WorldWideScience

Sample records for dry active waste

  1. Compaction and packaging of dry active municipal wastes

    International Nuclear Information System (INIS)

    Chen Zongming; Xi Xinmin

    1994-01-01

    The authors present the feature of a compaction system for active municipal wastes and the radiological monitoring results of workplace and environment. A variety of dry active municipal wastes could be compacted by this system. Volume reduction factor attained to 5 to 7 for soft wastes and 8 to 13 for hard wastes. No evident radiological impact was found on workplace and environment

  2. Radioactivity evaluation method for pre-packed concrete packages of low-level dry active wastes

    International Nuclear Information System (INIS)

    Sakai, Toshiaki; Funahashi, Tetsuo; Watabe, Kiyomi; Ozawa, Yukitoshi; Kashiwagi, Makoto

    1998-01-01

    Low-level dry active wastes of nuclear power plants are grouted with cement mortal in a container and planned to disposed into the shallow land disposal site. The characteristics of radionuclides contained in dry active wastes are same as homogeneous solidified wastes. In the previous report, we reported the applicability of the radioactivity evaluation methods established for homogeneous solidified wastes to pre-packed concrete packages. This report outlines the developed radioactivity evaluation methods for pre-packed concrete packages based upon recent data. Since the characteristics of dry active wastes depend upon the plant system in which dry active wastes originate and the types of contamination, sampling of wastes and activity measurement were executed to derive scaling factors. The radioactivity measurement methods were also verified. The applicability of non-destructive methods to measure radioactivity concentration of pre-packed concrete packages was examined by computer simulation. It is concluded that those methods are accurate enough to measure actual waste packages. (author)

  3. Segregation of low-level dry active waste

    International Nuclear Information System (INIS)

    Kornblith, L. Jr.; Naughton, M.D.; Welsh, L.

    1984-01-01

    A program has been carried out to characterize the Dry Active Waste (DAW) stream from a typical PWR power plant in order to determine the usefulness of large-volume DAW monitors for segregating such waste in order to dispose of it in appropriate facilities. A waste monitor using plastic scintillation counters was used for measuring the waste. The monitor had a volume of about 300 liters and an overall efficiency of about 12% for a typical fission product mixture. It provides automatic compensation for background radioactivity and can measure a bag of waste in less than a minute, including background measurements. Six hundred consecutively generated bags of DAW were measured. These had a total activity of about one millicurie and an average specific activity of about 540 nanocuries per kilogram. About half of the bags contained less than 1000 nanocuries and had specific activities of less than 100 nanocuries per kilogram. Based on simplified preliminary calculations, it appears that an evaluation of the risks of disposal of bags such as these in a landfill other than a low-level waste disposal facility could be carried out that would demonstrate that such disposal of half or more of these bags would not result in any substantial hazard, either short or long term

  4. Low-level dry active waste management planning for Calvert Cliffs Nuclear Power Plant

    International Nuclear Information System (INIS)

    Butler, C.N.; Feizollani, F.; Jarboe, Th.B.

    1984-01-01

    To offset the rising cost of low-level radioactive waste disposal and to provide contingency measures for disposal space unavailability after January 1, 1986, Baltimore Gas and Electric (BG and E) has undertake efforts to establish a long-term waste management program. This plan, which was developed after detailed study of a number of options, consists of four elements: management of dry active wastes; implementation of 10CFR61 requirements; storage of process wastes; and enhancement of liquid/solid waste systems and equipment performance. Each element was scheduled for implementation in accordance with an established set of priorities. Accordingly, detailed engineering for implementation of the first two elements was initiated in December of 1982. This paper focuses on BGandE's experience in implementation of the first element o the program, i.e., the management of dry active waste (DAW). DAW is managed by providing a new buildin dedicated to its handling, processing, volume-reduction, and storage. This building, which is equipped with state-of-the-art decontamination and processing techniques, allows for implementation of waste minimization and for interim storage of DAW in a safe and cost effective manner

  5. State-of-the-art dry active waste processing facility

    International Nuclear Information System (INIS)

    Hillmer, T.; Ingalsbe, H.; Alcorn, G.; Anderson, K.; Dahlen, D.

    1989-01-01

    Palo Verde Nuclear Generating Station (PVNGS) is operated by Arizona Public Service for a consortium of seven owners. The site consists of three identical single unit power plants. Each unit is a Combustion Engineering Series 80 pressurized water reactor (PWR) rated at 1270 Megawatts electric. The site is located 100 kilometers west of Phoenix, Arizona in the arid southwest desert region of the United States of America. Since the start up of Unit One in 1985, Palo Verde has aggressively pursued waste volume reduction. This includes a dry active waste (DAW) segregation program that locates and separates nonradioactive and reusable materials that have been mixed with the radioactive DAW. The DAW program is described in further detail in the paper

  6. Supercompactor force effectiveness as related to dry active waste volume reduction

    International Nuclear Information System (INIS)

    Williams, P.C.; Phillips, W.S.

    1986-01-01

    The first U.S. permanently installed supercompactor is now in operation at the Babcock and Wilcox volume reduction center, Parks Township, Pennsylvania. Tests with various DAW (dry active waste) material have been conducted, recording press force versus drum height as one means of estimating volume reduction capability of this machine at various compaction forces. The results of these tests, as well as other factors, are presented herein

  7. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    Science.gov (United States)

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-01-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.

  8. Improvement in dry active waste segregation and processing

    International Nuclear Information System (INIS)

    Hillmer, T.P.; Anderson, K.D.; Dahlen, D.E.

    1989-01-01

    At the Palo Verde Nuclear Generating Station (PVNGS) the majority of dry active waste (DAW) volume reduction activities are performed in the site's new DAW processing and storage facility. This facility houses an interim storage area for a five year volume of compacted DAW, a shredder/compactor, and a DAW segregation area. The DAW segregation program locates and separates non-radioactive and reusable materials from DAW generated at the three unit PVNGS site. This program has saved more than 24,000 cubic feet of burial space and has reclaimed more than $1,000,000 worth of materials. Palo Verde has made numerous changes to the DAW segregation program since its inception. To ensure that the DAW segregation program remained cost effective and in compliance with applicable regulatory guidance, segregation techniques were revised and new equipment was evaluated and procured. This paper details that effort and summarizes the operational data that has been collected

  9. Solid and Liquid Waste Drying Bag

    Science.gov (United States)

    Litwiller, Eric (Inventor); Hogan, John A. (Inventor); Fisher, John W. (Inventor)

    2009-01-01

    Method and system for processing waste from human activities, including solids, liquids and vapors. A fluid-impermeable bag, lined with a liquid-impermeable but vapor-permeable membrane, defining an inner bag, is provided. A vacuum force is provided to extract vapors so that the waste is moved toward a selected region in the inner bag, extracted vapors, including the waste vapors and vaporized portions of the waste liquids are transported across the membrane, and most or all of the solids remain within the liner. Extracted vapors are filtered, and sanitized components thereof are isolated and optionally stored. The solids remaining within the liner are optionally dried and isolated for ultimate disposal.

  10. Volume reduction of dry active waste by use of a waste sorting table at the Brunswick nuclear power plant

    International Nuclear Information System (INIS)

    Snead, P.B.

    1988-01-01

    Carolina Power and Light Company's Brunswick nuclear power plant has been using a National Nuclear Corporation Model WST-18 Waste Sorting Table to monitor and sort dry active waste for segregating uncontaminated material as a means of low-level waste volume reduction. The WST-18 features 18 large-area, solid scintillation detectors arranged in a 3 x 6 array underneath a sorting/monitoring surface that is shielded from background radiation. An 11-week study at Brunswick showed that the use of the waste sorting table resulted in dramatic improvements in both productivity (man-hours expended per cubic foot of waste processed) and monitoring quality over the previous hand-probe frisking method. Use of the sorting table since the study has confirmed its effectiveness in volume reduction. The waste sorting table paid for its operation in volume reduction savings alone, without accounting for the additional savings from recovering reusable items

  11. Volume reduction of reactor wastes by spray drying

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; McKenzie, D.E.

    1983-01-01

    Three simulated low-level reactor wastes were dried using a spray dryer-baghouse system. The three aqueous feedstocks were sodium sulfate waste characteristic of a BWR, boric acid waste characteristic of a PWR, and a waste mixture of ion exchange resins and filter aid. These slurries were spiked with nonradioactive iron, cobalt, and manganese (representing corrosion products) and nonradioactive cesium and iodine (representing fission products). The throughput for the 2.1-m-diameter spray dryer and baghouse system was 160-180 kg/h, which is comparable to the requirements for a full-scale commercial installation. A free-flowing, dry product was produced in all of the tests. The volume reduction factor ranged from 2.5 to 5.8; the baghouse decontamination factor was typically in the range of 10 3 to 10 4 . Using an overall system decontamination factor of 10 6 , the activity of the off-gas was calculated to be one to two orders of magnitude less than the nuclide release limit of the major active species, Cs-137

  12. DESIGN ANDFABRICATION OF DISPOSING DRY WASTEMATERIAL USING WASTE DESTROYING MACHINE

    OpenAIRE

    Dr. Nischal P. Mungle1, MahendraNimkar2, ArchanaN. Mungle3, Manjushree Mule4

    2018-01-01

    The dry waste material is type of waste material, waste materials like solid waste, liquid waste in atmosphere leads to unhygienic situation which affects human health and chances of disease increases. In our project by burning the dry waste material we are trying to control the waste materials in atmosphere. By using heating coil we are going to burn the dry waste material and in this way we are eliminating the dry waste materials, the ash which will going to be formed after burning the dry ...

  13. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, D.S.

    2005-01-01

    The body of this document analyzes scenarios involving releases of dried tank waste from the DBVS dried waste transfer system and OGTS HEPA filters. Analyses of dried waste release scenarios from the CH-TRUM WPU are included as Appendix D

  14. Dry blasting decontaminating method for radioactive waste

    International Nuclear Information System (INIS)

    Nishiwaki, Hitoshi.

    1993-01-01

    In the present invention, when abrasives are dry blasted on the surface of radioactive wastes and the recovered abrasives are classified for re-use, abrasives having a microvicker's hardness (HMV) of greater than 600 and a grain size of greater than 1mm are used in a case where the radioactive wastes to be abraded are stainless steels. This enables dry blasting decontamination for stainless steels which has been considered to be impossible. In addition since the amount of secondary wastes are reduced, it is extremely effective. (T.M.)

  15. Guidelines for the segregation characterization management of dry waste at Berkeley Lab

    International Nuclear Information System (INIS)

    1997-05-01

    Managing and disposing of dry low level radioactive waste at Berkeley Lab. is problematic. The Waste Management Group must assure off site treatment, storage, and disposal facilities that dry waste from Berkeley Lab. is free of liquids and regulated metals (such as lead and mercury). RTR (Real Time Radioagraphy) used for waste to be rejected. This pamphlet helps to clarify dry waste management requirements that will ensure that Berkeley Lab. dry waste will be accepted for off site shipment. These issues are critical if we are to have an off site disposal option for your dry radioactive waste

  16. Waste volume reduction by spray drying

    Energy Technology Data Exchange (ETDEWEB)

    Toscano, Rodrigo A.; Tello, Clédola C. O. de, E-mail: Rodrigotoscano1@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The operation of nuclear facilities generates liquid wastes which require treatment to control the chemical compounds and removal of radioactive contaminants. These wastes can come from the cooling of the primary reactor system, from the reactor pool decontamination, washing of contaminated clothing, among others. The ion exchange resin constitutes the largest fraction of this waste, classified as low and intermediate level of radiation. According to CNEN Standard 8.01, the minimization of the volume and activity of the radioactive waste generated in the operation of a nuclear installation, radiative installation, industrial mining installation or radioactive waste deposit should be ensured. In addition, one of the acceptance criteria for wastes in repositories required by CNEN NN 6.09 is that it be solid or solidified. Thus, these wastes must be reduced in volume and solidified to meet the standards and the safety of the population and the environment. The objective of this work is to find a solution that associates the least generation of packaged waste and the acceptance criteria of waste for the deposition in the national repository. This work presents a proposal of reduction of the volume of the liquid wastes generated by nuclear facilities by drying by for reduction of volume for a greater incorporation of wastes in cement. Using spray dryer, an 18% reduction in the production of cemented waste products was observed in relation to the method currently used with compressive strength measurement above the standard, and it is believed that this value may increase in future tests. (author)

  17. Waste volume reduction by spray drying

    International Nuclear Information System (INIS)

    Toscano, Rodrigo A.; Tello, Clédola C. O. de

    2017-01-01

    The operation of nuclear facilities generates liquid wastes which require treatment to control the chemical compounds and removal of radioactive contaminants. These wastes can come from the cooling of the primary reactor system, from the reactor pool decontamination, washing of contaminated clothing, among others. The ion exchange resin constitutes the largest fraction of this waste, classified as low and intermediate level of radiation. According to CNEN Standard 8.01, the minimization of the volume and activity of the radioactive waste generated in the operation of a nuclear installation, radiative installation, industrial mining installation or radioactive waste deposit should be ensured. In addition, one of the acceptance criteria for wastes in repositories required by CNEN NN 6.09 is that it be solid or solidified. Thus, these wastes must be reduced in volume and solidified to meet the standards and the safety of the population and the environment. The objective of this work is to find a solution that associates the least generation of packaged waste and the acceptance criteria of waste for the deposition in the national repository. This work presents a proposal of reduction of the volume of the liquid wastes generated by nuclear facilities by drying by for reduction of volume for a greater incorporation of wastes in cement. Using spray dryer, an 18% reduction in the production of cemented waste products was observed in relation to the method currently used with compressive strength measurement above the standard, and it is believed that this value may increase in future tests. (author)

  18. WASTE-FREE PRODUCTION TECHNOLOGY OF DRY MASHED POTATOES

    Directory of Open Access Journals (Sweden)

    G. V. Kalashnikov

    2015-01-01

    Full Text Available Summary. According to data on norms of consumption of vegetable production of scientific research institute of Food of the Russian Academy of Medical Science, potatoes win first place with norm of 120 kg a year on the person. In this regard much attention is paid to processing of potatoes that allows to prolong the term of its validity, and also to reduce the capacity of storages and to reduce transport transportations as 1 kg of a dry potatoes produсt is equivalent 7-8 kg of fresh potatoes. Thus industrial processing of potatoes on dry mashed potatoes allows to reduce losses of potatoes at storage and transportation, there is a possibility of enrichment of products vitamins and other useful components, its nutrition value remains better, conditions for complex processing of raw materials with full recycling and creations of stocks of products from potatoes on a crop failure case are created. Dry mashed potatoes are a product of long storage. On the basis of studying of the production technology of mashed potatoes the analysis of technological processes as sources of creation of waste, and the directions of recovery of secondary raw materials for complex waste-free technology of processing of potatoes are defined is provided. The waste-free technological scheme of processing of potatoes and production of dry instant mashed potatoes on the basis of dehydration and moisture thermal treatment a component providing recovery of secondary carbohydrate content raw materials in the form of waste of the main production is developed. The main stages of production of dry instant mashed potatoes are described. It is offered the technological scheme of a production line of mashed potatoes on the basis of waste-free technology. Advantages of the offered waste-free production technology of dry instant mashed potatoes with processing of secondary starch-containing raw materials are given.

  19. The development and implementation of a dry active waste (DAW) sorting program at Catawba Nuclear Station

    International Nuclear Information System (INIS)

    Schulte, J.H.; McNamara, P.N.

    1988-01-01

    Duke Power Company, like other nuclear utilities, bears a burdensome radwaste disposal cost that has rapidly escalated during recent years. Dry active waste (DAW) represents approximately 85% of the total radioactive waste volume shipped to low-level disposal facilities. Sorting waste with less than detectable radioactivity from waste with detectable radioactivity provides a volume reduction (VR) technique that can save significant radwaste disposal costs and conserve dwindling burial space. This paper presents the development and results of a project that was conducted at Catawba Nuclear Station to determine the volume reduction potential from sorting DAW. Guidelines are given so that other utilities can perform a VR potential study on a low cost basis. Based on the results of the DAW VR study, an overall DAW volume radiation program was initiated at Duke Power Company. This program includes personnel training, drumming techniques, bag tracking and equipment purchases for sorting. This program has been fully implemented at Duke Power Company since January 1, 1988 and preliminary results and savings are given

  20. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    Science.gov (United States)

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  1. Catalytic dry reforming of waste plastics from different waste treatment plants for production of synthesis gases.

    Science.gov (United States)

    Saad, Juniza Md; Williams, Paul T

    2016-12-01

    Catalytic dry reforming of mixed waste plastics, from a range of different municipal, commercial and industrial sources, were processed in a two-stage fixed bed reactor. Pyrolysis of the plastics took place in the first stage and dry (CO 2 ) reforming of the evolved pyrolysis gases took place in the second stage in the presence of Ni/Al 2 O 3 and Ni-Co/Al 2 O 3 catalysts in order to improve the production of syngas from the dry reforming process. The results showed that the highest amount of syngas yield was obtained from the dry reforming of plastic waste from the agricultural industry with the Ni/Al 2 O 3 catalyst, producing 153.67mmol syngas g -1 waste . The addition of cobalt metal as a promoter to the Ni/Al 2 O 3 catalyst did not have a major influence on syngas yield. Overall, the catalytic-dry reforming of waste plastics from various waste treatment plants showed great potential towards the production of synthesis gases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Review of the Drying Kinetics of Olive Oil Mill Wastes: Biomass Recovery

    Directory of Open Access Journals (Sweden)

    Francisco J. Gómez-de la Cruz

    2015-06-01

    Full Text Available The drying kinetics of olive oil mill wastes was analyzed based on experiments carried out by various researchers utilizing different drying systems. A critical review of the literature was done, and mathematical models of drying curves proposed by investigators were evaluated. A comparison between the best mathematical models of fit in the drying curves used in past experiments and a two-term Gaussian model was performed. This model improved all the results of fit in each experiment. Drying rates and drying stages were obtained and discussed. An average drying rate for each experiment from the two-term Gaussian model was calculated. This value allowed for visualizing and comparing the average speed of evaporated water in each experiment for the different dryers. Finally, and after having verified that almost all drying occurs mainly by a diffusion phenomenon, an analysis on the effective moisture diffusivity and activation energy values was performed. The results indicated that there was no dependency of these quantities on independent variables such as the drying air temperature, the drying air velocity, and the sample thickness. It follows that drying of olive oil mill wastes is a very complex physical process that depends heavily on aspects such as pieces of pit, pulp, skin, vegetation water, olive oil content, sugars and organics compounds of different nature.

  3. Chemical composition, anti-oxidative activity and in vitro dry matter degradability of Kinnow mandarin fruit waste

    Directory of Open Access Journals (Sweden)

    Ravleen Kour

    2014-10-01

    Full Text Available Aim: Fruit processing and consumption yield a significant amount of by-products as waste, which can be used as potential nutrient suppliers for livestock. “Kinnow” (Citrus nobilis Lour x Citrus deliciosa Tenora is one of the most important citrus fruit crops of North Indian States. Its residues are rich in carbohydrates but poor in protein and account for approximately 55-60% of the raw weight of the fruit. Present study assessed the chemical composition and anti-oxidative activity of Kinnow mandarin fruit waste (KMW and scrutinized the impact of dietary incorporation of variable levels of KMW on in vitro dry matter digestibility (IVDMD. Materials and Methods: Sun dried and ground KMW was analyzed for proximate composition, fibre fractions and calcium and phosphorus content. Antioxidant potential of KMW as total phenolic count and 1-diphenyl-2-picrylhydrazyl (DPPH scavenging activity was assayed in an alcoholic extract of KMW. The effect of inclusion of KMW at variable levels (0-40% in the isonitrogenous concentrate mixtures on in vitro degradability of composite feed (concentrate mixture:Wheat straw; 40:60 was also carried out. Results: KMW after sun-drying contained 92.05% dry matter. The crude protein content of 7.60% indicates it being marginal in protein content, whereas nitrogen free extract content of 73.69% suggests that it is primarily a carbonaceous feedstuff. This observation was also supported by low neutral detergent fiber and acid detergent fiber content of 26.35% and 19.50%, respectively. High calcium content (0.92% vis-à-vis low phosphorus content (0.08%, resulted in wide Ca:P ratio (11.5 in KMW. High anti-oxidative potential of KMW is indicated by total phenolic content values of 17.1±1.04 mg gallic acid equivalents/g and DPPH free radicle scavenging activity 96.2 μg/ml (effective concentration 50. Mean IVDMD% of all the composite rations was found to be comparable (p>0.05 irrespective of the level of KMW inclusion

  4. Below Regulatory Concern Owners Group: An evaluation of dry active waste sorting: Final report

    International Nuclear Information System (INIS)

    Casey, S.M.

    1989-02-01

    The objective of this research was to determine the accuracy of manual inspection of Dry Active Waste (DAW). Three studies were conducted at two nuclear power plants in which unmodified DAW waste streams of roughly 10,000 items each were inspected by technicians using pancake probes. Sorting performance was measured unobtrusively by intercepting the ''outflow'' from inspection stations. Verification of sorting accuracy was performed with a prototype, semi-automated sorting table employing a matrix of fixed plastic scintillation detectors. More than 30,000 items of trash were examined, classified, counted, and verified, and the composition of the ''inflow'' to the inspection stations was determined by reconstructing the ''outflow'' components, as determined during verification procedures. The results showed that between 1 and 19% of all items in each of the three DAW waste streams were contaminated at levels ≥100 ccpm. Sixty-two percent of the ''contaminated'' items in Study I, 87% of the contaminated items in Study II, and 97% of the contaminated items in Study III were detected. One-half to one percent of all items classified as <100 ccpm by technicians were actually ≥100 ccpm. False positive rates were very high in all three studies. The production rates and accuracy obtained on the semi-automated plastic scintillation sorting table used during the verification stages of this project greatly exceeded the rates for manual sorting. 9 figs., 13 tabs

  5. Development of drying and pelletizing system for concentrated waste

    International Nuclear Information System (INIS)

    Horiuchi, Susumu; Saito, Toru; Hirano, Mikio; Kikuchi, Makoto; Takamura, Yoshiyuki.

    1980-01-01

    Volume reduction is strongly required for the radioactive liquid waste generated in nuclear power plants because its storing space has increased with the operating years of the plants, though it has temporarily been stored in drum cans within the plant sites after concentrated by evaporation. The drying and pelletizing system developed by Hitachi, Ltd. in cooperation with Tokyo Electric Power Co. aims at the final disposal by solidifying stored waste after drying, pulverizing, and pelletizing concentrated liquid waste, and storing it in tanks to reduce its radioactivity for the predetermined period. The outstanding features of the system are to be capable of realizing drastic volume reduction and of storing waste as the stable solid in the form flexibly adaptable to any disposing method. The system, to which the new concepts of pulverizing by drying and pelletizing concentrated liquid waste were applied, has been subjected to various fundamental tests and the demonstration tests in a pilot plant during the research and development for 7-years, consequently it was confirmed that the system can be used practically, and the data for designing the equipment for practical use were collected. The items to be considered in designing the equipment for practical use are also mentioned. (Wakatsuki, Y.)

  6. Drying of bio fuel utilizing waste heat; Torkning av biobraenslen med spillvaerme

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Inge; Larsson, Sara; Wennberg, Olle [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2004-10-01

    Many industries today have large sources of low grade heat (waste heat), however this energy is mainly lost with effluents to air and water. The aim of this study has been to investigate the technical and economical aspects of utilizing this low grade heat to dry biofuel. The project has been mainly focused towards the forest industry since they have both large amounts of biofuel and waste heat available. Drying of biofuel could generate added revenue (or reduced purchase costs) and through that also create larger incentives for further energy saving modifications to the main process. Due to the higher moisture content together with the risk of frozen bark in the winter time, additional fuels (such as oil) to combust bark in the existing boiler. This is mainly the case when mechanical dewatering is not available. Drying of bark results in an added energy value, which makes it possible to combust the bark without additional fuel. The primary energy demand, in the form of electricity and optional additional heating at load peaks, is low when waste heat is used for the drying process. In this way it is possible to increase the biofuel potential, since the primary energy input to the drying process is essentially lower then the increased energy value of the fuel. Drying also decreases the biological degradation of the fuel. Taking all the above into consideration, waste heat drying could result in a 25 % increase of the biofuel potential in the forest industry in Sweden, without additional cutting of wood. A survey has been done to state which commercial technologies are available for biofuel drying with waste heat. An inquiry was sent out to a number of suppliers and included a few different cases. Relations for approximating investment cost as well as electric power demand were created based on the answers from the inquiry. These relations have then been used in the economical evaluations made for a number of cases representing both sawmills and pulp and paper mills

  7. Establishment of cementation parameters of dried waste from evaporation coming from NPP operation

    International Nuclear Information System (INIS)

    Faria, Érica R.; Tello, Clédola C.O.; Costa, Bruna S.

    2017-01-01

    The radioactive wastes generated in Brazil are treated and sent to initial and intermediate storages. The 'Project RBMN' proposes the implantation of the Brazilian repository to receive and permanently dispose the low and intermediate level radioactive wastes. The CNEN NN 6.09 standard - Acceptance Criteria for Disposal of Low and Intermediate Radioactive Wastes (LIRW) - establishes the fundamental requirements to accept the wastes packages in the repository. The evaporator concentrate is one of liquid wastes generated in a Nuclear Power Plant (NPP) operation and usually it is cemented directly inside the packing. The objective of this research is to increase the amount of the incorporated waste in each package, using the drying process before the cementation, consequently reducing the volume of the waste to be disposed. Drying and cementation parameters were established in order to scale-up the process aiming at waste products that comply with the requirements of CNEN standard. The cementation of the resulting dry wastes was carried out with different formulations, varying the amount of cement, dry waste and water. These tests were analyzed in order to select the best products, with higher waste incorporation than current process and its complying the requirements of the standard CNEN NN 6.09. (author)

  8. Establishment of cementation parameters of dried waste from evaporation coming from NPP operation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Érica R.; Tello, Clédola C.O., E-mail: erica.engqui@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte/MG (Brazil); Costa, Bruna S., E-mail: brusilveirac@gmail.com [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2017-07-01

    The radioactive wastes generated in Brazil are treated and sent to initial and intermediate storages. The 'Project RBMN' proposes the implantation of the Brazilian repository to receive and permanently dispose the low and intermediate level radioactive wastes. The CNEN NN 6.09 standard - Acceptance Criteria for Disposal of Low and Intermediate Radioactive Wastes (LIRW) - establishes the fundamental requirements to accept the wastes packages in the repository. The evaporator concentrate is one of liquid wastes generated in a Nuclear Power Plant (NPP) operation and usually it is cemented directly inside the packing. The objective of this research is to increase the amount of the incorporated waste in each package, using the drying process before the cementation, consequently reducing the volume of the waste to be disposed. Drying and cementation parameters were established in order to scale-up the process aiming at waste products that comply with the requirements of CNEN standard. The cementation of the resulting dry wastes was carried out with different formulations, varying the amount of cement, dry waste and water. These tests were analyzed in order to select the best products, with higher waste incorporation than current process and its complying the requirements of the standard CNEN NN 6.09. (author)

  9. Drying wood waste with a pulse combustion dryer

    Energy Technology Data Exchange (ETDEWEB)

    Buchkowski, A.G. [Spectrum Engineering Corp., Ltd., Peterborough, Ontario (Canada); Kitchen, J.A. [John A. Kitchen, Ltd., Hastings, Ontario (Canada)

    1993-12-31

    There is a vast amount of wood waste available to be used as an alternate fuel if its moisture could be reduced efficiently. Tests have been conducted to assess an industrial dryer using pulse combustion as a heating source for drying wood waste; specifically sawdust and pulverized wet hog fuel. Pulse combustion offers the advantage of high heat transfer, efficient combustion, and low NO{sub x} emissions. The material is injected into the exhaust gases in the tailpipe of the combustor which uses natural gas or propane as a fuel. The turbulence created by the pulsations enhance the drying process by reducing the boundary layer thicknesses. The materials is further dried in a rotary drum. The material has been dried without scorching or burning in tests where the inlet moisture content has been as high as 60% on a wet basis. The outlet moisture contents achieved have typically been 10%. Analysis of the test data and cost estimates of the equipment indicate that the pulse combustion drying system is at least comparable to existing systems in terms of operating costs, and offers very significant savings in capital costs. Testing with various other materials such as wood pulp, sludges and peat is continuing to further assess the equipment`s performance.

  10. Processing method and processing device for liquid waste containing surface active agent and radioactive material

    International Nuclear Information System (INIS)

    Nishi, Takashi; Matsuda, Masami; Baba, Tsutomu; Yoshikawa, Ryozo; Yukita, Atsushi.

    1998-01-01

    Washing liquid wastes containing surface active agents and radioactive materials are sent to a deaerating vessel. Ozone is blown into the deaerating vessel. The washing liquid wastes dissolved with ozone are introduced to a UV ray irradiation vessel. UV rays are irradiated to the washing liquid wastes, and hydroxy radicals generated by photodecomposition of dissolved ozone oxidatively decompose surface active agents contained in the washing liquid wastes. The washing liquid wastes discharged from the UV ray irradiation vessel are sent to an activated carbon mixing vessel and mixed with powdery activated carbon. The surface active agents not decomposed in the UV ray irradiation vessel are adsorbed to the activated carbon. Then, the activated carbon and washing liquid wastes are separated by an activated carbon separating/drying device. Radioactive materials (iron oxide and the like) contained in the washing liquid wastes are mostly granular, and they are separated and removed from the washing liquid wastes in the activated carbon separating/drying device. (I.N.)

  11. Waste Isolation Pilot Plant Dry Bin-Scale Integrated Systems Checkout Plan

    International Nuclear Information System (INIS)

    1991-04-01

    In order to determine the long-term performance of the Waste Isolation Pilot Plant (WIPP) disposal system, in accordance with the requirements of the US Environmental Protection Agency (EPA) Standard 40 CFR 191, Subpart B, Sections 13 and 15, two performance assessment tests will be conducted. The tests are titled WIPP Bin-Scale Contact Handled (CH) Transuranic (TRU) Waste Tests and WIPP In Situ Alcove CH TRU Waste Tests. These tests are designed to measure the gas generation characteristics of CH TRU waste. Much of the waste will be specially prepared to provide data for a better understanding of the interactions due to differing degradation modes, waste forms, and repository environmental affects. The bin-scale test is designed to emplace nominally 146 bins. The majority of the bins will contain various forms of waste. Eight bins will be used as reference bins and will contain no waste. This checkout plan exercises the systems, operating procedures, and training readiness of personnel to safely carry out those specifically dedicated activities associated with conducting the bin-scale test plan for dry bins only. The plan does not address the entire WIPP facility readiness state. 18 refs., 6 figs., 3 tabs

  12. Safe dry storage of intermediate-level waste at CRL

    International Nuclear Information System (INIS)

    Chiu, A.; Sanderson, T.; Lian, J.

    2011-01-01

    Ongoing operations at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) generate High-, Intermediate- and Low-Level Waste (HLW, ILW and LLW) that will require safe storage for several decades until a long-term management facility is available. This waste is stored in below grade concrete structures (i.e. tile holes or bunkers) or the above-ground Shielded Modular Above Ground Storage (SMAGS) facility depending on the thermal and shielding requirements of the particular waste package. Existing facilities are reaching their capacity and alternate storage is required for the future storage of this radioactive material. To this end, work has been undertaken at CRL to design, license, construct and commission the next generation of waste management facilities. This paper provides a brief overview of the existing radioactive-waste management facilities used at CRL and focuses on the essential requirements and issues to be considered in designing a new waste storage facility. Fundamentally, there are four general requirements for a new storage facility to dry store dry non-fissile ILW. They are the need to provide: (1) containment, (2) shielding, (3) decay heat removal, and (4) ability to retrieve the waste for eventual placement in an appropriate long-term management facility. Additionally, consideration must be given to interfacing existing waste generating facilities with the new storage facility. The new facilities will be designed to accept waste for 40 years followed by 60 years of passive storage for a facility lifespan of 100 years. The design should be modular and constructed in phases, each designed to accept ten years of waste. This strategy will allow for modifications to subsequent modules to account for changes in waste characteristics and generation rates. Two design concepts currently under consideration are discussed. (author)

  13. Participation of the ININ in the activities of radioactive waste management of the Laguna Verde Central

    International Nuclear Information System (INIS)

    Medrano L, M.; Rodriguez C, C.; Linares R, D.; Ramirez G, R.; Zarate M, N.

    2006-01-01

    From the beginning of the operation of the Laguna Verde Central (CLV) the National Institute of Nuclear Research (ININ) has come supporting the CLV in the activities of administration of the humid and dry radioactive waste generated by the operation of the two units of the CLV, from the elaboration of procedures to the temporary storage in site, the implementation of a program of minimization and segregation of dry solid wastes, until the classification of the lots of humid waste and bulk dry wastes. In this work the description of the management activities of radioactive wastes carried out by the ININ in the facilities of the CLV to the date is presented, as well as some actions that they are had drifted in the future near, among those that it stands out the determination of the total alpha activity in humid samples by means of scintillation analysis. (Author)

  14. Drying Shrinkage of Mortar Incorporating High Volume Oil Palm Biomass Waste

    Science.gov (United States)

    Shukor Lim, Nor Hasanah Abdul; Samadi, Mostafa; Rahman Mohd. Sam, Abdul; Khalid, Nur Hafizah Abd; Nabilah Sarbini, Noor; Farhayu Ariffin, Nur; Warid Hussin, Mohd; Ismail, Mohammed A.

    2018-03-01

    This paper studies the drying shrinkage of mortar incorporating oil palm biomass waste including Palm Oil Fuel Ash, Oil Palm Kernel Shell and Oil Palm Fibre. Nano size of palm oil fuel ash was used up to 80 % as cement replacement by weight. The ash has been treated to improve the physical and chemical properties of mortar. The mass ratio of sand to blended ashes was 3:1. The test was carried out using 25 × 25 × 160 mm prism for drying shrinkage tests and 70 × 70 ×70 mm for compressive strength test. The results show that the shrinkage value of biomass mortar is reduced by 31% compared with OPC mortar thus, showing better performance in restraining deformation of the mortar while the compressive strength increased by 24% compared with OPC mortar at later age. The study gives a better understanding of how the biomass waste affect on mortar compressive strength and drying shrinkage behaviour. Overall, the oil palm biomass waste can be used to produce a better performance mortar at later age in terms of compressive strength and drying shrinkage.

  15. Sewage sludge drying process integration with a waste-to-energy power plant.

    Science.gov (United States)

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Experimental research of solid waste drying in the process of thermal processing

    Science.gov (United States)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  17. Assessment of two techniques for drying of easily degradable organic bio-waste; Bedoemning av tvaa tekniker foer torkning av laett nedbrytbart organiskt matavfall

    Energy Technology Data Exchange (ETDEWEB)

    Raaholt, Birgitta; Bergstroem, Birgitta; Broberg, Agneta; Holtz, Emma; Nordberg, Ulf; Del Pilar Castillo, Maria; Baky, Andras

    2011-10-15

    incoming material to treatment plants, energy consumption, cost, and climate impact. The quality of the dried material was evaluated with respect to purity degree, shelf-life stability, nutritional content, bio fuel potential and rehydration properties. In the system analysis, each drying technology, combined with a supposed subsequent digestion process, was compared to today's system for collection and digestion of food waste. An initial assessment of the potential of the microwave-vacuum drying process was made, as an alternative technique for hygienisation of food waste which contains animal by-products (ABP). The results indicate that the microwave process would be possible to adjust, in order to meet the time-temperature requirements for hygienisation. However, complementing studies are required to optimise and control the process towards the required microbiological reduction. Dried material has, as expected, advantages from both an odour and storage point of view; the lower water content corresponds to lower water activity and accordingly longer shelf-life and reduced risk for e.g. mould growth and odour. Even if energy is needed for drying the material, there are environmental advantages at collection of food waste (at transport distances less than about 50 km). Digestion experiments showed that dried food waste from households in Goeteborg did not result in any significant differences in methane exchange, with regard to organic matter (VS), expressed as m{sup 3}CH{sub 4}/tonne VS, compared with fresh food waste. Dried waste from food establishments in Boraas showed significantly lower methane exchange, with respect to organic matter (VS), than fresh food waste. The reasons for this need to be further investigated. A project delimitation was that the techniques were evaluated based upon food waste which was collected during a relatively short period of time. The target group of the project is the Swedish food industry, personnel responsible for waste

  18. Dry anaerobic digestion of the organic fraction of municipal solid waste

    NARCIS (Netherlands)

    Brummeler, ten E.

    1993-01-01

    Anaerobic digestion is an attractive technology for solid waste management. This thesis describes the technological potentials of dry anaerobic digestion of the organic fraction of Municipal Solid Waste (MSW) using batch systems. In 1985 a research programme was started to develop the so-

  19. Effect of ultrasonic specific energy on waste activated sludge ...

    African Journals Online (AJOL)

    The effect of ultrasonic specific energy on waste activated sludge (WAS) solubilization and enzyme activity was investigated in this study. Experimental results showed that the increase of ultrasonic specific energy in the range of 0 - 90000 kJ/kg dried sludge (DS) benefited WAS particle size reduction and the solubilization ...

  20. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste.

    Science.gov (United States)

    Nour, Violeta; Ionica, Mira Elena; Trandafir, Ion

    2015-12-01

    The tomato processing industry generates high amounts of waste, mainly tomato skins and seeds, which create environmental problems. These residues are attractive sources of valuable bioactive components and pigments. A relatively simple recovery technology could consist of production of powders to be directly incorporated into foods. Tomato waste coming from a Romanian tomato processing unit were analyzed for the content of several bioactive compounds like ascorbic acid, β-carotene, lycopene, total phenolics, mineral and trace elements. In addition, its antioxidant capacity was assayed. Results revealed that tomato waste (skins and seeds) could be successfully utilized as functional ingredient for the formulation of antioxidant rich functional foods. Dry tomato processing waste were used to supplement wheat flour at 6 and 10 % levels (w/w flour basis) and the effects on the bread's physicochemical, baking and sensorial characteristics were studied. The following changes were observed: increase in moisture content, titratable acidity and bread crumb elasticity, reduction in specific volume and bread crumb porosity. The addition of dry tomato waste at 6 % resulted in bread with good sensory characteristics and overall acceptability but as the amount of dry tomato waste increased to 10 %, bread was less acceptable.

  1. Characteristics of Vacuum Freeze Drying with Utilization of Internal Cooling and Condenser Waste Heat for Sublimation

    Directory of Open Access Journals (Sweden)

    Muhammad Alhamid

    2013-09-01

    Full Text Available Vacuum freeze drying is an excellent drying method, but it is very energy-intensive because a relatively long drying time is required. This research investigates the utilization of condenser waste heat for sublimation as a way of accelerating the drying rate. In addition, it also investigates the effect of internal cooling combined with vacuum cooling in the pressure reduction process. Jelly fish tentacles were used as the specimen, with different configurations for condenser heat waste and internal cooling valve opening. The results show that heating with condenser heat waste can accelerate the drying rate up to 0.0035 kg/m2.s. In addition, pre-freezing by internal cooling prevents evaporation until the mass of the specimen is 0.47 g and promotes transition of the specimen into the solid phase.

  2. Fire testing of 55 gallon metal waste drums for dry waste storage

    International Nuclear Information System (INIS)

    Hasegawa, H.K.; Staggs, K.J.; Doughty, S.M.

    1993-07-01

    The primary goal of this test program was to conduct a series of fire test to provide information on the fire performance of 55 gallon metal waste drums used for solid waste disposal at Department Of Energy (DOE) facilities. This program was limited in focus to three different types of 55 gallon drums, one radiant heat source, and one specific fire size. The initial test was a single empty 55 gallon drum exposed to a standard ASTME-119 time temperature curve for over 10 minutes. The full scale tests involved metal drums exposed to a 6' diameter flammable liquid fire for a prescribed period of time. The drums contained simulated dry waste materials of primarily class A combustibles. The test results showed that a conventional 55 gallon drum with a 1in. bung would blow its lid consistently

  3. Dry decontamination for tritiated wastes

    International Nuclear Information System (INIS)

    Shi Zhengkun; Wu Tao; Dan Guiping; Xie Yun

    2009-01-01

    To aim at decontamination of tritiated wastes, we have developed and fabricated a dry tritium decontamination system, which is designed to reduce tritium surface contamination of various alloy by UV, ozone and heating. The result indicates that the elevation of temperature can obviously improve decontamination effect. With 3 h irradiation by 365 nm UV at 220 degree C, it has a decontamination rate of 99% to stainless steel surface. Ozone can more obviously improve decontamination effect when metal was heated. Ozone has a decontamination effect beyond 95% to stainless steel, aluminum and brass at 220 degree C. Tritium surface concentration of metal has a little increase after decontamination. (authors)

  4. Influence of effective stress and dry density on the permeability of municipal solid waste.

    Science.gov (United States)

    Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi

    2018-05-01

    A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.

  5. Uranium extraction from aqueous solution using dried and pyrolyzed tea and coffee wastes

    International Nuclear Information System (INIS)

    Zaynab Aly

    2013-01-01

    The adsorption of U(VI) onto dried and pyrolyzed tea and coffee wastes was investigated. The adsorption properties of the materials were characterized by measuring uranium uptake as a function of solution pH, kinetics and adsorption isotherms. pH profile of uranium adsorption where UO 2 2+ is expected to be the predominant species was measured between pH 0 and 4. Both Langmuir and Freundlich adsorption models were used to describe adsorption equilibria, and corresponding constants evaluated. Using the Langmuir model, the maximum adsorption capacity of uranium by dried tea and coffee wastes was 59.5 and 34.8 mg/g, respectively at 291 K. Adsorption thermodynamic constants, ΔHdeg ΔSdeg and ΔGdeg were also calculated from adsorption data obtained at three different temperatures. Adsorption thermodynamics of uranyl ions on dried tea and coffee systems indicated spontaneous and endothermic processes. Additionally, a Lagergren pseudo-second-order kinetic model was used to fit the kinetic experimental data for both adsorbents and the constants evaluated. Dried tea and coffee wastes proved to be effective adsorbents with high capacities and significant advantage of a very low cost. (author)

  6. A study on the dewatering of industrial waste sludge by fry-drying technology

    International Nuclear Information System (INIS)

    Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-kyum; Moon, Seung-Hyun

    2009-01-01

    In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m 2 deg. C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 deg. C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 deg. C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 deg. C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were aluminum

  7. Development of a freeze-drying process of waste-solution, 2

    International Nuclear Information System (INIS)

    Kondo, Isao; Kawasaki, Takeshi

    1988-01-01

    The waste solution treatment process in Plutonium Conversion Development Facility (PCDF) consists of Evaporation-Condensation and Neutrazation-Agglometation-Precipitation process, which produces the distillate as recovered acid at first step and separates Pu-U element from condenced solution at second step. This process needs many stages to get high decontamination efficiency and then the Evaporator is in very corrosive state because the nitric acid solution is heated over 100 degrees C to be evaporated. So, in PCDF, it was started the development of Freeze-Drying process to waste solution treatment. This process is suitable for a little quantity of the solution including nitric acid as produced in the Microwave Heating method. Moreover the process has high decontamination efficiency and has good performance of equipment. The result of the cold test of Freeze-Drying process with nitric acid is discribed in this paper. (author)

  8. Dry-distillation of experimental animal wastes containing radioisotopes

    International Nuclear Information System (INIS)

    Miyatake, Hideo; Saito, Kazumi; Kurihara, Norio

    1988-01-01

    Mice were dry-distilled at 800deg C for 10 min, after [ 32 P]orthophosphate or L-[4,5- 3 H]leucine was intraperitoneally administered. Phosphorus-32 was quantitatively recovered in the residual solid, whereas 95% of 3 H was found in the distillate (condensed water). When 14 C (L-[U- 14 C]malic acid or L-[U- 14 C]leucine) was administered to mice and they were dry-distilled, 14 C-radioactivity was distributed into two fractions; residual solid and exhaust gas. In these cases, the recovery percentage of 14 C in residual solid was not very high but increased as the treating temperature decreased. It reached about 40% of the administered 14 C at 400deg C for 120 min. By the dry-distillation of animals, their weight was reduced to about 10% in every animal tested (mice, rats and rabbits). The volume was reduced to about 20% in cases of mice and rats, and about 30% in case of rabbits. It was concluded that the dry-distillation can be useful as a pre-treatment for disposal of animal wastes containing radioisotopes. (author)

  9. Decontamination of polypropylene fabrics by dry cleaning

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.

    1983-01-01

    Polypropylene fabrics can efficiently be decontaminated by dry cleaning in benzine or perchloroethylene, this also in case the fabric was greased in addition to radioactive contamination. For heavily soiled fabric, it is advantageous to first dry clean it and then wash it. The positive effect was confirmed of intensifiers on the cleaning process, especially of benzine soap. In practice, its concentration should be selected within 1 and 10 g.dm - 3 . Decontamination by dry cleaning and subsequent washing is advantageous in that that the resulting activity of waste water from the laundry is low. Radioactive wastes from the dry cleaning process have a low weight and can be handled as solid waste. (M.D.)

  10. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, S.D.

    2007-01-01

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below

  11. Ethanol Production from Enzymatically Treated Dried Food Waste Using Enzymes Produced On-Site

    Directory of Open Access Journals (Sweden)

    Leonidas Matsakas

    2015-01-01

    Full Text Available The environmental crisis and the need to find renewable fuel alternatives have made production of biofuels an important priority. At the same time, the increasing production of food waste is an important environmental issue. For this reason, production of ethanol from food waste is an interesting approach. Volumes of food waste are reduced and ethanol production does not compete with food production. In this work, we evaluated the possibility of using source-separated household food waste for the production of ethanol. To minimize the cost of ethanol production, the hydrolytic enzymes that are necessary for cellulose hydrolysis were produced in-house using the thermophillic fungus Myceliophthora thermophila. At the initial stage of the study, production of these thermophilic enzymes was studied and optimized, resulting in an activity of 0.28 FPU/mL in the extracellular broth. These enzymes were used to saccharify household food waste at a high dry material consistency of 30% w/w, followed by fermentation. Ethanol production reached 19.27 g/L with a volumetric productivity of 0.92 g/L·h, whereas only 5.98 g/L of ethanol was produced with a volumetric productivity of 0.28 g/L·h when no enzymatic saccharification was used.

