatial and temporal resolution is used to help quantify the contribution from three source categories (fossil, biofuel, and biomass burning) during the NASA TRACE-P experiment. Daily biomass burning emissions are developed to support this analysis. Emissions of 27 species and their ratios, by sector, region, and source category are presented. The emission distributions and chemical composition are further analyzed using various statistical techniques. Using cluster analysis, the 27 chemical species are combined into 8 groups that have similar regional distribution, and 52 regions are assembled into 11 regional groups that have similar chemical composition. These groups are used in Chemical Mass Balance analysis to characterize air masses and to quantify the contribution of the three source categories to the observed species distributions. Five DC8 flights with 16 flight segments associated with outflow events are analyzed. In general, Asian outflow is a complex mixture of biofuel, biomass, and fossil sources. Flights in the post frontal regions at high latitudes and low altitudes have a high contribution of fossil fuel emissions. Flights in the warm sector of cold fronts are dominated by biomass burning contributions (about 70%). Biofuel contributions are high (about 70%) when air masses come from central China. The receptor model results are shown to be consistent with other 3-D chemical model sensitivity studies and analysis using ratios of indicator species (e.g., dK+/dSO42-, CH3CN/SOy, SOy/CO, and C2Cl4/CO).

  19. Acoustic Estimates of Distribution and Biomass of Different Acoustic Scattering Types Between the New England Shelf Break and Slope Waters

    KAUST Repository

    McLaren, Alexander

    2011-11-01

    Due to their great ecological significance, mesopelagic fishes are attracting a wider audience on account of the large biomass they represent. Data from the National Marine Fisheries Service (NMFS) provided the opportunity to explore an unknown region of the North-West Atlantic, adjacent to one of the most productive fisheries in the world. Acoustic data collected during the cruise required the identification of acoustically distinct scattering types to make inferences on the migrations, distributions and biomass of mesopelagic scattering layers. Six scattering types were identified by the proposed method in our data and traces their migrations and distributions in the top 200m of the water column. This method was able to detect and trace the movements of three scattering types to 1000m depth, two of which can be further subdivided. This process of identification enabled the development of three physically-derived target-strength models adapted to traceable acoustic scattering types for the analysis of biomass and length distribution to 1000m depth. The abundance and distribution of acoustic targets varied closely in relation to varying physical environments associated with a warm core ring in the New England continental Shelf break region. The continental shelf break produces biomass density estimates that are twice as high as the warm core ring and the surrounding continental slope waters are an order of magnitude lower than either estimate. Biomass associated with distinct layers is assessed and any benefits brought about by upwelling at the edge of the warm core ring are shown not to result in higher abundance of deepwater species. Finally, asymmetric diurnal migrations in shelf break waters contrasts markedly with the symmetry of migrating layers within the warm ring, both in structure and density estimates, supporting a theory of predatorial and nutritional constraints to migrating pelagic species.

  20. Distribution and biomass of arrow worms (Chaetognatha) in Golfo de Nicoya and Golfo Dulce, Costa Rica.

    Science.gov (United States)

    Hossfeld, B

    1996-12-01

    The chaetognath species guild was analyzed from samples collected during the cruise of the German RV Victor Hensen to the Pacific coast of Costa Rica in December 1993 and February, 1994, finding the following ten species of the genera Sagitta and Krohnitta: S. enflata, S. hexaptera, S. pacifica, S. neglecta, S. regularis, S. bedoti, S. friderici, S. popovicii, S. pulchra and K. pacifica. Because of their distributional patterns in the study area these species were ascribed to the following ecological groups: neritic, semi-neritic and oceanic. A strong gradient in species richness from offshore to inshore waters (8 to one respectively) was found in both gulf systems. Inshore chaetognaths were dominated by juveniles and adults of S. friderici in Golfo de Nicoya and by S. popovicii in Golfo Dulce. Biomass spectra were more continuous and of wider range in the Golfo Dulce area showing a dominance of larger chaetognaths, suggesting a more general developed pelagic system in Golfo Dulce, where larger chaetognaths might structure the plankton community by strong grazing pressure from above.

  1. Effects of Soil Moisture on Dynamic Distribution of Dry Matter Between Winter Wheat Root and Shoot

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yuan; LIU Xiao-ying; LUO Yuan-pei

    2003-01-01

    The dynamic relationship of dry matter accumulation and distribution between winter wheatroot and shoot was studied under different soil water conditions. The dry matter accumulation in root wasgreatly influenced by water stress, so as to the final root weight of the treatment with 40 % field moisturecapacity (FMC) was less than 1/4 of that of the treatment with 80 % FMC on average. Water stress duringthe 3-leaf stage to the tillering stage had the greatest influence on root, and the influence of water stressduring the jointing stage to the booting stage on shoot was greater than root. However, water stress duringthe tillering stage to the booting stage had a balanced effect on root and shoot, and the proportion of drymatter that distributed to root and shoot was almost the same after rewatering. Water recovery during thejointing stage to booting stage could promote R/S, but the increasing degree was related to the duration ofwater limitation. Soil water condition had the lowest effect on R/S during the flowering stage to the fillingstage and the maximal effect on R/S during the jointing stage to the heading stage, R/S of 40% FMCtreatment was 20.93 and 126.09 % higher than that of 60 % FMC and 80 % FMC treatments respectivelyat this period.

  2. Distribution of clinical phenotypes in patients with chronic obstructive pulmonary disease caused by biomass and tobacco smoke.

    Science.gov (United States)

    Golpe, Rafael; Sanjuán López, Pilar; Cano Jiménez, Esteban; Castro Añón, Olalla; Pérez de Llano, Luis A

    2014-08-01

    Exposure to biomass smoke is a risk factor for chronic obstructive pulmonary disease (COPD). It is unknown whether COPD caused by biomass smoke has different characteristics to COPD caused by tobacco smoke. To determine clinical differences between these two types of the disease. Retrospective observational study of 499 patients with a diagnosis of COPD due to biomass or tobacco smoke. The clinical variables of both groups were compared. There were 122 subjects (24.4%) in the biomass smoke group and 377 (75.5%) in the tobacco smoke group. In the tobacco group, the percentage of males was higher (91.2% vs 41.8%, P<.0001) and the age was lower (70.6 vs 76.2 years, P<.0001). Body mass index and FEV1% values were higher in the biomass group (29.4±5.7 vs 28.0±5.1, P=.01, and 55.6±15.6 vs 47.1±17.1, P<.0001, respectively). The mixed COPD-asthma phenotype was more common in the biomass group (21.3% vs 5%, P<.0001), although this difference disappeared when corrected for gender. The emphysema phenotype was more common in the tobacco group (45.9% vs 31.9%, P=.009). The prevalence of the chronic bronchitis and exacerbator phenotypes, the comorbidity burden and the rate of hospital admissions were the same in both groups. Differences were observed between COPD caused by biomass and COPD caused by tobacco smoke, although these may be attributed in part to uneven gender distribution between the groups. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  3. Using Macronutrient Distributions within Trees to Define a Branch Diameter Threshold for Biomass Harvest in Sugar Maple-Dominated Stands

    Directory of Open Access Journals (Sweden)

    Samuel Royer-Tardif

    2017-02-01

    Full Text Available As the use of forest harvesting residues for energy production gains popularity, debate continues regarding the long-term sustainability of whole tree harvesting (WTH. This practice removes nutrient-rich twigs that only account for a small fraction of harvest residues, emphasising the need to develop nutrient-efficient alternatives to WTH. This study assessed N, P, K, Ca, and Mg distributions within sugar maple (Acer saccharum Marshall and yellow birch (Betula alleghaniensis Britton branches of various sizes in order to determine the branch diameter threshold that would represent the best compromise between the quantity of harvested biomass and nutrient losses that were generated. Quantities of nutrients that were exported with harvesting were then modelled at the stand level using different biomass harvest scenarios to explore what factors ultimately drove total quantities of nutrients exported with harvest. We found that the branch diameter threshold for biomass harvesting should be set at 2 cm for most nutrients in both tree species. An exception was Mg in yellow birch, for which the harvesting of branches larger than 10 cm would always generate larger nutrient export than gains in terms of biomass. At the stand scale, we provide evidence that the intensity of biomass harvest (i.e., the number of branch compartments harvested is the principal factor responsible for the quantity of nutrient that is exported with harvesting.

  4. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania.

    Directory of Open Access Journals (Sweden)

    Deo D Shirima

    Full Text Available We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI and above ground herbaceous biomass (AGBH along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m, stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps, soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand

  5. Coleoptera and microbe biomass in Antarctic Dry Valley paleosols adjacent to the Inland Ice: Implications for Mars

    Science.gov (United States)

    Mahaney, William C.; Hart, Kris M.; O'Reilly, Shane S.; Allen, Christopher C. R.; Dohm, James M.; Hancock, Ronald G. V.; Kelleher, Brian P.; Milner, Michael W.

    2012-01-01

    Bulk paleosol samples collected from a Middle to Early Miocene moraine in the New Mountain area of the Dry Valleys, Antarctica, yielded Coleoptera exoskeletons and occasional endoskeletons showing considerable diagenetic effects along with several species of bacteria, all lodged in a dry-frozen but salt-rich horizon at shallow depth to the land surface. The till is at the older end of a chronologic sequence of glacial deposits, thought to have been deposited before the transition from wet-based to cold-based ice (∼15 Ma), and hence, entirely weathered in contact with the subaerial atmosphere. It is possible, though not absolutely verifiable, that the skeletons date from this early stage of emplacement having undergone modifications whenever light snowmelt occurred or salt concentrations lowered the freezing temperature to maintain water as liquid. Correlation of the Coleoptera species with cultured bacteria in the sample and the likelihood of co-habitation with Beauveria bassiani found in two adjacent, although younger paleosols, leads to new questions about the antiquity of the Coleoptera and the source of N and glucose from chitinase derived from the insects. The skeletons in the 831 section may date close to the oldest preserved chitin (Oligocene) yet found on Earth. While harsh Martian conditions make it seemingly intolerable for complex, multicellular organisms such as insects to exist in the near-surface and subaerially, life within similar cold, dry paleosol microenvironments (Cryosols) of Antarctica point to life potential for the Red Planet, especially when considering the relatively diverse microbe (bacteria and fungi) population.

  6. Multicomponent isotherm for biosorption of Zn(II, CO(II and Cd(II from ternary mixture onto pretreated dried Aspergillus niger biomass

    Directory of Open Access Journals (Sweden)

    Zahra Hajahmadi

    2015-09-01

    Full Text Available In the present study, multicomponent competitive biosorption of heavy metal from aqueous solution onto pretreated dried Aspergillus niger in batch system was investigated. The adsorption data were fitted to the multicomponent Langmuir, Freundlich, Temkin and Sips equations. We used the genetic algorithm of biosorption in ternary mixture to evaluate the potential effects of each metal in the removal of other metals. In order to take both mechanisms of the cell-surface binding and intra-particle diffusion into account, an alternative model was investigated by combining the pseudo-second-order kinetics model and the intra-particle diffusion model. A model describing the process of biosorption by a single-stage batch design was developed and verified based on the Temkin isotherm model. Fundamentally, the outlook from these observations of the experiments that the pretreated dried biomass is a suitable absorbent for the removal of significant amounts of the heavy metal from the effluents of industrial wastewater is promising.

  7. Correlating the Horizontal and Vertical Distribution of LiDAR Point Clouds with Components of Biomass in a Picea crassifolia Forest

    Directory of Open Access Journals (Sweden)

    Wang Li

    2014-08-01

    Full Text Available Light detection and ranging (LiDAR has been widely used to estimate forest biomass. In this study, we aim to further explore this capability by correlating horizontal and vertical distribution of LiDAR data with components of biomass in a Picea crassifolia forest. Airborne small footprint full-waveform data were decomposed to acquire higher density point clouds. We calculated LiDAR metrics at the tree level and subplot level and correlated them to biomass components, including branch biomass (BB, leaf biomass (LB and above-ground biomass (AGB, respectively. A new metric (Horizcv describing the horizontal distribution of point clouds was proposed. This metric was found to be highly correlated with canopy biomass (BB and LB at the tree level and subplot level. Correlation between AGB and Horizcv at the subplot level is much lower than that at tree level. AGB for subplot is highly correlated with the mean height metric (Hmean, canopy cover index (CCI and the product of them. On the other hand, the relationship between the vertical distribution of LiDAR point and biomass was explored by developing two types of vertical profiles, including LiDAR distribution profiles and a biomass profile. Good relationships were found between these two types of vertical profiles and assessed by Pearson’s correlation coefficient (R and the area of overlap index (AOI. These good correlations possess potential in predicting the vertical distribution of canopy biomass. Overall, it is concluded that not only the vertical, but also the horizontal distribution of LiDAR points should be taken into account in estimating components of biomass by LiDAR.

  8. Potential exoproteolytic activity assay for the determination of fixed bacterial biomass on distribution system materials

    National Research Council Canada - National Science Library

    Kwon, Woo-Taeg; Chang, Young-Cheol; Lee, Woo-Sik; Hong, Sang-Pyo; Rha, Young-Ah

    2013-01-01

    ...), lined cast iron, unlined cast iron, and galvanized steel. A significant linear relationship between biomass measurements was made from heterotrophic plate counts on R2A medium and this enzyme assay was shown...

  9. Freeze-drying for controlled nanoparticle distribution in Co/SiO 2 Fischer–Tropsch catalysts

    NARCIS (Netherlands)

    Eggenhuisen, T.M.; Munnik, P.; Talsma, H.; de Jongh, P.E.; de Jong, K.P.

    2013-01-01

    Controlling the nanoparticle distribution over a support is considered essential to arrive at more stable catalysts. By developing a novel freeze drying method, the nanoparticle distribution was successfully manipulated for the preparation of Co/SiO2 Fischer-Tropsch catalysts using a commercial sili

  10. Salt distribution in dry-cured ham measured by computed tomography and image analysis.

    Science.gov (United States)

    Vestergaard, Christian; Erbou, Søren G; Thauland, Torunn; Adler-Nissen, Jens; Berg, Per

    2005-01-01

    Forty-seven hams were scanned four times by computed tomography (CT) while being manufactured into dry-cured hams. An image-processing algorithm measured CT values in the lean part of the hams and provided line profiles reflecting the magnitude and spatial location of salt gradients. At the end of manufacturing, seven entire hams were dissected and the salt content of the lean part determined. Likewise, in the remaining 40 hams, the lean meat of the slices corresponding to the CT images was dissected, analyzed chemically for NaCl and compared to the CT value. The salt content of entire dry-cured hams correlated well (r(2)=0.94) to the CT value of a 10 mm section located at the center of femur bone, perpendicular to the length axis of the hams. In the same position, significant correlations between the CT values before (r(2)=0.71) and after (r(2)=0.80) the ageing period and actual chemical analysis of the same section were demonstrated. Line profiles illustrating the combined salt distribution and dehydration within a ham related to the physical characteristics of the ham as well as to the manufacturing process. These findings reveal that the effects of altered manufacturing practices can be followed non-invasively, while hams are still in production. Computed tomography combined with appropriate image analysis offers advantages as a non-invasive tool in both research and product development.

  11. Hydrogen and steam distribution following a small-break LOCA in large dry containment

    Institute of Scientific and Technical Information of China (English)

    DENG Jian; CAO Xuewu

    2007-01-01

    The hydrogen deflagration is one of the major risk contributors to threaten the integrity of the containment in a nuclear power plant, and hydrogen control in the case of severe accidents is required by nuclear regulations.Based on the large dry containment model developed with the integral severe-accident analysis tool, a small-break loss-of-coolant-accident (LOCA) without HPI, LPI, AFW and containment sprays, leading to the core degradation and large hydrogen generation, is calculated. Hydrogen and steam distribution in containment compartments is investigated. The analysis results show that significant hydrogen deflagration risk exits in the reactor coolant pump (RCP)compartment and the cavity during the early period, if no actions are taken to mitigate the effects of hydrogen accumulation.

  12. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  13. Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae) from Dry Chaco.

    Science.gov (United States)

    Medina, Regina Gabriela; Ponssa, Maria Laura; Aráoz, Ezequiel

    2016-01-01

    Subtropical dry forests are among the most vulnerable biomes to land transformation at a global scale. Among them, the Dry Chaco suffers an accelerated change due to agriculture expansion and intensification. The Dry Chaco ecoregion is characterized by high levels of endemisms and species diversity, which are the result of a variety of climates and reliefs, allowing a wide variety of environments. The amphibian group exhibits a high richness in the Dry Chaco, which has been barely studied in relation to land cover changes. We used ecological niche models (ENMs) to assess the potential geographic distribution of 10 Leptodactylus species (Anura, Leptodactylidae), which are mainly distributed within the Dry Chaco. We characterized these distributions environmentally, analyzed their overlap with land cover classes, and assessed their diversity of ecoregions. Also, we evaluated how these species potential distribution is affected by the transformation of land, and quantified the proportional area of the potential distribution in protected areas. We found that temperature seasonality is the main constraint to the occurrence of the species studied, whose main habitats are savannas, grasslands and croplands. The main threats to these species are the effects of climate change over spatial patterns of seasonality, which could affect their breeding and reproduction mode; the loss of their natural habitat; the exposure to contaminants used by intensive agriculture and their underrepresentation in protected areas.

  14. Environmental, land cover and land use constraints on the distributional patterns of anurans: Leptodacylus species (Anura, Leptodactylidae from Dry Chaco

    Directory of Open Access Journals (Sweden)

    Regina Gabriela Medina

    2016-11-01

    Full Text Available Subtropical dry forests are among the most vulnerable biomes to land transformation at a global scale. Among them, the Dry Chaco suffers an accelerated change due to agriculture expansion and intensification. The Dry Chaco ecoregion is characterized by high levels of endemisms and species diversity, which are the result of a variety of climates and reliefs, allowing a wide variety of environments. The amphibian group exhibits a high richness in the Dry Chaco, which has been barely studied in relation to land cover changes. We used ecological niche models (ENMs to assess the potential geographic distribution of 10 Leptodactylus species (Anura, Leptodactylidae, which are mainly distributed within the Dry Chaco. We characterized these distributions environmentally, analyzed their overlap with land cover classes, and assessed their diversity of ecoregions. Also, we evaluated how these species potential distribution is affected by the transformation of land, and quantified the proportional area of the potential distribution in protected areas. We found that temperature seasonality is the main constraint to the occurrence of the species studied, whose main habitats are savannas, grasslands and croplands. The main threats to these species are the effects of climate change over spatial patterns of seasonality, which could affect their breeding and reproduction mode; the loss of their natural habitat; the exposure to contaminants used by intensive agriculture and their underrepresentation in protected areas.

  15. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment – severity equation

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sørensen, Hanne Risbjerg; Knudsen, Niels Ole

    2014-01-01

    Background: Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment......, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. Results: Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal...... fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass...

  16. The critical factors that affected the distribution of aboveground biomass in the alpine steppe and meadow, Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    J. Sun

    2012-10-01

    Full Text Available Tibetan Plateau – the third pole of the world, with its extremly harsh and fragile ecological environment, is so sensitive to global change that it attracts many scientists' attention. Alpine grassland here is an important component of the global carbon cycle. Many studies have examined links between environmental factors and distribution of biomass, but little showed the critical environmental factors affecting the distribution of biomass. To document the general relationships between the habitat factors and aboveground biomass (AGB in Tibetan Plateau, and to identify the critical factors for the distribution of AGB in the alpine steppe and meadow, the data of AGB and habitat factors from 110 field sites across the widely distributed alpine steppe and meadow of the plateau were compiled and analyzed with the classification and regression tree (CART model, and the generalized additive model (GAM. The results showed that (1 the spatial pattern of AGB in alpine steppe was determined by six major environmental factors: soil organic carbon density of soil 0–30 cm depth (SOC1, longitude, mean annual precipitation (MAP, latitude, clay and soil moisture. As to the alpine meadow, the major factors were altitude, soil moisture, nitrogen, MAP and mean annual temperature (MAT. (2 As to the alpine steppe, increased SOC1, MAP and latitude were associated with increased AGB abundance, but increased longitude resulted in lower abundance of AGB. As to the alpine meadow, the distribution of AGB had strong negative relationships with altitude and soil moisture, but a positive correlation with soil nitrogen content across sites. The results suggested that the combined effects of meteorological factors, topographic factors, and soil factors were more significant for the spatial pattern of AGB in Tibetan Plateau. In addition, our work highlights the importance of further studies to seek effects of slope and aspect in alpine grassland.

  17. Biomass Reallocation between Juveniles and Adults Mediates Food Web Stability by Distributing Energy Away from Strong Interactions.

    Science.gov (United States)

    Caskenette, Amanda L; McCann, Kevin S

    2017-01-01

    Ecological theory has uncovered dynamical differences between food web modules (i.e. low species food web configurations) with only species-level links and food web modules that include within-species links (e.g. non-feeding links between mature and immature individuals) and has argued that these differences ought to cause food web theory that includes within-species links to contrast with classical food web theory. It is unclear, however, if life-history will affect the observed connection between interaction strength and stability in species-level theory. We show that when the predator in a species-level food chain is split into juvenile and adult stages using a simple nested approach, stage-structure can mute potentially strong interactions through the transfer of biomass within a species. Within-species biomass transfer distributes energy away from strong interactions promoting increased system stability consistent with classical food web theory.

  18. Vertical distribution of corn biomass as influenced by cover crop and stover harvest

    Science.gov (United States)

    Corn (Zea mays L.) production for grain is important given its many uses for human food, animal feed and other industrial products. Additionally, the abundance and potentially large biomass yield makes corn an attractive bioenergy feedstock. The objective of this study was to evaluate the effect of ...

  19. Estimating the biomass of unevenly distributed aquatic vegetation in a lake using the normalized water-adjusted vegetation index and scale transformation method.

    Science.gov (United States)

    Gao, Yongnian; Gao, Junfeng; Wang, Jing; Wang, Shuangshuang; Li, Qin; Zhai, Shuhua; Zhou, Ya

    2017-12-01

    Satellite remote sensing is advantageous for the mapping and monitoring of aquatic vegetation biomass at large spatial scales. We proposed a scale transformation (CT) method of converting the field sampling-site biomass from the quadrat to pixel scale and a new normalized water-adjusted vegetation index (NWAVI) based on remotely sensed imagery for the biomass estimation of aquatic vegetation (excluding emergent vegetation). We used a modeling approach based on the proposed CT method and NWAVI as well as statistical analyses including linear, quadratic, logarithmic, cubic, exponential, inverse and power regression to estimate the aquatic vegetation biomass, and we evaluated the performance of the biomass estimation. We mapped the spatial distribution and temporal change of the aquatic vegetation biomass using a geographic information system in a test lake in different months. The exponential regression models based on CT and the NWAVI had optimal adjusted R(2), F and Sig. values in both May and August 2013. The scatter plots of the observed versus the predicted biomass showed that most of the validated field sites were near the 1:1 line. The RMSE, ARE and RE values were small. The spatial distribution and change of the aquatic vegetation biomass in the study area showed clear variability. Among the NWAVI-based and other vegetation index-based models, the CT and NWAVI-based models had the largest adjusted R(2), F and the smallest ARE values in both tests. The proposed modeling scheme is effective for the biomass estimation of aquatic vegetation in lakes. It indicated that the proposed method can provide a most accurate spatial distribution map of aquatic vegetation biomass for lake ecological management. More accurate biomass maps of aquatic vegetation are essential for implementing conservation policy and for reducing uncertainties in our understanding of the lake carbon cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The influence of vegetation on bird distribution in dry forests and oak woodlands of western Mexico

    Directory of Open Access Journals (Sweden)

    Pablo Corcuera

    2006-06-01

    Full Text Available The bird species distribution along a dry forest-oak woodland vegetation gradient was studied in autumn and spring in two consecutive years. Intra-seasonal comparisons showed that bird species had similar distributions in each of the two years. Inter-seasonal changes were mainly due to compositional differences even though resident species generally used similar habitats in both seasons. Ordination analyses, based on the first year bird species abundances, showed a clearly segregated distribution between forest and woodland birds. Within these two vegetation types, the distribution tended to be more individualistic. Nevertheless further habitats could be identified according to groups of birds having similar distributions. These habitats did not correspond to the plant associations which resulted from a previous classification of the vegetation. Observations of the plant use by the birds during the study period showed that, in most cases, the plant variables associated with ordination analyses are unlikely to be very important for the bird species life cycles. Rev. Biol. Trop. 54(2: 657-672. Epub 2005 Jun 01.Se estudió la distribución de especies de aves a lo largo de un gradiente de vegetación bosque seco - bosque de encino en el otoño y primavera de dos años consecutivos. Las comparaciones intra-estacionales mostraron distribuciones similares de las especies de aves en ambos años. Los cambios inter-estacionales se debieron principalmente a diferencias en la composición, aunque las especies residentes normalmente usan hábitats similares en ambas estaciones. Los análisis de ordenación, basados en las abundancias de las aves en el primer año de muestreo, mostraron una distribución claramente segregada entre aves del bosque seco y del bosque de encino. Aunque la distribución de las especies fue más azarosa dentro de cada tipo de vegetación, se pudieron identificar ciertos hábitats en base a grupos de aves con distribuciones

  1. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen; Amooie, Hossein [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-04-15

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  2. The distribution of fat in dried dairy particles determines flavor release and flavor stability.

    Science.gov (United States)

    Park, C W; Drake, M A

    2014-04-01

    Dried dairy ingredients are utilized in various food and beverage applications for their nutritional, functional, and sensory properties. Dried dairy ingredients include milk powders of varying fat content and heat treatment and buttermilk powder, along with both milk and whey proteins of varying protein contents. The flavor of these ingredients is the most important characteristic that determines consumer acceptance of the ingredient applications. Lipid oxidation is the main mechanism for off-flavor development in dried dairy ingredients. The effects of various unit operations on the flavor of dried dairy ingredients have been investigated. Recent research documented that increased surface free fat in spray dried WPC80 was associated with increased lipid oxidation and off-flavors. Surface free fat in spray-dried products is fat on the surface of the powder that is not emulsified. The most common emulsifiers present in dried dairy ingredients are proteins and phospholipids. Currently, only an association between surface free fat and lipid oxidation has been presented. The link between surface free fat in dried dairy ingredients and flavor and flavor stability has not been investigated. In this review, some hypotheses for the role of surface free fat on the flavor of dried dairy ingredients are presented along with proposed mechanisms.

  3. Spatial distribution of biomass consumption as energy in rural areas of the Indo-Gangetic plain

    Energy Technology Data Exchange (ETDEWEB)

    Saud, T. [National Physical Laboratory, Council of Scientific and Industrial Research (CSIR), New Delhi-110012 (India); Indira Gandhi Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi-110006 (India); Singh, D.P.; Gadi, Ranu [Indira Gandhi Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi-110006 (India); Mandal, T.K.; Saxena, M.; Sharma, S.K.; Gautam, R.; Mukherjee, A.; Bhatnagar, R.P. [National Physical Laboratory, Council of Scientific and Industrial Research (CSIR), New Delhi-110012 (India); Pathak, H. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi-110012 (India)

    2011-02-15

    Biomass is widely used as energy source in rural households in India. Biomass samples and socio-economic data have been collected at district level in the rural areas of Indo-Gangetic plain (IGP), India to determine the emissions of trace gases and aerosols from domestic fuels. Dung cake, fuelwood and crop residue are main sources of energy in rural areas of the IGP. Dung cake is the major domestic fuel (80-90%) in the rural areas of Delhi, Punjab, Haryana, Uttar Pradesh, Bihar and West Bengal, whereas, 99% of rural households in Uttarakhand use wood as the main energy source. Using crop production data and usage of crop residues as energy, new consumption values have been estimated (21.13 Mt). Present information on the domestic fuel usage would be helpful in determining budgets estimates of trace gases and aerosols for India. (author)

  4. Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

    Directory of Open Access Journals (Sweden)

    Laura J Vimmerstedt

    Full Text Available The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets include the need for infrastructure for distribution and

  5. Ethanol Distribution, Dispensing, and Use: Analysis of a Portion of the Biomass-to-Biofuels Supply Chain Using System Dynamics

    Science.gov (United States)

    Vimmerstedt, Laura J.; Bush, Brian; Peterson, Steve

    2012-01-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain–represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner’s decision whether to offer ethanol fuel and a consumer’s choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and

  6. Linking tree size distribution to active remote sensing parameters: consequences for observation strategies and impacts on biomass retrieval (Invited)

    Science.gov (United States)

    Pinto, N.; Simard, M.; Behrman, K. D.; Keitt, T. H.

    2010-12-01

    Vegetation 3D structure measurements from active remote sensing (i.e. lidar and radar) are usually averaged and reported at the regional level. However, environmental gradients and disturbance can structure vegetation patterns at multiple scales. Thus, a critical challenge in designing global observation strategies is to obtain confidence intervals on vegetation parameters as a function of biome, sensor, and resolution of observation. We present strategies to gain knowledge on forest spatial heterogeneity that can be translated into confidence intervals for above ground biomass and canopy height measurements. We use data from two airborne systems: the Laser Vegetation Imaging Sensor (LVIS) and the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) acquired over sites in the US (NH and ME), Canada (Quebec) and Costa Rica. We first describe two parameters (alpha and beta) that summarize tree size distribution for individual patches, thereby capturing forest successional stage. In this scenario, the uncertainty in predicting above ground biomass stems from: (1) the ability to estimate alpha and beta with the lidar/radar signals, and (2) the error in deriving above ground biomass from tree size distribution statistics. The processes of competition and self-thinning create skewed tree size distributions where smaller individuals are common and large individuals are rare. Using a global dataset of spaceborne lidar points from the sensor ICESat (Ice, Cloud, and land Elevation Satellite), we show the importance of sampling extreme values when using spatially sparse data. This raises the need to obtain expectations for the second-order properties of forest stands. To this end, we employed wavelet transforms to quantify variation in lidar-derived canopy height metrics across >20 Km transects and asked whether environmental gradients such as elevation can constrain the spatial autocorrelation among large trees.

  7. Ethanol distribution, dispensing, and use: analysis of a portion of the biomass-to-biofuels supply chain using system dynamics.

    Science.gov (United States)

    Vimmerstedt, Laura J; Bush, Brian; Peterson, Steve

    2012-01-01

    The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and

  8. Seasonal and spatial distributions of phytoplankton biomass associated with monsoon and oceanic environments in the South China Sea

    Institute of Scientific and Technical Information of China (English)

    GAO Shan; WANG Hui

    2008-01-01

    Seasonal variations of phytoplankton/chiorophyll-a (Chl-a) distribution,sea surface wind,sea height anomaly,sea surface tem-perature and other oceanic environments for long periods are analyzed in the South China Sea (SCS),especially in the two typical regions off the east coast of Vietnam and off the northwest coast of Luzon,using remote sensing data and other oceanographic data.The results show that seasonal and spatial distributions of phytoplankton biomass in the SCS are primarily influenced by the mon-soon winds and oceanic environments.Off the east coast of Vietnam,Chl-a concentration is a peak in August,a jet shape exten- ding into the interior SCS,which is associated with strong southwesterly monsoon winds,the coastal upwelling induced by offshore Ekman transport and the strong offshore current in the western SCS.In December,high Chl-a concentration appears in the up-welling region off the northwest coast of Luzon and spreads southwestward.Strong mixing by the strong northeasterly monsoon winds,the cyclonic circulation,southwestward coastal currents and river discharge have impacts on distribution of phytoplankton,so that the high phytoplankton biomass extends from the coastal areas over the northern SCS to the entire SCS in winter.These re-search activities could be important for revealing spatial and temporal patterns of phytoplankton and their interactions with physical environments in the SCS.

  9. Carbon stock estimates for forests in the Castilla y Leon region, Spain. A GIS based method for evaluating spatial distribution of residual biomass for bio-energy

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Maria Victoria; Blanco, Daniel; Carballo, Maria Teresa; Calvo, Luis Fernando [Chemical Engineering, Institute of Natural Resources, University of Leon, Avenida de Portugal, 41, 24071 Leon (Spain)

    2011-01-15

    Analysis of aboveground biomass and carbon stocks (as equivalent CO{sub 2}) was performed in the Castilla y Leon region, Spain. Data from the second and third Spanish Forest Inventories (1996 and 2006) were used. Total aboveground biomass was calculated using allometric biomass equations and biomass expansion factors (BEF), the first method giving higher values. Forests of Castilla y Leon stored 77,051,308 Mg of biomass, with a mean of 8.18 Mg ha{sup -1}, in 1996 and 135,531,737 Mg of biomass, with a mean of 14.4 Mg ha{sup -1}, in 2006. The total equivalent CO{sub 2} in this region's forests increased 9,608,824 Mg year{sup -1} between 1996 and 2006. In relation to the Kyoto Protocol, the Castilla y Leon forests have sequestered 3 million tons of CO{sub 2} per year, which represents 6.4% of the total regional emission of CO{sub 2}. A Geographic Information System (GIS) based method was also used to assess the geographic distribution of residual forest biomass for bio-energy in the region. The forest statistics data on area of each species were used. The fraction of vegetation cover, land slope and protected areas were also considered. The residual forest biomass in Castilla y Leon was 1,464,991 Mg year{sup -1}, or 1.90% of the total aboveground biomass in 1996. The residual forest biomass was concentrated in specific zones of the Castilla y Leon region, suitable for the location of industries that utilize biomass as energy source. The energy potential of the residual forest biomass in the Castilla y Leon region is 7350 million MJ per year. (author)

  10. Modelling distributed ablation on Juncal Norte Glacier, dry Andes of central Chile

    Science.gov (United States)

    Carenzo, Marco; Pellicciotti, Francesca; Helbing, Jakob; Dadic, Ruzica; Burlando, Paolo

    2010-05-01

    In the Aconcagua River Basin, in the dry Andes of central Chile, water resources in summer originate mostly from snow and ice glacier melt. Summer seasons are dry and stable, with precipitation close to zero, low relative humidity and very intense solar radiation. The region's economic activities are dependent on these water resources, but their assessment is still incomplete and an effort is needed to evaluate present and future changes in water from glacier and seasonal snow covers in this area. The main aim of this paper is to simulate glacier melt and runoff from Juncal Norte Glacier, in the upper Aconcagua Basin, using models of various complexity and data requirement. We simulate distributed glacier ablation for two seasons using an energy-balance model (EB) and an enhanced temperature-index model (ETI). Meteorological variables measured at Automatic Weather Stations (AWSs) located on and off-glacier are extrapolated from point observations to the glacier-wide scale. Shortwave radiation is modelled with a parametric model taking into account shading, reflection from slopes and atmospheric transmittance. In the energy-balance model, the longwave radiation flux is computed from Stefan-Boltzmann relationships and turbulent fluxes are calculated using the bulk aerodynamic method. The EB model includes subsurface heat conduction and gravitational redistribution of snow. Glacier runoff is modelled using a linear reservoir approach accounting for the temporal evolution of the system. Hourly simulations of glacier melt are validated against ablation observations (ultrasonic depth gauge and ablation stakes) and runoff measured at the glacier snout is compared to a runoff record obtained from a combination of radar water level measurements and tracer experiments. Results show that extrapolation of meteorological input data, and of temperature in particular, is the largest source of model uncertainty, together with snow water equivalent initial conditions. We explore

  11. [Aboveground biomass and nutrient distribution patterns of larch plantation in a montane region of eastern Liaoning Province, China].

    Science.gov (United States)

    Yan, Tao; Zhu, Jiao-Jun; Yang, Kai; Yu, Li-Zhong

    2014-10-01

    Larch is the main timber species of forest plantations in North China. Imbalance in nutrient cycling in soil emerged due to single species composition and mono system structure of plantation. Thus it is necessary to grasp its biomass and nutrients allocation for scientific management and nutrient cycling studies of larch plantation. We measured aboveground biomass (stem, branch, bark and leaf) and nutrient concentrations (C, N, P, K, Ca, Mg, Fe, Mn, Cu and Zn), and analyzed the patterns of accumulation and distribution of 19-year-old larch plantation with diameter at breast height of 12. 8 cm, tree height of 15. 3 m, and density of 2308 trees · hm(-2), in a montane region of eastern Liaoning Province, China. The results showed that aboveground biomass values were 70.26 kg and 162.16 t · hm(-2) for the individual tree of larch and the stand, respectively. There was a significant difference between biomass of the organs, and decreased in the order of stem > branch > bark > leaf. Nutrient accumulation was 749.94 g and 1730.86 kg · hm(-2) for the individual tree of larch and the stand, respectively. Nutrient accumulation of stem was significantly higher than that of branch, bark and leaf, whether it was macro-nutrient or micro-nutrient. Averagely, 749.94 g nutrient elements would be removed from the system when a 19-year-old larch tree was harvested. If only the stem part was removed from the system, the removal of nutrient elements could be reduced by 40.7%.

  12. Distribution and Properties of Aerosol and Gas Phase Constituents within Biomass Burning Regional Haze in Brazil, 2012, during the Sambba (South American Biomass Burning Analysis) Field Campaign

    Science.gov (United States)

    Darbyshire, E.; Morgan, W.; Allan, J. D.; Flynn, M.; Liu, D.; O'Shea, S.; Trembath, J.; Szpek, K.; Langridge, J.; Brooke, J.; Ferreira De Brito, J.; Johnson, B. T.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2014-12-01

    Biomass Burning (BB) aerosols (BBA) impact upon weather, climate, ecosystems and human health at global and regional scales. Yet quantitative evaluation is impeded by a limited understanding of BB processes and a dearth of in-situ measurements. Thus large model uncertainties prevail, especially in data poor, intensive BB regions such as Brazil. Hence the timely nature of the SAMBBA campaign, utilizing aircraft (UK Facility for Airborne Atmospheric Measurement BAe-146) and ground based observations out of Porto Velho in Sept-Oct 2012. This work utilizes aircraft measurements to characterize BB regional haze - the inhomogeneous accumulation of aged BBA capped within the boundary layer, present across swathes of Brazil. As context, aerosol optical depth (AOD) and meteorological climatologies are presented and compared to the synoptic conditions of 2012. Throughout the early flights an expansive area of elevated (>1) AOD persisted, although in transitioning toward the wet season, rain out and advection significantly reduced its spatial extent and magnitude in western regions of Brazil. Concurrent decreases in haze BBA concentrations (~50%) were observed from the aircraft measurements sampling in these deforested/forested areas. However, the relative vertical structure, composition, physical and optical properties remained similar. The lofted maxima in aerosol concentrations at ~1.5km, typically not captured in models, is potentially important for regional climate. Significant differences were observed, however, during flights over the eastern savannah-like regions of Brazil, which remained drier throughout. Here, haze BBA concentrations resembled those in the west prior to wash out, with the exception of high loadings of refractive black carbon. This acted to lower the single scattering albedo and alter the number size distribution. The observed haze BBA west-east split is also present at source and remains similar throughout fresh plume evolution, thus we conclude

  13. Stress and temperature distributions of individual particles in a shock wave propagating through dry and wet sand mixtures

    Science.gov (United States)

    Schumaker, Merit G.; Kennedy, Gregory; Thadhani, Naresh; Hankin, Markos; Stewart, Sarah T.; Borg, John P.