  12. Bio-drying and size sorting of municipal solid waste with high water content for improving energy recovery.

    Science.gov (United States)

    Shao, Li-Ming; Ma, Zhong-He; Zhang, Hua; Zhang, Dong-Qing; He, Pin-Jing

    2010-07-01

    Bio-drying can enhance the sortability and heating value of municipal solid waste (MSW), consequently improving energy recovery. Bio-drying followed by size sorting was adopted for MSW with high water content to improve its combustibility and reduce potential environmental pollution during the follow-up incineration. The effects of bio-drying and waste particle size on heating values, acid gas and heavy metal emission potential were investigated. The results show that, the water content of MSW decreased from 73.0% to 48.3% after bio-drying, whereas its lower heating value (LHV) increased by 157%. The heavy metal concentrations increased by around 60% due to the loss of dry materials mainly resulting from biodegradation of food residues. The bio-dried waste fractions with particle size higher than 45 mm were mainly composed of plastics and papers, and were preferable for the production of refuse derived fuel (RDF) in view of higher LHV as well as lower heavy metal concentration and emission. However, due to the higher chlorine content and HCl emission potential, attention should be paid to acid gas and dioxin pollution control. Although LHVs of the waste fractions with size bio-drying, they were still below the quality standards for RDF and much higher heavy metal pollution potential was observed. Different incineration strategies could be adopted for different particle size fractions of MSW, regarding to their combustibility and pollution property. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Data sharing report characterization of population 7: Personal protective equipment, dry active waste, and miscellaneous debris, surveillance and maintenance project Oak Ridge National Laboratory Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Harpenau, Evan M. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  14. Processing method and device for radioactive waste containing surfactant

    International Nuclear Information System (INIS)

    Yukita, Atsushi; Yoshikawa, Ryozo; Izumida, Tatsuo; Nishi, Takashi; Hattori, Yasuo.

    1997-01-01

    Washing liquid wastes generated in washing facilities in a nuclear power plant are collected in a liquid waste collecting tank. A suspension containing a powdery active carbon is supplied to the liquid waste collecting tank. Organic ingredients such as of a surfactant, oil ingredients and radioactive materials in the form of ions contained in the washing liquid wastes are adsorbed to the powdery active carbon. The washing liquid wastes containing the powdery active carbon and granular radioactive materials are led into an active carbon separating and drying device. The powdery active carbon and granular radioactive materials contained in the washing liquid wastes are filtered and separated by a filtering plate, and accumulated as filtered materials on the surface of the filtering plate. The purified washing liquid wastes are discharged to the outside. The filtered materials are dried by hot steams (or hot water) and dried air. The filtered materials are peeled from the filtering plate. The filtered materials, in other word, dried powdery active carbon and granular radioactive materials are transported to and burnt in an incinerator. (I.N.)

  15. Spray drying test of simulated borated waste solutions

    International Nuclear Information System (INIS)

    An Hongxiang; Zhou Lianquan; Fan Zhiwen; Sun Qi; Lin Xiaolong

    2007-01-01

    Performance and the effecting factors of spray drying of simulated borated waste solutions is studied for three contaeting methods between the atomized beads and the heated air, in which boron concentration is around 21000 ppm. The contacting modes are centrifugal atomizing co-current flow, pneumatic atomizing co-current flow and mixed flow. The results show that a free-flowing product in all these tests when the temperature of the solutions is between 62 degree C and 64 degree C, the inlet temperature of the spray drying chamber is between 210 degree C and 220 degree C, the temperature of the outlet of the spray drying chamber is between 110 and 120 degree C, the flow rate of the pressure air is 8.0 m 3 /h, the rotational speed of the centrifugal atomizer is 73.0 m/s. The diameters of the powder product which account for 95% of the feed range from 0.356 mm to 0.061 mm. The production capacity and water content in the powder increase in the order of pneumatic atomizing co-current flow, mixed flow and centrifugal atomizing co-current flow. The volume reduction coeffecient of spray drying is in the ranged of 0.22 and 0.27. (authors)

  16. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  17. Evaluation of dry-solids-blend material source for grouts containing 106-AN waste: September 1990 progress report

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Osborne, S.C.; Francis, C.L.; Scott, T.C.

    1993-09-01

    Stabilization/solidification (S/S) is the most widely used technology for the treatment and ultimate disposal of both radioactive and chemically hazardous wastes. Such technology is being utilized in a Grout Treatment Facility (GTF) by the Westinghouse Hanford Company (WHC) for the disposal of various wastes, including 106-AN wastes, located on the Hanford Reservation. The WHC personnel have developed a grout formula for 106-AN disposal that is designed to meet stringent performance requirements. This formula consists of a dry-solids blend containing 40 wt % limestone, 28 wt % granulated blast furnace slag (BFS), 28 wt % ASTM Class F fly ash, and 4 wt % Type I-II-LA Portland cement. The blend is mixed with 106-AN waste at a ratio of 9 lb of dry-solids blend per gallon of waste. This report documents progress made to date on efforts at Oak Ridge National Laboratory (ORNL) in support of WHC's Grout Technology Program to assess the effects of the source of the dry-solids-blend materials on the resulting grout formula

  18. Performance of A Horizontal Cylinder Type Rotary Dryer for Drying Process ofOrganic Compost from Solid Waste Cocoa Pod

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2008-07-01

    Full Text Available Cocoa pod husk is the bigest component of cocoa pod, about 70% of total ht of mature pod, and to potentially used as organic compost source. Poten tial solid waste of cocoa pod husk from a cocoa processing centre is about 15— 22 m3/ha/year. A cocoa plantation needs about 20—30 ton/ha/year of organic matters. One of important steps in compos processing technology of cocoa pod solid waste is drying process. Organic compost with 20% moisture content is more easy in handling, application, storage and distribution. Indonesian Coffee and Cocoa Research Institute has designed and tested a horizontal cylinder type rotary dryer for drying process of organic compos from solid waste cocoa pod with kerosene burner as energy sources. The objective of this research is to study performance of a horizontal cylinder type rotary dryer using kerosene burner as energy source for drying process of organic compost from solid waste cocoa pod. The material used was solid waste cocoa pod with 70—75% moisture content (wet basis, 70% size particle larger than 4.76 mm, and 30% size particle less than 4.76 mm, 690—695 kg/m3 bulk density. Drying process temperatures treatment were 60OC, 80OC, and 100OC, and cylinder rotary speed treatments were 7 rpm, 10 rpm, dan 16 rpm. The results showed that dryer had capacity about 102—150 kg/h depend on drying temperature and cylinder rotary speed. Optimum operation condition at 100OC drying temperature, and 10 rpm cylinder rotary speed with drying time to reach final moisture content of 20% was 1,6 h, capacity 136,14 kg/ h, bulk density 410 kg/m3, porocity 45,15%, kerosene consumption as energy source was 2,57 l/h, and drying efficiency 68,34%. Key words : cocoa, drying, rotary dryer, compost, waste

  19. Winery waste recycling through anaerobic co-digestion with waste activated sludge.

    Science.gov (United States)

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2014-11-01

    In this study biogas and high quality digestate were recovered from winery waste (wine lees) through anaerobic co-digestion with waste activated sludge both in mesophilic and thermophilic conditions. The two conditions studied showed similar yields (0.40 m(3)/kgCODfed) but different biological process stability: in fact the mesophilic process was clearly more stable than the thermophilic one in terms of bioprocess parameters. The resulting digestates showed good characteristics for both the tested conditions: heavy metals, dioxins (PCDD/F), and dioxin like bi-phenyls (PCBs) were concentred in the effluent if compared with the influent because of the important reduction of the solid dry matter, but remained at levels acceptable for agricultural reuse. Pathogens in digestate decreased. Best reductions were observed in thermophilic condition, while at 37°C the concentration of Escherichia coli was at concentrations level as high as 1000 UFC/g. Dewatering properties of digestates were evaluated by means of the capillary suction time (CST) and specific resistance to filtration (SRF) tests and it was found that a good dewatering level was achievable only when high doses of polymer (more than 25 g per kg dry solids) were added to sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Evaluation of radwaste minimization program of dry and wet active waste in the Laguna Verde Nuclear Power Plant

    International Nuclear Information System (INIS)

    Luna-Garza, Hector

    2001-01-01

    A growing rate of radwaste volume production combined with an increase of both, costs and associated dose involved in its treatment and disposition processes have created a serious problem to the Laguna Verde Nuclear Power Plant (BWR, two Units, 682 Mwe each) in Mexico. Due the lack of a Final Repository in the country, the solution in the short or long terms relies on the success of a continuous and aggressive minimization program mainly based on modifications and upgrades applied to these processes. Technical and administrative strategies adopted by LVNPP for the reduction of Liquid Effluents and Dry and Wet Active Waste in the next three years are described. Based on the results of the LVNPP current radwaste process systems, an estimated accumulation of 11,502 m 3 by the year 2035 will exceed the actual on-site storage capacity. If the strategies succeed, this production would fall to an expected manageable volume of 4067 m 3 . (author)

  1. Study on the correlation between volatile fatty acids and gas production in dry fermentation of kitchen waste

    Science.gov (United States)

    Li, Qiangqiang; Ma, Yunfeng; Du, Boying; Wang, Qi; Hu, Qiongqiong; Bian, Yushan

    2018-02-01

    In this study, continuous kitchen waste fermentation and anaerobic digestion experiments were conducted to analyze the gas production potential, and to study the correlation between gas production rate and volatile fatty acid (VFAs) and its component concentration. During the experiment, the total solid(TS) concentration of the reaction system was increased by adding the kitchen waste, analysis of kitchen waste dry fermentation process to start, run, imbalance and imbalance after recovery and the parameters in the process of realizing the change trend and influencing factors of dry fermentation process, pH and ammonia concentration.

  2. A study of inter-particle bonds in dry bauxite waste resulting in atmospheric aerosols

    Science.gov (United States)

    Wagh, Arun S.; Thompson, Bentley

    1988-02-01

    Bauxite and Alumina production are one of the main activities of several third world countries such as Jamaica, Brazil, India, Guinea, eastern European countries such as Hungary and Rumania and advanced countries such as Australia, West Germany, Japan and the United States. The mining operations lead to dust pollution, but the refining of bauxite to alumina yield large amounts of highly caustic sludge waste, called "Red Mud". Millions of tons of the waste produced in every country are stored in containment dams or natural valleys. This leads to ground water pollution, destruction of plant and bird life and is hazardous to human settlement in earthquake prone regions like Jamaica. As a result several companies have been looking into dry mud stacking which involves thickening the mud in the refining plants and sprying it on the slopes to sun dry it. Typically it involves a drying field of about two hundred acres, which could act as a potential source of caustic dust. In Jamaica one company has started disposing of the mud in this way. The aerosol formation from such areas depends mainly on the integrity of the top dry layers. Presently this is done by studying the approximate parameters such as the friability of the mud. However, following the recent advances in powder technology it has been possible for us to develop an instrument to study the average interparticle forces between the red mud particles. The instrument is based on the principle of a tensometer and a split cell is used to load specimens. A load cell is used to measure the force and a chart recorder is used for plotting separation and the force. The present study reports elemental composition of the dust and its health hazards. It also reports the physical measurement of the average interparticle force as a function of their separation in the Jamaican mud. The effect of ultraviolet radiation on the strength of the material is studied to see the effect of sun-drying of the waste. The five-fold increase

  3. Hazardous Waste Water Remediation by Ecoresin-Dry Cow Dung Powder

    Science.gov (United States)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    Water, the matter, matrix, medium and the mother of our life, is indeed one of the drivers of Nature. Through water cycle only the intra and inter equilibrium is maintained constantly between entire 'green' and 'blue'. Unfortunately, with each successive epoch of industrialization and urbanization, human societies have produced non-biodegradable waste hulk with far beyond handling capacities of mankind. At this juncture the very need is to appreciate and move towards the cost as well as time effective scientific alternatives for the removal of aqueous heavy metal pollutants. Green chemistry advocates the utilization of naturally available bio-resins which are environmentally benign alternative to current synthetic materials and technologies employed for waste water treatment. This explicit investigation aims to explore Dry Cow dung powder, DCP, a natural biosorbent as a green and clean alternative for the aqueous waste water treatment. It is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as 'Humic acid'(HA). The HA has been successfully extracted by authors from DCP and this piece of work has been published in the International Journal [1]. We have developed simple, efficient and eco-friendly method for the removal of aqueous heavy metal pollutant such as Cr(VI) [2], Cd(II), Cr(III) [3] and Hg(II) as well radiotoxic 90Sr(II) [4], employing DCP. DCP is employed without any pre or post treatment. Being freely and easily available DCP has an edge over processed natural adsorbent considering their cost, time and energy efficiency. In nutshell we have to remember that prevention is better than the cure. If we fail to meet this, the situation will surely augment which will drain our water, our life, to slaughters knife..! Reference: 1. H.K.Bagla, N.S.Barot, Soil Amendement by Green Supplement: Dry Cowdung powder, EGUGA - 11

  4. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  5. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials are tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials

  6. Anaerobic bioleaching of metals from waste activated sludge

    International Nuclear Information System (INIS)

    Meulepas, Roel J.W.; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal E.; Lens, Piet N.L.

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g −1 of copper, 487 μg g −1 of lead, 793 μg g −1 of zinc, 27 μg g −1 of nickel and 2.3 μg g −1 of cadmium. During the anaerobic acidification of 3 g dry weight L −1 waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner

  7. Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: Drying kinetics study.

    Science.gov (United States)

    Khedkar, Manisha A; Nimbalkar, Pranhita R; Gaikwad, Shashank G; Chavan, Prakash V; Bankar, Sandip B

    2017-02-01

    Present investigation explores the use of pineapple peel, a food industry waste, for acetone-butanol-ethanol (ABE) production using Clostridium acetobutylicum B 527. Proximate analysis of pineapple peel shows that it contains 35% cellulose, 19% hemicellulose, and 16% lignin on dry basis. Drying experiments on pineapple peel waste were carried out in the temperature range of 60-120°C and experimental drying data was modeled using moisture diffusion control model to study its effect on ABE production. The production of ABE was further accomplished via acid hydrolysis, detoxification, and fermentation process. Maximum total sugar release obtained by using acid hydrolysis was 97g/L with 95-97% and 10-50% removal of phenolics and acetic acid, respectively during detoxification process. The maximum ABE titer obtained was 5.23g/L with 55.6% substrate consumption when samples dried at 120°C were used as a substrate (after detoxification). Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Drying characteristics and nitrogen loss of biogas digestate during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, C.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    The cost of transporting biogas digestate can be decreased by reducing its water content. However, the digestate emits volatile compounds during drying. This study investigated the drying behaviour and the change of digestate composition. Drying took place in a hybrid solar/waste-heat dryer that used solar energy as well as waste heat from a combined heat and power unit (CHP) and the exhaust air of a microturbine. The experiment involved the use of 60 t of liquid digestate. Climatic conditions were measured inside and outside the drying hall. Dry matter (DM) and organic dry matter (ODM) were also measured on a daily basis. In addition, the energy consumption of waste and solar heat were recorded and related to the quantity of dried feedstock. The total nitrogen, ammonium, phosphate, potassium oxide, magnesium oxide and calcium oxide in the digestate were subjected to chemical analysis before and after the drying process. Losses of nitrogen were calculated. Specific energy consumption depended on the climatic condition. Most of the energy consumption was covered by the waste heat of the CHP. A considerable amount of nitrogen was lost during the drying process.

  9. The effect of using different sources of dry materials on waste-form grout properties

    International Nuclear Information System (INIS)

    Spence, R.D.; Gilliam, T.M.; McDaniel, E.W.

    1992-01-01

    A reference grout formulation had been developed for a liquid low-level radioactive waste using the following dry materials: ground limestone, ground granulated blast furnace slag, fly ash, and cement. The effect of varying the sources of these dry materials was tested. Two limestones, two fly ashes, two cements, and eight slags were tested. Varying the source of dry materials significantly affected the grout properties, but only the 28-d free-standing liquid varied outside of the preferred range. A statistical technique, Tukey's paired comparison, can be used to ascertain whether a given combination of dry materials resulted in grout properties significantly different from those of other combinations of dry materials. (author)

  10. Effective moisture diffusivity and activation energy of rambutan seed under different drying methods to promote storage stability

    Science.gov (United States)

    Ahmad, So'bah; Shamsul Anuar, Mohd; Saleena Taip, Farah; Shamsudin, Rosnah; M, Siti Roha A.

    2017-05-01

    The effects of two drying methods, oven and microwave drying on the effective moisture diffusivity and activation energy of rambutan seed were studied. Effective moisture diffusivity and activation energy are the main indicators used for moisture movement within the material. Hence, it is beneficial to determine an appropriate drying method to attain a final moisture content of rambutan seed that potentially could be used as secondary sources in the industry. An appropriate final moisture content will provide better storage stability that can extend the lifespan of the rambutan seed. The rambutan seeds were dried with two drying methods (oven and microwave) at two level of the process variables (oven temperature; 40°C and 60°C and microwave power; 250W and 1000W) at constant initial moisture contents. The result showed that a higher value of effective moisture diffusivity and less activation energy were observed in microwave drying compared to oven drying. This finding portrays microwave drying expedites the moisture removal to achieve the required final moisture content and the most appropriate drying method for longer storage stability for rambutan seed. With respect to the process variables; higher oven temperatures and lower microwave powers also exhibit similar trends. Hopefully, this study would provide a baseline data to determine an appropriate drying method for longer storage period for turning waste to by-products.

  11. Anaerobic bioleaching of metals from waste activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Meulepas, Roel J.W., E-mail: roel.meulepas@wetsus.nl [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Gonzalez-Gil, Graciela [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Teshager, Fitfety Melese; Witharana, Ayoma [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands); Saikaly, Pascal E. [King Abdullah University of Science and Technology, Water Desalination and Reuse Center, Thuwal 13955-69000 (Saudi Arabia); Lens, Piet N.L. [UNESCO-IHE, Westvest 7, 2611 AX Delft (Netherlands)

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342 μg g{sup −1} of copper, 487 μg g{sup −1} of lead, 793 μg g{sup −1} of zinc, 27 μg g{sup −1} of nickel and 2.3 μg g{sup −1} of cadmium. During the anaerobic acidification of 3 g{sub dry} {sub weight} L{sup −1} waste activated sludge, 80–85% of the copper, 66–69% of the lead, 87% of the zinc, 94–99% of the nickel and 73–83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead. - Highlights: • Heavy metals were leached during anaerobic acidification of waste activated sludge. • The process does not require the addition of chelating or oxidizing agents. • The metal leaching efficiencies (66 to 99%) were comparable to chemical leaching. • The produced leachate may be used for metal recovery and biogas production. • The produced digested sludge may be used as soil conditioner.

  12. Swarm motility inhibitory and antioxidant activities of pomegranate peel processed under three drying conditions.

    Science.gov (United States)

    John, K M Maria; Bhagwat, Arvind A; Luthria, Devanand L

    2017-11-15

    During processing of ready-to-eat fresh fruits, large amounts of peel and seeds are discarded as waste. Pomegranate (Punicagranatum) peels contain high amounts of bioactive compounds which inhibit migration of Salmonella on wet surfaces. The metabolic distribution of bioactives in pomegranate peel, inner membrane, and edible aril portion was investigated under three different drying conditions along with the anti-swarming activity against Citrobacter rodentium. Based on the multivariate analysis, 29 metabolites discriminated the pomegranate peel, inner membrane, and edible aril portion, as well as the three different drying methods. Punicalagins (∼38.6-50.3mg/g) were detected in higher quantities in all fractions as compared to ellagic acid (∼0.1-3.2mg/g) and punicalins (∼0-2.4mg/g). The bioactivity (antioxidant, anti-swarming) and phenolics content was significantly higher in peels than the edible aril portion. Natural anti-swarming agents from food waste may have promising potential for controlling food borne pathogens. Published by Elsevier Ltd.

  13. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    Science.gov (United States)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-01-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  14. Utilization of household food waste for the production of ethanol at high dry material content.

    Science.gov (United States)

    Matsakas, Leonidas; Kekos, Dimitris; Loizidou, Maria; Christakopoulos, Paul

    2014-01-08

    Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall

  15. Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes.

    Science.gov (United States)

    Dal Pozzo, Alessandro; Antonioni, Giacomo; Guglielmi, Daniele; Stramigioli, Carlo; Cozzani, Valerio

    2016-05-01

    Acid gases such as HCl and SO2 are harmful both for human health and ecosystem integrity, hence their removal is a key step of the flue gas treatment of Waste-to-Energy (WtE) plants. Methods based on the injection of dry sorbents are among the Best Available Techniques for acid gas removal. In particular, systems based on double reaction and filtration stages represent nowadays an effective technology for emission control. The aim of the present study is the simulation of a reference two-stage (2S) dry treatment system performance and its comparison to three benchmarking alternatives based on single stage sodium bicarbonate injection. A modelling procedure was applied in order to identify the optimal operating configuration of the 2S system for different reference waste compositions, and to determine the total annual cost of operation. Taking into account both operating and capital costs, the 2S system appears the most cost-effective solution for medium to high chlorine content wastes. A Monte Carlo sensitivity analysis was carried out to assess the robustness of the results. Copyright © 2016. Published by Elsevier Ltd.

  16. Activation/waste management

    International Nuclear Information System (INIS)

    Maninger, C.

    1984-10-01

    The selection of materials and the design of the blankets for fusion reactors have significant effects upon the radioactivity generated by neutron activation in the materials. This section considers some aspects of materials selection with respect to waste management. The activation of the materials is key to remote handling requirements for waste, to processing and disposal methods for waste, and to accident severity in waste management operations. In order to realize the desirable evnironmental potentials of fusion power systems, there are at least three major goals for waste management. These are: (a) near-surface burial; (b) disposal on-site of the fusion reactor; (c) acceptable radiation doses at least cost during and after waste management operations

  17. Dry anaerobic digestion of rejects from pre-treated food waste; Torroetning av rejekt fraan foerbehandling av matavfall

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Irene [NSR, Helsingborg (Sweden); Murto, Marika; Bjoernsson, Lovisa [Bioteknik, LTH, Lund (Sweden); Rosqvist, Haakan [Rosqvist Resurs, Klaagerup (Sweden)

    2011-11-15

    When the organic fraction of source separated municipal solid waste is digested anaerobically in a continuously stirred tank reactor there is a need for a pretreatment to make the waste pumpable and remove contaminants. In one type of pretreatment the material passes through a screw press which separates waste in a liquid fraction and a dry fraction (the reject). At NSR this technique is used and at present the reject is incinerated. A previous study has shown that about 30 % of the methane potential of the incoming organic waste can be found in the reject. The aim of the present project was to investigate the possibilities of realizing the methane potential through batch wise dry anaerobic digestion followed by composting as an alternative to incineration. In the technique used in the present project the material was digested in an anaerobic leach-bed with recirculation of leachate over the bed. It is important that the material is sufficiently porous to let the leachate spread evenly through the leach-bed. Treatment of reject and a mixture of reject and structural material were tested to investigate if the addition of structural material had an effect on the porosity. The flow of liquid through a leach-bed of reject and one of reject mixed with structural material was studied using LiBr as tracer. The digestate from the dry digestion process was composted, and the resulting compost was evaluated. The odor from the digestate, the active compost and the compost product was measured by analyzing the odor in the air of the porous space in heaps of the different materials. This was used to evaluate the risk of odor problems. The dry digestion and the tracer experiment both showed that mixing the reject with structural material had a positive effect on the flow of liquid through the material and the digestion process. Addition of structural material to the reject was needed in order to achieve an efficient digestion process. Using tracers proved to be a useful way of

  18. Results of full scale dry injection tests at MSW-incinerators using a new active absorbent

    International Nuclear Information System (INIS)

    Felsvang, K.S.; Helvind, O.

    1991-01-01

    Worldwide incineration of municipal solid waste (MSW) has been utilized to reduce the volume of waste to be disposed of. Increasing environmental concerns over the potential air pollution impacts have led to emission limits for pollutants such as HCl, SO 2 , particulate, and more recently also for mercury and dioxins. For a certain size of incinerators, dry sorbent injection is the preferred technology for air pollution control. This paper describes the development of a new active sorbent, Scansorb, which is particularly suited for use in dry injection processes. The new sorbent is a lime based product with adjustable properties. Scansorb can be produced with a specific surface area of 30 to 100 m 2 /g. Pilot plant development work has shown that a considerable reduction in the absorbent quantity can be achieved when Scansorb is used instead of commercial hydrated lime. Full scale tests performed at four different MSW incinerators have confirmed the viability of the new active absorbent. The full scale tests have demonstrated that more than 50% SO 2 removal can be achieved with Scansorb at quantities much less than with commercial hydrated lime

  19. Natural draught centralized dry store for irradiated fuel and active waste

    International Nuclear Information System (INIS)

    Bradley, N.; Brown, G.A.

    1981-01-01

    A modular design is described for the long term dry storage of irradiated fuel and vitrified fission products. The specification set by the Central Electricity Generating Board for the AGR fuel store was that the store should be capable of accommodating the lifetime discharge from 10 AGR reactors (7200 tonnes of irradiated fuel) and be cooled by natural convection. The fuel assemblies should be enclosed in individual steel containers. The store has an area for drying the AGR fuel and containering. The single dry cell storage capacities are, 5 years output from 1300 MWe station stored as fuel elements, or 14 year output from 1300 MWe thermal reactors stored as vitrified fission products. (U.K.)

  20. Second Generation Waste Package Design Study

    International Nuclear Information System (INIS)

    Armijo, J.S.; Misra, M.; Kar, Piyush

    2007-01-01

    The following describes the objectives of Project Activity 023 ''Second Generation Waste Package Design Study'' under DOE Cooperative Agreement DE-FC28-04RW12232. The objectives of this activity are: to review the current YMP baseline environment and establish corrosion test environments representative of the range of dry to intermittently wet conditions expected in the drifts as a function of time; to demonstrate the oxidation and corrosion resistance of A588 weathering steel and reference Alloy 22 samples in the representative dry to intermittently dry conditions; and to evaluate backfill and design features to improve the thermal performance analyses of the proposed second-generation waste packages using existing models developed at the University of Nevada, Reno(UNR). The work plan for this project activity consists of three major tasks: Task 1. Definition of expected worst-case environments (humidity, liquid composition and temperature) at waste package outer surfaces as a function of time, and comparison with environments defined in the YMP baseline; Task 2. Oxidation and corrosion tests of proposed second-generation outer container material; and Task 3. Second Generation waste package thermal analyses. Full funding was not provided for this project activity

  1. Participation of the ININ in the activities of radioactive waste management of the Laguna Verde Central; Participacion del ININ en las actividades de gestion de desechos radiactivos de la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Medrano L, M.; Rodriguez C, C.; Linares R, D. [ININ, Gerencia Subsede Sureste (Mexico); Ramirez G, R.; Zarate M, N. [Central Laguna Verde, CFE (Mexico)]. e-mail: maam@nuclear.inin.mx

    2006-07-01

    From the beginning of the operation of the Laguna Verde Central (CLV) the National Institute of Nuclear Research (ININ) has come supporting the CLV in the activities of administration of the humid and dry radioactive waste generated by the operation of the two units of the CLV, from the elaboration of procedures to the temporary storage in site, the implementation of a program of minimization and segregation of dry solid wastes, until the classification of the lots of humid waste and bulk dry wastes. In this work the description of the management activities of radioactive wastes carried out by the ININ in the facilities of the CLV to the date is presented, as well as some actions that they are had drifted in the future near, among those that it stands out the determination of the total alpha activity in humid samples by means of scintillation analysis. (Author)

  2. Potential weather modification caused by waste heat release from large dry cooling towers

    International Nuclear Information System (INIS)

    Lee, J.

    1979-01-01

    A numerical model of a cooling tower plume is employed to study the possible atmospheric effects of thermal plumes from natural draft dry cooling towers. Calculations are performed for both single and multiple towers, each of which can dissipate the waste heat from a nominal 1000 MWe power generating unit, and the results are compared with those for wet cooling towers associated with plants of the same generating capacity. Dry cooling tower plumes are found to have a higher potential for inducing convective clouds than wet cooling tower plumes, under most summertime meteorological conditions. This is due to the fact that both the sensible heat and momentum fluxes from a dry tower in summer are approximately one order of magnitude larger than those from a wet cooling tower

  3. New biological deodrization device using dried activated sludge. Kanso odei wo mochiita shinki seibutsu dasshu sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, S.; Nagayasu, K.; Suwa, T.; Hayashitani, M.; Ito, H.; Habata, K.; Kitakaze, T. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1993-10-20

    The new biological deodorization device was developed using dried activated sludge as deodorant. Activated sludge obtained from a waste water treatment plant was dried at room temperature to protect from extinction of microorganisms in it before its charge into the device, and washed by water only as required. Offensive odor substances were oxidation-decomposed by microorganism after their adsorption into sludge surfaces, while microorganisms survived for a long time while getting such substances as nutritive sources. As basic deodorization characteristics were studied with the experimental device and artificial odor gases, more than 99% of 200 and 2,000 ppm H2S were removed at space velocities of 400/h and 33/h, respectively, together with nine typical offensive odor substances. As the result of demonstration tests with the small test device installed in a public waste water treatment plant, a high deodorizing efficiency was retained for 10 months or more, and its running cost was as low as 75% of that of current systems because of only one necessary washing every month. 3 refs., 14 figs., 12 tabs.

  4. Method and device for the dry preparation of ceramic uranium dioxide nuclear fuel wastes

    International Nuclear Information System (INIS)

    Pirk, H.; Roepenack, H.; Goeldner, U.

    1977-01-01

    Reprocessing of waste, resulting from the production of ceramic sintered bodies from uranium dioxide for use as nuclear fuel, in a dry process into very finely dispersed pure U 3 O 8 powder may be improved by applying vibrating screening during oxidation. An appropriate device is described. (UWI) [de

  5. Use of Drying Technologies for Resource Recovery from Solid Wastes and Brines

    Science.gov (United States)

    Wignarajah, Kanapathipillai; Alba, Ric; Fisher, John W.; Hogan, John A.; Polonsky, Alex

    2010-01-01

    Long term storage of unprocessed biological wastes and human wastes can present major health issues and a loss of potential resources. Space vehicles and planetary habitats are typically resource-scarce or resource-limited environments for long-term human habitation. To-date, most of the resources will need to be supplied from Earth, but this may not be possible for long duration human exploration. Based on present knowledge, there is only very limited in-situ resources on planetary habitats. Hence, the opportunity to "live off the land" in a planetary habitat is limited. However, if we assume that wastes generated by human explorers are viewed as resources, there is great potential to utilize and recycle them, thereby reducing the requirements for supply Earth and enabling the "live off the land" exploration scenario. Technologies used for the recovery of resources from wastes should be reliable, safe, easy to operate, fail-proof, modular, automated and preferably multifunctional in being capable of handling mixed solid and liquid wastes. For a lunar habitat, energy does not appear to be the major driving factor amongst the technologies studied. Instead, reliability appears to be more important[1] . This paper reports studies to date on drying technologies to remove water from solid wastes and brines. Experimental performance data obtained for recovery water from wastes and brine are presented. Simplicity of operation of hardware and energy efficiency are discussed. Some improvements and modifications to hardware were performed. Hopefully, this information will assist in future efforts in the "downselection" of technologies for recovery of water and resources from solid wastes and brines.

  6. State and Federal activities on low-level waste

    International Nuclear Information System (INIS)

    1983-01-01

    With the passage of the Low-Level Waste Policy Act in December 1980, the states have assumed the management responsibility and the federal government has become a facilitator. State and Federal roles in regulation have not altered. This paper reviews the developments over the last two years to point out the progress made and critical steps that lie ahead. Both technological and political aspects are covered, and a conclusion is presented with a look to the future. Since compact development in the tool chosen by the politicans for low-level waste management, the author reviews the present status starting with the northwest compact which has been introduced into the House and Senate and is subject to hearings. The past two years have seen real progress in technology in the broadest sense. An information development and dissemination system was established in 1978 wih the state-by-state assessment of low-level waste disposal. Annual examinations have been made through 1981 which enables one to understand the generation of low-level wastes. Policy level planning by states can be supported by the base level of information available. Incineration of dry active waste and other non-fuel cycle waste is ready to be fully accepted. Much work has been done on volume reduction of liquids. The increased understanding of the ways to make a disposal site work represents a major technolological improvement. Within the DOE system, there is beginning to be a real understanding of the critical parameters in disposal site performance in the East

  7. Hypoglycemic activity of dried extracts of Bauhinia forficata Link.

    Science.gov (United States)

    da Cunha, A M; Menon, S; Menon, R; Couto, A G; Bürger, C; Biavatti, M W

    2010-01-01

    Leaves of the pantropical genus Bauhinia (Fabaceae) are known popularly as cow's foot, due to their unique characteristic bilobed aspect. The species Bauhinia forficata (Brazilian Orchid-tree) is widely used in folk medicine as an antidiabetic. The present work investigates the hypoglycemic activity of the dried extracts of Bauhinia forficata leaves in vivo, as well as the influence of the drying and granulation processes on this activity. The fluid extract was dried to generate oven-dried (ODE), spray-dried (SDE) and wet granulation (WGE) extracts, with the aid of colloidal silicon dioxide and/or cellulose:lactose mixture. The dried extracts were characterized by spectrophotometric, chromatographic and photo microscopy image analysis. 200 mg/kg body wt., p.o. of each dried product were administered orally to male Wistar rats over 7 days old, for biomonitoring of the hypoglycemic activity profile. The effect of the extracts was studied in STZ-induced diabetic rats. After 7 days of treatment, fasting glucose was determined, and the livers were removed, dried on tissue paper, weighed, and stored at -20 degrees C to estimate hepatic glycogen. Our results show that spray-drying or oven-drying processes applied to B. forficata extracts did not significantly alter its flavonoid profile or its hypoglycemic activity. Indeed, the dried extracts of B. forficata act differently from glibenclamide. Despite the lower active content in WGE, because of the higher concentration of adjuvants, the use of the granulation process improved the manufacturing properties of the ODE, making this material more appropriate for use in tablets or capsules.

  8. Design of SMART waste heat removal dry cooling tower using solar energy

    International Nuclear Information System (INIS)

    Choi, Yong Jae; Jeong, Yong Hoon

    2014-01-01

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed

  9. Design of SMART waste heat removal dry cooling tower using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Jae; Jeong, Yong Hoon [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    The 85% of cooling system are once-through cooling system and closed cycle wet cooling system. However, many countries are trying to reduce the power plant water requirement due to the water shortage and water pollution. Dry cooling system is investigated for water saving advantage. There are two dry cooling system which are direct and indirect cooling system. In direct type, turbine exhaust is directly cooled by air-cooled condenser. In indirect system, turbine steam is cooled by recirculating intermediate cooling water loop, then the loop is cooled by air-cooled heat exchanger in cooling tower. In this paper, the purpose is to remove SMART waste heat, 200MW by using newly designed tower. The possibility of enhancing cooling performance by solar energy is analyzed. The simple cooling tower and solar energy cooling tower are presented and two design should meet the purpose of removing SMART waste heat, 200MW. In first design, when tower diameter is 70m, the height of tower should be 360m high. In second design, the chimney height decrease from 360m to 180m as collector radius increase from 100m to 500m due to collector temperature enhancement by solar energy, To analyze solar cooling tower further, consideration of solar energy performance at night should be analyzed.

  10. Minimally processed beetroot waste as an alternative source to obtain functional ingredients.

    Science.gov (United States)

    Costa, Anne Porto Dalla; Hermes, Vanessa Stahl; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann

    2017-06-01

    Large amounts of waste are generated by the minimally processed vegetables industry, such as those from beetroot processing. The aim of this study was to determine the best method to obtain flour from minimally processed beetroot waste dried at different temperatures, besides producing a colorant from such waste and assessing its stability along 45 days. Beetroot waste dried at 70 °C originates flour with significant antioxidant activity and higher betalain content than flour produced from waste dried at 60 and 80 °C, while chlorination had no impact on the process since microbiological results were consistent for its application. The colorant obtained from beetroot waste showed color stability for 20 days and potential antioxidant activity over the analysis period, thus it can be used as a functional additive to improve nutritional characteristics and appearance of food products. These results are promising since minimally processed beetroot waste can be used as an alternative source of natural and functional ingredients with high antioxidant activity and betalain content.

  11. Dry process potentials

    International Nuclear Information System (INIS)

    Faugeras, P.

    1997-01-01

    Various dry processes have been studied and more or less developed in order particularly to reduce the waste quantities but none of them had replaced the PUREX process, for reasons departing to policy errors, un-appropriate demonstration examples or too late development, although realistic and efficient dry processes such as a fluoride selective volatility based processes have been demonstrated in France (CLOVIS, ATILA) and would be ten times cheaper than the PUREX process. Dry processes could regain interest in case of a nuclear revival (following global warming fears) or thermal wastes over-production. In the near future, dry processes could be introduced in complement to the PUREX process, especially at the end of the process cycle, for a more efficient recycling and safer storage (inactivation)

  12. experimental investigation of the effect of microwave drying

    African Journals Online (AJOL)

    Alayande Ibraheem

    sample was water washed to remove excess alkali metal present through hydrolysis, sun dried and ground to obtain a ..... activated carbon resulting in exothermic reaction which may .... Ubalua A O “Cassava Wastes: Treatments Options.

  13. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    International Nuclear Information System (INIS)

    Yamada, Y.; Kawase, Y.

    2006-01-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial composting mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%

  14. Treatment of solid non-active wastes

    International Nuclear Information System (INIS)

    Chmielewska, E.

    2008-01-01

    In this part of the text-book treatment of solid non-active wastes is described. This part consist of following chapters: (1) Law on wastes; (2) Present situation in waste management; (3) Strategic tendencies of waste management; (4) Incineration (disposal of solid wastes); (5) Disposal; (6) Composting; (7) Treatment of sludge from sewage clarification plant; (8) Biodegradation; (9) Recycling of wastes (assessing of secondary raw materials). Legal aspects of treatment of solid non-active wastes is presented

  15. Liquid secondary waste: Waste form formulation and qualification

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nichols, R. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-07-31

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity

  16. An assessment of radioactivity level in 51Cr-contaminated dry solid waste generated from a research facility for verification of clearance levels

    International Nuclear Information System (INIS)

    Nagamatsu, Tomohiro; Yamaoka, Kiyonori; Hanafusa, Tadashi; Ono, Toshiro

    2010-01-01

    Radioactive waste generated from research laboratories and other facilities is regulated by the Law Concerning Prevention from Radiation Hazards due to Radioisotopes etc. (Prevention Law). However, the Prevention Law does not provide the level of clearance or the procedures to follow for compliance monitoring. To assess radioactivity amounts for making decisions about clearance levels, the radioactivity levels in dry solid semi-combustible wastes generated from biomedical research, such as 51 Cr-release assays, were measured and evaluated. Radioactivity of semi-combustible waste was 1.42-6.32% of the initial level. In comparison, records for the past 8 years in the Shikata Laboratory, Department of Radiation Research, Okayama University Advanced Science Research Center, indicated 7% to 90% of the initial radioactivity remained in the waste and was differed widely among researchers. This study determined an accurate radioactivity level in dry solid waste, which could lead to savings in disposal costs. (author)

  17. Characterization of In-Drum Drying Products

    International Nuclear Information System (INIS)

    Kroselj, V.; Jankovic, M.; Skanata, D.; Medakovic, S.; Harapin, D.; Hertl, B.

    2006-01-01

    A few years ago Krsko NPP decided to introduce In-Drum Drying technology for treatment and conditioning of evaporator concentrates and spent ion resins. The main reason to employ this technology was the need for waste volume reduction and experience with vermiculite-cement solidification that proved inadequate for Krsko NPP. Use of In-Drum Drying technology was encouraged by good experience in the field at some German and Spanish NPP's. In the paper, solidification techniques in vermiculite-cement matrix and In-Drum Drying System are described briefly. The resulting waste forms (so called solidification and dryer products) and containers that are used for interim storage of these wastes are described as well. A comparison of the drying versus solidification technology is performed and advantages as well as disadvantages are underlined. Experience gained during seven years of system operation has shown that crying technology resulted in volume reduction by factor of 20 for evaporator concentrates, and by factor of 5 for spent ion resin. Special consideration is paid to the characterization of dryer products. For evaporator concentrates the resulting waste form is a solid salt block with up to 5% bound water. It is packaged in stainless steel drums (net volume of 200 l) with bolted lids and lifting rings. The fluidized spent ion resins (primary and blow-down) are sluiced into the spent resin drying tank. The resin is dewatered and dried by electrical jacket heaters. The resulting waste (i.e. fine granulates) is directly discharged into a shielded stainless steel drum with bolted lid and lifting rings. Characterization of both waste forms has been performed in accordance with recommendations given in Characterization of Radioactive Waste Forms and Packages issued by International Atomic Energy Agency, 1997. This means that radiological, chemical, physical, mechanical, biological and thermal properties of the waste form has been taken into consideration. In the paper

  18. Energy-saving drying and its application

    Science.gov (United States)

    Kovbasyuk, V. I.

    2015-09-01

    Superheated steam is efficiently applied as a coolant for the intensification of drying, which is an important component of many up-to-date technologies. However, traditional drying is extremely energy consuming, and many drying apparatus are environmentally unfriendly. Thus, it is important to implement the proposed drying technique using superheated steam under pressure significantly higher than the atmospheric one with subsequent steam transfer for use in a turbine for electric power generation as a compensation of energy costs for drying. This paper includes a brief thermodynamic analysis of such a technique, its environmental advantages, and possible benefits of the use of wet wastes and obtaining high-quality fuels from wet raw materials. A scheme is developed for the turbine protection from impurities that can occur in the steam at drying. Potential advantage of the technique are also the absence of heating surfaces that are in contact with wet media, the absence of the emissions to the atmosphere, and the use of low potential heat for desalination and the purification of water. The new drying technique can play an extremely important part in the implementation in the field of thermal destruction of anthropogenic wastes. In spite of the promotion of waste sorting to obtain valuable secondary raw materials, the main problem of big cities is nonutilizable waste, which makes not less than 85% of the starting quantity of waste. This can only be totally solved by combustion, which even more relates to the sewage sludge utilization. The wastes can be safely and efficiently combusted only provided that they are free of moisture. Combustion temperature optimization makes possible full destruction of dioxins and their toxic analogues.

  19. Low-Activity Radioactive Wastes

    Science.gov (United States)

    In 2003 EPA published an Advance Notice of Proposed Rulemaking (ANPR) to collect public comment on alternatives for disposal of waste containing low concentrations of radioactive material ('low-activity' waste).

  20. A comparison of costs associated with utility management options for dry active waste

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, C. [EPRI, Palo Alto, CA (United States)

    1995-12-31

    The economics of low level waste management is receiving more attention today than ever before. This is due to four factors: (1) the increases in the cost of processing of these wastes; (2) increases in the cost of disposal; (3) the addition of storage costs for those without access to disposal; and (4) the increasing competitive nature of the electric generation industry. These pressures are forcing the industry to update it`s evaluation of the mix of processing that will afford it the best long term economics and minimize it`s risks for unforeseen costs. Whether disposal is available or not, all utilities face the same challenge of minimizing the costs associated with the management of these wastes. There are a number of variables that will impact how a utility manages their wastes but the problem is the uncertainty of what will actually happen, i.e., will disposal be available, when and at what cost. Using the EPRI-developed WASTECOST: DAW code, this paper explores a variety of LLW management options available to utilities. Along with providing the costs and benefits, other technical considerations which play an important part in the management of these wastes are also addressed.

  1. Waste management in light-water reactors

    International Nuclear Information System (INIS)

    Meininger, S.

    1982-01-01

    The most important objectives of concentrate and solid waste treatment are reduction of the waste to the smallest volume, radioactive exposure of the personnel of the power plants and outside for operation, handling and transportation, protection against migration of the concentrated radioactive substances after final disposal and observance of shipping requirements, national laws and ministerial waste storage regulations. A variety of technologies is available for the realization of these objectives. Important parameters for the selection and design of concentrate and solid waste treatment processes are waste type, quantity, activity, means for immobilization and the achievable reduction factors. The most important technologies for the treatment of liquid concentrates, combustible and non-combustible solid waste are available for example: In-Drum-Drying, Borate-Solidification (PWR), Drum Drier, Residue Filter Drying, Bituminization, Solidification with cement, Incineration, Shredding, Compacting etc. and of course combinations of the various mentioned procedures which result in the best possible waste disposal for the entire power plant. (orig./RW)

  2. MATHEMATICAL MODELING OF ORANGE SEED DRYING KINETICS

    Directory of Open Access Journals (Sweden)

    Daniele Penteado Rosa

    2015-06-01

    Full Text Available Drying of orange seeds representing waste products from juice processing was studied in the temperatures of 40, 50, 60 and 70 °C and drying velocities of 0.6, 1.0 and 1.4 m/s. Experimental drying kinetics of orange seeds were obtained using a convective air forced dryer. Three thin-layer models: Page model, Lewis model, and the Henderson-Pabis model and the diffusive model were used to predict the drying curves. The Henderson-Pabis and the diffusive models show the best fitting performance and statistical evaluations. Moreover, the temperature dependence on the effective diffusivity followed an Arrhenius relationship, and the activation energies ranging from 16.174 to 16.842 kJ/mol

  3. Cardboard proportions and total solids contents as driving factors in dry co-fermentation of food waste.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Bernet, Nicolas; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2018-01-01

    This study evaluated the influence of the co-substrate proportions (0-60% of cardboard in dry basis) and the initial total solid contents (20-40%) on the batch fermentation performance. Maximum hydrogen yields were obtained when mono-fermenting food waste at high solids contents (89mlH 2 ·gVS -1 ). The hydrogen yields were lower when increasing the proportions of cardboard. The lower hydrogen yields at higher proportions of cardboard were translated into higher yields of caproic acid (up to 70.1gCOD·kgCOD bio -1 ), produced by consumption of acetic acid and hydrogen. The highest substrate conversions were achieved at low proportions of cardboard, indicating a stabilization effect due to higher buffering capacities in co-fermentation. Clostridiales were predominant in all operational conditions. This study opens up new possibilities for using the cardboard proportions for controlling the production of high added-value products in dry co-fermentation of food waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The very-low activity waste storage facility. A new waste management system

    International Nuclear Information System (INIS)

    2006-01-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  5. Dry anaerobic digestion of food waste and cardboard at different substrate loads, solid contents and co-digestion proportions.