    2017-01-01

    Determining stress and temperature distributions of dynamically compacted particles is of interest to the geophysical and astrological research communities. However, the researcher cannot easily observe particle interactions during a planar shock experiment. By using mesoscale simulations, we can unravel granular particle interactions. Unlike homogenous materials, the averaged Hugoniot state for heterogeneous granular materials differs from the individual stress and temperature states of particles during a shock event. From planar shock experiments for dry and water-saturated Oklahoma sand, we constructed simulations using Sandia National Laboratory code known as CTH and then compared these simulated results to the experimental results. This document compares and presents stress and temperature distributions from simulations, with a discussion on the difference between Hugoniot measurements and distribution peaks for dry and water-saturated sand.

  14. Belowground biomass and nutrient content in a 47-year-old Douglas-fir plantation

    OpenAIRE

    J. Ranger; Gelhaye, D.

    2001-01-01

    International audience; Biomass and nutrient content of the root system of a Douglas-fir stand were calculated using the regression technique. Nine trees, evenly distributed in the girth classes of the stand, were felled for measurements and sampling. Results were compared to published data. Statistically significant relationships between tree circumference at 1.30 m and root biomass or nutrient content were observed. The root biomass was 58 t of dry matter, which was 18% of the total stand b...

  15. Experience with the operation and fuel supply of the biomass firing plant of the Trocknungsgenossenschaft Lengenfeld eG, a drying cooperative society; Erfahrungen mit Betrieb und Brennstoffbereitstellung der Biomassefeuerung der Trocknungsgenossenschaft Lengenfeld eG

    Energy Technology Data Exchange (ETDEWEB)

    Thoma, H. [Buero fuer Agraroekonomische Gutachten, Expertisen und Projektstudien, Langenbach (Germany)

    1994-12-31

    The pilot project of the conversion of the green forage drying plant Lengenfeld to biomass firing could not be realized without problems. But the experience until now shows that it is in principle possible. The farmers involved are devoted to the project. For them the cultivation of biomass is an alternative to the abandonment of fields. The present low oil price sets limits to the positive income effect. The aim is an increase of the biomass share in heating energy supply to about 80%. (orig.) [Deutsch] Die Umstellung der Gruenfuttertrocknung Lengenfeld auf Biomassefeuerung ist als Pilotprojekt nicht ohne Probleme moeglich gewesen. Die bisherigen Erfahrungen zeigen jedoch die grundsaetzliche Praktikabilitaet. Die beteiligten Landwirte sind engagiert bei der Sache und schaetzen die Produktionsmoeglichkeit als Alternative zur Flaechenstillegung. Der derzeit niedrige Oelpreis setzt der positiven Einkommenswirkung jedoch enge Grenzen. Eine Erhoehung des Biomasseanteils an der Heizenergieversorgung auf etwa 80% ist das Ziel. (orig.)

  16. Pushing precipitation to the extremes in distributed experiments: Recommendations for simulating wet and dry years

    Science.gov (United States)

    Knapp, Alan K.; Avolio, Meghan L.; Beier, Claus; Carroll, Charles J.W.; Collins, Scott L.; Dukes, Jeffrey S.; Fraser, Lauchlan H.; Griffin-Nolan, Robert J.; Hoover, David L.; Jentsch, Anke; Loik, Michael E.; Phillips, Richard P.; Post, Alison K.; Sala, Osvaldo E.; Slette, Ingrid J.; Yahdjian, Laura; Smith, Melinda D.

    2017-01-01

    Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of ‘Drought-Net’, a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites – a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based

  17. Multiscale Modeling for Biomass Growth Associated with Bioremediation and Its Impact on Permeability Change and Distribution of Contaminants

    Science.gov (United States)

    Oka, G. K.; Pinder, G.

    2009-12-01

    Bioremediation involves using bacteria present in the soil or injected into the soil to degrade contaminants dissolved in groundwater. The degrading bacteria grow attached to the soil particles using the contaminants as substrate for growth. In the process, the pore spaces between soil particles get partially or totally blocked. This blocking, called bioclogging, affects an important parameter, the permeability of soil, which governs the distribution of contaminants in groundwater. The distribution of contaminants in turn affects the growth of bacteria through its changed availability pattern. We attempt to model the complex relationship between the growth of bacteria and biodegradation of the contaminants by coupling a 'Cellular Automata' (CA) model for biomass growth with a multiphase transport model for contaminants in groundwater. The growth in biomass of bacteria at the microscopic spatial scale is translated into a change in permeability at the macroscopic scale by using averaging techniques on CA grids regarding them as 'Representative Elementary Volume' (REV) elements. The results of simulation are presented and compared with a laboratory column experiment.

  18. ‘Oorja’ in India: Assessing a large-scale commercial distribution of advanced biomass stoves to households

    Science.gov (United States)

    Thurber, Mark C.; Phadke, Himani; Nagavarapu, Sriniketh; Shrimali, Gireesh; Zerriffi, Hisham

    2015-01-01

    Replacing traditional stoves with advanced alternatives that burn more cleanly has the potential to ameliorate major health problems associated with indoor air pollution in developing countries. With a few exceptions, large government and charitable programs to distribute advanced stoves have not had the desired impact. Commercially-based distributions that seek cost recovery and even profits might plausibly do better, both because they encourage distributors to supply and promote products that people want and because they are based around properly-incentivized supply chains that could more be scalable, sustainable, and replicable. The sale in India of over 400,000 “Oorja” stoves to households from 2006 onwards represents the largest commercially-based distribution of a gasification-type advanced biomass stove. BP's Emerging Consumer Markets (ECM) division and then successor company First Energy sold this stove and the pelletized biomass fuel on which it operates. We assess the success of this effort and the role its commercial aspect played in outcomes using a survey of 998 households in areas of Maharashtra and Karnataka where the stove was sold as well as detailed interviews with BP and First Energy staff. Statistical models based on this data indicate that Oorja purchase rates were significantly influenced by the intensity of Oorja marketing in a region as well as by pre-existing stove mix among households. The highest rate of adoption came from LPG-using households for which Oorja's pelletized biomass fuel reduced costs. Smoke- and health-related messages from Oorja marketing did not significantly influence the purchase decision, although they did appear to affect household perceptions about smoke. By the time of our survey, only 9% of households that purchased Oorja were still using the stove, the result in large part of difficulties First Energy encountered in developing a viable supply chain around low-cost procurement of “agricultural waste” to

  19. Initial results of the spatial distribution of rubber trees in Peninsular Malaysia using remotely sensed data for biomass estimate

    Science.gov (United States)

    Shidiq, I. P. A.; Ismail, M. H.; Kamarudin, N.

    2014-02-01

    The preservation and sustainable management of forest and other land cover ecosystems such as rubber trees will help addressing two major recent issues: climate change and bio-resource energy. The rubber trees are dominantly distributed in the Negeri Sembilan and Kedah on the west coast side of Peninsular Malaysia. This study is aimed to analyse the spatial distribution and biomass of rubber trees in Peninsular Malaysia with special emphasis in Negeri Sembilan State. Geospatial data from remote sensors are used to tackle the time and labour consuming problem due to the large spatial coverage and the need of continuous temporal data. Remote sensing imagery used in this study is a Landsat 5 TM. The image from optical sensor was used to sense the rubber trees and further classified rubber tree by different age.

  20. Interfacial protein engineering for spray-dried emulsions - part I: effects on protein distribution and physical properties.

    Science.gov (United States)

    Moisio, Timo; Damerau, Annelie; Lampi, Anna-Maija; Piironen, Vieno; Forssell, Pirkko; Partanen, Riitta

    2014-02-01

    Distribution of protein and oil in aqueous and spray-dried emulsions and the effect of protein cross-linking on emulsion properties and matrix-water interactions were investigated. Sodium caseinate and sunflower oil were used to make emulsions which were spray dried using maltodextrin as a wall material. 3% Na-caseinate concentration showed optimum emulsion and process stability as observed in CLSM images, droplet size data and in the amount of heptane-extractable oil from spray-dried emulsions. Transglutaminase cross-linking prior to emulsification slightly increased the amount of protein both on the oil droplet interface and on the particle surface as confirmed by analysis of continuous phase protein in the feed emulsion and by XPS measurements from the powder surface. DSC and water sorption measurements were used to study the physical state of the matrix. Glass transition occurred between RH 54% and 75% at room temperature and it was not affected by cross-linking.

  1. Size distributions of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons

    Directory of Open Access Journals (Sweden)

    K. Kawamura

    2012-09-01

    Full Text Available Atmospheric aerosol samples of PM2.5 and PM10 were collected during the wet and dry seasons in 2011 from a rural site in Tanzania and analysed for water-soluble dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids using a gas chromatography (GC and GC/mass spectrometry. Here we report the size distribution and sources of diacids and related compounds for wet and dry seasons. Oxalic acid (C2 was found as the most abundant diacid species followed by succinic and/or malonic acids whereas glyoxylic acid and glyoxal were the dominant ketoacids and α-dicarbonyls, respectively in both seasons in PM2.5 and PM10. Mean concentration of C2 in PM2.5 (121.5± 46.6 ng m−3 was lower in wet season than dry season (258.1± 69.5 ng m−3. Similarly, PM10 samples showed lower concentration of C2 (168.6 ± 42.4 ng m−3 in wet season than dry season (292.4± 164.8 ng m−3. Relative abundances of C2 in total diacids were 65.4% and 67.1% in PM2.5 and 64.6% and 63.9% in PM10 in the wet and dry seasons, respectively. Total concentrations of diacids (289–362 m−3, ketoacids (37.8–53.7ng m−3, and α-dicarbonyls (5.7–7.8 ng m−3 in Tanzania are higher to those reported at a rural background site in Nylsvley (South Africa but comparable or lower to those reported from sites in Asia and Europe. Diacids and ketoacids were found to be present mainly in the fine fraction in both seasons (total α-dicarbonyls in the dry season, suggesting a production of organic aerosols from pyrogenic sources and photochemical oxidations. The averaged contributions of total diacid carbon to aerosol total carbon were 1.4% in PM2.5 and 2.1% in PM10 in wet season and 3.3% in PM2.5 and 3.9% in PM10 in dry season whereas those to water-soluble organic carbon were 2.2% and 4.7% inPM2.5 and 3.1% and 5.8% in PM10 during the wet and dry seasons, respectively. These ratios suggest an enhanced photochemical oxidation of organic precursors and heterogeneous

  2. The Mathematical Model and Numerical Simulation for Pneumatic Drying of Biomass Stalk%生物质秸秆气流干燥数学模型及数值模拟

    Institute of Scientific and Technical Information of China (English)

    吕薇; 李彦栋; 孙宏伟; 姚志跃

    2011-01-01

    根据气固两相流理论,通过分析生物质秸秆干燥过程的特点,建立了生物质秸秆在水平直管气流干燥过程中传热传质数学模型,并采用数值方法对模型进行了求解,对干燥过程中物料和空气的含湿量、温度及速度的变化进行模拟仿真.同时分别就气固比和气流初始温度对干燥效果的影响进行模拟,并分析了现象产生的原因.%Through the analysis of the characteristics of the drying process of biomass stalk, a numerical model to describe the heat and mass transfer process in pneumatic drying of biomass stalk in straight level has been presented , based on two-phase flow theory. The model has been used to simulate the change of moisture content, temperature and change of speed of the materials and air in the drying process. The influences of gas-solid mass ratio and initial temperature to the drying process were simulated. The cause of related phenomena is analyzed.

  3. Zooplankton biomass data (displacement volume, wet mass, and dry mass) collected by the Sea Fisheries Research Institute (SFRI) in the active upwelling zone on the west coast of South Africa 1969-12-02 to 1969-12-16 (NODC Accession 0071850)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass data (displacement volume, wet mass, and dry mass) collected by South African the Sea Fisheries Research Institute (SFRI) during SFRI upwelling...

  4. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    Science.gov (United States)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  5. Thermally Altered Biomass (Black Carbon) in Soils: Formation, Analysis, Distribution, and Implications

    Science.gov (United States)

    Schmidt, M. W.

    2002-12-01

    Black Carbon (BC), formed during biomass burning, is a chemically heterogeneous, biologically refractory class of carbon compounds (1, 5). BC is purely terrestrial in origin and occurs ubiquitously in soils and terrestrial sediments and is coupled to a common marine fate via atmospheric and fluvial transport, potentially representing a significant reservoir of extremely slowly cycling carbon (1). However, because of its physicochemical heterogeneity and a lack of established analytical techniques, the geochemistry and quantitative importance of BC in the global carbon cycle remains largely undescribed. Existing methods rely on operational definitions with clear-cut but different boundaries inherently designed to analytically determine different parts of the BC continuum (1, 2, 3). In a set of German chernozemic soils, BC from biomass burning makes up 15 to 45 percent of the soil organic carbon (SOC), as determined via UV-high energy photooxidation combined with 13C NMR (4, 6). High resolution microscopy and spectroscopy unambiguously confirmed the presence of submicron BC particles with short-range variability in elemental composition, and two sometimes coexisting modifications, i. e. amorphous char-BC from pyrolized cellulose and graphitic soot-BC. BC, up to 3990 years older than bulk SOC, is 1160 to 5040 carbon-14 years old, indicating significant residence times of BC in soils. These results suggest three major implications: First, it seems that besides climate, vegetation and ioturbation, fire also plays an important role in the pedogenesis of Chernozems (4, 5). Second, BC can be a useful tracer for prehistoric human slash-and-burn activities, and thus represent a novel type of archaeological evidence (7). Third, the concept that BC from biomass burning is the source of the chemically stable aromatic components of soil organic matter, and point toward a different understanding of the large quantitative importance and longevity of BC in the terrestrial system (3

  6. Application of normalized biomass size spectra to laser optical plankton counter net intercomparisons of zooplankton distributions

    Science.gov (United States)

    Herman, A. W.; Harvey, M.

    2006-05-01

    The optical plankton counter (OPC) and recently the laser OPC (LOPC) have been used primarily in two measurement applications: (1) identification of specific zooplankton species and (2) changes in zooplankton community structure using size-based spectral measurements. The normalized biomass size spectra (NBSS) are one representation of the size-based approach. The present study is based on utilizing the NBSS to describe the conditions or characteristics of the zooplankton community that allow a reasonable intercomparison of net samples and LOPC measurements made simultaneously for data collected during two oceanographic cruises carried out in the Lower Estuary and the Gulf of St. Lawrence in spring 2001 and 2002, respectively. NBSS linear slopes plankton material such as diatom aggregates and gelatinous material (present during or immediately following blooms) that are less present in nets and are not intercomparable with LOPC measurements. Conversely, slopes >-0.7, or more "blue water" conditions, indicate the potential for reasonable intercomparison of the two methods. This observation applies to smaller-sized zooplankton such as copepodites of Calanus spp. with equivalent spherical diameter gelatinous material and reasonable intercomparisons between LOPC and net were obtained for both sampling years. The LOPC signals produced by Calanus spp. (IV-VI) were larger and more easily separated.

  7. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment – severity equation

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sørensen, Hanne Risbjerg; Knudsen, Niels Ole;

    2014-01-01

    Background: Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatme...... fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass...... factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature......, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. Results: Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal...

  8. [Comparison of PAHs distribution in stabilized sludge by sludge drying bed and reed bed].

    Science.gov (United States)

    Cui, Yu-Bo; Sun, Hong-Jie; Ran, Chun-Qiu; Li, Jin-Feng; Xie, Yao

    2013-03-01

    The difference in the removal efficiencies of polycyclic aromatic hydrocarbons (PAHs) in planted and unplanted sludge drying bed was investigated. Pilot-scale sludge drying bed and reed bed had the same size of 3.0 m x 1.0 m x 1.3 m (L x W x H), and the bed height consisted of a 65 cm media layer and a 65 cm super height. Both beds had a ventilation pipe which was mounted on the drainage pipes. The experiment lasted for three years, and the first two years was the sludge loading period, and the third year was the natural stabilization period. In the first two years, a total thickness of 8.4 m of sludge was loaded and the average sludge loading rate was 41.3 kg x (m2 x a)(-1). After the three-year stabilization, the contents of the sixteen PAHs decreased with time in both the sludge drying bed and the reed bed. The total PAHs contents in the surface, middle and bottom sludge layers in the sludge drying bed were 4.161, 3.543 and 3.118 mg x kg(-1) (DW), corresponding to 26.91%, 37.77% and 45.23% of removal; and the values in the reed bed were 2.722, 1.648 and 1.218 mg x kg(-1) (DW), corresponding to 52.18%, 71.05% and 78.60% of removal. The average PAHs removal in the reed bed was 29.86% higher than that in the sludge drying bed. In the stabilized sludge, the removal of low-molecular-weight PAHs predominated. The results suggested that reed played a positive role in the removal of PAHs.

  9. Effect of the corn breaking method on oil distribution between stillage phases of dry-grind corn ethanol production.

    Science.gov (United States)

    Wang, H; Wang, T; Johnson, L A; Pometto, A L

    2008-11-12

    The majority of fuel ethanol in the United States is produced by using the dry-grind corn ethanol process. The corn oil that is contained in the coproduct, distillers' dried grains with solubles (DDGS), can be recovered for use as a biodiesel feedstock. Oil removal will also improve the feed quality of DDGS. The most economical way to remove oil is considered to be at the centrifugation step for separating thin stillage (liquid) from coarse solids after distilling the ethanol. The more oil there is in the liquid, the more it can be recovered by centrifugation. Therefore, we studied the effects of corn preparation and grinding methods on oil distribution between liquid and solid phases. Grinding the corn to three different particle sizes, flaking, flaking and grinding, and flaking and extruding were used to break up the corn kernel before fermentation, and their effects on oil distribution between the liquid and solid phases were examined by simulating an industrial decanter centrifuge. Total oil contents were measured in the liquid and solids after centrifugation. Dry matter yield and oil partitioning in the thin stillage were highly positively correlated. Flaking slightly reduced bound fat. The flaked and then extruded corn meal released the highest amount of free oil, about 25% compared to 7% for the average of the other treatments. The freed oil from flaking, however, became nonextractable after the flaked corn was ground. Fine grinding alone had little effect on oil partitioning.

  10. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests.

    Science.gov (United States)

    Rodrigues, P M S; Silva, J O; Eisenlohr, P V; Schaefer, C E G R

    2015-08-01

    The aim of this study was to evaluate the ecological niche models (ENMs) for three specialist trees (Anadenanthera colubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva) in seasonally dry tropical forests (SDTFs) in Brazil, considering present and future pessimist scenarios (2080) of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent).We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%), although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity). Long-term multidisciplinary studies are necessary to make reliable predictions of the plant's adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  11. Microbial community distribution and activity dynamics of granular biomass in a CANON reactor.

    Science.gov (United States)

    Vázquez-Padín, Jose; Mosquera-Corral, Anuska; Campos, Jose Luis; Méndez, Ramón; Revsbech, Niels Peter

    2010-08-01

    The application of microelectrodes to measure oxygen and nitrite concentrations inside granules operated at 20 degrees C in a CANON (Complete Autotrophic Nitrogen-removal Over Nitrite) reactor and the application of the FISH (Fluorescent In Situ Hybridization) technique to cryosectioned slices of these granules showed the presence of two differentiated zones inside of them: an external nitrification zone and an internal anammox zone. The FISH analysis of these layers allowed the identification of Nitrosomonas spp. and Candidatus Kuenenia Stutgartiensis as the main populations carrying out aerobic and anaerobic ammonia oxidation, respectively. Concentration microprofiles measured at different oxygen concentrations in the bulk liquid (from 1.5 to 35.2 mg O(2) L(-1)) revealed that oxygen was consumed in a surface layer of 100-350 microm width. The obtained consumption rate of the most active layers was of 80 g O(2) (L(granule))(-1) d(-1). Anammox activity was registered between 400 and 1000 microm depth inside the granules. The nitrogen removal capacity of the studied sequencing batch reactor containing the granular biomass was of 0.5 g N L(-1) d(-1). This value is similar to the mean nitrogen removal rate obtained from calculations based on in- and outflow concentrations. Information obtained in the present work allowed the establishment of a simple control strategy based on the measurements of NH(4)(+) and NO(2)(-) in the bulk liquid and acting over the dissolved oxygen concentration in the bulk liquid and the hydraulic retention time of the reactor. (c) 2010 Elsevier Ltd. All rights reserved.

  12. A Satellite-Based Assessment of the Distribution and Biomass of Submerged Aquatic Vegetation in the Optically Shallow Basin of Lake Biwa

    Directory of Open Access Journals (Sweden)

    Shweta Yadav

    2017-09-01

    Full Text Available Assessing the abundance of submerged aquatic vegetation (SAV, particularly in shallow lakes, is essential for effective lake management activities. In the present study we applied satellite remote sensing (a Landsat-8 image in order to evaluate the SAV coverage area and its biomass for the peak growth period, which is mainly in September or October (2013 to 2016, in the eutrophic and shallow south basin of Lake Biwa. We developed and validated a satellite-based water transparency retrieval algorithm based on the linear regression approach (R2 = 0.77 to determine the water clarity (2013–2016, which was later used for SAV classification and biomass estimation. For SAV classification, we used Spectral Mixture Analysis (SMA, a Spectral Angle Mapper (SAM, and a binary decision tree, giving an overall classification accuracy of 86.5% and SAV classification accuracy of 76.5% (SAV kappa coefficient 0.74, based on in situ measurements. For biomass estimation, a new Spectral Decomposition Algorithm was developed. The satellite-derived biomass (R2 = 0.79 for the SAV classified area gives an overall root-mean-square error (RMSE of 0.26 kg Dry Weight (DW m-2. The mapped SAV coverage area was 20% and 40% in 2013 and 2016, respectively. Estimated SAV biomass for the mapped area shows an increase in recent years, with values of 3390 t (tons, dry weight in 2013 as compared to 4550 t in 2016. The maximum biomass density (4.89 kg DW m-2 was obtained for a year with high water transparency (September 2014. With the change in water clarity, a slow change in SAV growth was noted from 2013 to 2016. The study shows that water clarity is important for the SAV detection and biomass estimation using satellite remote sensing in shallow eutrophic lakes. The present study also demonstrates the successful application of the developed satellite-based approach for SAV biomass estimation in the shallow eutrophic lake, which can be tested in other lakes.

  13. Distribution and biomass estimation of shell-boring algae in the intertidal area at Goa India

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sharma, S.; Lande, V.

    The distribution and frequency of shell-boring green and blue-green algae in the intertidal at Goa, India were studied. The green alga Gomontia sp. and the blue green algae Hyella caespitosa Bornet et Flahault, H. gigas Lucas et Golubic...

  14. Distribution pattern of temperature and biomass in the upwelling area along the NW coast of Africa

    Science.gov (United States)

    Szekielda, K.-H.

    1973-01-01

    Atmospheric conditions and wind systems are considered together with temperature observations. Data from scanning radiometers in the infrared and television cameras for the visible were applied to derive temperature data over cloudfree regions. From the analyzed spacecraft data it is obvious that the distribution of temperature and nonconservative parameters is much more complicated than one might expect from conventional measurements onboard a ship.

  15. Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems.

    Science.gov (United States)

    Ali, Arshad; Mattsson, Eskil

    2017-11-15

    The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R(2)=0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and

  16. Salt distribution in dry-cured ham measured by computed tomography and image analysis

    DEFF Research Database (Denmark)

    Vestergaard, Christian Sylvest; Erbou, Søren G.; Thauland, T.

    2005-01-01

    Forty-seven hams were scanned four times by computed tomography (CT) while being manufactured into dry-cured hams. An image-processing algorithm measured CT values in the lean part of the hams and provided line profiles reflecting the magnitude and spatial location of salt gradients. At the end...... of manufacturing, seven entire hams were dissected and the salt content of the lean part determined. Likewise, in the remaining 40 hams, the lean meat of the slices corresponding to the CT images was dissected, analyzed chemically for NaCl and compared to the CT value. The salt content of entire dry-cured hams...... section were demonstrated. Line profiles illustrating the combined salt tribution and dehydration within a ham related to the physical characteristics of the ham as well as to the manufacturing process. These findings reveal that the effects of altered manufacturing practices can be followed non...

  17. Salt distribution in dry-cured ham measured by computed tomography and image analysis

    DEFF Research Database (Denmark)

    Vestergaard, Christian Sylvest; Erbou, Søren G.; Thauland, T.;

    2005-01-01

    Forty-seven hams were scanned four times by computed tomography (CT) while being manufactured into dry-cured hams. An image-processing algorithm measured CT values in the lean part of the hams and provided line profiles reflecting the magnitude and spatial location of salt gradients. At the end...... of manufacturing, seven entire hams were dissected and the salt content of the lean part determined. Likewise, in the remaining 40 hams, the lean meat of the slices corresponding to the CT images was dissected, analyzed chemically for NaCl and compared to the CT value. The salt content of entire dry-cured hams...... section were demonstrated. Line profiles illustrating the combined salt tribution and dehydration within a ham related to the physical characteristics of the ham as well as to the manufacturing process. These findings reveal that the effects of altered manufacturing practices can be followed non...

  18. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest

    Science.gov (United States)

    de Novais, Samuel Matos Antunes; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; de Faria, Maurício Lopes; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969

  19. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions

    Directory of Open Access Journals (Sweden)

    M. Claeys

    2010-04-01

    Full Text Available Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondônia, Brazil using a High-Volume dichotomous sampler (HVDS and a Micro-Orifice Uniform Deposit Impactor (MOUDI. The samplings were conducted within the framework of the LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazônia – Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate campaign, which took place from 9 September till 14 November 2002, spanning the late dry season (biomass burning, the transition period, and the onset of the wet season (clean conditions. In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including: (a levoglucosan, a tracer for biomass burning, (b malic acid, a tracer for the oxidation of semivolatile carboxylic acids, (c tracers for secondary organic aerosol (SOA from isoprene, i.e., the 2-methyltetrols (2-methylthreitol and 2-methylerythritol and the C5-alkene triols [2-methyl-1,3,4-trihydroxy-1-butene (cis and trans and 3-methyl-2,3,4-trihydroxy-1-butene], and (d sugar alcohols (arabitol, mannitol, and erythritol, tracers for fungal spores. The results obtained for levoglucosan are covered first with the aim to address its contrasting behavior with that of malic acid, the isoprene SOA tracers, and the fungal spore tracers. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM2.5 size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 μg m−3 and exhibited diel variations with a nighttime prevalence. It was closely associated with the

  20. Submerged macrophyte biomass distribution in the shallow saline lake Fuente de Piedra (Spain as function of environmental variables

    Directory of Open Access Journals (Sweden)

    Conde-Álvarez, Rafael M.

    2012-06-01

    Full Text Available Aquatic macrophyte biomass, diaspore bank distribution and their relationship to spatial variability of depth, nutrients (nitrite, nitrate, ammonium and soluble reactive phosphorus as well as sediment granulometry in an athalassohaline lake have been studied during one wet hydrological year. The results indicate that species growing in the lake show different spatial distribution patterns throughout the lake. Indirect gradient analysis (canonical analysis results showed a first axis defined as a function of Ulva flexuosa Wulfen biomass which is, in turn, positively correlated with interstitial ammonium and Soluble Reactive Phosphorus (SRP. The second axis was mainly established due to Lamprothamnium papulosum (Wallr. J. Groves biomass which correlated positively to depth and negatively to interstitial ammonium and SRP. These results revealed a NESW eutrophic gradient allowing the U. Flexuosa biomass proliferation. This phenomenon could increase the shadow effect over the rest of the macrophytes inhabiting this shallow lake. Moreover, the eutrophic harmful effect on the macrophyte physiology and over the diaspore bank could have important consequences in the survival of such important populations. The results reported in this study show the need for studies as the base to select sampling points for monitoring this wetland.

    La distribución de la biomasa de los macrófitos acuáticos y de su banco de semillas y oogonios ha sido investigada en relación a la profundidad, los nutrientes (nitrito, nitrato, amonio y fósforo soluble reactivo y la granulometría del sedimento durante un año hidrológico húmedo. Los resultados muestran patrones de distribución diferentes en las distintas especies. Los resultados del análisis canónico basado en análisis de gradiente indirecto muestran un primer eje definido en función de la biomasa de U. Flexuosa, Wulfen que, a su vez, está positivamente correlacionada con el

  1. Environmental patterns and biomass distribution of gelatinous macrozooplankton. Three study cases in the South-western Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    H. W. Mianzan

    2000-12-01

    Full Text Available Periodic swarms or blooms of gelatinous macrozooplankton have a negative effect on many human activities such as tourism, fisheries, and industry, but for several reasons (sampling procedures, underestimation of their real abundance, etc., they have often been neglected in the local literature. The high spatial resolution exercise of the South-western Atlantic anchovy Engraulis anchoita Recruitment Project (SARP was therefore also suitable for estimating standing stocks of jelly macrozooplankton, attempting to establish particular environmental patterns exerting control on the spatial distribution of these facultative carnivorous predators in coastal frontal environments. These studies were carried out through a sampling programme on board the German R/V Meteor in three different systems, convergence and divergent, in the South-western Atlantic Ocean: Region A (42°S on the Argentine shelf, characterised by tidal mixing fronts; Region B (36°S, the freshwater outflow from Río de la Plata; and Region C (28°S, under upwelling events in subtropical waters on the Brazilian shelf. In general, a dominance of gelatinous macrozooplankton, compared with the other fraction of macrozooplankton and micronekton was observed. Mean standing stock of the gelatinous zooplankton was always greater than 50% of organic carbon (org. C in every section analysed. The lobate ctenophore Mnemiopsis leidyi dominated the zooplankton biomass in Region A, Argentina. It represented 60% of total org. C and was more abundant at the stratified zone of the front. Ctenophores were also dominant in Region B, Río de la Plata, where the related species Mnemiopsis mccradyi and the cydippid ctenophore Pleurobrachia pileus comprised 81% of total org. C. Mnemiopsis was most common in areas of vertical thermal and saline stratification, while Pleurobrachia was dominant in the less stratified areas. Gelatinous zooplankton was also the principal component of the macrozooplankton biomass

  2. Evaluation of economically feasible, natural plant extract-based microbiological media for producing biomass of the dry rot biocontrol strain Pseudomonas fluorescens P22Y05 in liquid culture.

    Science.gov (United States)

    Khalil, Sadia; Ali, Tasneem Adam; Skory, Chris; Slininger, Patricia J; Schisler, David A

    2016-02-01

    The production of microbial biomass in liquid media often represents an indispensable step in the research and development of bacterial and fungal strains. Costs of commercially prepared nutrient media or purified media components, however, can represent a significant hurdle to conducting research in locations where obtaining these products is difficult. A less expensive option for providing components essential to microbial growth in liquid culture is the use of extracts of fresh or dried plant products obtained by using hot water extraction techniques. A total of 13 plant extract-based media were prepared from a variety of plant fruits, pods or seeds of plant species including Allium cepa (red onion bulb), Phaseolus vulgaris (green bean pods), and Lens culinaris (lentil seeds). In shake flask tests, cell production by potato dry rot antagonist Pseudomonas fluorescens P22Y05 in plant extract-based media was generally statistically indistinguishable from that in commercially produced tryptic soy broth and nutrient broth as measured by optical density and colony forming units/ml produced (P ≤ 0.05, Fisher's protected LSD). The efficacy of biomass produced in the best plant extract-based media or commercial media was equivalent in reducing Fusarium dry rot by 50-96% compared to controls. In studies using a high-throughput microbioreactor, logarithmic growth of P22Y05 in plant extract-based media initiated in 3-5 h in most cases but specific growth rate and the time of maximum OD varied as did the maximum pH obtained in media. Nutrient analysis of selected media before and after cell growth indicated that nitrogen in the form of NH4 accumulated in culture supernatants, possibly due to unbalanced growth conditions brought on by a scarcity of simple sugars in the media tested. The potential of plant extract-based media to economically produce biomass of microbes active in reducing plant disease is considerable and deserves further research.

  3. Relationships between major ownerships, forest aboveground biomass distributions, and landscape dynamics in the New England region of USA.

    Science.gov (United States)

    Zheng, Daolan; Heath, Linda S; Ducey, Mark J; Butler, Brett

    2010-02-01

    This study utilizes remote sensing derived forest aboveground biomass (AGB) estimates and ownership information obtained from the Protected Areas Database (PAD), combining landscape analyses and GIS techniques to demonstrate how different ownerships (public, regulated private, and other private) relate to the spatial distribution of AGB in New England states of the USA. "Regulated private" lands were dominated by lands in Maine covered by a Land Use Regulatory Commission. The AGB means between all pairs of the identified ownership categories were significantly different (P 200 Mg/ha were located outside the area designated in the PAD and concentrated in western MA, southern VT, southwestern NH, and northwestern CT. While relatively unfragmented and high-AGB forests (>200 Mg/ha) accounted for about 8% of total forested land, they were unevenly proportioned among the three major ownership groups across the region: 19.6% of the public land, 0.8% of the regulated private land, and 11.0% of the other private land. Mean disturbance rates (in absolute value) between 1992 and 2001 were 16, 66, and 19 percent, respectively, on public, regulated private, and other private land. This indicates that management practices from different ownerships have a strong impact on dynamic changes of landscape structures and AGB distributions. Our results may provide insight information for policy makers on issues regarding forest carbon management, conservation biology, and biodiversity studies at regional level.

  4. Mortality as a key driver of the spatial distribution of aboveground biomass in Amazonian forest: results from a dynamic vegetation model

    Directory of Open Access Journals (Sweden)

    N. Delbart

    2010-10-01

    Full Text Available Dynamic Vegetation Models (DVMs simulate energy, water and carbon fluxes between the ecosystem and the atmosphere, between the vegetation and the soil, and between plant organs. They also estimate the potential biomass of a forest in equilibrium having grown under a given climate and atmospheric CO2 level. In this study, we evaluate the Above Ground Woody Biomass (AGWB and the above ground woody Net Primary Productivity (NPPAGW simulated by the DVM ORCHIDEE across Amazonian forests, by comparing the simulation results to a large set of ground measurements (220 sites for biomass, 104 sites for NPPAGW. We found that the NPPAGW is on average overestimated by 63%. We also found that the fraction of biomass that is lost through mortality is 85% too high. These model biases nearly compensate each other to give an average simulated AGWB close to the ground measurement average. Nevertheless, the simulated AGWB spatial distribution differs significantly from the observations. Then, we analyse the discrepancies in biomass with regards to discrepancies in NPPAGW and those in the rate of mortality. When we correct for the error in NPPAGW, the errors on the spatial variations in AGWB are exacerbated, showing clearly that a large part of the misrepresentation of biomass comes from a wrong modelling of mortality processes.

    Previous studies showed that Amazonian forests with high productivity have a higher mortality rate than forests with lower productivity. We introduce this relationship, which results in strongly improved modelling of biomass and of its spatial variations. We discuss the possibility of modifying the mortality modelling in ORCHIDEE, and the opportunity to improve forest productivity modelling through the integration of biomass measurements, in particular from remote sensing.

  5. Size distribution of trace organic species emitted from biomass combustion and meat charbroiling

    Science.gov (United States)

    Kleeman, Michael J.; Robert, Michael A.; Riddle, Sarah G.; Fine, Philip M.; Hays, Michael D.; Schauer, James J.; Hannigan, Michael P.

    Size-resolved particulate matter emissions from pine, California oak, east coast oak, eucalyptus, rice straw, cigarette smoke, and meat cooking were analyzed for trace organic species using solvent-extraction followed by GC-MS analysis. Six particle size fractions were studied between 0.056, 0.1, 0.18, 0.32, 0.56, 1.0, and 1.8 μm particle diameter. The smallest particle size fraction analyzed was in the ultrafine (Dp0.9) with the size distribution of particle-phase organic carbon (OC) and/or elemental carbon (EC). The only organic compounds besides PAHs detected in the ultrafine size fraction of rice straw and cigarette smoke were benz[ de]anthracen-7-one (0.19 mg kg -1 rice straw burned) and 4-methylphenylacetone (2.64 mg cigarette -1), respectively. Caffeine was measured in cigarette smoke size fractions >0.1 μm with a total PM 1.8 emissions rate of 1 (mg cigarette -1). The most abundant organic species measured in meat cooking smoke was cholesterol with a size distribution that was highly correlated with both OC and EC. The concentration of each compound normalized by the concentration of total OC was relatively uniform for all particle sizes. Cholesterol and levoglucosan should prove to be useful tracers for meat cooking and wood smoke emissions in the ultrafine size range.

  6. The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system.

    Science.gov (United States)

    Douterelo, I; Husband, S; Boxall, J B

    2014-05-01

    This study investigates the influence of pipe characteristics on the bacteriological composition of material mobilised from a drinking water distribution system (DWDS) and the impact of biofilm removal on water quality. Hydrants in a single UK Distribution Management Area (DMA) with both polyethylene and cast iron pipe sections were subjected to incremental increases in flow to mobilise material from the pipe walls. Turbidity was monitored during these operations and water samples were collected for physico-chemical and bacteriological analysis. DNA was extracted from the material mobilised into the bulk water before and during flushing. Bacterial tag-encoded 454 pyrosequencing was then used to characterize the bacterial communities present in this material. Turbidity values were high in the samples from cast iron pipes. Iron, aluminium, manganese and phosphate concentrations were found to correlate to observed turbidity. The bacterial community composition of the material mobilised from the pipes was significantly different between plastic and cast iron pipe sections (p samples obtained from cast iron pipes. The highest species richness and diversity were found in the samples from material mobilised from plastic pipes. Spirochaeta spp., Methylobacterium spp. Clostridium spp. and Desulfobacterium spp., were the most represented genera in the material obtained prior to and during the flushing of the plastic pipes. In cast iron pipes a high relative abundance of bacteria able to utilise different iron and manganese compounds were found such as Lysinibacillus spp., Geobacillus spp. and Magnetobacterium spp.

  7. Remote Sensing of Shrubland Drying in the South-East Mediterranean, 1995–2010: Water-Use-Efficiency-Based Mapping of Biomass Change

    Directory of Open Access Journals (Sweden)

    Maxim Shoshany

    2015-02-01

    Full Text Available Recent climate studies of the South-Eastern Mediterranean indicate an increase in drought frequencies and decreasing water resources since the turn of the century. A four-phase methodology was developed for assessing above-ground biomass changes in shrublands caused by these recent trends. Firstly, we generalized the function SB = 0.008MAP1.54 describing the shrublands above-ground biomass (SB dependence on mean annual precipitation (MAP for areas of full shrub cover. Secondly, relationships between MAP and NDVI were formalized, allowing an estimation of precipitation levels from observed NDVI values (MAPNDVI. Thirdly, relative water-use efficiency (RWUE was defined as the ratio between MAPNDVI and MAP. Finally, the function SBRWUE = 0.008MAP0.54 + RWUE was formalized, utilizing RWUE in estimating shrublands biomass. This methodology was implemented using Landsat TM images (1994 to 2011 for an area between the Judean Mountains and the deserts bordering them to the east and south. More than 50% of the study area revealed low biomass change (±0.2 kg/m2, compared with 30% of the woodlands of the Jerusalem Mountains, where biomass increased between 0.2 and 1.4 kg/m2 and with 50% of the semi-arid shrublands, where it decreased between 0.2 and 1.4 kg/m2. These results suggest that aridity lines in southern Israel are migrating northwards.

  8. Accelerated ketoprofen release from spray-dried polymeric particles: importance of phase transitions and excipient distribution.

    Science.gov (United States)

    Gue, Emilie; Muschert, Susanne; Willart, Jean-Francois; Danede, Florence; Delcourt-Debruyne, Elisabeth; Descamps, Marc; Siepmann, Juergen

    2015-05-01

    HPMC-, PVPVA- and PVP-based microparticles loaded with 30% ketoprofen were prepared by spray drying suspensions or solutions in various water:ethanol blends. The inlet temperature, drying gas and feed flow rates were varied. The resulting differences in the ketoprofen release rates in 0.1 M HCl could be explained based on X-ray diffraction, mDSC, SEM and particle size analysis. Importantly, long term stable drug release could be provided, being much faster than: (i) drug release from a commercial reference product, (ii) the respective physical drug:polymer mixtures, as well as (iii) the dissolution of ketoprofen powder as received. In addition, highly supersaturated release media were obtained, which did not show any sign for re-crystallization during the observation period. Surprisingly, spraying suspensions resulted in larger microparticles exhibiting faster drug release compared to spraying solutions, which resulted in smaller particles exhibiting slower drug release. These effects could be explained based on the physico-chemical characteristics of the systems.

  9. Effects on Sucrose Metabolism,Dry Matter Distribution and Fruit Quality of Tomato Under Water Deficit

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yan; LI Tian-lai; ZHANG Jie; WANG Lei; CHEN Yuan-hong

    2003-01-01

    Four irrigation treatments were designed with 2, 4, 6 and 8 d intervals to irrigate, respectively. Watering was stopped when the reading of the moisture tension sensor reached zero. The results indicated that glucose and fructose content of tomato's fruit were increased but sucrose content was decreased with fruit growth and development. In different stages, carbohydrate content of tomato fruit in the treatment 3 was the highest, in the treatment 2 was higher, and in the other treatments was the lowest. SS(sucrose synthase) activity was decreased but SPS(sucrose phosphate synthase) activity was increased with development of tomato. SS and SPS activity were increased but acid invertase and neutral invertase activity of ripe stage were decreased under deficit irrigation. Glucose and fructose content were increased in leaves of tomato under water deficit.Soluble sugars, organic acid and the ratio of sugar/acid in tomato fruits were increased and dry matter accumulation of plant was enhanced under water deficit. But the growth of fruits upside the plant and its dry matter accumulation were badly affected under water stress.

  10. Accumulation and distribution of dry matter in relation to root yield of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... as required but no fertilizer was applied. The first and second ... system (SAS) for microsoft windows, Release 6.12. Mixed model procedure ...... distribution in relation to yield of cassava grown in controlled environments. Can.

  11. 生物质热反应机理与活化能确定方法Ⅰ.干燥段研究%Thermal reaction mechanism of biomass and determination of activation energy Ⅰ.drying section

    Institute of Scientific and Technical Information of China (English)

    陈登宇; 朱锡锋

    2011-01-01

    干燥段是生物质热解的第一个过程.采用热分析仪研究了杉木木屑干燥段质量和热量的变化,推导了非等温干燥动力学模型,探讨了热质传输机理.结果表明,随着温度的升高,木屑含湿量迅速下降,80℃左右出现一个明显的失重峰;非等温干燥动力学Page模型能很好地模拟木屑干燥过程,木屑干燥活化能为12.6 kJ/mol;水分传输与热量传递有紧密的耦合关系,干燥吸收的热量主要用于水分的扩散蒸发;木屑干燥需热量为426kJ/kg,模拟值与实验值吻合较好.%The first step of biomass pyrolysis corresponds to water evaporation. Thermal analysis instrument was used to determine the mass and heat change of fir wood during drying process. Non-isothermal drying kinetics model was derived to explore the mechanism of heat and mass transfer. The results show that moisture content decreases rapidly and weight loss peak appears at 80 ℃. Page model for non-isothermal drying kinetics can well simulate wood drying process and the drying activation energy is 12. 6 kJ/mol. Water and heat transfer have close relationship and the dry heat is mainly used for water evaporation. The value of heat requirement is 426 kJ/kg and the simulated results show good agreement with experimental values.

  12. Climate change effects on the geographic distribution of specialist tree species of the Brazilian tropical dry forests

    Directory of Open Access Journals (Sweden)

    PMS Rodrigues

    Full Text Available AbstractThe aim of this study was to evaluate the ecological niche models (ENMs for three specialist trees (Anadenantheracolubrina, Aspidosperma pyrifolium and Myracrodruon urundeuva in seasonally dry tropical forests (SDTFs in Brazil, considering present and future pessimist scenarios (2080 of climate change. These three species exhibit typical deciduousness and are widely distributed by SDTF in South America, being important in studies of the historical and evolutionary processes experienced by this ecosystem. The modeling of the potential geographic distribution of species was done by the method of maximum entropy (Maxent.We verified a general expansion of suitable areas for occurrence of the three species in future (c.a., 18%, although there was reduction of areas with high environmental suitability in Caatinga region. Precipitation of wettest quarter and temperature seasonality were the predictor variables that most contributed to our models. Climatic changes can provide more severe and longer dry season with increasing temperature and tree mortality in tropics. On this scenario, areas currently occupied by rainforest and savannas could become more suitable for occurrence of the SDTF specialist trees, whereas regions occupied by Caatinga could not support the future level of unsustainable (e.g., aridity. Long-term multidisciplinary studies are necessary to make reliable predictions of the plant’s adaptation strategies and responses to climate changes in dry forest at community level. Based on the high deforestation rate, endemism and threat, public policies to minimize the effects of climate change on the biodiversity found within SDTFs must be undertaken rapidly.

  13. Size distribution of airborne particle-bound polybrominated diphenyl ethers and its implications for dry and wet deposition.

    Science.gov (United States)

    Luo, Pei; Ni, Hong-Gang; Bao, Lian-Jun; Li, Shao-Meng; Zeng, Eddy Y

    2014-12-01

    Size distribution of particles in part dictates the environmental behavior of particle-bound organic pollutants in the atmosphere. The present study was conducted to examine the potential mechanisms responsible for the distribution of organic pollutants in size fractionated particles and their environmental implications, using an e-waste recycling zone in South China as a case study. Size-fractionated atmospheric particles were collected at the heights of 1.5, 5, and 20 m near two residential apartments and analyzed for polybrominated diphenyl ethers (PBDEs). The concentrations of particle-bound ΣPBDE (sum of 18 PBDE congeners) were significantly greater at 5 and 20 m than those at 1.5 m. The size-fractionated distributions of airborne ΣPBDE displayed trimodal peaks in 0.10–0.18, 1.8–3.2, and 10–18 μm at 1.5 m but only an unimodal peak in 1.0–1.8 μm at 20 m height. Emission sources, resuspension of dust and soil, and volatility of PBDEs were important factors influencing the size distribution of particle-bound PBDEs. The dry deposition fluxes of particle-bound PBDE estimated from the measured data in the present study were approximately twice the estimated wet deposition fluxes, with a total deposition flux of 3000 ng m(–2) d(–1). The relative contributions of particles to dry and wet deposition fluxes were also size-dependent, e.g., coarse (aerodynamic diameters (Dp) > 1.8 μm) and fine (Dp deposition fluxes of PBDEs, respectively.

  14. Numerical Simulation and Experimental Research of Pneumatic Drying on Biomass Fuel%生物质燃料气流干燥的数值模拟与试验研究

    Institute of Scientific and Technical Information of China (English)

    吕薇; 孙宏伟; 李瑞扬; 柳建华; 邵海江

    2011-01-01

    Based on the mechanism of mass and heat transfer of the particles and air in drying tube,the mathematics model of pneumatic drying process was established which referred to straw fuel in straight horizontal tube. Using MATLAB program the equations were solved to present the simulating results. Test bed of pneumatic drying was established, the test results were summed up by single-factor test. It has been found that the simulating results were consistent with data derived from single-factor test, and the pneumatic drying process was divided into two parts which were high-speed drying rate area and slow drying rate area. The effects, including initial water content, hot air temperature, mass of hot air and materiel, on biomass humidity were investigated, in which the most important factor on gas flow drying of straw fuel was the mass flow rate of hot air. The drying effect will be improved with hot air temperature and mass of hot air and material increasing. However, a high initial water content will make the drying effect decrease.%应用颗粒与空气在干燥管内的传热传质机理,建立了秸秆燃料水平管气流干燥数学模型,应用MATLAB进行数值求解得到模拟结果;建立气流干燥试验台,进行单因素试验,得到的模拟结果与试验结果相吻合.并将干燥过程分为快速干燥区和缓慢干燥区.分析了初始含水率、热空气温度和质量流量、物料质量流量对干燥效果的影响,得到热空气质量流量是影响干燥效果的最主要因素.热空气温度和质量流量提高,生物质燃料颗粒质量流量减小,均能提高干燥效果,而较高的初始含水率会延长干燥过程进入缓慢干燥区的时间,从而降低干燥效果.

  15. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment – severity equation

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sørensen, Hanne Risbjerg; Knudsen, Niels Ole;

    2014-01-01

    Background: Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment...... factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature......, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. Results: Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal...

  16. Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example

    NARCIS (Netherlands)

    Hilst, van der F.; Dornburg, V.; Sanders, J.P.M.; Elbersen, B.S.; Graves, A.; Turkenburg, W.C.; Elbersen, H.W.; Dam, van J.M.C.; Faaij, A.

    2010-01-01

    This work assesses the viability of regional biomass chains by comparing the economic performance of potential bioenergy crops with the performance of current agricultural land uses. The biomass chains assessed are ethanol production from Miscanthus and from sugar beet in the North of the Netherland

  17. On the vertical distribution of smoke in the Amazonian atmosphere during the dry season

    Science.gov (United States)

    Marenco, Franco; Johnson, Ben; Langridge, Justin M.; Mulcahy, Jane; Benedetti, Angela; Remy, Samuel; Jones, Luke; Szpek, Kate; Haywood, Jim; Longo, Karla; Artaxo, Paulo

    2016-02-01

    Lidar observations of smoke aerosols have been analysed from six flights of the Facility for Airborne Atmospheric Measurements BAe-146 research aircraft over Brazil during the biomass burning season (September 2012). A large aerosol optical depth (AOD) was observed, typically ranging 0.4-0.9, along with a typical aerosol extinction coefficient of 100-400 Mm-1. The data highlight the persistent and widespread nature of the Amazonian haze, which had a consistent vertical structure, observed over a large distance ( ˜ 2200 km) during a period of 14 days. Aerosols were found near the surface; but the larger aerosol load was typically found in elevated layers that extended from 1-1.5 to 4-6 km. The measurements have been compared to model predictions with the Met Office Unified Model (MetUM) and the ECMWF-MACC model. The MetUM generally reproduced the vertical structure of the Amazonian haze observed with the lidar. The ECMWF-MACC model was also able to reproduce the general features of smoke plumes albeit with a small overestimation of the AOD. The models did not always capture localised features such as (i) smoke plumes originating from individual fires, and (ii) aerosols in the vicinity of clouds. In both these circumstances, peak extinction coefficients of the order of 1000-1500 Mm-1 and AODs as large as 1-1.8 were encountered, but these features were either underestimated or not captured in the model predictions. Smoke injection heights derived from the Global Fire Assimilation System (GFAS) for the region are compatible with the general height of the aerosol layers.

  18. Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites

    Science.gov (United States)

    Esper Angillieri, María Yanina

    2017-01-01

    Rock glaciers are frozen water reservoirs in mountainous areas. Water resources are important for the local populations and economies. The presence of rock glaciers is commonly used as a direct indicator of mountain permafrost conditions. Over 500 active rock glaciers have been identified, showing that elevations between 3500 and 4500 m asl., a south-facing or east-facing aspect, areas with relatively low solar radiation and low mean annual air temperature (-4 to 0 °C) favour the existence of rock glaciers in this region. The permafrost probability model, for Dry Andes of San Juan Province between latitudes 28º30‧S and 32°30‧S, have been analyzed by logistic regression models based on the active rock glaciers occurrence in relation to some topoclimatic variables such as altitude, aspect, mean annual temperature, mean annual precipitation and solar radiation, using optical remote sensing techniques in a GIS environment. The predictive performances of the model have been estimated by known rock glaciers locations and by the area under the receiver operating characteristic curve (AUROC). This regional permafrost map can be applied by the Argentinean Government for their recent initiatives which include creating inventories, monitoring and studying ice masses along the Argentinean Andes. Further, this generated map provides valuable input data for permafrost scenarios and contributes to a better understanding of our geosystem.

  19. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).

    Science.gov (United States)

    Hecht, Vera L; Temperton, Vicky M; Nagel, Kerstin A; Rascher, Uwe; Postma, Johannes A

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  20. Polar organic marker compounds in atmospheric aerosols during the LBA-SMOCC 2002 biomass burning experiment in Rondônia, Brazil: sources and source processes, time series, diel variations and size distributions

    Directory of Open Access Journals (Sweden)

    M. Claeys

    2010-10-01

    Full Text Available Measurements of polar organic marker compounds were performed on aerosols that were collected at a pasture site in the Amazon basin (Rondônia, Brazil using a high-volume dichotomous sampler (HVDS and a Micro-Orifice Uniform Deposit Impactor (MOUDI within the framework of the 2002 LBA-SMOCC (Large-Scale Biosphere Atmosphere Experiment in Amazônia – Smoke Aerosols, Clouds, Rainfall, and Climate: Aerosols From Biomass Burning Perturb Global and Regional Climate campaign. The campaign spanned the late dry season (biomass burning, a transition period, and the onset of the wet season (clean conditions. In the present study a more detailed discussion is presented compared to previous reports on the behavior of selected polar marker compounds, including levoglucosan, malic acid, isoprene secondary organic aerosol (SOA tracers and tracers for fungal spores. The tracer data are discussed taking into account new insights that recently became available into their stability and/or aerosol formation processes. During all three periods, levoglucosan was the most dominant identified organic species in the PM2.5 size fraction of the HVDS samples. In the dry period levoglucosan reached concentrations of up to 7.5 μg m−3 and exhibited diel variations with a nighttime prevalence. It was closely associated with the PM mass in the size-segregated samples and was mainly present in the fine mode, except during the wet period where it peaked in the coarse mode. Isoprene SOA tracers showed an average concentration of 250 ng m−3 during the dry period versus 157 ng m−3 during the transition period and 52 ng m−3 during the wet period. Malic acid and the 2-methyltetrols exhibited a different size distribution pattern, which is consistent with different aerosol formation processes (i.e., gas-to-particle partitioning in the case of malic acid and heterogeneous formation from gas-phase precursors in the case of

  1. Vertical Distribution and Seasonal Variations of Zooplankton Biomass in Longtan Reservoir%龙滩水库浮游动物生物量的垂直分布与季节性变化

    Institute of Scientific and Technical Information of China (English)

    朱俊华; 姚俊杰; 谢巧雄; 晏萍萍; 邹芳芳

    2014-01-01

    为掌握龙滩水库罗甸水域浮游动物生物量的垂直分布和季节变动规律,为龙滩水库不同层次中浮游动物的分布提供科学依据,2011-2012年分4季对龙滩水库罗甸水域浮游生物垂直分布进行分层采样,采样水层为0.5m、2m、4m、6m、8m、10m、15m、20m和30m。结果表明:春季和秋季浮游动物生物量在垂直分层上变化差异较小,而在夏季和冬季变化较显著,尤以夏季为甚,夏季浮游动物生物量和密度的变化范围分别为0.12~2.45 mg/L和92.8~309.2 ind./L;在不同季节,浮游动物生物量最高值出现在不同的水层,浮游动物生物量在垂直水柱上的变化与水温和叶绿素 a含量均不相关。%In order to learn the law of the vertical and seasonal variations of zooplankton in Longtan Reservoir,and provide a scientific basis for distribution of zooplankton. The vertical distribution of plankton species was studied by sampling water at different depths (0.5 m,2 m,4 m,6 m,8 m,10 m,15 m, 20 m and 30 m)in Longtan Reservoir in four seasons from 2011 to 2012.The results showed that the vertical variation of the biomass of zooplankton was relatively small in spring and fall.The obvious variation were found in winter and summer.Especially in summer.The amount and biomass of zooplankton in summer changed between 0.12~2.45 mg/L and 92.8~309.2 ind./L,respectively.The peak value of biomass of zooplankton was found in different depth at different season.An obvious positive correlation was found between the abundance and dry weight of zooplankton.The results also showed that there were no obvious correlations among biomass of zooplankton and temperature of water,or chlorophyll a content.

  2. Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis

    CSIR Research Space (South Africa)

    Van Aardt, JAN

    2006-05-01

    Full Text Available This study assessed a lidar-based, object-oriented (segmentation) approach to forest volume and aboveground biomass modeling. The study area in the Piedmont physiographic region of Virginia is composed of temperate coniferous, deciduous, and mixed...

  3. A coupled phylogeographical and species distribution modelling approach recovers the demographical history of a Neotropical seasonally dry forest tree species.

    Science.gov (United States)

    Collevatti, Rosane G; Terribile, Levi Carina; Lima-Ribeiro, Matheus S; Nabout, João C; de Oliveira, Guilherme; Rangel, Thiago F; Rabelo, Suelen G; Diniz-Filho, Jose A F

    2012-12-01

    We investigated here the demographical history of Tabebuia impetiginosa (Bignoniaceae) to understand the dynamics of the disjunct geographical distribution of South American seasonally dry forests (SDFs), based on coupling an ensemble approach encompassing hindcasting species distribution modelling and statistical phylogeographical analysis. We sampled 17 populations (280 individuals) in central Brazil and analysed the polymorphisms at chloroplast (trnS-trnG, psbA-trnH, and ycf6-trnC intergenic spacers) and nuclear (ITS nrDNA) genomes. Phylogenetic analyses based on median-joining network showed no haplotype sharing among population but strong evidence of incomplete lineage sorting. Coalescent analyses showed historical constant populations size, negligible gene flow among populations, and an ancient time to most recent common ancestor dated from ~4.7 ± 1.1 Myr BP. Most divergences dated from the Lower Pleistocene, and no signal of important population size reduction was found in coalescent tree and tests of demographical expansion. Demographical scenarios were built based on past geographical range dynamic models, using two a priori biogeographical hypotheses ('Pleistocene Arc' and 'Amazonian SDF expansion') and on two additional hypotheses suggested by the palaeodistribution modelling built with several algorithms for distribution modelling and palaeoclimatic data. The simulation of these demographical scenarios showed that the pattern of diversity found so far for T. impetiginosa is in consonance with a palaeodistribution expansion during the last glacial maximum (LGM, 21 kyr BP), strongly suggesting that the current disjunct distribution of T. impetiginosa in SDFs may represent a climatic relict of a once more wide distribution.

  4. Effect of harvest period on foliage production and dry matter distribution in five cassava cultivars during the second plant cycle

    Directory of Open Access Journals (Sweden)

    Edvaldo Sagrilo

    2006-11-01

    Full Text Available The objective of this work was to study the leaf production pattern and dry matter distribution in cassava during the second plant cycle. The completely randomized experimental design with four replications was used, with five cultivars in the main plots and ten harvest times in the sub-plots. Foliage production was affected by plant age, being higher in hot periods. Leaf blades and petioles dry matter content presented a linear increase due to a progressive decrease in the amount of young leaves and ontogenetic factors. The stems provided, temporarily, carbohydrates to the plant re-growth, delaying the availability and use of storage roots dry matter. The dry matter content in the storage roots was lower during the vegetative and higher during rest period. The storage roots diameter increased considerably when the amount of leaves was higher, indicating the importance of leaf area in the cassava plant production.O experimento foi conduzido de outubro de 1997 a maio de 1999, no Noroeste do Paraná, Brasil, com o objetivo de avaliar o padrão de produção de folhas e distribuição de massa seca em 5 cultivares de mandioca, durante o segundo ciclo vegetativo. Utilizou-se o delineamento experimental em blocos casualizados, com 4 repetições, no esquema de parcelas subdivididas, estando as cultivares nas parcelas e as épocas de colheita nas subparcelas. A produção de folhas foi afetada pela idade das plantas, sendo maior nos períodos de temperatura elevada. Os teores de massa seca nos limbos foliares e pecíolos aumentaram linearmente com a idade das plantas, devido à menor proporção de folhas jovens e a fatores ontogênicos inerentes à planta. As hastes proporcionaram, temporariamente, os assimilados necessários para a reestruturação vegetativa das plantas, protelando a disponibilidade e uso dos carboidratos armazenados nas raízes. O teor de massa seca nas raízes foi menor durante o período de crescimento vegetativo e maior

  5. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Vavpetič, P., E-mail: primoz.vavpetic@ijs.si [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Vogel-Mikuš, K. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Jeromel, L. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Ogrinc Potočnik, N. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); FOM-Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); Pongrac, P. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Department of Plant Physiology, University of Bayreuth, Universitätstr. 30, 95447 Bayreuth (Germany); Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M. [Biotechnical Faculty, Department of Biology, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana (Slovenia); Pelicon, P. [Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on–off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm{sup 2} and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  6. Elemental distribution and sample integrity comparison of freeze-dried and frozen-hydrated biological tissue samples with nuclear microprobe

    Science.gov (United States)

    Vavpetič, P.; Vogel-Mikuš, K.; Jeromel, L.; Ogrinc Potočnik, N.; Pongrac, P.; Drobne, D.; Pipan Tkalec, Ž.; Novak, S.; Kos, M.; Koren, Š.; Regvar, M.; Pelicon, P.

    2015-04-01

    The analysis of biological samples in frozen-hydrated state with micro-PIXE technique at Jožef Stefan Institute (JSI) nuclear microprobe has matured to a point that enables us to measure and examine frozen tissue samples routinely as a standard research method. Cryotome-cut slice of frozen-hydrated biological sample is mounted between two thin foils and positioned on the sample holder. The temperature of the cold stage in the measuring chamber is kept below 130 K throughout the insertion of the samples and the proton beam exposure. Matrix composition of frozen-hydrated tissue is consisted mostly of ice. Sample deterioration during proton beam exposure is monitored during the experiment, as both Elastic Backscattering Spectrometry (EBS) and Scanning Transmission Ion Microscopy (STIM) in on-off axis geometry are recorded together with the events in two PIXE detectors and backscattered ions from the chopper in a single list-mode file. The aim of this experiment was to determine differences and similarities between two kinds of biological sample preparation techniques for micro-PIXE analysis, namely freeze-drying and frozen-hydrated sample preparation in order to evaluate the improvements in the elemental localisation of the latter technique if any. In the presented work, a standard micro-PIXE configuration for tissue mapping at JSI was used with five detection systems operating in parallel, with proton beam cross section of 1.0 × 1.0 μm2 and a beam current of 100 pA. The comparison of the resulting elemental distributions measured at the biological tissue prepared in the frozen-hydrated and in the freeze-dried state revealed differences in elemental distribution of particular elements at the cellular level due to the morphology alteration in particular tissue compartments induced either by water removal in the lyophilisation process or by unsatisfactory preparation of samples for cutting and mounting during the shock-freezing phase of sample preparation.

  7. 华北地区夏玉米干物质分配系数的模拟%Simulation on Dry Matter Distribution Coefficient for Summer Maize in North China

    Institute of Scientific and Technical Information of China (English)

    李昊; 谭方颖; 王建林; 谭凯炎; 徐英; 王志伟

    2016-01-01

    干物质分配系数是驱动玉米生长发育模型的关键参数。利用2013年、2014年连续两年在山东夏津、河北固城、山西运城进行的田间试验观测资料,采用比值法、线性回归等订正方法,获取完整的玉米全生育期内生物量序列;在此基础上,以有效积温模拟的发育进程为自变量,构建了华北夏玉米干物质分配的动态变化模型。结果表明:(1)三站玉米干物质分配系数有相同的时间动态变化特征。叶片干物质分配系数从出苗开始持续减少;茎秆干物质分配系数先增后减,最大值出现在抽雄前后;穗棒干物质分配系数在玉米抽雄后持续增加,抽雄后20d左右达到1,即干物质不再向叶茎分配。(2)华北夏玉米生育期内叶、茎的干物质分配系数均可用分段式非线性模型模拟。叶的干物质分配系数以抽雄后10~15d为界,之前干物质分配系数随发育进程可用三次多项式动态模型模拟,之后变为0;茎的干物质分配系数以抽雄后20~25d为界,之前干物质分配系数随发育进程可用四次多项式动态模型模拟,之后变为0;穗棒干物质分配系数通过依据任意发育阶段叶、茎、穗棒的干物质分配系数之和为1的原则计算求得。检验结果表明华北地区夏玉米干物质分配系数动态模型模拟效果良好。%Dry matter distribution coefficient was a key parameter for driving maize growth model. Based on the field experimental data of two consecutive years (2013 and 2014) in Xiajin, Shandong province, Gucheng, Hebei province and Yuncheng, Shanxi province, the biomass sequence in the whole growth duration of maize was obtained by using the ratio method and linear regression correction method. On such a basis, the dynamic change model of dry matter distribution for summer maize in North China was established by taking the development stage of effective simulation of accumulated

  8. Analysing biomass torrefaction supply chain costs.

    Science.gov (United States)

    Svanberg, Martin; Olofsson, Ingemar; Flodén, Jonas; Nordin, Anders

    2013-08-01

    The objective of the present work was to develop a techno-economic system model to evaluate how logistics and production parameters affect the torrefaction supply chain costs under Swedish conditions. The model consists of four sub-models: (1) supply system, (2) a complete energy and mass balance of drying, torrefaction and densification, (3) investment and operating costs of a green field, stand-alone torrefaction pellet plant, and (4) distribution system to the gate of an end user. The results show that the torrefaction supply chain reaps significant economies of scale up to a plant size of about 150-200 kiloton dry substance per year (ktonDS/year), for which the total supply chain costs accounts to 31.8 euro per megawatt hour based on lower heating value (€/MWhLHV). Important parameters affecting total cost are amount of available biomass, biomass premium, logistics equipment, biomass moisture content, drying technology, torrefaction mass yield and torrefaction plant capital expenditures (CAPEX).

  9. Predicting the responses of forest distribution and aboveground biomass to climate change under RCP scenarios in southern China.

    Science.gov (United States)

    Dai, Erfu; Wu, Zhuo; Ge, Quansheng; Xi, Weimin; Wang, Xiaofan

    2016-11-01

    In the past three decades, our global climate has been experiencing unprecedented warming. This warming has and will continue to significantly influence the structure and function of forest ecosystems. While studies have been conducted to explore the possible responses of forest landscapes to future climate change, the representative concentration pathways (RCPs) scenarios under the framework of the Coupled Model Intercomparison Project Phase 5 (CMIP5) have not been widely used in quantitative modeling research of forest landscapes. We used LANDIS-II, a forest dynamic landscape model, coupled with a forest ecosystem process model (PnET-II), to simulate spatial interactions and ecological succession processes under RCP scenarios, RCP2.6, RCP4.5 and RCP8.5, respectively. We also modeled a control scenario of extrapolating current climate conditions to examine changes in distribution and aboveground biomass (AGB) among five different forest types for the period of 2010-2100 in Taihe County in southern China, where subtropical coniferous plantations dominate. The results of the simulation show that climate change will significantly influence forest distribution and AGB. (i) Evergreen broad-leaved forests will expand into Chinese fir and Chinese weeping cypress forests. The area percentages of evergreen broad-leaved forests under RCP2.6, RCP4.5, RCP8.5 and the control scenarios account for 18.25%, 18.71%, 18.85% and 17.46% of total forest area, respectively. (ii) The total AGB under RCP4.5 will reach its highest level by the year 2100. Compared with the control scenarios, the total AGB under RCP2.6, RCP4.5 and RCP8.5 increases by 24.1%, 64.2% and 29.8%, respectively. (iii) The forest total AGB increases rapidly at first and then decreases slowly on the temporal dimension. (iv) Even though the fluctuation patterns of total AGB will remain consistent under various future climatic scenarios, there will be certain responsive differences among various forest types. © 2016

  10. BOREAS RSS-15 SIR-C and Landsat TM Biomass and Landcover Maps of the NSA

    Science.gov (United States)

    Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Ranson, K. Jon

    2000-01-01

    As part of BOREAS, the RSS-15 team conducted an investigation using SIR-C, X-SAR, and Landsat TM data for estimating total above-ground dry biomass for the SSA and NSA modeling grids and component biomass for the SSA. Relationships of backscatter to total biomass and total biomass to foliage, branch, and bole biomass were used to estimate biomass density across the landscape. The procedure involved image classification with SAR and Landsat TM data and development of simple mapping techniques using combinations of SAR channels. For the SSA, the SIR-C data used were acquired on 06-Oct-1994, and the Landsat TM data used were acquired on 02-Sep-1995. The maps of the NSA were developed from SIR-C data acquired on 13-Apr-1994. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  11. Distribution, abundance and biomass of Chaetognaths off São Sebastião region, Brazil in February 1994

    Directory of Open Access Journals (Sweden)

    Tsui-Hua Liang

    2002-01-01

    Full Text Available The distribution, abundance, biomass, population structure and feeding habits of chaetognaths collected off São Sebastião region, Brazil, in February 1994 are described. Bongo nets were hauled obliquely to collect zooplankton samples. Forty-three samples obtained with the 333 urn mesh were analysed. In this study, 7 chaetognath species belonging to two genera were identified. Sagitta friderici, S. tenuis and S. bipunctata were grouped into the neritic category, and Sagitta enflata, S. hispida, S. minima and Krohnita pacifica into the semi-neritic group. The analysis of the community structure distinguished 3 zones: 1 a nearshore zone evidenced by low richness; 2 an offshore zone evidenced by higher number of species and 3 another offshore zone, located south and south-westward of São Sebastião Island, characterised by higher richness but with dominance of one species. The nearshore zone was dominated by the neritic species S. friderici and S. tenuis, whereas the offshore zone was dominated by S. enflata. Abundance and biomass increase from nearshore toward offshore zones by about two orders of magnitude. Gut content analysis revealed over 90% of empty guts. The chaetognath population was composed mainly of juveniles. The diets among the different chaetognath species was very similar, composed mostly of small copepods and appendicularians.No presente trabalho foram estudados a distribuição, abundância, biomassa, estrutura da população e hábito alimentar dos quetógnatos coletados na região de São Sebastião, Brasil, em fevereiro de 1994. As 43 amostras de zooplâncton utilizadas na elaboração deste trabalho foram obtidas através de arrastos oblíquos usando uma rede Bongô (333 um, providas de fluxômetro. Foram identificadas sete espécies de Chaetognatha pertencentes a dois gêneros. Sagitta friderici, S. tenuis e S. bipunctata foram agrupadas como espécies neríticas, enquanto que Sagitta enflata, S. hispida, S. minima e

  12. Theoretical and Experimental Evaluation of the Temperature Distribution in a Dry Type Air Core Smoothing Reactor of HVDC Station

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2017-05-01

    Full Text Available The outdoor ultra-high voltage (UHV dry-type air-core smoothing reactors (DASR of High Voltage Direct Current systems are equipped with a rain cover and an acoustic enclosure. To study the convective heat transfer between the DASR and the surrounding air, this paper presents a coupled model of the temperature and fluid field based on the structural features and cooling manner. The resistive losses of encapsulations calculated by finite element method (FEM were used as heat sources in the thermal analysis. The steady fluid and thermal field of the 3-D reactor model were solved by the finite volume method (FVM, and the temperature distribution characteristics of the reactor were obtained. Subsequently, the axial and radial temperature distributions of encapsulation were investigated separately. Finally, an optical fiber temperature measurement scheme was used for an UHV DASR under natural convection conditions. Comparative analysis showed that the simulation results are in good agreement with the experimental data, which verifies the rationality and accuracy of the numerical calculation. These results can serve as a reference for the optimal design and maintenance of UHV DASRs.

  13. Exploiting the power law distribution properties of satellite fire radiative power retrievals: A method to estimate fire radiative energy and biomass burned from sparse satellite observations

    Science.gov (United States)

    Kumar, S. S.; Roy, D. P.; Boschetti, L.; Kremens, R.

    2011-10-01

    Instantaneous estimates of the power released by fire (fire radiative power, FRP) are available with satellite active fire detection products. The temporal integral of FRP provides an estimate of the fire radiative energy (FRE) that is related linearly to the amount of biomass burned needed by the atmospheric emissions modeling community. The FRE, however, is sensitive to satellite temporal and spatial FRP undersampling due to infrequent satellite overpasses, cloud and smoke obscuration, and failure to detect cool and/or small fires. Satellite FRPs derived over individual burned areas and fires have been observed to exhibit power law distributions. This property is exploited to develop a new way to derive FRE, as the product of the fire duration and the expected FRP value derived from the FRP power law probability distribution function. The method is demonstrated and validated by the use of FRP data measured with a dual-band radiometer over prescribed fires in the United States and by the use of FRP data retrieved from moderate resolution imaging spectroradiometer (MODIS) active-fire detections over Brazilian deforestation and Australian savanna fires. The biomass burned derived using the conventional FRP temporal integration and power law FRE estimation methods is compared with biomass burned measurements (prescribed fires) and available fuel load information reported in the literature (Australian and Brazilian fires). The results indicate that the FRE power law derivation method may provide more reliable burned biomass estimates under sparse satellite FRP sampling conditions and correct for satellite active-fire detection omission errors if the FRP power law distribution parameters and the fire duration are known.

  14. Effect of rainfall interannual variability on the biomass and soil water distribution in a semiarid shrub community

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The dynamics of biomass and soil moisture in semiarid land is driven by both the current rainfall and the ecosystem memory.Based on a meta-analysis of existing experiments,an ecosystem model was used to calculate the effect of the rainfall interannual variability on the pattern of biomass and soil moisture in a shrub community.It was found that rainfall interannual variability enabled shrubs to be more competitive than grasses,and to maintain the dominant role over a longer time.The rainfall interannual variability resulted in complex soil moisture dynamics.The soil water recharge in wet years alternated with discharge in drought years.

  15. A Comparison of Producer Gas, Biochar, and Activated Carbon from Two Distributed Scale Thermochemical Conversion Systems Used to Process Forest Biomass

    Directory of Open Access Journals (Sweden)

    Nathaniel Anderson

    2013-01-01

    Full Text Available Thermochemical biomass conversion systems have the potential to produce heat, power, fuels and other products from forest biomass at distributed scales that meet the needs of some forest industry facilities. However, many of these systems have not been deployed in this sector and the products they produce from forest biomass have not been adequately described or characterized with regards to chemical properties, possible uses, and markets. This paper characterizes the producer gas, biochar, and activated carbon of a 700 kg h−1 prototype gasification system and a 225 kg h−1 pyrolysis system used to process coniferous sawmill and forest residues. Producer gas from sawmill residues processed with the gasifier had higher energy content than gas from forest residues, with averages of 12.4 MJ m−3 and 9.8 MJ m−3, respectively. Gases from the pyrolysis system averaged 1.3 MJ m−3 for mill residues and 2.5 MJ m−3 for forest residues. Biochars produced have similar particle size distributions and bulk density, but vary in pH and carbon content. Biochars from both systems were successfully activated using steam activation, with resulting BET surface area in the range of commercial activated carbon. Results are discussed in the context of co-locating these systems with forest industry operations.

  16. Hot and Dry Cleaning of Biomass-Gasified Gas Using Activated Carbons with Simultaneous Removal of Tar, Particles, and Sulfur Compounds

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-05-01

    Full Text Available This study proposes a gas-cleaning process for the simultaneous removal of sulfur compounds, tar, and particles from biomass-gasified gas using Fe-supported activated carbon and a water-gas shift reaction. On a laboratory scale, the simultaneous removal of H2S and COS was performed under a mixture of gases (H2/CO/CO2/CH4/C2H4/N2/H2S/COS/steam. The reactions such as COS + H2 → H2S + CO and COS + H2O → H2S + CO2 and the water-gas shift reaction were promoted on the Fe-supported activated carbon. The adsorption capacity with steam was higher than that without steam. On a bench scale, the removal of impurities from a gas derived from biomass gasification was investigated using two activated filters packed with Fe-supported activated carbon. H2S and COS, three- and four-ring polycyclic aromatic hydrocarbons (PAHs, and particles were removed and a water-gas shift reaction was promoted through the first filter at 320–350 °C. The concentrations of H2S and COS decreased to less than 0.1 ppmv. Particles and the one- and two-ring PAHs, except for benzene, were then removed through the second filter at 60–170 °C. The concentration of tar and particles decreased from 2428 to 102 mg Nm−3 and from 2244 to 181 mg Nm−3, respectively.

  17. In situ NMR spectroscopy: inulin biomass conversion in ZnCl₂ molten salt hydrate medium-SnCl₄ addition controls product distribution.

    Science.gov (United States)

    Wang, Yingxiong; Pedersen, Christian Marcus; Qiao, Yan; Deng, Tiansheng; Shi, Jing; Hou, Xianglin

    2015-01-22

    The dehydration of inulin biomass to the platform chemicals, 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA), in ZnCl2 molten salt hydrate medium was investigated. The influence of the Lewis acid catalyst, SnCl4, on the product distribution was examined. An in situ(1)H NMR technique was employed to follow the reaction at the molecular level. The experimental results revealed that only 5-HMF was obtained from degradation of inulin biomass in ZnCl2 molten salt hydrate medium, while the LA was gradually becoming the main product when the reaction temperature was increased in the presence of the Lewis acid catalyst SnCl4. In situ NMR spectroscopy could monitor the reaction and give valuable insight.