    Science.gov (United States)

    Capson-Tojo, Gabriel; Trably, Eric; Rouez, Maxime; Crest, Marion; Steyer, Jean-Philippe; Delgenès, Jean-Philippe; Escudié, Renaud

    2017-06-01

    The increasing food waste production calls for developing efficient technologies for its treatment. Anaerobic processes provide an effective waste valorization. The influence of the initial substrate load on the performance of batch dry anaerobic co-digestion reactors treating food waste and cardboard was investigated. The load was varied by modifying the substrate to inoculum ratio (S/X), the total solids content and the co-digestion proportions. The results showed that the S/X was a crucial parameter. Within the tested values (0.25, 1 and 4gVS·gVS -1 ), only the reactors working at 0.25 produced methane. Methanosarcina was the main archaea, indicating its importance for efficient methanogenesis. Acidogenic fermentation was predominant at higher S/X, producing hydrogen and other metabolites. Higher substrate conversions (≤48%) and hydrogen yields (≤62mL·gVS -1 ) were achieved at low loads. This study suggests that different value-added compounds can be produced in dry conditions, with the initial substrate load as easy-to-control operational parameter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Solid Waste Activity Packet for Teachers.

    Science.gov (United States)

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  7. Vacuum drying plant for evaporator concentrates

    International Nuclear Information System (INIS)

    Benavides, E.

    2001-01-01

    Volume reduction systems applied to evaporator concentrates in PWR and BWR save a significant amount of drums. The concentration to dry product is a technique that reaches the maximum volume reduction, compared to conventional techniques (cementation, polymerisation). Four Spanish N.P.P. (3 PWR and 1 BWR) have selected ENSA's process by means of fixed ''in drum vacuum drying system''. A 130-litre steel drum is used for drying without any additional requirement except vacuum resistance. This steel drum is introduced into a standard 200-litre drum. Five centimeters concrete shielding cylinder exists between both drums. Final package is classified as 19 GO according to ENRESA's acceptance code (dry waste with 5 cm concrete between 130-l and 200-l drum). The generation of cemented waste in five N.P.P. versus dried waste will be reduced 83%. This reduction will save a considerable amount in disposal costs. (authors)

  8. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.

    Science.gov (United States)

    Svoboda, Karel; Hartman, Miloslav; Šyc, Michal; Pohořelý, Michael; Kameníková, Petra; Jeremiáš, Michal; Durda, Tomáš

    2016-01-15

    Dry methods of the flue gas cleaning (for HCl and SO2 removal) are useful particularly in smaller solid waste incineration units. The amount and forms of mercury emissions depend on waste (fuel) composition, content of mercury and chlorine and on the entire process of the flue gas cleaning. In the case of high HCl/total Hg molar ratio in the flue gas, the majority (usually 70-90%) of mercury is present in the form of HgCl2 and a smaller amount in the form of mercury vapors at higher temperatures. Removal of both main forms of mercury from the flue gas is dependent on chemical reactions and sorption processes at the temperatures below approx. 340 °C. Significant part of HgCl2 and a small part of elemental Hg vapors can be adsorbed on fly ash and solid particle in the air pollution control (APC) processes, which are removed in dust filters. Injection of non-impregnated active carbon (AC) or activated lignite coke particles is able to remove mainly the oxidized Hg(2+) compounds. Vapors of metallic Hg(o) are adsorbed relatively weakly. Much better chemisorption of Hg(o) together with higher sorbent capacity is achieved by AC-based sorbents impregnated with sulfur, alkali poly-sulfides, ferric chloride, etc. Inorganic sorbents with the same or similar chemical impregnation are also applicable for deeper Hg(o) removal (over 85%). SCR catalysts convert part of Hg(o) into oxidized compounds (HgO, HgCl2, etc.) contributing to more efficient Hg removal, but excess of NH3 has a negative effect. Both forms, elemental Hg(o) and HgCl2, can be converted into HgS particles by reacting with droplets/aerosol of poly-sulfides solutions/solids in flue gas. Mercury captured in the form of water insoluble HgS is more advantageous in the disposal of solid waste from APC processes. Four selected options of the dry flue gas cleaning with mercury removal are analyzed, assessed and compared (in terms of efficiency of Hg-emission reduction and costs) with wet methods and retrofits for more

  9. Radiological assessment of petroleum pipe scale waste streams from dry rattling operations - 16323

    International Nuclear Information System (INIS)

    Hamilton, Ian S.; Arno, Matthew G.; Fruchtnicht, Erich H.; Berry, Robert O.

    2009-01-01

    Petroleum pipe scale consists of inorganic solids, such as barium sulfate. These solids can precipitate out of brine solutions that are pumped out of oil wells as part of normal oil field operations. The precipitates can nucleate on down hole pipe walls, causing the buildup of hard scales in some tubular in a pipe string, while leaving others virtually untouched. Once the scale buildup is sufficient to restrict flow in the string significantly, the tubular are removed from service. Once removed, tubular are transported to storage yards for storage, subsequent inspection, and possible recycling. Many of the tubular are never returned to service, either because the threads were too damaged, pipe walls too thin, or the scale buildup too thick. Historically, the tubular refurbishment industry used primarily one of two processes, either a high-pressure water lance or a dry, abrasive 'rattling' process to ream pipes free of scale buildup. The dry rattling process was primarily for touching up new pipes that have rusted slightly during storage; however, pipes with varying levels of scale were reamed, leaving only a thin coating of scale on the inner diameter, and then returned to service. Chemically, radium is an analog for barium, and radium is present in parts-per-million quantities in the brines produced from downhole pumping operations. Thus, some of the scales contain radium salts. When the radium-bearing scales are reamed with a dry process there is the possibility of generating radioactive aerosols, as well as bulk waste materials. At Texas A and M University, and under the university's radioactive materials broad scope license, an outdoor laboratory was constructed and operated with dry rattling equipment restored to the 'as was' condition typical of historical pipe cleaning yards. A battery of measurements were obtained to determine the radiological and aerodynamic properties of scale-waste products liberated from the inner surfaces of a variety of tubular

  10. Super compacting of drums with dry solid radioactive waste in the nuclear power plant of Laguna Verde;Super compactacion de bidones con desecho radiactivo solido seco en la central nucleo electrica Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez G, R.; Lara H, M. A.; Cabrera Ll, M.; Verdalet de la Torre, O., E-mail: marco.lara@cfe.gob.m [Comision Federal de Electricidad, Central Nucleoelectrica de Laguna Verde, Carretera Nautla-Cardel Km. 42.5, Alto Lucero, Veracruz (Mexico)

    2009-10-15

    The nuclear power plant of Laguna Verde located in the Gulf of Mexico, completes in this 2009, nineteen years to produce by nuclear means 4.78% of the electric power that Mexico requires daily. During this time, the Unit 1 has generated more of 88.85 million mega watt-hour and the Unit 2 more of 69.48 million mega watt-hour with an availability average of 83.55%. Derived of their operation cycles, the nuclear power plant has generated (as any other installation of its type) radioactive wastes of low activity that at the moment are temporarily stored in the site. Due to the life cycle of the nuclear power plant, actually has become necessary to begin a project series focused to continue guaranteeing the storage of these wastes, guarantee that is a license requirement for the operation of this nuclear installation before the National Commission of Nuclear Security and Safeguards. The Federal Commission of Electricity beginning a project that allows continue guaranteeing space of sufficient storage for the wastes that the nuclear power plant of Laguna Verde could generate for the rest of its useful life, this project consisted on a process of physical volume reduction of dry solid radioactive wastes denominated super compacting, it has made possible to reduce the volume that these wastes occupy in the temporary storage noted Dry Solid Radioactive Wastes Deposit located inside the site that occupies the nuclear power plant of Laguna Verde. This work presents the super compacting results, as well as a description of the realization of this task until concluding with the super compacting of 5,854 drums with dry solid radioactive waste of low activity. We will enunciate which were the radiological controls that the Department of Radiological Protection of the nuclear power plant of Laguna Verde applied to this work that was realized for first time in Mexico and the nuclear power plant. (Author)

  11. Arrhenius activation energy of damage to catalase during spray-drying.

    Science.gov (United States)

    Schaefer, Joachim; Lee, Geoffrey

    2015-07-15

    The inactivation of catalase during spray-drying over a range of outlet gas temperatures could be closely represented by the Arrhenius equation. From this an activation energy for damage to the catalase could be calculated. The close fit to Arrhenius suggests that the thermally-induced part of inactivation of the catalase during the complex drying and particle-formation processes takes place at constant temperature. These processes are rapid compared with the residence time of the powder in the collecting vessel of the cyclone where dried catalase is exposed to a constant temperature equal to approximately the drying gas outlet temperature. A lower activation energy after spray drying with the ultrasonic nozzle was found than with the 2-fluid nozzle under otherwise identical spray drying conditions. It is feasible that the ultrasonic nozzle when mounted in the lid of the spray dryer heats up toward the drying gas inlet temperature much more that the air-cooled 2-fluid nozzle. Calculation of the Arrhenius activation energy also showed how the stabilizing efficacy of trehalose and mannitol on the catalase varies in strength across the range of drying gas inlet and outlet temperatures examined. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Ferrocyanide safety program: Credibility of drying out ferrocyanide tank waste by hot spots

    International Nuclear Information System (INIS)

    Dickinson, D.R.; McLaren, J.M.; Borsheim, G.L.; Crippen, M.D.

    1993-04-01

    The single-shell waste tanks at the Hanford Site that contain significant quantities of ferrocyanide have been considered a possible hazard, since under certain conditions the ferrocyanide in the waste tanks could undergo an exothermic chemical reaction with the nitrates and nitrites that are also present in the tanks. The purpose of this report is to assess the credibility of local dryout of ferrocyanide due to a hotspot. This report considers the following: What amount of decay heat generation within what volume would be necessary to raise the temperature of the liquid in the sludge to its boiling point? What mechanisms could produce a significant local concentration of heat sources? Is it credible that a waste tank heat concentration could be as large as that required to reach the dryout temperatures? This report also provides a recommendation as to whether infrared scanning of the ferrocyanide tanks is needed. From the analyses presented in this report it is evident that formation of dry, and thus chemically reactive, regions in the ferrocyanide sludge by local hotspots is not credible. This conclusion is subject to reevaluation if future analyses of tank core samples show much higher 137 Cs or 90 Sr concentrations than expected. Since hotspots of concern are not credible, infrared scanning to detect such hotspots is not required for safe storage of tank waste

  13. The Hot Cell Radioactive Waste Concept of Forschungszentrum Juelich

    International Nuclear Information System (INIS)

    Pott, G.; Halaszovich, St.

    1999-01-01

    During the last 30 years extensive scientific examinations on radioactive metals,ceramics and fuel elements have been carried out, so that a high volume of waste has resulted. Also from the dismantling of irradiated facilities metallics waste has o be handed. Prior for equipment repair the hot cell involved has to be decontaminated and a large amount of lower active waste is produced. The waste is collected for conditioning and storing. There are different categories as: low active liquid waste, low active burnable waste, fuel waste, low and high active metallic waste. For each waste category special transport container are used. For the volume reduction our Waste Department is equipped with special facilities e.g.: furnace for burning, drying, liquids evaporators, hydraulic press for pelletizing, decontamination box for the dismantling ad cleaning of components. After conditioning the waste will be stored on site or transported to final storage in a salt mine (ERAM) . Special documentation has to be done for the acceptance of this waste

  14. Documentation of currently operating low-level radioactive waste treatment systems: Shredder/compactor report

    International Nuclear Information System (INIS)

    1987-04-01

    The report documents a volume reduction waste treatment system for dry active waste, a shredder/compactor, and includes specifics on system selection, system descriptions, and detailed system performance data from three operational nuclear power plants. Data gathered from the plants have shown the ability to increase the density (thereby reducing the volume) of dry active waste to /approximately/50 pounds per cubic foot when using shredder/compactors and/approximately/80 to 100 pounds per cubic foot for shredder/high pressure compactors depending on reactor type and plant specific waste characteristics. An economic evaluation of various alternative volume reduction systems for dry active waste is also presented. The report presents a method on calculating the associated costs and paybacks achieved using various volume reduction alternatives. A 10 year cost (operating expenses and capital outlay for equipment) for a shredder/high pressure compactor is 1.85 million dollars for a BWR as compared to /approximately/3 million for a conventional drum compactor. The resulting payback for the shredder/compactor is as low as 1.7 years. The report provides generators of low level waste additional information to understand the nuances of shredder/compactor systems to select a system which best suits their individual needs. 4 refs., 6 figs., 10 tabs

  15. The prospects for dry fuel storage

    International Nuclear Information System (INIS)

    Harris, G.G.; Elliott, D.

    1994-01-01

    Dry storage of spent nuclear fuels is one method of dealing with radioactive waste. This article reports from a one day seminar on future prospects for dry fuel storage held in November 1993. Dry storage in an inert gas or air environment in vaults or casks, is an alternative to wet storage in water-filled ponds. Both wet and dry storage form part of the Interim Storage option for radioactive waste materials, and form alternatives to reprocessing or direct disposal in a deep repository. It has become clear that a large market for dry fuel storage will exist in the future. It will therefore be necessary to ensure that the various technical, safety, commercial, legislative and political constraints associated with it can be met effectively. (UK)

  16. Designing CAF-adjuvanted dry powder vaccines: Spray drying preserves the adjuvant activity of CAF01

    DEFF Research Database (Denmark)

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis

    2013-01-01

    spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol...... parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray...... drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome...

  17. Dealing with operational power station wastes

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, R B [Central Electricity Generating Board, London (UK). Nuclear Health and Safety Dept.

    1981-08-01

    The disposal of wastes from nuclear power stations is discussed. Liquid and gaseous wastes, from magnox stations, which are of low level activity, are dispersed to the sea or estuaries on coastal sites or for the case of Trawfynyeld, to the nearby lake. Low activity solid wastes are either disposed of on local authority tips or in shallow land burial sites. Intermediate level wastes, consisting mainly of wet materials such as filter sludges and resins from cooling ponds, are at present stored in shielded storage tanks either dry or under water. Only one disposal route for intermediate waste is used by Britain, namely, sea-dumping. Materials for sea dumping have to be encapsulated in a durable material for example, concrete.

  18. Low-level waste incineration: experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bohrer, H.A.; Dalton, J.D.

    1987-01-01

    The Waste Experimental Reduction Facility (WERF) is a low level radioactive waste treatment facility being operated at the Idaho National Engineering Laboratory (INEL). A key component of the facility is a dual chambered controlled air incinerator with a dry off-gas treatment system. The incinerator began processing radioactive waste in September, 1984. Limited operations continued from that data until October, 1985, at which time all INEL generators began shipping combustible waste for incineration. The incinerator is presently processing all available INEL combustible Dry Active Waste (DAW) (approximately 1700 m 3 per year) operating about five days per month. Performance to date has demonstrated the effectiveness, viability and safety of incineration as a volume reduction method of DAW. 3 figures

  19. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials.

    Science.gov (United States)

    Dang, Yan; Sun, Dezhi; Woodard, Trevor L; Wang, Li-Ying; Nevin, Kelly P; Holmes, Dawn E

    2017-08-01

    Growth of bacterial and archaeal species capable of interspecies electron exchange was stimulated by addition of conductive materials (carbon cloth or granular activated carbon (GAC)) to anaerobic digesters treating dog food (a substitute for the dry-organic fraction of municipal solid waste (OFMSW)). Methane production (772-1428mmol vs carbon cloth than controls. OFMSW degradation was also significantly accelerated and VFA concentrations were substantially lower in reactors amended with conductive materials. These results suggest that both conductive materials (carbon cloth and GAC) can promote conversion of OFMSW to methane even in the presence of extremely high VFA concentrations (∼500mM). Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    TW, CRAWFORD

    2008-07-17

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  1. ISOLATION OF ENT-KAUR-16-EN-19-OIC AND ENT-TRACHILOBAN-19-OIC ACIDS FROM THE SUNFLOWER HELIANTHUS ANNUUS L.DRY WASTE

    Directory of Open Access Journals (Sweden)

    Nicon Ungur

    2008-12-01

    Full Text Available A relatively simple method for isolation of the mixture of ent-kaur-16-en-19-oic (1 and ent-trachiloban-19-oic (2 acids from dry waste of sunflower processing has been elaborated, and it has been shown that the waste can serve as an accessible source of ent-kauranic and ent-trachilobanic diterpenoids.

  2. Dehydrated olive-waste cake as a source of high value-added bioproduct: Drying kinetics, physicochemical properties, and bioactive compounds

    Directory of Open Access Journals (Sweden)

    Elsa Uribe

    2014-09-01

    Full Text Available Olive (Olea europaea L. oil processing produces significant amount of waste that can be utilized for the production of high value-added ingredients for various industrial applications. In this work, the effects of temperature on drying kinetics and quality indexes of the olive-waste cake during convective dehydration (40-90 °C were investigated. Results on effective moisture diffusivity, physicochemical parameters, fatty acid profile, total phenolic, flavonoid, and flavanol contents as well as antioxidant capacity are also reported. Most of the fatty acids increased their content with respect to control sample with a temperature increase, i.e. oleic and linoleic acids increased 48% and 43% at 70 and 40 °C, respectively. Total flavanol content increased with temperature (48-62 mg catechin equivalents [CTE] 100 g-1 DM except for 80 °C. Total phenolic and total flavonoid contents were highly correlated to antioxidant capacity (0.923 < r < 0.992, except for 70 and 80 °C, the rest of the samples maintained their initial antioxidant capacity by ORAC analysis. Thus, these parameters show that dried olive-waste cake has a high bioactive compounds with potential use as additives for the food or other industries.

  3. Variability in properties of grouted Phosphate/Sulfate N-Reactor Waste

    International Nuclear Information System (INIS)

    Lokken, R.O.; Martin, P.F.C.; Bowen, W.M.; Harty, H.; Treat, R.L.

    1987-02-01

    A Transportable Grout Facility (TGF) is being constructed at the Hanford site in Washington State to convert various low-level liquid wastes to a grout waste form for onsite disposal. The TGF Project is managed by Rockwell Hanford Operations (Rockwell). Oak Ridge National Laboratory (ORNL) has provided a grout formulation for Phosphate/Sulfate N-Reactor Waste, the first waste stream scheduled for grouting beginning in late 1987. The formulation includes a blend of portland cement, fly ash, attapulgite clay, and an illitic clay. Grout will be produced by mixing the blend with Phosphate/Sulfate N-Reactor Waste. These wastes result from decontamination and ion-exchange regeneration activities at Hanford's N-Reactor. Pacific Northwest Laboratory (PNL) is conducting studies on grouted Phosphate/Sulfate N-Reactor Waste to verify that the grout can be successfully processed and, when hardened, that it will meet all performance and regulatory requirements. As part of these studies, PNL is assessing the variability that may be encountered when processing Phosphate/Sulfate N-Reactor Waste grout. Sources of variability that may affect grout properties include the composition and concentrations of the waste and dry solids, temperature, efficiency of dry solids blending, and dry blend storage time. 13 refs., 20 figs., 9 tabs

  4. Effect of balanced low pressure drying of curcuma longa leaf on skin immune activation activities.

    Science.gov (United States)

    Choi, Wooseok; Lim, Hye Won; Lee, Hyeon Yong

    2014-01-01

    The effect of balanced low pressure drying pretreatment associated with ultrasonication extraction (BU) on the enhancement of skin immune modulatory activities of Curcuma longa leaf was studied by comparing with conventional hot air drying (HE), freeze drying (FE) and balanced low pressure drying (BE) pretreatment processes. In considering skin immune activation activities such as the inhibition of hyaluronidase activity, the BU extract showed ca. 10% higher than those of HE, and even higher than that of the FE extract. Nitric oxide production from macrophage of the BU extract in adding 1.0 mg/mL was increased up to 16.5 μM. When measuring inhibition of IL-6 and TNF-a production from the human T lymphocytes (T cell), the BU extract also showed 53% and 78% of inhibition effect, respectively. It is found that the BU extract could effectively suppress the expression levels of skin inflammation related genes such as Cox-2 and iNOS, down to 80% and 85% compared to the control, respectively. Balanced low pressure drying process was especially active on dehydration of the leaves with minimizing the destruction and making easier elution of the bioactive substances, which resulted in higher extraction yield and better biological activities.

  5. Radioactive waste management at AECL

    International Nuclear Information System (INIS)

    Gadsby, R.D.; Allan, C.J.

    2003-01-01

    AECL has maintained an active program in radioactive waste management since 1945, when the Canadian nuclear program commenced activities at the Chalk River Laboratories (CRL). Waste management activities have included operation of waste management storage and processing facilities at AECL's CRL and Whiteshell Laboratories (WL); operation of the Low Level Radioactive Waste Management Office on behalf of Natural Resources Canada to resolve historic radioactive waste problems (largely associated with radioactive ore recovery, transport and processing operations) that are the responsibility of the Federal Government; development of the concept and related technology for geological disposal of Canada's nuclear fuel waste; development of the Intrusion-Resistant Underground Structure (IRUS) disposal concept for low-level nuclear waste; development of dry storage technology for the interim storage of used fuel; and development and assessment of waste processing technology for application in CANDU nuclear power plants and at CRL and WL. Today these activities are continuing. In addition, AECL is: preparing to decommission the nuclear facilities at WL; carrying out a number of smaller decommissioning projects at CRL; putting in place projects to upgrade the low-level liquid waste processing capabilities of the CRL Waste Treatment Centre, recover and process highly active liquid wastes currently in storage, and recover, condition and improve the storage of selected fuel wastes currently stored in below-ground standpipes in the CRL waste management areas; and assessing options for additional remediation projects to improve the management of other wastes currently in storage and to address environmental contamination from past practices. (author)

  6. Enzyme Activities in Waste Water and Activated Sludge

    DEFF Research Database (Denmark)

    Nybroe, Ole; Jørgensen, Per Elberg; Henze, Mogens

    1992-01-01

    The purpose of the present study was to evaluate the potential of selected enzyme activity assays to determine microbial abundance and heterotrophic activity in waste water and activated sludge. In waste water, esterase and dehydrogenase activities were found to correlate with microbial abundance...... measured as colony forming units of heterotrophic bacteria. A panel of four enzyme activity assays, α-glucosidase, alanine-aminopeptidase, esterase and dehydrogenase were used to characterize activated sludge and anaerobic hydrolysis sludge from a pilot scale plant. The enzymatic activity profiles were...... distinctly different, suggesting that microbial populations were different, or had different physiological properties, in the two types of sludge. Enzyme activity profiles in activated sludge from four full-scale plants seemed to be highly influenced by the composition of the inlet. Addition of hydrolysed...

  7. Regulation of higher-activity NARM wastes by EPA

    International Nuclear Information System (INIS)

    Bandrowski, M.S.

    1988-01-01

    The US Environmental Protection Agency (EPA) is currently developing standards for the disposal of low-level radioactive waste (LLW). As part of this Standard, EPA is including regulations for the disposal of naturally occurring and accelerator-produced radioactive material (NARM) wastes not covered under the Atomic Energy Act (AEA). The regulations will cover only higher-activity NARM wastes, defined as NARM waste with specific activity exceeding two nanocuries per gram. The proposed regulations will specify that NARM wastes exceeding the above limits, except for specific exempted items, must be disposed of in regulated radioactive waste disposal facilities. The proposed EPA regulations for NARM wastes will be discussed, as well as the costs and benefits of the regulation, how it will be implemented by EPA, and the rationale for covering only higher-activity NARM wastes exceeding two nanocuries per gram

  8. Dynamic respiration index as a descriptor of the biological stability of organic wastes.

    Science.gov (United States)

    Adani, Fabrizio; Confalonieri, Roberto; Tambone, Fulvia

    2004-01-01

    Analytical methods applicable to different organic wastes are needed to establish the extent to which readily biodegradable organic matter has decomposed (i.e., biological stability). The objective of this study was to test a new respirometric method for biological stability determination of organic wastes. Dynamic respiration index (DRI) measurements were performed on 16 organic wastes of different origin, composition, and biological stability degree to validate the test method and result expression, and to propose biological stability limits. In addition, theoretical DRI trends were obtained by using a mathematical model. Each test lasted 96 h in a 148-L-capacity respirometer apparatus, and DRI was monitored every hour. The biological stability was expressed as both single and cumulative DRI values. Results obtained indicated that DRI described biological stability in relation to waste typology and age well, revealing lower-stability waste characterized by a well-pronounced DRI profile (a marked peak was evident) that became practically flat for samples with higher biological stability. Fitting indices showed good model prediction compared with the experimental data, indicating that the method was able to reproduce the aerobic process, providing a reliable indication of the biological stability. The DRI can therefore be proposed as a useful method to measure the biological stability of organic wastes, and DRI values, calculated as a mean of 24 h of the highest microbial activity, of 1000 and 500 mg O(2) kg(-1) volatile solids (VS) h(-1) are proposed to indicate medium (e.g., fresh compost) and high (e.g., mature compost) biological stabilities, respectively.

  9. Inert carrier drying and coating process

    International Nuclear Information System (INIS)

    1980-01-01

    An inert carrier process is described for drying radioactive (particularly low level) waste material and for incorporating the dry material into a binder matrix from which the dried material will not be leached. Experimental details, and examples of the carrier and binder materials, are given. (U.K.)

  10. The effect of airflow rates and aeration mode on the respiration activity of four organic wastes: Implications on the composting process.

    Science.gov (United States)

    Mejias, Laura; Komilis, Dimitrios; Gea, Teresa; Sánchez, Antoni

    2017-07-01

    The aim of this study was to assess the effect of the airflow and of the aeration mode on the composting process of non-urban organic wastes that are found in large quantities worldwide, namely: (i) a fresh, non-digested, sewage sludge (FSS), (ii) an anaerobically digested sewage sludge (ADSS), (iii) cow manure (CM) and (iv) pig sludge (PS). This assessment was done using respirometric indices. Two aeration modes were tested, namely: (a) a constant air flowrate set at three different initial fixed airflow rates, and (b) an oxygen uptake rate (OUR)-controlled airflow rate. The four wastes displayed the same behaviour namely a limited biological activity at low aeration, while, beyond a threshold value, the increase of the airflow did not significantly increase the dynamic respiration indices (DRI 1 max , DRI 24 max and AT 4 ). The threshold airflow rate varied among wastes and ranged from 42NL air kg -1 DMh -1 for CM and from 67 to 77NL air kg -1 DMh -1 for FSS, ADSS and PS. Comparing the two aeration modes tested (constant air flow, OUR controlled air flow), no statistically significant differences were calculated between the respiration activity indices obtained at those two aeration modes. The results can be considered representative for urban and non-urban organic wastes and establish a general procedure to measure the respiration activity without limitations by airflow. This will permit other researchers to provide consistent results during the measurement of the respiration activity. Results indicate that high airflows are not required to establish the maximum respiration activity. This can result in energy savings and the prevention of off-gas treatment problems due to the excessive aeration rate in full scale composting plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Behaviour of power and research reactor fuel in wet and dry storage

    Energy Technology Data Exchange (ETDEWEB)

    Freire-Canosa, J [Nuclear Waste Management Organization (Canada)

    2012-07-01

    Canada has developed extensive experience in both wet and dry storage of CANDU fuel. Fuel has been stored in water pools at CANDU reactor sites for approximately 45 years, and in dry storage facilities for a large part of the past decade. Currently, Canada has 38 450 t U of spent fuel in storage, of which 8850 t U are in dry storage. In June 2007, the Government of Canada selected the Adaptive Phased Management (APM) approach, recommended by the Nuclear Waste Management Organization (NWMO), for the long-term management of Canada's nuclear-fuel waste. The Canadian utilities and AECL are conducting development work in extended storage systems as well as research on fuel behaviour under storage conditions. Both activities have as ultimate objective to establish a technical basis for assuring the safety of long-term fuel storage.

  12. Recent activity on disposal of uranium waste

    International Nuclear Information System (INIS)

    Fujiwara, Noboru

    1999-01-01

    The concept on the disposal of uranium waste has not been discussed in the Atomic Energy Commission of Japan, but the research and development of it are carried out in the company and agency which are related to uranium waste. In this paper, the present condition and problems on disposal of uranium waste were shown in aspect of the nuclear fuel manufacturing companies' activity. As main contents, the past circumstances on the disposal of uranium waste, the past activity of nuclear fuel manufacturing companies, outline and properties of uranium waste were shown, and ideas of nuclear fuel manufacturing companies on the disposal of uranium waste were reported with disposal idea in the long-term program for development and utilization of nuclear energy. (author)

  13. Treatment of animal wastes contaminated with radioisotopes

    International Nuclear Information System (INIS)

    Morikawa, Naotake

    1979-01-01

    With increase of isotope utilizations as tracers in medicine, pharmacy, agriculture, biology and others, the management of resultant organic waste liquids and animal wastes is becoming a major problem. For the animal wastes contaminated with radioisotopes, numbers of studies and tests showed that drying them fully and the subsequent suitable disposal would be the most feasible procedures. This new method is being carried out since last year, which will shortly take the place of the keeping in formalin. For the drying, two alternative processes in particular are being investigated. As the one, freeze-drying apparatuses consist of refrigerating and freeze-drying devices. As the other, microwave-drying apparatuses feature rapid dehydration. The following matters are described: problems emerged in the course of studies and test; the drying processes, i.e. freeze-drying and microwave-drying, and their respective characteristics; and views of the Nuclear Safety Bureau, Science and Technology Agency, on animal waste drying. (J.P.N.)

  14. Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach

    International Nuclear Information System (INIS)

    Ponzoni, Chiara; Lancellotti, Isabella; Barbieri, Luisa; Spinella, Alberto; Saladino, Maria Luisa; Martino, Delia Chillura; Caponetti, Eugenio; Armetta, Francesco; Leonelli, Cristina

    2015-01-01

    Highlights: • Inertization of chromium liquid waste in aluminosilicate matrix. • Water less inertization technique exploiting the waste water content. • Liquid waste inertization without drying step. • Long term stabilization study through leaching test. • SEM analysis and 29 Si and 27 Al MAS NMR in relation with long curing time. - Abstract: A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process - from the precursor dissolution to the final geopolymer matrix hardening - of different geopolymers containing a waste amount ranging from 3 to 20% wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of T−O−T bonds (where T is Al or Si) by 29 Si and 27 Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for geopolymers

  15. Chromium liquid waste inertization in an inorganic alkali activated matrix: Leaching and NMR multinuclear approach

    Energy Technology Data Exchange (ETDEWEB)

    Ponzoni, Chiara, E-mail: chiara.ponzoni@unimore.it [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Lancellotti, Isabella; Barbieri, Luisa [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy); Spinella, Alberto; Saladino, Maria Luisa [University of Palermo CGA-UniNetLab, Palermo (Italy); Martino, Delia Chillura [University of Palermo, Department STEBICEF, Palermo (Italy); Caponetti, Eugenio [University of Palermo CGA-UniNetLab, Palermo (Italy); University of Palermo, Department STEBICEF, Palermo (Italy); Armetta, Francesco [University of Palermo, Department STEBICEF, Palermo (Italy); Leonelli, Cristina [University of Modena and Reggio Emilia, Department of Engineering “Enzo Ferrari”, Modena (Italy)

    2015-04-09

    Highlights: • Inertization of chromium liquid waste in aluminosilicate matrix. • Water less inertization technique exploiting the waste water content. • Liquid waste inertization without drying step. • Long term stabilization study through leaching test. • SEM analysis and {sup 29}Si and {sup 27}Al MAS NMR in relation with long curing time. - Abstract: A class of inorganic binders, also known as geopolymers, can be obtained by alkali activation of aluminosilicate powders at room temperature. The process is affected by many parameters (curing time, curing temperature, relative humidity etc.) and leads to a resistant matrix usable for inertization of hazardous waste. In this study an industrial liquid waste containing a high amount of chromium (≈2.3 wt%) in the form of metalorganic salts is inertized into a metakaolin based geopolymer matrix. One of the innovative aspects is the exploitation of the water contained in the waste for the geopolymerization process. This avoided any drying treatment, a common step in the management of liquid hazardous waste. The evolution of the process - from the precursor dissolution to the final geopolymer matrix hardening - of different geopolymers containing a waste amount ranging from 3 to 20% wt and their capability to inertize chromium cations were studied by: i) the leaching tests, according to the EN 12,457 regulation, at different curing times (15, 28, 90 and 540 days) monitoring releases of chromium ions (Cr(III) and Cr(VI)) and the cations constituting the aluminosilicate matrix (Na, Si, Al); ii) the humidity variation for different curing times (15 and 540 days); iii) SEM characterization at different curing times (28 and 540 days); iv) the trend of the solution conductivity and pH during the leaching test; v) the characterization of the short-range ordering in terms of T−O−T bonds (where T is Al or Si) by {sup 29}Si and {sup 27}Al solid state magic-angle spinning nuclear magnetic resonance (ss MAS NMR) for

  16. Effect of drying techniques on the retention of antioxidant activities of Saskatoon berries

    Directory of Open Access Journals (Sweden)

    Pranabendu Mitra

    2013-10-01

    Full Text Available The main objective of this research was to compare the retention of antioxidant activity and total anthocyanin content of Saskatoon berries dried by freeze drying, microwave-vacuum drying, thin layer hot air drying and vacuum drying. Antioxidant activity of berry samples was determined by DPPH radical scavenging and ABTS radical scavenging, and the pH differential method was used to determine total anthocyanin content of the berry samples. The results showed that the freeze dried Saskatoon berries exhibited the highest retention of anthocyanin and antioxidant activity among the dried samples, followed by microwave-vacuum dried berries, thin layer hot air dried berries and vacuum dried berries. There were significant differences between the berry samples at P<0.05.  DPPH radical scavenging and ABTS radical scavenging were correlated linearly with an R2 value of 0.99 at P<0.05 showing their effectiveness for the determination of the antioxidant activity of the Saskatoon berries. However, the DPPH radical scavenging assay was more effective than the ABTS radical scavenging assay. The results also showed that antioxidant activity of the berries was highly correlated with the total anthocyanin content of the fruit. The reduction of anthocyanin in dried berry samples was linearly correlated with the reduction of DPPH radical scavenging with an R2 value of 0.97 at P<0.05 and, also, linearly correlated with the reduction of ABTS radical scavenging with an R2 value of 0.88 at P<0.05.

  17. Research activities in the Radioactive Waste Management Department of IFIN-HH, Bucharest

    International Nuclear Information System (INIS)

    Dragolici, F.; Lungu, L.; Nicu, M.; Rotarescu, Gh. C. Turcanu

    2001-01-01

    The research activities developed in the frame of Radioactive Waste Management Department are focused on processing low activity liquid wastes obtained from chemical precipitation and their conditioning. In cementation procedure, the chemical composition and the mixing proportion of the sludge and concentrates affects both the cement components hydrolysis and the reactions of the metastable hydrating components, as well as, the mechanical and chemical withstand of the solidified cement matrix. Generally, the study of the precipitation products as well as of their behavior during cementation and long term disposal is extremely difficult due to the system complexity (composition and structure of the phases) and to the lack of non-destructive analytical methods. For a detailed characterization of the precipitates and cemented matrices a study was carried out concerning the X-ray diffraction method application (as a complementary method to the Moessbauer spectroscopy). The following systems were considered: - Fe precipitates obtained from low-level radioactive waste processing; - structure modification determined by the foreign cations in Fe oxo-hydroxides; precipitation processes with alternate or simultaneous presence of bi- and tri-valent Fe ions; - the influence of precipitation procedure upon decontamination factors; - dried and hydrated cement systems; - cementing the sludge chemical components; - the influence of organic complexation agents upon the structure and performances of cemented matrices; - the influence of mineral additives upon the concrete; - cemented waste stability in real and simulated disposal conditions. The Moessbauer investigation on ferrous species obtained by precipitation system showed that the Fe compound obtained by the rapid neutralization (as the case is of aqueous radioactive waste processing) have a structure slightly different as compared with the Fe oxo-hydroxides prepared by slow addition of reactants. Also, studies were conducted

  18. Active Elastic Support/Dry Friction Damper with Piezoelectric Ceramic Actuator

    Directory of Open Access Journals (Sweden)

    Liao Mingfu

    2014-01-01

    Full Text Available The basic operation principle of elastic support/dry friction damper in rotor system was introduced and the unbalance response of the rotor with elastic support/dry friction damper was analyzed theoretically. Based on the previous structure using an electromagnet as actuator, an active elastic support/dry friction damper using piezoelectric ceramic actuator was designed and its effectiveness of reducing rotor vibration when rotor traverses its critical speed and blade-out event happened was experimentally verified. The experimental results show that the active elastic support/dry friction damper with piezoelectric ceramic actuator can significantly reduce vibration in rotor system; the vibration amplitude of the rotor in critical speed region decreased more than 2 times, and the active damper can protect the rotor when a blade-out event happened, so the rotor can traverse the critical speed and shut down smoothly. In addition, the structure is much simpler than the previous, the weight was reduced by half and the power consumption was only 5 W.

  19. Solidification of highly active wastes

    International Nuclear Information System (INIS)

    Morris, J.B.

    1986-07-01

    This document contains the annual reports for the contracts: (A) Glass Technology; (B) Calcination of Highly Active Waste Liquors; (C) Formation and Trapping of Volatile Ruthenium; (D) Deposition of Ruthenium; (E) Enhancement of Off-Gas Aerosol Collection; (F) Volatilisation of Cs, Tc and Te in High Level Waste Vitrification. (author)

  20. Processing method for discharged radioactive laundry water waste

    International Nuclear Information System (INIS)

    Izumida, Tatsuo; Kitsukawa, Ryozo; Tsuchiya, Hiroyuki; Kiuchi, Yoshimasa; Hattori, Yasuo.

    1995-01-01

    In order to process discharged radioactive laundry water wastes safely and decrease radioactive wastes, bubbling of a surface active agent in a detergent which causes a problem upon its condensation is suppressed, so that the liquid condensate are continuously and easily dried into a powder. A nonionic surface active agent is used against the bubbling of the surface active agent. In addition, the bubbling in an the evaporation can is reduced, and the powderization is facilitated by adding an appropriate inorganic builder. (T.M.)

  1. Analysis of the use of waste heat obtained from coal-fired units in Organic Rankine Cycles and for brown coal drying

    International Nuclear Information System (INIS)

    Łukowicz, Henryk; Kochaniewicz, Andrzej

    2012-01-01

    The ever-increasing restrictions on greenhouse gas emissions have created a need for new energy technologies. One way to meet these new requirements is to optimise the efficiency of power units. This paper presents two energy technologies that, if used, will increase the efficiency of electricity generation. One of the most effective ways to improve the efficiency of brown coal-fired units is by drying the coal that is fed into the boiler. Here, we describe a technology that uses the waste heat obtained from exhaust gases. This paper also presents an analysis of the feasibility of and potential for using waste heat obtained from exhaust gases to feed Organic Rankine Cycles (ORCs). Several low-temperature working fluids were considered, which were selected based on properties that were best suited for these types of cycles. The impact of these working fluids on the efficiency and capacity of the ORC was also examined. The calculations for ORCs fed with waste heat obtained from exhaust gases from hard coal- and brown coal-fired boilers were compared. -- Highlights: ► We describe a technology that uses the waste heat obtained from exhaust gases. ► The impact of using different working fluids with a low boiling point is examined. ► We describe integrating the ORC with the power unit. ► The use of waste heat from boiler exhaust gases to dry brown coal is proposed. ► We demonstrate a possible increase in power unit efficiency.

  2. Transesterification of Waste Activated Sludge for Biosolids Reduction and Biodiesel Production.

    Science.gov (United States)

    Maeng, Min Ho; Cha, Daniel K

    2018-02-01

      Transesterification of waste activated sludge (WAS) was evaluated as a cost-effective technique to reduce excess biosolids and recover biodiesel feedstock from activated sludge treatment processes. A laboratory-scale sequencing batch reactor (SBR) was operated with recycling transesterification-treated WAS back to the aeration basin. Seventy percent recycling of WAS resulted in a 48% reduction of excess biosolids in comparison with a conventional SBR, which was operated in parallel as the control SBR. Biodiesel recovery of 8.0% (dried weight basis) was achieved at an optimum transesterification condition using acidic methanol and xylene as cosolvent. Average effluent soluble chemical oxygen demand (COD) and total suspended solids (TSS) concentrations from the test SBR and control SBR were comparable, indicating that the recycling of transesterification-treated WAS did not have detrimental effect on the effluent quality. This study demonstrated that transesterification and recycling of WAS may be a feasible technique for reducing excess biosolids, while producing valuable biodiesel feedstock from the activated sludge process.

  3. Organic Waste Composts, a Serious Rare- Earth Source as Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Sroor, A.; El-Bahi, S.M.; Abdel-Halieem, A.S.; Abdel-Sabour, M.F.

    1999-01-01

    Delayed Neutron Activation Analysis technique [DNNA] was applied for investigating rare-earth elements and some heavy metals content of some locally organic fertilizers namely cattle manure (CM) , dried sewage sludge [SS] , municipal solid waste [MSW] and mixture for a (SS+MSW). The γ-ray spectrum of each sample was investigated using a HPGe detector equipped with computer unit. Fourteen elements were determined. Some of them were confirmed by the γ-γ cascades using a HPGe-HPGe coincidence spectrometer. The concentration of these elements in each sample was measured in μg/g. Some of these elements may lead to undesirable environmental effects. The undiscriminating use of organic waste as organic fertilizers may result in the increase of toxic elements [Cr, Sc, Sb, Th, etc.) in soil environment which may transfer through food chain to human health

  4. Anti-inflammatory and antinociceptive activities of Phyllanthus niruri spray-dried standardized extract

    Directory of Open Access Journals (Sweden)

    Cínthia R. C. Porto

    2013-02-01

    Full Text Available Phyllanthus niruri L., Euphorbiaceae, spray-dried standardized extract was studied for its anti-inflammatory and antinociceptive activities in adult albino rats and mice. The anti-inflammatory effect of spray-dried standardized extract was observed in carrageenan-induced paw edema and thioglycolate-induced leukocyte migration, while antinociceptive effects were observed using Randall & Selitto, tail flick, and hot plate tests. This study showed that intraperitoneal spray-dried standardized extract at 100, 200, 800, or 1600 mg/kg reduced the vascular response in the inflammatory process of paw edema induced by 1% carrageenan. Oral spray-dried standardized extract at 100 or 200 mg/kg inhibited leukocyte migration to the site of inflammation induced by 3% thioglycolate. In rats, at 100 and 200 mg/kg intraperitoneally, the extract exhibited a marked peripheral analgesic effect in a Randall & Selitto assay and showed significant central analgesic activity in a hot plate and tail flick assay. In conclusion, this study suggested that Phyllanthus niruri spray-dried standardized extract has potent inflammatory and antinociceptive activities and that these activities are not modified by standard drying process, making it feasible to use the dry extract standardized to obtain a phytotherapic preparation and thus validating its use for the treatment of pain and inflammation disorders.

  5. Process for treatment of detergent-containing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Kamiya, K.; Chino, K.; Funabashi, K.; Horiuchi, S.; Motojima, K.

    1984-01-01

    A detergent-containing radioactive liquid waste originating from atomic power plants is concentrated to have about 10 wt. % detergent concentration, then dried in a thin film evaporator, and converted into powder. Powdered activated carbon is added to the radioactive waste in advance to prevent the liquid waste from foaming in the evaporator by the action of surface active agents contained in the detergent. The activated carbon is added in accordance with the COD concentration of the radioactive liquid waste to be treated, and usually at a concentration 2-4 times as large as the COD concentration of the liquid waste to be treated. A powdery product having a moisture content of not more than 15 wt. % is obtained from the evaporator, and pelletized and then packed into drums to be stored for a predetermined period

  6. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    Science.gov (United States)

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. An integrated approach of composting methodologies for solid waste management

    Directory of Open Access Journals (Sweden)

    K. Kumaresan

    2016-03-01

    Full Text Available Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, pH and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  8. An integrated approach of composting methodologies for solid waste management

    International Nuclear Information System (INIS)

    Kumaresan, K.; Balan, R.; Sridhar, A.; Aravind, J.; Kanmani, P.

    2016-01-01

    Organic fraction of solid waste, which upon degradation produces foul smell and generates pathogens, if not properly managed. Composting is not a method of waste disposal but it is a method of waste recycling and used for agricultural purposes. An integrated approach of composting methodology was tested for municipal solid waste management. Solid waste first was composted and after 22 days, was further processed by vermicomposting. Samples were routinely taken for analysis of carbon, nitrogen, moisture content, p H and temperature to determine the quality of composting. Decrease in moisture content to 32.1 %, relative decrease in carbon and nitrogen content were also observed. Among the different types of treatment, municipal solid waste + activated sludge integration showed promising results, followed by vermicomposting municipal solid waste + activated sludge combination, compared to the combinations of dried activated sludge, municipal solid waste + activated sludge semisolid and municipal solid waste + sewage water. Thus, windrow composting followed by vermicomposting gave a better result than other methods. Thus this method would serve as a potential alternative for solid waste management.