  18. Spatial distribution and biomass of aquatic rooted macrophytes and their relevance in the metabolism of a Mediterranean coastal lagoon

    Directory of Open Access Journals (Sweden)

    Biel Obrador

    2007-03-01

    Full Text Available This work aims to characterise the current autotrophic compartment of the Albufera des Grau coastal lagoon (Menorca, Balearic Islands and to assess the relationship between the submerged macrophytes and the limnological parameters of the lagoon. During the study period the submerged vegetation was dominated by the macrophyte Ruppia cirrhosa, which formed dense extensive meadows covering 79% of the surface. Another macrophyte species, Potamogeton pectinatus, was also observed but only forming small stands near the rushing streams. Macroalgae were only occasionally observed. Macrophyte biomass showed a clear seasonal trend, with maximum values in July. The biomass of R. cirrhosa achieved 1760 g DW m-2, the highest biomass ever reported for this species in the literature. The seasonal production-decomposition cycle of the macrophyte meadows appears to drive the nutrient dynamics and carbon fluxes in the lagoon. Despite the significant biomass accumulation and the absence of a washout of nutrients and organic matter to the sea, the lagoon did not experience a dystrophic collapse. These results indicate that internal metabolism is more important than exchange processes in the lagoon.

  19. The influence of boreal biomass burning emissions on the distribution of tropospheric ozone over North America and the North Atlantic during 2010

    Directory of Open Access Journals (Sweden)

    M. Parrington

    2012-02-01

    Full Text Available We have analysed the sensitivity of the tropospheric ozone distribution over North America and the North Atlantic to boreal biomass burning emissions during the summer of 2010 using the GEOS-Chem 3-D global tropospheric chemical transport model and observations from in situ and satellite instruments. We show that the model ozone distribution is consistent with observations from the Pico Mountain Observatory in the Azores, ozonesondes across Canada, and the Tropospheric Emission Spectrometer (TES and Infrared Atmospheric Sounding Instrument (IASI satellite instruments. Mean biases between the model and observed ozone mixing ratio in the free troposphere were less than 10 ppbv. We used the adjoint of GEOS-Chem to show the model ozone distribution in the free troposphere over Maritime Canada is largely sensitive to NOx emissions from biomass burning sources in Central Canada, lightning sources in the central US, and anthropogenic sources in the eastern US and south-eastern Canada. We also used the adjoint of GEOS-Chem to evaluate the Fire Locating And Monitoring of Burning Emissions (FLAMBE inventory through assimilation of CO observations from the Measurements Of Pollution In The Troposphere (MOPITT satellite instrument. The CO inversion showed that, on average, the FLAMBE emissions needed to be reduced to 89% of their original values, with scaling factors ranging from 12% to 102%, to fit the MOPITT observations in the boreal regions. Applying the CO scaling factors to all species emitted from boreal biomass burning sources led to a decrease of the model tropospheric distributions of CO, PAN, and NOx by as much as −20 ppbv, −50 pptv, and −20 pptv respectively. The modification of the biomass burning emission estimates reduced the model ozone distribution by approximately −3 ppbv (−8% and on average improved the agreement of the model ozone distribution compared to the observations throughout the free troposphere

  20. Biomass, Carbon and Nitrogen Distribution in Living Woody Plant Parts of Robinia pseudoacacia L. Growing on Reclamation Sites in the Mining Region of Lower Lusatia (Northeast Germany

    Directory of Open Access Journals (Sweden)

    Ansgar Quinkenstein

    2012-01-01

    Full Text Available In the lignite mining region of Lower Lusatia (NE-Germany, Robinia pseudoacacia L. is an increasingly popular tree for the biomass production with short rotation coppices (SRCs on reclamation sites. In order to evaluate biomass production, C and N allocation patterns in R. pseudoacacia stands between shoot, stump, coarse, and fine roots samples were collected from seedlings and three adjacent plantations and plants that were one, two and twelve years old. Results indicated that the summarized average dry matter production (DM of the woody plant parts increased with plant age up to 7.45 t DM ha−1 yr−1 with a corresponding shoot increment of up to 4.77 t DM ha−1 yr−1 in the twelve-year-old stands. The shoot to root ratio changed from 0.2 for the one-year-old trees to 2.0 in the twelve-year-old plantation, whereby an average amount of 3.4 t C ha−1 yr−1 and 0.1 t N ha−1 yr−1 was annually bound in the living woody plant parts over the period of twelve years. Summing up, the results suggest a high potential for C and N storage of R. pseudoacacia what is also beneficial for land reclamation due to positive implications on soil humus and general site fertility.

  1. Dry Eye

    Science.gov (United States)

    ... Eye > Facts About Dry Eye Facts About Dry Eye This information was developed by the National Eye ... the best person to answer specific questions. Dry Eye Defined What is dry eye? Dry eye occurs ...

  2. Sediments of the Dry Tortugas, south Florida, USA: Facies distribution on a ramp-like isolated carbonate platform

    Science.gov (United States)

    Gischler, Eberhard; Isaack, Anja; Hudson, J. Harold

    2017-04-01

    Four sedimentary facies may be delineated based on quantitative analysis of texture and composition of modern surface sediments on the Dry Tortugas carbonate platform. These include (1) mollusk-Halimeda wackestone, (2) mollusk packstone-to-grainstone, (3) coralgal-Halimeda grainstone, and (4) coralgal grainstone. Even though the Tortugas platform is characterized by an open circulation due to deep, broad marginal channels and a lack of a continuous surface-breaking marginal reef, facies are not distributed at random and show bathymetrical zonation. Also, facies appear to cover wide belts rather than forming a mosaic. Mollusk-Halimeda wackestone occurs in protected platform interior areas ca. 10-18 m deep. Mollusk packstone-to-grainstone occurs in more open platform interior settings adjacent to channels and in deeper outer reef areas of 14-25 m water depth. Coralgal-Halimeda grainstone is found on shallow marginal shoals (1-11 m deep), and coralgal grainstone on the somewhat deeper (3-16 m), seaward edges of these shoals. However, there is bathymetrical overlap of facies in intermediate depths of ca. 5-17 m. This limitation has implications for the interpretation of the fossil record, because changes in water depth are commonly thought to be reflected in facies changes, e.g., in sequence stratigraphy. Comparison with previous sediment studies of the 1930s, 1960s, and 1970s in the area exhibit a decrease in coral fragments and increases in coralline algal and mollusk shell fragments. These observations might be a result of environmental changes such as coral decline and die-outs during temperature events, disease, and the increase in macroalgae (due to the ecological extinction of the echinoid Diadema). The results suggest that more long-term studies are needed that further explore the influence of environmental change on reef sediment composition. Dry Tortugas surface sediments consist of lower portions of Halimeda plates and mollusk shell fragments and higher

  3. Partitioning and granulometric distribution of metal leachate from urban traffic dry deposition particulate matter subject to acidic rainfall and runoff retention.

    Science.gov (United States)

    Sansalone, J; Ying, G

    2008-09-01

    Vehicular transportation coupled with urban hydrology is a significant source as well as vector of particulate matter (PM) and particulate-bound metal inventories in urban systems. This study examines the granulometric distribution of metals from dry deposition PM generated from 17 dryfall periods and equilibrium metal partitioning with runoff PM distribution from eight rainfall-runoff events at an urban inter-state watershed in Baton Rouge, LA. Dry deposition PM is a coarse non-uniform gradation with a d(50 m)=304 microm and a peak surface area at 106 microm. Results indicate acid rain is not a significant metal contributor to runoff but is capable of leaching metals from PM to runoff. Retained runoff partitioning resulted in particulate-bound predominance for As, Cd, Cr, Cu, Pb, and Zn while Ca and Mg remained predominately dissolved. The finer PM fraction (75 microm). This coarse fraction is also the most labile when exposed to acidic rainfall; generating up to 90% of the total metal mass leached from the entire PM gradation. Comparing dry deposition and runoff PM of equal mass and size gradation, retained runoff PM is enriched with metals (except Pb). Results indicate the labile coarse fraction of dry deposition PM can be a significant source of metal leaching while runoff PM (mobilized dry deposition PM) stored in a BMP can be metal-enriched with the potential for re-leaching or scour.

  4. Kinetic investigation for slow combustion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S. [Istanbul Technical Univ., Istanbul (Turkey). Dept. of Chemical Engineering, Faculty of Chemical and Metallurgical Engineering

    2006-07-01

    The renewed interest in biomass as a renewable, clean, and inexpensive fuel was discussed. Many different mechanisms take place simultaneously during biomass combustion and also during other thermal processes such as gasification, pyrolysis or carbonization. These mechanisms have a pronounced influence on the design and operation of thermal conversion processes. In addition, product yields and product distributions from the thermal processes are sensitive to the kinetic properties of biomass. In order to evaluate the combustion mechanisms and the combustion kinetics of biomass, the behavior of these constituents under combustion conditions were properly evaluated. In this study, combustion of biomass samples was carried out in a thermogravimetric analyzer by heating them from ambient to 1173 K with heating rates of 5 K/min and 10 K/min under dynamic dry air atmosphere of 40 mL/min. The biomass samples included olive refuse, sunflower seed shell, rapeseed, grape seed, and hybrid poplar. The purpose of the study was to examine the kinetic properties of biomass during slow combustion for the overall combustion process as well as for some definite temperature intervals at which different combustion mechanisms are present according to the type and complexity of biomass used. Derivative thermogravimetric analysis (DTG) curves were derived, and data obtained from these curves were used to compute the kinetic parameters such as activation energy, pre-exponential factor, and governing mechanisms for the combustion processes. The governing mechanisms for individual temperature intervals were examined along with the overall combustion process. The study showed that at lower temperature intervals, the combustion process was controlled primarily by the chemical reaction. At least 3 sequential mechanisms may occur at different temperature intervals during combustion of biomass. Activation energy and pre-exponential factors were determined for each temperature interval

  5. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  6. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest.

    Science.gov (United States)

    Paredes, Omar Stalin Landázuri; Norris, Darren; Oliveira, Tadeu Gomes de; Michalski, Fernanda

    2017-01-01

    Terrestrial vertebrate frugivores constitute one of the major guilds in tropical forests. Previous studies show that the meso-scale distribution of this group is only weakly explained by variables such as altitude and tree basal area in lowland Amazon forests. For the first time we test whether seasonally limiting resources (water and fallen fruit) affect the dry season distribution in 25 species of terrestrial vertebrates. To examine the effects of the spatial availability of fruit and water on terrestrial vertebrates we used a standardized, regularly spaced arrangement of camera-traps within 25km2 of lowland Amazon forest. Generalized linear models (GLMs) were then used to examine the influence of four variables (altitude, distance to large rivers, distance to nearest water, and presence vs absence of fruits) on the number of photos on five functional groups (all frugivores, small, medium, large and very large frugivores) and on seven of the most abundant frugivore species (Cuniculus paca, Dasyprocta leporina, Mazama americana, Mazama nemorivaga, Myoprocta acouchy, Pecari tajacu and Psophia crepitans). A total of 279 independent photos of 25 species were obtained from 900 camera-trap days. For most species and three functional groups, the variation in the number of photos per camera was significantly but weakly explained by the GLMs (deviance explained ranging from 6.2 to 48.8%). Generally, we found that the presence of water availability was more important than the presence of fallen fruit for the groups and species studied. Medium frugivores, large-bodied frugivores, and two of the more abundant species (C. paca and P. crepitans) were recorded more frequently closer to water bodies; while none of the functional groups nor the most abundant species showed any significant relationship with the presence of fallen fruit. Two functional groups and two of the seven most common frugivore species assessed in the GLMs showed significant results with species

  7. Annual variations of biomass and photosynthesis in Zostera marina at its southern end of distribution in the North Pacific

    Science.gov (United States)

    Cabello-Pasini, Alejandro; Munoz-Salazar, R.; Ward, D.H.

    2003-01-01

    Density, biomass, morphology, phenology and photosynthetic characteristics of Zostera marina were related to continuous measurements of in situ irradiance, attenuation coefficient and temperature at three coastal lagoons in Baja California, Mexico. In situ irradiance was approximately two-fold lower at San Quintin Bay (SQ) than at Ojo de Liebre Lagoon (OL) and San Ignacio Lagoon (SI). As a consequence of the greater irradiance, plants at OL and SI were established 1 m deeper within the water column than those at SQ. At SQ, there was a four-fold variation in biomass of Z. marina caused by changes on shoot length and not shoot density, while at OL and SI biomass and shoot length did not fluctuate significantly throughout the year. Reproductive shoot density reached maximum values concomitantly with the greatest irradiance during spring-summer, however, the density was approximately three-fold greater at SQ than at the southern coastal lagoons. While irradiance levels were two-fold greater at the southern lagoons, in general, photosynthetic characteristics were similar among all three lagoons. The hours of light saturated photosynthesis, calculated from their photosynthetic characteristics and irradiance measurements, suggest that photosynthesis of shoots from OL and SI are saturated for more than 6 h per day throughout the year, while shoots from SQ are likely light limited during approximately 15% of the year. Consequently, an increase in attenuation coefficient values in the water column will likely decrease light availability to Z. marina plants at SQ, potentially decreasing their survival. ?? 2003 Elsevier Science B.V. All rights reserved.

  8. Evaluation of relative distribution and risk factors in patients with dry socket referring to Yazd dental clinics

    Directory of Open Access Journals (Sweden)

    Hasan Momeni

    2011-01-01

    Conclusion: The results of our study suggested that trauma during surgery or extraction and poor oral hygiene are important factors that increase the incidence of dry socket, these factors should be considered before and after tooth extractions.

  9. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    , enzymatic hydrolysis, and product fermentation options. Biomass Recalcitrance is essential reading for researchers, process chemists and engineers working in biomass conversion, also plant scientists working in cell wall biology and plant biotechnology. This book examines the connection between biomass...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  10. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential.

    Science.gov (United States)

    Laureysens, I; De Temmerman, L; Hastir, T; Van Gysel, M; Ceulemans, R

    2005-02-01

    Short rotation coppice cultures (SRC) are intensively managed, high-density plantations of multi-shoot trees. In April 1996, an SRC field trial with 17 different poplar clones was established in Boom (Belgium) on a former waste disposal site. In December 1996 and January 2001, all shoots were cut back to a height of 5 cm to create a coppice culture. For six clones, wood and bark were sampled at the bottom, middle and top of a shoot in August and November 2002. No significant height effect of metal concentration was found, but for wood, metal concentrations generally increased toward the top of the shoot in August, and decreased toward the top of the shoot in November. Phytoextraction potential of a clone was primarily determined by metal concentration and by biomass production. Shoot size and number of shoots per stool were less important, as a high biomass production could be achieved by producing a few large shoots or many smaller shoots. Clone Fritzi Pauley accumulated 1.4 kg ha(-1) of Al over two years; Wolterson and Balsam Spire showed a relatively high accumulation of Cd and Zn, i.e. averaging, respectively 47 and 57 g ha(-1) for Cd and 2.4 and 2.0 kg ha(-1) for Zn over two years.

  11. Seasonal and spatial distribution of Bacterioplankton in a fluvial-lagunar system of a tropical region: density, biomass, cellular volume and morphologic variation

    Directory of Open Access Journals (Sweden)

    Magnólia Fernandes Florêncio de Araújo

    2008-02-01

    Full Text Available The temporal and spatial fluctuations of Bacterioplankton in a fluvial-lagunar system of a tropical region (Pitimbu River and Jiqui Lake, RN were studied during the dry and the rainy periods. The bacterial abundance varied from 2.67 to 5.1 Cells10(7mL-1 and did not show a typical temporal variation, presenting only small oscillations between the rainy and the dry periods. The bacterial biomass varied from 123 µgC L-1 to 269 µgC L-1 in the sampling sites and the average cellular volume varied from 0.12 to 0.54µm³, showing a predominance of the rods. The temperature showed a positive correlation with the cellular volume of the rods (R=0.55; p=0.02 and vibrio (R=0.53; p=0.03. Significant spatial differences of biomass (Mann Whitney: p=0.01 and cellular volume of the morphotypes (Mann Whitney: p=0.003 were found between the sampling sites. The strong positive correlations of the water temperature and oxygen with bacterioplankton showed a probable high bacterial activity in this system.A variação temporal e espacial do bacterioplâncton em um sistema fluvial-lagunar de região tropical foi estudada em períodos seco e chuvoso. As médias da abundância bacteriana variaram de 2,67 a 5,1 x 10(7 e não exibiram uma variação temporal marcante, tendo apresentado apenas pequenas oscilações entre os períodos chuvoso e seco. A biomassa bacteriana variou de 123 µg C L-1 a 269 µg C L-1 entre os locais de coleta e o volume celular médio de 0,12µm³ a 0,54µm³, ocorrendo predominância de bacilos. A temperatura mostrou correlação positiva com o volume celular de bacilos (R=0,55; p=0,02 e de vibriões (R=0,53; p=0,03. Foram encontradas diferenças espaciais significativas de biomassa (Mann Whitney: p=0,01 e volume celular dos morfotipos (Mann Whitney: p= 0,003, entre os locais de coleta. As fortes correlações positivas da temperatura da água e do oxigênio, com o bacterioplâncton, são sugestivas de uma provavelmente elevada atividade

  12. Transmission and Distribution of Photosymthetically Active Radiation (PAR) for Biomass Production in Exploration Missions [7216-050] Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a plant lighting system which collects, transmits and distributes photosynthetically active radiation (PAR) for...

  13. Transmission and Distribution of Photosynthetically Active Radiation (PAR) for Biomass Production in Exploration Missions [7226-270] Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop a plant lighting system which collects, transmits and distributes photosynthetically active radiation (PAR) for...

  14. Distribution of microbial biomass and the potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xueju; Kennedy, David W.; Peacock, Aaron D.; McKinley, James P.; Resch, Charles T.; Fredrickson, Jim K.; Konopka, Allan

    2012-02-01

    Subsurface sediments were recovered from a 52 m deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9-17.4 m), the oxic fine-grained upper Ringold Formation (17.7-18.1 m), and the reduced Ringold Formation (18.3-52m). Microbial biomass (measured as phospholipid) ranged from 7-974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene encoding nitrous oxide reductase had an abundance of 5-17% relative to total 16S rRNA genes below 18.3 m and <5% above 18.1 m. Most nosZ sequences were affiliated with Ochrobactrum anthropi (97% sequence similarity) or had a nearest neighbor of Achromobacter xylosoxidans (90% similarity). Passive multilevel sampling of groundwater geochemistry demonstrated a redox gradient in the 1.5 m region between the Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum sp.. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling.

  15. Biomass recalcitrance

    DEFF Research Database (Denmark)

    Felby, Claus

    2009-01-01

    Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes - this co......Alternative and renewable fuels derived from lignocellulosic biomass offer a promising alternative to conventional energy sources, and provide energy security, economic growth, and environmental benefits. However, plant cell walls naturally resist decomposition from microbes and enzymes...... - this collective resistance is known as "biomass recalcitrance." Breakthrough technologies are needed to overcome barriers to developing cost-effective processes for converting biomass to fuels and chemicals. This book examines the connection between biomass structure, ultrastructure, and composition......, to resistance to enzymatic deconstruction, with the aim of discovering new cost-effective technologies for biorefineries. It contains chapters on topics extending from the highest levels of biorefinery design and biomass life-cycle analysis, to detailed aspects of plant cell wall structure, chemical treatments...

  16. ABOVEGROUND BIOMASS DISTRIBUTION OF US EASTERN HARDWOOD FORESTS AND THE USE OF LARGE TREES AS AN INDICATOR OF FOREST DEVELOPMENT

    Science.gov (United States)

    Past clearing and harvesting of the deciduous hardwood forests of eastern USA released large amount of carbon dioxide into the atmosphere, but through recovery and regrowth these forests are now accumulating atmospheric carbon (C). This study examined quantities and distribution ...

  17. Development of a modified independent parallel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels.

    Science.gov (United States)

    Sfakiotakis, Stelios; Vamvuka, Despina

    2015-12-01

    The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The artificial and natural isotopes distribution in sedge (Carex L.) biomass from the Yenisei River flood-plain: Adaptation of the sequential elution technique.

    Science.gov (United States)

    Kropacheva, Marya; Melgunov, Mikhail; Makarova, Irina

    2017-02-01

    The study of migration pathways of artificial isotopes in the flood-plain biogeocoenoses, impacted by the nuclear fuel cycle plants, requires determination of isotope speciations in the biomass of higher terrestrial plants. The optimal method for their determination is the sequential elution technique (SET). The technique was originally developed to study atmospheric pollution by metals and has been applied to lichens, terrestrial and aquatic bryophytes. Due to morphological and physiological differences, it was necessary to adapt SET for new objects: coastal macrophytes growing on the banks of the Yenisei flood-plain islands in the near impact zone of Krasnoyarsk Mining and Chemical Combine (KMCC). In the first version of SET, 20 mM Na2EDTA was used as a reagent at the first stage; in the second version of SET, it was 1 M CH3COONH4. Four fractions were extracted. Fraction I included elements from the intercellular space and those connected with the outer side of the cell wall. Fraction II contained intracellular elements; fraction III contained elements firmly bound in the cell wall and associated structures; fraction IV contained insoluble residue. Adaptation of SET has shown that the first stage should be performed immediately after sampling. Separation of fractions III and IV can be neglected, since the output of isotopes into the IV fraction is at the level of error detection. The most adequate version of SET for terrestrial vascular plants is the version using 20 mM Na2EDTA at the first stage. Isotope (90)Sr is most sensitive to the technique changes. Its distribution depends strongly on both the extractant used at stage 1 and duration of the first stage. Distribution of artificial radionuclides in the biomass of terrestrial vascular plants can vary from year to year and depends significantly on the age of the plant.

  19. Biomassa microbiana em amostras umedecidas após secagem ao ar de solos de toposeqüência de pastagens Microbial biomass in air dried and moisturized soil samples from toposequences of pasture

    Directory of Open Access Journals (Sweden)

    Antonio Samarão Gonçalves

    2007-07-01

    Full Text Available Neste experimento avaliou-se o carbono da biomassa microbiana do solo (C-BMS em diferentes solos sob topossequência de pastagem e a viabilidade de utilizar amostras condicionadas na forma de terra fina seca ao ar (TFSA. Observou-se para C-BMS, separação dos conteúdos entre os diferentes tipos de solo. A época de inverno favoreceu a C-BMS, elevando-se em 60% em relação ao verão. Na comparação realizada entre os solos preparados na forma de TFSA e com a metodologia de fumigação-extração não se detectou diferença significativa, encontrando-se correlações significativas para os dois métodos de preparo das amostras, o que estabelece um panorama promissor no uso desta metodologia, embora seja necessário maior aprofundamento neste aspecto.In this experiment we evaluated microbial biomass carbon (C-SMB from different soils under toposequences of pasture and the viability of the use of air dried soil samples (ADSS. C-SMB showed separation of values between different soil types. Winter season favored C-SMB being 60% higher in relation to summer. In comparison between the two soil sample preparation methods, ADSS and the classical one, there was no statistical. Significant correlations were observed between the two methods. This gives a positive perspective to the use of this new approach, even thought more study is necessary.

  20. Measuring bulrush culm relationships to estimate plant biomass within a southern California treatment wetland

    Science.gov (United States)

    Daniels, Joan S. (Thullen); Cade, Brian S.; Sartoris, James J.

    2010-01-01

    Assessment of emergent vegetation biomass can be time consuming and labor intensive. To establish a less onerous, yet accurate method, for determining emergent plant biomass than by direct measurements we collected vegetation data over a six-year period and modeled biomass using easily obtained variables: culm (stem) diameter, culm height and culm density. From 1998 through 2005, we collected emergent vegetation samples (Schoenoplectus californicus andSchoenoplectus acutus) at a constructed treatment wetland in San Jacinto, California during spring and fall. Various statistical models were run on the data to determine the strongest relationships. We found that the nonlinear relationship: CB=β0DHβ110ε, where CB was dry culm biomass (g m−2), DH was density of culms × average height of culms in a plot, and β0 and β1 were parameters to estimate, proved to be the best fit for predicting dried-live above-ground biomass of the two Schoenoplectus species. The random error distribution, ε, was either assumed to be normally distributed for mean regression estimates or assumed to be an unspecified continuous distribution for quantile regression estimates.

  1. 早春类短命植物生物量研究(Ⅱ)——多被银莲花生物量及其分配特征%On Spring Ephemeral Plants Biomass (Ⅱ)—Biomass and Distribution Characteristics of Anemone raddeana

    Institute of Scientific and Technical Information of China (English)

    范春楠; 程岩; 郑金萍; 杨学东; 王月

    2016-01-01

    The distribution characteristics and biomass of Anemone raddeana were analyzed by using total harvest method. The results were as follows:Anemone raddeana was blossom and bear fruit when its height reached above 12 cm. With increasing of height of Anemone raddeana,the stem and leaf biomass,underground biomass and fruit biomass increased significantly,but flower biomass increased first and then decreased,root-shoot declined. Total biomass,aboveground biomass and underground biomass respectively increased 4. 31,5. 30 and 3. 45 times with passage of phenological phase. Biomass allocation of Anemone raddeana was shifted from underground to aboveground and from vegetative growth to reproductive growth. The equation was fitted with aboveground biomass,underground biomass and total biomass of Anemone raddeana with height class by using linear equation, exponential equation,logarithmic equation and power function equation. It had been tested and verified that the best equation was power function equation.%采用全收获法研究多被银莲花的生物量及其分配特征.结果表明:多被银莲花在株高达12 cm以上时开花、结果;随株高级的增大,茎叶生物量、地下生物量和果生物量增长明显,花生物量呈单峰型变化;根冠比呈整体下降的变化趋势.随着物候期的推移,总生物量、地上生物量和地下生物量分别增加4. 31,5. 30和3. 45倍;生物量分配表现出由地下向地上转移和由生长向繁殖转移的特点,体现了多被银莲花将有限资源再分配于生长和繁殖之间的生存策略.采用直线、指数、对数和幂函数拟合的多被银莲花地上、地下和总生物量方程均具有较高的相关系数,但验证结果仅有幂函数均达到了建模标准,为多被银莲花生物量预测的最优方程.

  2. Tree species richness affecting fine root biomass in European forests

    Science.gov (United States)

    Finér, Leena; Domisch, Timo; Vesterdal, Lars; Dawud, Seid M.; Raulund-Rasmussen, Karsten

    2016-04-01

    Fine roots are an important factor in the forest carbon cycle, contributing significantly to below-ground biomass and soil carbon storage. Therefore it is essential to understand the role of the forest structure, indicated by tree species diversity in controlling below-ground biomass and managing the carbon pools of forest soils. We studied how tree species richness would affect fine root biomass and its distribution in the soil profile and biomass above- and below-ground allocation patterns of different tree species. Our main hypothesis was that increasing tree species richness would lead to below-ground niche differentiation and more efficient soil exploitation by the roots, resulting in a higher fine root biomass in the soil. We sampled fine roots of trees and understorey vegetation in six European forest types in Finland, Poland, Germany, Romania, Italy and Spain, representing boreal, temperate and Mediterranean forests, established within the FunDivEUROPE project for studying the effects of tree species diversity on forest functioning. After determining fine root biomasses, we identified the percentages of different tree species in the fine root samples using the near infrared reflectance spectroscopy (NIRS) method. Opposite to our hypothesis we did not find any general positive relationship between tree species richness and fine root biomass. A weak positive response found in Italy and Spain seemed to be related to dry environmental conditions during Mediterranean summers. At the Polish site where we could sample deeper soil layers (down to 40 cm), we found more tree fine roots in the deeper layers under species-rich forests, as compared to the monocultures, indicating the ability of trees to explore more resources and to increase soil carbon stocks. Tree species richness did not affect biomass allocation patterns between above- and below-ground parts of the trees.

  3. Comparison between freeze and spray drying to obtain powder Rubrivivax gelatinosus biomass Comparação entre a secagem por liofilização e atomização para produção de biomassa bacteriana

    Directory of Open Access Journals (Sweden)

    Edson Francisco do Espírito Santo

    2013-03-01

    Full Text Available The use of colorants in products of animal origin is justified by the improvement in the color of foods since this attribute is considered a quality criterion. These additives can be produced using industrial effluents as substrates and appropriate organisms, such as Rubrivivax gelatinosus. Oxycarotenoids represent a class of carotenes responsible for the pigmentation of animals and vegetables. R. gelatinosus grows in fish industry effluent with the resulting production of a bacterial biomass containing oxycarotenoids. The purpose of this study was to compare the use of two drying processes - spray and freeze drying - to obtain powder biomass in terms of the process parameters (yield, productivity, and product recovery and the product characteristics (color, proximate composition, and oxycarotenoids. No difference was detected in the yield between these techniques, while productivity was higher using spray drying. Higher product recovery and moisture were achieved with freeze drying, while ash was higher with spray drying. The freeze dried biomass was redder, darker and less saturated than the spray dried biomass. No difference in oxycarotenoids was detected between the biomasses. Although it results in lower recovery rate, spray drying was faster and more productive, and it provided the same yield as freeze drying, which makes it the method of choice for obtaining R. gelatinosus biomass.O uso de corantes em produtos de origem animal justifica-se pela melhora na cor dos alimentos, uma vez que este atributo é considerado um critério de qualidade. Estes aditivos podem ser produzidos utilizando efluentes industriais como substratos e organismos adequados, como Rubrivivax gelatinosus. Oxicarotenóides representam uma classe de carotenos, responsáveis pela coloração de animais e vegetais. R. gelatinosus cresce em efluente de indústria de pescado produzindo biomassa contendo oxicarotenóides. O objetivo deste experimento foi comparar duas

  4. Effects of liming and wood ash application on root biomass, root distribution and soil chemistry in a Norway spruce stand in southwest Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Viebke, C.G.

    2001-07-01

    Effects of liming (CaPK) and wood ash application (A) on soil chemistry, root (< 2 mm and 2-5 mm in diameter) biomass and distribution, root length density (RLD, cm/cm{sup 3} ) and specific root length (SRL, m/g) were investigated in a 60 year old Norway spruce stand in SW Sweden. Soil cores were taken from the litter fermented humus (LFH) and mineral soil layers to a depth of 30 cm, eight years after treatments. The pH values of the LM layer increased significantly (p< 0.05) in the lime and ash treatments compared to the control, while in the top 5 cm of the mineral soil, pH was increased only in the A treatment compared to CaPK. The P, K, Ca and Mg concentrations increased in the CaPK treatment in the LM layer, while K and Ca decreased significantly at 5-10 cm depth in CaPK treated plots compared to the control and A. The highest amounts of ammonium and nitrate were found in A treatment in all soil layers. The A treatment increased fine root (< 2 mm in diameter) biomass in the LFH layer compared to the control but decreased it in the top 10 cm of the mineral soil compared to CaPK. A shallower fine root system was found in the A treated plots compared to the control and CaPK. The coarser root (2-5 mm in diameter) biomass was higher in the mineral soil in the A treatment compared to the control and CaPK but the differences were not significant. RLD increased in both CaPK and A in the upper soil layers. SRL increased in almost all layers in the CaPK and A treatments compared to the control. The number of root tips were also higher in the treated plots compared to the control, except in the 10-20 cm layer. It was concluded that CaPK and A treatments resulted in improved root vitality with a higher capacity for nutrient uptake.

  5. Distribution in the abundance and biomass of shelled pteropods in surface waters of the Indian sector of the Antarctic Ocean in mid-summer

    Science.gov (United States)

    Akiha, Fumihiro; Hashida, Gen; Makabe, Ryosuke; Hattori, Hiroshi; Sasaki, Hiroshi

    2017-06-01

    We investigated shelled pteropod abundance and biomass with a 100-μm closing net, and their estimated downward fluxes using a sediment trap installed in a drifter buoy in the Indian sector of the Antarctic Ocean during the austral summer. Over 90% pteropod abundance was distributed in the upper 50 m; 70-100% were immature veligers. Limacina retroversa was dominant in the >0.2 mm individuals north of 60°S, L. helicina dominated south of 62°S, while populations around 60-62°S were mixed. Unidentifiable small Limacina spp. (ssL) were highly abundant in the upper 50 m at 60°S, 63°S, and 64°S on 110°E and 63°S on 115°E, although their estimated particulate organic carbon (POC) biomasses were less than that of Limacina adults. Adult females bearing egg clusters were found in the 0-50 m layer; the veligers likely grew within a short period. The mean downward flux of ssL and veligers at 70 m around 60°S, 110°E was 5.1 ± 1.6 × 103 ind. m-2 d-1 (0.6 ± 0.2 mg C m-2 d-1), which was 3.8% of the integrated ssL and veligers in the upper 70 m, suggesting that at least 4% of the veligers were produced daily in the surface layers. The mid-summer spawned ssL and veligers likely contributed to the subsequent increase in large pteropods in the area.

  6. A tree biomass and carbon estimation system

    Science.gov (United States)

    Emily B. Schultz; Thomas G. Matney; Donald L. Grebner

    2013-01-01

    Appropriate forest management decisions for the developing woody biofuel and carbon credit markets require inventory and growth-and-yield systems reporting component tree dry weight biomass estimates. We have developed an integrated growth-and-yield and biomass/carbon calculator. The objective was to provide Mississippi’s State inventory system with bioenergy economic...

  7. Biomass [updated

    Energy Technology Data Exchange (ETDEWEB)

    Turhollow Jr, Anthony F [ORNL

    2016-01-01

    Biomass resources and conversion technologies are diverse. Substantial biomass resources exist including woody crops, herbaceous perennials and annuals, forest resources, agricultural residues, and algae. Conversion processes available include fermentation, gasification, pyrolysis, anaerobic digestion, combustion, and transesterification. Bioderived products include liquid fuels (e.g. ethanol, biodiesel, and gasoline and diesel substitutes), gases, electricity, biochemical, and wood pellets. At present the major sources of biomass-derived liquid fuels are from first generation biofuels; ethanol from maize and sugar cane (89 billion L in 2013) and biodiesel from vegetable oils and fats (24 billion liters in 2011). For other than traditional uses, policy in the forms of mandates, targets, subsidies, and greenhouse gas emission targets has largely been driving biomass utilization. Second generation biofuels have been slow to take off.

  8. Evaluation of the degree of mixing of combinations of dry syrup, powder, and fine granule products in consideration of particle size distribution using near infrared spectrometry.

    Science.gov (United States)

    Yamamoto, Yoshihisa; Suzuki, Toyofumi; Matsumoto, Mika; Ohtani, Michiteru; Hayano, Shuichi; Fukami, Toshiro; Tomono, Kazuo

    2012-01-01

    We used near infrared (NIR) spectroscopy to evaluate the degree of mixing of blended dry syrup (DS) products whose particle sizes are not specified in the Revised 16th Edition of the Japanese Pharmacopoeia, and also evaluated the degree of mixing when powder products or fine granule products were added to DS products. The data obtained were used to investigate the relationship between the particle size distributions of the products studied and the degree of mixing. We found that the particle size distribution characteristics of the 15 DS products studied can be broadly classified into 5 types. Combinations of frequently prescribed products were selected to represent 4 of the 5 particle size distribution types and were blended with a mortar and pestle. The coefficient of variation (CV) decreased as the percent mass of Asverin® Dry Syrup 2% (Asverin-DS) increased in blends of Periactin® Powder 1% (Periactin) and Asverin-DS, indicating an improved degree of mixing (uniformity). In contrast, in blends of Periactin and Mucodyne® DS 33.3%, mixing a combination at a 1:1 mass ratio 40 times resulted in a CV of 20%. Other mixing frequencies and mass ratios resulted in a CV by 50% to 70%, indicating a very poor degree of mixing (poor uniformity). These results suggest that when combining different DSs, or a DS with a powder or fine granule product, the blending obtained with a mortar and pestle improves as the particle size distributions of the components approach each other and as the ranges of the distributions narrow.

  9. Distributions and Losses of Logging Residues at Clear-Felled Areas during Extraction for Bioenergy: Comparing Dried- and Fresh-Stacked Method

    Directory of Open Access Journals (Sweden)

    Bengt Nilsson

    2015-11-01

    Full Text Available It is well known that a large proportion of available logging residues intended for extraction will not reach the energy-conversion industry, because some are lost during transportation or left on the clear-felled area. However, there is little understanding of where logging residue losses occur in the supply chain. In this study, the distribution of logging residues for two methods (dried- and fresh-stacked method to extract logging residues were studied in one clear-felled area. In addition, residue fractions were examined in a detailed comparison. Even though the fresh-stacked method left somewhat more logging residues at the clear-felled area, the differences are small between the methods. Approximately 30% of the total amount of logging residues was left behind between the harvester heaps, with an additional 10%–15% under these heaps and approximately 2%–3% beneath the windrows. The final product that was delivered to the energy-conversion industry was very similar, regardless of the extraction method used. The delivered chipped logging residues had moisture contents of 37% and 36% following fresh- and dried-stacked methods respectively, and in both cases the needle content in the processed logging residues was approximately 10%. However, the total amount of fine fractions (needles and fines was slightly higher following dried-stacking.

  10. Analysis of meteorological droughts and dry spells in semiarid regions: a comparative analysis of probability distribution functions in the Segura Basin (SE Spain)

    Science.gov (United States)

    Pérez-Sánchez, Julio; Senent-Aparicio, Javier

    2017-08-01

    Dry spells are an essential concept of drought climatology that clearly defines the semiarid Mediterranean environment and whose consequences are a defining feature for an ecosystem, so vulnerable with regard to water. The present study was conducted to characterize rainfall drought in the Segura River basin located in eastern Spain, marked by the self seasonal nature of these latitudes. A daily precipitation set has been utilized for 29 weather stations during a period of 20 years (1993-2013). Furthermore, four sets of dry spell length (complete series, monthly maximum, seasonal maximum, and annual maximum) are used and simulated for all the weather stations with the following probability distribution functions: Burr, Dagum, error, generalized extreme value, generalized logistic, generalized Pareto, Gumbel Max, inverse Gaussian, Johnson SB, Log-Logistic, Log-Pearson 3, Triangular, Weibull, and Wakeby. Only the series of annual maximum spell offer a good adjustment for all the weather stations, thereby gaining the role of Wakeby as the best result, with a p value means of 0.9424 for the Kolmogorov-Smirnov test (0.2 significance level). Probability of dry spell duration for return periods of 2, 5, 10, and 25 years maps reveal the northeast-southeast gradient, increasing periods with annual rainfall of less than 0.1 mm in the eastern third of the basin, in the proximity of the Mediterranean slope.