  9. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ohm, Tae-In, E-mail: tiohm1@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Chae, Jong-Seong; Lim, Kwang-Soo [Department of Environmental Engineering, Hanbat National University, San 16-1 Duckmyung-dong, Yusung-gu, Daejeon 305-719 (Korea, Republic of); Moon, Seung-Hyun [Waste Energy Research Center, Korea Institute of Energy Research, Jang-dong Yusung-gu, Daejeon 305-343 (Korea, Republic of)

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  10. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature

    International Nuclear Information System (INIS)

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-01-01

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 deg. C, 150 deg. C, and 160 deg. C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 deg. C. At 150 deg. C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 deg. C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil > waste engine oil > B-C heavy oil > waste cooking oil. The duration at 150 deg. C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight.

  11. Activities in department of energy hazardous and mixed waste defense waste management

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1988-01-01

    In January 1986, the U.S. Department of Energy (DOE) Office of Assistant Secretary for Defense Programs (DP) created the Hazardous Waste and Remedial Actions Division within the Office of Defense Waste and Transportation Management. The Oak Ridge Operations Office (ORO) was assigned the responsibility for supporting DOE Headquarters (HQ) in planning nationally integrated activities for Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act/Superfund Amendments and Reauthorization Act (RCRA/CERCLA/SARA) compliance. In turn, ORO created the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAPSCO) to assist with the expanded lead assignment. The HAZWRAPSCO activities are currently supported by three distinct DOE-HQ funding elements: the Environmental Restoration Program, the Hazardous Waste Compliance Technology Program, and the Hazardous Waste Research and Development R and D Program. The Environmental Restoration Program is discussed in the paper, entitled The DOE Defense Program for Environmental Restoration

  12. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste.

    Science.gov (United States)

    Hedman, Björn; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-01-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations.

  13. Emissions from small-scale energy production using co-combustion of biofuel and the dry fraction of household waste

    International Nuclear Information System (INIS)

    Hedman, Bjoern; Burvall, Jan; Nilsson, Calle; Marklund, Stellan

    2005-01-01

    In sparsely populated rural areas, recycling of household waste might not always be the most environmentally advantageous solution due to the total amount of transport involved. In this study, an alternative approach to recycling has been tested using efficient small-scale biofuel boilers for co-combustion of biofuel and high-energy waste. The dry combustible fraction of source-sorted household waste was mixed with the energy crop reed canary-grass (Phalaris Arundinacea L.), and combusted in both a 5-kW pilot scale reactor and a biofuel boiler with 140-180 kW output capacity, in the form of pellets and briquettes, respectively. The chlorine content of the waste fraction was 0.2%, most of which originated from plastics. The HCl emissions exceeded levels stipulated in new EU-directives, but levels of equal magnitude were also generated from combustion of the pure biofuel. Addition of waste to the biofuel did not give any apparent increase in emissions of organic compounds. Dioxin levels were close to stipulated limits. With further refinement of combustion equipment, small-scale co-combustion systems have the potential to comply with emission regulations

  14. Hanford immobilized low-activity tank waste performance assessment

    International Nuclear Information System (INIS)

    Mann, F.M.

    1998-01-01

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  15. Hanford immobilized low-activity tank waste performance assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis

  16. Isotopic analysis of radioactive waste packages (an inexpensive approach)

    International Nuclear Information System (INIS)

    Padula, D.A.; Richmond, J.S.

    1983-01-01

    A computer printout of the isotopic analysis for all radioactive waste packages containing resins, or other aqueous filter media is now required at the disposal sites at Barnwell, South Carolina, and Beatty, Nevada. Richland, Washington requires an isotopic analysis for all radioactive waste packages. The NRC (Nuclear Regulatory Commission), through 10 CFR 61, will require shippers of radioactive waste to classify and label for disposal all radioactive waste forms. These forms include resins, filters, sludges, and dry active waste (trash). The waste classification is to be based upon 10 CFR 61 (Section 1-7). The isotopes upon which waste classification is to be based are tabulated. 7 references, 8 tables

  17. Wastes Characterisation from Foundry Activities on European Level

    International Nuclear Information System (INIS)

    Andres, I.; Ruiz, C.; Ibanez, R.; Viguri, J.; Irabien, A.

    1999-01-01

    This work presents The results of the eco toxicological characterisation of 22 defined wastes from steel foundry activities. The wastes have been selected from three processes, steel mill (smelting). sand casting and cleaning and finishing of steel products,with the common characteristics of represent an important industrial activity in the area and generated the wastes considered in this study. The eco toxicological characterisation obtained applying the Spanish regulations on hazardous waste is compared to the hazardous attributions considered by the European Union in order to characterise a waste as hazardous (non hazardous). The results allow to conclude that a acceptable concordance between both methodologies is reached and remark the need to split the broad generic types of wastes given by the Spanish regulation (Eco toxic / non eco toxic) into clearly identifiable specific types of waste

  18. Effect of microwave drying and oven drying on the water activity, color, phenolic compounds content and antioxidant activity of coconut husk (Cocos nucifera L.).

    Science.gov (United States)

    Valadez-Carmona, Lourdes; Cortez-García, Rosa María; Plazola-Jacinto, Carla Patricia; Necoechea-Mondragón, Hugo; Ortiz-Moreno, Alicia

    2016-09-01

    The coconut ( Cocos nucifera L.) husk is basically composed by fiber and pith material and remained under-utilized. This is an important source of phenolic compounds that could be used as functional ingredients. The aim of this study was to determine the effect of: oven-drying (OD) and microwave drying (MD), on the water activity, color, phenolic compound content and antioxidant activity of coconut husk. The OD was performed at 60 °C for 12 h and MD was performed at 900 W for 10 min. The total phenolic content (TPC) in fresh coconut husk was 64.2 mg GAE/g dry wt and significant higher than observed after OD and MD of 35.8 and 45.5 mg GAE/g dry wt, respectively. Ten phenols were identified in fresh and dehydrated coconut husks. The husk MD showed an increase in the content of gallic, 4-hydroxybenzoic, ferulic and syringic acids and epicatechin compared with the fresh; while coconut husk OD and MD, showed a decrease in the content of vanillic acid, vanillin, catequin and kaempferol. The antioxidant activity decreased after both OD and MD. However, MD resulted in a better antioxidant activity in husk than OD. MD of husk resulted into better retention of preserved color, TPC and TFC than OD.

  19. Drying of α-amylase by spray drying and freeze-drying - a comparative study

    Directory of Open Access Journals (Sweden)

    S. S. de Jesus

    2014-09-01

    Full Text Available This study is aimed at comparing two traditional methods of drying of enzymes and at verifying the efficiency of each one and their advantages and disadvantages. The experiments were performed with a laboratory spray dryer and freeze-dryer using α-amylase as the model enzyme. An experimental design in star revealed that spray drying is mainly influenced by the inlet air temperature and feed flow rate, which were considered to be the main factors influencing the enzymatic activity and water activity; the long period of material exposure to high temperatures causes a partial activity loss. In the experiments of freeze drying, three methods of freezing were used (freezer, acetone and dry ice, and liquid nitrogen and samples subsequently freeze-dried for times ranging between 0-24 hours. The product obtained from the two techniques showed high enzymatic activity and low water activity. For the drying of heat-resistant enzymes, in which the product to be obtained does not have high added value, spray drying may be more economically viable because, in the freeze drying process, the process time can be considered as a limiting factor when choosing a technique.

  20. Permitting plan for the immobilized low-activity waste project

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ''the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.'' It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site's low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste

  1. Method to determine the activity concentration and total activity of radioactive waste

    International Nuclear Information System (INIS)

    Angeles C, A.

    2001-02-01

    A characteristic system of radioactive waste is described to determine the concentration of radionuclides activity and the total activity of bundles of radioactive waste. The system this integrated by three subsystems: - Elevator of drums. - Electromechanics. - Gamma spectroscopy. In the system it is analyzed waste of issuing gamma specifically, and this designed for materials of relative low density and it analyzes materials of cylindrical recipients

  2. Technical baseline description of high-level waste and low-activity waste feed mobilization and delivery

    International Nuclear Information System (INIS)

    Papp, I.G.

    1997-01-01

    This document is a compilation of information related to the high-level waste (HLW) and low-activity waste (LAW) feed staging, mobilization, and transfer/delivery issues. Information relevant to current Tank Waste Remediation System (TWRS) inventories and activities designed to feed the Phase I Privatization effort at the Hanford Site is included. Discussions on the higher level Phase II activities are offered for a perspective on the interfaces

  3. Process and apparatus for emissions reduction from waste incineration

    International Nuclear Information System (INIS)

    Khinkis, M.J.; Abbasi, H.A.; Lisauskas, R.A.; Itse, D.C.

    1991-01-01

    This paper describes a process for waste combustion. It comprises: introducing the waste into a drying zone within a combustion chamber; supplying air to the drying zone for preheating, drying, and partially combusting the waste; advancing the waste to a combustion zone within the combustion chamber; supplying air to the combustion zone for further advancing the waste to a burnout zone with the combustion chamber; supplying air to the burnout zone for final burnout of organics in the waste; and injecting fuel and recirculated glue gases into the combustion chamber above the waste to create a reducing secondary combustion zone

  4. Deliverable D2.4: Status of Dry Electrode Development Activity

    NARCIS (Netherlands)

    Mihajlovic, V.; Garcia Molina, G.

    2010-01-01

    The goal of dry electrode development activity within the WP2 is tobuild a dry electrode prototype for brain wave sensing that is comfortable for the user and provides sufficient signal quality. The electrodes are to be utilized in BCI applications, namely Steady-StateVisually Evoked Potential

  5. Effective utilization of agro-waste by application of CMC dry-gel

    International Nuclear Information System (INIS)

    Yoshii, Fumio

    2008-01-01

    Radiation crosslinking, graft polymerization and degradation are useful technologies to improve polymer materials. Processability of radial tires and heat resistance of wire/cable is improved by crosslinking technology. Polysaccharides such as starch/cellulose of natural polymers and their derivatives are typical degradable polymers. Molecular weight of polysaccharides was remarkably reduced at lower dose, 50 kGy. To expand application field of polysaccharides, it is essential to obtain crosslinking structure. It was found that polysaccharide derivatives such as carboxymethyl cellulose (CMC) and carboxymethyl chitosan undergo crosslinking at past-like condition and form hydrogels. Concentration of past-like condition to induce crosslinking should be more than 10%. High molecular weight (Mw) and high degree of substitution (DS) is preferable for crosslinking of polysaccharide derivatives. In this paper, treatment of agro waste and improvement of Japanese traditional paper by addition of CMC dry gel is reported. (author)

  6. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.

    Science.gov (United States)

    Hjaila, K; Baccar, R; Sarrà, M; Gasol, C M; Blánquez, P

    2013-11-30

    The life cycle assessment (LCA) environmental tool was implemented to quantify the potential environmental impacts associated with the activated carbon (AC) production process from olive-waste cakes in Tunisia. On the basis of laboratory investigations for AC preparation, a flowchart was developed and the environmental impacts were determined. The LCA functional unit chosen was the production of 1 kg of AC from by-product olive-waste cakes. The results showed that impregnation using H3PO4 presented the highest environmental impacts for the majority of the indicators tested: acidification potential (62%), eutrophication (96%), ozone depletion potential (44%), human toxicity (64%), fresh water aquatic ecotoxicity (90%) and terrestrial ecotoxicity (92%). One of the highest impacts was found to be the global warming potential (11.096 kg CO2 eq/kg AC), which was equally weighted between the steps involving impregnation, pyrolysis, and drying the washed AC. The cumulative energy demand of the AC production process from the by-product olive-waste cakes was 167.63 MJ contributed by impregnation, pyrolysis, and drying the washed AC steps. The use of phosphoric acid and electricity in the AC production were the main factors responsible for the majority of the impacts. If certain modifications are incorporated into the AC production, such as implementing synthesis gas recovery and reusing it as an energy source and recovery of phosphoric acid after AC washing, additional savings could be realized, and environmental impacts could be minimized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Novel Activated Carbons from Agricultural Wastes and their Characterization

    Directory of Open Access Journals (Sweden)

    S. Karthikeyan

    2008-01-01

    Full Text Available Solid waste disposal has become a major problem in India, Either it has to be disposed safely or used for the recovery of valuable materials as agricultural wastes like turmeric waste, ferronia shell waste, jatropha curcus seed shell waste, delonix shell waste and ipomea carnia stem. Therefore these wastes have been explored for the preparation of activated carbon employing various techniques. Activated carbons prepared from agricultural solid wastes by chemical activation processes shows excellent improvement in the surface characteristics. Their characterization studies such as bulk density, moisture content, ash content, fixed carbon content, matter soluble in water, matter soluble in acid, pH, decolourising power, phenol number, ion exchange capacity, ion content and surface area have been carried out to assess the suitability of these carbons as absorbents in the water and wastewater. For anionic dyes (reactive, direct, acid a close relationship between the surface area and surface chemical groups of the modified activated carbon and percentage of dye removal by adsorption can be observed. Cationic dyes large amount of surface chemical groups present in the sample (mainly carboxylic, anhydrides, lactones and phenols etc. are good anchoring sites for adsorption. The present study reveals the recovery of valuable adsorbents from readily and cheaply available agriculture wastes.

  8. Effect Carrier Agent Formulation in Drying Rate and Antioxidant Activity of Roselle Extract

    Directory of Open Access Journals (Sweden)

    Utari Febiani Dwi

    2018-01-01

    Full Text Available Roselle (Hibiscus sabdarifa L contains anthocyanins as the natural colorant and antioxidant. Drying the roselle extract was aims to produce the dry product that easy consumption as antioxidant. The carrier agent was added in roselle extract to improve the drying rate and maintain the nutritional value. This research studied the effect of carrier agent in drying rate and antioxidant activity. The method consists of two step involving roselle extraction using ultrasonic and the drying process. The roselle extraction by ultrasonic use the water as the solvent. The carrier agent (0%,5%,10% of maltodextrin was added in roselle extract. The mixture was then dried in tray dryer dehumidification using zeolite in drying temperature 50,60, and 70⁰C. As the response, the moisture content was observed by gravimetry every 15 minutes for 150 minutes. The result showed that Page model was fitted to determine the constant of drying rate. Higher concentration of carrier agent enhanced the moisture evaporation process. Based on the DPPH analysis, the degradation of antioxidant activity in temperature 70⁰C was 2.14 times higher than in temperature 50⁰C. As the conclusion, addition of maltodextrin can speed up the drying process and retain the antioxidant activity of.

  9. Alternative containers for low-level wastes containing large amounts of tritium

    International Nuclear Information System (INIS)

    Gause, E.P.; Lee, B.S.; MacKenzie, D.R.; Wiswall, R. Jr.

    1984-11-01

    High-activity tritiated waste generated in the United States is mainly composed of tritium gas and tritium-contaminated organic solvents sorbed onto Speedi-Dri which are packaged in small glass bulbs. Low-activity waste consists of solidified and adsorbed liquids. In this report, current packages for high-activity gaseous and low-activity adsorbed liquid wastes are emphasized with regard to containment potential. Containers for low-level radioactive waste containing large amounts of tritium need to be developed. An integrity may be threatened by: physical degradation due to soil corrosion, gas pressure build-up (due to radiolysis and/or biodegradation), rapid permeation of tritium through the container, and corrosion from container contents. Literature available on these points is summarized in this report. 136 references, 20 figures, 40 tables

  10. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  11. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  12. Drying of residue and separation of nitrate salts in the sludge waste for the lagoon sludge treatment

    International Nuclear Information System (INIS)

    Hwang, D. S.; Lee, K. I.; Choi, Y. D.; Hwang, S. T.; Park, J. H.

    2003-01-01

    This study investigated the dissolution property of nitrate salts in the dissolution process by water and the drying property of residue after separating nitrates in a series of the processes for the sludge treatment. Desalination was carried out with the adding ratio of water and drying property was analyzed by TG/DTA, FTIR, and XRD. Nitrate salts involved in the sludge were separated over 97% at the water adding ratio of 2.5. But a small quantity of calcium and sodium nitrate remained in the residue These were decomposed over 600 .deg. C and calcium carbonate, which was consisted mainly of residue, was decomposed into calcium oxide over 750 .deg. C. The residue have to be decomposed over 800 .deg. C to converse uranyl nitrate of six value into the stable U 3 O 8 of four value. As a result of removing the nitrates at the water adding ratio of 2.5 and drying the residue over 900 .deg. C, volume of the sludge waste decreased over 80%

  13. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    Science.gov (United States)

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  14. Technology development activities supporting tank waste remediation

    International Nuclear Information System (INIS)

    Bonner, W.F.; Beeman, G.H.

    1994-06-01

    This document summarizes work being conducted under the U.S. Department of Energy's Office of Technology Development (EM-50) in support of the Tank Waste Remediation System (TWRS) Program. The specific work activities are organized by the following categories: safety, characterization, retrieval, barriers, pretreatment, low-level waste, and high-level waste. In most cases, the activities presented here were identified as supporting tank remediation by EM-50 integrated program or integrated demonstration lead staff and the selections were further refined by contractor staff. Data sheets were prepared from DOE-HQ guidance to the field issued in September 1993. Activities were included if a significant portion of the work described provides technology potentially needed by TWRS; consequently, not all parts of each description necessarily support tank remediation

  15. Radioactive waste solidification material

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Wakuta, Kuniharu; Ishizaki, Kanjiro; Koyanagi, Naoaki; Sakamoto, Hiroyuki; Uchida, Ikuo.

    1992-01-01

    The present invention concerns a radioactive waste solidification material containing vermiculite cement used for a vacuum packing type waste processing device, which contains no residue of calcium hydroxide in cement solidification products. No residue of calcium hydroxide means, for example, that peak of Ca(OH) 2 is not recognized in an X ray diffraction device. With such procedures, since calcium sulfoaluminate clinker and Portland cement themselves exhibit water hardening property, and slugs exhibit hydration activity from the early stage, the cement exhibits quick-hardening property, has great extension of long term strength, further, has no shrinking property, less dry- shrinkage, excellent durability, less causing damages such as cracks and peeling as processing products of radioactive wastes, enabling to attain highly safe solidification product. (T.M.)

  16. Radioecological activity limits for radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahmet, E. Osmanlioglu

    2006-01-01

    Full text: Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides. Near surface disposal term includes broad range of facilities from simple trenches to concrete vaults. Principally, disposal of radioactive waste requires the implementation of measures that will provide safety for human health and environment now and in the future. For this reason preliminary activity limits should be determined to avoid radioecological problems. Radioactive waste has to be safely disposed in a regulated manner, consistent with internationally agreed principles and standards and with national legislations to avoid serious radioecological problems. The purpose of this study, presents a safety assessment approach to derive operational and post-closure radioecological activity limits for the disposal of radioactive waste. Disposal system has three components; the waste, the facility (incl. engineered barriers) and the site (natural barriers). Form of the waste (unconditioned or conditioned) is effective at the beginning of the migration scenerio. Existence of the engineered barriers in the facility will provide long term isolation of the waste from environment. The site characteristics (geology, groundwater, seismicity, climate etc.) are important for the safety of the system. Occupational exposure of a worker shall be controlled so that the following dose limits are not exceeded: an effective dose of 20mSv/y averaged over 5 consecutive years; and an effective dose of 50mSv in any single year. The effective dose limit for members of the public recommended by ICRP and IAEA is 1 mSv/y for exposures from all man-made sources [1,2]. Dose constraints are typically a fraction of the dose limit and ICRP recommendations (0.3 mSv/y) could be applied [3,4]. Radioecological activity concentration limits of each radionuclide in the waste (Bq/kg) were calculated. As a result of this study radioecological activity

  17. Method of reprocessing nuclear fuel using vacuum freeze-drying method

    International Nuclear Information System (INIS)

    Otsuka, Katsuyuki; Kondo, Isao.

    1989-01-01

    Solutions of plutonium nitrate and uranyl nitrate, spent solvents and liquid wastes separated by the treatment in the solvent extractant steps in the wet processing steps of re-processing plants or fuel fabrication plants are processed by means of freeze-drying under vacuum. Then, the solutions of plutonium nitrate and uranyl nitrate are separated into nitrates and liquid condensates and the spent solvents are freeze-dried. Thus, they are separated into tri-n-butyl phosphate, diester, monoester and n-dodecane and the liquid wastes are processed by means of freeze-drying and separated into liquids and residues. In this way, since sodium carbonate, etc. are not used, the amount of resultant liquid wastes is reduced and sodium is not contained in liquid wastes sent to an asphalt solidification step and a vitrification step, the processing steps can be simplified. (S.T.)

  18. Performance of dry anaerobic technology in the co-digestion of rural organic solid wastes in China

    International Nuclear Information System (INIS)

    Yang, Tianxue; Li, Yingjun; Gao, Jixi; Huang, Caihong; Chen, Bin; Zhang, Lieyu; Wang, Xiaowei; Zhao, Ying; Xi, Beidou; Li, Xiang

    2015-01-01

    The dry anaerobic co-digestion of LW (livestock waste), OFHW (organic fraction of household waste), and AR (agricultural residue) was evaluated in terms of pH stability, organic removal rate, and methane yield. The total quantity of the solids involved in the digestion was adjusted to 25%. All the reactors were inoculated by 20% (in dry weight) of the municipal sludge. The dynamic changes in the pH values of the LW-AR-OFHW mixture co-digestions underwent four stages and differed from those of wet anaerobic digestion. The decrease in VS (volatile solids), volume, and weight of the LW-AR-OFHW mixtures was higher than those in AR and OFHW. The VS, volume, and weight reductions in LW-AR-OFHW co-digestion were 54.7%, 82.2%, and 72.7%, respectively. However, the VS, volume, and weight reductions in AR were only 11.1%, 20.5%, and 19.8%, respectively, and those in OFHW were only 27.4%, 45.0%, and 40.9%, respectively. The LW-AR-OFHW mixture co-digestions enhanced the methane production of the co-digester (256 m 3 /ton VS), whereas AR and OFHW produced only 12 and 93 m 3 methane/ton VS, respectively. - Highlights: • The pH values dynamic of LW-AR-OFHW differed from wet anaerobic digestion. • The degradation effect of LW-AR-OFHW was better than those of AR and OFHW. • The LW-AR-OFHW mixture co-digestions enhanced the methane production.

  19. Quality factors, antioxidant activity, and sensory properties of jet-tube dried rabbiteye blueberries.

    Science.gov (United States)

    Pallas, Laura A; Pegg, Ronald B; Kerr, William L

    2013-06-01

    Rabbiteye blueberries are an excellent source of nutrients and phytochemicals. They are often dried, which can degrade health-promoting compounds. Means of shortening exposure to high-temperature drying air are desirable. Five cultivars of rabbiteye blueberries ('Premier', 'Tifblue', 'Brightwell', 'Alapaha', and 'Powderblue') were dried in a jet-tube fluidized bed air dryer with varying pretreatments including mechanical abrasion and osmotic dehydration. Drying time ranged from 66 to 95 min at 107 °C, achieving a final water activity of 0.347-0.605. Prior osmotic dehydration significantly reduced the drying time. Vacuum osmotic dehydration for 70 min achieved similar moisture contents to soaking blueberries for 24 h. Jet-tube dried blueberries exhibited greater color saturation than commercially available blueberries. While drying reduced the total monomeric anthocyanin (TMA) content, this occurred to a lesser extent than by other processing methods. The total phenolics content (TPC) and antioxidant capacity (H-ORACFL values) increased after drying. 'Premier' was the most preferred vacuum-infused dried blueberry, with a water activity (aw) of 0.53 and 157 g H2O kg(-1). 'Tifblue' was most preferred amongst the overnight-infused and also unsweetened dried blueberries. Jet-tube drying can substantially reduce drying times while yielding blueberries with good color, sensory properties, TMA, TPC, and H-ORACFL values. Furthermore, some cultivars produce better-quality dried blueberries than others. © 2012 Society of Chemical Industry.

  20. Low and medium activity solid wastes processing and encapsulation

    International Nuclear Information System (INIS)

    Taillard, D.; Claes, J.; Hennart, D.

    1983-01-01

    This work, carried out under contract with the European Atomic Energy Community, describes the techniques in use for waste management. The activity of low and medium activity solid wastes is from few curies to few tens of curies per cubic meter, they are produced by nuclear facilities and are often complex mixtures. Radioactive wastes are characterized and processing and conditioning are described. Leaching, stability, mechanical resistance and radiolysis of encapsulated wastes are examined. Handling, storage and disposal are treated

  1. Aube very low activity waste storage Centre. Annual report 2009

    International Nuclear Information System (INIS)

    2010-01-01

    After a presentation of the ANDRA (the French national agency for radioactive waste management), its role and missions, its sites, its strategy with respect to a sustainable development, this report contains a description of waste storage installations and key figures of the activity in 2009 (origin and nature of very low activity wastes, brief description of the Aube centre installations, stored volumes, performed works). It describes arrangements related to security, safety and radioprotection, presents results of the radiological survey activity performed in the environment and on wastes, and activities related to public information

  2. Quarterly Briefing Book on Environmental and Waste Management Activities

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs.

  3. Quarterly Briefing Book on Environmental and Waste Management Activities

    International Nuclear Information System (INIS)

    Brown, M.C.

    1991-06-01

    The purpose of the Quarterly Briefing Book on Environmental and Waste Management Activities is to provide managers and senior staff at the US Department of Energy-Richland Operations Office and its contractors with timely and concise information on Hanford Site environmental and waste management activities. Each edition updates the information on the topics in the previous edition, deletes those determined not to be of current interest, and adds new topics to keep up to date with changing environmental and waste management requirements and issues. Section A covers current waste management and environmental restoration issues. In Section B are writeups on national or site-wide environmental and waste management topics. Section C has writeups on program- and waste-specific environmental and waste management topics. Section D provides information on waste sites and inventories on the site. 15 figs., 4 tabs

  4. Activity monitoring of alpha-bearing wastes

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1980-01-01

    The paper aims at the survey on the actual situation in activity monitoring of alpha-bearing wastes. Homogeneous materials such as liquid-, gaseous- and homogeneous solid wastes are amenable to destructive analyses of representative samples. Available destructive analyses methods are sensitive and precise enough to cope with all requirements in alpha-waste monitoring. The more difficult problems are encountered with alpha-contaminated solids, when representative sampling is not practicable. Non-destructive analysis techniques are applied for monitoring this category of solid wastes. The techniques for nondestructive analysis of alpha-bearing wastes are based on the detection of gamma and/or neutron-emission of actinides. Principles and a theory of non-destructive radiometric assay of plutonium contaminated solid waste streams are explained. Guidelines for the calibration of instruments and interpretation of experimental data are given. Current theoretical and experimental development work in this problem area is reviewed. Evaluations concerning capabilities and limitations of monitoring systems for alpha-bearing solid wastes are very complex and out of the scope of this paper

  5. Spray-type drying unit for spent ion exchange resins, sludges and radioactive concentrates

    International Nuclear Information System (INIS)

    Raibaud, J.

    1986-01-01

    The process for drying radwaste in the liquid form or in aqueous suspension is a very attractive solution from the standpoint of volume reduction. Most of the existing drying facilities are not well adapted for drying the varieties of aqueous waste produced by the nuclear research centres and nuclear power plants, such as: - ion exchange resins, bead type or powdered resins, - centrifuge sludges, - settling sludges, - evaporator bottoms. Technicatome has selected the LEAFLASH process developed by Rhone Poulenc Recherches for drying the nuclear aqueous waste. This process has been well tried at full scale in a large number of industrial branches. The advantages of the process have been confirmed by the results obtained in operating a pilot facility. They include: - high flexibility in operation: - quick start-up and stoppage procedures, - adaptation to a wide spectrum of liquid waste without significant changes in the adjustment of the device. - compactness, - low power consumption, - complete drying of the waste for any initial concentration [fr

  6. Drying equipment for radioisotope-treated animals

    International Nuclear Information System (INIS)

    Fujikake, Toshio; Ohmori, Akira; Takada, Yukio; Nakano, Shozoh; Tamai, Shinsuke.

    1978-01-01

    The animal experiments using radioisotopes have been carried out over wide fields, accordingly, the number of radioisotope-contaminated animal cadavers has been increasing rapidly. It was decided that each establishment employing radioiosotopes dries those cadavers to such state as to be able to burn up with the device in Japan Atomic Energy Research Institute. The animal waste-drying device meeting the above mentioned purpose was developed by the joint work of Fuji Electric General Devices Co. and Fuji Electric Co. It is known as the micro-wave drying device for animals (its nickname is Microdry). This device dehydrates at high speed by micro-wave drying method. By using along with a moisture detector, it gives the drying state as requested regardless of the water content of each animal. The animal wastes after perfect dehydration are reduced to the weight of about one-third, and the dried animal cadavers can be preserved for a long time at room temperature because of the sterilizing effect of the micro-wave heating. This device is noted for its excellent safeness, simple operation, and low treatment cost. It is anticipated that it can be further applied to other fields such as excreta, breeding materials, etc. (Kobatake, H.)

  7. Activities of the IAEA in the area of radioactive waste management

    International Nuclear Information System (INIS)

    Efremenkov, V.M.

    1998-01-01

    The IAEA activity in the area of radioactive waste management mainly concentrates on three areas, namely: (i) the establishing of international principles and standards for the safe management of radioactive waste; (ii) to promote the development and improvements of waste processing technologies, including handling, treatment, conditioning, packaging, storage and disposal of waste; and (iii) assisting developing Member States in establishing good waste management practice through dissemination of technical information, providing technical support and training. These activities are carried out by the Waste Technology Section, Department of Nuclear Energy, and the Waste Safety Section, Department of Nuclear Safety. The Waste Technology Section's activities are organized into four subprogrammes covering: the handling, processing and storage of radioactive waste; radioactive waste disposal; technology and management aspects of decontamination, decommissioning and environmental restoration; and waste management information and support services

  8. Dry storage of irradiated nuclear fuels and vitrified wastes

    International Nuclear Information System (INIS)

    Deacon, D.

    1982-01-01

    A review is given of the work of GEC Energy Systems Ltd. over the years in the dry storage of irradiated fuel. The dry-storage module (designated as Cell 4) for irradiated magnox fuel recently constructed at Wylfa nuclear power station is described. Development work on the long-term dry storage of irradiated oxide fuels is reported. Four different methods of storage are compared. These are the pond, vault, cask and caisson stores. It is concluded that there are important advantages with the passive air-cooled ESL dry stove. (U.K.)

  9. Variation of the Phytochemical Constituents and Antioxidant Activities of Zingiber officinale var. rubrum Theilade Associated with Different Drying Methods and Polyphenol Oxidase Activity.

    Science.gov (United States)

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah

    2016-06-17

    The effects of different drying methods (freeze drying, vacuum oven drying, and shade drying) on the phytochemical constituents associated with the antioxidant activities of Z. officinale var. rubrum Theilade were evaluated to determine the optimal drying process for these rhizomes. Total flavonoid content (TFC), total phenolic content (TPC), and polyphenol oxidase (PPO) activity were measured using the spectrophotometric method. Individual phenolic acids and flavonoids, 6- and 8-gingerol and shogaol were identified by ultra-high performance liquid chromatography method. Ferric reducing antioxidant potential (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were used for the evaluation of antioxidant activities. The highest reduction in moisture content was observed after freeze drying (82.97%), followed by vacuum oven drying (80.43%) and shade drying (72.65%). The highest TPC, TFC, and 6- and 8-shogaol contents were observed in samples dried by the vacuum oven drying method compared to other drying methods. The highest content of 6- and 8-gingerol was observed after freeze drying, followed by vacuum oven drying and shade drying methods. Fresh samples had the highest PPO activity and lowest content of flavonoid and phenolic acid compounds compared to dried samples. Rhizomes dried by the vacuum oven drying method represent the highest DPPH (52.9%) and FRAP activities (566.5 μM of Fe (II)/g DM), followed by freeze drying (48.3% and 527.1 μM of Fe (II)/g DM, respectively) and shade drying methods (37.64% and 471.8 μM of Fe (II)/g DM, respectively) with IC50 values of 27.2, 29.1, and 34.8 μg/mL, respectively. Negative and significant correlations were observed between PPO and antioxidant activity of rhizomes. Vacuum oven dried rhizomes can be utilized as an ingredient for the development of value-added food products as they contain high contents of phytochemicals with valuable antioxidant potential.

  10. Long-term temporal variability of the radon-222 exhalation flux from a landform covered by low uranium grade waste rock

    International Nuclear Information System (INIS)

    Bollhöfer, Andreas; Doering, Che

    2016-01-01

    Radon-222 exhalation flux densities from two different substrates of several metres thickness, waste rock and waste rock mixed with approximately 30% lateritic material, were measured over a period of five years in the wet-dry tropics of Northern Australia. Fourteen measurement campaigns using activated charcoal canisters (n > 1000) covered both dry and wet seasons and showed differences in seasonal and long term trends of the "2"2"2Rn exhalation flux densities normalised to the "2"2"6Ra activity concentrations of the substrate. Dry season "2"2"2Rn exhalation was generally higher for the mixed substrate, due to the larger fraction of fines. Seasonality established within the first year of landform construction on the mixed substrate, due to the higher water holding capacity of the lateritic material. In contrast, waste rock only shows no seasonality until years four and five after construction, when average normalised dry season "2"2"2Rn exhalation flux densities from waste rock increase to values (0.47 ± 0.06 mBq m"−"2 s"−"1 per Bq kg"−"1) similar to the mixed substrate (0.64 ± 0.08 mBq m"−"2 s"−"1 per Bq kg"−"1), likely due to an increase in fines from rapid weathering of the schistose waste rock. Volumetric water content has been used to parametrize relative "2"2"2Rn exhalation and we determined that wet season "2"2"2Rn exhalation is about 40% of the dry season exhalation. - Highlights: • We determined "2"2"2Rn exhalation flux densities normalised to "2"2"6Ra activity concentrations (R_E_-_R) for two substrates. • R_E_-_R was lower for waste rock only compared to waste rock blended with 30% fine grained lateritic material. • Seasonality in waste rock "2"2"2Rn exhalation flux densities established 4 years after construction. • Wet season R_E_-_R was about 40% of the dry season R_E_-_R.

  11. Optimisation of the two-phase dry-thermophilic anaerobic digestion process of sulphate-containing municipal solid waste: population dynamics.

    Science.gov (United States)

    Zahedi, S; Sales, D; Romero, L I; Solera, R

    2013-11-01

    Microbial population dynamics and anaerobic digestion (AD) process to eight different hydraulic retention times (HRTs) (from 25d to 3.5d) in two-phase dry-thermophilic AD from sulphate-containing solid waste were investigated. Maximum values of gas production (1.9 ± 0.2 l H2/l/d; 5.4 ± 0.3 l CH4/l/d and 82 ± 9 ml H2S/l/d) and microbial activities were obtained at 4.5d HRT; where basically comprised hydrolysis step in the first phase (HRT=1.5d) and acidogenic step finished in the second phase as well as acetogenic-methanogenic steps (HRT=3d). In the first phase, hydrolytic-acidogenic bacteria (HABs) was the main group (44-77%) and Archaea, acetogens and sulphate-reducing bacteria (SRBs) contents were not significant; in the second phase (except to 2d HRT), microbial population was able to adapt to change in substrate and HRTs to ensure the proper functioning of the system and both acetogens and Archaea were dominated over SRBs. Decreasing HRT resulted in an increase in microbial activities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  13. Radioactive waste characterisation by neutron activation

    International Nuclear Information System (INIS)

    Nicol, Tangi

    2016-01-01

    Nuclear activities produce radioactive wastes classified following their radioactive level and decay time. an accurate characterization is necessary for efficient classification and management. Medium and high level wastes containing long lived radioactive isotopes will be stored in deep geological storage for hundreds of thousands years. at the end of this period, it is essential to ensure that the wastes do not represent any risk for humans and environment, not only from radioactive point of view, but also from stable toxic chemicals. This PhD thesis concerns the characterization of toxic chemicals and nuclear material in radioactive waste, by using neutron activation analysis, in the frame of collaboration between the Nuclear Measurement Laboratory of CEA Cadarache, France, and the Institute of Nuclear Waste Management and Reactor Safety of the research center, FZJ (Forschungszentrum Juelich GmbH), Germany. The first study is about the validation of the numerical model of the neutron activation cell MEDINA (FZJ), using MCNP Monte Carlo transport code. Simulations and measurements of prompt capture gamma rays from small samples measured in MEDINA have been compared for a number of elements of interest (beryllium, aluminum, chlorine, copper, selenium, strontium, and tantalum). The comparison was performed using different nuclear databases, resulting in satisfactory agreement and validating simulation in view of following studies. Then, the feasibility of fission delayed gamma-ray measurements of "2"3"9Pu and "2"3"5U in 225 L waste drums has been studied, considering bituminized or concrete matrixes representative of wastes produced in France and Germany. The delayed gamma emission yields were first determined from uranium and plutonium metallic samples measurements in REGAIN, the neutron activation cell of LMN, showing satisfactory consistency with published data. The useful delayed gamma signals of "2"3"9Pu and "2"3"5U, homogeneously distributed in the 225 L

  14. Effect of emulsification and spray-drying microencapsulation on the antilisterial activity of transcinnamaldehyde.

    Science.gov (United States)

    Trinh, Nga-Thi-Thanh; Lejmi, Raja; Gharsallaoui, Adem; Dumas, Emilie; Degraeve, Pascal; Thanh, Mai Le; Oulahal, Nadia

    2015-01-01

    Spray-dried redispersible transcinnamaldehyde (TC)-in-water emulsions were prepared in order to preserve its antibacterial activity; 5% (w/w) TC emulsions were first obtained with a rotor-stator homogeniser in the presence of either soybean lecithin or sodium caseinate as emulsifiers. These emulsions were mixed with a 30% (w/w) maltodextrin solution before feeding a spray-dryer. The antibacterial activity of TC alone, TC emulsions with and without maltodextrin before and after spray-drying were assayed by monitoring the growth at 30 °C of Listeria innocua in their presence and in their absence (control). Whatever the emulsifier used, antilisterial activity of TC was increased following its emulsification. However, reconstituted spray-dried emulsions stabilised by sodium caseinate had a higher antibacterial activity suggesting that they better resisted to spray-drying. This was consistent with observation that microencapsulation efficiencies were 27.6% and 78.7% for emulsions stabilised by lecithin and sodium caseinate, respectively.

  15. Characterization plan for the immobilized low-activity waste borehole

    International Nuclear Information System (INIS)

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy's (DOE's) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m 3 (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment

  16. Research advances in dry anaerobic digestion process of solid ...

    African Journals Online (AJOL)

    The dry anaerobic digestion process is an innovative waste-recycling method to treat high-solidcontent bio-wastes. This can be done without dilution with water by microbial consortia in an oxygenfree environment to recover potential renewable energy and nutrient-rich fertilizer for sustainable solid waste management.

  17. Distinguishing method for contamination/radio-activation of radioactive wastes

    International Nuclear Information System (INIS)

    Fukazawa, Takuji; Kato, Keiichiro; Koda, Satoshi.

    1994-01-01

    The present invention concerns a method of distinguishing the contamination/radio-activation of radioactive wastes used in processing wastes generated upon dismantling of exhausted nuclear reactors. Especially, contaminated/radio-activation is distinguished for wastes having openings such as pipes and valves, by utilizing scattering of γ-rays or γ-ray to β-ray ratio. That is, ratio of scattered γ-rays and direct γ-rays or ratio of β-rays and γ-rays from radioactive wastes are measured and compared by a radiation detector, to distinguish whether the radioactive wastes contaminated materials or radio-activated materials. For example, when an object to be measured having an opening is contaminated at the inner side, the radiation detector facing to the opening mainly detects high direct γ-rays emitted from the object to be measured while a radiation detector not facing the opening mainly detects high scattered γ-rays relatively. On the other hand, when the object is a radio-activated material, any of the detectors detect scattered γ-rays, so that they can be distinguished by these ratios. (I.S.)

  18. Effects of Drying Methods in Gaining of Extractive, Phenolic Content and Antioxidant Activity in Gynura Pseudochina (Lour.)

    OpenAIRE

    Rivai, Harrizul; Nurdin, Hazli; Suyani, Hamzar; Bakhtiar, Amri

    2010-01-01

    Effects of drying methods in gaining of extractive, phenolic content and antioxidant activity in Gynura pseudochina (Lour.) DC leaves have been investigated. The drying methods tested were air-drying at ± 25 oC, oven-drying at 40 OC, oven-drying at 60 OC, microwave oven-drying and fresh samples as control. Results revealed that drying of the fresh plant caused the decrease of extractive obtainability, phenolic content and antioxidant activity. There were significant differences among drying ...

  19. Neutron Activation analysis of waste water

    International Nuclear Information System (INIS)

    Hernandez H, V.

    1997-01-01

    An instrumental neutron activation analysis for the simultaneous determination of chlorine, bromine, sodium, manganese, cobalt, copper, chromium, zinc, nickel, antimony and iron in waste water is described. They were determined in waste water samples under normal conditions by non-destructive neutron activation simultaneously using a suitable monostandard method. Standardized water samples were used and irradiated in polyethylene ampoules at a neutron flux of 10 13 cm -2 s -1 for periods of 1 minute, 1 and 10 hours. A Ge hyperpure detector was used for your activity determination, with count times of 60, 180, 300 and 600 seconds. The obtained results show than the method can be utilized for the determination of this elements without realize anything previous treatment of the samples. (Author)

  20. The Influence of Different Air-Drying Conditions on Bioactive Compounds and Antioxidant Activity of Berries.

    Science.gov (United States)

    Bustos, Mariela C; Rocha-Parra, Diego; Sampedro, Ines; de Pascual-Teresa, Sonia; León, Alberto E

    2018-03-21

    The aim of the present research was to study the effect of convective drying on color, bioactive compounds, and antioxidant activity of berry fruits and to chemically characterize the polyphenolic composition of raspberry, boysenberry, redcurrants, and blackcurrants fruit. Drying berries at 65 °C provoked the best conservations of color, particularly for boysenberry and blackcurrant. Drying at 65 °C was also the condition that showed higher level of polyphenols, while drying at 50 or 130 °C showed above % degradation of them due to the long time or high temperature drying. Radical scavenging activity was the predominant antioxidant mechanism in all samples, with 65 °C dried berries being the most active ones possibly because of polyphenol depolymerization. The anthocyanin profile showed that delphinidin and cyanidin derivatives were the most abundant anthocyanidins with different predominance between berry genera. Degradation of anthocyanins was increased with drying temperature been Cy 3-glucoside and Cy 3-rutinoside the most abundant.

  1. Dry storage

    International Nuclear Information System (INIS)

    Arnott, Don.

    1985-01-01

    The environmental movement has consistently argued against disposal of nuclear waste. Reasons include its irretrievability in the event of leakage, the implication that reprocessing will continue and the legitimacy attached to an expanding nuclear programme. But there is an alternative. The author here sets out the background and a possible future direction of a campaign based on a call for dry storage. (author)

  2. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    Science.gov (United States)

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  3. Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities.

    Science.gov (United States)

    Huang, Yu-Lian; Tan, Li; Wang, Ting-Ting; Sun, Zhao-Yong; Tang, Yue-Qin; Kida, Kenji

    2017-01-01

    Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH 4 + and acetic acid, which inhibited thermophilic dry methane fermentation.

  4. Wastes from selected activities in two light-water reactor fuel cycles

    International Nuclear Information System (INIS)

    Palmer, C.R.; Hill, O.F.

    1980-07-01

    This report presents projected volumes and radioactivities of wastes from the production of electrical energy using light-water reactors (LWR). The projections are based upon data developed for a recent environmental impact statement in which the transuranic wastes (i.e., those wastes containing certain long-lived alpha emitters at concentrations of at least 370 becquerels, or 10 nCi, per gram of waste) from fuel cycle activities were characterized. In addition, since the WG.7 assumed that all fuel cycle wastes except mill tailings are placed in a mined geologic repository, the nontransuranic wastes from several activities are included in the projections reported. The LWR fuel cycles considered are the LWR, once-through fuel cycle (Strategy 1), in which spent fuel is packaged in metal canisters and then isolated in geologic formations; and the LWR U/Pu recycle fuel cycle (Strategy 2), wherein spent fuel is reprocessed for recovery and recycle of uranium and plutonium in LWRs. The wastes projected for the two LWR fuel cycles are summarized. The reactor operations and decommissioning were found to dominate the rate of waste generation in each cycle. These activities account for at least 85% of the fuel cycle waste volume (not including head-end wastes) when normalized to per unit electrical energy generated. At 10 years out of reactor, however, spent fuel elements in Strategy 1 represent 98% of the fuel cycle activity but only 4% of the volume. Similarly, the packaged high-level waste, fuel hulls and hardware in Strategy 2 concentrate greater than 95% of the activity in 2% of the waste volume

  5. Disposal of bead ion exchange resin wastes

    International Nuclear Information System (INIS)

    Gay, R.L.; Granthan, L.F.

    1985-01-01

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means

  6. Effects of Different Drying Methods on the Antioxidant Activities of Leaves and Berries of Cayratia trifolia

    International Nuclear Information System (INIS)

    Rabeta, M.S.; Lin, S.P.

    2015-01-01

    This study aimed to assess the effects of fresh, thermal drying method (vacuum oven drying), and nonthermal drying method (freeze drying) on the antioxidant activities of leaves and berries of Cayratia trifolia using ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-1-picrylhydrazyl radical scavenging capacity (DPPH) assays. The total phenolic content (TPC) and flavonoid content (TFC) of the leaves and berries of C. trifolia were also measured. Based on the results obtained, the TPC, TFC, and antioxidant activities of the leaves and berries were arranged in the following order: freeze-dried sample with methanol extraction > vacuum-dried sample with methanol extraction > freeze-dried sample with water extraction > vacuum-dried sample with water extraction > fresh sample with methanol extraction > fresh sample with water extraction. The results showed a significant difference (p<0.05) between the fresh and dried samples. In conclusion, freeze drying was found to be a good method for maintaining TPC, TFC, and antioxidant activities by FRAP and DPPH methods in the leaves and berries of C. trifolia. (author)

  7. Comparison of different drying methods on the physical properties, bioactive compounds and antioxidant activity of raspberry powders.

    Science.gov (United States)

    Si, Xu; Chen, Qinqin; Bi, Jinfeng; Wu, Xinye; Yi, Jianyong; Zhou, Linyan; Li, Zhaolu

    2016-04-01

    Dehydration has been considered as one of the traditional but most effective techniques for perishable fruits. Raspberry powders obtained after dehydration can be added as ingredients into food formulations such as bakery and dairy products. In this study, raspberry powders obtained by hot air drying (HAD), infrared radiation drying (IRD), hot air and explosion puffing drying (HA-EPD), infrared radiation and microwave vacuum drying (IR-MVD) and freeze drying (FD) were compared on physical properties, bioactive compounds and antioxidant activity. Drying techniques affected the physical properties, bioactive compounds and antioxidant activity of raspberry powders greatly. FD led to significantly higher (P drying methods. However, thermal drying techniques, especially combined drying methods, were superior to FD in final total polyphenol content, total flavonoid content and antioxidant activity. The combined drying methods, especially IR-MVD, showed the highest total polyphenol content (123.22 g GAE kg(-1) dw) and total flavonoid content (0.30 g CAE kg(-1) dw). Additionally, IR-MVD performed better in antioxidant activity retention. Overall, combined drying methods, especially IR-MVD, were found to result in better quality of raspberry powders among the thermal drying techniques. IR-MVD could be recommended for use in the drying industry because of its advantages in time saving and nutrient retention. © 2015 Society of Chemical Industry.

  8. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W

    2015-05-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether metals can be leached from waste activated sludge during the first, acidifying stage of two-stage anaerobic digestion without the supply of leaching agents. These leaching experiments were done with waste activated sludge from the Hoek van Holland municipal wastewater treatment plant (The Netherlands), which contained 342μgg-1 of copper, 487μgg-1 of lead, 793μgg-1 of zinc, 27μgg-1 of nickel and 2.3μgg-1 of cadmium. During the anaerobic acidification of 3gdry weightL-1 waste activated sludge, 80-85% of the copper, 66-69% of the lead, 87% of the zinc, 94-99% of the nickel and 73-83% of the cadmium were leached. The first stage of two-stage anaerobic digestion can thus be optimized as an anaerobic bioleaching process and produce a treated sludge (i.e., digestate) that meets the land-use standards in The Netherlands for copper, zinc, nickel and cadmium, but not for lead.

  9. Activation and characterization of waste coffee grounds as bio-sorbent

    Science.gov (United States)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  10. R ampersand D activities at DOE applicable to mixed waste

    International Nuclear Information System (INIS)

    Erickson, M.D.; Devgun, J.S.; Brown, J.J.; Beskid, N.J.

    1991-01-01

    The Department of Energy (DOE) has established the Office of Environmental Restoration and Waste Management. Within the new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing and evaluation (RDDT ampersand E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Because of US governmental activities dating back to the Manhattan project, mixed radioactive and hazardous waste is an area of particular concern to DOE. The OTD is responsible for a number of R ampersand D activities aimed at improving capabilities to characterize, control, and properly dispose of mixed waste. These activities and their progress to date will be reviewed. In addition, needs for additional R ampersand D on managing mixed waste will be presented. 5 refs., 2 tabs

  11. Dry storage cell for radioactive material

    International Nuclear Information System (INIS)

    Bradley, N.

    1982-01-01

    In a dry storage cell for irradiated nuclear fuel or other highly active waste, cooling air flow is by natural draught in heat exchange with fuel containing canisters housed in channels. To inhibit corrosion by ensuring that the temperature of the air flowing over the canisters does not fall below the dew point when heat generation by decay has fallen, a fraction of the heat energy transferred to the cooling air is recirculated to the air upstream of the canisters. Recirculation of heat energy is effected by recirculation of a fraction of the hot air from downstream of the canisters. (author)

  12. Liquid Secondary Waste Grout Formulation and Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Snyder, Michelle M. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-05-23

    This report describes the results from liquid secondary waste (LSW) grout formulation and waste form qualification tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate new formulations for preparing a grout waste form with high-sulfate secondary waste simulants and the release of key constituents from these grout monoliths. Specific objectives of the LSW grout formulation and waste form qualification tests described in this report focused on five activities: 1.preparing new formulations for the LSW grout waste form with high-sulfate LSW simulants and solid characterization of the cured LSW grout waste form; 2.conducting the U.S. Environmental Protection Agency (EPA) Method 1313 leach test (EPA 2012) on the grout prepared with the new formulations, which solidify sulfate-rich Hanford Tank Waste Treatment and Immobilization Plant (WTP) off-gas condensate secondary waste simulant, using deionized water (DIW); 3.conducting the EPA Method 1315 leach tests (EPA 2013) on the grout monoliths made with the new dry blend formulations and three LSW simulants (242-A evaporator condensate, Environmental Restoration Disposal Facility (ERDF) leachate, and WTP off-gas condensate) using two leachants, DIW and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water (VZPW); 4.estimating the 99Tc desorption Kd (distribution coefficient) values for 99Tc transport in oxidizing conditions to support the IDF performance assessment (PA); 5.estimating the solubility of 99Tc(IV)-bearing solid phases for 99Tc transport in reducing conditions to support the IDF PA.

  13. Radioactive Dry Process Material Treatment Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. J.; Hung, I. H.; Kim, K. K. (and others)

    2007-06-15

    The project 'Radioactive Dry Process Material Treatment Technology Development' aims to be normal operation for the experiments at DUPIC fuel development facility (DFDF) and safe operation of the facility through the technology developments such as remote operation, maintenance and pair of the facility, treatment of various high level process wastes and trapping of volatile process gases. DUPIC Fuel Development Facility (DFDF) can accommodate highly active nuclear materials, and now it is for fabrication of the oxide fuel by dry process characterizing the proliferation resistance. During the second stage from march 2005 to February 2007, we carried out technology development of the remote maintenance and the DFDF's safe operation, development of treatment technology for process off-gas, and development of treatment technology for PWR cladding hull and the results was described in this report.

  14. An overview of a nuclear waste incinerator's erection and commissioning

    International Nuclear Information System (INIS)

    Li Xiaohai; Zhou Lianquan; Wang Peiyi; Yang Liguo; Zhang Xiaobin; Wang Xujin; Li Chuanlian; Dong Jingling; Zheng Bowen; Qiu Mingcai

    2004-01-01

    An incinerator for combustible nuclear waste, with spent oil and graphite included, was established. The processes are briefly described, which combines pyrolysis-incineration of solid, spray-incineration of oils and fixed bed incineration of graphite, followed by off-gas treatment employing both dry and wet means. The results from non-active and active trial run are also reported

  15. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  16. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Habashi, F.

    2000-01-01

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from most of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR

  17. Investigation into the behaviour of highly compacted dry low-level radioactive waste under repository conditions. Task 3 characterization of radioactive waste forms a series of final reports (1985-89) no 12

    International Nuclear Information System (INIS)

    Field, S.N.; Wang, J.

    1991-01-01

    Supercompaction is a process in which drums containing low-level radioactive waste are compressed at a high axial pressure of up to 70 MPa, resulting in a significant saving in the volume of a repository built to store such waste. Recent practice of supercompaction is to compact waste which has been placed in a sealed primary container, typically a 200-litre steel drum. During the process of compaction the drum is squashed with its contents into a flat pellet; and the compaction ratio can reach as high as 20:1. Although the compaction of radioactive waste has long been a popular means for reducing its storage volume, there is virtually no available information as to the physical or chemical characteristics of such compacted wastes. The primary objective of this project has been to investigate the physical and some of the chemical characteristics of such supercompacted pellets. All the work was carried out on full-scale 200-litre drums of simulated, but non-radioactive, waste. The compaction ratio reached in this study ranged from 5 to 21, depending on the type of waste. Upon completion of compaction, all drums exhibited a tendency to expand. The magnitude of ultimate expansion for dry storage was of the order of 1 mm only, whereas under wet storage conditions values were up to about 10 mm. As the presence of moisture can significantly increase the expansion of compacted waste drums or stress developed due to restraint, it is recommended that the waste repository be made water/vapour-tight

  18. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2006-05-08

    Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important

  19. X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS

    International Nuclear Information System (INIS)

    Jurgensen, A; David Missimer, D; Ronny Rutherford, R

    2006-01-01

    Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to

  20. THERMAL POWER LOSS COMPENSATION IN THE PRODUCTION OF COOKED AND DRIED GRAINS WITH HEAT PUMPS USING

    Directory of Open Access Journals (Sweden)

    S. A. Shevtsov

    2015-01-01

    Full Text Available Using scientificand practical experience and analysis of recent innovative activity on modernization of food concentrates production, a new variant of the energy-efficient processing of cereal crops using superheated steam and direct involvement in the cooking and drying process waste energy using the vapor compression heat pump was suggested. A method for production of cereal concentrates, which is realized using microprocessor control of technological parameters. According to the information on the processes of cereals washing, cooking, drying and cooling microprocessor provides regime parameters control under the restrictions due to both yield of cooked and dried cereal of high quality and economic feasibility. At the same time the amount of moisture is continuously determined in the recirculation loop formed by the evaporation from the cereals in the drying process. To implement the proposed method of cooked and dried cereals production it is offered to use refrigerationand compressor unit operating in a heat pump mode. The refrigerant to be used is khladon 12V1 CF2ClBr with a boiling point in the evaporator of 4°C and the condensing temperature of 153.7 °C. The use of the heat pump in the heat supply system of cooked and dried cereals production instead of electric heaters will reduce power costs by 1.72 times. The proposed method for the production and control of technological parameters in the field of the product acceptable technological properties will provide high quality cooked and dried cereals; an increase in thermal efficiency by making full use of the waste heat of superheated steam; the reduction of specific energy consumption by 25-30 %; the creation of waste-free and environmentally friendly technologies for cereal production.

  1. Changes of hydrogen peroxide and radical-scavenging activity of raspberry during osmotic, convective, and freeze-drying.

    Science.gov (United States)

    Novaković, Miroslav M; Stevanović, Snežana M; Gorjanović, Stanislava Ž; Jovanovic, Predrag M; Tešević, Vele V; Janković, Miodrag A; Sužnjević, Desanka Ž

    2011-05-01

    This study was conducted to investigate the influence of different drying treatments on antioxidant (AO) activity and phenolic content of raspberry (Rubus idaeus), cultivar Willamette. Whole raspberry fruits were dried convectively (air-drying), osmotically, and freeze-dried. Acetone-water extracts of fresh and dried raspberries were assessed for total phenolic content by standard Folin-Ciocalteau method. Two AO assays were applied, a recently developed direct current (DC) polarographic assay based on decrease of anodic oxidation current of hydrogen peroxide and widely used radical scavenge against the 1,1-diphenyl-2-picrylhydrazyl (DPPH). Strong correlation has been obtained between both AO assays and total phenolic content. In addition, some individual phenolic compounds present in raspberry have been assessed using DPPH and DC polarographic assay. Comparison and evaluation of drying methods has been based on preservation of AO activity and total phenolic content. Obtained results confirmed superiority of freeze-drying; convective drying caused slight changes while osmotic dehydration showed a significant decrease of phenolic compounds and AO activity. © 2011 Institute of Food Technologists®

  2. Solid waste processing and compaction in the AD2 workshop of the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Singer, B.M.; Vigreux, B.

    1987-01-01

    The AD2 workshop of the new spent nuclear fuel reprocessing plant at La Hague in France will process and package dry solid wastes. The waste packages will be segregated according to their activity levels and stored at temporary on-site facilities. Full commissioning is scheduled for end-1988. However, operation of the TO dry spent field unloading and receiving unit at La Hague required early availability of some waste processing functions and part of the AD2 workshop was commissioned towards the end of 1986. The new La Hague plant is organized into four main zones: - zone 1 is an uncontrolled area with no permanent contamination and zero risk of accidental contamination, - zone 2 is a controlled are with no permanent contamination and low risk of accidental minor contamination, - zone 3 is a controlled area with no permanent contamination but a risk of minor contamination due to various incidents, - zone 4 is a controlled area with permanent contamination. The AD2 workshop will handle all dry solid wastes from zones 2, 3 and 4. It will also: characterize the resulting waste packages (contents, mass, alpha, beta and gamma activity, dose equivalent rate) and check for absence of surface contamination; transfer the packages to temporary on-site storage facilities; store and administer mobile handling tasks and transporters

  3. Spray drying of bead resins: feasibility tests

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; Jones, L.J.

    1984-01-01

    Rockwell International has developed a volume reduction system for low-level reactor wastes based on drying the wastes in a heated-air spray dryer. The drying of slurries of sodium sulfate, boric acid, and powdered ion exchange resins was demonstrated in previous tests. The drying of bead ion exchange resins can be especially difficult due to the relatively large size of bead resins (about 500 to 800 microns) and their natural affinity for water. This water becomes part of the pore structure of the resins and normally comprises 50 t 60 wt % of the resin weight. A 76-cm-diameter spray dryer was used for feasibility tests of spray drying of cation and anion bead resins. These resins were fed to the dryer in the as-received form (similar to dewatered resins) and as slurries. A dry, free-flowing product was produced in all the tests. The volume of the spray-dried product was one-half to one-third the volume of the as-received material. An economic analysis was made of the potential cost savings that can be achieved using the Rockwel spray dryer system. In-plant costs, transportation costs, and burial costs of spray-dried resins were compared to similar costs for disposal of dewatered resins. A typical utility producing 170 m 3 (6,000 ft 3 ) per year of dewatered resins can save $600,000 to $700,000 per year using this volume reduction system

  4. Waste management activities and carbon emissions in Africa

    International Nuclear Information System (INIS)

    Couth, R.; Trois, C.

    2011-01-01

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  5. International Symposium on Disposal of Low Activity Radioactive Waste, Cordoba, Spain, 13-17 December 2004

    CERN Document Server

    2004-01-01

    The topical issues addressed by the symposium were: policies and strategies for low activity radioactive waste; very low activity radioactive waste; low activity radioactive waste from decommissioning; long lived low activity radioactive waste and other materials; and unique low activity radioactive waste.

  6. Improving radioactive waste management: an overview of the Environmental Protection Agency's low-activity waste effort.

    Science.gov (United States)

    Schultheisz, Daniel J; Czyscinski, Kenneth S; Klinger, Adam D

    2006-11-01

    Radioactive waste disposal in the United States is marked by a fragmented regulatory system, with requirements that often focus on the origin or statutory definition of the waste, rather than the hazard of the material in question. It may be possible to enhance public protection by moving toward a system that provides disposal options appropriate for the hazard presented by the waste in question. This paper summarizes aspects of an approach focusing on the potential use, with appropriate conditions, of Resource Conservation and Recovery Act Subtitle-C hazardous waste landfills for disposal of "low-activity" wastes and public comments on the suggested approach.

  7. Investigation of antineoplastic activity of chewing tablets based on dry oat extract and quercetin

    Directory of Open Access Journals (Sweden)

    Ярослав Ростиславович Андрійчук

    2015-07-01

    Full Text Available One of the main goals of domestic pharmaceutical science is development of new medicines. Thus, new tablet drug was created based on dry oat extract and quercetin. Investigation of antineoplastic activity was performed. Antineoplastic activity of investigational drug based on dry oat extract and quercetin was experimentally proved.

  8. DEWATERING TREATMENT SCALE-UP TESTING RESULTS OF HANFORD TANK WASTES

    International Nuclear Information System (INIS)

    TEDESCHI AR

    2008-01-01

    This report documents CH2M HILL Hanford Group Inc. (CH2M HILL) 2007 dryer testing results in Richland, WA at the AMEC Nuclear Ltd., GeoMelt Division (AMEC) Horn Rapids Test Site. It provides a discussion of scope and results to qualify the dryer system as a viable unit-operation in the continuing evaluation of the bulk vitrification process. A 10,000 liter (L) dryer/mixer was tested for supplemental treatment of Hanford tank low-activity wastes, drying and mixing a simulated non-radioactive salt solution with glass forming minerals. Testing validated the full scale equipment for producing dried product similar to smaller scale tests, and qualified the dryer system for a subsequent integrated dryer/vitrification test using the same simulant and glass formers. The dryer system is planned for installation at the Hanford tank farms to dry/mix radioactive waste for final treatment evaluation of the supplemental bulk vitrification process

  9. Leaching of gold from a mechanically and mechanochemically activated waste

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2010-03-01

    Full Text Available The intensification of leaching of gold from a waste using mechanical activation (milling in water and mechanochemical activation(milling in thiourea solution were studied as the pretreatment steps. The leaching of “as-received“ sample in an acid thiourea solutionresulted in 78 % Au dissolution, after mechanical activation 98 % and mechanochemical activation up to 99 % of the gold was leachedduring 120 min. The mechanochemical activation resulted in an increase of the specific surface area of the waste from 0.6 m2g-1to a maximum value of 20.5 m2g-1. The activation was performed in an attritor using variable milling times. The physico-chemical changesin the waste as a consequence of mechanochemical activation had a pronounced influence on the subsequent gold extraction.

  10. Method of processing radioactive liquid wastes

    International Nuclear Information System (INIS)

    Matsuura, Hiroyuki; Kuribayashi, Nobuhide; Minami, Yuji; Kamiyama, Hisashi

    1979-01-01

    Purpose: To greatly reduce the quantity of radioactive liquid wastes by subjecting the same to drying treatment, and to granulate the thus formed dry powders to prevent scattering thereof thereby to fill a storage vessel safely with the powders without contaminating the surroundings. Constitution: Radioactive liquid wastes within a storage tank are supplied to a drier where the wastes are subjected to evaporation treatment, and pulverized. The thus dried powders are temporarily stored in a hopper by means of a screw feeder. The dry powders which have reached a predetermined quantity are supplied to a stirrer-granulator by means of a quantitative screw feeder, and mixed and stirred with a binder sent from a binder storage tank through a binder quantity determining device, whereby the powders are granulated. After the granulation, the granulated powders are extruded by a centrifugal force, and filled in the storage vessel by way of a conduit. (Yoshino, Y.)

  11. Learning the ABCs: Activity based costing in waste operations

    International Nuclear Information System (INIS)

    Zocher, Marc A.

    1992-01-01

    The United States Department of Energy (DOE) is facing a challenging new national role based on current world events, changing public perception and awareness, and a legacy of wastes generated in the past. Clearly, the DOE must put mechanisms in place to comply with environmental rules, regulations, and good management practices so that public health risk is minimized while programmatic costs are controlled. DOE has begun this process and has developed a Five-Year Plan to describe the activities necessary to comply with both cleanup, or environmental restoration, and waste management of existing waste streams. The focus of this paper is how to best manage the treatment, storage, disposal, and transportation of waste throughout the DOE weapons complex by using Activity Based Costing (ABC) to both plan and control expenditures in DOE Waste Management (WM). The basics of ABC, along with an example, will be detailed. (author)

  12. Solar-energy drying systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Atul; Chen, C.R.; Vu Lan, Nguyen [Department of Mechanical Engineering, Kun Shan University, 949, Da-Wan Road, Yung-Kang City, Tainan Hsien 71003 (China)

    2009-08-15

    In many countries of the world, the use of solar thermal systems in the agricultural area to conserve vegetables, fruits, coffee and other crops has shown to be practical, economical and the responsible approach environmentally. Solar heating systems to dry food and other crops can improve the quality of the product, while reducing wasted produce and traditional fuels - thus improving the quality of life, however the availability of good information is lacking in many of the countries where solar food processing systems are most needed. Solar food dryers are available in a range of size and design and are used for drying various food products. It is found that various types of driers are available to suit the needs of farmers. Therefore, selection of dryers for a particular application is largely a decision based on what is available and the types of dryers currently used widely. A comprehensive review of the various designs, details of construction and operational principles of the wide variety of practically realized designs of solar-energy drying systems reported previously is presented. A systematic approach for the classification of solar-energy dryers has been evolved. Two generic groups of solar-energy dryers can be identified, viz. passive or natural-circulation solar-energy dryers and active or forced-convection solar-energy dryers. Some very recent developments in solar drying technology are highlighted. (author)

  13. Drying of restructured chips made from the old stalks of Asparagus officinalis: impact of different drying methods.

    Science.gov (United States)

    Liu, Zhenbin; Zhang, Min; Wang, Yuchuan

    2016-06-01

    Old stalks of Asparagus officinalis, which account for one third of the total length of each spear, are always discarded as waste. To make full use of the resource, a kind of restructured Asparagus officinalis chip was made. The effects of pulse-spouted microwave-assisted vacuum drying (PSMVD), microwave-assisted vacuum drying (MVD) and vacuum drying (VD) on texture, color and other quality parameters of restructured chips were then studied to obtain high-quality dried chips. Results indicated that the drying time was significantly affected by drying methods, and PSMVD had much better drying uniformity than MVD. The expansion ratio and crispness of chips increased with increasing microwave power and vacuum degree. The browning reaction of samples in VD was more serious, which was confirmed by the results of color test and electronic nose. The PSMVD drying method showed much better drying uniformity than MVD. The dried chips obtained by PSMVD showed optimal quality and were more readily accepted by consumers. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Kuribayashi, Hiroshi; Soda, Kenzo; Mihara, Shigeru.

    1988-01-01

    Purpose: To obtain satisfactory plastic solidification products rapidly and smoothly by adding oxidizers to radioactive liquid wastes. Method: Sulfuric acid, etc. are added to radioactive liquid wastes to adjust the pH value of the liquid wastes to less than 3.0. Then, ferrous sulfates are added such that the iron concentration in the liquid wastes is 100 mg/l. Then, after adjusting pH suitably to the drying powderization by adding alkali such as hydroxide, the liquid wastes are dried and powderized. The resultant powder is subjected to plastic solidification by using polymerizable liquid unsaturated polyester resins as the solidifying agent. The thus obtained solidification products are stable in view of the physical property such as strength or water proofness, as well as stable operation is possible even for those radioactive liquid wastes in which the content ingredients are unknown. (Takahashi, M.)

  15. Gravitational sedimentation of flocculated waste activated sludge.

    Science.gov (United States)

    Chu, C P; Lee, D J; Tay, J H

    2003-01-01

    The sedimentation characteristics of flocculated wastewater sludge have not been satisfactorily explored using the non-destructive techniques, partially owing to the rather low solid content (ca. 1-2%) commonly noted in the biological sediments. This paper investigated, for the first time, the spatial-temporal gravitational settling characteristics of original and polyelectrolyte flocculated waste activated sludge using Computerized Axial Tomography Scanner. The waste activated sludge possessed a distinct settling characteristic from the kaolin slurries. The waste activated sludges settled more slowly and reached a lower solid fraction in the final sediment than the latter. Flocculation markedly enhanced the settleability of both sludges. Although the maximum achievable solid contents for the kaolin slurries were reduced, flocculation had little effects on the activated sludge. The purely plastic rheological model by Buscall and White (J Chem Soc Faraday Trans 1(83) (1987) 873) interpreted the consolidating sediment data, while the purely elastic model by Tiller and Leu (J. Chin. Inst. Chem. Eng. 11 (1980) 61) described the final equilibrated sediment. Flocculation produced lower yield stress during transient settling, thereby resulting in the more easily consolidated sludge than the original sample. Meanwhile, the flocculated activated sludge was stiffer in the final sediment than in the original sample. The data reported herein are valuable to the theories development for clarifier design and operation.

  16. Reportable Nuclide Criteria for ORNL Radioactive Waste Management Activities - 13005

    International Nuclear Information System (INIS)

    McDowell, Kip; Forrester, Tim; Saunders, Mark

    2013-01-01

    The U.S. Department of Energy's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee generates numerous radioactive waste streams. Many of those streams contain a large number of radionuclides with an extremely broad range of concentrations. To feasibly manage the radionuclide information, ORNL developed reportable nuclide criteria to distinguish between those nuclides in a waste stream that require waste tracking versus those nuclides of such minimal activity that do not require tracking. The criteria include tracking thresholds drawn from ORNL onsite management requirements, transportation requirements, and relevant treatment and disposal facility acceptance criteria. As a management practice, ORNL maintains waste tracking on a nuclide in a specific waste stream if it exceeds any of the reportable nuclide criteria. Nuclides in a specific waste stream that screen out as non-reportable under all these criteria may be dropped from ORNL waste tracking. The benefit of these criteria is to ensure that nuclides in a waste stream with activities which meaningfully affect safety and compliance are tracked, while documenting the basis for removing certain isotopes from further consideration. (authors)

  17. Method and equipment of processing radioactive laundry wastes

    International Nuclear Information System (INIS)

    Shirai, Takamori; Suzuki, Takeo; Tabata, Masayuki; Takada, Takao; Yamaguchi, Shin-ichi; Noda, Tetsuya.

    1985-01-01

    Purpose: To effectively process radioactive laundry wastes generated due to water-washing after dry-cleaning of protective clothings which have been put on in nuclear facilities. Method: Dry cleaning soaps and ionic radioactive materials contained in radioactive laundry wastes are selectively adsorbed to decontaminate by adsorbents. Then, the adsorbents having adsorbed dry cleaning soaps and ionic radioactive materials are purified by being removed with these radioactive materials. The purified adsorbents are re-used. (Seki, T.)

  18. Solidification of radioactive waste effluents

    International Nuclear Information System (INIS)

    Mergan, L.M.; Cordier, J.-P.

    1981-01-01

    A process and apparatus for solidifying radioactive waste liquid containing dissolved and/or suspended solids is disclosed. The process includes chemically treating for pH adjustment and precipitation of solids, concentrating solids with a thin-film evaporator to provide liquid concentrate containing about 50% solids, and drying the concentrate with a heated mixing apparatus. The heated mixing apparatus includes a heated wall and working means for shearing dried concentrate from internal surfaces and subdividing dry concentrate into dry, powdery particles. The working means includes a rotor and helical means for positively advancing the concentrate and resulting dry particles from inlet to outlet of the mixing apparatus. The dry particles may also be encapsulated in a matrix material. Entrained particles in the vapor stream from the evaporator and mixer are removed in an integral particle separator and the vapor is subsequently condensed and may be recycled upstream of the thin-film evaporator. A section of the mixer may be used for mixing dry particles with the matrix material in a continuous drying and mixing sequence. A section of the mixer also may be used for mixing the treating chemical with the waste liquid

  19. Kinetics, biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying method.

    Science.gov (United States)

    Szychowski, Przemysław J; Lech, Krzysztof; Sendra-Nadal, Esther; Hernández, Francisca; Figiel, Adam; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2018-07-30

    Quinces are attracting interest due to their health and nutritional benefits. Drying kinetics, bioactive compounds, antioxidant activity, and the main sensory parameters were determined in dried quinces, cultivar Leskovač, as affected by the drying method. The highest total polyphenols content was observed in dried samples obtained after freeze drying and convective drying at 50 °C. The best drying treatment, considering only sensory attributes, was vacuum-microwave drying at 480 W, because it led to intermediate dark color and high intensities of basic tastes and key flavor attributes. The studied parameters were finally used to recommend convective drying at 60 °C as the most appropriate drying method for quinces, because it had a high content of total phenolic compounds (2nd best treatment out of 10), a good sensory profile, was cheap, and caused no negative effects on nutritional or sensory parameters; the only disadvantage was its long drying time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Spray drying of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Abrams, R.F.; Monat, J.P.

    1984-01-01

    Full scale performance tests of a Koch spray dryer were conducted on simulated liquid radioactive waste streams. The liquid feeds simulated the solutions that result from radwaste incineration of DAW an ion exchange resins, as well as evaporator bottoms. The integration of the spray dryer into a complete system is discussed

  1. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pierce, E. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Daniel, W. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Herman, C. C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Miller, D. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Brown, C. F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, N. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Neeway, J. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Valenta, M. M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gill, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, D. J. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Robbins, R. A. [Washington River Protection Solutions (WRPS), Richland, WA (United States); Thompson, L. E. [Washington River Protection Solutions (WRPS), Richland, WA (United States)

    2015-10-01

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Waste and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.

  2. CRNL active waste incinerator

    International Nuclear Information System (INIS)

    McQuade, D.W.

    1965-02-01

    At CRNL the daily collection of 1200 pounds of active combustible waste is burned in a refractory lined multi-chamber incinerator. Capacity is 500-550 pounds per hour; volume reduction 96%. Combustion gases are cooled by air dilution and decontaminated by filtration through glass bags in a baghouse dust collector. This report includes a description of the incinerator plant, its operation, construction and operating costs, and recommendations for future designs. (author)

  3. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    OpenAIRE

    Popov Stevan D.; Dodić Siniša N.; Mastilović Jasna S.; Dodić Jelena M.; Popov-Raljić Jovanka V.

    2005-01-01

    The waste brewer's yeast S. cerevisiae (activated and non-activated) was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positive...

  4. Waste production and regional growth of marine activities an econometric model.

    Science.gov (United States)

    Bramati, Maria Caterina

    2016-11-15

    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Properties of radioactive wastes and waste containers

    International Nuclear Information System (INIS)

    Morcos, N.; Dayal, R.

    1982-01-01

    This program is sponsored by the Nuclear Regulatory Commission to address basic concerns in assessing the performance of solidified radwaste. Experiments were initiated to address these concerns. In particular, leachability of solidified radwastes and the physical stability of the ensuing waste forms were evaluated. In addition, leaching experiments designed to address the effects of alternating wet/dry cycles and of varying the length of these cycles on the leach behavior of waste forms were initiated

  6. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    International Nuclear Information System (INIS)

    Peeler, D.

    1999-01-01

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  7. Underground disposal of high active waste

    International Nuclear Information System (INIS)

    Engelmann, H.J.

    1982-01-01

    This paper is concerned with the engineering aspects relating to the deep burial of high active waste in stable geological formations. The design of a repository depends upon a number of factors not least of which is the type of rock in which it is to be constructed. High level wastes must be isolated from man's environment for such periods that subsequent release will not result in an unacceptable hazard to human population. Design aspects of repositories are reviewed and conceptual design are present in relation to the geological formations under consideration. Over long time periods the most probable mode of release of radionuclides is through groundwater contacting the waste. The proposed concepts therefore include the use of engineered and natural barriers to delay the eventual release of waterborne radionuclides into mans environment. In all cases the ultimate barrier will be the geological formation. Nevertheless, depending upon the type of host rock, use will be made of various additional engineered barriers to delay water contacting the high level waste for several hundreds of years. During this time the level of radiation and associated heat emitted by the waste, will fall by several orders of magnitude and the rock temperatures within a repository will be returning to ambient. Thereafter the residual activity will mainly arise from the actinides. Containment may be enhanced by surrounding the canisters with materials having high sorption capabilities for many of the radionuclides involved. The depth at which a repository is excavated must be sufficient to ensure that the overburden will withstand changes in environmental conditions. The depth of cover required in different rock types may vary. In clay excavating at depth of up to -250 m appears feasible, while in hard rocks and salts working at depth of up to -1000 m is entirely practicable. (orig./RW)

  8. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    Science.gov (United States)

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  9. Effect of freeze-drying on the antioxidant compounds and antioxidant activity of selected tropical fruits.

    Science.gov (United States)

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p dried fruit samples, except muskmelon. There was no significant (p > 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  10. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Sajeena Beevi, B.; Madhu, G.; Sahoo, Deepak Kumar

    2015-01-01

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day −1 . • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day −1

  11. Performance and kinetic study of semi-dry thermophilic anaerobic digestion of organic fraction of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Sajeena Beevi, B., E-mail: sajeenanazer@gmail.com [Department of Chemical Engineering, Govt. Engineering College, Thrissur, Kerala 680 009 (India); Madhu, G., E-mail: profmadhugopal@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India); Sahoo, Deepak Kumar, E-mail: dksahoo@gmail.com [Division of Safety & Fire Engineering, School of Engineering, Cochin University of Science and Technology, Cochin, Kerala 682 022 (India)

    2015-02-15

    Highlights: • Performance of the reactor was evaluated by the degradation of volatile solids. • Biogas yield at the end of the digestion was 52.9 L/kg VS. • Value of reaction rate constant, k, obtained was 0.0249 day{sup −1}. • During the digestion 66.7% of the volatile solid degradation was obtained. - Abstract: Anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW) is promoted as an energy source and waste disposal. In this study semi dry anaerobic digestion of organic solid wastes was conducted for 45 days in a lab-scale batch experiment for total solid concentration of 100 g/L for investigating the start-up performances under thermophilic condition (50 °C). The performance of the reactor was evaluated by measuring the daily biogas production and calculating the degradation of total solids and the total volatile solids. The biogas yield at the end of the digestion was 52.9 L/kg VS (volatile solid) for the total solid (TS) concentration of 100 g/L. About 66.7% of the volatile solid degradation was obtained during the digestion. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. The value of reaction rate constant, k, obtained was 0.0249 day{sup −1}.

  12. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  13. Activity measurements at a waste volume reduction facility

    International Nuclear Information System (INIS)

    Richardson, J.; Lee, D.A.

    1979-01-01

    The monitoring program for Ontario Hydro's radioactive waste management site will be described, several aspects of which will be discussed in detail. The program at this facility includes categorization, volume reduction processing, and storage of solid radioactive wastes from nuclear generating stations of the CANDU type. At the present time, two types of volume reduction process are in operation - incineration and compaction. Following categorization and processing, wastes are stored in in-ground concrete trenches or tile-holes, or in above-ground quadricells. The monitoring program is divided into three areas: public safety, worker safety, and structural integrity. Development projects with respect to the monitoring program have been undertaken to achieve activity accounting for the total waste management program. In particular, a field measurement for the radioactivity content of radioactive ash containers and compacted waste drums

  14. Hanford Immobilized Low-Activity Waste Product Acceptance Test Plan

    Energy Technology Data Exchange (ETDEWEB)

    Peeler, D.

    1999-06-22

    'The Hanford Site has been used to produce nuclear materials for the U.S. Department of Energy (DOE) and its predecessors. A large inventory of radioactive and mixed waste, largely generated during Pu production, exists in 177 underground single- and double-shell tanks. These wastes are to be retrieved and separated into low-activity waste (LAW) and high-level waste (HLW) fractions. The DOE is proceeding with an approach to privatize the treatment and immobilization of Handord''s LAW and HLW.'

  15. Regulation of Federal radioactive waste activities. Report to Congress on extending the Nuclear Regulatory Commission's licensing or regulatory authority to Federal radioactive waste storage and disposal activities

    International Nuclear Information System (INIS)

    1979-09-01

    The report contains two recommendations for extending the Commission's regulatory authority: (1) NRC licensing authority should be extended to cover all new DOE facilities for disposal of transuranic (TRU) waste and nondefense low-level waste. (2) A pilot program, focused on a few specific DOE waste management activities, should be established to test the feasibility of extending NRC regulatory authority on a consultative basis to DOE waste management activities not now covered by NRC's licensing authority or its extension as recommended in Recommendation 1

  16. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Science.gov (United States)

    2013-07-31

    ... section 307 of the Clean Water Act (CWA)); A municipal solid waste landfill that is regulated under 40 CFR... laundries and dry cleaners could dispose of sludge from cleaning solvent-contaminated wipes in solid waste landfills if the sludge does not exhibit a hazardous waste characteristic. \\8\\ The Agency stated in the...

  17. Development of acceptance specifications for low-activity waste from the Hanford tanks

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Kier, P.H.; Brown, N.R.

    1997-01-01

    Low-activity products will be in the form of soldified waste and optional matrix and filler materials enclosed in sealed metal boxes. Acceptance specifications limit the physical characteristics of the containers, the chemical and physical characteristics of the waste form and other materials that may be in the container, the waste loading, and the radionuclide leaching characteristics of the waste form. The specifications are designed to ensure that low-activity waste products will be compatible with the driving regulatory and operational requirements and with existing production technologies

  18. Method for processing powdery radioactive wastes

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Matsuura, Hiroyuki; Tomita, Toshihide; Nakayama, Yasuyuki.

    1978-01-01

    Purpose: To solidify radioactive wastes with ease and safety at a high reaction speed but with no boiling by impregnating the radioactive wastes with chlorostyrene. Method: Beads-like dried ion exchange resin, powdery ion exchange resin, filter sludges, concentrated dried waste liquor or the like are mixed or impregnated with a chlorostyrene monomer dissolving therein a polymerization initiator such as methyl ethyl ketone peroxide and benzoyl peroxide. Mixed or impregnated products are polymerized to solid after a predetermined of time through curing reaction to produce solidified radioactive wastes. Since inflammable materials are used, this process has a high safety. About 70% wastes can be incorporated. The solidified products have a strength as high as 300 - 400 kg/cm 3 and are suitable to ocean disposal. The products have a greater radioactive resistance than other plastic solidification products. (Seki, T.)

  19. Radioactive waste management and spent nuclear fuel storing. Options and priorities

    International Nuclear Information System (INIS)

    Popescu, Ion

    2001-01-01

    As a member of the states' club using nuclear energy for peaceful applications, Romania approaches all the activities implied by natural uranium nuclear fuel cycle, beginning with uranium mining and ending with electric energy generation. Since, in all steps of the nuclear fuel cycle radioactive wastes are resulting, in order to protect the environment and the life, the correct and competent radioactive waste management is compulsory. Such a management implies: a. Separating the radioisotopes in all the effluences released into environment; b. Treating separately the radioisotopes to be each properly stored; c. Conditioning waste within resistant matrices ensuring long term isolation of the radioactive waste destined to final disposal; d. Building radioactive waste repositories with characteristics of isolation guaranteed for long periods of time. To comply with the provisions of the International Convention concerning the safety of the spent nuclear fuel and radioactive waste management, signed on 5 September 1997, Romania launched its program 'Management of Radioactive Wastes and Dry Storing of Spent Nuclear Fuel' having the following objectives: 1. Establishing the technology package for treating and conditioning the low and medium active waste from Cernavoda NPP to prepare them for final disposal; 2. Geophysical and geochemical investigations of the site chosen for the low and medium active final disposal (DFDSMA); 3. Evaluating the impact on environment and population of the DFDSMA; 4. Providing data necessary in the dry intermediate storing of spent nuclear fuel and the continuous and automated surveillance; 5. Establishing multiple barriers for spent nuclear fuel final disposal in order to establish the repository in granitic rocks and salt massives; 6. Designing and testing containers for final disposal of spent nuclear fuel guaranteeing the isolation over at least 500 years; 7. Computational programs for evaluation of radionuclide leakage in environment in

  20. Decision for counting condition of radioactive waste activities measuring by Ludlum detector

    International Nuclear Information System (INIS)

    Bambang-Purwanto

    2000-01-01

    Radioactive waste must measured for activities before be throw out to environment. Measuring will be important in ordered to know activities can be given management direction. For activities radioactive waste on limit threshold value must processed, but for under limit threshold value activities can be throw out to environment. Activities measuring for solid radioactive waste and liquid by (Total, β, γ) Ludlum detector connected Mode-1000 Scaler Counting. Before measuring for solid waste activities was decisioned optimally counting condition, and be obtained are : sample weight 3.5 gram, heating temperature of 125 o C and heating time at 60 minutes. Activities measuring result by total detector ranges from (0.68-0.71) 10 -1 μCi/gram, β detector ranges from (0.24-0.25) 10 -1 μCi/gram and γ detector ranges from (0.35-0.37) μCi/gram

  1. Source separation of household waste: A case study in China

    International Nuclear Information System (INIS)

    Zhuang Ying; Wu Songwei; Wang Yunlong; Wu Weixiang; Chen Yingxu

    2008-01-01

    A pilot program concerning source separation of household waste was launched in Hangzhou, capital city of Zhejiang province, China. Detailed investigations on the composition and properties of household waste in the experimental communities revealed that high water content and high percentage of food waste are the main limiting factors in the recovery of recyclables, especially paper from household waste, and the main contributors to the high cost and low efficiency of waste disposal. On the basis of the investigation, a novel source separation method, according to which household waste was classified as food waste, dry waste and harmful waste, was proposed and performed in four selected communities. In addition, a corresponding household waste management system that involves all stakeholders, a recovery system and a mechanical dehydration system for food waste were constituted to promote source separation activity. Performances and the questionnaire survey results showed that the active support and investment of a real estate company and a community residential committee play important roles in enhancing public participation and awareness of the importance of waste source separation. In comparison with the conventional mixed collection and transportation system of household waste, the established source separation and management system is cost-effective. It could be extended to the entire city and used by other cities in China as a source of reference

  2. Apparatus for waste disposal of radioactive hazardous waste

    International Nuclear Information System (INIS)

    Burack, R.D.; Stenger, W.J.; Wolfe, C.R.

    1992-01-01

    This patent describes an apparatus for concentrating dissolved and solid radioactive materials carried in a waste water solution containing a hazardous chelating agent used for cleaning nuclear equipment. It comprises oxidizing chamber means, separator means coupled to the oxidizing chamber means; ion exchange means containing an ion exchange resin; dryer means for receiving the radioactive solids from the separator means and for producing dry solids; and packaging means for receiving the dry solids and spent ion exchange resins containing the removed dissolved radioactive materials and for packaging the dry solids and spent resins in solid form

  3. Active and passive computed tomography mixed waste focus area final report

    International Nuclear Information System (INIS)

    Becker, G K; Camp, D C; Decman, D J; Jackson, J A; Martz, H E; Roberson, G P.

    1998-01-01

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy s (DOE) mixed-waste, low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user or customer technology selection. The active and passive computed tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory (LLNL) has developed the active and passive computed tomography (A ampersand XT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of their classification-low level, transuranic or mixed. Mixed waste contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that

  4. Long-term management of wastes resulting from dismantling operations. Storing the very low-level activity wastes at Morvilliers

    International Nuclear Information System (INIS)

    Duret, F.; Dutzer, M.; Beranger, V.; Lecoq, P.

    2003-01-01

    Extension of dismantling operations in France in the years to come poses the question of availability of long-term waste facility. Large amount of such wastes will be produced after progressive shutdown of the 58 pressurized water reactors now in operation, not before 2010. However, France is already confronted with dismantling of 9 power reactors (6 of which of gas cooled graphite type), the first reprocessing plant at Marcoule, as well as, dismantling of other installations, for instance the CEA reactors or laboratories. The systems of processing the dismantling waste are not different from those used for wastes resulting from nuclear operations. For the high-level or long-term intermediate level activity disposal the debates must start by 2006, as based on the results of the research conducted according to different provisions of the December 30, 1991 law. These wastes represent however small amounts from the dismantling (around 2000 t for the 9 reactors at shutdown) and they will be stored until a decision will be made. A specific storing system should be implemented by 2008-2010 for the graphite wastes (around 23,000 t) which contain significant amount of long-lived radioelements, although their gross activity is low. But the most significant amount will come from low-level or intermediate-level of short lifetime or from wastes of very low activity. The first category is stored at Storage Center at Aube (CSA), its capacity being of 1,000,000 m 3 of drums. The total volume stored by the end of 2002 amounted 136,500 m 3 with an annual delivering of 12-15,000 m 3 at design rate of 30,000 m 3 /y. This center will be able to absorb the flux increase resulting from dismantling of the decommissioned nuclear installations (around 50,000 t from the dismantling of the 9 power reactor). The Center at Aube can be also adapted for storing wastes of large sizes as for instance the lid of the reactor vessel. According to the French regulation, the wastes produced within a

  5. Activation analyses updating the ITER radioactive waste assessment

    International Nuclear Information System (INIS)

    Pampin, R.; Zheng, S.; Lilley, S.; Na, B.C.; Loughlin, M.J.; Taylor, N.P.

    2012-01-01

    Highlights: ► Comprehensive updated of ITER radwaste assessment. ► Latest coupled neutronics and activation methods. ► Type A waste at shutdown decays to TFA within 100 years. ► Most type B waste at shutdown is still type B after 100 years. - Abstract: A study is reported which computes the radiation transport and activation response throughout the ITER machine and updates the ITER radioactive waste assessment using modern 3D models and up-to-date methods. The latest information on component design, maintenance, replacement schedules and materials is adopted. The radwaste classification is revised for all the major components of ITER, as well as several representative port plugs. Results include categorisation snapshots at different decay times, time histories of radiological quantities throughout the machine, and guidelines on interim decay times for components. All plasma-facing materials except tungsten are found to classify as type B due to the transmutation of their main constituents. Major contributors to the IRAS index of all materials are reported. Elemental concentration limits for type A classification of first wall and divertor materials are obtained; for the steels, only a reduction in service lifetime can reduce the waste class. Comparison of total waste amounts with earlier assessments is limited by the fact that analyses of some components are still preliminary; the trend, however, indicates a potential reduction in the total amount of waste if component segregation is demonstrated.

  6. Time to rethink nuclear waste storage

    International Nuclear Information System (INIS)

    Flynn, J.; Kasperson, R.; Kunreuther, H.; Slovic, P.

    1992-01-01

    The authors feel that given the levels of public opposition and distrust, congress should scrap the current nuclear waste storage program and reconsider the options. They observe that no compelling reason currently exists for siting a permanent repository at an early date. Technology developed in the past decade, especially dry-cask storage, provides assurance that wastes from commercial reactors can be stored safely for a lengthy period at current sites. In the longer term, reprocessing may reduce the volume of high-level wastes; storage elsewhere than in a geological repository may prove attractive; and experimental techniques such as transmutation - aimed at radically reducing the amount of time that wastes remain highly radioactive - could help solve the problem. In the meantime, the authors suggest that the US must begin a long-term effort to engage the public in a process of active collaboration. In doing so, the US has much to learn from other countries, where innovative approaches and techniques have began to establish public confidence

  7. Volume reduction through incineration of low-activity radioactive wastes

    International Nuclear Information System (INIS)

    Eymeri, J.; Gauthey, J.C.; Chaise, D.; Lafite, G.

    1993-01-01

    The aim of the waste treatment plant, designed by Technicatome (CEA) for an Indonesian Nuclear Research Center, is to reduce through incineration the volume of low-activity radioactive wastes such as technological solids (cotton, PVC, paper board), biological solids (animal bones) and liquids (cutting fluids...). The complete combustion is realized with a total air multi-fuel burner (liquid wastes) and flash pyrolysis-complete combustion (solid wastes). A two stage flue gas filtration system, a flue gas washing system, and an ash recovery system are used. A test platform has been built. 3 figs

  8. Dry oxidation behaviour of metallic containers during long term interim storages

    International Nuclear Information System (INIS)

    Desgranges, C.; Terlain, A.; Bertrand, N.; Gauvain, D.