  11. Distribution of contagious and environmental mastitis agents isolated from milk samples collected from clinically health buffalo cows between brazilian dry and rainy seasons of the year

    Directory of Open Access Journals (Sweden)

    R.P. Maia

    2010-02-01

    Full Text Available The present study was performed to evaluate the microbiological characteristics of clinically health quarters submitted to milking and also to observe the distribution of contagious and environmental agents between brazilian dry and rainy seasons of the year. During nine months 734 quarters from 37 buffalo cows were submitted monthly to udder inspection, palpation and strip cup test before milking. 734 asseptic milk samples were inoculated in 10% ovine blood agar and in MacConkey agar media, then incubated for 72 hours at 37oC. Among the 580 isolated microrganisms, 182 (31,38% were recovered from samples collected during the rainy season and 398 (68,62% from the dry season. In the rainy period the most prevalent agents were: bacteria from the genus Corynebacterium sp (53,30%, Staphylococcus sp (19,78% and Rhodococcus equi (13,74%. In the dry period, the commonest ones were: Corynebacterium sp (44,97%, Staphylococcus sp (18,84% and Micrococcus sp (9,55%. The results demonstrated that the methods used to select health quarters in brazilian dairy buffalo farms allow the transmission of contagious bacteria during both seasons of the year, maintaining Ital.J.Anim.Sci. vol. 6, (Suppl. 2, 896-899, 2007 897 VIII World Buffalo Congress agents known to cause mainly subclinical inflammatory reactions that compromise cronically the physiology and production of the mammary gland.

  12. ALTENER - Biomass event in Finland

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The publication contains the lectures held in the Biomass event in Finland. The event was divided into two sessions: Fuel production and handling, and Co-combustion and gasification sessions. Both sessions consisted of lectures and the business forum during which the companies involved in the research presented themselves and their research and their equipment. The fuel production and handling session consisted of following lectures and business presentations: AFB-NETT - business opportunities for European biomass industry; Wood waste in Europe; Wood fuel production technologies in EU- countries; new drying method for wood waste; Pellet - the best package for biofuel - a view from the Swedish pelletmarket; First biomass plant in Portugal with forest residue fuel; and the business forum of presentations: Swedish experiences of willow growing; Biomass handling technology; Chipset 536 C Harvester; KIC International. The Co-combustion and gasification session consisted of following lectures and presentations: Gasification technology - overview; Overview of co-combustion technology in Europe; Modern biomass combustion technology; Wood waste, peat and sludge combustion in Enso Kemi mills and UPM-Kymmene Rauma paper mill; Enhanced CFB combustion of wood chips, wood waste and straw in Vaexjoe in Sweden and Grenaa CHP plant in Denmark; Co-combustion of wood waste; Biomass gasification projects in India and Finland; Biomass CFB gasifier connected to a 350 MW{sub t}h steam boiler fired with coal and natural gas - THERMIE demonstration project in Lahti (FI); Biomass gasification for energy production, Noord Holland plant in Netherlands and Arbre Energy (UK); Gasification of biomass in fixed bed gasifiers, Wet cleaning and condensing heat recovery of flue gases; Combustion of wet biomass by underfeed grate boiler; Research on biomass and waste for energy; Engineering and consulting on energy (saving) projects; and Research and development on combustion of solid fuels

  13. Efecto de la temperatura de la Rizosfera sobre la distribución de la materia seca en uchuva (Physalis peruviana L. Effect of rizosphere temperature on the dry matter distribution in cape gooseberry (Physalis peruviana L.

    Directory of Open Access Journals (Sweden)

    Fischer Gerhard

    1998-12-01

    Full Text Available En el hábitat natural de la uchuva en Colombia (de 1.600 a 2.800 msnm la temperatura edáfica varía de acuerdo con los
    factores climatológicos determinados por la altitud y por el manejo que se le de al suelo y al cultivo. Para estudiar el efecto de la temperatura en la rizosfera sobre la distribución
    de la materia seca en la uchuva y encontrar mecanismos de adaptación al altiplano colombiano, se cultivaron durante 11 semanas los ecotipos 'Colombia' y 'Sudáfrica' con temperaturas edáficas de 8, 15, 22 y 29°C bajo invernadero en Berlín, Alemania. Se utilizaron macetas plásticas de 2,5 L de capacidad y arena de cuarzo como substrato. Con el
    aumento de la temperatura en la rizosfera creció la producción de biomasa hasta un máximo a 22 y 29°C dependiendo del órgano de la planta y del ecotipo. La mayor acumulación de materia seca la obtuvo 'Colombia' a 29°C y 'Sudáfrica' a 22°C. Con 8°C de temperatura radical las plantas produjeron poca masa seca radical y foliar, mientras la materia de los frutos disminuyó en menor proporción, debido posiblemente a mecanismos de adaptación a los suelos fríos del altiplano. Los 22°C fomentaron más el crecimiento de las ramas principales, mientras las laterales tuvieron su óptimo a 29°C, posiblemente debido a un efecto hormonal. La mayor acumulación de materia seca en raíces,
    hojas y frutos del ecotipo 'Colombia' a 29°C se puede interpretar como una adaptación a los suelos calientes de las laderas expuestas al sol.
    In the natu ral habitat of cape gooseberry in Colombia, on sites from 1.600 to 2.800 m.a.s.l., soil temperature is affected by c1imatologicfactors, which are determined by the altitud and cultural and soil management practices. In order to study the effect of rizosphere temperature on the distribution of dry matter in the cape gooseberry plant and to find mecanisms of adaptation to the Colombian highland conditions, during 11 weeks 'Colombia' and

  14. Biomass for iron ore sintering

    Energy Technology Data Exchange (ETDEWEB)

    Zandi, M.; Martinez-Pacheco, M.; Fray, T.A.T. [Corus Research Development & Technology, Rotherham (United Kingdom)

    2010-11-15

    Within an integrated steelworks, iron ore sinter making is an energy intensive process. In recent years, biomass is becoming an attractive alternative source of energy to traditional fossil fuels such as coal. In this study, commercially available biomass materials suited to sinter making have been identified as an alternative source of fuel to coke breeze. Olive residues, sunflower husk pellets, almond shells, hazelnut shells and Bagasse pellets have been characterised and prepared for sintering. A laboratory sinter pot has been employed for studying sintering behaviour of biomass material. On average, the calorific values of selected biomass materials, on a dry basis, are about 65% of dry coke breeze. It was found that less of this energy would be available in sinter making due to the evaporation of some of the volatile matter ahead of the flame front. At a replacement rate of 25%, the crushed sunflower husk pellets showed the closest thermal profile to that of coke breeze alone in the size range of -0.8 to +0.6 mm. A specification of less than 1 mm has been recommended for the studied biomass materials when co-firing biomass with coke breeze for iron ore sintering.

  15. Effects of Low Light Stress on the Biomass Distribution and Secondary Metabolism of Catharanthus roseus%弱光胁迫对大田长春花生物量分配及次生代谢的影响

    Institute of Scientific and Technical Information of China (English)

    佟璐; 张宝友; 唐中华; 郭晓瑞; 贾雪莹; 于景华

    2011-01-01

    以长春花(Catharanthus rosetts(L.)Don.)为材料,研究了田间栽培长春花在全光和20%透光率下,经过-个生长季后生物量配置、抗氧化次生代谢产物和文朵灵、长春质碱、长春碱等目的活性物质含量的变化.研究结果表明,弱光条件显著抑制了长春花植株总生物量增长,特别是抑制了有性生殖的投入;弱光组叶片总酚和总黄酮含量显著降低,干重含量分别为对照组的62.50%和50.00%,原花青素含量则略有升高,但与全光组的差异不显著;弱光组叶片文朵灵和长春质碱含量显著高于对照组,长春碱含量略有上升但差异不显著,受生物量降低影响,3种生物碱的产量均显著下降.上述结果表明,长春花能够调控生理代谢以适应低光强环境,特别是文朵灵和长春质碱含量提升显著,林下低光强环境种植长春花可以满足土地资源充分利用和文朵灵、长春质碱优质原料的需求.%Under full exposure and 20% exposure to light, the field-cultivated Catharanthus roseus ( L. ) Don. was used to investigate the changes of biomass distribution, antioxidative secondary metabolites and contents of objective active products such as vindohn, catharanthine and vinblastine after a growing season. The results indicated that the total biomass of C. roseus was extremely restrained by the low light intensity, especially the investment of generative propagation; the contents of total phenolics and total flavonoids in leaves under low light intensity decreased distinctly, and the contents of dry weight were 62.50% and 50.00% of the control, respectively, while the content of proanthocyanidins increased slightly, but not remarkably as compared to the full exposure group; vindolin and catharanthine contents under low light intensity were much higher than that of control while vinblastine content increased slightly; the contents of three alkaloids all reduced, which was affected by the reduction of biomass

  16. Surface distribution of dissolved trace metals in the oligotrophic ocean and their influence on phytoplankton biomass and productivity

    KAUST Repository

    Pinedo-González, Paulina

    2015-10-25

    The distribution of bioactive trace metals has the potential to enhance or limit primary productivity and carbon export in some regions of the world ocean. To study these connections, the concentrations of Cd, Co, Cu, Fe, Mo, Ni, and V were determined for 110 surface water samples collected during the Malaspina 2010 Circumnavigation Expedition (MCE). Total dissolved Cd, Co, Cu, Fe, Mo, Ni, and V concentrations averaged 19.0 ± 5.4 pM, 21.4 ± 12 pM, 0.91 ± 0.4 nM, 0.66 ± 0.3 nM, 88.8 ± 12 nM, 1.72 ± 0.4 nM, and 23.4 ± 4.4 nM, respectively, with the lowest values detected in the Central Pacific and increased values at the extremes of all transects near coastal zones. Trace metal concentrations measured in surface waters of the Atlantic Ocean during the MCE were compared to previously published data for the same region. The comparison revealed little temporal changes in the distribution of Cd, Co, Cu, Fe, and Ni over the last 30 years. We utilized a multivariable linear regression model to describe potential relationships between primary productivity and the hydrological, biological, trace nutrient and macronutrient data collected during the MCE. Our statistical analysis shows that primary productivity in the Indian Ocean is best described by chlorophyll a, NO3, Ni, temperature, SiO4, and Cd. In the Atlantic Ocean, primary productivity is correlated with chlorophyll a, NO3, PO4, mixed layer depth, Co, Fe, Cd, Cu, V, and Mo. The variables salinity, temperature, SiO4, NO3, PO4, Fe, Cd, and V were found to best predict primary productivity in the Pacific Ocean. These results suggest that some of the lesser studied trace elements (e.g., Ni, V, Mo, and Cd) may play a more important role in regulating oceanic primary productivity than previously thought and point to the need for future experiments to verify their potential biological functions.

  17. Properties of Spray Dried Food and Spray Drying Characteristics

    Science.gov (United States)

    Katoh, Fumio

    The following conclusions are obtained, studying properties of spray dried food and drying characteristics. (a) Dried particles are similar to spray droplets in size distribution (y=2.5), and particle count distribution is arranged as (dn/dx = ae-bx). (b) The ratio of the particle diameters before and after drying is calculated with moisture before and after drying, and porosity is given as (εp = ww4). (c) The standard drying method is presented to evaluate accurately drying problems at a certain standard. (d) Equilibrium moisture at 20 up to 100°C are summarized in terms of adsorption potential. (e) It makes clear that calulation based on the theory of residence time and drying time represents well complex spray drying characteristics.

  18. Biogeochemical stoichiometry of Antarctic Dry Valley ecosystems

    Science.gov (United States)

    Barrett, J. E.; Virginia, R. A.; Lyons, W. B.; McKnight, D. M.; Priscu, J. C.; Doran, P. T.; Fountain, A. G.; Wall, D. H.; Moorhead, D. L.

    2007-03-01

    Among aquatic and terrestrial landscapes of the McMurdo Dry Valleys, Antarctica, ecosystem stoichiometry ranges from values near the Redfield ratios for C:N:P to nutrient concentrations in proportions far above or below ratios necessary to support balanced microbial growth. This polar desert provides an opportunity to evaluate stoichiometric approaches to understand nutrient cycling in an ecosystem where biological diversity and activity are low, and controls over the movement and mass balances of nutrients operate over 10-106 years. The simple organisms (microbial and metazoan) comprising dry valley foodwebs adhere to strict biochemical requirements in the composition of their biomass, and when activated by availability of liquid water, they influence the chemical composition of their environment according to these ratios. Nitrogen and phosphorus varied significantly in terrestrial and aquatic ecosystems occurring on landscape surfaces across a wide range of exposure ages, indicating strong influences of landscape development and geochemistry on nutrient availability. Biota control the elemental ratio of stream waters, while geochemical stoichiometry (e.g., weathering, atmospheric deposition) evidently limits the distribution of soil invertebrates. We present a conceptual model describing transformations across dry valley landscapes facilitated by exchanges of liquid water and biotic processing of dissolved nutrients. We conclude that contemporary ecosystem stoichiometry of Antarctic Dry Valley soils, glaciers, streams, and lakes results from a combination of extant biological processes superimposed on a legacy of landscape processes and previous climates.

  19. Distributional Patterns of Diatoms and Limnodrilus Oligochaetes in a Kenyan Dry Streambed Following the 1999-2000 Drought Conditions

    Science.gov (United States)

    Mathooko, Jude M.; Mpawenayo, Balthazar; Kipkemboi, Julius K.; M'erimba, Charles M.

    2005-05-01

    Drought is a natural phenomenon experienced by many intermittent and also seasonal lotic systems. It has diverse effects on the structure and distribution of biological communities through habitat transition from wetted to terrestrial conditions. The Njoro River, a tropical stream, was drought-stressed between late 1999 and mid 2000, providing an opportunity to sample and describe the distributional patterns of diatoms and Limnodrilus oligochaetes in the vertical sediment profile. The dispersion of Limnodrilus oligochaetes with sediment depth profile varied from quasi-random (i.e. exponent k of the negative binomial distribution >2.0 or species contributing less than 1% of all the diatoms collected from the riverbed. Contagious dispersion was a common feature among the diatom species. The distribution of Fragilaria ulna was largely quasi-random in all sites, with Nitzschia amphibia and Cocconeis placentula demonstrating quasi-random distribution in the Kerma vertical sediment profile. Escape from stranding to deeper sediment strata as the drought progressed was not a universal response among the diatom species. Our results showed that drought-stress altered the structure of biological assemblages and also emphasized the need for the management of tropical lotic systems and their catchments for flow permanence.

  20. Trading biomass or GHG emission credits?

    NARCIS (Netherlands)

    Laurijssen, J; Faaij, A.P.C.

    2009-01-01

    Global biomass potentials are considerable but unequally distributed over the world. Countries with Kyoto targets could import biomass to substitute for fossil fuels or invest in bio-energy projects in the country of biomass origin and buy the credits (Clean Development Mechanism (CDM) and Joint

  1. Biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, D. [VTT Energy, Espoo (Finland)

    1996-12-31

    Biomass resources of the industrialised countries are enormous, if only a small fraction of set-aside fields were used for energy crops. Forest resources could also be utilised more efficiently than at present for large-scale energy production. The energy content of the annual net growth of the total wood biomass is estimated to be 180 million toe in Europe without the former USSR, and about 50 million toe of that in the EC area, in 1990. Presently, the harvesting methods of forest biomass for energy production are not yet generally competitive. Among the most promising methods are integrated harvesting methods, which supply both raw material to the industry and wood fuel for energy production. Several new methods for separate harvesting of energy wood are being developed in many countries. (orig.)

  2. Dry matter production and distribution in three cassava (Manihot esculenta Crantz cultivars during the second vegetative plant cycle

    Directory of Open Access Journals (Sweden)

    Edvaldo Sagrilo

    2008-12-01

    Full Text Available A study was carried out in Araruna County, State of Paraná, to understand the relationship between the total dry matter yield and its proportion allocated to the storage roots of cassava (Manihot esculenta Crantz plants in the second vegetative cycle. The experimental design was a randomized complete block in split-plot scheme with four replications. The plots consisted of the Mico, IAC 13 and IAC 14 cultivars and the monthly harvesting dates were assessed in the sub-plots. The results showed that the Mico and IAC 13 cultivars were more efficient in allocating dry matter to the storage roots. The IAC 14 cultivar allocated a higher proportion of assimilates to stems compared with the other two cultivars. With regard to the influence of harvesting time, the lowest harvest indexes were observed in the periods of more intense vegetative growth. However, the highest carbohydrate proportions were allocated to the storage roots during periods of low vegetative growth.Com o objetivo de uma melhor compreensão da relação entre a produtividade total de massa seca e a proporção de alocação desta nas raízes tuberosas em plantas de mandioca, foi conduzido no município de Araruna-PR, um experimento em delineamento de blocos casualizados, em esquema de parcelas subdivididas com quatro repetições. Nas parcelas foram dispostas três cultivares (Mico, IAC 13 e IAC 14, e nas subparcelas dez épocas de colheita mensais, a partir do início do segundo ciclo vegetativo das plantas. As cultivares Mico e IAC 13 foram mais eficientes do que a IAC 14 em alocar massa seca nas raízes tuberosas, ao passo que esta última alocou maior proporção de massa seca em suas hastes. Em relação às épocas, os menores índices de colheita ocorreram em períodos de mais intenso crescimento vegetativo das plantas, ao passo que a maior proporção de carboidratos foi alocada nas raízes tuberosas em períodos de baixo crescimento vegetativo.

  3. Pyrolysis kinetic and product analysis of different microalgal biomass by distributed activation energy model and pyrolysis-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Yang, Xuewei; Zhang, Rui; Fu, Juan; Geng, Shu; Cheng, Jay Jiayang; Sun, Yuan

    2014-07-01

    To assess the energy potential of different microalgae, Chlorella sorokiniana and Monoraphidium were selected for studying the pyrolytic behavior at different heating rates with the analytical method of thermogravimetric analysis (TG), distributed activation energy model (DAEM) and pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Results presented that Monoraphidium 3s35 showed superiority for pyrolysis at low heating rate. Calculated by DAEM, during the conversion rate range from 0.1 to 0.7, the activation energies of C. sorokiniana 21 were much lower than that of Monoraphidium 3s35. Both C. sorokiniana 21 and Monoraphidium 3s35 can produce certain amount (up to 20.50%) of alkane compounds, with 9-Octadecyne (C18H34) as the primary compound. Short-chain alkanes (C7-C13) with unsaturated carbon can be released in the pyrolysis at 500°C for both microalgal biomass. It was also observed that the pyrolysis of C. sorokiniana 21 released more alcohol compounds, while Monoraphidium 3s35 produced more saccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  5. YEAR 2 BIOMASS UTILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  6. Thinning and burning in dry coniferous forests of the Western United States: effectiveness in altering diameter distributions

    Science.gov (United States)

    Andrew Youngblood

    2010-01-01

    Western United States land managers are conducting fuel reduction and forest restoration treatments in forests with altered structural conditions. As part of the National Fire and Fire Surrogate (FFS) study, thinning and burning treatments were evaluated for changing forest structure. Shifts between pretreatment and posttreatment diameter distributions at seven western...

  7. Biomass IGCC

    Energy Technology Data Exchange (ETDEWEB)

    Salo, K.; Keraenen, H. [Enviropower Inc., Espoo (Finland)

    1996-12-31

    Enviropower Inc. is developing a modern power plant concept based on pressurised fluidized-bed gasification and gas turbine combined cycle (IGCC). The process is capable of maximising the electricity production with a variety of solid fuels - different biomass and coal types - mixed or separately. The development work is conducted on many levels. These and demonstration efforts are highlighted in this article. The feasibility of a pressurised gasification based processes compared to competing technologies in different applications is discussed. The potential of power production from biomass is also reviewed. (orig.) 4 refs.

  8. Wood into the natural gas distribution system. Sweden and Finland as a pioneer for the gasification of biomass; Holz ins Gasnetz. Schweden und Finnland als Vorreiter fuer Grossanlagen zur Biomasse-Vergasung

    Energy Technology Data Exchange (ETDEWEB)

    Dany, Christian

    2013-04-01

    Right now, the thermochemical gasification of biomass and waste is developed on many fronts due to the manifold and attractive options. In Lahti (Finland) a large plant for waste incineration already has gone into operation. A plant for energy production from biomethane from wood is currently being built in Gothenburg (Sweden).

  9. Biomass of macroinvertebrates and physicochemical characteristics of water in an Andean urban wetland of Colombia.

    Science.gov (United States)

    Rivera-Usme, J J; Pinilla, G A; Rangel-Churio, J O; Castro, M I; Camacho-Pinzón, D L

    2015-01-01

    Aquatic macroinvertebrates (AMI) play an important role in the ecology of wetlands, either by their job as regulators of the cycles of matter, as for their energy storage function represented in their biomass, which is transferred to higher trophic levels. To answer the question of how biomass of different AMI trophic guilds is related with physicochemical variables in the wetland Jaboque (Bogotá, Colombia), four samplings were achieved between April 2009 and January 2010, according to periods of rain and drought in the region. The AMI biomass values obtained were rated as of intermediate rank. No temporal but spatial significant differences were found. Apparently these spatial differences appear to be associated with variations in anthropogenic pressure, which differs in each area of the wetland. In dry months (January and August), biomass was greater and dominated by detritivores. We observed a positive relationship between the specific conductance of water and the biomass of predators and detritivores and between water temperature and the biomass of detritivores and shredders. These relationships suggest that the physical and chemical variables influence the distribution, abundance, and biomass of functional groups. The physical and chemical conditions of water exhibited spatiotemporal fluctuations related to changes in the concentration of organic matter and nutrients, which presumably were related to the affluents discharges and the high impact of local human populations.

  10. Biomass of macroinvertebrates and physicochemical characteristics of water in an Andean urban wetland of Colombia

    Directory of Open Access Journals (Sweden)

    JJ Rivera-Usme

    Full Text Available Aquatic macroinvertebrates (AMI play an important role in the ecology of wetlands, either by their job as regulators of the cycles of matter, as for their energy storage function represented in their biomass, which is transferred to higher trophic levels. To answer the question of how biomass of different AMI trophic guilds is related with physicochemical variables in the wetland Jaboque (Bogotá, Colombia, four samplings were achieved between April 2009 and January 2010, according to periods of rain and drought in the region. The AMI biomass values obtained were rated as of intermediate rank. No temporal but spatial significant differences were found. Apparently these spatial differences appear to be associated with variations in anthropogenic pressure, which differs in each area of the wetland. In dry months (January and August, biomass was greater and dominated by detritivores. We observed a positive relationship between the specific conductance of water and the biomass of predators and detritivores and between water temperature and the biomass of detritivores and shredders. These relationships suggest that the physical and chemical variables influence the distribution, abundance, and biomass of functional groups. The physical and chemical conditions of water exhibited spatiotemporal fluctuations related to changes in the concentration of organic matter and nutrients, which presumably were related to the affluents discharges and the high impact of local human populations.

  11. Direct single-cell biomass estimates for marine bacteria via Archimedes' principle.

    Science.gov (United States)

    Cermak, Nathan; Becker, Jamie W; Knudsen, Scott M; Chisholm, Sallie W; Manalis, Scott R; Polz, Martin F

    2017-03-01

    Microbes are an essential component of marine food webs and biogeochemical cycles, and therefore precise estimates of their biomass are of significant value. Here, we measured single-cell biomass distributions of isolates from several numerically abundant marine bacterial groups, including Pelagibacter (SAR11), Prochlorococcus and Vibrio using a microfluidic mass sensor known as a suspended microchannel resonator (SMR). We show that the SMR can provide biomass (dry mass) measurements for cells spanning more than two orders of magnitude and that these estimates are consistent with other independent measures. We find that Pelagibacterales strain HTCC1062 has a median biomass of 11.9±0.7 fg per cell, which is five- to twelve-fold smaller than the median Prochlorococcus cell's biomass (depending upon strain) and nearly 100-fold lower than that of rapidly growing V. splendidus strain 13B01. Knowing the biomass contributions from various taxonomic groups will provide more precise estimates of total marine biomass, aiding models of nutrient flux in the ocean.

  12. Uso de biomassa seca de aguapé (Eichornia crassipes visando à remoção de metais pesados de soluções contaminadas = Use of water hyacinth (Eichornia crassipes dry biomass for removing heavy metals from contaminated solutions

    Directory of Open Access Journals (Sweden)

    Affonso Celso Gonçalves Junior

    2009-01-01

    Full Text Available O presente trabalho avaliou a eficiência da biomassa seca de aguapé (Eichornia crassipes na remoção dos metais pesados cádmio (Cd, chumbo (Pb, cromo (Cr, cobre (Cu, zinco (Zn e níquel (Ni de soluções preparadas com estes metais. O delineamento utilizado foi inteiramente casualizado, com cinco tratamentos (soluções com diferentes concentrações dos metais pesados e quatro repetições. A biomassa seca permaneceu nas soluções dos tratamentos por um período de 48h, e nos intervalos de 1; 2; 3; 6; 12; 24; 36 e 48h após a instalação do experimento, coletaram-se alíquotas de cada tratamento,determinando-se a maior remoção de cada metal pesado pela biomassa seca do aguapé. Foi realizada digestão nitroperclórica na biomassa seca e determinação dos teores dos metais na biomassa e nas alíquotas por espectrometria de absorção atômica, modalidade chama. Paraos metais Cd, Pb, Cr, Cu e Zn ocorreu remoção significativa pela massa seca do aguapé nos diferentes tratamentos, enquanto para o Ni não foi encontrada diferença significativa. Dessa forma, conclui-se que a biomassa seca produzida, a partir do aguapé Eichornia crassipes, é um excelente material para a remoção, tanto em pequena como em grande escala, de corpos hídricos contaminados com metais pesados.The present work evaluated the efficiency of the dry biomass of water hyacinth (Eichornia crassipes in the removal of heavy metalscadmium (Cd, lead (Pb, chromium (Cr, cupper (Cu, zinc (Zn and nickel (Ni from solutions prepared with these metals. The delineation used was entirely randomized, with five treatments (solutions with different concentrations of heavy metals and fourrepetitions. The dry biomass remained in the treatment solutions for a period of 48h. In the intervals of 1; 2; 3; 6; 12; 24; 36 and 48h after experiment installation, samples were collected of each treatment, determining the greater removal for each heavy metal by water hyacinth dry biomass. Nitro

  13. Tree water status and growth of saplings and mature Norway spruce (Picea abies at a dry distribution limit

    Directory of Open Access Journals (Sweden)

    Walter eOberhuber

    2015-09-01

    Full Text Available We evaluated the size effect on stem water status and growth in Norway spruce (Picea abies (L. Karst. occurring at the edge of its natural range in a dry inner Alpine environment (750 m asl, Tyrol, Austria. Intra-annual dynamics of stem water deficit (ΔW, maximum daily shrinkage (MDS and radial growth (RG were compared among saplings (stem diameter/height: 2.2 cm/93 cm; n = 7 and mature adult trees (25 cm/12.7 m; n = 6 during 2014. ΔW, MDS and RG were extracted from stem diameter variations, which were continuously recorded by automatic dendrometers and the influence of environmental drivers was evaluated by applying moving correlation analysis (MCA. Additionally, we used Morlet wavelet analysis to assess the differences in cyclic radial stem variations between saplings and mature trees. Results indicate that saplings and mature trees were experiencing water limitation throughout the growing season. However, saplings exhibited a more strained stem water status and higher sensitivity to environmental conditions than mature trees. Hence, the significantly lower radial increments in saplings (0.16 ± 0.03 mm compared to mature trees (0.54 ± 0.14 mm is related to more constrained water status in the former, affecting the rate and duration of RG. The wavelet analysis consistently revealed more distinct diurnal stem variations in saplings compared to mature trees. Intra-annual RG was most closely related to climate variables that influence transpiration, i.e., vapor pressure deficit, relative air humidity, and air temperature. MCA, however, showed pronounced instability of climate-growth relationships, which masked missing temporal or significant correlations when the entire study period (April-October was considered. We conclude that an increase in evaporative demand will impair regeneration and long-term stability of drought-prone inner Alpine Norway spruce forests.

  14. Distribution, inventory and turnover of benthic organic biomass in the Strait of Georgia, Canada, in relation to natural and anthropogenic inputs.

    Science.gov (United States)

    Burd, Brenda J

    2014-05-15

    Recently compiled databases facilitated estimation of basin-wide benthic organic biomass and turnover in the Strait of Georgia, an inland sea off western Canada. Basin-wide organic biomass was estimated at 43.1 × 10(6) kg C and production was 54.6 × 10(6) kg Cyr(-1), resulting in organic biomass turnover (P/B) of 1.27 × yr(-1). Organic biomass and production for sub-regions were predictable from modified organic flux (r(2)>0.9). P/B declined significantly with increasing modified organic flux, suggesting greater biomass storage in high flux sediments. Biomass and production were highest, and P/B lowest near the Fraser River. Annual basin-wide benthic production was 60% of previously estimated oxidized organic flux to substrates, which agrees with proportional measurements from a recent, localized study. Deviations from expected patterns related to organic enrichment and other stressors are discussed, as are potential impacts to benthic biomass and production, of declining bottom oxygen, increasing bottom temperature and potential changes in riverine input. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The influence of spray-drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release.

    Science.gov (United States)

    Meeus, Joke; Lenaerts, Maité; Scurr, David J; Amssoms, Katie; Davies, Martyn C; Roberts, Clive J; Van Den Mooter, Guy

    2015-04-01

    For ternary solid dispersions, it is indispensable to characterize their structure, phase behavior, and the spatial distribution of the dispersed drug as this might influence the release profile and/or stability of these formulations. This study shows how formulation (feed concentration) and process (feed rate, inlet air temperature, and atomizing air pressure) parameters can influence the characteristics of ternary spray-dried solid dispersions. The microspheres considered here consist of a poly(lactic-co-glycolic acid) (PLGA) surface layer and an underlying polyvinylpyrrolidone (PVP) phase. A poorly soluble active pharmaceutical ingredient (API) was molecularly dispersed in this matrix. Differences were observed in component miscibility, phase heterogeneity, particle size, morphology, as well as API surface coverage for selected spray-drying parameters. Observed differences are likely because of changes in the droplet generation, evaporation, and thus particle formation processes. However, varying particle characteristics did not influence the drug release of the formulations studied, indicating the robustness of this approach to produce particles of consistent drug release characteristics. This is likely because of the fact that the release is dominated by diffusion from the PVP layer through pores in the PLGA surface layer and that observed differences in the latter have no influence on the release.

  16. Utilization of laser-assisted analytical methods for monitoring of lead and nutrition elements distribution in fresh and dried Capsicum annuum l. leaves.

    Science.gov (United States)

    Galiová, Michaela; Kaiser, Jozef; Novotný, Karel; Hartl, Martin; Kizek, Rene; Babula, Petr

    2011-09-01

    Laser induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) have been applied for high-resolution mapping of accumulation and distribution of heavy metal (lead) and nutrition elements (potassium, manganese) in leaves of Capsicum annuum L. samples. Lead was added in a form of Pb(NO₃)₂ at concentration up to 10 mmol L⁻¹ into the vessels that contained tap water and where the 2-months old Capsicum annuum L. plants were grown another seven days. Two dimensional maps of the elements are presented for both laser-assisted analytical methods. Elemental mapping performed on fresh (frozen) and dried Capsicum annuum L. leaves are compared.

  17. Integration of alternative feedstreams for biomass treatment and utilization

    Science.gov (United States)

    Hennessey, Susan Marie [Avondale, PA; Friend, Julie [Claymont, DE; Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T [Evergreen, CO; Hames, Bonnie [Westminster, CO

    2011-03-22

    The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

  18. Distribution, abundance, biomass and diversity of benthic infauna in the Northeast Chukchi Sea, Alaska: Relation to environmental variables and marine mammals

    Science.gov (United States)

    Schonberg, Susan V.; Clarke, Janet T.; Dunton, Kenneth H.

    2014-04-01

    In summer 2009 and 2010, as part of Chukchi Sea Offshore Monitoring in Drilling Area - Chemical and Benthos (COMIDA CAB) program, we performed a quantitative assessment of the biomass, abundance, and community structure of benthic infaunal populations of the Northeastern Chukchi Sea. This analysis documented a benthic species inventory of 361 taxa collected from 142 individual van Veen grab samples (0.1 m-2) at 52 stations. Infaunal abundance was dominated by Polychaeta, Mollusca, and Crustacea. Large concentrations of bivalves (up to 1235 m-2; 920.2 gww m-2) were collected south of Hanna Shoal where flow from two water masses converge and deposit labile carbon to the seafloor, as indicated by low surface sediment C:N ratios. Amphipods (up to 1640 m-2; 26.0 gww m-2), and polychaetes (up to 4665 m-2; 114.7 gww m-2) were documented from multiple stations west of and within Barrow Canyon. This high productivity was most likely due to the "canyon effect", where marine and coastal detrital carbon supplies are channeled by the canyon structure, enhancing carbon deposition and flux, which supports rich benthic communities within the canyon and surrounding areas. To examine the relationships between infaunal distributions of all collected taxa with the physical environment, we used a Biota and Environment matching (BIO-ENV) routine. A combination of water depth, bottom-water temperature and salinity, surface sediment total organic nitrogen (TON) and sediment C:N molar ratios correlated closest with infaunal abundance distribution (ρ=0.54), indicating that multiple factors influence the success of benthic communities. BIO-ENV routines produced similar correlation results when performed on targeted walrus prey items (bivalves (ρ=0.50), polychaetes (ρ=0.53), but gray whale prey items (amphipods) were not strongly correlated to any combination of physical environmental factors (ρ=0.24). Distributions of primary prey items for gray whales (amphipods) and walruses (bivalves

  19. Biomass shock pretreatment

    Science.gov (United States)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  20. Seasonal variations in biomass and species composition of seaweeds along the northern coasts of Persian Gulf (Bushehr Province)

    Indian Academy of Sciences (India)

    A Dadolahi-Sohrab; M Garavand-Karimi; H Riahi; H Pashazanoosi

    2012-02-01

    This study was carried out to evaluate the seasonal variations of seaweed biomass and species composition at six different sites along the coastal areas in Bushehr Province. Sampling depths varied among sites, from 0.3 to 2.0 m below mean sea level. A total of 37 (i.e., 10 Chlorophyta, 12 Phaeophyta and 15 Rhodophyta) seaweed species were collected. Studies were conducted for quantifying the seaweeds during four seasons from October 2008 until July 2009. During present research, Ulva intestinalis and Cladophora nitellopsis of green, Polycladia myrica, Sirophysalia trinodis and Sargassum angustifolium of brown and Gracilaria canaliculata and Hypnea cervicornis of red seaweeds showed highest biomass in coastal areas of Bushehr Province. The Cheney’s ratio of 2.1 indicated a temperate algal flora to this area. All sites exhibited more than 50% similarity of algal species, indicating a relatively homogenous algal distribution. Total biomass showed the highest value of 3280.7 ± 537.8 g dry wt m−2 during summer and lowest value of 856.9 ± 92.0 g dry wt m−2 during winter. During this study, the highest and lowest seaweed biomass were recorded on the site 2 (2473.7 ± 311.0 g dry wt m−2) and site 5 (856.7 ± 96.8 g dry wt m−2), respectively.

  1. Seasonal variations in biomass and species composition of seaweeds along the northern coasts of Persian Gulf (Bushehr Province)

    Science.gov (United States)

    Dadolahi-Sohrab, A.; Garavand-Karimi, M.; Riahi, H.; Pashazanoosi, H.

    2012-02-01

    This study was carried out to evaluate the seasonal variations of seaweed biomass and species composition at six different sites along the coastal areas in Bushehr Province. Sampling depths varied among sites, from 0.3 to 2.0 m below mean sea level. A total of 37 (i.e., 10 Chlorophyta, 12 Phaeophyta and 15 Rhodophyta) seaweed species were collected. Studies were conducted for quantifying the seaweeds during four seasons from October 2008 until July 2009. During present research, Ulva intestinalis and Cladophora nitellopsis of green, Polycladia myrica, Sirophysalia trinodis and Sargassum angustifolium of brown and Gracilaria canaliculata and Hypnea cervicornis of red seaweeds showed highest biomass in coastal areas of Bushehr Province. The Cheney`s ratio of 2.1 indicated a temperate algal flora to this area. All sites exhibited more than 50% similarity of algal species, indicating a relatively homogenous algal distribution. Total biomass showed the highest value of 3280.7 ± 537.8 g dry wt m - 2 during summer and lowest value of 856.9 ± 92.0 g dry wt m - 2 during winter. During this study, the highest and lowest seaweed biomass were recorded on the site 2 (2473.7 ± 311.0 g dry wt m - 2) and site 5 (856.7 ± 96.8 g dry wt m - 2), respectively.

  2. Biomass Supply and Trade Opportunities of Preprocessed Biomass for Power Generation

    NARCIS (Netherlands)

    Batidzirai, B.; Junginger, M.; Klemm, M.; Schipfer, F.; Thrän, D.

    2016-01-01

    International trade of solid biomass is expected to increase significantly given the global distribution of biomass resources and anticipated expansion of bioenergy deployment in key global power markets. Given the unique characteristics of biomass, its long-distance trade requires optimized logisti

  3. The Interpolation Method for Estimating the Above-Ground Biomass Using Terrestrial-Based Inventory

    Directory of Open Access Journals (Sweden)

    I Nengah Surati Jaya

    2014-08-01

    Full Text Available This paper examined several methods for interpolating biomass on logged-over dry land forest using terrestrial-based forest inventory in Labanan, East Kalimantan and Lamandau, Kota Wringing Barat, Central Kalimantan. The plot-distances examined was 1,000−1,050 m for Labanan and 1,000−899m for Lawanda. The main objective of this study was to obtain the best interpolation method having the most accurate prediction on spatial distribution of forest biomass for dry land forest. Two main interpolation methods were examined: (1 deterministic approach using the IDW method and (2 geo-statistics approach using Kriging with spherical, circular, linear, exponential, and Gaussian models. The study results at both sites consistently showed that the IDW method was better than the Kriging method for estimating the spatial distribution of biomass. The validation results using chi-square test showed that the IDW interpolation provided accurate biomass estimation. Using the percentage of mean deviation value (MD(%, it was also recognized that the IDWs with power parameter (p of 2 provided relatively low value , i.e., only 15% for Labanan, East Kalimantan Province and 17% for Lamandau, Kota Wringing Barat Central Kalimantan Province. In general, IDW interpolation method provided better results than the Kriging, where the Kriging method provided MD(% of about 27% and 21% for Lamandau and Labanan sites, respectively.

  4. Evaluation of economically feasible, natural plant extract-based microbiological media for producing biomass of the dry rot biocontrol strain Pseudomonas fluorescens P22Y05 in liquid culture

    Science.gov (United States)

    The production of microbial biomass in liquid media often represents an indispensable step in the research and development of bacterial and fungal strains. Costs of commercially prepared nutrient media or purified media components, however, can represent a significant hurdle to conducting research i...

  5. Agricultural Residues and Biomass Energy Crops

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    There are many opportunities to leverage agricultural resources on existing lands without interfering with production of food, feed, fiber, or forest products. In the recently developed advanced biomass feedstock commercialization vision, estimates of potentially available biomass supply from agriculture are built upon the U.S. Department of Agriculture’s (USDA’s) Long-Term Forecast, ensuring that existing product demands are met before biomass crops are planted. Dedicated biomass energy crops and agricultural crop residues are abundant, diverse, and widely distributed across the United States. These potential biomass supplies can play an important role in a national biofuels commercialization strategy.