    2004-01-01

    Low-alloyed steels or carbon steels are considered candidate materials for the fabrication of some nuclear waste package containers for long term interim storage. The containers are required to remain retrievable for centuries. One factor limiting their performance on this time scale is corrosion. The estimation of the metal thickness lost by dry oxidation over such long periods requires the construction of reliable models from short-time experimental data. Two complementary approaches for modelling dry oxidation have been considered. First, basic models following simple analytical laws from classical oxidation theories have been adjusted on the apparent activation energy of oxidation deduced from experimental data. Their extrapolation to long oxidation periods confirms that the expected damage due to dry oxidation could be small. Second, a numerical model able to take in consideration several mechanisms controlling the oxide scale growth is under development. Several preliminary results are presented. (authors)

  9. 21 CFR 344.12 - Ear drying aid active ingredient.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Ear drying aid active ingredient. 344.12 Section 344.12 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... alcohol 95 percent in an anhydrous glycerin 5 percent base. [65 FR 48905, Aug. 10, 2000] ...

  10. Drying effect on flavonoid composition and antioxidant activity of immature kumquat.

    Science.gov (United States)

    Lou, Shyi-Neng; Lai, Yi-Chun; Huang, Jia-De; Ho, Chi-Tang; Ferng, Lin-Huei A; Chang, Yung-Chung

    2015-03-15

    A seven flavonoids in hot water extract of immature kumquat (Citrus japonica var. margarita) were identified and quantified (mg/100g fresh fruit): 3',5'-di-C-β-glucopyranosylphloretin (DGPP, 285.9 ± 2.9 mg/100g), acacetin 8-C-neohesperidoside (margaritene, 136.2 ± 2.6 mg/100g), acacetin 6-C-neohesperidoside (isomargaritene, 119.1 ± 1.8 mg/100g), fortunellin (acacetin 7-O-neohesperidoside, 28.5 ± 0.7 mg/100g), apigenin 8-C-neohesperidoside (16.9 ± 0.1mg/100g), poncirin (isosakuranetin 7-O-neohesperidoside, 5.1 ± 0.1mg/100g), and rhoifolin (apigenin 7-O-neohesperidoside, 2.0 ± 0.1mg/100g). When immature kumquat was dried at 110 and 130°C for 0.5h, the antioxidant activity, total phenolic content and identified flavonoids increased. The UV absorbance of browning products of immature kumquat dried at 130°C for 1.5h increased dramatically, while the identified flavonoids decreased. Therefore, it was concluded that drying below 130°C for 1.0 h, could release phenolic compounds, which resulted in the increasing antioxidant activity. Drying at 130°C for 1.5h, it might be due to the effect of formed browning products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Activated Carbon from the Chinese Herbal Medicine Waste by H3PO4 Activation

    Directory of Open Access Journals (Sweden)

    Tie Mi

    2015-01-01

    Full Text Available Large amounts of Chinese herbal medicine wastes produced by the medicinal factories have been mainly landfilled as waste. In this study, via phosphoric acid activation, a Chinese herbal medicine waste from Magnolia officinalis (CHMW-MO was prepared for activated carbon (CHMW-MO-AC. The effect of preparation conditions (phosphoric acid/CHMW-MO impregnation ratio, activation temperature, and time of activated carbon on yield of CHMW-MO-AC was investigated. The surface area and porous texture of the CHMW-MO-ACs were characterized by nitrogen adsorption at 77 K. The SBET and pore volume were achieved in their highest value of 920 m2/g and 0.703 cm3/g, respectively. Thermal gravity analysis and scanning electron microscope images showed that CHMW-MO-ACs have a high thermal resistance and pore development. The results indicated that CHMW-MO is a good precursor material for preparing activated carbon, and CHMW-MO-AC with well-developed mesopore volume can be prepared by H3PO4 activation.

  12. Removal of Co(II) from waste water using dry cow dung powder : a green ambrosia to soil

    Science.gov (United States)

    Bagla, Hemlata; Khilnani, Roshan

    2015-04-01

    Co(II) is one of the hazardous products found in the waste streams. The anthropogenic activities are major sources of Co(II) in our environment. Some of the well-established processes such as chemical precipitation, membrane process, liquid extraction and ion exchange have been applied as a tool for the removal of this metal ion [1]. All the above methods are not considered to be greener due to some of their shortcomings such as incomplete metal ion removal, high requirement of energy and reagents, generation of toxic sludge or other waste materials which in turn require further treatments for their cautious disposal. The present investigation entails the application of dry cow dung powder (DCP) as an indigenous, inexpensive and eco-friendly material for the removal of Co(II) from aqueous medium. DCP, is naturally available bio-organic, complex, polymorphic humified fecal matter of cow and is enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic-aromatic species such as 'Humic acid' (HA), Fulvic acid, Ulmic acid [2,3]. Batch biosorption experiments were conducted employing 60Co(II) as a tracer and effect of various process parameters such as pH (1-8), temperature (283-363K), amount of biosorbent (5-40 g/L), time of equilibration (0-30 min), agitation speed (0-4000 rpm), concentration of initial metal ions (0.5-20 mg/mL) and interfering effect of different organic as well as inorganic salts were studied. The Kinetic studies were carried out employing various models but the best fitting was given by Lagergren Pseudo-second order model [4] with high correlation coefficient R2 value of 0.999 and adsorption capacity of 2.31 mg/g. The thermodynamic parameters for biosorption were also evaluated which indicated spontaneous and exothermic process with high affinity of DCP for Co(II). Many naturally available materials are used for biosorption of hazardous metal pollutants, where most of them are physically or chemically modified. In this research

  13. Gunite and associated tanks dry well conductivity monitoring report, Oak Ridge National Laboratory, Oak Ridge, Tennessee, February 1998 - December 1998

    International Nuclear Information System (INIS)

    1999-04-01

    A waste removal program is being implemented for the Gunite and Associated Tanks Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee. The waste is being removed by means of remotely operated, in-tank, confined sluicing equipment. During sluicing operations the dry wells adjacent to each of the tanks are instrumented so that potential releases can be detected by means external to the tank. The method of detection is by monitoring the electrical conductivity of the water in the dry well associated with each tank. This report documents the dry well conductivity monitoring data for the period from February 1998 through December 1998. The dry wells monitored during this period include DW-5, DW-6, DW-7, DW-8, DW-9 and DW-10. The conductivity of the water passing through Pump Station 1 (PS1) was also monitored. During this period the sluicing activities at Tank W-6 were initiated and successfully completed. In addition, flight mixers were used to remove wastes from Tank W-5, and sluicing operations were initiated on Tank W-7. Presented in this report are the dry well conductivity, rainfall, tank level, and other appropriate information relevant to the analysis and interpretation of the monitoring data for the reporting period. A thorough analysis of the monitoring results from the six dry wells in the STF and PS1 for the period between February 1998 and December 1998 indicates that no releases have occurred from the gunite tanks being monitored. Overall, the dry well conductivity monitoring continues to provide a robust and sensitive method for detecting potential releases from the gunite tanks and for monitoring seasonal and construction-related changes in the dry well and drain system

  14. Design requirements document for project W-520, immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Ashworth, S.C.

    1998-01-01

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity

  15. Design requirements document for project W-520, immobilized low-activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, S.C.

    1998-08-06

    This design requirements document (DRD) identifies the functions that must be performed to accept, handle, and dispose of the immobilized low-activity waste (ILAW) produced by the Tank Waste Remediation System (TWRS) private treatment contractors and close the facility. It identifies the requirements that are associated with those functions and that must be met. The functional and performance requirements in this document provide the basis for the conceptual design of the Tank Waste Remediation System Immobilized Low-Activity Waste disposal facility project (W-520) and provides traceability from the program-level requirements to the project design activity.

  16. Transportation research activities in support of nuclear waste management programs

    International Nuclear Information System (INIS)

    Allen, G.C. Jr.; Cashwell, J.W.; Jefferson, R.M.

    1983-01-01

    Transportation Technology Center has been conducting a wide range of technical research activities to assure the ability to transport radioactive materials in a safe, reliable manner. These activities include tasks in basic, analysis methodology and system research areas. Recently, the requirements of defense waste shipments have served as a focal point for development tasks with the expectation that they would serve as a precursor for commercial activities. The passage of the Nuclear Waste Policy Act has placed additional responsibility on the Department of Energy for concerns involving the shipments of civilian materials. The development of additional research responsibilities is expected to proceed concurrently with the evolution of the transportation mission plan for civilian spent fuel and high-level wastes

  17. Modeling of Seepage Losses in Sewage Sludge Drying Bed ...

    African Journals Online (AJOL)

    This research was carried out to develop a model governing seepage losses in sewage sludge drying bed. The model will assist in the design of sludge drying beds for effective management of wastes derived from households' septic systems. In the experiment conducted this study, 125kg of sewage sludge, 90.7% moisture ...

  18. NDA generic research programme for higher activity waste management issues - 16390

    International Nuclear Information System (INIS)

    McKinney, James; Brownridge, Melanie

    2009-01-01

    NDA has a responsibility to ensure decommissioning activities are sufficiently technically underpinned and appropriate Research and Development (Rand D) is carried out. The NDA funds research and development (R and D) indirectly via the Site Licence Companies (SLCs) or directly. The main component of directly funded R and D is the NDA Direct Research Portfolio (DRP). The DRP is split into four framework areas: - University Interactions; - Waste Processing; - Material Characterisation; - Actinide and Strategic Nuclear Materials. These four framework areas were competed through an Official Journal of European Union (OJEU) process in 2008. Although all four areas involve waste management, Waste Processing and Material Characterisation specifically deal with Higher Activity Waste (HAW) waste management issues. The Waste Processing area was awarded to three groups: (i) National Nuclear Laboratory (NNL), (ii) Consortium led by Hyder Consulting Ltd, and (iii) Consortium led by UKAEA Ltd. The Material Characterisation area was awarded to three groups: (i) NNL, (ii) Serco, and (iii) Consortium led by UKAEA Ltd. The initial work in Waste Processing and Material Characterisation was centered on establishing a forward research programme to address the generic needs of the UK civil nuclear industry and the NDA strategic drivers for waste management and land quality. This has been achieved by the four main framework contractors from the Waste Processing and Materials Characterisation areas working together with the NDA to identify the key research themes and begin the development of the NDA's HAW Management Research Programme. The process also involves active engagement with both industry and regulators via the Nuclear Waste Research Forum (NWRF). The NDA's HAW Management Research Programme includes a number of themes: - Optimisation of Interim Store Operation and Design; - Alternative Waste Encapsulants; - Waste Package Integrity; - Alternative Waste treatment methods

  19. Dry storage of spent fuel

    International Nuclear Information System (INIS)

    Jeffrey, R.

    1993-01-01

    Scottish Nuclear's plans to build and operate dry storage facilities at each of its two nuclear power station sites in Scotland are explained. An outline of where waste materials arise as part of the operation and decommissioning of nuclear power stations, the volumes for each category of high-, intermediate-and low-level wastes and the costs involved are given. The present procedure for the spent fuels from Hunterston-B and Torness stations is described and Scottish Nuclear's aims of driving output up and costs down are studied. (UK)

  20. Sizing and melting development activities using noncontaminated metal at the Waste Experimental Reduction Facility

    International Nuclear Information System (INIS)

    Larsen, M.M.; Logan, J.A.

    1984-05-01

    EG and G Idaho, Inc., has established the Waste Experimental Reduction Facility (WERF) at the Idaho National Engineering Laboratory (INEL) to develop the capability to reduce the volume that low-level beta/gamma wastes occupy at the disposal site. The work effort at WERF includes a waste sizing development activity (WSDA), a waste melting development activity (WMDA), and a waste incineration development activity (WIDA). This report describes work and developments to date in the WSDA and WMDA with noncontaminated metallic waste in preparation for operations at WERF involving beta/gamma-contaminated metal

  1. Calculation of combustible waste fraction (CWF) estimates used in organics safety issue screening

    International Nuclear Information System (INIS)

    Heasler, P.G.; Gao, F.; Toth, J.J.

    1998-08-01

    This report describes how in-tank measurements of moisture (H 2 O) and total organic carbon (TOC) are used to calculate combustible waste fractions (CWF) for 138 of the 149 Hanford single shell tanks. The combustible waste fraction of a tank is defined as that proportion of waste that is capable of burning when exposed to an ignition source. These CWF estimates are used to screen tanks for the organics complexant safety issue. Tanks with a suitably low fraction of combustible waste are classified as safe. The calculations in this report determine the combustible waste fractions in tanks under two different moisture conditions: under current moisture conditions, and after complete dry out. The first fraction is called the wet combustible waste fraction (wet CWF) and the second is called the dry combustible waste fraction (dry CWF). These two fractions are used to screen tanks into three categories: if the wet CWF is too high (above 5%), the tank is categorized as unsafe; if the wet CWF is low but the dry CWF is too high (again, above 5%), the tank is categorized as conditionally safe; finally, if both the wet and dry CWF are low, the tank is categorized as safe. Section 2 describes the data that was required for these calculations. Sections 3 and 4 describe the statistical model and resulting fit for dry combustible waste fractions. Sections 5 and 6 present the statistical model used to estimate wet CWF and the resulting fit. Section 7 describes two tests that were performed on the dry combustible waste fraction ANOVA model to validate it. Finally, Section 8 presents concluding remarks. Two Appendices present results on a tank-by-tank basis

  2. Confirmation of the decontamination ability using the dry blasting device

    International Nuclear Information System (INIS)

    Izuka, Hirotaka; Tsuhara, Yuuki; Ito, Hajime; Fukuda, Kazuhiro; Sugahara, Yasuhiro; Kanamori, Yoji

    2017-01-01

    The decontamination method of metallic waste was considered to reduce the radioactive waste in decommissioning a nuclear power plant. Stainless steel occupies most for the material of the system equipment of PWR. The contamination by radioactive materials is stuck in the surface in the equipment as the metal oxide (e.g. chromium oxide, iron oxide). The method of efficient abrasion by the dry blasting device was considered to remove metal oxide from stainless steel. The kind of blasting abrasives material and the abrasive operation condition (the blasting angle, rate) were considered to investigate the abrasion ability to stainless steel. The abrasive condition which was appropriate abrasive ability was investigated and appropriate blasting abrasives was selected to stainless steel. The decontamination test by selected blasting abrasives and abrasive operation condition was performed using samples and the relation between abrasive rate and activity concentration was confirmed. The metallic radioactive waste was confirmed to be able to decontaminate to the clearance level. (author)

  3. Polyethylene encapsulation of mixed wastes: Scale-up feasibility

    International Nuclear Information System (INIS)

    Kalb, P.D.; Heiser, J.H.; Colombo, P.

    1991-01-01

    A polyethylene process for the improved encapsulation of radioactive, hazardous, and mixed wastes have been developed at Brookhaven National Laboratory (BNL). Improvements in waste loading and waste form performance have been demonstrated through bench-scale development and testing. Maximum waste loadings of up to 70 dry wt % mixed waste nitrate salt were achieved, compared with 13--20 dry wt % using conventional cement processes. Stability under anticipated storage and disposal conditions and compliance with applicable hazardous waste regulations were demonstrated through a series of lab-scale waste form performance tests. Full-scale demonstration of this process using actual or surrogate waste is currently planned. A scale-up feasibility test was successfully conducted, demonstrating the ability to process nitrate salts at production rates (up to 450 kg/hr) and the close agreement between bench- and full-scale process parameters. Cored samples from the resulting pilot-scale (114 liter) waste form were used to verify homogeneity and to provide additional specimens for confirmatory performance testing

  4. Water Reclamation using Spray Drying, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new spray drying technology for the recovery and recycle of water while stabilizing the solid wastes or residues as found in advanced life support...

  5. Active waste disposal monitoring at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-10-01

    This report describes an active waste disposal monitoring system proposed to be installed beneath the low-level radioactive disposal site at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory, Idaho. The monitoring instruments will be installed while the waste is being disposed. Instruments will be located adjacent to and immediately beneath the disposal area within the unsaturated zone to provide early warning of contaminant movement before contaminants reach the Snake River Plain Aquifer. This study determined the optimum sampling techniques using existing monitoring equipment. Monitoring devices were chosen that provide long-term data for moisture content, movement of gamma-emitting nuclides, and gas concentrations in the waste. The devices will allow leachate collection, pore-water collection, collection of gasses, and access for drilling through and beneath the waste at a later time. The optimum monitoring design includes gas sampling devices above, within, and below the waste. Samples will be collected for methane, tritium, carbon dioxide, oxygen, and volatile organic compounds. Access tubes will be utilized to define the redistribution of radionuclides within, above, and below the waste over time and to define moisture content changes within the waste using spectral and neutron logging, respectively. Tracers will be placed within the cover material and within waste containers to estimate transport times by conservative chemical tracers. Monitoring the vadose zone below, within, and adjacent to waste while it is being buried is a viable monitoring option. 12 refs., 16 figs., 1 tab

  6. Radioactive waste from non-licensed activities - identification of waste, compilation of principles and guidance, and proposed system for final management

    International Nuclear Information System (INIS)

    Jones, C.; Pers, K.

    2001-07-01

    Presently national guidelines for the handling of radioactive waste from non-licensed activities are lacking in Sweden. Results and information presented in this report are intended to form a part of the basis for decisions on further work within the Swedish Radiation Protection Institute on regulations or other guidelines on final management and final disposal of this type of waste. An inventory of radioactive waste from non-licensed activities is presented in the report. In addition, existing rules and principles used in Sweden - and internationally - on the handling of radioactive and toxic waste and non-radioactive material are summarized. Based on these rules and principles a system is suggested for the final management of radioactive material from non-licensed activities. A model is shown for the estimation of dose as a consequence of leaching of radio-nuclides from different deposits. The model is applied on different types of waste, e.g. peat ashes, light concrete and low-level waste from a nuclear installation

  7. Mechanical-biological waste treatment and the associated occupational hygiene in Finland

    International Nuclear Information System (INIS)

    Tolvanen, Outi K.; Haenninen, Kari I.

    2006-01-01

    A special feature of waste management in Finland has been the emphasis on the source separation of kitchen biowaste (catering waste); more than two-thirds of the Finnish population participates in this separation. Source-separated biowaste is usually treated by composting. The biowaste of about 5% of the population is handled by mechanical-biological treatment. A waste treatment plant at Mustasaari is the only plant in Finland using digestion for kitchen biowaste. For the protection of their employees, the plant owners commissioned a study on environmental factors and occupational hygiene in the plant area. During 1998-2000 the concentrations of dust, microbes and endotoxins and noise levels were investigated to identify possible problems at the plant. Three different work areas were investigated: the pre-processing and crushing hall, the bioreactor hall and the drying hall. Employees were asked about work-related health problems. Some problems with occupational hygiene were identified: concentrations of microbes and endotoxins may increase to levels harmful to health during waste crushing and in the bioreactor hall. Because employees complained of symptoms such as dry cough and rash or itching appearing once or twice a month, it is advisable to use respirator masks (class P3) during dusty working phases. The noise level in the drying hall exceeded the Finnish threshold value of 85 dBA. Qualitatively harmful factors for the health of employees are similar in all closed waste treatment plants in Finland. Quantitatively, however, the situation at the Mustasaari treatment plant is better than at some Finnish dry waste treatment plants. Therefore is reasonable to conclude that mechanical sorting, which produces a dry waste fraction for combustion and a biowaste fraction for anaerobic treatment, is in terms of occupational hygiene better for employees than combined aerobic treatment and dry waste treatment

  8. Low activation material design methodology for reduction of radio-active wastes of nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, A.; Satou, M.; Nogami, S.; Kakinuma, N.; Kinno, M.; Hayashi, K.

    2007-01-01

    Most of the concrete shielding walls and pipes around a reactor pressure vessel of a light water reactor become low level radioactive waste at decommission phase because they contain radioactive nuclides by thermal-neutron irradiation during its operation. The radioactivity of some low level radioactive wastes is close to the clearance level. It is very desirable in terms of life cycle cost reduction that the radioactivity of those low level radioactive wastes is decreased below clearance level. In case of light water reactors, however, methodology of low activation design of a nuclear plant has not been established yet because the reactor is a large-scale facility and has various structural materials. The Objectives of this work are to develop low activation material design methodology and material fabrication for reduction of radio-active wastes of nuclear power plant such as reinforced concrete. To realize fabrication of reduced radioactive concrete, it is necessary to develop (1) the database of the chemical composition of raw materials to select low activation materials, (2) the tool for calculation of the neutron flux and the spectrum distribution of nuclear plants to evaluate radioactivity of reactor components, (3) optimization of material process conditions to produce the low activation cement and the low activation steels. Results of the data base development, calculation tools and trial production of low activation cements will be presented. (authors)

  9. 226Ra adsorption on active coals from waste waters

    International Nuclear Information System (INIS)

    Panturu, E.; Georgescu, D.P.; Serban, N.; Filip, D.; Radulescu, R.

    2000-01-01

    During the mining and extraction of uranium, the principle means of protection measurement is to prevent uranium and its products diffusing into the environment. The main carriers of radioactive elements in the environment are air and water. Therefore, reduction of the pollution at a uranium mine can be achieved by the treatment of waste waters contaminated with 226 Ra Radium contaminated waste waters represent a major biological risk. This paper presents the results of the study of the sorption of 226 Ra on active coal mechanisme and the influence of the physical and chemical characteristics of fluid. The 226 Ra removal from the residue pond water at the uranium ore processing plant was studied using eight types of indigenous active coals. The experimental results for each type of active coal and their effect on removal of 226 Ra from waste waters are presented in this paper. (author)

  10. Materials and wastes from power generation of nuclear origin

    International Nuclear Information System (INIS)

    Dessus, Benjamin; Guillemette, Andre; Laponche, Bernard; Zerbib, Jean-Claude

    2014-01-01

    In most countries, spent nuclear fuel is directly stored in pools and constitute the bulk of highly radioactive waste. In France, reprocessing separates spent fuel into three categories: uranium, plutonium, minor actinides and fission products. Hence, a vast amount of very diverse radioactive materials are stored in various sites and conditions, under two denominations: 'nuclear materials' (which can be or are partly recycled) and 'radioactive waste' which should be permanently disposed of. The production of highly radioactive and long-lived waste raise legitimate questions on the use of nuclear energy for power production and many people think that it's a sufficient reason for giving up this technique. Concerning existing radioactive waste, the alternative to deep disposal should be: a) dry storage of spent fuel and other existing waste in protected sites (bunkers or hills), and b) more active research on the possibilities to reduce both radioactivity and the lifetime of radioactive waste. (authors)

  11. Method of solidifying radioactive wastes

    International Nuclear Information System (INIS)

    Tomita, Toshihide; Minami, Yuji; Matsuura, Hiroyuki

    1984-01-01

    Purpose: To enable complete curing even when radioactive wastes contain those materials hindering the curing reaction, for example, copper hydroxide. Method: After admixing an alkaline substance to radioactive concentrated liquid wastes containing copper hydroxide or other amphoteric substances, they are dried, powderized and then cured with thermosetting resins. The thermosetting resins usable herein include, for example, those prepared by mixing an unsaturated polyester with a monomer such as styrene. When a polymerization initiator such as methyl ethyl ketone peroxide and a polymerization promotor are added to the mixture, it takes places curing reaction at normal temperature. Suitable alkaline substances usable herein are those which are insoluble to the liquid wastes and do not change the chemical form under heating and drying. (Yoshihara, H.)

  12. Chromium removal from water by activated carbon developed from waste rubber tires.

    Science.gov (United States)

    Gupta, Vinod Kumar; Ali, Imran; Saleh, Tawfik A; Siddiqui, M N; Agarwal, Shilpi

    2013-03-01

    Because of the continuous production of large amount of waste tires, the disposal of waste tires represents a major environmental issue throughout the world. This paper reports the utilization of waste tires (hard-to-dispose waste) as a precursor in the production of activated carbons (pollution-cleaning adsorbent). In the preparation of activated carbon (AC), waste rubber tire (WRT) was thermally treated and activated. The tire-derived activated carbon was characterized by means of scanning electron microscope, energy-dispersive X-ray spectroscopy, FTIR spectrophotometer, and X-ray diffraction. In the IR spectrum, a number of bands centred at about 3409, 2350, 1710, 1650, and 1300-1000 cm(-1) prove the present of hydroxyl and carboxyl groups on the surface of AC in addition to C═C double bonds. The developed AC was tested and evaluated as potential adsorbent removal of chromium (III). Experimental parameters, such as contact time, initial concentration, adsorbent dosage and pH were optimized. A rapid uptake of chromium ions was observed and the equilibrium is achieved in 1 h. It was also found that the adsorption process is pH dependent. This work adds to the global discussion of the cost-effective utilization of waste rubber tires for waste water treatment.

  13. Development plan. High activity-long living wastes project. Abstract

    International Nuclear Information System (INIS)

    2007-01-01

    This brochure presents the actions that the ANDRA (the French national agency of radioactive wastes) has to implement in the framework of the project of high activity-long living (HALL) radioactive wastes (HAVL project) conformably to the requirements of the program defined in the law from June 28, 2006 (law no 2006-739). This law precises the three, complementary, research paths to explore for the management of this type of wastes: separation and transmutation of long-living radioactive elements, reversible disposal in deep geologic underground, and long duration storage. The ANDRA's action concerns the geologic disposal aspect. The following points are presented: the HALL wastes and their containers, the reversible disposal procedure, the HAVL project: financing of researches, storage concepts, development plan of the project (dynamics, information and dialogue approach, input data, main steps, schedule); the nine programs of the HAVL project (laboratory experiments and demonstration tests, surface survey, scientific program, simulation program, surface engineering studies and technological tests, information and communication program, program of environment and facilities surface observation and monitoring, waste packages management, monitoring and transport program, disposal program); the five transverse technical and scientific activities (safety, reversibility, cost, health and occupational safety, impact study). (J.S.)

  14. Embedding of radioactive wastes by thermosetting resins

    International Nuclear Information System (INIS)

    Baer, A.; Traxler, A.; Limongi, A.; Thiery, D.

    The process for embedding radioactive wastes in thermosetting resins perfected and applied at the Grenoble Nuclear Research Center and its application to the treatment of radioactive wastes from Light-Water Nuclear Power Plants (PWR and BWR) are presented. The various types of wastes are enumerated and their activities and quantities are estimated: evaporator concentrates, ion exchange resins, filtration sludges, filters, various solid wastes, etc. The authors review the orientations of the research performed and indicate, for each type of waste considered, the cycle of treatment operations from rendering the radioelements insoluble to drying the concentrates to final embedding. The operational safety of the process and the safety of transport and storage of the embedded wastes are investigated. The essential technical features concerning the safety of the installation and of the final product obtained are presented. In particular, results are presented from tests of resistance to fire, irradiation, leaching, etc., these being characteristics which represent safety criteria. The economic aspects of the process are considered by presenting the influences of the reduction of volume and weight of wastes to be stored, simplicity of installations and cost of primary materials

  15. Solid waste processing experience at Susquehanna Steam Electric Station

    International Nuclear Information System (INIS)

    Phillips, J.W.; Granus, M.W.

    1984-01-01

    This paper reviews the first year's operation at the Susquehanna Steam Electric Station (SSES) with respect to the Westinghouse Hittman Nuclear Incorporated (Hittman) mobile solidification system and the dry activated waste generation, handling and processing. Experiences pertinent to the mobile solidification system are reviewed with emphasis on the integration of the system into the plant, problems associated with unexpected waste properties and the myriad of operating procedures that had to be prepared. The processing history for 1983 is reviewed in terms of the volume of waste, including solidified wastes, dewatered wastes an DAW. Factors that must be considered in evaluating processing alternatives, i.e., dewatering vs. solidification; steel liners vs. HICs, are discussed. Actions taken by Hittman and SSES to maximize the processing economics are also discussed. Finally, recommendations are provided to the utility considering implementing mobile solification services to ensure a smooth and timely integration of services into the plant

  16. Decontamination of radioactive contaminated protective wear using dry cleaning solvent

    International Nuclear Information System (INIS)

    Muthiah, Pushpa; Chitra, S.; Paul, Biplob

    2013-01-01

    Liquid waste generated by conventional decontamination of radioactive contaminated cotton protective wear using detergent affects the chemical treatment of the plant. To reduce the generation of aqueous detergent waste, dry cleaning of cotton protective wear, highly soiled with oil and grease towards decontamination was tried with organic solvents. Mineral turpentine oil (MTO) among various other organic solvents was identified as a suitable organic solvent. As MTO leaves characteristic odour on the cloth, various commercial fragrances for the removal of the odour were tried. Application of the optimised dry cleaning solvent and commercial fragrance was adopted in plant scale operation. (author)

  17. Radioactive waste packages stored at the Aube facility for low-intermediate activity wastes. A selective and controlled storage

    International Nuclear Information System (INIS)

    2005-01-01

    The waste package is the first barrier designed to protect the man and the environment from the radioactivity contained in wastes. Its design is thus particularly stringent and controlled. This brochure describes the different types of packages for low to intermediate activity wastes like those received and stored at the Aube facility, and also the system implemented by the ANDRA (the French national agency of radioactive wastes) and by waste producers to safely control each step of the design and fabrication of these packages. (J.S.)

  18. Maintenance Plan for the Hanford Immobilized Low-Activity Tank Waste Performance Assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    2000-01-01

    The plan for maintaining the Hanford Immobilized Low-Activity Tank Waste Performance Assessment (PA) is described. The plan includes expected work on PA reviews and revisions, waste reports, monitoring, other operational activities, etc

  19. COMPLETE WASTE MANAGEMENT DURING A POWER UPRATE OUTAGE

    International Nuclear Information System (INIS)

    Hammel, Lee; Dempsey, Scott

    2003-01-01

    This paper identifies the advantages of utilizing one vendor to complete the bulk packaging of radioactively contaminated large components and normal Dry Active Waste (DAW) and to provide private rail transportation to direct disposal. This paper will also show the methodologies utilized to achieve a safe, reliable, and cost effective solution while working during critical path evolutions routinely recognized in today's deregulated Utility market

  20. Scenarios for the Hanford Immobilized Low-Activity Waste (ILAW) performance assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    1999-01-01

    Scenarios describing representative exposure cases associated with the disposal of low activity waste from the Hanford Waste Tanks have been defined. These scenarios are based on guidance from the Department of Energy, the U.S. Nuclear Regulatory Commission, and previous Hanford waste disposal performance assessments

  1. Reconstruction of the isotope activity content of heterogeneous nuclear waste drums.

    Science.gov (United States)

    Krings, Thomas; Mauerhofer, Eric

    2012-07-01

    Radioactive waste must be characterized in order to verify its conformance with national regulations for intermediate storage or its disposal. Segmented gamma scanning (SGS) is a most widely applied non-destructive analytical technique for the characterization of radioactive waste drums. The isotope specific activity content is generally calculated assuming a homogeneous matrix and activity distribution for each measured drum segment. However, real radioactive waste drums exhibit non-uniform isotope and density distributions most affecting the reliability and accuracy of activities reconstruction in SGS. The presence of internal shielding structures in the waste drum contributes generally to a strong underestimation of the activity and this in particular for radioactive sources emitting low energy gamma-rays independently of their spatial distribution. In this work we present an improved method to quantify the activity of spatially concentrated gamma-emitting isotopes (point sources or hot spots) in heterogeneous waste drums with internal shielding structures. The isotope activity is reconstructed by numerical simulations and fits of the angular dependent count rate distribution recorded during the drum rotation in SGS using an analytical expression derived from a geometric model. First results of the improved method and enhancements of this method are shown and are compared to each other as well as to the conventional method which assumes a homogeneous matrix and activity distribution. It is shown that the new model improves the accuracy and the reliability of the activity reconstruction in SGS and that the presented algorithm is suitable with respect to the framework requirement of industrial application. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Method of treating the waste liquid of a washing containing a radioactive substance

    International Nuclear Information System (INIS)

    Sawaguchi, Yusuke; Tsuyuki, Takashi; Kaneko, Masato; Sato, Yasuhiko; Yamaguchi, Takashi.

    1975-01-01

    Object: To separate waste liquid resulting from washing and which contains a radioactive substance and surface active agent into high purity water and a solid waste substance containing a small quantity of surface active agent. Structure: To waste liquid from a waste liquid tank is added a pH adjusting agent for adjusting the pH to 5.5, and the resultant liquid is sent to an agglomeration reaction tank, in which an inorganic agglomerating agent is added to the waste liquid to cause a major proportion of the radioactive substance and surface active agent to form flocks produced through agglomeration. Then, the waste liquid is sent from the agglomeration reaction tank to a froth separation tank, to which air is supplied through a perforated plate to cause frothing. The over-flowing liquid is de-frothed, and then the insoluble matter is separated as sludge, followed by hydroextraction and drying for solidification. The treated liquid extracted from a froth separation tank is sent to an agglomerating agent recovery tank for separation of the agglomeration agent, and then the residual surface active agent is removed by adsorption in an active carbon adsorption tower, followed by concentration by evaporation in an evaporating can. The concentrated liquid is extracted and then solidified with cement or asphalt. (Kamimura, M.)

  3. Conversion of tannery waste to uesful products

    Energy Technology Data Exchange (ETDEWEB)

    Muralidhara, H.S.; Maggin, B.; Phipps, H.

    1982-03-01

    The purpose of this study was to evaluate the technical performance and cost effectiveness of a low temperature pyrolysis process which uses dry leather tanning wastes to provide energy and chrome tanning liquor for reuse in tanneries. Presently, leather waste is disposed of in landfills, resulting not only in a considerable loss of potential energy (estimated to be 633 TJ annually), but an even more significant loss of chromium (estimated to be 8.2 Gg annually). The pyrolysis process is shown to be technically feasible, economically viable, and can alleviate a leather waste management problem that is becoming increasingly more difficult to handle because of more stringent environmental chrome waste disposal requirements. Tanneries can save an estimated $7 million to $8 million annually by employing this pyrolysis process to conserve energy and chrome in dry tanning wastes. (Refs. 10).

  4. Dry separation technology of transuranic elements

    International Nuclear Information System (INIS)

    Inoue, Tadashi

    1999-01-01

    The separation principle of transuranic elements (TRU) by a dry method, the separation technique of TRU from a high level waste solution and a dry recycle technology of LWR and FBR fuel cycle are explained. The dry method used molten salt and liquid metal. TRU and the rare earth elements in the molten salt (LiCl-KCl, LiCl-KCl/Cd and LiCl-KCl/Bi system) were separated by two methods such as the electrolytic refining and the reduction-extraction method. The former method separated 98% U, Np and Pu, but low Am. The latter method was able to separate more than 99.9% Np and Pu and 99.7% Am. (S.Y.)

  5. Chemical composition of culinary wastes and their potential as a feed for ruminants

    Energy Technology Data Exchange (ETDEWEB)

    Summers, J.D.; MacLeod, G.K.; Warner, W.C.

    1980-09-01

    Culinary wastes were collected from three different sources, namely, institutional, restaurant and household. As dry matter content of the food wastes increased, protein level (on a dry weight basis) remained relatively constant, whereas fat content markedly increased. Sheep readily adapted to a diet containing 35% of dry matter as food wastes, their daily dry matter intake being 4.5% of body weight; this suggested that palatability was no problem. Digestibility values of 76, 68, 73 and 99% were calculated for dry matter, protein ether extract and acid detergent fibre fractions of garbage, indicating that the material had a high nutritive value for sheep. The culinary wastes had a low count of harmful bacteria. Storage of the material at room temperature resulted in molds and odours after a week, indicating that the material deteriorated quite rapidly. The addition of organic acids or formaldehyde kept the material quite stable for several weeks.

  6. Low-activity waste feed delivery -- Minimum duration between successive batches

    International Nuclear Information System (INIS)

    Peters, B.B.

    1998-01-01

    The purpose of this study is to develop a defensible basis for establishing what ''minimum duration'' will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates

  7. Low-activity waste feed delivery -- Minimum duration between successive batches

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.

    1998-08-25

    The purpose of this study is to develop a defensible basis for establishing what ``minimum duration`` will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates.

  8. Pineapple peel wastes as a potential source of antioxidant compounds

    Science.gov (United States)

    Saraswaty, V.; Risdian, C.; Primadona, I.; Andriyani, R.; Andayani, D. G. S.; Mozef, T.

    2017-03-01

    Indonesia is a large pineapple (Ananas comosus) producing country. Food industries in Indonesia processed this fruit for new products and further resulted wastes of which cause an environmental problems. Approximately, one pineapple fruit total weight is 400 gr of which 60 g is of peel wastes. In order to reduce such pineapple peel wastes (PPW), processing to a valuable product using an environmentally friendly technique is indispensable. PPW contained phenolic compound, ferulic acid, and vitamin A and C as antioxidant. This study aimed to PPW using ethanol and water as well as to analyze its chemical properties. Both dried and fresh PPW were extracted using mixtures of ethanol and water with various concentrations ranging from 15 to 95% (v/v) at room temperature for 24 h. The chemical properties, such as antioxidant activity, total phenolic content (Gallic acid equivalent/GAE), and total sugar content were determined. The results showed that the range of Inhibition Concentration (IC)50 value as antioxidant activity of extracts from dried and fresh PPW were in the range of 0.8±0.05 to 1.3±0.09 mg.mL-1 and 0.25±0.01 to 0.59±0.01 mg.mL-1, respectively, with the highest antioxidant activity was in water extract. The highest of total phenolic content of 0.9 mg.g-1 GAE, was also found in water extract.

  9. Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling

    Directory of Open Access Journals (Sweden)

    Veronika Bátori

    2017-01-01

    Full Text Available While citrus waste is abundantly generated, the disposal methods used today remain unsatisfactory: they can be deleterious for ruminants, can cause soil salinity, or are not economically feasible; yet citrus waste consists of various valuable polymers. This paper introduces a novel environmentally safe approach that utilizes citrus waste polymers as a biobased and biodegradable film, for example, for food packaging. Orange waste has been investigated for biofilm production, using the gelling ability of pectin and the strength of cellulosic fibres. A casting method was used to form a film from the previously washed, dried, and milled orange waste. Two film-drying methods, a laboratory oven and an incubator shaker, were compared. FE-SEM images confirmed a smoother film morphology when the incubator shaker was used for drying. The tensile strength of the films was 31.67 ± 4.21 and 34.76 ± 2.64 MPa, respectively, for the oven-dried and incubator-dried films, which is within the range of different commodity plastics. Additionally, biodegradability of the films was confirmed under anaerobic conditions. Films showed an opaque appearance with yellowish colour.

  10. Vacuum Drying Tests for Storage of Aluminum Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Chen, K.F.; Large, W.S.; Sindelar, R.L.

    1998-05-01

    A total inventory of up to approximately 32,000 aluminum-based spent nuclear fuel (Al SNF) assemblies are expected to be shipped to Savannah River Site (SRS) from domestic and foreign research reactors over the next several decades. Treatment technologies are being developed as alternatives to processing for the ultimate disposition of Al SNF in the geologic repository. One technology, called Direct/Co-disposal of Al SNF, would place the SNF into a canister ready for disposal in a waste package, with or without canisters containing high-level radioactive waste glass logs, in the repository. The Al SNF would be transferred from wet storage and would need to be dried in the Al SNF canister. The moisture content inside the Al SNF canister is limited to avoid excessive Al SNF corrosion and hydrogen buildup during interim storage before disposal. A vacuum drying process was proposed to dry the Al SNF in a canister. There are two major concerns for the vacuum drying process. One is water inside the canister could become frozen during the vacuum drying process and the other one is the detection of dryness inside the canister. To vacuum dry an irradiated fuel in a heavily shielded canister, it would be very difficult to open the lid to inspect the dryness during the vacuum drying operation. A vacuum drying test program using a mock SNF assembly was conducted to demonstrate feasibility of drying the Al SNF in a canister. These tests also served as a check-out of the drying apparatus for future tests in which irradiated fuel would be loaded into a canister under water followed by drying for storage

  11. Transportation research activities in support of nuclear waste management programs

    International Nuclear Information System (INIS)

    Allen, G.C.; Luna, R.E.; Jefferson, R.M.; Wowak, W.E.

    1983-01-01

    The Transportation Technology Center has been conducting a wide range of technical and non-technical research activities to assure the ability to transport radioactive materials in a safe, reliable, and publicly acceptable manner. These activities include tasks in Information and Intergovernmental issues, Safety Assessment and Environmental Analysis and Technology Development. Until recently, the requirements of defense waste shipments have served as a focal point for development tasks with the expectation that they would serve as a precursor for commercial activities. The passage of the Nuclear Waste Policy Act has placed additional responsibility on DOE for concerns involving the shipments of civilian materials. The development of additional research responsibilities is expected to proceed concurrently with the evolution of the transportation mission plan for civilian spent fuel and high-level wastes

  12. Potential low-level waste disposal limits for activation products from fusion

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Peloquin, R.A.

    1983-09-01

    Hanford Engineering Development Laboratory (HEDL) scientists are involved in studies considering alternative construction materials for the first wall of commercial fusion reactors. To permit a comparison of radioactivity levels, both the level of activation and an acceptable limit for the radionuclides present must be known. Generic material composition guidelines can be developed using the US Nuclear Regulatory Commission (NRC) regulations governing the near-surface disposal of low-level radioactive wastes. These regulations consider wastes defined as containing source, special nuclear, or by-product materials arising from research, industrial, medical, and nuclear fuel-cycle activities. However, not all of the activation products produced in low-level wastes from fusion reactors are considered by the NRC in their regulations. The purpose of this report is to present potential low-level waste-disposal limits for ten radionuclides resulting from fusion reactor operations that are not considered in the NRC low-level waste regulations. These potential limits will be used by HEDL scientists to complete their generic material composition guidelines for the first wall of commercial fusion reactors

  13. Impact Of Aerobic Biostabilisation And Biodrying Process Of Municipal Solid Waste On Minimisation Of Waste Deposited In Landfills

    Directory of Open Access Journals (Sweden)

    Dziedzic Krzysztof

    2015-12-01

    Full Text Available The article discusses an innovative system used for aerobic biostabilisation and biological drying of solid municipal waste. A mechanical–biological process (MBT of municipal solid waste (MSW treatment were carried out and monitored in 5 bioreactors. A two-stage biological treatment process has been used in the investigation. In the first step an undersize fraction was subjected to the biological stabilisation for a period of 14 days as a result of which there was a decrease of loss on ignition, but not sufficient to fulfill the requirements of MBT technology. In the second stage of a biological treatment has been applied 7-days intensive bio-drying of MSW using sustained high temperatures in bioreactor. The article presents the results of the chemical composition analysis of the undersize fraction and waste after biological drying, and also the results of temperature changes, pH ratio, loss on ignition, moisture content, combustible and volatile matter content, heat of combustion and calorific value of wastes. The mass balance of the MBT of MSW with using the innovative aeration system showed that only 14.5% of waste need to be landfilled, 61.5% could be used for thermal treatment, and nearly 19% being lost in the process as CO2 and H2O.

  14. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. High activity waste disposal

    International Nuclear Information System (INIS)

    Gaul, W.C.

    1990-01-01

    Chem-Nuclear Environmental Services (CNES) has developed a container that is capable of containing high activity waste and can be shipped as a regular DOT Type A shipment. By making the container special form the amount of activity that can be transported in a Type A shipment is greatly enhanced. Special form material presents an extra degree of protection to the environment by requiring the package to be destroyed to get access to the radioactive material and must undergo specific testing requirements, whereas normal form material can allow access to the radioactive material. With the special form container up to 10 caries of radium can be transported in a single package. This paper will describe the considerations that were taken to develop these products

  16. Characterization and application of municipal solid waste incineration (MSWI) bottom ash and waste granite powder in alkali activated slag

    NARCIS (Netherlands)

    Gao, X.; Yuan, B.; Yu, Q. L.; Brouwers, H. J.H.

    2017-01-01

    In this paper, the feasibility of using two solid wastes in alkali activated slag composites as construction and building materials is evaluated. One waste is the municipal solid waste incineration (MSWI) bottom ash, and the other one is fine granite powder from aggregate manufacturing. These two

  17. Waste production and regional growth of marine activities an econometric model

    International Nuclear Information System (INIS)

    Bramati, Maria Caterina

    2016-01-01

    Coastal regions are characterized by intense human activity and climatic pressures, often intensified by competing interests in the use of marine waters. To assess the effect of public spending on the regional economy, an econometric model is here proposed. Not only are the regional investment and the climatic risks included in the model, but also variables related to the anthropogenic pressure, such as population, economic activities and waste production. Feedback effects of economic and demographic expansion on the pollution of coastal areas are also considered. It is found that dangerous waste increases with growing shipping and transportation activities and with growing population density in non-touristic coastal areas. On the other hand, the amount of non-dangerous wastes increases with marine mining, defense and offshore energy production activities. However, lower waste production occurs in areas where aquaculture and touristic industry are more exploited, and accompanied by increasing regional investment in waste disposal. - Highlights: • We use an econometric model as a tool for assessing the effects of regional policies on the development of economic activities related to the use of the sea and on the impact on the marine environment. • Through scenario simulation we provide strategic guidelines for policy makers and economic planners • The model features feedback effects of economic and demographic expansion on the pollution of coastal areas.

  18. Utilization of heat from High Temperature Reactors (HTR) for dry reforming of methane

    Science.gov (United States)

    Jastrząb, Krzysztof

    2018-01-01

    One of the methods for utilization of waste carbon dioxide consists in reaction of methane with carbon dioxide, referred to as dry reforming of methane. It is an intensely endothermic catalytic process that takes place at the temperature above 700°C. Reaction of methane with carbon dioxide leads to formation of synthesis gas (syngas) that is a valuable chemical raw material. The energy that is necessary for the process to take place can be sourced from High Temperature Nuclear Reactors (HTR). The completed studies comprises a series of thermodynamic calculations and made it possible to establish optimum conditions for the process and demand for energy from HTR units. The dry reforming of methane needs also a catalytic agent with appropriate activity, therefore the hydrotalcite catalyser with admixture of cerium and nickel, developed at AGH University of Technology seems to be a promising solution. Thus, the researchers from the Institute for Chemical Processing of Coal (IChPW) in Zabrze have developed a methodology for production of the powdery hydrotalcite catalyser and investigated catalytic properties of the granulate obtained. The completed experiments confirmed that the new catalyser demonstrated high activity and is suitable for the process of methane dry reforming. In addition, optimum parameters of the were process (800°C, CO2:CH4 = 3:1) were established as well. Implementation of the technology in question into industrial practice, combined with utilization of HTR heat can be a promising method for management of waste carbon dioxide and may eventually lead to mitigation of the greenhouse effect.

  19. Optimisation of the Management of Higher Activity Waste in the UK - 13537

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Ciara; Buckley, Matthew [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

    2013-07-01

    The Upstream Optioneering project was created in the Nuclear Decommissioning Authority (UK) to support the development and implementation of significant opportunities to optimise activities across all the phases of the Higher Activity Waste management life cycle (i.e. retrieval, characterisation, conditioning, packaging, storage, transport and disposal). The objective of the Upstream Optioneering project is to work in conjunction with other functions within NDA and the waste producers to identify and deliver solutions to optimise the management of higher activity waste. Historically, optimisation may have occurred on aspects of the waste life cycle (considered here to include retrieval, conditioning, treatment, packaging, interim storage, transport to final end state, which may be geological disposal). By considering the waste life cycle as a whole, critical analysis of assumed constraints may lead to cost savings for the UK Tax Payer. For example, it may be possible to challenge the requirements for packaging wastes for disposal to deliver an optimised waste life cycle. It is likely that the challenges faced in the UK are shared in other countries. It is therefore likely that the opportunities identified may also apply elsewhere, with the potential for sharing information to enable value to be shared. (authors)

  20. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    Directory of Open Access Journals (Sweden)

    Muhammad Redzuan Hairuddin

    2011-07-01

    Full Text Available The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L., mango (Mangifera indica L., papaya (Carica papaya L., muskmelon (Cucumis melo L., and watermelon Citruluss lanatus (Thunb. were investigated. Significant (p < 0.05 differences, for the amounts of total phenolic compounds (TPC, were found between the fresh and freeze-dried fruit samples, except muskmelon. There was no significant (p > 0.05 change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05 higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05 but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested.

  1. Safe management of waste from health-care activities

    International Nuclear Information System (INIS)

    Pruess, A.; Giroult, E.; Rushbrook, P.

    1999-01-01

    The waste produced in the course of health-care activities, from contaminated needles to radioactive isotopes, carries a greater potential for causing infection and injury than any other type of waste, and inadequate or inappropriate management is likely to have serious public health consequences and deleterious effects on the environment. This handbook - the result of extensive international consultation and collaboration - provides comprehensive guidance on safe, efficient, and environmentally sound methods for the handling and disposal of health-care wastes. The various categories of waste are clearly defined and the particular hazards that each poses are described. Considerable prominence is given to the careful planning that is essential for the success of waste management; workable means of minimizing waste production are outlined and the role of reuse and recycling of waste is discussed. Most of the text, however, is devoted to the collection, segregation, storage, transport, and disposal of wastes. Details of containers for each category of waste, labelling of waste packages, and storage conditions are provided, and the various technologies for treatment of waste and disposal of final residues are discussed at length. Advice is given on occupational safety for all personnel involved with waste handling, and a separate chapter is devoted to the closely related topic of hospital hygiene and infection control. The handbook pays particular attention to basic processes and technologies that are not only safe but also affordable, sustainable, and culturally appropriate. For health-care settings in which resources are severely limited there is a separate chapter on minimal programmes; this summarizes all the simplest and least costly techniques that can be employed for the safe management of health-care wastes. The guide is aimed at public health managers and policy-makers, hospital managers, environmental health professionals, and all administrators with an

  2. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    International Nuclear Information System (INIS)

    Pickett, W.W.

    1997-01-01

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations

  3. Immobilized low-activity waste interim storage facility, Project W-465 conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W.W.

    1997-12-30

    This report outlines the design and Total Estimated Cost to modify the four unused grout vaults for the remote handling and interim storage of immobilized low-activity waste (ILAW). The grout vault facilities in the 200 East Area of the Hanford Site were constructed in the 1980s to support Tank Waste disposal activities. The facilities were to serve project B-714 which was intended to store grouted low-activity waste. The existing 4 unused grout vaults, with modifications for remote handling capability, will provide sufficient capacity for approximately three years of immobilized low activity waste (ILAW) production from the Tank Waste Remediation System-Privatization Vendors (TWRS-PV). These retrofit modifications to the grout vaults will result in an ILAW interim storage facility (Project W465) that will comply with applicable DOE directives, and state and federal regulations.

  4. Waste management assessment and technical review programme. WATRP. An international peer review service for radioactive waste management activities

    International Nuclear Information System (INIS)

    1994-09-01

    International Atomic Energy Agency provides international peer review services in radioactive waste management to those Member States that have established radioactive waste management programmes. Such services are provided within Waste Management Assessment and Technical Review Programme (WATRP). The main objective of WATRP is to provide international expertise and information on a requested subject in the field of radioactive waste management and to validate that programmes and activities are sound and performing well. Refs, figs and tabs

  5. Considerations for an active and passive scanner to assay nuclear waste drums

    International Nuclear Information System (INIS)

    Martz, H.E.; Azevedo, S.G.; Roberson, G.P.; Schneberk, D.J.; Koenig, Z.M.; Camp, D.C.

    1990-01-01

    Radioactive wastes are generated at many DOE laboratories, military facilities, fuel fabrication and enrichment plants, reactors, hospitals, and university research facilities. At all of these sites, wastes must be separated, packaged, categorized, and packed into some sort of container--usually 208-L (55-gal) drums--for shipment to waste-storage sites. Prior to shipment, the containers must be labeled, assayed, and certified; the assay value determines the ultimate disposition of the waste containers. An accurate nondestructive assay (NDA) method would identify all the radioisotopes present and provide a quantitative measurement of their activity in the drum. In this way, waste containers could be routed in the most cost-effective manner and without having to reopen them. Currently, the most common gamma-ray method used to assay nuclear waste drums is segmented gamma-ray scanning (SGS) spectrometer that crudely measures only the amount of 235 U or 239 Pu present in the drum. This method uses a spatially-averaged, integrated, emitted gamma-ray-intensity value. The emitted intensity value is corrected by an assumed constant-attenuation value determined by a spatially-averaged, transmission (or active) measurement. Unfortunately, this typically results in an inaccurate determination of the radioactive activities within a waste drum because this measurement technique is valid only for homogeneous-attenuation or known drum matrices. However, since homogeneous-attenuation matrices are not common and may be unknown, other NDA techniques based on active and Passive CT (A ampersand PCT) are under development. The active measurement (ACT) yields a better attenuation matrix for the drum, while the passive measurement (PCT) more accurately determines the identity of the radioisotopes present and their activities. 9 refs., 2 figs

  6. Characterization of activated carbon produced from urban organic waste

    Directory of Open Access Journals (Sweden)

    Abdul Gani Haji

    2013-10-01

    Full Text Available The difficulties to decompose organic waste can be handled naturally by pyrolisis so it can  decomposes quickly that produces charcoal as the product. This study aims to investigate the characteristics of activated carbon from urban organic waste. Charcoal results of pyrolysis of organic waste activated with KOH 1.0 M at a temperature of 700 and 800oC for 60 to 120 minutes. Characteristics of activated carbon were identified by Furrier Transform Infra Red (FTIR, Scanning Electron Microscopy (SEM, and X-Ray Diffraction (XRD. However, their quality is determined yield, moisture content, ash, fly substances, fixed carbon, and the power of adsorption of iodine and benzene. The identified functional groups on activated carbon, such as OH (3448,5-3436,9 cm-1, and C=O (1639,4 cm-1. In general, the degree and distance between the layers of active carbon crystallites produced activation in all treatments showed no significant difference. The pattern of activated carbon surface topography structure shows that the greater the pore formation in accordance with the temperature increase the more activation time needed. The yield of activated carbon obtained ranged from 72.04 to 82.75%. The results of characterization properties of activated carbon was obtained from 1.11 to 5.41% water, 13.68 to 17.27% substance fly, 20.36 to 26.59% ash, and 56.14 to 62.31% of fixed carbon . Absorption of activated carbon was good enough at 800oC and 120 minutes of activation time, that was equal to 409.52 mg/g of iodine and 14.03% of benzene. Activated carbon produced has less good quality, because only the water content and flying substances that meet the standards.Doi: 10.12777/ijse.5.2.89-94 [How to cite this article: Haji, A.G., Pari, G., Nazar, M., and Habibati.  (2013. Characterization of activated carbon produced from urban organic waste . International Journal of Science and Engineering, 5(2,89-94. Doi: 10.12777/ijse.5.2.89-94

  7. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger.

    Science.gov (United States)

    Li, Yuxin; Hong, Yan; Han, Yanquan; Wang, Yongzhong; Xia, Lunzhu

    2016-02-01

    Ginger (Zingiber officinale Rosc.) is a common dietary adjunct that contributes to the taste and flavor of foods, and is also an important Traditional Chinese medicine (TCM). Different processing methods can produce different processed gingers with dissimilar chemical constituents and pharmacological activities. In this study, an ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/QTOF-MS) was applied to identify the complicated components from fresh, dried, stir-frying and carbonized ginger extracts. All of the 27 compounds were identified from four kinds of ginger samples (fresh, dried, stir-frying and carbonized ginger). Five main constituents (zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol) in these four kinds of ginger sample extracts were simultaneously determined by UPLC-PDA. Meanwhile, the antioxidant effect of fresh, dried, stir-frying and carbonized gingers were evaluated by three assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzthiazolinesulfonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP)). The results demonstrated that antioxidant activity of dried ginger was the highest, for its phenolic contents are 5.2-, 1.1- and 2.4-fold higher than that of fresh, stir-frying and carbonized ginger, respectively, the antioxidant activities' results indicated a similar tendency with phenolic contents: dried ginger>stir-frying ginger>fresh ginger>carbonized ginger. The processing contributed to the decreased concentration of gingerols and the increased levels of shogaols, which reducing the antioxidant effects in pace with processing. This study elucidated the relationship of the heating process with the constituents and antioxidant activity, and provided a guide for choosing different kinds of ginger samples on clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Removing radio-active wastes from nuclear power stations by the STEAG system

    International Nuclear Information System (INIS)

    Baatz, H.

    1978-01-01

    The mobile STEAG System for conditioning radio-active wastes from nuclear power stations represents a particularly safe and economic method of removing them in present day conditions. Cementation by the FAFNIR System is used for the greater part of the waste, the liquid concentrate (evaporator concentrate and filter slurry). For the special case of the medium active resin balls from the primary circuits, embedding in plastic by the FAMA process has proved to be the only available successful process so far. The highly active solid waste from the reactor core is decomposed by the MOSAIK System, is packed in transportable and storable containers and is removed from the fuel element storage pond. The systems are so safe that faults or interruptions of power station operation due to faults in removing radio-active wastes can be excluded. (orig.) [de

  9. Dissolution test for low-activity waste product acceptance

    International Nuclear Information System (INIS)

    Ebert, W. L.

    1998-01-01

    We have measured the mean and standard deviation of the solution concentrations of B, Na, and Si attained in replicate dissolution tests conducted at temperatures of 20, 40, and 70 C, for durations of 3 and 7 days, and at glass/water mass ratios of 1:10 and 1:1. These and other tests were conducted to evaluate the adequacy of the test methods specified in privatization contracts and to develop a data base that can be used to evaluate the reliability of reported results for tests performed on the waste products. Tests were conducted with a glass that we formulated to be similar to low-activity waste products that will be produced during the remediation of Hanford tank wastes. Statistical analyses indicated that, while the mean concentrations of B, Na, and Si were affected by the values of test parameters, the standard deviation of replicate tests was not. The precision of the tests was determined primarily by uncertainties in the analysis of the test solutions. Replicate measurements of other glass properties that must be reported for Hanford low-activity waste products were measured to evaluate the possible adoption of the glass used in these tests as a standard test material for the product acceptance process

  10. Preparation of activated Carbons from extracted waste biomass by chemical activation

    International Nuclear Information System (INIS)

    Toteva, V.; Nickolov, R.

    2013-01-01

    Full text: Novel biomass precursors for the production of activated carbons (ACs) were studied. ACs were prepared from extracted coffee husks and extracted spent ground coffee - separately or as mixtures with 10, 20 and 30 mass % Bulgarian lignite coal. Activation by potassium hydroxide was employed for all samples. The results obtained show that the surface and porous parameters of the ACs depend on the nature of the initial materials used. The specific surface areas (BET) and the microporosities of ACs obtained from extracted spent ground coffee mixed with 20 mass % Bulgarian lignite coals, are greater than those of the ACs from extracted coffee husks. It is likely that the reason for this result is the chemical composition of the precursors. The coffee husks have less lignin and more holocellulose. The latter undergoes more significant destructive changes in the process of chemical activation. On the contrary, waste ground coffee precursors contain more lignin and less holocellulose. As a result, after the chemical activation, the carbons prepared from extracted spent ground coffee exhibit better porous parameters and higher specific surface areas. key words: activated carbons, extraction, waste biomass

  11. Solid waste characterization in Ketao, a rural town in Togo, West Africa.

    Science.gov (United States)

    Edjabou, Maklawe Essonanawe; Møller, Jacob; Christensen, Thomas H

    2012-07-01

    In Africa the majority of solid waste data is for big cities. Small and rural towns are generally neglected and waste data from these areas are often unavailable, which makes planning a proper solid waste management difficult. This paper presents the results from two waste characterization projects conducted in Kétao, a rural town in Togo during the rainy season and the dry season in 2010. The seasonal variation has a significant impact on the waste stream. The household waste generation rate was estimated at 0.22 kg person(-1) day(-1) in the dry season and 0.42 in the rainy season. Likewise, the waste moisture content was 4% in the dry season while it was 33-63% in the rainy season. The waste consisted mainly of soil and dirt characterized as 'other' (41%), vegetables and putrescibles (38%) and plastic (11%). In addition to these fractions, considerable amounts of material are either recycled or reused locally and do not enter the waste stream. The study suggests that additional recycling is not feasible, but further examination of the degradability of the organic fraction is needed in order to assess whether the residual waste should be composed or landfilled.

  12. Enhancement of sludge reduction and methane production by removing extracellular polymeric substances from waste activated sludge.

    Science.gov (United States)

    Nguyen, Minh Tuan; Mohd Yasin, Nazlina Haiza; Miyazaki, Toshiki; Maeda, Toshinari

    2014-12-01

    The management of waste activated sludge (WAS) recycling is a concern that affects the development of the future low-carbon society, particularly sludge reduction and biomass utilization. In this study, we investigated the effect of removing extracellular polymeric substances (EPS), which play important roles in the adhesion and flocculation of WAS, on increased sludge disintegration, thereby enhancing sludge reduction and methane production by anaerobic digestion. EPS removal from WAS by ethylenediaminetetraacetic acid (EDTA) significantly enhanced sludge reduction, i.e., 49 ± 5% compared with 27 ± 1% of the control at the end the digestion process. Methane production was also improved in WAS without EPS by 8881 ± 109 CH4 μmol g(-1) dry-weight of sludge. Microbial activity was determined by denaturing gradient gel electrophoresis and real-time polymerase chain reaction, which showed that the hydrolysis and acetogenesis stages were enhanced by pretreatment with 2% EDTA, with a larger methanogenic community and better methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Analysis of alternatives for immobilized low activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  14. Analysis of alternatives for immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1997-01-01

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program

  15. Incineration of alpha-active solid waste by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Bhargava, V K; Kamath, H S; Purushotham, D S.C. [Bhabha Atomic Research Centre, Tarapur (India). Advanced Fuel Fabrication Facility

    1996-12-31

    The conventional techniques for treatment of alpha-active compressible solid waste involve incineration using electrically heated incinerators and subsequent recovery of special nuclear materials (SNM) from the ash by acid leaching. A microwave incineration followed by microwave digestion and SNM recovery from ash has specific advantages from maintenance and productivity consideration. The paper describes a preliminary work carried out with simulated uranium containing compressible solid waste using microwave heating technique. (author). 3 refs., 1 tab.

  16. Waste treatment activities incineration

    International Nuclear Information System (INIS)

    Weber, D.A.

    1985-01-01

    The waste management policy at SRP is to minimize waste generation as much as possible and detoxify and/or volume reduce waste materials prior to disposal. Incineration is a process being proposed for detoxification and volume reduction of combustion nonradioactive hazardous, low-level mixed and low-level beta-gamma waste. Present operation of the Solvent Burner Demonstration reduces the amount of solid combustible low-level beta-gamma boxed waste disposed of by shallow land burial by approximately 99,000 ft 3 per year producing 1000 ft 3 per year of ash and, by 1988, will detoxify and volume reduce 150,000 gallons or organic Purex solvent producing approximately 250 ft 3 of ash per year

  17. Bacteriological studies on dairy waste activated sludge

    NARCIS (Netherlands)

    Adamse, A.D.

    1966-01-01

    Dairy-waste activated sludge was examined for bacterial composition and response to different conditions. Strains isolated were classified mainly into three groups: predominantly coryneform bacteria (largely Arthrobacter), some Achromobacteraceae and a small groups of Pseudomonadaceae.

  18. Briquettes of rice husk, polyethylene terephthalate (PET), and dried leaves as implementation of wastes recycling

    Science.gov (United States)

    Hariyanto, Sucipto; Usman, Mohammad Nurdianfajar; Citrasari, Nita

    2017-06-01

    This research aim is to determine the best briquettes as implementation of wastes recycle based on scoring method, main component composition, compressive strength, caloric value, water content, vollatile content, and ash content, also the suitability with SNI 01-6235-2000. Main component that used are rice husk, 2mm and 6 mm PET, and dried leaves. Composition variation in this research are marked as K1, K2, K3, K4, and K5 with 2 mm PET plastic and K1, K2, K3, K4, and K5 with 6 mm PET plastic. The total weight of the briquettes is 100 g and divided into 90% main components and 10% tapioca as binder. The compressive strength, caloric value, water content, vollatile content, and ash content were tested according to ASTM D 5865-04, ASTM D 3173-03, ASTM D 3175-02, ASTM D 3174-02. The tested results were used to determine the best briquette by scoring method, and the chosen briquettes is K2 with 6 mm PET plastic. The composition is 70% rice husk, 20% 6 mm PET plastic, and 10% dried leaves with the compressive strength, caloric value, water content, vollatile content, and ash content value is 51,55 kg/cm2; 5123 kal/g; 3,049%; 31,823%, dan 12,869%. The suitable value that meet the criteria according to SNI 01-6235-2000 is compressive strength, caloric value, water content, and ash content.

  19. Regulation of Federal radioactive waste activities. Summary of report to Congress on extending the Nuclear Regulatory Commission's licensing or regulatory authority to Federal radioactive waste storage and disposal activities

    International Nuclear Information System (INIS)

    Smith, R.D.

    1979-09-01

    The NRC Authorization Bill for FY 1979 directed NRC to conduct a study of extending the Commission's licensing or regulatory authority to include categories of existing and future Federal radioactive waste storage and disposal activities not presently subject to such authority. The report includes a complete listing and inventory of all radioactive waste storage and disposal activities now being conducted or planned by Federal agencies. The NRC study has attempted to present a general comparison of the relative hazards associated with defense-generated and commercial wastes. Options for extending Commission authority were developed and analyzed. The implications of NEPA were analyzed in the context of these options. The national security implications of extending NRC's regulatory authority over DOE programs are examined and evaluated. Costs and benefits are identified and assessed. The Commission's recommendations, based on the study, are to extend licensing authority over new DOE disposal activities involving transuranic wastes and non-defense low-level waste and to initiate a pilot program to test the feasibility of NRC playing a consultative role in the evaluation of existing DOE activities

  20. Physicochemical Characteristics, in Vitro Fermentation Indicators, Gas Production Kinetics, and Degradability of Solid Herbal Waste as Alternative Feed Source for Ruminants

    Directory of Open Access Journals (Sweden)

    A. N. Kisworo

    2017-08-01

    Full Text Available The aims of this research were to study the nutrient and secondary metabolite contents of solid herbal wastes (SHW that were preserved by freeze drying, sun drying and silage, as well as to analyze their effects on in vitro fermentation indicators i.e., gas production kinetics and degradability of solid herbal waste. Physical and chemical properties on three forms of SHW (sun dry, freeze dry, and silage were characterized and then an in vitro gas production experiment was performed to determine the kinetics of gas production, methane production, NH3, microbial protein, and SHW degradability. Polyethylene glycol (PEG was added to the three treatments to determine the biological activity of tannins. Results showed that all three preparations of SHW still contained high nutrient and plant secondary metabolite contents. Gas production, methane, NH3, microbial protein, in vitro degradability of dry matter (IVDMD and organic matter (IVDOM of SHW silage were lower (P<0.05 compared to sun dry and freeze dry. These results were apparently due to the high content of secondary metabolites especially tannin. It can be concluded that solid herbal wastes (SHW can be used as an alternative feed ingredients for ruminants with attention to the content of secondary metabolites that can affect the process of fermentation and digestibility in the rumen.

  1. Instrumental neutron activation analysis of dry atmospheric fall-out and rain-water

    International Nuclear Information System (INIS)

    Schutyser, P.; Maenhaut, W.; Dams, R.

    1978-01-01

    An automated precipitation sampler and an instrumental neutron activation analysis (i.n.a.a.) method for the determination of some major and trace elements in dry atmospheric fall-out and rain-water are presented. The sampler features a rain detector which makes separate collections of dry atmospheric fall-out and rain-water possible. The sampler is equipped with u.v. lamps in order to avoid algal growth during extended collection periods. After collection, the samples are separated into water-soluble and insoluble fractions. The soluble fraction is preconcentrated before analysis by freeze-drying. The i.n.a.a. method involves the measurement of both short- and long-lived radioactivities so that a total of 35 elements can be determined. The possibility of losses during freeze-drying and the accuracy of the i.n.a.a. method were investigated for 7 elements by analysis of a soluble fraction with an independent method, viz. inductively coupled plasma atomic emission spectrometry. (Auth.)

  2. Ecofriendly bricks elaborated from coal waste of Moroccan Jerrada Mining

    Directory of Open Access Journals (Sweden)

    Ez-zaki H.

    2018-01-01

    Full Text Available Solid waste generated during mining is one of the major environmental problems associated with this industrial activity. The best solution to overcome the environmental impact of this waste is to find recycling facilities in mass-produced products that can absorb the large quantities of these available byproducts. The present study shows the feasibility of using the coal waste of Moroccan Jerrada mining in the production of ecological brick. The first step consists of consecutive stages of crushing, grinding and heating at 650°C of the coal waste with a small amount of lime in order to promote the reactive products of elaborated binders. The second step of the process consists of mixing treated coal waste with a small amount of marble dust, sand, gravel, and water, then pressed and dried at room temperature to manufacture a laboratory ecofriendly bricks. The mechanical strength and thermal conductivity are investigated.

  3. An overview of the AECB's strategy for regulating radioactive waste management activities

    International Nuclear Information System (INIS)

    Hamel, P.E.; Smythe, W.D.; Duncan, R.M.; Coady, J.R.

    1982-07-01

    The goal of the Canadian Atomic Energy Control Board in regulating the management of radioactive wastes is to ensure the protection of people and the environment. A program of cooperation with other agencies, identification and adoption of baselines for describing radioactive wastes, development of explicit criteria and requirements, publication of related regulatory documents, establishment of independent consultative processes with technical experts and the public, and maintenance of awareness and compatibility with international activities is underway. Activities related to high-level radioactive waste, uranium mine and mill tailings, low- and medium-level wastes, radioactive effluents from nuclear facilities, and decommissioning and decontamination are described

  4. Review of the literature for dry reprocessing oxide, metal, and carbide fuel: The AIROX, RAHYD, and CARBOX pyrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, R.C.; Rhee, B.W. [Rockwell International Corp., Canoga Park, CA (United States). Energy Systems Group

    1979-09-30

    The state of the art of dry processing oxide, carbide, and metal fuel has been determined through an extensive literature review. Dry processing in one of the most proliferation resistant fuel reprocessing technologies available to date, and is one of the few which can be exported to other countries. Feasibility has been established for oxide, carbide, and metal fuel on a laboratory scale, and large-scale experiments on oxide and carbide fuel have shown viability of the dry processing concept. A complete dry processing cycle has been demonstrated by multicycle processing-refabrication-reirradiation experiments on oxide fuel. Additional experimental work is necessary to: (1) demonstrate the complete fuel cycle for carbide and metal fuel, (2) optimize dry processing conditions, and (3) establish fission product behavior. Dry process waste management is easier than for an aqueous processing facility since wastes are primarily solids and gases. Waste treatment can be accomplished by techniques which have been, or are being, developed for aqueous plants.

  5. Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour

    Directory of Open Access Journals (Sweden)

    Manuel Torres-Carrasco

    2015-03-01

    The findings show that AAS paste behaviour of rheology when the activator was a commercial waterglass solution or NaOH/Na2CO3 with waste glass was similar, fit the Herschel-Bulkley model. The formation of primary C-S-H gel in both cases were confirmed. However, the rheological behaviour in standard cements fit the Bingham model. The use of the waste glass may be feasible from a rheological point of view in pastes can be used.

  6. Dry refabrication technology development of spent nuclear fuel

    International Nuclear Information System (INIS)

    Park, Geun Il; Lee, J. W.; Song, K. C.

    2012-04-01

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed

  7. Dry refabrication technology development of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Geun Il; Lee, J. W.; Song, K. C.; and others

    2012-04-15

    Key technologies highly applicable to the development of advanced nuclear fuel cycle for the spent fuel recycling were developed using spent fuel and simulated spent fuel (SIMFUEL). In the frame work of dry process oxide products fabrication and the property characteristics of dry process products, hot cell experimental data for decladding, powdering and oxide product fabrication from low and high burnup spent fuel have been produced, basic technology for fabrication of spent fuel standard material has been developed, and remotely modulated welding equipment has been designed and fabricated. Also, fabrication technology of simulated dry process products was established and property models were developed based on reproducible property measurement data. In the development of head-end technology for dry refabrication of spent nuclear fuel and key technologies for volume reduction of head-end process waste which are essential in back-end fuel cycle field including pyro-processing, advanced head-end unit process technology development includes the establishment of experimental conditions for synthesis of porous fuel particles using a granulating furnace and for preparation of UO2 pellets, and fabrication and performance demonstration of engineering scale equipment for off-gas treatment of semi-volatile nuclides, and development of phosphate ceramic technology for immobilization of used filters. Radioactivation characterization and treatment equipment design of metal wastes from pretreatment process was conducted, and preliminary experiments of chlorination/electrorefining techniques for the treatment of hull wastes were performed. Based on the verification of the key technologies for head-end process via the hot-cell tests using spent nuclear fuel, pre-conceptual design for the head-end equipments was performed.

  8. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.

    Science.gov (United States)

    Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan

    2009-02-25

    The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.

  9. Solid radioactive waste: evaluation of residual activity in nuclear medicine services

    International Nuclear Information System (INIS)

    Alabarse, Frederico G.; Xavier, Ana M.; Magalhaes, Maisa H.; Guerrero, Jesus S.P.

    2009-01-01

    An experimental programme to estimate, with a better degree of accuracy, the activity that remains adsorbed in flasks and syringes used in Nuclear Medicine Services for the administration of radionuclides to patients submitted to diagnostic or therapy is been conducted under the coordination of the Radioactive Waste Division of the Brazilian Nuclear Energy Commission, CNEN. The adopted recommendation in Brazil to allow an expedite solid waste management in nuclear medicine facilities, up to the present, is to consider that 2% of the initial activity remains adsorbed in the solid waste, which easily allows the calculation of the storage time to achieve regulatory clearance levels by decay. This research evaluates 17 different kinds of radiopharmaceuticals and three radioisotopes: 99m Tc, 67 Ga and 201 Tl. Results obtained by means of a weighting method to estimate the residual mass in flasks show that the ratio of the mass of the liquid that remains in the solid waste to the mass of the empty flask is constant. This suggests that the residual activity depends on the initial activity concentration of radiopharmaceutical contained in each flask, as assumed by the regulatory body. Additionally, results obtained by determining the remaining activity in flasks, shortly after the injection of its radionuclide contents in patients, indicate that an average value for the residual activity of the order of 10% of the initial activity contained in the flasks or syringes should be adopted to determine the decay storage time before the release of solid waste in the urban conventional land fill disposal system. The 'rule of thumb' of 10 half-lives for storage before clearance is also discussed in the present work. (author)

  10. SGN multipurpose dry storage technology applied to the Italian situation

    International Nuclear Information System (INIS)

    Giorgio, M.; Lanza, R.

    1999-01-01

    SGN has gained considerable experience in the design and construction of interim storage facilities for spent fuel and various nuclear waste, and can therefore propose single product and multipurpose facilities capable of accommodating all types of waste in a single structure. The pooling of certain functions (transport cask reception, radiation protection) and the choice of optimized technologies to answer the specific needs of clients (transfer of nuclear packages by shielded handling cask or nuclearized crane), the use of the same type of storage pit to cool the heat releasing packages (vitrified nuclear waste, fuel elements) makes it possible to propose industrially proven and cost-effective solutions. Studies carried out for the Dutch company COVRA (HABOG facility currently under implementation phase) provide an example of a multipurpose dry storage facility designed to store spent fuel, vitrified reprocessing waste, cemented hulls and end-pieces, cemented technological waste and bituminized waste from fuel reprocessing, i e. high level waste and intermediate level wastes. The study conducted by SGN and GENESI (an Italian consortium formed by Ansaldo's Nuclear Division and Fiat Avio), on behalf of the Italian utility ENEL, offers another example of the multipurpose dry storage facility designed to store in a centralised site all the remaining irradiated fuel elements plus the vitrified waste. This paper presents SGN's experience through a short description of reference storage facilities for various types of products (HLW and spent fuel). It continues with the typical application to the Italian situation to show how these proven technologies are combined to obtain multipurpose facilities tailored to the client's specific requirements. (author)

  11. PPARβ/δ regulates glucocorticoid- and sepsis-induced FOXO1 activation and muscle wasting.

    Directory of Open Access Journals (Sweden)

    Estibaliz Castillero

    Full Text Available FOXO1 is involved in glucocorticoid- and sepsis-induced muscle wasting, in part reflecting regulation of atrogin-1 and MuRF1. Mechanisms influencing FOXO1 expression in muscle wasting are poorly understood. We hypothesized that the transcription factor peroxisome proliferator-activated receptor β/δ (PPARβ/δ upregulates muscle FOXO1 expression and activity with a downstream upregulation of atrogin-1 and MuRF1 expression during sepsis and glucocorticoid treatment and that inhibition of PPARβ/δ activity can prevent muscle wasting. We found that activation of PPARβ/δ in cultured myotubes increased FOXO1 activity, atrogin-1 and MuRF1 expression, protein degradation and myotube atrophy. Treatment of myotubes with dexamethasone increased PPARβ/δ expression and activity. Dexamethasone-induced FOXO1 activation and atrogin-1 and MuRF1 expression, protein degradation, and myotube atrophy were inhibited by PPARβ/δ blocker or siRNA. Importantly, muscle wasting induced in rats by dexamethasone or sepsis was prevented by treatment with a PPARβ/δ inhibitor. The present results suggest that PPARβ/δ regulates FOXO1 activation in glucocorticoid- and sepsis-induced muscle wasting and that treatment with a PPARβ/δ inhibitor may ameliorate loss of muscle mass in these conditions.

  12. Mathematical modeling for the annatto (Bixa orellana L. seed drying process

    Directory of Open Access Journals (Sweden)

    Dyego da Costa Santos

    2013-09-01

    Full Text Available The pigment extraction process using annatto (Bixa orellana L. seed produces a large amount of seed waste. Although most of these seeds are discarded, a number of studies report promising results with their use in animal feed. The good fiber content also suggests human nutrition applications, with possible incorporation in dietary foods. In the present study, annatto seeds derived from color extraction were dried, with and without the layer of oil left over from the process. Seeds were dried at 40, 50, 60 and 70 °C. Drying data were fitted to the Diffusion Approximation, Two Term, Midilli, Page and Thompson models. Drying was carried out up to a moisture content of approximately 5% wet basis. All the models studied exhibited adequate fit to the drying kinetics data of the annatto seeds, with coefficients of determination above 0.98 and root mean squared error (RMSE below 1.0. Seeds with oil had longer drying times at 40 and 50 °C and shorter times at 60 and 70 °C. The coefficients of diffusion showed values between 2.67 x 10-11 and 9.50 x 10-11 m² s-1 and between 2.7 x 10-11 and 6.21 x 10-11 m² s-1, while activation energies for liquid diffusions were 38.04 and 23.52 kJ mol-1, for residual seed drying with and without oil, respectively.

  13. Comparative Study of Antibacterial Activities of the Fresh and Dried ...

    African Journals Online (AJOL)

    The fresh and dried fruit extracts of Capsicum species were screened for antibacterial activities against Staph. aureus, S. typhi and B. subtilis using two assay methods. The filter disk and agar plate diffusion were the assay methods employed in the study. The results of the study revealed that the extracts obtained from the ...

  14. Biological treatment of chicken feather waste for improved biogas production

    Institute of Scientific and Technical Information of China (English)

    Gergely Forgács; Saeid Alinezhad; Amir Mirabdollah; Elisabeth Feuk-Lagerstedt; Ilona Sárvári Horwáth

    2011-01-01

    A two-stage system was developed which combines the biological degradation of keratin-rich waste with the production of biogas.Chicken feather waste was treated biologically with a recombinant Bacillus megaterium strain showing keratinase activity prior to biogas production.Chopped,autoclaved chicken feathers (4%,W/V) were completely degraded,resulting in a yellowish fermentation broth with a level of 0.51 mg/mL soluble proteins after 8 days of cultivation of the recombinant strain.During the subsequent anaerobic batch digestion experiments,methane production of 0.35 Nm3/kg dry feathers (i.e.,0.4 Nm3/kg volatile solids of feathers),corresponding to 80% of the theoretical value on proteins,was achieved from the feather hydrolyzates,independently of the prehydrolysis time period of 1,2 or 8 days.Cultivation with a native keratinase producing strain,Bacillus licheniformis resulted in only 0.25 mg/mL soluble proteins in the feather hydrolyzate,which then was digested achieving a maximum accumulated methane production of 0.31 Nm3/kg dry feathers.Feather hydrolyzates treated with the wild type B.megaterium produced 0.21 Nm3 CH4/kg dry feathers as maximum yield.

  15. Performance Enhancements to the Hanford Waste Treatment and Immobilization Plant Low-Activity Waste Vitrification System

    International Nuclear Information System (INIS)

    Hamel, W. F.; Gerdes, K.; Holton, L. K.; Pegg, I.L.; Bowan, B.W.

    2006-01-01

    The U.S Department of Energy Office of River Protection (DOE-ORP) is constructing a Waste Treatment and Immobilization Plant (WTP) for the treatment and vitrification of underground tank wastes stored at the Hanford Site in Washington State. The WTP comprises four major facilities: a pretreatment facility to separate the tank waste into high level waste (HLW) and low-activity waste (LAW) process streams, a HLW vitrification facility to immobilize the HLW fraction; a LAW vitrification facility to immobilize the LAW fraction, and an analytical laboratory to support the operations of all four treatment facilities. DOE has established strategic objectives to optimize the performance of the WTP facilities and the LAW and HLW waste forms to reduce the overall schedule and cost for treatment and vitrification of the Hanford tank wastes. This strategy has been implemented by establishing performance expectations in the WTP contract for the facilities and waste forms. In addition, DOE, as owner-operator of the WTP facilities, continues to evaluate 1) the design, to determine the potential for performance above the requirements specified in the WTP contract; and 2) improvements in production of the LAW and HLW waste forms. This paper reports recent progress directed at improving production of the LAW waste form. DOE's initial assessment, which is based on the work reported in this paper, is that the treatment rate of the WTP LAW vitrification facility can be increased by a factor of 2 to 4 with a combination of revised glass formulations, modest increases in melter glass operating temperatures, and a second-generation LAW melter with a larger surface area. Implementing these improvements in the LAW waste immobilization capability can benefit the LAW treatment mission by reducing the cost of waste treatment. (authors)

  16. Efficient sorting of waste by means of dry stabilisation and separation of inert materials; Effiziente Sortierung von Restabfall durch Trockenstabilisierung und Inertstoffabscheidung

    Energy Technology Data Exchange (ETDEWEB)

    Heering, B.M. [Herhof-Umwelt GmbH, Solms-Niederbiel (Germany); Heil, J. [Lehr- und Forschungsgebiet Kokereiwesen, Brikettierung und Thermische Abfallbehandlung, Aachen (Germany)

    1999-07-01

    Sorting of waste takes place in two stages: First, the waste is dried to a moisture of 15 % by weight, making use of its microbial activities. After this, the stabilised residue is sorted according to grain size, density, magnetic susceiptibility, electric conductivity, and comminution characteristics. This way, recyclable materials are recovered almost completely (e.g. metals, stone, ceramics, glass). The refuse-derived fuel fraction has significantly lower heavy metal concentrations because the metals were sorted out, and its calorific value and homogemeity are optimised as well. The fuel fraction can be combusted at once or stored for further use. [German] Die stoffliche Trennung des Restabfalls kann in zwei aufeinander folgende Schritte unterteilt werden. Den ersten Schritt stellt eine Trocknung unter Ausnutzung der mikrobiellen Aktivitaeten des Materials dar. Durch diese Massnahme wird ein trockenes Material mit einer Restfeuchte von unter 15 Gew.-% erzeugt. Den zweiten Verfahrensschritt stellt die Sortierung des stabilisierten Restabfall dar. Als Sortierkriterium werden die Eigenschaften Korngroesse, Dichte, magnetische Suszeptibilitaet, elektrische Leitfaehigkeit und Zerkleinerungsverhalten angewandt. Hierdruch ist eine nahezu vollstaendige und sortenreine Rueckgewinnung der im Abfall enthaltenen Wertstoffe wie Eisen-/Nichteisenmetalle, Steine/Keramik und Glas sichergestellt. Weiterhin erhaelt man als Brennstofffraktion das Trockenstabilat {sup circledR}. Aufgrund der Abtrennung der hauptsaechlichen Schwermetalltraeger, Eisen- und Nichteisenmetalle, besitzt dieser Sekundaerbrennstoff gegenueber dem unbehandeltem Restabfall deutlich verminderte Schwermetallkonzentrationen. Zudem sind seine verbrennungstechnisch relevanten Eigenschaften Heizwert und Homogenitaet deutlich optimiert. Das Trockenstabilat {sup circledR} wird sofort oder zeitversetzt der energetischen Verwertung zugefuehrt. (orig.)

  17. Resource Limitations on Soil Microbial Activity in an Antarctic Dry Valley

    DEFF Research Database (Denmark)

    Sparrow, Asley; Gregorich, Ed; Hopkins, David

    2011-01-01

    Although Antarctic dry valley soils function under some of the harshest environmental conditions on the planet, there is significant biological activity concentrated in small areas in the landscape. These productive areas serve as a source of C and N in organic matter redistributed...... to the surrounding biologically impoverished soils. We conducted a 3-yr replicated field experiment involving soil amendment with C and N in simple (glucose and NH4Cl) and complex (glycine and lacustrine detritus) forms to evaluate the resource limitations on soil microbial activity in an Antarctic dry valley....... The respiratory response for all substrates was slow, with a significant but weak response to NH4Cl, followed by a more widespread response to all substrates after 2 yr and in laboratory incubations conducted 3 yr after substrate addition. This response suggests that the soil microbial community is N limited and...

  18. Application of radiological imaging methods to radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Souza, Daiane Cristini B. de; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radiological imaging technologies are most frequently used for medical diagnostic purposes but are also useful in materials characterization and other non-medical applications in research and industry. The characterization of radioactive waste packages or waste samples can also benefit from these techniques. In this paper, the application of some imaging methods is examined for the physical characterization of radioactive wastes constituted by spent ion-exchange resins and activated charcoal beds stored at the Radioactive Waste Management Department of IPEN. These wastes are generated when the filter media of the water polishing system of the IEA-R1 Nuclear Research Reactor is no longer able to maintain the required water quality and are replaced. The IEA-R1 is a 5MW pool-type reactor, moderated and cooled by light water, and fission and activation products released from the reactor core must be continuously removed to prevent activity buildup in the water. The replacement of the sorbents is carried out by pumping from the filter tanks into several 200 L drums, each drum getting a variable amount of water. Considering that the results of radioanalytical methods to determine the concentrations of radionuclides are usually expressed on dry basis,the amount of water must be known to calculate the total activity of each package. At first sight this is a trivial problem that demanded, however some effort to be solved. The findings on this subject are reported in this paper. (author)

  19. A literature survey for the ultrasound use in the radioactive waste characterization

    International Nuclear Information System (INIS)

    Tessaro, Ana Paula Gimenes; Vicente, Roberto

    2013-01-01

    This paper presents the outcomes of a literature survey of reports on the use of ultrasound methods in the characterization of radioactive wastes. This research is motivated by the necessity to characterize radioactive wastes constituted of ion exchange resins and activated charcoal beds generated at the nuclear research reactor IEA-R1 and that are stored in twenty one 200 L-drum sat the Waste Management Department. These two waste types come from the water polishing system of the nuclear reactor where they are used to remove impurities as fission and activation products from the water. After same time in the water treatment system, these two adsorbents are unable to keep the water quality and are then replaced becoming radioactive waste. Previous work determined the concentration of radio isotopes in dried samples of the adsorbents. As the water content varies largely among different drums, it is necessary to determine the water content of each individual drum for the total activity to be calculated. Ultrasound imaging was thought as an appropriate tool as a characterization method. The different acoustic impedances of liquids and solid salter the propagation of the sound wave sand can disclose the content of the waste packages. (author)

  20. A literature survey for the ultrasound use in the radioactive waste characterization

    Energy Technology Data Exchange (ETDEWEB)

    Tessaro, Ana Paula Gimenes; Vicente, Roberto, E-mail: aptessaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    This paper presents the outcomes of a literature survey of reports on the use of ultrasound methods in the characterization of radioactive wastes. This research is motivated by the necessity to characterize radioactive wastes constituted of ion exchange resins and activated charcoal beds generated at the nuclear research reactor IEA-R1 and that are stored in twenty one 200 L-drum sat the Waste Management Department. These two waste types come from the water polishing system of the nuclear reactor where they are used to remove impurities as fission and activation products from the water. After same time in the water treatment system, these two adsorbents are unable to keep the water quality and are then replaced becoming radioactive waste. Previous work determined the concentration of radio isotopes in dried samples of the adsorbents. As the water content varies largely among different drums, it is necessary to determine the water content of each individual drum for the total activity to be calculated. Ultrasound imaging was thought as an appropriate tool as a characterization method. The different acoustic impedances of liquids and solid salter the propagation of the sound wave sand can disclose the content of the waste packages. (author)

  1. EPA's approach to the commercial low-activity mixed waste problem

    International Nuclear Information System (INIS)

    Foutes, C.; Schultheisz, D.; Gruhlke, J.

    1999-01-01

    The US Environmental Protection Agency is proposing an environmental standard for the disposal of commercial low-activity mixed waste (LAMW), waste characterized by the presence of both hazardous chemicals and very low-level radioactive materials. LAMW is and will be generated in large amounts by environmental restoration efforts, nuclear power production and, in smaller amounts, by medical and educational facilities, industrial activities, and the process of research and development. The dual regulatory nature of this waste (covered by two very different statutes) is currently an impediment to its permanent disposal. The proposed standard addresses this issue by creating a voluntary regulatory option under which LAMW that meets the proposed radionuclide concentration limits may be disposed of via disposal technology based upon the Resource Conservation and Recovery Act (RCRA) hazardous waste disposal requirements. Such a facility would also have to be licensed by the NRC. EPA will explore the attributes of this disposal technology to develop concentration limits that are protective of the public health for LAMW. (author)

  2. Desactivation of liquid radioactive wastes of low and medium activity

    International Nuclear Information System (INIS)

    Golinski, M.; Charomska, K.

    1978-01-01

    The results of research made according to the prodranm of scientific and technical cooperation of the CMEA countries are discussed. The main direction of these research works is on future improvement of installations for purification of liquid radioactive wastes by chemical methods of coprecipitation and coagulation, ion exchange, sorption, distillation and electrolysis. It was shown that methods of coprecipitation and coagulation have low efficiency and the activity reduction factor seldom was more than 10. In sorption processes different sorbents, both organic and nonorganic were used. The modified bentonite used as a sorbent agent has shown high selectivity towards zesium ions. Waste concentration by means of distillation is an universal but rather expensive method and is applied mainly in the cases of high salts concentration and high specific activity of liquid wastes. Electrolysis, as a method of the liquid wastes purification is used in the USSR and has high efficiency with low energy consumption. (I.T.) [ru

  3. Removal of phenol from radioactive waste solutions using activated granular Carbon and activated vermiculite

    International Nuclear Information System (INIS)

    Ezz El-Din, M.R.; Atta, E.R.

    2006-01-01

    The efficiency of both activated granular carbon (AGC) and activated vermiculite (AV) in removal of phenol from aqueous waste solutions is of great interest. The aim of the present study is to compare the absorbance capacities of both AGC and AV for the removal of phenol from radioactive waste solutions and to identify the factors affecting the sorption process. The experimental results were in the form of batch sorption measurements for the removal of phenol at ambient temperature (29 ± 1 degree C) and for times up to 40 min and 180 min for AGC and AV, respectively. The results indicated that activated carbon has good efficiency to adsorb phenol. Freundlich equation has been fitted to both AGC and AV for the contaminant removal. The adsorption capacities of both AGC and AV to phenol were 17.4 mg g-1 and 4.5 mg g-1, respectively. The maximum desorption percent of phenol from both loaded AGC and loaded AV were 9 % and 0 %, respectively, and it attained within about 200 min. accordingly, it is recommended that activated carbon is preferred in the applied field for removing phenol from radioactive aqueous wastes

  4. Hazardous waste management and weight-based indicators-The case of Haifa Metropolis

    International Nuclear Information System (INIS)

    Elimelech, E.; Ayalon, O.; Flicstein, B.