  6. Weibull distribution for modeling drying of grapes and its application%基于Weibull分布函数的葡萄干燥过程模拟及应用

    Institute of Scientific and Technical Information of China (English)

    白竣文; 王吉亮; 肖红伟; 巨浩羽; 刘嫣红; 高振江

    2013-01-01

      为了探究 Weibull 分布函数中各参数的影响因素及其在干燥中的应用,该文以不同干燥方法(气体射流冲击干燥、真空脉动干燥)、干燥温度(50、55、60和65℃)以及烫漂预处理(30、60、90、120 s)的葡萄干燥过程为研究对象,利用Weibull分布函数对其干燥动力学曲线进行模拟并分析。研究结果表明:Weibull分布函数能够很好的模拟葡萄在试验条件下的干燥过程;尺度参数α与干燥温度有关,并且随着干燥温度的升高而降低;形状参数β与干燥方式和物料状态有关,但干燥温度对形状参数β的影响很小。计算了葡萄在干燥过程中的水分扩散系数Dcal在0.2982×10-9~2.7700×10-9 m2/s 之间,并根据阿伦尼乌斯公式计算出热风干燥和真空脉动干燥方法的干燥活化能分别为72.87和61.43 kJ/mol。研究结果为Weibull分布函数在葡萄干燥过程的应用提供参考。%Grapes as a seasonal fruit, have relatively high sugar content and moisture content, and are very sensitive to microbial spoilage during storage. Therefore, grapes once harvested must be consumed or processed into various products within a few weeks in order to reduce economic losses. Drying grapes into raisins is the major processing method in almost all countries where grapes are grown. The knowledge of the drying mechanism is very necessary for heat and moisture transportation efficiency, energy savings and product quality. Several different empirical and semi-empirical drying models were used for describing and predicting drying curves. Some of these models could give a good fit to the drying curves, but the basic idea of process characterization was to consider the process as a ‘‘black box’’--the drying materials and drying conditions were difficult to be related to the parameters of these models used. In this study, the Weibull distribution model was applied to the drying process under different

  7. Evaluation of saw palmetto for biomass potential

    Energy Technology Data Exchange (ETDEWEB)

    Pitman, W.D. (Florida Univ., Ona, FL (United States). Agricultural Research Center)

    1993-01-01

    Saw palmetto is a widely distributed shrubby monocot (palm) which occurs in dense stands in the coastal region of the southern USA. Selected areas of an existing stand in peninsular Florida were subjected to harvest intervals of 6, 12, and 24 months, with season of harvest also evaluated. Annual yields were 2-3 Mg ha[sup -1] of foliage (fronds and petioles) dry matter. A quadratic response to harvest interval was obtained with annual foliage regrowth greatest at the 12-month interval. Plant vigour, as indicated by total non-structural carbohydrate (TNC) concentration, and yield per harvest increased linearly with increasing harvest interval. Chemical analyses revealed high extractive content, with 100 mg g[sup -1] ethanol-benzene extract plus 90 mg g[sup -1] ethanol extract. Lignin concentration was also high at 180 mg g[sup -1]. The relatively low biomass yields and high concentrations of extractives and lignin indicate that saw palmetto does not have the desired characteristics for biomass energy conversion. Some potential may exist for specialty uses, such as starter fuel for waste combustion, due to availability and a highly combustible nature produced by the high extractive content. (author)

  8. Understanding aerosol formation mechanisms in a subtropical atmosphere impacted by biomass burning and agroindustry

    Science.gov (United States)

    Souza, Michele L.; Allen, Andrew G.; Cardoso, Arnaldo A.

    2017-01-01

    This work provides evidence for the existence of strong seasonality in homogeneous and heterogeneous aerosol formation in a subtropical region affected by agricultural biomass burning. Acquisitions of aerosol size distributions were made in central São Paulo State between August 2011 and November 2012, using a scanning mobility particle sizer (SMPS) system. Aerosols were also collected using a high volume impactor for analysis of major ions in the biomass burning. Homogeneous nucleation of new particles was inhibited in the winter, due to the greater surface area of existing aerosols available for the uptake of reactive gases. Consequently, the nucleation and Aitken modes were favored in the wet (summer) and dry (winter biomass burning) periods, respectively. The accumulation mode showed peaks in the summer and winter, which could be explained by hygroscopic particle growth and heterogeneous reactions, respectively.

  9. Distribution of metals in various particle-size fractions in topsoils of a small dry valley system (European Russia, forest zone)

    Science.gov (United States)

    Samonova, Olga; Aseyeva, Elena

    2017-04-01

    A detailed study of heavy metals distribution in various soil grain-size fractions helps to increase the knowledge about the complex nature of metals' occurrence and their distribution pathways in the environment. On the basis of particle size fractionation of topsoil horizons we examined the specific behavior of heavy metals in a small erosional landform located in the humid temperate zone of the Russian Plain. The object of the study is a 400 m small U-shaped dry valley (balka in Russian) with a catchment area of 32.8 ha located in the central part of the Protva river basin, 100 km southwest of Moscow. The uppermost parts of the landform are incised in Late Pleistocene loessial loams, which cover significant portions of interfluve area in the region, while the middle and the lower parts cut through Middle Pleistocene glacial sediments. A total of 50 samples were collected from topsoil horizons of different landform geomorphic units along three cross-sections as well as along the bottom of the landform and its detrital fan. Samples were analyzed for Mn, Cu, Ni, Co, Cr, Zn, Pb, Ti, Zr, and Fe content. Eleven samples were chosen for physical fractionation into 5 grain-size fractions (1-0.25 mm, 0.25-0.05 mm, 0.05-0.01 mm, 0.01-0.001 mm and units, the coarser (sand) fractions showed distinct spatial patterns in the elements' distribution, possibly related to migration processes, the depletion of metals in the landforms' slopes and their prevalent enrichment in the bottom unit is observed.

  10. Biomass Supply Logistics and Infrastructure

    Science.gov (United States)

    Sokhansanj, Shahabaddine; Hess, J. Richard

    Feedstock supply system encompasses numerous unit operations necessary to move lignocellulosic feedstock from the place where it is produced (in the field or on the stump) to the start of the conversion process (reactor throat) of the biorefinery. These unit operations, which include collection, storage, preprocessing, handling, and transportation, represent one of the largest technical and logistics challenges to the emerging lignocellulosic biorefining industry. This chapter briefly reviews the methods of estimating the quantities of biomass, followed by harvesting and collection processes based on current practices on handling wet and dry forage materials. Storage and queuing are used to deal with seasonal harvest times, variable yields, and delivery schedules. Preprocessing can be as simple as grinding and formatting the biomass for increased bulk density or improved conversion efficiency, or it can be as complex as improving feedstock quality through fractionation, tissue separation, drying, blending, and densification. Handling and transportation consists of using a variety of transport equipment (truck, train, ship) for moving the biomass from one point to another. The chapter also provides typical cost figures for harvest and processing of biomass.

  11. Biomass supply logistics and infrastructure.

    Science.gov (United States)

    Sokhansanj, Shahabaddine; Hess, J Richard

    2009-01-01

    Feedstock supply system encompasses numerous unit operations necessary to move lignocellulosic feedstock from the place where it is produced (in the field or on the stump) to the start of the conversion process (reactor throat) of the biorefinery. These unit operations, which include collection, storage, preprocessing, handling, and transportation, represent one of the largest technical and logistics challenges to the emerging lignocellulosic biorefining industry. This chapter briefly reviews the methods of estimating the quantities of biomass, followed by harvesting and collection processes based on current practices on handling wet and dry forage materials. Storage and queuing are used to deal with seasonal harvest times, variable yields, and delivery schedules. Preprocessing can be as simple as grinding and formatting the biomass for increased bulk density or improved conversion efficiency, or it can be as complex as improving feedstock quality through fractionation, tissue separation, drying, blending, and densification. Handling and transportation consists of using a variety of transport equipment (truck, train, ship) for moving the biomass from one point to another. The chapter also provides typical cost figures for harvest and processing of biomass.

  12. 杉木+黄山木兰混交林生物量分配格局%Biomass and Distribution Rate of Cunninghamia lanceolata(Lamb.)Hook and Magnolia cylindrical Wils Mixed Stand

    Institute of Scientific and Technical Information of China (English)

    罗祖树

    2011-01-01

    Based on the investigation of growth of Cunninghamia lanceolata(Lamb.)Hook and Magnolia cylindrical Wils mixed forest and Cunninghamia lanceolata(Lamb.)Hook pure stand(control),the different organs biomass of above ground and root distribution rate were studied by authors.The results showed that the growth of Cunninghamia lanceolata(Lamb.)Hook and total biomass of Cunninghamia lanceolata(Lamb.)Hook and Magnolia cylindrical Wils mixed forest were better than that of Cunninghamia lanceolata(Lamb.)Hook pure stand.As far as the biomass distribution rate were concerned,different organs' biomass distribution were showed strunk〉leaf〉branch,strunk and leaf biomass distribution rate in Cunninghamia lanceolata(Lamb.)Hook and Magnolia cylindrical Wils mixed forest were higher than that of Cunninghamia lanceolata(Lamb.)Hook pure stand,and branch biomass distribution rate in Cunninghamia lanceolata(Lamb.)Hook pure stand was higher than that of Cunninghamia lanceolata(Lamb.)Hook and Magnolia cylindrical Wils mixed forest;The biomass of different diameter class of stump root,big root and middle root in Cunninghamia lanceolata(Lamb.)Hook and Magnolia cylindrical Wils mixed forest were higher than that of Cunninghamia lanceolata(Lamb.)Hook pure stand,and biomass of different diameter class of minor root and fine root in Cunninghamia lanceolata(Lamb.)Hook and Magnolia cylindrical Wils mixed forest were smaller than that of Cunninghamia lanceolata(Lamb.)Hook pure stand.%在调查杉木+黄山木兰混交林及杉木纯林(对照)生长量的基础上,进一步分析了杉木+黄山木兰混交林及杉木纯林地上部分各器官及各径级根生物量分配格局。研究结果表明:杉木+黄山木兰混交林中杉木的生长及林分总生物量的积累均优于杉木纯林。从生物量分配上看,杉木+黄山木兰混交林中杉木及纯林中杉木其地上部分各器官的分配均表现

  13. Protein measurements of microalgal and cyanobacterial biomass.

    Science.gov (United States)

    López, Cynthia Victoria González; García, María del Carmen Cerón; Fernández, Francisco Gabriel Acién; Bustos, Cristina Segovia; Chisti, Yusuf; Sevilla, José María Fernández

    2010-10-01

    The protein content of dry biomass of the microalgae Porphyridium cruentum, Scenedesmus almeriensis, and Muriellopsis sp. and of the cyanobacteria Synechocystis aquatilis and Arthrospira platensis was measured by the Lowry method following disruption of the cells by milling with inert ceramic particles. The measurements were compared with the Kjeldahl method and by elemental analysis. The nitrogen-to-protein conversion factors for biomass obtained from exponentially growing cells with a steady state doubling time of approximately 23 h were 5.95 for nitrogen measured by Kjeldahl and 4.44 for total nitrogen measured by elemental analysis. The protein content in dry biomass ranged from 30% to 55%. The above conversion factors are useful for estimating the protein content of microalgal biomass produced in rapid steady state growth as encountered in many commercial production processes.

  14. Dry Etching

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yeom, Geun Young

    2016-01-01

    Production of large-area flat panel displays (FPDs) involves several pattern transfer and device fabrication steps that can be performed with dry etching technologies. Even though the dry etching using capacitively coupled plasma is generally used to maintain high etch uniformity, due to the need...... for the higher processing rates in FPDs, high-density plasma processing tools that can handle larger-area substrate uniformly are more intensively studied especially for the dry etching of polysilicon thin films. In the case of FPD processing, the current substrate size ranges from 730 × 920 mm (fourth...... generation) to 2,200 × 2,500 mm (eighth generation), and the substrate size is expected to increase further within a few years. This chapter aims to present relevant details on dry etching including the phenomenology, materials to be etched with the different recipes, plasma sources fulfilling the dry...

  15. Direct conversion of algal biomass to biofuel

    Science.gov (United States)

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  16. Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass

    Directory of Open Access Journals (Sweden)

    Lola Domnina Bote Pestaño

    2016-11-01

    Full Text Available The reserves of non-renewable energy sources such as coal, crude oil and natural gas are not limitless, they gradually get exhausted and their price continually increases. In the last four decades, researchers have been focusing on alternate fuel resources to meet the ever increasing energy demand and to avoid dependence on crude oil. Amongst different sources of renewable energy, biomass residues hold special promise due to their inherent capability to store solar energy and amenability to subsequent conversion to convenient solid, liquid and gaseous fuels. At present, among the coconut farm wastes such as husks, shell, coir dust and coconut leaves, the latter is considered the most grossly under-utilized by in situ burning in the coconut farm as means of disposal. In order to utilize dried coconut leaves and to improve its biomass properties, this research attempts to produce solid fuel by torrefaction using dried coconut leaves for use as alternative source of energy. Torrefaction is a thermal method for the conversion of biomass operating in the low temperature range of 200oC-300oC under atmospheric conditions in absence of oxygen. Dried coconut leaves were torrefied at different feedstock conditions. The key torrefaction products were collected and analyzed. Physical and combustion characteristics of both torrefied and untorrefied biomass were investigated. Torrefaction of dried coconut leaves significantly improved the heating value compared to that of the untreated biomass.  Proximate compositions of the torrefied biomass also improved and were comparable to coal. The distribution of the products of torrefaction depends highly on the process conditions such as torrefaction temperature and residence time. Physical and combustion characteristics of torrefied biomass were superior making it more suitable for fuel applications. Article History: Received June 24th 2016; Received in revised form August 16th 2016; Accepted 27th 2016; Available

  17. Mobile Biomass Pelletizing System

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  18. Factors Controlling Soil Microbial Biomass and Bacterial Diversity and Community Composition in a Cold Desert Ecosystem: Role of Geographic Scale

    OpenAIRE

    Horn, David J. van; Lee Van Horn, M.; Barrett, John E.; Gooseff, Michael N.; Altrichter, Adam E; Geyer, Kevin M; Lydia H Zeglin; Takacs-Vesbach, Cristina D.

    2013-01-01

    Understanding controls over the distribution of soil bacteria is a fundamental step toward describing soil ecosystems, understanding their functional capabilities, and predicting their responses to environmental change. This study investigated the controls on the biomass, species richness, and community structure and composition of soil bacterial communities in the McMurdo Dry Valleys, Antarctica, at local and regional scales. The goals of the study were to describe the relationships between ...

  19. Distribution of lichens biomass and its affecting factors during restoration process of Inner Mongolia steppe%内蒙古草原放牧恢复过程地衣生物量分布及其影响因素的研究

    Institute of Scientific and Technical Information of China (English)

    刘忠宽; 汪诗平; 韩建国; 王艳芬; 陈佐忠

    2004-01-01

    An experiment was installed in the typical steppe area of Central Inner Mongolia to study the distribution characteristics of lichen biomass in the restoration process. The experimental areas were continuously grazed for ten years (1989 to 1998) under different stocking rate, and stopped grazing since 1999. Two years (2001 to 2002) monitoring on the distribution of lichen biomass and its affecting factors showed that no significant difference was found between different stocking rate treatments (P<0.05 ). There existed positive correlations between lichen biomass and plant species diversity and between soil water content and soil organic matter content (P < 0.05 ), and negative correlations between lichen biomass and soil bu/k density, and between Gramineae plant functional group and plant communirv coveratage and biomass(P<0.05).

  20. Seasonal controls on snow distribution and aerial ablation at the snow-patch and landscape scales, McMurdo Dry Valleys, Antarctica

    Directory of Open Access Journals (Sweden)

    J. W. Eveland

    2013-06-01

    Full Text Available Accumulated snow in the McMurdo Dry Valleys, while limited, has great ecological significance to subnivian soil environments. Though sublimation dominates the ablation process in this region, measurable increases in soil moisture and insulation from temperature extremes provide more favorable conditions with respect to subnivian soil communities. While precipitation is not substantial, significant amounts of snow can accumulate, via wind transport, in topographic lees along the valley bottoms, forming thousands of discontinuous snow patches. These patches have the potential to act as significant sources of local meltwater, controlling biogeochemical cycling and the landscape distribution of microbial communities. Therefore, determining the spatial and temporal dynamics of snow at multiple scales is imperative to understanding the broader ecological role of snow in this region. High-resolution satellite imagery acquired during the 2009–2010 and 2010–2011 austral summers was used to quantify the distribution of snow across Taylor and Wright valleys. Extracted snow-covered area from the imagery was used as the basis for assessing inter-annual variability and seasonal controls on accumulation and ablation of snow at multiple scales. In addition to landscape analyses, fifteen 1 km2 plots (3 in each of 5 study regions were selected to assess the prevalence of snow cover at finer spatial scales, referred to herein as the snow-patch scale. Results confirm that snow patches tend to form in the same locations each year with some minor deviations observed. At the snow-patch scale, neighboring patches often exhibit considerable differences in aerial ablation rates, and particular snow patches do not reflect trends for snow-covered area observed at the landscape scale. These differences are presumably related to microtopographic influences acting on individual snow patches, such as wind sheltering and differences in snow depth due to the underlying

  1. Seasonal controls on snow distribution and aerial ablation at the snow-patch and landscape scales, McMurdo Dry Valleys, Antarctica

    Directory of Open Access Journals (Sweden)

    J. W. Eveland

    2012-09-01

    Full Text Available Accumulated snow in the McMurdo Dry Valleys, while limited, has great ecological significance to subnivian soil environments. Though sublimation dominates the ablation process in this region, measurable increases in soil moisture and insulation from temperature extremes provide more favorable conditions with respect to subnivian soil communities. While precipitation is not substantial, significant amounts of snow can accumulate, via aeolian redistribution, in topographic lees along the valley bottoms, forming thousands of discontinuous snow patches. These patches have the potential to act as significant sources of local melt water, controlling biogeochemical cycling and the landscape distribution of microbial communities. Therefore, determining the spatial and temporal dynamics of snow at multiple scales is imperative to understanding the broader ecological role of snow in this region.

    High-resolution satellite imagery acquired during the 2009–2010 and 2010–2011 austral summers was used to quantify the distribution of snow across Taylor and Wright Valleys. Extracted snow-covered area from the imagery was used as the basis for assessing seasonal variability and seasonal controls on accumulation and ablation of snow at multiple scales. In addition, fifteen 1 km2 plots (3 in each of 5 study regions were selected to assess the prevalence of snow cover at finer spatial scales. Results confirm that snow patches tend to form in the same locations each year with some minor deviations observed. At the snow-patch scale, neighboring patches often exhibit considerable differences in aerial ablation rates, and particular snow patches do not reflect trends for snow-covered area observed at the landscape scale. These differences are presumably related to microtopographic influences over snow depth and exposure. This highlights the importance of both the landscape and snow-patch scales in assessing the effects of snow cover on

  2. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers

    Directory of Open Access Journals (Sweden)

    A. Hoffer

    2010-03-01

    Full Text Available Aerosols in the size class <2.5 μm (6 daytime and 9 nighttime samples were collected at a pasture site in Rondônia, Brazil, during the intensive biomass burning period of 16–26 September 2002 as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC. Homologous series of dicarboxylic acids (C2–C11 and related compounds (ketocarboxylic acids and α-dicarbonyls were identified using gas chromatography (GC and GC/mass spectrometry (GC/MS. Among the species detected, oxalic acid was found to be the most abundant, followed by succinic, malonic and glyoxylic acids. Average concentrations of total dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the aerosol samples were 2180, 167 and 56 ng m−3, respectively. These are 2–8, 3–11 and 2–16 times higher, respectively, than those reported in urban aerosols, such as in 14 Chinese megacities. Higher ratios of dicarboxylic acids and related compounds to biomass burning tracers (levoglucosan and K+ were found in the daytime than in the nighttime, suggesting the importance of photochemical production. On the other hand, higher ratios of oxalic acid to other dicarboxylic acids and related compounds normalized to biomass burning tracers (levoglucosan and K+ in the daytime provide evidence for the possible degradation of dicarboxylic acids (≥C3 in this smoke-polluted environment. Assuming that these and related compounds are photo-chemically oxidized to oxalic acid in the daytime, and given their linear relationship, they could account for, on average, 77% of the formation of oxalic acid. The remaining portion of oxalic acid may have been directly emitted from biomass burning as suggested by a good correlation with the biomass burning tracers (K+, CO and ECa and organic carbon (OC. However, photochemical production from other precursors could not be excluded.

  3. MODEL BASED BIOMASS SYSTEM DESIGN OF FEEDSTOCK SUPPLY SYSTEMS FOR BIOENERGY PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    David J. Muth, Jr.; Jacob J. Jacobson; Kenneth M. Bryden

    2013-08-01

    Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package PowersimTM. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short- rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the

  4. Water vapor release from biomass combustion

    Science.gov (United States)

    Parmar, R. S.; Welling, M.; Andreae, M. O.; Helas, G.

    2008-10-01

    We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa), softwood (pine and spruce, partly with green needles), and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7, indicating the presence of water that is not chemically bound. This non-bound biomass moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biomass contributes significantly to the water vapor in biomass burning emissions, and its influence on the behavior of fire plumes and pyro-cumulus clouds needs to be evaluated.

  5. Survey of oven during dry distillation by quenching coke oven. Part 3. ; Consideration concerning density distribution in coke mass. Cokes ro kyurei ni yoru kanryu tochu ronai chosa. Dai sanpo. ; Cokes kainai no mitsudo bunpu ni kansuru ichikosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M.; Asada, S.; Kamimura, N. (The Kansai Coke and Chemicals Co. Ltd., Hyogo (Japan))

    1992-06-25

    Recently, in order to probe the coal carbonization mechanism, many companies are carrying out surveys of the inside of an oven by quenching the same which is in dry distillation by employing an actual oven or a test one, and the following are reported; the dry distillating progress are varied at respective positions inside the oven, the portion where dry distillation is greatly delayed is caused by virtue of the action of steam generated from the non-distillated coal layer existing near the coal core rather than the plastic layer, and so forth. The writer and others have already reported that, from the results of the quenching tests carried on actual ovens, the existence of variation of dry distillation, the state of uncarbonized part of coal, the existence of temperature distribution inside coal mass showing that steam was gushing toward the wall of the oven, making it clear that steam generated from the coal layer has great effect on the progress of dry distillation. This paper gives a consideration on the relationship between the pressure exerted on the resetting surface of the plastic substance and the flow of steam inside the oven based on the densness distribution in coal mass. 7refs., 8 figs., 2 tabs.

  6. Biomass torrefaction mill

    Energy Technology Data Exchange (ETDEWEB)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  7. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  8. century drying

    Science.gov (United States)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  9. Catalytic gasification of biomass

    Science.gov (United States)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  10. Efficient biomass preparation for the utilization as biocoal in industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Lampe, Karl; Grund, Guido; Erpelding, Richard; Denker, Jurgen [ThyssenKrupp Polysius AG, Beckum (Germany)

    2012-11-01

    Rising energy costs and regulations on the efficient utilisation of energy resources force plant operators in all industrial sectors to focus on these aspects. Both in power generation as well as in thermal processes, the use of renewable sources is becoming more and more important. In this respect, especially the utilisation of biomass plays an ever-increasing role. The production of biocoal offers a solution to overcome the challenges of a wide range of different feedstock properties and to provide homogenised, biogenic fuels. The main objectives to be achieved in biocoal production are efficient drying, energy densification, bulk density maximisation and grindability optimisation. Here, the torrefaction of biomass presents a suitable and energy-efficient solution. With regard to uniform temperature distribution, temperature control, efficiency and final product quality, the multiple hearth furnace method is the preferred process of ThyssenKrupp Polysius. A double-zone multiple hearth furnace (POLTORR) permits both drying and torrefaction of wet biomasses up to 50% moisture content in one coupled unit. The main advantage of this process is the direct, safe and efficient utilisation of the volatiles released during torrefaction for the drying process by means of post-combustion, thus under favourable conditions, an almost autothermic process can be realized.

  11. Biomass Deconstruction and Recalcitrance

    DEFF Research Database (Denmark)

    Zhang, Heng

    reflections of plant species, tissue or organ types, genetic traits and environment. Effects of cultivar type, anatomical distribution, chemical composition, fertilizer level and growth year have been observed during in vitro and in vivo trials. A similar approach is here taken to further investigate: 1). How...... system, a plate incubator and a high performance liquid chromatography (HPLC) system. In comparison with the reported HTS platforms, the Copenhagen platform is featured by the fully automatic biomass sample preparation system, the bench-scale hydrothermal pretreatment setup, and precise sugar measurement...

  12. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    Directory of Open Access Journals (Sweden)

    J. L. Hand

    2010-07-01

    Full Text Available During the 2006 FLAME study (Fire Laboratory at Missoula Experiment, laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry and bsp(RH, respectively in order to explore the role of relative humidity (RH on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels from the west and southeast United States showed large variability in the humidification factor (f(RH=bsp(RH/bsp(dry. Values of f(RH at RH=80–85% ranged from 0.99 to 1.81 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 80–85% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  13. Measured and modeled humidification factors of fresh smoke particles from biomass burning: role of inorganic constituents

    Directory of Open Access Journals (Sweden)

    J. L. Hand

    2010-02-01

    Full Text Available During the 2006 FLAME study (Fire Laboratory at Missoula Experiment, laboratory burns of biomass fuels were performed to investigate the physico-chemical, optical, and hygroscopic properties of fresh biomass smoke. As part of the experiment, two nephelometers simultaneously measured dry and humidified light scattering coefficients (bsp(dry and bsp(RH, respectively in order to explore the role of relative humidity (RH on the optical properties of biomass smoke aerosols. Results from burns of several biomass fuels showed large variability in the humidification factor (f(RH=bsp(RH/bsp(dry. Values of f(RH at RH=85–90% ranged from 1.02 to 2.15 depending on fuel type. We incorporated measured chemical composition and size distribution data to model the smoke hygroscopic growth to investigate the role of inorganic and organic compounds on water uptake for these aerosols. By assuming only inorganic constituents were hygroscopic, we were able to model the water uptake within experimental uncertainty, suggesting that inorganic species were responsible for most of the hygroscopic growth. In addition, humidification factors at 85–90% RH increased for smoke with increasing inorganic salt to carbon ratios. Particle morphology as observed from scanning electron microscopy revealed that samples of hygroscopic particles contained soot chains either internally or externally mixed with inorganic potassium salts, while samples of weak to non-hygroscopic particles were dominated by soot and organic constituents. This study provides further understanding of the compounds responsible for water uptake by young biomass smoke, and is important for accurately assessing the role of smoke in climate change studies and visibility regulatory efforts.

  14. Impact of biomass burning on soil microorganisms and plant metabolites: A view from molecular distributions of atmospheric hydroxy fatty acids over Mount Tai

    Science.gov (United States)

    Tyagi, Poonam; Kawamura, Kimitaka; Fu, Pingqing; Bikkina, Srinivas; Kanaya, Yugo; Wang, Zifa

    2016-10-01

    Biomass burning events (BBEs) in the North China Plain is one of the principal sources of airborne pollutants in China and also for the neighboring countries. To examine the impact of BBEs on soil bacteria and other higher plant metabolites, their tracer compounds, hydroxy fatty acids (FAs), were measured in the bulk particulate matter (total suspended particles (TSP)) over Mount Tai during the period of wheat residue burning in June 2006. Higher inputs of epicuticular waxes and soil microorganisms during high BBEs (H; 6-14 and 27 June) relative to low BBEs (L; 15-26 and 28 June) were characterized by increased concentrations of homologous series of α-(C9-C32), β-(C9-C32), and ω-(C12-C28) hydroxy FAs in TSP samples. However, their relative abundances were not significantly different between H-BBEs and L-BBEs, suggesting their common source/transport pathways. We also found higher concentrations of trehalose and mannitol (tracers of soil microbes), and levoglucosan (tracer of biomass combustion) during H-BBEs than L-BBEs. These results are consistent with hydroxy FAs, suggesting that they are associated with biomass combustion processes of agricultural wastes as well as re-suspension of mineral dust and plant pathogens. In addition, enhanced concentrations of endotoxin and mass loading of Gram-negative bacteria during H-BBEs (117 endotoxin units (EU) m-3 and 390 ng m-3, respectively) were noteworthy as compared to those in L-BBEs (22.5 EU m-3 and 75 ng m-3, respectively). Back trajectory analysis and fire spots together with temporal variations of hydroxy FAs revealed an impact of biomass burning on emissions and atmospheric transport of bacteria and plant metabolites.

  15. Optimization of biomass-producing conditions of Micrococcus sp. S ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... The optimal culture conditions for biomass production were investigated through ... variables were optimized by Box-behnken experimental design and response surface .... conditions was expressed as dry cell weight.

  16. My Biomass, Your Biomass, Our Solution

    Science.gov (United States)

    The US is pursuing an array of renewable energy sources to reduce reliance on imported fossil fuels and reduce greenhouse gas emissions. Biomass energy and biomass ethanol are key components in the pursuit. The need for biomass feedstock to produce sufficient ethanol to meet any of the numerous stat...

  17. The importance of biomass net uptake for a trace metal budget in a forest stand in north-eastern France

    Energy Technology Data Exchange (ETDEWEB)

    Gandois, L. [Universite de Toulouse, UPS, INP, EcoLab - Laboratoire d' ecologie fonctionnelle, ENSAT, Avenue de l' Agrobiopole, F-31326 Castanet-Tolosan (France); CNRS, EcoLab, F-31326 Castanet-Tolosan (France); Nicolas, M. [ONF, Direction technique RENECOFOR, Bd de Constance 77300 Fontainebleau (France); VanderHeijden, G. [INRA, centre de Nancy, Equipe BEF, 54280 Champenoux (France); Probst, A., E-mail: anne.probst@ensat.fr [Universite de Toulouse, UPS, INP, EcoLab -Laboratoire d' ecologie fonctionnelle, ENSAT, Avenue de l' Agrobiopole, F-31326 Castanet-Tolosan (France); CNRS, EcoLab, F-31326 Castanet-Tolosan (France)

    2010-11-01

    The trace metal (TM: Cd, Cu, Ni, Pb and Zn) budget (stocks and annual fluxes) was evaluated in a forest stand (silver fir, Abies alba Miller) in north-eastern France. Trace metal concentrations were measured in different tree compartments in order to assess TM partitioning and dynamics in the trees. Inputs included bulk deposition, estimated dry deposition and weathering. Outputs were leaching and biomass exportation. Atmospheric deposition was the main input flux. The estimated dry deposition accounted for about 40% of the total trace metal deposition. The relative importance of leaching (estimated by a lumped parameter water balance model, BILJOU) and net biomass uptake (harvesting) for ecosystem exportation depended on the element. Trace metal distribution between tree compartments (stem wood and bark, branches and needles) indicated that Pb was mainly stored in the stem, whereas Zn and Ni, and to a lesser extent Cd and Cu, were translocated to aerial parts of the trees and cycled in the ecosystem. For Zn and Ni, leaching was the main output flux (> 95% of the total output) and the plot budget (input-output) was negative, whereas for Pb the biomass net exportation represented 60% of the outputs and the budget was balanced. Cadmium and Cu had intermediate behaviours, with 18% and 30% of the total output relative to biomass exportation, respectively, and the budgets were negative. The net uptake by biomass was particularly important for Pb budgets, less so for Cd and Cu and not very important for Zn and Ni in such forest stands.

  18. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  19. Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers

    Directory of Open Access Journals (Sweden)

    S. Kundu

    2009-09-01

    Full Text Available Aerosols in the size class <2.5 μm (6 daytime and 9 nighttime samples were collected at a pasture site in Rondônia, Brazil, during the intensive biomass burning period of 16–26 September 2002 as part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC. Homologous series of dicarboxylic acids (C2–C11 and related compounds (ketocarboxylic acids and dicarbonyls were identified using gas chromatography and GC/mass spectrometry (GC/MS. Among the species detected, oxalic acid was found to be the most abundant, followed by succinic, malonic and glyoxylic acids. Average concentrations of total dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the aerosol samples were 2180, 167 and 56 ng m−3, respectively. These are 2–8, 3–11 and 2–16 times higher, respectively, than those reported in urban aerosols, such as in 14 Chinese megacities. Higher ratios of dicarboxylic acids and related compounds to biomass burning tracers (levoglucosan and K+ were found in the daytime than in the nighttime, suggesting an importance of photochemical production. On the other hand, higher ratios of oxalic acid to other dicarboxylic acids and related compounds normalized to biomass burning tracers (levoglucosan and K+ in the daytime provide evidence for the possible degradation of dicarboxylic acids (≥C3 in this smoke-polluted environment. Assuming that these and related compounds are photochemically oxidized to oxalic acid in the daytime and given their linear relationship, they could account for, on average, 77% of the formation of oxalic acid. The remaining portion of oxalic acid may have been directly emitted from biomass burning as suggested by a good correlation with the biomass burning tracers (K+, CO and ECa and organic carbon (OC. However, photochemical production from other precursors

  20. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L. – a case study

    Directory of Open Access Journals (Sweden)

    Christopher Morhart

    2016-02-01

    Full Text Available Background: The global search for new ways to sequester carbon has already reached agricultural lands. Such land constitutes a major potential carbon sink. The production of high value timber within agroforestry systems can facilitate an in-situ carbon storage function. This is followed by a potential long term ex- situ carbon sinkwithin long lasting products such as veneer and furniture. For this purpose wild cherry (Prunus avium L. is an interesting option for middle Europe, yielding high prices on the timber market. Methods: A total number of 39 wild cherry were sampled in 2012 and 2013 to assess the leafless above ground biomass. The complete trees including stem and branches were separated into 1 cm diameter classes. Wood and bark from sub-samples were analysed separately and nutrient content was derived. Models for biomass estimation were constructed for all tree compartments. Results: The smallest diameter classes possess the highest proportion of bark due to smaller cross sectional area. Tree boles with a greater amount of stem wood above 10 cm in diameter will have a more constant bark proportion. Total branch bark proportion also remains relatively constant above d1.3m measurements of 8 cm. A balance is evident between the production of new branches with a low diameter and high bark proportion offset by the thickening and a relative reduction in bark proportion in larger branches. The results show that a single tree with an age of 17 and 18 years can store up to 85 kg of carbon within the aboveground biomass portion, an amount that will increase as the tree matures. Branches display greater nutrient content than stem sections per volume unit which can be attributed to a greater bark proportion. Conclusions: Using the derived models the carbon and the nutrient content of above-ground woody biomass of whole trees can be calculated. Suggested values for carbon with other major and minor nutrients held within relatively immature trees

  1. 茶园土壤团聚体中微生物量碳、氮的分布特征%Distribution Characteristics of Microbial Biomass Carbon and Nitrogen in Soil Aggregates Under Tea Plantation

    Institute of Scientific and Technical Information of China (English)

    刘敏英; 郑子成; 李廷轩

    2011-01-01

    [目的]弄清茶园土壤团聚体中微生物量碳、氮的分布特征,以期反映退耕还茶模式对土壤团聚体及其养分循环的影响,为协调区域土地利用及退耕还林(茶)工程的实施提供依据.[方法]采用野外调查和室内分析相结合的方法,以撂荒地和按树人工林为对照,就茶园土壤团聚体中微生物量碳、氮的分布特征进行了研究.[结果](1)茶园和对照撂荒地、按树人工林土壤团聚体中有机碳含量基本随团聚体直径的减小而增加,最大值均集中于<0.25 mm团聚体中;(2)茶园及对照地土壤微生物量碳、氮含量则基本随团聚体直径的减小而降低,其中茶园土壤团聚体中微生物量碳、氮含量最大值分布于5-2 mm团聚体中,茶园土壤除了<0.25 mm团聚体外,其微生物量碳、氮的含量均高于撂荒地和按树人工林同直径团聚体;(3)茶园及对照地土壤团聚体微生物熵基本随团聚体直径的减小而降低,其中茶园土壤团聚体微生物熵最大值分布于5-2 mm团聚体中,其分布规律与微生物量碳、氮基本一致.[结论]与撂荒地、按树人工林相比,茶园土壤团聚体中微生物量碳、氮较为丰富,大团聚体中的含量尤为突出,表明退耕还茶是研究区一种较为理想的退耕模式.%[Objective] The distribution of microbial biomass carbon and microbial biomass nitrogen in soil aggregates of tea planted area was studied on purpose to reflect the influence of tea plantation on soil aggregates and its nutrient cycling, which can provide evidence for coordinating regional land use and returning farmland to forest/tea project. [Method] On the basis of field investigation and laboratory analysis, abandoned land and eucalyptus plantation were selected as contrasts, distribution features of microbial biomass carbon and microbial biomass nitrogen in soil aggregates under tea plantation were studied. [Result] The content of soil aggregates organic carbon

  2. Assessing the potential for biomass energy development in South Carolina

    Science.gov (United States)

    Roger C. Conner; Tim O. Adams; Tony G. Johnson

    2009-01-01

    An assessment of the potential for developing a sustainable biomass energy industry in South Carolina was conducted. Biomass as defined by Forest Inventory and Analysis is the aboveground dry weight of wood in the bole and limbs of live trees ≥1-inch diameter at breast height, and excludes tree foliage, seedlings, and understory...

  3. Acetic acid based oil palm biomass refining process

    NARCIS (Netherlands)

    Harmsen, P.F.H.; Keijsers, E.R.P.; Lips, S.J.J.; Dam, van J.E.G.; Engelen-Smit, N.P.E.

    2011-01-01

    The invention relates to a process for refining a biomass from empty fruit bunches of oil palm with a dry matter content of 5-95 wt.%, based on the total wt. of the biomass, where the process comprises the subsequent stages of (a) water extn. under atm. pressure conditions and at pH of 5-7, (b) pre

  4. Produção e distribuição de biomassa de espécies arbóreas no semi-árido brasileiro Production and distribution of biomass of tree species in the Brazilian semi-arid area

    Directory of Open Access Journals (Sweden)

    Marcos Antônio Drumond

    2008-08-01

    Full Text Available Com o objetivo de avaliar a produção e distribuição de biomassa de algumas espécies arbóreas de múltiplo uso em condições de sequeiro do submédio do São Francisco, instalou-se um experimento no Campo Experimental da Caatinga da Embrapa Semi-Árido, Município de Petrolina, PE. Foram realizadas medições de altura e diâmetro à altura do peito (DAP de 16 árvores centrais, em três parcelas de cada espécie: Leucaena diversifolia, Caesalpinia velutina, Caesalpinia coriaria, Mimosa tenuiflora e Ateleia herbert-smithii. A biomassa foi estimada com base na árvore de altura média de cada parcela, avaliando-se, separadamente, cada componente (folhas, galhos, cascas e lenho. A biomassa nos diferentes componentes arbóreos das espécies foi distribuída na seguinte ordem: folhaThe objective of the study was to quantify the production and biomass distribution of some potential arboreal species of multiple uses, under dry land conditions, in the Brazilian Semi-arid. The study was developed in the Experimental Station of Caatinga, of Embrapa Semi-Árido, Petrolina-PE, Brazil. Plant height and diameter at breast height (DBH of 16 central trees of each plot, from three replicates, were measured. The following species were studied: Leucaena diversifolia, Caesalpinia velutina, Caesalpinia coriaria, Mimosa tenuiflora and Ateleia herbert-smithii. Biomass was estimated based on the medium height tree in each plot, evaluating each component separately: leaf, bark, branch, root and log, except for A. herbert-smithii that produced more leaf than bark. Total biomass production was superior for C. velutina (51.6 kg ha-1, followed by L. diversifolia (36.6 kg ha-1, A. herbert-smithii (26.4 kg ha-1, Caesalpinia coriaria (23.0 kg ha-1 and Mimosa tenuiflora (21.6 kg ha-1 However, leaf dry matter, the main potential component of forage species, was higher for C. velutina y A. herbert-smithii (2.8 kg ha-1 and C. coriaria (2.2 kg ha-1, L. diversifolia (2.0 kg

  5. Biomass of meiobenthic in the Bohai Sea, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A grid of 22 stations, giving a broad geographic coverage of the Bohai Sea and the Bohai Strait was selected. Undisturbed sediments were collected from sampling stations during cruises in June 1997, in September/October 1998 and again in April/May 1999. Based on the results of Juario (1975),the average biornass, 0.404 g/(m2@ a) of meiofauna (including nematode, harpacticoida, bivalve larvae,polycheata and kinorhyncha) in the Bohai Sea is given and accounts for 4.5 percent of the macrofauna in the Bohai Sea. The horizontal distribution of the biomass of meiofauna showed that it was higher at the stations of middle east part of the Bohai Sea and the strait in 1998 and 1999 cruises and it decreased at the stations near to the strait mouth and increased at Station B1 in 1999 cruise. The annual average pro duction in the Bohai Sea is 3. 636 g/m2 calculated in term of the formula P = 9B. Compared with the biomass of other sea areas in the world, the biomass of the Bohai Sea is similar but slightly lower. The individual average dry weight of nematodes given by different authors is analyzed.

  6. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  7. The Interpolation Method for Estimating the Above-Ground Biomass Using Terrestrial-Based Inventory

    Directory of Open Access Journals (Sweden)

    I Nengah Surati Jaya

    2014-09-01

    Full Text Available This paper examined several methods for interpolating biomass on logged-over dry land forest using terrestrial-based forest inventory in Labanan, East Kalimantan and Lamandau, Kota Wringing Barat, Central Kalimantan.  The plot-distances examined was 1,000−1,050 m for Labanan and 1,000−899m for Lawanda.  The main objective of this study was to obtain the best interpolation method having the most accurate prediction on spatial distribution of forest biomass for dry land forest. Two main interpolation methods were examined: (1 deterministic approach using the IDW method and (2 geo-statistics approach  using Kriging with spherical, circular, linear, exponential, and Gaussian models.   The study results at both sites consistently showed that the IDW method was better than the Kriging method for estimating the spatial distribution of biomass.  The validation results using chi-square test showed that the IDW interpolation provided accurate biomass estimation.   Using the percentage of mean deviation value (MD(%, it was also recognized that the IDWs with power parameter (p of 2 provided relatively low value , i.e., only 15% for Labanan, East Kalimantan Province and 17% for Lamandau, Kota Wringing Barat Central Kalimantan Province. In general, IDW interpolation method provided better results than the Kriging, where the Kriging method provided MD(% of about 27% and 21% for Lamandau and Labanan sites, respectively.Keywords:  deterministic, geostatistics, IDW, Kriging, above-groung biomass

  8. Dry Mouth

    Science.gov (United States)

    ... Use a fluoride rinse or brush-on fluoride gel before bedtime. See your dentist at least twice yearly to have your teeth examined and plaque removed, to help prevent tooth decay. Several herbal remedies have been used historically to treat dry ...

  9. Biomass treatment method

    Science.gov (United States)

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  10. Rheology of concentrated biomass

    Science.gov (United States)

    J.R. Samaniuk; J. Wang; T.W. Root; C.T. Scott; D.J. Klingenberg

    2011-01-01

    Economic processing of lignocellulosic biomass requires handling the biomass at high solids concentration. This creates challenges because concentrated biomass behaves as a Bingham-like material with large yield stresses. Here we employ torque rheometry to measure the rheological properties of concentrated lignocellulosic biomass (corn stover). Yield stresses obtained...

  11. Evaluation on Microalgae Biomass for Bioethanol Production

    Science.gov (United States)

    Chng, L. M.; Lee, K. T.; Chan, D. C. J.

    2017-06-01

    The depletion of energy resources has triggered worldwide concern for alternative sources, especially renewable energy. Microalgae biomass offers the most promising feedstock for renewable energy because of their impressive efficient growing characteristics and valuable composition. Simple cell structure of the microalgae would simplify the pretreatment technology thus increase the cost-effectiveness of biofuel production. Scenedesmus dimorphus is a carbohydrate-rich microalgae that has potential as biomass for bioethanol. The cultivation of Scenedesmus dimorphus under aeration of carbon dioxide enriched air resulted 1.47 g/L of dry biomass with composition of 12 w/w total lipid, 53.7 w/w carbohydrate and 17.4 protein. Prior to ethanolic fermentation with Saccharomyces cerevisiae, various pre-treatment methods were investigated to release and degrade the complex carbohydrate in cell biomass thus obtaining the maximal amount of digestible sugar for ethanolic yeast. In this study, sulfuric acid was used as hydrolysis agent while amyloglucosidase as enzymatic agent. Dried biomass via hydrothermal acidic hydrolysis yielded sugar which is about 89 of total carbohydrate at reaction temperature of 125 °C and acid concentration of 4 v/v. While combination of organosolv treatment (mixture of methanol and chloroform) with enzymatic hydrolysis yielded comparable amount of sugar with 0.568 g glucose/g treated-biomass. In this study, the significant information in pre-treatment process ensures the sustainability of the biofuel produced.

  12. Influence of the feed moisture, rotor speed, and blades gap on the performances of a biomass pulverization technology.

    Science.gov (United States)

    Luo, Siyi; Zhou, Yangmin; Yi, Chuijie; Luo, Yin; Fu, Jie

    2014-01-01

    Recently, a novel biomass pulverization technology was proposed by our group. In this paper, further detailed studies of this technology were carried out. The effects of feed moisture and crusher operational parameters (rotor speed and blades gap) on product particle size distribution and energy consumption were investigated. The results showed that higher rotor speed and smaller blades gap could improve the hit probability between blades and materials and enhance the impacting and grinding effects to generate finer products, however, resulting in the increase of energy consumption. Under dry conditions finer particles were much more easily achieved, and there was a tendency for the specific energy to increase with increasing feed moisture. Therefore, it is necessary for the raw biomass material to be dried before pulverization.

  13. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  14. Proximate analysis for amazon biomass

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Antonio Geraldo de Paula; Feitosa Netto, Genesio Batista; Nogueira, Manoel Fernandes Martins; Coutinho, Manoel Fernandes Martins; Coutinho, Hebert Willian Martins; Rendeiro, Goncalo [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Lab. de Engenharia Mecanica (LABGAS)], e-mail: ageraldo@ufpa.br, e-mail: mfmn@ufpa.br, e-mail: rendeiro@ufpa.br

    2006-07-01

    In order to asses the potentiality of Amazon biomass to generate power, either to supply electric energy to the grid or as fuel to plants supplying power for off-grid location, data for their proximate analysis must be available. A literature review on the subject indicated a lack of information and data concerning typical Amazon rain forest species. This work aimed to characterize (proximate analysis) 80 Amazon species in order to evaluate the energy resource from woody biomass wastes in Amazon region. Higher Heating Value, Carbon, Volatile and Ash contents were measured in a dry basis. The measurements were performed obeying the following Brazilian standards, NBR 6923, NBR 8112, NBR 8633, NBR 6922. (author)

  15. Use of forest inventories and geographic information systems to estimate biomass density of tropical forests: Application to tropical Africa.

    Science.gov (United States)

    Brown, S; Gaston, G

    1995-01-01

    One of the most important databases needed for estimating emissions of carbon dioxide resulting from changes in the cover, use, and management of tropical forests is the total quantity of biomass per unit area, referred to as biomass density. Forest inventories have been shown to be valuable sources of data for estimating biomass density, but inventories for the tropics are few in number and their quality is poor. This lack of reliable data has been overcome by use of a promising approach that produces geographically referenced estimates by modeling in a geographic information system (GIS). This approach has been used to produce geographically referenced, spatial distributions of potential and actual (circa 1980) aboveground biomass density of all forests types in tropical Africa. Potential and actual biomass density estimates ranged from 33 to 412 Mg ha(-1) (10(6)g ha(-1)) and 20 to 299 Mg ha(-1), respectively, for very dry lowland to moist lowland forests and from 78 to 197 Mg ha(-1) and 37 to 105 Mg ha(-1), respectively, for montane-seasonal to montane-moist forests. Of the 37 countries included in this study, more than half (51%) contained forests that had less than 60% of their potential biomass. Actual biomass density for forest vegetation was lowest in Botswana, Niger, Somalia, and Zimbabwe (about 10 to 15 Mg ha(-1)). Highest estimates for actual biomass density were found in Congo, Equatorial Guinea, Gabon, and Liberia (305 to 344 Mg ha(-1)). Results from this research effort can contribute to reducing uncertainty in the inventory of country-level emission by providing consistent estimates of biomass density at subnational scales that can be used with other similarly scaled databases on change in land cover and use.

  16. Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper.

    Science.gov (United States)

    Chang, V S; Nagwani, M; Kim, C H; Holtzapple, M T

    2001-04-01

    Lime (Ca[OH]2) and oxygen (O2) were used to enhance the enzymatic digestibility of two kinds of high-lignin biomass: poplar wood and newspaper. The recommended pretreatment conditions for poplar wood are 150 degrees C, 6 h, 0.1 g of Ca(OH)2/g of dry biomass, 9 mL of water/g of dry biomass, 14.0 bar absolute oxygen, and a particle size of -10 mesh. Under these conditions, the 3-d reducing sugar yield of poplar wood using a cellulase loading of 5 filter paper units (FPU)/g of raw dry biomass increased from 62 to 565 mg of eq. glucose/g of raw dry biomass, and the 3-d total sugar (glucose + xylose) conversion increased from 6 to 77% of raw total sugars. At high cellulase loadings (e.g., 75 FPU/g of raw dry biomass), the 3-d total sugar conversion reached 97%. In a trial run with newspaper, using conditions of 140 degrees C, 3 h, 0.3 g of Ca(OH)2/g of dry biomass, 16 mL of water/g of dry biomass, and 7.1 bar absolute oxygen, the 3-d reducing sugar yield using a cellulase loading of 5 FPU/g of raw dry biomass increased from 240 to 565 mg of eq. glucose/g of raw dry biomass. A material balance study on poplar wood shows that oxidative lime pretreatment solubilized 38% of total biomass, including 78% of lignin and 49% of xylan; no glucan was removed. Ash increased because calcium was incorporated into biomass during the pretreatment. After oxidative lime pretreatment, about 21% of added lime could be recovered by CO2 carbonation.

  17. QUANTIFICATION OF ABOVE-GROUND BIOMASS IN STAND OF Acacia mearnsii DE WILD., BATEMANS BAY PROVENANCE - AUSTRALIA

    Directory of Open Access Journals (Sweden)

    Marcos Vinicius Winckler Caldeira

    2010-08-01

    Full Text Available The above-ground biomass of the Australian provenance Batemans Bay of black wattle (Acacia mearnsii De Wild., at 2.4 years after planting was quantified. The provenance was established in soils of low fertility, with high acidity, at Fazenda Menezes, District of Capão Comprido, County of Butiá/RS. Nine trees were selected to form a sample. The destructive sampling comprised the individualization of the compartments of the above-ground biomass (leaves, live branches, dead branches, bark, and wood, and the determination of the dry matter allocated in each of these compartments. The production of above-ground biomass of the Australian provenance Batemans Bay was 36,1 Mg ha-1 with the following distribution: 20% in the leaves; 19,5% in the live branches; 2,8% in the dead branches; 11,8% in the bark and 45,9% in the wood.

  18. [Individual biomass of natural Pinus densiflora].

    Science.gov (United States)

    Wang, C; Jin, Y; Jin, C; Liu, J; Jin, Y

    2000-02-01

    The aboveground biomass of individuals with different growth potentials in natural Pinus densiflora forest with different stand densities was measured in Yanbian, Jilin Province. The variation of individual biomass affected by densities was in order of dominant tree branch > needle > bark. The biomass components of P. densifliora with different growth potentials varied markedly with the approaching of density class III, and the change of intermediate trees was similar to the whole stand. The vertical distributions of biomass of different trees were different from each other, but all showed that the biomass of trunks and barks was mainly distributed below 6 m high from ground, that of branches was within 6-10 m high, that of needles was uniform in the upper, middle and lower layers, and that of branches and needles in upper layer was least affected by density.

  19. Effect of the natural and artificial drying of leaf biomass Piper hispidinervum on the chemical composition of the essential oilEfeito da secagem natural e artificial da biomassa foliar de Piper hispidinervum na composição química do óleo essencial

    Directory of Open Access Journals (Sweden)

    Marília Pereira Machado

    2013-03-01

    Full Text Available Piper hispidinervum C.DC. is a plant native to the Amazon region, produces an essential oil rich in safrole. The aim of this study was to evaluate the effect of different methods of drying biomass in chemical composition of the essential oil of P. hispidinervum cultivated in Morretes (PR. The treatments were: fresh leaves; natural drying for 6 and 12 days; oven drying at 40°C for 6 and 12 days. The essential oil was extracted by hydrodistillation from samples of 50 g of each treatment in triplicate. The chemical composition of essential oil was performed by gas chromatography coupled to mass spectrometer (GC/ MS. The experimental design was completely randomized design with three replication and four plants per plot. Data were subjected to analysis of variance. The type and drying time changes the chemical composition of the essential oil of P. hispidinervum. The dried at 40°C for 12 days reduce the amount of essential oil components, but with increasing content of safrole. Piper hispidinervum C.DC. é uma planta nativa da Amazônia, produtora de óleo essencial rico em safrol. O objetivo do presente trabalho foi avaliar o efeito de diferentes métodos de secagem da biomassa folia de pimenta longa (P. hispidinervum, cultivada em Morretes (PR, na composição química do óleo essencial. Os tratamentos avaliados foram: folhas frescas; secagem natural por 6 e 12 dias; secagem em estufa à 40°C por 6 e 12 dias. O óleo essencial foi extraído por hidrodestilação a partir de amostras de 50 g de cada tratamento em triplicata. A determinação da composição química do óleo essencial foi realizada por cromatografia gasosa acoplada ao espectrômetro de massa (GC/MS. O delineamento experimental foi inteiramente casualizado, com três repetições e quatro plantas por parcela. Os dados obtidos foram submetidos à análise de variância. O tipo e tempo de secagem alteram a constituição química do óleo essencial de pimenta-longa. A secagem em

  20. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Written By: Kierstan Boyd Reviewed By: ... your eyes do not produce enough tears, it is called dry eye. Dry eye is also when ...

  1. Effects of soil moisture retention on ice distribution and active layer thickness subject to seasonal ground temperature variations in a dry loess terrace in Adventdalen, Svalbard.

    Science.gov (United States)

    Schuh, Carina; Frampton, Andrew; Christiansen, Hanne

    2017-04-01

    The active layer constitutes an important part of permafrost environments. Thermal and hydrological processes in the active layer determine local phenomena such as erosion and hydrological and ecosystem changes, and can have important implications for the global carbon-climate feedback. Permafrost degradation usually starts with a deepening of the active layer, followed by the formation of a talik and the subsequent thawing of permafrost. An increasing active layer thickness is therefore regarded as an indicator of permafrost degradation. The importance of hydrology for active layer processes is generally well acknowledged on a conceptual level, however the in general non-linear physical interdependencies between soil moisture, subsurface water and heat fluxes and active layer thaw progression are not fully understood. In this study, high resolution field data for the period 2000-2014 consisting of active layer and permafrost temperature, active layer soil moisture, and thaw depth progression from the UNISCALM research site in Adventdalen, Svalbard, is combined with a physically-based coupled cryotic and hydrogeological model to investigate active layer dynamics. The site is a loess-covered river terrace characterized by dry conditions with little to no summer infiltration and an unsaturated active layer. A range of soil moisture characteristic curves consistent with loess sediments is considered and their effects on ice and moisture redistribution, heat flux, energy storage through latent heat transfer, and active layer thickness is investigated and quantified based on hydro-climatic site conditions. Results show that soil moisture retention characteristics exhibit notable control on ice distribution and circulation within the active layer through cryosuction and are subject to seasonal variability and site-specific surface temperature variations. The retention characteristics also impact unfrozen water and ice content in the permafrost. Although these effects

  2. [Applications of GIS in biomass energy source research].

    Science.gov (United States)

    Su, Xian-Ming; Wang, Wu-Kui; Li, Yi-Wei; Sun, Wen-Xiang; Shi, Hai; Zhang, Da-Hong

    2010-03-01

    Biomass resources have the characteristics of widespread and dispersed distribution, which have close relations to the environment, climate, soil, and land use, etc. Geographic information system (GIS) has the functions of spatial analysis and the flexibility of integrating with other application models and algorithms, being of predominance to the biomass energy source research. This paper summarized the researches on the GIS applications in biomass energy source research, with the focus in the feasibility study of bioenergy development, assessment of biomass resources amount and distribution, layout of biomass exploitation and utilization, evaluation of gaseous emission from biomass burning, and biomass energy information system. Three perspectives of GIS applications in biomass energy source research were proposed, i. e., to enrich the data source, to improve the capacity on data processing and decision-support, and to generate the online proposal.

  3. Integrated strategic and tactical biomass-biofuel supply chain optimization.

    Science.gov (United States)

    Lin, Tao; Rodríguez, Luis F; Shastri, Yogendra N; Hansen, Alan C; Ting, K C

    2014-03-01

    To ensure effective biomass feedstock provision for large-scale biofuel production, an integrated biomass supply chain optimization model was developed to minimize annual biomass-ethanol production costs by optimizing both strategic and tactical planning decisions simultaneously. The mixed integer linear programming model optimizes the activities range from biomass harvesting, packing, in-field transportation, stacking, transportation, preprocessing, and storage, to ethanol production and distribution. The numbers, locations, and capacities of facilities as well as biomass and ethanol distribution patterns are key strategic decisions; while biomass production, delivery, and operating schedules and inventory monitoring are key tactical decisions. The model was implemented to study Miscanthus-ethanol supply chain in Illinois. The base case results showed unit Miscanthus-ethanol production costs were $0.72L(-1) of ethanol. Biorefinery related costs accounts for 62% of the total costs, followed by biomass procurement costs. Sensitivity analysis showed that a 50% reduction in biomass yield would increase unit production costs by 11%.

  4. Small-Scale Vertical Distribution of Bacterial Biomass and Diversity in Biological Soil Crusts from Arid Lands in the Colorado Plateau

    Science.gov (United States)

    Garcia-Pichel, F.; Johnson, S.L.; Youngkin, D.; Belnap, J.

    2003-01-01

    We characterized, at millimeter resolution, bacterial biomass, diversity, and vertical stratification of biological soil crusts in arid lands from the Colorado Plateau. Microscopic counts, extractable DNA, and plate counts of viable aerobic copiotrophs (VAC) revealed that the top centimeter of crusted soils contained atypically large bacterial populations, tenfold larger than those in uncrusted, deeper soils. The plate counts were not always consistent with more direct estimates of microbial biomass. Bacterial populations peaked at the immediate subsurface (1-2 mm) in light-appearing, young crusts, and at the surface (0-1 mm) in well-developed, dark crusts, which corresponds to the location of cyanobacterial populations. Bacterial abundance decreased with depth below these horizons. Spatially resolved DGGE fingerprints of Bacterial 16S rRNA genes demonstrated the presence of highly diverse natural communities, but we could detect neither trends with depth in bacterial richness or diversity, nor a difference in diversity indices between crust types. Fingerprints, however, revealed the presence of marked stratification in the structure of the microbial communities, probably a result of vertical gradients in physicochemical parameters. Sequencing and phylogenetic analyses indicated that most of the naturally occurring bacteria are novel types, with low sequence similarity (83-93%) to those available in public databases. DGGE analyses of the VAC populations indicated communities of lower diversity, with most types having sequences more than 94% similar to those in public databases. Our study indicates that soil crusts represent small-scale mantles of fertility in arid ecosystems, harboring vertically structured, little-known bacterial populations that are not well represented by standard cultivation methods.

  5. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  6. Modelling of biomass utilization for energy purpose

    Energy Technology Data Exchange (ETDEWEB)

    Grzybek, Anna (ed.)

    2010-07-01

    the overall farms structure, farms land distribution on several separate subfields for one farm, villages' overpopulation and very high employment in agriculture (about 27% of all employees in national economy works in agriculture). Farmers have low education level. In towns 34% of population has secondary education and in rural areas - only 15-16%. Less than 2% inhabitants of rural areas have higher education. The structure of land use is as follows: arable land 11.5%, meadows and pastures 25.4%, forests 30.1%. Poland requires implementation of technical and technological progress for intensification of agricultural production. The reason of competition for agricultural land is maintenance of the current consumption level and allocation of part of agricultural production for energy purposes. Agricultural land is going to be key factor for biofuels production. In this publication research results for the Project PL0073 'Modelling of energetical biomass utilization for energy purposes' have been presented. The Project was financed from the Norwegian Financial Mechanism and European Economic Area Financial Mechanism. The publication is aimed at moving closer and explaining to the reader problems connected with cultivations of energy plants and dispelling myths concerning these problems. Exchange of fossil fuels by biomass for heat and electric energy production could be significant input in carbon dioxide emission reduction. Moreover, biomass crop and biomass utilization for energetical purposes play important role in agricultural production diversification in rural areas transformation. Agricultural production widening enables new jobs creation. Sustainable development is going to be fundamental rule for Polish agriculture evolution in long term perspective. Energetical biomass utilization perfectly integrates in the evolution frameworks, especially on local level. There are two facts. The fist one is that increase of interest in energy crops in Poland

  7. 科尔沁沙地沙丘迎风坡面干沙层的空间分布%Spatial distribution patterns of dry sand layer on windward slope of dunes in Horqin Sand Land

    Institute of Scientific and Technical Information of China (English)

    宗芹; 阿拉木萨; 骆永明; 牛存洋; 陈雪峰; 汪海洋

    2012-01-01

    对科尔沁沙地西部地区流动沙丘和固定沙丘的迎风坡表层干沙层厚度进行观测,分析了沙丘坡面干沙层的空间分布特点.结果表明:研究区沙丘迎风坡表层干沙层厚度主要在5 ~15 cm,92.0%的流动沙丘区域和98.6%的固定沙丘区域的干沙层厚度分布在此范围内;固沙植物影响沙丘表层干沙层的厚度变化和空间分布.流动沙丘表层干沙层厚度表现出明显的空间差异性:迎风坡上部西侧区域干沙层厚度较大,下部东侧区域相对较薄,其平均厚度为(9.58±3.95) cm,干沙层厚度在0~ 40 cm范围内变化,变异系数为41%,干沙层空间分布的变异函数表现为球状模型,具有中等的空间相关性;固定沙丘的干沙层厚度表现为明显的均一性,空间差异性不明显,其平均厚度为(10.91±1.70) cm,干沙层厚度变化范围在0~20 cm,变异系数仅16%.%An observation was conducted on the thickness of dry sand layer on the windward slope of mobile and fixed dunes in west Horqin Sand Land, with the spatial distribution of the dry sand layer analyzed. Most of the dry sand layer had a thickness of 5-15 cm, and 92. 0% and 98. 6% of the mobile and fixed dunes had the dry sand layer with this thickness, respectively. Sand-fixing plants affected the thickness and the spatial distribution of the dry sand layer. There was an obvious spatial difference in the thickness of the dry sand layer on mobile dunes, being much thicker in the upper west areas while much thinner in the lower east areas. The thickness of the dry sand layer varied from 0 to 40 cm, with an average of 9. 58 ±3.95 cm, and the CV was 41%. The variogram of the spatial distribution of dry sand layer on mobile dunes was expressed as spherical model, with a moderate spatial correlation. In contrast, the thickness of dry sand layer on fixed dunes showed obvious homogeneity, and had less spatial difference. The thickness of the dry sand layer ranged from 0 to

  8. [Aboveground biomass of three conifers in Qianyanzhou plantation].

    Science.gov (United States)

    Li, Xuanran; Liu, Qijing; Chen, Yongrui; Hu, Lile; Yang, Fengting

    2006-08-01

    In this paper, the regressive models of the aboveground biomass of Pinus elliottii, P. massoniana and Cunninghamia lanceolata in Qianyanzhou of subtropical China were established, and the regression analysis on the dry weight of leaf biomass and total biomass against branch diameter (d), branch length (L), d3 and d2L was conducted with linear, power and exponent functions. Power equation with single parameter (d) was proved to be better than the rests for P. massoniana and C. lanceolata, and linear equation with parameter (d3) was better for P. elliottii. The canopy biomass was derived by the regression equations for all branches. These equations were also used to fit the relationships of total tree biomass, branch biomass and foliage biomass with tree diameter at breast height (D), tree height (H), D3 and D2H, respectively. D2H was found to be the best parameter for estimating total biomass. For foliage-and branch biomass, both parameters and equation forms showed some differences among species. Correlations were highly significant (P biomass, with the highest for total biomass. By these equations, the aboveground biomass and its allocation were estimated, with the aboveground biomass of P. massoniana, P. elliottii, and C. lanceolata forests being 83.6, 72. 1 and 59 t x hm(-2), respectively, and more stem biomass than foliage-and branch biomass. According to the previous studies, the underground biomass of these three forests was estimated to be 10.44, 9.42 and 11.48 t x hm(-2), and the amount of fixed carbon was 47.94, 45.14 and 37.52 t x hm(-2), respectively.

  9. Solar dryer with thermal storage and biomass-backup heater

    Energy Technology Data Exchange (ETDEWEB)

    Madhlopa, A. [Department of Physics and Biochemical Sciences, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi); Ngwalo, G. [Department of Mechanical Engineering, Malawi Polytechnic, P/Bag 303, Blantyre 3 (Malawi)

    2007-04-15

    An indirect type natural convection solar dryer with integrated collector-storage solar and biomass-backup heaters has been designed, constructed and evaluated. The major components of the dryer are biomass burner (with a rectangular duct and flue gas chimney), collector-storage thermal mass and drying chamber (with a conventional solar chimney). The thermal mass was placed in the top part of the biomass burner enclosure. The dryer was fabricated using simple materials, tools and skills, and it was tested in three modes of operation (solar, biomass and solar-biomass) by drying twelve batches of fresh pineapple (Ananas comosus), with each batch weighing about 20 kg. Meteorological conditions were monitored during the dehydration process. Moisture and vitamin C contents were determined in both fresh and dried samples. Results show that the thermal mass was capable of storing part of the absorbed solar energy and heat from the burner. It was possible to dry a batch of pineapples using solar energy only on clear days. Drying proceeded successfully even under unfavorable weather conditions in the solar-biomass mode of operation. In this operational mode, the dryer reduced the moisture content of pineapple slices from about 669 to 11% (db) and yielded a nutritious dried product. The average values of the final-day moisture-pickup efficiency were 15%, 11% and 13% in the solar, biomass and solar-biomass modes of operation respectively. It appears that the solar dryer is suitable for preservation of pineapples and other fresh foods. Further improvements to the system design are suggested. (author)

  10. Biomass Feedstock and Conversion Supply System Design and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Jacob J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Roni, Mohammad S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lamers, Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cafferty, Kara G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    . The 2012 $55/dry T. programmatic target included only logistics costs with a limited focus on biomass quantity, quality and did not include a grower payment. The 2017 Design Case explores two approaches to addressing the logistics challenge: one is an agronomic solution based on blending and integrated landscape management and the second is a logistics solution based on distributed biomass preprocessing depots. The concept behind blended feedstocks and integrated landscape management is to gain access to more regional feedstock at lower access fees (i.e., grower payment) and to reduce preprocessing costs by blending high quality feedstocks with marginal quality feedstocks. Blending has been used in the grain industry for a long time; however, the concept of blended feedstocks in the biofuel industry is a relatively new concept. The blended feedstock strategy relies on the availability of multiple feedstock sources that are blended using a least-cost formulation within an economical supply radius, which, in turn, decreases the grower payment by reducing the amount of any single biomass. This report will introduce the concepts of blending and integrated landscape management and justify their importance in meeting the 2017 programmatic goals.

  11. Aboveground Biomass of a Naturaly-regenerated Schima superba Community at Xiaokeng of the Nanling Mountain%南岭小坑木荷群落地上生物量

    Institute of Scientific and Technical Information of China (English)

    李根; 周光益; 吴仲民; 梁瑞友

    2012-01-01

    Biomass of a naturally-regenerated Schima superba community was measured using the harvest method in an 800 mz plot at Xiaokeng of the Nanling Mountain, Southern China, where 20 tree species were recorded and S. superba was the dominant tree species. Dry weight of stem, branch and leaf, and tree height (H) and diameter at breast height (DBH or D) were measured for all 210 trees with DBH above 3.0 centimeter in the plot. Aboveground biomass (AGB) of the forest community and its distribution among different layers, tree species and organs of the tree layer were estimated, respectively. Regression models of biomass were established based on these AGB data. The results showed that total aboveground biomass of the S. superba community amounted to 118.472 t-hm 1. Biomass of the tree layer, understory layer, liana and litter layer were 114.085, 1. 126, 0.38, 2.881 t-hnT2, respectively. Tree stem, branch and leaf accounted for 78. 2% , 13. 1% and 8. 7% of total biomass in the tree layer, respectively. Biomass of dominant tree species, S. superba, occupied about 33. 3% of total biomass of the tree layer, suggesting that biomass of forest community in the early succession phase was mainly allocated to dominant tree species. The allocation of total aboveground biomass for each DBH class was about 0. 4% for 25 cm DBH classes, respectively. The distribution of biomass pattern among different DBH classes indicated that the forest community was in an early succession phase.

  12. Temperature and Moisture Distribution Model of Microwave Drying Germinated Brown Rice%微波干燥活性米的温度和水分的分布模型

    Institute of Scientific and Technical Information of China (English)

    孙婧; 朱广浩; 郑先哲

    2017-01-01

    The study obtained the distribution of temperature and moisture content in the microwave drying machine , by modeling a qualitative heat transfer model of the process of continuous microwave drying germinated brown rice .In order to determine the correctness of the model , experiments were conducted to verify the model of temperature and moisture at the microwave intensity as follows:1.16,2.75,4.34W/g.The results of the simulation and experiments show that in the continuous microwave dryer drying terminal , when the temperature rises slowly , microwave power should be controled to reduce the energy consumption of microwave drying;after the drying period entry into the tempering stage can make tem-perature reach a balance both inside and outside the material , it can also uniform drying effect and guarantee the quality of drying process at the same time .The study has guiding significance in the heating process and control of microwave dr-ying germinated brown rice .%通过建立连续微波干燥活性米过程的质热传递模型,获得活性米微波干燥机内的温度和含水率分布,并在微波强度为1.16、2.75、4.34W/g 的条件下,进行活性米温度和水分模型的实验验证,确定传热传质模型的正确性。模拟与实测结果表明:在连续式微波干燥机的干燥末段,温度上升较慢时相应控制微波功率,减少微波干燥的能耗;在干燥段后进入缓苏阶段,使活性米物料内外温度达到平衡,干燥效果更为均匀,又可以保证干燥品质。该研究对活性米的微波加热工艺及控制方面具有指导意义。

  13. Acumulación y Distribución de Fitomasa en el Asocio de Maíz (Zea mays L. y Fríjol (Phaseolus vulgaris L. / Biomass Accumulation and Distribution in Associated Crop of Maize (Zea mays L. and Bean (Phaseolus vulgaris L.

    Directory of Open Access Journals (Sweden)

    Pérez López Astrid Elena

    2013-08-01

    Full Text Available La asociación de cultivos se define como el crecimientoy desarrollo de dos o más especies en el mismo terreno, durante parte o todo el ciclo vegetativo. El asocio de maíz con fríjol afecta los atributos morfológicos y fisiológicos de ambas especies, lo que se manifiesta en la fitomasa acumulada en los distintos compartimentos y, finalmente, en los rendimientos. El objetivo de este trabajo fue determinar la acumulación y distribución de fitomasa de maíz y fríjol en asocio, respecto a sus unicultivos. Se sembraron las variedades: Fríjol Bola roja comercial (FBR, Cargamanto rojo (FC, una Línea Élite de Bola roja (FBE y la variedad de maíz regional Montaña de grano blanco (M. Se evaluaron siete tratamientos: cuatro unicultivos de maíz y fríjol (Mo, FBRo, FCo, FBEo y tres asociaciones (MxFBR, MxFC, MxFBE. El diseño estadístico fue de bloques completos al azar. Las variables peso seco de: tallos, hojas, mazorcas y panículas, en el maíz asociado con fríjol, disminuyeron respecto al unicultivo. La variedad de fríjol más afectada, negativamente, por el asocio fue FBE; en la cual, las variables peso seco de: tallos, hojas y vainas, se redujeron, en comparación con el unicultivo. La contribución de biomasa a la planta de fríjol, por parte de las vainas, es mayor en el asocio que en el unicultivo, excepto en la variedad FBE / Crop association is defined as the growth and development of two or more species in the same place during a part or all of the vegetative cycle. Maize and bean associationaffect morphological and physiological attributes of bothspecies, which is manifested in the biomass accumulated in the different compartments and, finally, in the yields. The aim of this research was to determine the accumulation and distribution of both maize and bean biomass in association with regard to their unicultivos. Varieties planted were: “Bola roja commercial” (FBR, “Cargamanto rojo” (FC, an elite line “Bola roja

  14. Energy balance for steam generation system with biomass dryer

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Pedro A.R. [Instituto Superior Politecnico Jose Antonio Echeverria (CUJAE), Ciudad de La Habana (Cuba). Facultad Ingenieria Mecanica]. E-mail: pedro@economia.cujae.edu.cu; Lombardi, Geraldo; Santos, Antonio Moreira dos [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Escola de Engenharia]. E-mails: lombardi@sc.usp.br; asantos@sc.usp.br

    2008-07-01

    Water content is a major drainer of the energy available in the biomass, which justifies the proposal of a drying system with the potential to increase 80% of the biomass low heating value, also increasing the production of steam in the boiler and cogeneration of electricity. An example of biomass is the sugar cane bagasse of an alcohol mill producing 120,000 liters of alcohol per day, whose humidity from the extraction section is usually 50%. The present paper determines the increases in the mass flow rates of steam in the boiler, in the cogeneration of electricity and in the pay back time of the drying system and of the alcohol mill, as a consequence of the bagasse drying from 50 to 35%, considering 30% of air excess over the stoichiometric value admitted in the boiler for the bagasse burning. It also provides subsidies for the development and deployment of a drying system for the current boilers. (author)

  15. SPATIAL-TEMPORAL DISTRIBUTION OF THE BIOMASS OF ORATOSQUILLA ORATORIA IN THE COASTAL WATERS OF SOUTH ZHEJIANG DURING SPRING PAN Guo-Liang, ZHANG Long, ZHU Zeng-Jun, WANG Zhong-Ming, ZHANG Hong-Liang%浙江南部近岸海域春季口虾蛄(Oratosquilla oratoria)生物量的时空分布*

    Institute of Scientific and Technical Information of China (English)

    潘国良; 张龙; 朱增军; 王忠明; 张洪亮

    2013-01-01

    Based on three surveys carried out by bottom trawl in spring (April, May and June) of 2011, the spa-tial-temporal distribution of the biomass of Oratosquilla oratoria in the coastal waters of South Zhejiang was analyzed. Two methods including sweep area method and analysis of variance (ANOVA) were used here. The results showed that:for temporal distribution, the biomass of O. oratoria decreased from April to June, but there were no significant differences between them. For spatial distribution, the biomass of most of the survey positions was lower (150kg/km2)的空间分布与该月底温与底盐的变化相关。另外,随着月平均底盐特别是平均底温的升高,口虾蛄呈现逐月由较深海域向较浅海域移动的趋势。

  16. Three-zonal engineering method of heat calculation for fluidized bed furnaces based on data on commercial investigations of heat generation distribution during biomass combustion

    Science.gov (United States)

    Litun, D. S.; Ryabov, G. A.

    2016-02-01

    A three-zonal method of heat calculation of furnaces for combustion of biomass and low-caloric fuel in the fluidized bed is described. The method is based on equations of thermal and material balances that account for heat generation by fuel in the zone, heat-and-mass transfer heat exchange between the furnace media and surfaces that bound the zone, and heat-and-mass transfer between furnace zones. The calculation procedure for heat generation by fuel in the fluidized bed (FB) using the heat generation portion by the fuel is proposed. Based on commercial investigations, the main factors that affect the average temperature in the FB and the portion of fuel heat that is released in the FB are determined. Results of commercial investigations showed that the airflow coefficient in the FB should be recognized as the main operation parameter that affects the average temperature in the FB and, consequently, heat generation in the FB. The gas flow rate in the FB can be marked out as the second factor that affects the consumption degree of oxidizer supplied in the FB. Commercial investigations revealed that mixing is affected by the gas flow rate in the FB and the bed material particle size, which may be changed during the boiler operation because of the agglomeration of particles of sand and ash. The calculation processing of commercial investigations on a KM-75-40M boiler of a CHP-3 of an Arkhangelsk Pulp and Paper Mill (APPM), which was carried out using the inverse problem procedure by means of a developed computer program, determined the range of the fuel heat release share in the FB, which was 0.26-0.45 at an excess air factor of 0.59-0.93 in the bed, and the heat release share in the maximum temperature zone in the total heat release in the superbed space. The heat release share in the bed is determined as an approximating function of the excess air factor in the bed and the fluidization number. The research results can be used during designing boilers with the

  17. 横纹金蛛多次产卵生物量分配初步研究%Biomass Distribution during Argiope bruennichi Lays Eggs

    Institute of Scientific and Technical Information of China (English)

    蒋平; 乔圆圆; 肖永红; 柯坫华; 魏雪; 刘亮; 江丽琴

    2011-01-01

    The egg sac is the place of spider laying eggs and breeding offspring for the protection of future generations. Argiope bruennichi, a common forestry spider, generally produces eggs 3 -6 times and weaves 3 -6 egg cases. In this program, the weight, biomass of egg sacs and egg sac numbers of A. bruennichifed at room temperature are studied. The results show that increased biomass decreased with the increase of the number of spawning egg sacs, but the input for egg sac increased successively; the input of the egg sac silk has also increased with the increase of spider invest for egg mass, which puts more energy for offspring; the number of eggs of per egg mass increased, and per egg weight reduced with the increase of the numbers of spawning egg sacs.%卵袋是雌蛛产卵、若蛛孵化等繁育后代的保护性场所.常见农林蜘蛛横纹金蛛(Argiopebruennichi)一般一生产卵3~6次,织制卵袋3~6个.本文对横纹金蛛的体重、卵袋生物量、卵粒数与卵粒重进行了测试研究.结果表明,随着产卵次数增加,产卵间隔时间更长,但雌蛛产卵后至下一次产卵前生物量的增量在减少,而对卵袋生物量的投人却逐次增加,直至超过自身增加的生物量;随着雌蛛对卵块投人的增加,对卵袋丝的投入也增加,把更多的生物量投人到后代及对后代的保护中;随着产卵次数增加,卵粒数也增加,单粒卵重减少.横纹金蛛的产卵策略为随着产卵次数增加,把更多的能量投人到后代及对后代的保护中.

  18. Energy from Biomass.

    Science.gov (United States)

    Carioca, J. O. B.; And Others

    1987-01-01

    Discusses how biomass in the form of fuelwood, crop residues, and animal dung can be converted into fuels such as biogas and ethanol to replace or supplement fossil fuels. Argues for future decentralized, integrated biomass energy development. (TW)

  19. Energy from Biomass.

    Science.gov (United States)

    Carioca, J. O. B.; And Others

    1987-01-01

    Discusses how biomass in the form of fuelwood, crop residues, and animal dung can be converted into fuels such as biogas and ethanol to replace or supplement fossil fuels. Argues for future decentralized, integrated biomass energy development. (TW)

  20. Pretreated densified biomass products

    Science.gov (United States)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  1. Determining biomass in biological processes. Methods for wastewater biological treatment; Determinacion de la biomasa en procesos biologicos

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, C.; Isaac, L.; Lebrato, J. [Universidad Politecnica de Sevilla (Spain)

    2000-07-01

    Biomass concentration and activity are two important parameters for the successful design and control of biological processes in wastewater treatment. Widely used parameter for biomass characterization is dry weight concentration. This parameter is, however, not sufficient to describe biomass activity. Improved analytical methods are needed in order to understand the physiological behaviour of the biomass. In this work, conventional and advanced analytical methods for biomass determination in wastewater treatment are reviewed. (Author) 27 refs.

  2. Difficulties of biomass estimation over natural grassland

    Science.gov (United States)

    Kertész, Péter; Gecse, Bernadett; Pintér, Krisztina; Fóti, Szilvia; Nagy, Zoltán

    2017-04-01

    Estimation of biomass amount in grasslands using remote sensing is a challenge due to the high diversity and different phenologies of the constituting plant species. The aim of this study was to estimate the biomass amount (dry weight per area) during the vegetation period of a diverse semi-natural grassland with remote sensing. A multispectral camera (Tetracam Mini-MCA 6) was used with 3 cm ground resolution. The pre-processing method includes noise reduction, the correction for the vignetting effect and the calculation of the reflectance using an Incident Light Sensor (ILS). Calibration was made with ASD spectrophotometer as reference. To estimate biomass Partial Least Squares Regression (PLSR) statistical method was used with 5 bands and NDVI as input variables. Above ground biomass was cut in 15 quadrats (50×50 cm) as reference. The best prediction was attained in spring (r2=0.94, RMSE: 26.37 g m-2). The average biomass amount was 167 g m-2. The variability of the biomass is mainly determined by the relief, which causes the high and low biomass patches to be stable. The reliability of biomass estimation was negatively affected by the appearance of flowers and by the senescent plant parts during the summer. To determine the effects of flower's presence on the biomass estimation, 20 dominant species with visually dominant flowers in the area were selected and cover of flowers (%) were estimated in permanent plots during measurement campaigns. If the cover of flowers was low (0,9), while at higher cover of flowers (>30%), the estimation failed (r2 <0,2). This effect restricts the usage of the remote sensing method to the spring - early summer period in diverse grasslands.

  3. Environmental analysis of biomass-ethanol facilities

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  4. Small Modular Biomass Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  5. Electricity and heat production by biomass cogeneration

    Science.gov (United States)

    Marčič, Simon; Marčič, Milan

    2017-07-01

    In Slovenia, approximately 2 % of electricity is generated using cogeneration systems. Industrial and district heating networks ensure the growth of such technology. Today, many existing systems are outdated, providing myriad opportunities for reconstruction. One concept for the development of households and industry envisages the construction of several small biomass units and the application of natural gas as a fuel with a relatively extensive distribution network. This concept has good development potential in Slovenia. Forests cover 56 % of the surface area in Slovenia, which has, as a result, a lot of waste wood to be turned into biomass. Biomass is an important fuel in Slovenia. Biomass is gasified in a gasifier, and the wood gas obtained is used to power the gas engine. This paper describes a biomass cogeneration system as the first of this type in Slovenia, located in Ruše.

  6. Picturing thermal niches and biomass of hydrothermal vent species

    Science.gov (United States)

    Husson, Bérengère; Sarradin, Pierre-Marie; Zeppilli, Daniela; Sarrazin, Jozée

    2017-03-01

    In community ecology, niche analysis is a classic tool for investigating species' distribution and dynamics. Components of a species' niche include biotic and abiotic factors. In the hydrothermal vent ecosystem, although composition and temporal variation have been investigated since these deep-sea habitats were discovered nearly 40 years ago, the roles and the factors behind the success of the dominant species of these ecosystems have yet to be fully elucidated. In the Lucky Strike vent field on the Mid-Atlantic Ridge (MAR), the dominant species is the mussel Bathymodiolus azoricus. Data on this species and its associated community were collected during four oceanographic cruises on the Eiffel Tower edifice and integrated in a novel statistical framework for niche analysis. We assessed the thermal range, density, biomass and niche similarities of B. azoricus and its associated fauna. Habitat similarities grouped mussels into three size categories: mussels with lengths ranging from 0.5 to 1.5 cm, from 1.5 to 6 cm, and mussels longer than 6 cm. These size categories were consistent with those found in previous studies based on video imagery. The three size categories featured different associated fauna. The thermal range of mussels was shown to change with organism size, with intermediate sizes having a broader thermal niche than small or large mussels. Temperature maxima seem to drive their distribution along the mixing gradient between warm hydrothermal fluids and cold seawater. B. azoricus constitutes nearly 90% of the biomass (in g dry weight /m2) of the ecosystem. Mean individual weights were calculated for 39 of the 79 known taxa on Eiffel Tower and thermal ranges were obtained for all the inventoried species of this edifice. The analysis showed that temperature is a suitable variable to describe density variations among samples for 71 taxa. However, thermal conditions do not suffice to explain biomass variability. Our results provide valuable insights into

  7. Seasonal controls on snow distribution and aerial ablation at the snow-patch and landscape scales, McMurdo Dry Valleys, Antarctica

    OpenAIRE

    Eveland, J. W.; M. N. Gooseff; Lampkin, D. J.; Barrett, J E; Takacs-Vesbach, C. D.

    2013-01-01

    Accumulated snow in the McMurdo Dry Valleys, while limited, has great ecological significance to subnivian soil environments. Though sublimation dominates the ablation process in this region, measurable increases in soil moisture and insulation from temperature extremes provide more favorable conditions with respect to subnivian soil communities. While precipitation is not substantial, significant amounts of snow can accumulate, via wind transport, in topographic lees along the valley bottoms...

  8. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Eye Symptoms Causes of Dry Eye Dry Eye Treatment What Is Dry Eye? Written By: Kierstan Boyd ... your vision. Privacy Policy Related New Dry Eye Treatment is a Tear-Jerker Jul 21, 2017 Three ...

  9. Preparation of gasification feedstock from leafy biomass.

    Science.gov (United States)

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw.

  10. Chapter 8: Biomass Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Robert L.; Baldwin, Robert M.; Arbogast, Stephen; Bellman, Don; Paynter, Dave; Wykowski, Jim

    2016-09-06

    Fast pyrolysis is heating on the order of 1000 degrees C/s in the absence of oxygen to 40-600 degrees C, which causes decomposition of the biomass. Liquid product yield from biomass can be as much as 80% of starting dry weight and contains up to 75% of the biomass energy content. Other products are gases, primarily carbon monoxide, carbon dioxide, and methane, as well as solid char and ash. Residence time in the reactor is only 0.5-2 s so that relatively small, low-capital-cost reactors can be used. The low capital cost combined with greenhouse gas emission reductions relative to petroleum fuels of 50-95% makes pyrolysis an attractive process. The pyrolysis liquids have been investigated as a refinery feedstock and as stand-alone fuels. Utilization of raw pyrolysis oil has proven challenging. The organic fraction is highly corrosive because of its high organic acid content. High water content lowers the net heating value and can increase corrosivity. It can be poorly soluble in petroleum or petroleum products and can readily absorb water. Distillation residues can be as high as 50%, viscosity can be high, oils can exhibit poor stability in storage, and they can contain suspended solids. The ignition quality of raw pyrolysis oils is poor, with cetane number estimates ranging from 0 to 35, but more likely to be in the lower end of that range. While the use of raw pyrolysis oils in certain specific applications with specialized combustion equipment may be possible, raw oils must be significantly upgraded for use in on-highway spark-ignition (SI) and compression-ignition (CI) engines. Upgrading approaches most often involve catalytic hydrodeoxygenation, one of a class of reactions known as hydrotreating or hydroprocessing. This chapter discusses the properties of raw and upgraded pyrolysis oils, as well as the potential for integrating biomass pyrolysis with a petroleum refinery to significantly reduce the hydroprocessing cost.

  11. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... Dry Eye Dry Eye Treatment What Is Dry Eye? Written By: Kierstan Boyd Reviewed By: Brenda Pagan- ...

  12. What Is Dry Eye?

    Medline Plus

    Full Text Available ... Español Eye Health / Eye Health A-Z Dry Eye Sections What Is Dry Eye? Dry Eye Symptoms ... Dry Eye Dry Eye Treatment What Is Dry Eye? Leer en Español: ¿Qué Es el Ojo Seco? ...

  13. Growth and biomass partitioning of mulungu seedlings in response to phosphorus fertilization and mycorrhizal inoculation

    Directory of Open Access Journals (Sweden)

    Tiago de Sousa Leite

    2014-12-01

    Full Text Available The objective of this work was to evaluate the initial growth and biomass partitioning of mulungu (Erythrina velutina Willd. seedlings under different rates of phosphorus in the presence and absence of arbuscular mycorrhizal fungi (FMA’s. A randomized blocks design in a 5 x 2 factorial arrangement was used, with four replicates and three plants per plot. Treatments consisted of five phosphorus rates (0, 50, 100, 150 and 200 mg.Kg soil-1, using as source the superphosphate fertilizer, and presence or absence of FMA’s. At 98 days after sowing (DAS, shoot height, stem diameter, leaf number, leaf chlorophyll index, leaf dry matter, stem dry matter, root dry matter, leaf area, Dickson quality index and height/stem diameter ratio were evaluated. The phosphorus rate of 200 mg.kg-1 proved to be the most efficient for production of Erythrina velutina seedlings, but with a significant reduction in the biological association of this plant with rhizobacteria. Biomass distribution within the different parts of the plants did not change with distinct rates of P, and there were no benefits in the use of FMA’s until 98 DAS.

  14. A theoretical and experimental study of the thermal degradation of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Groenli, Morten G.

    1996-12-31

    This thesis relates to the thermal degradation of biomass covering a theoretical and experimental study in two parts. In the first part, there is presented an experimental and modeling work on the pyrolysis of biomass under regimes controlled by chemical kinetics, and the second part presents an experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. Five different celluloses, and hemicellulose and lignin isolated from birch and spruce have been studied by thermogravimetry. The thermo grams of wood species revealed different weight loss characteristics which can be attributed to their different chemical composition. The kinetic analysis gave activation energies between 210 and 280 kJ/mole for all the celluloses, and a model of independent parallel reactions was successfully used to describe the thermal degradation. In the second part of the thesis there is presented experimental and modeling work on the pyrolysis of biomass under regimes controlled by heat and mass transfer. The effect of heating conditions on the product yields distribution and reacted fraction was investigated. The experiments show that heat flux alters the pyrolysis products as well as the intra particle temperatures to the greatest extent. A comprehensive mathematical model which can simulate drying and pyrolysis of moist wood is presented. The simulation of thermal degradation and heat transport processes agreed well with experimental results. 198 refs., 139 figs., 68 abs.

  15. Mapping paddy biomass with multiple vegetation indexes by using multispectral remotely sensed image

    Science.gov (United States)

    Gu, Xiaohe; Wang, Yancang; Song, Xiaoyu; Xu, Xingang

    2016-10-01

    Monitoring dry biomass of crop timely and accurately by remote sensing is crucial to assess crop growth, manage field water-fertilizer and predict yield. The Huaihe River Basin in China was chose as study area to map the spatial distribution of paddy biomass. The study derived 12 vegetation indexes from HJ-CCD image, which were closely related to crop growth. After screening sensitive vegetation index with in-situ samples by correlation analysis, the study developed the inversion model by single variable and multiple variables. The determination coefficient (R2) and root mean square error (RMSE) was used to evaluate the accuracy of models. Results showed that the accuracies of multivariable models were better than these of single-variable models, of which the average R2 reached 0.647 and the average RMSE was 0.059. It indicated that the multi-variable models were input in more information than those of single-variable models, which improved the accuracies of estimating paddy biomass in to a certain degree. The average overall accuracies of multi-variable models were 92.7%, while that of singe-variable models were 87.8%. The model with multiple linear regressions could be used to map the paddy biomass in the study area by using HJ-CCD image.

  16. Temperature Modelling of the Biomass Pretreatment Process

    DEFF Research Database (Denmark)

    2012-01-01

    In a second generation biorefinery, the biomass pretreatment stage has an important contribution to the efficiency of the downstream processing units involved in biofuel production. Most of the pretreatment process occurs in a large pressurized thermal reactor that presents an irregular temperature...... distribution. Therefore, an accurate temperature model is critical for observing the biomass pretreatment. More than that, the biomass is also pushed with a constant horizontal speed along the reactor in order to ensure a continuous throughput. The goal of this paper is to derive a temperature model...

  17. The effect of lipid content on the elemental composition and energy capacity of yeast biomass.

    Science.gov (United States)

    Minkevich, Igor G; Dedyukhina, Emiliya G; Chistyakova, Tat'yana I

    2010-10-01

    Oleaginous yeasts (18 strains) were grown in ethanol media under various cultivation conditions (33 biomass samples). It was found that lipid and lipid-free fractions of dry biomass have elemental composition and biomass reductivity very close to values which can be considered as biological constants. The energy content of dry biomass strongly depended on the total lipid content. When the lipid content was 64%, the energy value of dry biomass reached 73% of diesel oil; therefore, oleaginous microorganisms can be a promising source of biodiesel fuel. The approach used in this work makes it possible to determine the energy value of biomass by its elemental composition without application of laborious and expensive calorimetric measurements of combustion heats.

  18. Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass.

    Science.gov (United States)

    Lu, Xiaoming; Withers, Mitch R; Seifkar, Navid; Field, Randall P; Barrett, Steven R H; Herzog, Howard J

    2015-05-01

    The objective of this study was to assess the costs, energy consumption and greenhouse gas (GHG) emissions throughout the biomass supply chain for large scale biofuel production. Two types of energy crop were considered, switchgrass and loblolly pine, as representative of herbaceous and woody biomass. A biomass logistics model has been developed to estimate the feedstock supply system from biomass production through transportation. Biomass in the form of woodchip, bale and pellet was investigated with road, railway and waterway transportation options. Our analysis indicated that the farm or forest gate cost is lowest for loblolly pine whole tree woodchip at $39.7/dry tonne and highest for switchgrass round bale at $72.3/dry tonne. Switchgrass farm gate GHG emissions is approximately 146kgCO2e/dry tonne, about 4 times higher than loblolly pine. The optimum biomass transportation mode and delivered form are determined by the tradeoff between fixed and variable costs for feedstock shipment.

  19. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  20. Determination of Total Solids and Ash in Algal Biomass: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure describes the methods used to determine the amount of moisture or total solids present in a freeze-dried algal biomass sample, as well as the ash content. A traditional convection oven drying procedure is covered for total solids content, and a dry oxidation method at 575?C is covered for ash content.

  1. A study of palm biomass processing strategy in Sarawak

    Science.gov (United States)

    Lee, S. J. Y.; Ng, W. P. Q.; Law, K. H.

    2017-06-01

    In the past decades, palm industry is booming due to its profitable nature. An environmental concern regarding on the palm industry is the enormous amount of waste produced from palm industry. The waste produced or palm biomass is one significant renewable energy source and raw material for value-added products like fiber mats, activated carbon, dried fiber, bio-fertilizer and et cetera in Malaysia. There is a need to establish the palm biomass industry for the recovery of palm biomass for efficient utilization and waste reduction. The development of the industry is strongly depending on the two reasons, the availability and supply consistency of palm biomass as well as the availability of palm biomass processing facilities. In Malaysia, the development of palm biomass industry is lagging due to the lack of mature commercial technology and difficult logistic planning as a result of scattered locality of palm oil mill, where palm biomass is generated. Two main studies have been carried out in this research work: i) industrial study of the feasibility of decentralized and centralized palm biomass processing in Sarawak and ii) development of a systematic and optimized palm biomass processing planning for the development of palm biomass industry in Sarawak, Malaysia. Mathematical optimization technique is used in this work to model the above case scenario for biomass processing to achieve maximum economic potential and resource feasibility. An industrial study of palm biomass processing strategy in Sarawak has been carried out to evaluate the optimality of centralized processing and decentralize processing of the local biomass industry. An optimal biomass processing strategy is achieved.

  2. Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-Burning Experiment field campaign in Niger, January 2006

    Science.gov (United States)

    Chou, CéDric; Formenti, Paola; Maille, Michel; Ausset, Patrick; Helas, Günter; Harrison, Mark; Osborne, Simon

    2008-12-01

    Dust samples were collected onboard the UK community BAe-146 research aircraft of the Facility for Airborne Atmospheric Measurements (FAAM) operated over Niger during the winter Special Observation Period of the African Monsoon Multidisciplinary Analysis project (AMMA SOP0/DABEX). Particle size, morphology, and composition were assessed using single-particle analysis by analytical scanning and transmission electron microscopy. The aerosol was found to be composed of externally mixed mineral dust and biomass burning particles. Mineral dust consists mainly of aluminosilicates in the form of illite and kaolinite and quartz, accounting for up to 80% of the aerosol number. Fe-rich particles (iron oxides) represented 4% of the particle number in the submicron fraction. Diatoms were found on all the samples, suggesting that emissions from the Bodélé depression were also contributing to the aerosol load. Satellite images confirm that the Bodélé source was active during the period of investigation. Biomass burning aerosols accounted for about 15% of the particle number of 0.1-0.6 μm diameter and were composed almost exclusively of particles containing potassium and sulfur. Soot particles were very rare. The aspect ratio AR is a measure of particle elongation. The upper limit of the AR value distribution is 5 and the median is 1.7, which suggests that mineral dust particles could be described as ellipsoids whose major axis never exceeds 1.9 × Dp (the spherical geometric diameter). This is consistent with other published values for mineral dust, including the recent Aerosol Robotic Network retrieval results of Dubovik et al. (2006).

  3. Grass and herbaceous plants for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Prine, G.M.; Mislevy, P.

    1983-01-01

    Florida has little fossil fuel resources, but the state does have an adequate climate for high plant biomass production. Grasses and herbaceous plants are renewable resources which could furnish a portion of Florida's energy needs. Dry matter yields of various annual and perennial grasses and herbaceous plants which can be grown in Florida are presented in this paper. Residues of crops already being grown for other reasons would be an economical source of biomass. The best alternative for an energy crop appears to be tropical perennial shrub-like legumes and tall, strong-stemmed grasses that have their top growth killed by frosts each winter and that regrow annually from below-ground regenerative plant parts. Napiergrass or elephantgrass (Pennisetum purpureum L.), leucaena (Leucaena leucocephala (Lam.) de Wit) and sugarcane (Saccharum spp.) are examples of such energy plants. Napiergrass (PI 300086) had dry matter yields when cut once at the end of the season of 44.5 and 52.4 Mg/ha in 1981 and 1982 respectively, at Gainesville, Fla. and 56.7 Mg/ha for the first season after planting (1982) at Ona, Fla. A dry matter yield of 73 Mg/ha was obtained from a 10-year-old clump of leucaena at Gainesville in 1981. However, research needs to be conducted on methods of harvesting and storing biomass plants to be used for energy. Napiergrass and other grasses may be solar dried standing after a freeze or following cutting in the fall and then be rolled into large bales for storage in the open or crude shelters. A year-round supply of economical biomass must be available before grasses and herbaceous plants are widely grown and used for energy purposes. 6 references.

  4. Lead removal by Spirulina platensis biomass.

    Science.gov (United States)

    Al-Homaidan, Ali A; Al-Abbad, Aljawharah F; Al-Hazzani, Amal A; Al-Ghanayem, Abdullah A; Alabdullatif, Jamila A

    2016-01-01

    In this investigation, we report on the biosorption of Pb (II) from aqueous solutions by the nonliving biomass of the micro-alga (cyanobacterium) Spirulina platensis. Propagation of the micro-alga was carried out in outside oblong raceway ponds. The biomass was cleaned, dried and used for the investigation. The effects of pH, adsorbent dose, temperature, initial concentration of Pb (II), and contact time on the adsorption of lead by the dry biomass were studied. The experiments were carried out in 250 ml conical flasks containing 100 ml of test solutions using an orbital incubator at 150 rpm. Concentrations of the metal before and after the experiments were measured using Atomic Absorption Spectrophotometer. Very high levels of Pb (II) removal (>91%) were obtained. The optimum conditions for maximal adsorption by S. platensis were found to be pH 3; 2 g of adsorbent dose; incubation at 26°C; 100 mg/l of lead initial concentration and 60 minutes of contact time. The experimental data fitted well with Freundlich isotherm equation with R(2) values greater than 0.97. Based on our results, we recommend the utilization of S. platensis biomass for heavy metal removal from aqueous solutions.

  5. 不同类型玉米干物质积累及其在各器官的分配规律%Study on the Dry Matter Accumulation and Distributive Characteristics of Different Types of Corn

    Institute of Scientific and Technical Information of China (English)

    王婷; 桑志勤; 段震宇; 陈树宾

    2012-01-01

    [目的]挖掘青贮玉米品种高产潜力性状的途径,为青贮玉米高产优质栽培提供技术支持.[方法]试验以粮饲兼用型玉米、优质青贮玉米、多分蘖型青贮玉米为供试材料,研究其产量形成特点和干物质积累及其在各器官的分配规律[1-4].[结果](1)青贮玉米品种与粮饲兼用型玉米品种高产群体干物质积累动态随着生长发育进程均呈S形曲线变化.生育期间植株干物质积累量表现为:无分蘖型青贮玉米品种>粮饲兼用型玉米品种>有分蘖型玉米品种.(2)干物质和鲜重的积累速率:粮饲兼用型玉米干物质积累速率峰值出现在出苗后的92~111 d,为灌浆期;鲜重积累速率峰值则出现在苗后57~ 72 d,为大喇叭口期.无分蘖型青贮玉米品种干物质与鲜重的积累量及积累速率峰值均出现在苗后92~ 111 d,为灌浆期.分蘖型青贮玉米品种干物质最大积累速率出现在苗后111~128 d,鲜重最大积累速率出现在苗后57~ 72 d.(3)干物质在各器官中分配量大小因玉米品种类型不同而异,青贮玉米科多4号因生育期较长,在新疆石河子地区雌穗基本不能成熟,干物质主要分配在叶片和茎秆中;粮饲兼用型玉米品种干物质则主要分配在雌穗中.[结论]从植株干物质积累动态看出:对三种类型玉米的干物质生产情况比较,全生育期均以无分蘖青贮玉米品种的新饲玉10号干物质积累量最高,粮饲兼用型SC - 704次之,多分蘖青贮玉米科多4号最低.从干物质在各器官中的分配规律看出:干物质在各器官中的分配为雌穗>茎秆>叶片>苞叶>叶鞘.%[ Objective ] The experiment's aim was to provide scientific theoretical basis and technical guidance for the high - yield forage corn, and study the high yield potential. [ Method ] forage corn and compact corn were selected to study the dry matter accumulation and distributive characteristics. [ Result ] (1

  6. The determination of mercury content in the biomass untended for industrial power plant

    Directory of Open Access Journals (Sweden)

    Wiktor Magdalena

    2017-01-01

    Full Text Available Biomass is one of the oldest and most widely used renewable energy sources. The biomass is the whole organic matter of vegetable or animal origin which is biodegradable. Biomass includes leftovers from agricultural production, forestry residues, and industrial and municipal waste. The use of biomass in the power industry has become a standard and takes place in Poland and other European countries. This paper discusses the correlation of mercury content in different biomass types used in the power industry and in products of biomass combustion. Different biomass types, which are currently burned in a commercial power plant in Poland, were discussed. A photographic documentation of different biomass types, such as straw briquettes, wood briquettes, pellets from energy crops (sunflower husk and wood husk, wood pellets, wood chips, and agro-biomass (seeds was carried out. The presented paper discusses the results obtained for 15 biomass samples. Five selected biomass samples were burned in controlled conditions in the laboratory at the University of Silesia. The ash resulting from the combustion of five biomass samples was tested for mercury content. A total of twenty biomass samples and its combustion products were tested. Based on the obtained results, it was found that any supply of biomass, regardless of its type, is characterized by variable mercury content in dry matter. In the case of e.g. wood chips, the spread of results reaches 235.1 μm/kg (in dry matter. Meanwhile, the highest mercury content, 472.4 μm/kg (in dry matter was recorded in the biomass of straw, wood pellets, and pellets from energy crops (sunflower husk. In the case of combustion products of five selected biomass types, a three or four fold increase in the mercury content has been observed.

  7. Gasification of Woody Biomass.

    Science.gov (United States)

    Dai, Jianjun; Saayman, Jean; Grace, John R; Ellis, Naoko

    2015-01-01

    Interest in biomass to produce heat, power, liquid fuels, hydrogen, and value-added chemicals with reduced greenhouse gas emissions is increasing worldwide. Gasification is becoming a promising technology for biomass utilization with a positive environmental impact. This review focuses specifically on woody biomass gasification and recent advances in the field. The physical properties, chemical structure, and composition of biomass greatly affect gasification performance, pretreatment, and handling. Primary and secondary catalysts are of key importance to improve the conversion and cracking of tars, and lime-enhanced gasification advantageously combines CO2 capture with gasification. These topics are covered here, including the reaction mechanisms and biomass characterization. Experimental research and industrial experience are investigated to elucidate concepts, processes, and characteristics of woody biomass gasification and to identify challenges.

  8. Complex pendulum biomass sensor

    Science.gov (United States)

    Hoskinson, Reed L.; Kenney, Kevin L.; Perrenoud, Ben C.

    2007-12-25

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  9. Process for treating biomass

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  10. Gasification-based biomass

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    The gasification-based biomass section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  11. Process for treating biomass

    Science.gov (United States)

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  12. The carbonization of biomass waste: an exploration with exciting prospects

    OpenAIRE

    Quesada Kimzey, Jaime

    2012-01-01

    This paper offers a general view of the subject of carbonization of waste biomass. Just as well, it briefly describes two related projects currently under execution at the TEC. Both projects are focused on carbonization of waste biomass from the industrial processing of coffee, in a joint effort with Coopetarrazú.The project initiated in 2011 is dedicated to carbonization of dried wastes and will explore energetic as well as agricultural use of the charcoal. The one initiating in 2012 focuses...

  13. 主动配气下生物质气化焦油热裂解特性试验%Tar Thermal Cracking in Biomass Gasifier under Active Air Distribution

    Institute of Scientific and Technical Information of China (English)

    郭飞强; 董玉平; 董磊; 景元琢; 杜红光; 王慧

    2011-01-01

    针对下吸式生物质固定床气化炉,采取主动配气的方式,进行焦油的热裂解性能试验.试验结果表明:主动配气下,气化炉同一截面反应均匀,具有较厚的高温层,为焦油热裂解提供良好的条件,并寻找到气化反应的最优配气量,在此配气量下,以玉米秸秆为原料,燃气中的焦油质量浓度约为600 mg/m3,热值达到5 400 kJ/m3左右,同时验证了灰层厚度等其他因素对焦油热裂解和燃气质量的影响.%Active air distribution way was taken to the experimentally study on the tar cracking property in downdraft fixed-bed biomass gasifier. The results showed that the reaction was uniform in the same section and the gasifier had a thicker layer at high temperature under the active air distribution, which provided good conditions for tar cracking. The optimum air distribution way was achieved by the experiments, and the tar content in gas was about 600 mg/m in the range using corn stalk as the material with high heat value about 5 400 kj/m3. The effect of ash layer thickness and the other factors on tar cracking and gas quality was also studied.

  14. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire

    Science.gov (United States)

    T. G. Soares Neto; J. A. Carvalho; C. A. G. Veras; E. C. Alvarado; R. Gielow; E. N. Lincoln; T. J. Christian; R. J. Yokelson; J. C. Santos

    2009-01-01

    Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on...

  15. Biomass - Overview of Swiss Research Programme 2003; Biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Binggeli, D.; Guggisberg, B.

    2003-07-01

    This overview for the Swiss Federal Office of Energy (SFOE) discusses the results obtained in 2003 in various research projects worked on in Switzerland on the subject of biomass. In the biomass combustion area, subjects discussed include system optimisation for automatic firing, combustion particles, low-particle pellet furnaces, design and optimisation of wood-fired storage ovens, efficiency of filtering techniques and methane generation from wood. Also, an accredited testing centre for wood furnaces is mentioned and measurements made on an installation are presented. As far as the fermentation of biogenic wastes is concerned, biogas production from dairy-product wastes is described. Other projects discussed include a study on eco-balances of energy products, certification and marketing of biogas, evaluation of membranes, a measurement campaign for solar sludge-drying, the operation of a percolator installation for the treatment of bio-wastes, the effects of compost on the environment and the fermentation of coffee wastes. Also, statistics on biogas production in 2002 is looked at. Finally, a preliminary study on biofuels is presented.

  16. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  17. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  18. Water vapor release from biomass combustion

    Directory of Open Access Journals (Sweden)

    R. S. Parmar

    2008-10-01

    Full Text Available We report on the emission of water vapor from biomass combustion. Concurrent measurements of carbon monoxide and carbon dioxide are used to scale the concentrations of water vapor found, and are referenced to carbon in the biomass. The investigated fuel types include hardwood (oak and African musasa, softwood (pine and spruce, partly with green needles, and African savanna grass. The session-averaged ratio of H2O to the sum of CO and CO2 in the emissions from 16 combustion experiments ranged from 1.2 to 3.7, indicating the presence of water that is not chemically bound. This non-bound biomass moisture content ranged from 33% in the dry African hardwood, musasa, to 220% in fresh pine branches with needles. The moisture content from fresh biomass contributes significantly to the water vapor in biomass burning emissions, and its influence on the behavior of fire plumes and pyro-cumulus clouds needs to be evaluated.

  19. Estimation of the vertical distribution of tree biomass using last significant return laser altimetry returns from Eucalypt trees in New South Wales, Australia

    Science.gov (United States)

    Davenport, I. J.; Walker, J.; Gurney, R. J.

    2010-12-01

    Snow mass and soil moisture are important features of the environment governing the availability of drinking and irrigation water, food and hydro-power. They are estimated globally by measuring the microwave emission of the Earth’s surface. Soil’s microwave emissivity is strongly affected by its liquid moisture content, and the attenuation of soil-emitted radiation by snow is a function of the snow mass. The high water content of vegetation affects these results through attenuation, scattering and emission, so improving knowledge of vegetation mass and distribution will enable more accurate global characterisation of snow and soil moisture. Airborne laser altimetry systems acquire information about the environment by pulsing laser light at the ground, and interpreting the returning light curve using onboard differential GPS and inertial navigation systems. Such systems are primarily used to acquire topography by assuming that the last light returning to the sensor has been returned from the ground. By continuously recording the intensity of the light returned before the ground return, information about the vegetation between the aircraft and the ground can be derived. Recording the full intensity curves consumes a large volume of recording space, however, and is a relatively new instrument innovation, having in the past usually been combined with a reduced pulse rate to conserve storage. Deriving some information from systems which only record the last light returned would be of use in characterising large areas without using complete light curve return recording systems, allowing greater spatial cover and resolution with the same instrument and resources. Our previous work has characterised the error budget of single-return laser altimetry systems, and used this to distinguish different soil roughness at the centimetric scale, and show vegetation density variations within crops around 2m high. This work shows the vertical information on vegetation density that

  20. Fire and the distribution and uncertainty of carbon sequestered as above-ground tree biomass in Yosemite and Sequoia & Kings Canyon National Parks

    Science.gov (United States)

    Lutz, James A.; Matchett, John R.; Tarnay, Leland W.; Smith, Douglas F.; Becker, Kendall M.L.; Furniss, Tucker J.; Brooks, Matthew L.

    2017-01-01

    Fire is one of the principal agents changing forest carbon stocks and landscape level distributions of carbon, but few studies have addressed how accurate carbon accounting of fire-killed trees is or can be. We used a large number of forested plots (1646), detailed selection of species-specific and location-specific allometric equations, vegetation type maps with high levels of accuracy, and Monte Carlo simulation to model the amount and uncertainty of aboveground tree carbon present in tree species (hereafter, carbon) within Yosemite and Sequoia & Kings Canyon National Parks. We estimated aboveground carbon in trees within Yosemite National Park to be 25 Tg of carbon (C) (confidence interval (CI): 23–27 Tg C), and in Sequoia & Kings Canyon National Park to be 20 Tg C (CI: 18–21 Tg C). Low-severity and moderate-severity fire had little or no effect on the amount of carbon sequestered in trees at the landscape scale, and high-severity fire did not immediately consume much carbon. Although many of our data inputs were more accurate than those used in similar studies in other locations, the total uncertainty of carbon estimates was still greater than ±10%, mostly due to potential uncertainties in landscape-scale vegetation type mismatches and trees larger than the ranges of existing allometric equations. If carbon inventories are to be meaningfully used in policy, there is an urgent need for more accurate landscape classification methods, improvement in allometric equations for tree species, and better understanding of the uncertainties inherent in existing carbon accounting methods.

  1. Abundance, distribution and status of African baobab (Adansonia digitata L.) in dry savanna woodlands in southern Gonarezhou National Park, southeast Zimbabwe

    NARCIS (Netherlands)

    Mpofu, E.; Gandiwa, E.; Zisadza-Gandiwa, P.; Zinhiva, H.

    2012-01-01

    The abundance, distribution and status of baobabs (Adansonia digitata L.) in three land categories namely, (i) plains, (ii) riverine and rocky outcrops, and (iii) development areas, in southern Gonarezhou National Park (GNP), southeast Zimbabwe, were determined. Baobabs were sampled between April an

  2. Intelligent Control Framework for the Feeding System in the Biomass Power Plant

    Directory of Open Access Journals (Sweden)

    Sun Jin

    2015-01-01

    Full Text Available This paper proposes an intelligent control framework for biomass drying process with flue gases based on FLC (fuzzy logic controller and CAN (Controller Area Network bus. In the operation of a biomass drying process, in order to get the biomass with the set-point low moisture content dried by waste high temperature flue gases, it is necessary to intelligent control for the biomass flow rate. Use of an experiment with varied materials at different initial moisture contents enables acquisition of the biomass flow rates as initial setting values. Set the error between actual straw moisture content and set-point, and rate of change of error as two inputs. the biomass flow rate can be acquired by the fuzzy logic computing as the output. Since the length of dryer is more than twenty meters, the integration by the CAN bus can ensure real-time reliable data acquisition and processing. The control framework for biomass drying process can be applied to a variety of biomass, such as, cotton stalk, corn stalk, rice straw, wheat straw, sugar cane. It has strong potential for practical applications because of its advantages on intelligent providing the set-point low moisture content of biomass feedstock for power generation equipment.

  3. Extension of apparent devolatilization kinetics from thermally thin to thermally thick particles in zero dimensions for woody biomass

    DEFF Research Database (Denmark)

    Johansen, Joakim M.; Jensen, Peter A.; Glarborg, Peter

    2016-01-01

    -dimensional heat transport model coupled with a drying and a devolatilization model. The model output has been used to generate pyrolysis kinetics corrected for non-isothermal effects, i.e. intraparticle heat transport limitations. Analysis of the modeling results indicate that heat transport corrections of even....... This approach allows for significantly more accurate devolatilization predictions of any particle size distribution to be described by simple kinetic mechanisms and isothermal particle heat balances. Such an approach is easily implemented into most commercial CFD (computationalfluid dynamics) codes without......This work aims to provide an accurate and simple model, predicting the time dependent devolatilization of woody biomass at conditions (Tgas

  4. Biomass functions for young scots pine-dominated forest

    Energy Technology Data Exchange (ETDEWEB)

    Ahnlund Ulvcrona, K. (Vindeln Experimental Forests, Svartberet Research Station, Swedish Univ. of Agricultural Science, Vindeln (Sweden)), e-mail: Kristina.ulvcrona@esf.slu.se; Nilsson, U. (Southern Swedish Forest Research centre, Swedish Univ. of Agricultural Science, Alnarp (Sweden)); Lundmark, T. (Forest Ecology and Management, Swedish Univ. of Agricultural Science, Umeaa (Sweden))

    2010-07-15

    The aim of this study was to develop predictive biomass functions for young stands of Scots pine-dominated forests in northern Sweden. Above ground biomass was destructively sampled, and biomass functions for all tree fractions (e.g. stem including bark, branch and foliage) were developed, based on independent variables. Functions to estimate dry weight of the whole tree were also developed. No significant regressions could be found for the dead branch fraction. DBH for sampled trees in this study was in the range of 11 - 136 mm (Pinus sylvestris), 10 - 121 mm (Picea abies L. Karst) and 9 - 113 mm (Betula spp.)

  5. High-biomass sorghum yield estimate with aerial imagery

    Science.gov (United States)

    Sui, Ruixiu; Hartley, Brandon E.; Gibson, John M.; Yang, Chenghai; Thoma