    2011-01-01

    The quantity control of hazardous waste in Israel relies primarily on the Environmental Services Company (ESC) reports. With limited management tools, the Ministry of Environmental Protection (MoEP) has no applicable methodology to confirm or monitor the actual amounts of hazardous waste produced by various industrial sectors. The main goal of this research was to develop a method for estimating the amounts of hazardous waste produced by various sectors. In order to achieve this goal, sector-specific indicators were tested on three hazardous waste producing sectors in the Haifa Metropolis: petroleum refineries, dry cleaners, and public hospitals. The findings reveal poor practice of hazardous waste management in the dry cleaning sector and in the public hospitals sector. Large discrepancies were found in the dry cleaning sector, between the quantities of hazardous waste reported and the corresponding indicator estimates. Furthermore, a lack of documentation on hospitals' pharmaceutical and chemical waste production volume was observed. Only in the case of petroleum refineries, the reported amount was consistent with the estimate.

  5. Hazardous waste management and weight-based indicators--the case of Haifa Metropolis.

    Science.gov (United States)

    Elimelech, E; Ayalon, O; Flicstein, B

    2011-01-30

    The quantity control of hazardous waste in Israel relies primarily on the Environmental Services Company (ESC) reports. With limited management tools, the Ministry of Environmental Protection (MoEP) has no applicable methodology to confirm or monitor the actual amounts of hazardous waste produced by various industrial sectors. The main goal of this research was to develop a method for estimating the amounts of hazardous waste produced by various sectors. In order to achieve this goal, sector-specific indicators were tested on three hazardous waste producing sectors in the Haifa Metropolis: petroleum refineries, dry cleaners, and public hospitals. The findings reveal poor practice of hazardous waste management in the dry cleaning sector and in the public hospitals sector. Large discrepancies were found in the dry cleaning sector, between the quantities of hazardous waste reported and the corresponding indicator estimates. Furthermore, a lack of documentation on hospitals' pharmaceutical and chemical waste production volume was observed. Only in the case of petroleum refineries, the reported amount was consistent with the estimate. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. ANDRA - National Radioactive Waste Management Agency. Activity report 2015. Financial report 2015

    International Nuclear Information System (INIS)

    2016-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2015

  7. ANDRA - National Radioactive Waste Management Agency. Activity report 2016. Financial report 2016

    International Nuclear Information System (INIS)

    2017-01-01

    Created in 1979 within the CEA, the National Radioactive Waste Management Agency (ANDRA) was established by the December 1991 Waste Act as a public body in charge of the long-term management of all radioactive waste, under the supervision of the Ministry of Ecology, Energy, Sustainable Development and the Sea (formerly the Ministry of Industry and the Ministry of Environment), and the Ministry of Research. Its 3 basic missions were extended and their funding secured through the 2006 Planning Act: - a R and D mission to propose safe long-term solution for radioactive waste without current disposal system; this mission includes long-term storage, since the 2006 Planning Act, in order to propose interim solutions while final ones are being studied; - an industrial mission concerning, on one hand, waste acceptance criteria and control and, on the other hand, siting, construction, operation, closure and monitoring of repositories. This mission includes as well a public service mission in terms of i) collection of waste of the 'small-scale nuclear activities' producers or owners (including the so-called 'household' radioactive waste, i.e. waste owned by private individuals) and ii) clean-up and rehabilitation of orphan polluted sites; - an information mission, notably through the regular publication of the National Inventory of radioactive materials and waste. This mission includes as well an active policy of dialogue with stakeholders both at national and local level. This document is the activity and financial report of the Andra for the year 2016

  8. Antioxidant and antimicrobial activities of squid ink powder

    OpenAIRE

    Fatimah Zaharah, M.Y.; Rabeta, M.S.

    2017-01-01

    Economic development in Malaysia has led to increasing quantity and complexity of generated waste or by-product. The main objective of this study is to investigate the antioxidant and antimicrobial activities of squid ink powder. The squid ink was collected from fresh squid and dried using freeze dryer before it was ground into powder. The yield of squid ink was 22.82% after freeze-drying which was 69.37g in amount. Proximate composition analysis as well as two total antioxidant activity assa...

  9. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits

    Science.gov (United States)

    Shofian, Norshahida Mohamad; Hamid, Azizah Abdul; Osman, Azizah; Saari, Nazamid; Anwar, Farooq; Dek, Mohd Sabri Pak; Hairuddin, Muhammad Redzuan

    2011-01-01

    The effects of freeze-drying on antioxidant compounds and antioxidant activity of five tropical fruits, namely starfruit (Averrhoa carambola L.), mango (Mangifera indica L.), papaya (Carica papaya L.), muskmelon (Cucumis melo L.), and watermelon Citruluss lanatus (Thunb.) were investigated. Significant (p 0.05) change, however, observed in the ascorbic acid content of the fresh and freeze-dried fruits. Similarly, freeze-drying did not exert any considerable effect on β-carotene concentration of fruits, except for mango and watermelon, where significantly (p < 0.05) higher levels were detected in the fresh samples. The results of DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging and reducing power assays revealed that fresh samples of starfruit and mango had relatively higher antioxidant activity. In case of linoleic acid peroxidation inhibition measurement, a significant (p < 0.05) but random variation was recorded between the fresh and freeze-dried fruits. Overall, in comparison to β-carotene and ascorbic acid, a good correlation was established between the result of TPC and antioxidant assays, indicating that phenolics might have been the dominant compounds contributing towards the antioxidant activity of the fruits tested. PMID:21845104

  10. Final Report for Crucible -Scale Radioactive Vitrification and Product Test of Waste Envelope B (AZ-102) Low-Activity Waste Glass

    International Nuclear Information System (INIS)

    CRAWFORD, CHARLES

    2004-01-01

    A proof-of-technology demonstration for the Hanford River Protection Project (RPP) Waste treatment and Immobilization Plant (WTP) was performed by the Savannah River Technology Center (SRTC). As part of this demonstration, treated AZ-102 Low-Activity Waste supernate was vitrified using a crucible-scale furnace. Initial glass samples were quench-cooled and characterized for metals and radionuclides. The glass was also durability tested using the American Society for Testing and Materials (ASTM) Product Consistency Test (PCT) protocol. These tests used the AZ-102 glass formulation Low Activity Waste (LAW) B88 that targeted AZ-102 waste loading at 5 wt% Na2O. After these initial results were obtained with the quench-cooled LAWB88 glass, a prototypical container centerline cooling (CCC) program was supplied to SRTC by WTP. A portion of the quench-cooled LAWB88 glass was remelted and centerline cooled. Samples from the CCC low-activity AZ-102 glass waste form were durability tested using the PCT and characterized for crystalline phase identification.This final report documents the characterization and durability of this AZ-102 glass

  11. Optimization of the Enzymatic Saccharification Process of Milled Orange Wastes

    Directory of Open Access Journals (Sweden)

    Daniel Velasco

    2017-08-01

    Full Text Available Orange juice production generates a very high quantity of residues (Orange Peel Waste or OPW-50–60% of total weight that can be used for cattle feed as well as feedstock for the extraction or production of essential oils, pectin and nutraceutics and several monosaccharides by saccharification, inversion and enzyme-aided extraction. As in all solid wastes, simple pretreatments can enhance these processes. In this study, hydrothermal pretreatments and knife milling have been analyzed with enzyme saccharification at different dry solid contents as the selection test: simple knife milling seemed more appropriate, as no added pretreatment resulted in better final glucose yields. A Taguchi optimization study on dry solid to liquid content and the composition of the enzymatic cocktail was undertaken. The amounts of enzymatic preparations were set to reduce their impact on the economy of the process; however, as expected, the highest amounts resulted in the best yields to glucose and other monomers. Interestingly, the highest content in solid to liquid (11.5% on dry basis rendered the best yields. Additionally, in search for process economy with high yields, operational conditions were set: medium amounts of hemicellulases, polygalacturonases and β-glucosidases. Finally, a fractal kinetic modelling of results for all products from the saccharification process indicated very high activities resulting in the liberation of glucose, fructose and xylose, and very low activities to arabinose and galactose. High activity on pectin was also observed, but, for all monomers liberated initially at a fast rate, high hindrances appeared during the saccharification process.

  12. Low-Activity Waste Feed Data Quality Objectives

    Energy Technology Data Exchange (ETDEWEB)

    MJ Truex; KD Wiemers

    1998-12-11

    This document describes characterization requirements for the Tank Waste Remediation System (TWRS) Waste Disposal Program's privatization efforts in support of low-activity waste (LAW) treatment and immobilization, This revised Data Quality Objective (DQO) replaces earlier documents (PNNL 1997; DOE-W 1998zq Wiemers 1996). Revision O of this DQO was completed to meet Tri-Party Agreement (TPA) target milestone M-60-14-TO1. Revision 1 updates the data requirements based on the contract issued `August 1998 (DOE-RL 1998b). In addition, sections of Revision O pertaining to "environmental planning" were not acceptable to the Washington State Department of Ecology (Ecology) and have been removed. Regulatory compliance for TWRS Privatization is being addressed in a separate DQO (Wiemers et al. 1998). The Project Hanford Management Contract (PHMC) Contractors and the private contractor may elect to complete issue-specific DQOS to accommodate their individual work scope.

  13. Solid waste containing method and solid waste container

    International Nuclear Information System (INIS)

    Sawai, Takeshi.

    1997-01-01

    Solid wastes are filled in a sealed vessel, and support spacers are inserted to the gap between the inner wall of a vessel main body and the solid wastes. The solid wastes comprise shorn pieces (crushed pieces) of spent fuel rod cladding tubes, radioactively contaminated metal pieces and miscellaneous solids pressed into a disk-like shape. The sealed vessel comprises, for example, a stainless steel. The solid wastes are filled while being stacked in a plurality of stages. A solidifying filler is filled into the gap between the inner wall and the solid wastes in the vessel main body by way of an upper opening, and the upper opening is closed by a closing lid to provide an entirely sealed state. Alumina particles having high heat conductivity and excellent heat durability are used for the solid filler. It is preferable to fill an inert gas such as a dried nitrogen gas in the sealed vessel. (I.N.)

  14. Disposal or radioactive waste. Challenges and approaches; Entsorgung von radioaktiven Abfaellen. Herausforderungen und Loesungsansaetze

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Matthias; Marx, Steffen; Schacht, Gregor [Hannover Univ. (Germany). Inst. fuer Massivbau

    2017-01-15

    International there's a consensus that the high active waste has to be disposed in deep geological repository. After the reform of the site selection process it's still a long way from having a fully operational final repository in Germany. Currently there is no operational final repository for high active waste around the world. Presently the high active waste is stored regarding the concept of the dry interim storage. Thereby the waste is stored in special cast-iron casks for storage and transport of radioactive material. These casks are located in reinforced concrete buildings, the centralised and decentralised interim storage facilities. This storage is licensed for 40 years. After expiration of the licenses between 2034 and 2047 the high active waste shall disposed in a deep geological final repository in Germany. Due to several delays there won't be an operational available final repository when the licenses will expire. Therefore a new concept for the storage after the expirations has to be developed. Such a ''Ueberbrueckungslagerung'' will be necessary for several decades up to more than a century regarding different prognoses. This article describes and discuss different solutions.

  15. GAAT dry well conductivity monitoring report, July 1997 through January 1998, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-01-01

    A waste removal program is being implemented for the Gunite and Associated Tanks (GAAT) Operable Unit at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. The waste is being removed by means of remotely operated, in-tank, confined sluicing equipment. The waste removal operations in Tanks W-3 and W-4 in the North Tank Farm (NTF) have been completed and the equipment is being moved to the South Tank Farm (STF), where it will be used to remove the sludges from the six STF tanks (W-5, W-6, W-7, W-8, W-9, and W-10) beginning later this year. During sluicing operations the dry wells adjacent to each of the tanks are instrumented so that potential releases can be detected by means external to the tank. The method of detection is by monitoring the electrical conductivity of the water in the dry well associated with each tank. This report documents the dry well conductivity monitoring data for the period from July 1997 through January 1998. The dry wells monitored during this period include DW-3, DW-4, DW-8, DW-9, and DW-10. The conductivity of the water passing through Pump Station 1 (PS 1) was also monitored. The principal activities that occurred during this period were the sluicing of Tanks W-3 and W-4 in the NTF, transfer of tank liquids from the NTF to the STF, and the installation of new risers, tank dome leveling, and emplacement of stabilized base backfill in the STF. Presented in this report are the dry well conductivity, rainfall, tank level, and STF construction information that is relevant to the analysis and interpretation of the monitoring data for the reporting period. A thorough analysis of the monitoring results for the period indicates that no releases have occurred from the gunite tanks being monitored

  16. Radioprotection and physical surveillance during activities of liquid wastes of high and low activity in italian ITREC plant

    International Nuclear Information System (INIS)

    Petagna, Edoardo; Tortorelli, Pietro

    1997-03-01

    Many studies were made in ITREC Plant, located in ENEA - Trisaia Research Center, in the field of the nuclear fuel reprocessing, in the past years. During these activities liquid wastes of high and low activity were yielded and stored in the special area of tanks named Waste-1. In order to condition the low activity liquid wastes, essentially fission products, beta and gamma emitters, was built the SIRTE Plant (Integrate System for the Raise and Effluents Treatment) based on cementation process. In the present work, the radiological monitoring performed within the plant during the first campaign of cementation, is showed

  17. Experiment of Industrial Waste Absorption using Activated Carbon from Coal of Tanjung Tabalong, South Kalimantan

    Directory of Open Access Journals (Sweden)

    M. Ulum Gani

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v6i4.130Activated carbon made from Tanjung Tabalong coal was investigated its absorption capability to organic and inorganic elements in industrial waste. Coal was carbonized at low temperature of 600C to produce semicoke, and then was activated at temperature of 700C with activation time of 120 minutes with water steam flow. The absorption capability of activated carbon to chemical oxygen demand (COD was performed using 2.5 and 9.0 g activated carbon for 250 ml and 300 ml COD waste respectively. The agitation time of each experiment were 30, 60, and 90 minutes. Atomic absorption spectrophotometer (AAS was used to analyze the COD waste. The result shows that 2.5 g activated carbon could absorb COD waste ranging from 6.9-67.5 %, while the utilization of 9 g could absorb COD waste ranging from 88.9 - 100 %. The more activated carbon and the longer time of agitation used in this experiment, the more the absorption of COD waste.

  18. Incineration plant for low active waste at Inshass, LAWI

    International Nuclear Information System (INIS)

    Krug, W.; Thoene, L.; Schmitz, H.J.; Abdelrazek, I.D.

    1993-10-01

    The LAWI (Low Active Waste Incinerator) prototype incinerating plant was devised and constructed according to the principle of the Juelich thermoprocess and installed at the Egyptian research centre Inshass. In parallel, AEA Cairo devised and constructed their own operations building for this plant with all the features, infrastructural installations and rooms required for operating the plant and handling and treating low-level radioactive wastes. The dimensions of this incinerator were selected so as to be sufficient for the disposal of solid, weakly radioactive combustible wastes from the Inshass Research Centre and the environment (e.g. Cairo hospitals). (orig./DG) [de

  19. Human health and ecological risks from environmental restoration and waste management activities

    International Nuclear Information System (INIS)

    Pehlman, P.A.; Wollert, D.A.; Phillippi, R.H.

    1994-01-01

    This paper summarizes the methodologies for estimating human health and ecological risks resulting from Environmental Restoration and Waste Management activities across the Department of Energy (DOE) complex. DOE is currently assessing these activities as part of the Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM-PEIS)

  20. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Science.gov (United States)

    2010-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...

  1. The management of low activity radioactive waste: IAEA guidance and perspectives

    International Nuclear Information System (INIS)

    Louvat, D.; Rowat, J.H.; Potier, J.M.

    2005-01-01

    This paper describes the safety standards and reports of the International Atomic Energy Agency (IAEA) applicable to the management and disposal of low activity radioactive waste and provides some historical perspective on their development. Some of the most important current issues in the area of low activity radioactive waste management are discussed in the context of related ongoing IAEA activities. At the end of the paper, a number of issues and questions are raised for consideration and discussion at this symposium. (author)

  2. Potential of Briquetting as a Waste-Management Option for Handling Market-Generated Vegetable Waste in Port Harcourt, Nigeria

    Directory of Open Access Journals (Sweden)

    Olugbemiro M. Akande

    2018-03-01

    Full Text Available The conversion of biomass to high-density briquettes is a potential solution to solid waste problems as well as to a high dependence on fuel wood in developing countries. In this study, the potential of converting vegetable waste to briquettes using waste paper as a binder was investigated. A sample size of 30 respondents was interviewed using a self-administered questionnaire at the D-line fruit and vegetable market in Port Harcourt, Nigeria. Carrot and cabbage leaves were selected for briquetting based on their availability and heating value. This waste was sun-dried, pulverized, torrefied and fermented. Briquettes were produced with a manual briquette press after the processed vegetable waste was mixed with waste paper in four paper:waste ratios, i.e., 10:90, 15:85, 20:80 and 25:75. The moisture content, densities and cooking efficiency of the briquettes were determined using the oven-drying method, the water-displacement method, and the water-boiling test, respectively. There was no observed trend in moisture content values of the briquettes, which varied significantly between 3.0% and 8.5%. There was no significant variation in the densities, which ranged from 0.79 g/cm3 to 0.96 g/cm3 for all the briquette types. A degree of compaction above 300% was achieved for all the briquette types. Water-boiling test results revealed that 10:90 paper:sun-dried cabbage briquettes had the highest ignitability of 0.32 min. Torrefied carrot briquettes with 25% paper had the least boiling time and the highest burning rates of 9.21 min and 4.89 g/min, respectively. It was concluded that cabbage and carrot waste can best be converted into good-quality briquettes after torrefaction.

  3. Scaling factors for the activity determination of radioactive waste from nuclear power reactors

    International Nuclear Information System (INIS)

    Medici, Marcela A.; Piumetti, Elsa H.

    2007-01-01

    Specific information of the total activity and activity concentration of the radionuclides contained is required for conditioning, transporting and final disposal of radioactive waste. Due to the complexity associated to alpha and beta measurements for these emitters it is worldwide used, particularly in the case of heterogeneous radioactive waste, the Scaling Factor Method. As in other cases, inputs of the results of the analysis of waste samples taking from waste streams are necessary. The Scaling Factor Method is based on the determination of averaged correlations between the activity concentrations of Difficult to Measure (DTM) nuclides (i.e. alpha and beta emitters) and the activity concentration of easy to measure nuclides (i.e. strong gamma emitters) called Key Nuclides (KN). In the application of this method two phases may be identified: in the first one the degree of correlation between averaged activities of DTM and a given KN is verified, and specific Scaling Factors are derived for every DTM radionuclide. In the second stage the total activity and the activity concentration of the selected KN is determined in each waste item and, by applying the SFs obtained previously, the activities of DTM nuclides are calculated. It is concluded that this method is appropriate and cost-effective and it is stressed that it is only applicable while the Nuclear Power Reactor is in operation. (author)

  4. Fluidized Bed Steam Reforming For Treatment And Immobilization Of Low-Activity Waste

    International Nuclear Information System (INIS)

    Hewitt, W.M.

    2011-01-01

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  5. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  6. Recent IAEA activities to support utilisation of cementitious materials in radioactive waste management

    International Nuclear Information System (INIS)

    Ojowan, M.I.; Samanta, S.K.

    2015-01-01

    The International Atomic Energy Agency promotes a safe and effective management of radioactive waste and has suitable programmes in place to serve the needs of Member States in this area. In support of these programmes the Waste Technology Section fosters technology transfer, promotes information exchange and cooperative research, as well as builds capacity in Member States to manage radioactive wastes, resulting both from the nuclear fuel cycle and nuclear applications. Technical assistance in pre disposal area covers all of these activities and is delivered through established Agency mechanisms including publication of technical documents. While the Agency does not conduct any in-house research activities, its Coordinated Research Projects (CRPs) foster research in Member States. There are 2 CRPs concerning cementitious materials: a CRP on cements and an on-going CRP on irradiated graphite waste. The CRP on cements has resulted in the recent IAEA publication TECDOC-1701. An important activity concerned with characterisation of cementitious waste forms is the LABONET network of laboratory-based centres of expertise involved in the characterization of low and intermediate level radioactive wastes. The Waste Technology Section is preparing a series of comprehensive state of the art technical handbooks

  7. Case studies of corrosion of mixed waste and transuranic waste drums

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.

    1993-01-01

    This paper presents three case studies of corrosion of waste drums at the Los Alamos National Laboratory (LANL). Corrosion was not anticipated by the waste generators, but occurred because of subtle chemical or physical mechanisms. In one case, drums of a cemented transuranic (TRU) sludge experienced general and pitting corrosion. In the second instance, a chemical from a commercial paint stripper migrated from its primary containment drums to chemically attack overpack drums made of mild carbon steel. In the third case, drums of mixed low level waste (MLLW) soil corroded drum packaging even though the waste appeared to be dry when it was placed in the drums. These case studies are jointly discussed as ''lessons learned'' to enhance awareness of subtle mechanisms that can contribute to the corrosion of radioactive waste drums during interim storage

  8. Influence of drying temperature on the chemical constituents of jaboticaba (Plinia Jaboticaba (Vell. Berg skin

    Directory of Open Access Journals (Sweden)

    Ana Paula de C. Alves

    2014-09-01

    Full Text Available Jaboticaba is a fruit native to Brazil. Its skin represents up to 43% of the fruit and contains high levels of fiber, minerals and phenolic compounds. The use of the skin waste adds value to the fruit. However, one of the drawbacks of skin storage is the high water content, which requires drying processes to preserve the skin without leading to the loss of nutrients and antioxidants. The influence of different drying temperatures on the levels of nutrients and antioxidants was investigated. Jaboticaba (Plinia jaboticaba (Vell. Berg, genotype Sabará skins were lyophilized or dried at three temperatures (30, 45, and 60ºC, using food dryers. The skins were then ground, stored (protected from light and subjected to analysis of proximate composition, vitamin C, phytate, polyphenols, anthocyanins and antioxidant activity. The drying process had little effect on the proximate composition of the flour, presenting significant difference only for crude protein, fiber and non-nitrogenous extract. The greatest preservation of chemical constituents occurs in the lyophilized jaboticaba skins. Among the drying temperatures tested, however, the skins dried at 45 and60°C had more highly preserved nutritional substances and antioxidants.

  9. Electrolysis of Gold from Filtration Waste by Means of Mechanical Activation

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2012-12-01

    Full Text Available The intensification of the gold thiourea leaching from a filtration waste (Košice, Slovakia using mechanical activationas the pretreatment step has been studied. The leaching of “as-received“ sample in an acid thiourea solution resulted in 65 % Audissolution. However, after mechanical activation in a planetary mill 99 % of the gold was leached. The optimum redox potential forelectrolysis is in the range 500-523 mV for the gold extraction 99.79 % from the mechanically activated sample. The mechanicalactivation resulted in an increase of the specific surface area of the waste from 0.7 m2g-1 to a maximum value of 13.5 m2g-1. The physicochemicalchanges in the filtration waste as a consequence of mechanical activation had a pronounced influence on the subsequent goldextraction.

  10. Phytase production by Rhizopus microsporus var. microsporus biofilm: characterization of enzymatic activity after spray drying in presence of carbohydrates and nonconventional adjuvants.

    Science.gov (United States)

    Sato, Vanessa Sayuri; Jorge, João Atílio; Oliveira, Wanderley Pereira; Souza, Claudia Regina Fernandez; Guimarães, Luis Henrique Souza

    2014-02-28

    Microbial phytases are enzymes with biotechnological interest for the feed industry. In this article, the effect of spray-drying conditions on the stability and activity of extracellular phytase produced by R. microsporus var. microsporus biofilm is described. The phytase was spray-dried in the presence of starch, corn meal (>150 μm), soy bean meal (SB), corn meal (drying adjuvants. The residual enzyme activity after drying ranged from 10.7% to 60.4%, with SB and CM standing out as stabilizing agents. Water concentration and residual enzyme activity were determined in obtained powders as a function of the drying condition. When exposed to different pH values, the SB and CM products were stable, with residual activity above 50% in the pH range from 4.5 to 8.5 for 60 min. The use of CM as drying adjuvant promoted the best retention of enzymatic activity compared with SB. Spray drying of the R. microsporus var. microsporus phytase using different drying adjuvants showed interesting results, being quite feasible with regards their biotechnological applications, especially for poultry diets.

  11. Report of the Task Force on Low-Level Radioactive Waste. Position paper

    International Nuclear Information System (INIS)

    1980-01-01

    The Radiation Policy Council formed a Task Force in May 1980 to consider the problems associated with low-level radioactive waste disposal. Two major objectives were developed by the Task Force: (1) To recommend Federal policy for improving coordination and implementation of Federal and non-Federal programs that have been established to obtain solutions to existing low-level waste disposal problems, and (2) to recommend Federal policy for disposal of low-level waste containing minimal activity for which alternative disposal methods to existing shallow land burial practices may be acceptable for protecting the public health. These wastes constitute a significant fraction of what is currently classified as low-level radioactive wastes. Included are most of the wastes currently destined for shallow land burial from medical and research institutions, as well as from other sources. Such wastes include liquid scintillation vials, dry solids, animal carcasses, and paper trash; there are many items included which are needlessly classified, on a purely arbitrary basis, as radioactive waste merely because they contain detectable radioactive materials. It is this waste which is of major concern

  12. PHYSICO-CHEMICAL ANALYSIS OF THE WASTE FROM INSTALLATION OF SEMI-DRY FLUE GAS DESULFURIZATION OF INDUSTRIAL CHP PLANT IN JANIKOWO

    Directory of Open Access Journals (Sweden)

    Marta Plaskacz-Dziuba

    2014-10-01

    Full Text Available The paper presents results of the analysis of waste from semi-dry flue gas desulphurisation installation called Integrated Novel Desulphurisation (NID. A comprehensive analysis of the physicochemical properties was conducted, including analyzes of the content of ions SO32- and SO42- (relating to 2CaSO3·H2O i CaSO4·2H2O, moisture, SiO2 and R2O3 and SEM-EDX analysis. The original method for the determination of sulphates (IV using a potentiometric titrator was designed. Determined that the main component of both studied wastes was 2CaSO3·H2O, and its content is for NID 1 – 41,24±0,63%, for NID 2 – 45,53±0,33%. The content of CaSO4·2H2O, which was determined by gravimetric method amounted for the NID 1 – 8,92±0,12%, for the NID 2 – 8,27±0,08%. The moisture content for both tested materials was about 4%, the content of SiO2 was in the range of 8–10%, and R2O3 content was about 1%. It was also shown that the test material is not homogenous. Images from scanning electron microscope showed that in the waste occured irregularly agglomerates with a diameter between 30 and 100 microns. EDX analysis revealed that elements constituted NID wastes are oxygen, sulfur, calcium, chlorine, silicon, aluminum, copper and carbon.

  13. Bulk Vitrification Technology For The Treatment And Immobilization Of Low-Activity Waste

    International Nuclear Information System (INIS)

    Ard, K.E.

    2011-01-01

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  14. FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HEWITT WM

    2011-04-08

    This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

  15. Recycling of radioactive mineral waste by activity separation

    International Nuclear Information System (INIS)

    Schartmann, F.; Cramer, T.; Meier-Kortwig, J.; Diedenhofen, S.; Wotruba, H.

    2005-01-01

    The AST process is a device for the recycling of building rubble originating from the dismantling of nuclear installations. Due to the activity separation in the process, a major part of rubble which would have otherwise been radioactive waste can now be cleared. The AST process has been developed in the course of the combined research project ''Aufbereitung radioaktiver mineralischer Rueckstaede durch Aktivitaetsseparation (Recycling of radioactive mineral waste by activity separation)'' which was sponsored by the BMBF (Federal Ministry for Education and Research). The first step was to investigate the activity distribution between the various constituents of activated heavy concrete (additions: hematite, magnetite, iron cuttings), of contaminated heavy and normal concrete, as well as of composition floor. Heavy concrete with metal additions showed a selective activation of the various constituents. Contaminated rubble often exhibits a selective enrichment of the activity in the cement in contrast to the aggregate. The AST facility for activity separation was designed on the basis of these results. Trial operation with various types of building rubble was carried out using three methods for sorting, screening according to grain size, magnetic separation and radiometric sorting. The use of these three methods was adapted to the material. (orig.)

  16. Rad-waste treatment

    International Nuclear Information System (INIS)

    1996-01-01

    The spent fuel coming from Slovak NPPs have partially been transported to the former Soviet Union, and a part of it is stored in an interim spent fuel wet storage. In compliance with the worldwide practices, further medium-term possibilities of storing in dry storages are under preparation. Disposal of a spent fuel and other high-level active wastes in a deep geological formation repository is the final solution. At present, there are geological investigations of possible sites in progress in Slovakia. Mochovce repository is a factory for a final disposal of compacted low and intermediate level radioactive wastes coming from the Slovak NPPs. This is a near-surface facility of a construction similar to the one used for disposal of radioactive wastes in France, Spain, Japan, Czech Republic, U.S.A, etc. Quality of the design, construction and functioning of the Mochovce's repository was assessed by an international team of experts within a special IAEA programme (WATRP). Having familiarized with the final report of the IAEA mission, Nuclear Regulatory Authority of the Slovak Republic (NRA SR) issued its position early in 1995, in which NRA SR required additional adjustment of the repository itself. Based on the NRA SR's position, Mochovce NPP invited experts from a number of institutions in September 1995 to discuss the NRA SR's requirements. Following was recommended by the experts: (1) to perform a complementary engineering-geological investigation on the site, (2) to use geophysical methods to verify existence of geological faults. In the next part a radioactive wastes that were treated at radioactive waste treatment lines in 1995 are listed. In 1995, the Chief Inspector of NRA SR issued an instruction that radioactive waste department should start inspections of radioactive waste treatment right in hospitals, research institutes and industries. Therefore, a total of 14 such workplaces were incorporated into a plan of inspections in 1995

  17. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE ' PO Mayak' , 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating

  18. Physicochemical and Antioxidant Activities of Spray-dried Pitaya Fruit Powder

    Science.gov (United States)

    Li, Guopeng; Liu, Yangyang; Lin, Lijing; Li, Jihua

    2018-01-01

    Pitaya commonly known as dragon fruit is very popular in China due to its intense color, constituent minerals, vitamins, and antioxidant properties. In the present study, physiochemical properties and antioxidant activities of fruit powder from two pitaya cultivars (namely red flesh and white flesh) and fruit peel were observed. Compared with the fruit powder of fruit flesh, the fruit powder made from fruit peel showed a higher antioxidant activity. The current study provides insights to produce spray-dried pitaya fruit powders that could potentially be used as functional food ingredients in various food fields.

  19. Long-term α-hazard of high activity waste from nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Girardi, F.; Bertozzi, G.

    1974-01-01

    The concentration and decay of α-emitters in high activity waste arising from spent nuclear fuel reprocessing was calculated under specified reference conditions. An attempt to evaluate the long-term hazard of such waste is being made by applying the ''barrier'' approach derived from reactor safety studies. Four barriers were identified, which could be evaluated in a probabilistic way by taking into account the great uncertainties present in each of them. The barriers are: 1) quality of the segregation afforded by deep geological formations, 2) stability of conditioned waste (chemical and physical), 3) retention by immediate surrounding, 4) distribution pattern of actinides in the environment. The analysis of a fictional accident showed that the uncertainties connected with the evaluation of the barriers' value are rather large. Additional studies particularly on the stability of conditioned waste and ecological properties of the environment towards actinides, would considerably improve our knowledge of the value of the barrier system. Chemical separation of actinides from high activity waste would be an additional option of undoubted value for the disposal of high activity waste. Its value for the overall safety of the entire waste inventory depends on many factors which need better evaluation, such as safety of the disposal of the separated actinides and the amount and quality of the additional waste generated by the separation process. An analysis of various levels of possible separations suggests that a reasonable target might be: Pu, Am and Cm, decontamination factor 10 3 ; Np, coextraction with U and Pu with a 90% yield

  20. Waste utilization strategies and markets in Europe, the export potential

    International Nuclear Information System (INIS)

    Vaeisaenen, P.

    2001-01-01

    Over 4000 million tons of solid wastes are generated annually in OECD countries, of which the share of EU countries is about 2000 million tons. The share of municipal wastes is about 200 million tons. Germany, France, Great Britain and Spain are the largest producers of wastes in EU. In Eastern Europe Russia, Turkey, Poland and Ukraine are the largest waste producers. Statistics show that at the end of the past decade 60% of wastes produced in EU countries were still dumped in dumping sites. The share of waste incineration was about 20% and that of composting about 6%. The corresponding value of mechanical waste processing was 6% and that of other waste processing methods 8%. The number of dumping sites in the 1995 statistics was 26 169 and the number of waste incineration plants 1258, most of which are small plants. Waste management strategies vary country by country. A common feature for all of these is that several waste processing methods are needed and the relative shares of them depend on the basic solution of waste management. The cities, which incinerated wastes 100 years ago, do the same today and the cities, the waste management of which based on dumping, dump the wastes even to day. In the future the number of dumping sites decreases in all countries, and the share of recycling, incineration and mechanical/biological processing increases. The large variety of waste processing methods in Finland has caused many problems, broad waste management cooperation is difficult, nation-wide information delivery can not be used effectively, terminology is non-uniform, etc. This is reflected to sort separation of wastes for energy purposes. Sorted waste for manufacture of REF can in principle be obtained from two routes: (1) the separated sorting of energy waste, or (2) dry waste, remaining after recovery of materials fraction. Both of the models are in use in Finland in different locations having special features typical for the location. Both of these methods have

  1. TWRS retrieval and storage mission. Immobilized low-activity waste disposal plan

    International Nuclear Information System (INIS)

    Shade, J.W.

    1998-01-01

    The TWRS mission is to store, treat, and immobilize highly radioactive Hanford waste (current and future tank waste and the encapsulated cesium and strontium) in a safe, environmentally sound, and cost-effective manner (TWRS JMN Justification for mission need). The mission includes retrieval, pretreatment, immobilization, interim storage and disposal, and tank closure. As part of this mission, DOE has established the TWRS Office to manage all Hanford Site tank waste activities. The TWRS program has identified the need to store, treat, immobilize, and dispose of the highly radioactive Hanford Site tank waste and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost-effective manner. To support environmental remediation and restoration at the Hanford Site a two-phase approach to using private contractors to treat and immobilize the low-activity and high-level waste currently stored in underground tanks is planned. The request for proposals (RFP) for the first phase of waste treatment and immobilization was issued in February 1996 (Wagoner 1996) and initial contracts for two private contractor teams led by British Nuclear Fuels Ltd. and Lockheed-Martin Advanced Environmental Services were signed in September 1996. Phase 1 is a proof-of-concept and commercial demonstration effort to demonstrate the technical and business feasibility of using private facilities to treat Hanford Site waste, maintain radiological, nuclear, process, and occupational safety; and maintain environmental protection and compliance while reducing lifecycle costs and waste treatment times. Phase 1 production of ILAW is planned to begin in June 2002 and could treat up to about 13 percent of the waste. Phase 1 production is expected to be completed in 2007 for minimum order quantities or 2011 for maximum order quantities. Phase 2 is a full-scale production effort that will begin after Phase 1 and treat and immobilize most of the waste. Phase 2 production is

  2. Wet and Dry Anaerobic Digestion of Biowaste and of Co-substrates

    OpenAIRE

    Li, Chaoran

    2015-01-01

    Treatment of municipal solid waste by anaerobic digestion can solve the environmental problems caused by this organic solid waste and also supply biogas as renewable energy for a sustainable development. In this study the improvement of wet anaerobic digestion by addition of co-substrates and the effect of moisture on dry anaerobic digestion were investigated.

  3. Pilot solid-waste incinerator

    International Nuclear Information System (INIS)

    Farber, M.G.; Hootman, H.E.; Trapp, D.J.

    1982-01-01

    An experimental program to develop and confirm technology for incinerating solid radioactive waste is in progress at the Savannah River Laboratory (SRL) in support of the short-term and long-term waste management objectives of the Savannah River Plant (SRP). This report reviews the experience of a pilot incinerator with a capacity of 1.0 lb/hr. The facility was tested with nonradioactive materials similar to the radioactive waste generated at the Savannah River site. The experimental program included determining operating parameters, testing wet and dry off-gas treatment systems, and evaluating materials of construction

  4. Assessment of a combined dry anaerobic digestion and post-composting treatment facility for source-separated organic household waste, using material and substance flow analysis and life cycle inventory.

    Science.gov (United States)

    Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte

    2017-08-01

    The fate of total solids, volatile solids, total organic carbon, fossil carbon, biogenic carbon and 17 substances (As, Ca, CaCO 3 , Cd, Cl, Cr, Cu, H, Hg, K, Mg, N, Ni, O, P, Pb, S, Zn) in a combined dry anaerobic digestion and post-composting facility were assessed. Mass balances showed good results with low uncertainties for non-volatile substances, while balances for nitrogen, carbon, volatile solids and total organic carbon showed larger but reasonable uncertainties, due to volatilisation and emissions into the air. Material and substance flow analyses were performed in order to obtain transfer coefficients for a combined dry anaerobic digestion and post-composting facility. All metals passed through the facility and ended up in compost or residues, but all concentrations of metals in the compost complied with legislation. About 23% of the carbon content of the organic waste was transferred to the biogas, 24% to the compost, 13% to residues and 40% into the atmosphere. For nitrogen, 69% was transferred to the compost, 10% volatilised to the biofilter, 11% directly into the atmosphere and 10% to residues. Finally, a full life cycle inventory was conducted for the combined dry anaerobic digestion and post-composting facility, including waste received, fuel consumption, energy use, gaseous emissions, products, energy production and chemical composition of the compost produced. Copyright © 2017. Published by Elsevier Ltd.

  5. Phase 1 immobilized low-activity waste operational source term

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1998-01-01

    This report presents an engineering analysis of the Phase 1 privatization feeds to establish an operational source term for storage and disposal of immobilized low-activity waste packages at the Hanford Site. The source term information is needed to establish a preliminary estimate of the numbers of remote-handled and contact-handled waste packages. A discussion of the uncertainties and their impact on the source term and waste package distribution is also presented. It should be noted that this study is concerned with operational impacts only. Source terms used for accident scenarios would differ due to alpha and beta radiation which were not significant in this study

  6. Anaerobic bioleaching of metals from waste activated sludge

    KAUST Repository

    Meulepas, Roel J W; Gonzalez-Gil, Graciela; Teshager, Fitfety Melese; Witharana, Ayoma; Saikaly, Pascal; Lens, Piet Nl L

    2015-01-01

    Heavy metal contamination of anaerobically digested waste activated sludge hampers its reuse as fertilizer or soil conditioner. Conventional methods to leach metals require aeration or the addition of leaching agents. This paper investigates whether

  7. Waste management in Canadian nuclear programs

    International Nuclear Information System (INIS)

    Dyne, P.J.

    The objectives of the Canadian radioactive waste management program are described. Recycling actinides through reactors is being studied. Low and medium level waste treatments such as reverse osmosis concentration, immobilization in bitumen and plastics, and incineration are under study. Spent fuel can be stored dry in concrete canisters above ground and ultimate storage of wastes in salt deposits or hard rock is appropriate to Canadian conditions. (E.C.B.)

  8. Waste management in Canadian nuclear programs

    International Nuclear Information System (INIS)

    Dyne, P.J.

    1975-08-01

    The report describes the wide-ranging program of engineering developments and applications to provide the Canadian nuclear industry with the knowledge and expertise it needs to conduct its waste management program. The need for interim dry storage of spent fuel, and the storage and ultimate disposal of waste from fuel reprocessing are examined. The role of geologic storage in AECL's current waste management program is also considered. (R.A.)

  9. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    International Nuclear Information System (INIS)

    Yin, Yanan; Wang, Jianlong

    2016-01-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCOD consumed . It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production. - Highlights: • The waste activated sludge could be disintegrated by gamma irradiation. • The disintegrated sludge could be used for biohydrogen production. • The hydrogen yield was 10.5±0.7 mL/g SCOD consumed .

  10. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae)

    International Nuclear Information System (INIS)

    Aghbashlo, Mortaza; Kianmehr, Mohammad H.; Samimi-Akhijahani, Hadi

    2008-01-01

    Berberis is known as a medicinal and ornamental plant in the world. Berberis fruit is used in medicine to cure liver, neck and stomach cancer, blood purification and mouth scent. Dried berberis fruit using new technology was preserved for relatively long time. Thin-layer drying simulation was used to obtain experiment data, using laboratory scale hot-air dryer of the static tray. Fick's second law was used as a major equation to calculate the moisture diffusivity with some simplification. The calculated value of moisture diffusivity varied from a minimum of 3.320 x 10 -10 to a maximum of 9 x 10 -9 m 2 /s and the value of energy activation from a minimum of 110.837 to a maximum of 130.61 kJ/mol of from 50 deg. C to 70 deg. C with drying air velocities of 0.5-2 m/s. The high value of the energy of activation for berberis fruit probably related to the tissue of berberis fruit and high moisture content (about 74.28%w.b), and intensive changes in D eff values for a different air temperature at constant air velocity. The input energy values and specific energy requirement for thin-drying of berberis fruit were found to be in the range of 0.643348-35.20032 (kWh) and 20.9355-1110.0700 (kWh/kg) from 50 deg. C to 70 deg. C with drying air velocities of 0.5-2 m/s, respectively

  11. Waste monitoring of the uranium ore processing activities in Romania

    International Nuclear Information System (INIS)

    Nica, L.

    2002-01-01

    The uranium ore processing activities at the Feldioara site produce a range of liquid and solid waste that are monitored. Liquids are treated through decantation, pH correction and uranium precipitation before their release into the environment. The solid waste is gathered into ore specific area and are covered regularly with clay materials. (author)

  12. Non steady-state model for dry oxidation of nuclear wastes metallic containers in long term interim storage conditions

    International Nuclear Information System (INIS)

    Bertrand, Nathalie; Desgranges, Clara; Poquillon, Dominique; Monceau, Daniel

    2006-01-01

    For high-level nuclear waste containers in long-term interim storage, dry oxidation will be the first and the main degradation mode. The reason is that, for this kind of waste, the temperature on the surface of the containers will be high enough to avoid any condensation phenomena for several years. Even if the scale growth kinetics is expected to be very slow since the temperature will be moderate at the beginning of the storage (around 300 deg. C) and will keep on decreasing, the metal thickness lost by dry oxidation over such a long period must be evaluated with a good reliability. To achieve this goal, modelling of the oxide scale growth is necessary and this is the aim of the dry oxidation studies, performed in the frame of the COCON programme. All existing oxidation models are based on the two main oxidation theories developed by Wagner between the 1930's and 1970's on the one hand, and by Cabrera and Mott in the 1960 and next by Fromhold on the other hand. These used to be associated with high temperature behaviour for Wagner's theory and with low temperature for the second one. Indeed it is certainly more relevant to consider their range of application in terms of the oxide scale thickness rather than in terms of temperature. The question is posed about which theory should an appropriate model rely on. It can be expected that the oxide scale could have a thickness ranging from a few tens of nanometers up to several tens of micrometers depending on temperature and class of alloys chosen. At the present time, low-alloyed steels or carbon steels are considered candidate materials for high-level nuclear waste containers in long term interim storage. For this type of alloys, the scale formed during the dry oxidation stage will be 'rapidly' thick enough to neglect the Mott field. Hence, in a first step, some basic models based on a parabolic rate assumption, that is to say Wagner's model, have been derived from experimental data on iron and on low-alloy steel

  13. Dry anaerobic digestion of lignocellulosic and protein residues

    Directory of Open Access Journals (Sweden)

    Maryam M Kabir

    2015-12-01

    Full Text Available Utilisation of wheat straw and wool textile waste in dry anaerobic digestion (AD process was investigated. Dry-AD of the individual substrates as well as co-digestion of those were evaluated using different total solid (TS contents ranging between 6 to 30%. Additionally, the effects of the addition of nutrients and cellulose- or protein-degrading enzymes on the performance of the AD process were also investigated. Dry-AD of the wheat straw resulted in methane yields of 0.081 – 0.200 Nm3CH4/kgVS with the lowest and highest values obtained at 30 and 21% TS, respectively. The addition of the cellulolytic enzymes could significantly increase the yield in the reactor containing 13% TS (0.231 Nm3CH4/kg VS. Likewise, degradation of wool textile waste was enhanced significantly at TS of 13% with the addition of the protein-degrading enzyme (0.131 Nm3CH4/kg VS. Furthermore, the co-digestion of these two substrates showed higher methane yields compared with the methane potentials calculated for the individual fractions at all the investigated TS contents due to synergetic effects and better nutritional balance.

  14. Development of dry barriers for containment and remediation at waste sites

    International Nuclear Information System (INIS)

    Thomson, B.M.; Morris, C.E.; Ankeny, M.D.

    1994-01-01

    This paper describes a concept in which dry air is injected into an unsaturated formation to reduce the soil moisture content, referred to here as a dry (or sometimes tensiometric) barrier. The objective is to reduce the hydraulic conductivity of the unsaturated media to the point where liquid phase transport becomes negligible, thereby achieving containment. The concept could be applied in subsurface formations to provide containment from a leaking facility, or it could be incorporated into a cover design to provide redundancy for a capillary barrier. The air injection process could in principle be coupled with a vacuum extraction system to recover soil vapors, which would then provide a remediation process that would be appropriate if volatile organic compounds were present. Work to date has consisted of a combined theoretical, laboratory, and field research investigation. The objective of this research was to demonstrate the technical feasibility of the dry barrier concept by identifying the parameters which determine its effectiveness. Based on the results obtained for the experimental and theoretical studies, feasibility analyses were prepared for as a modification for a landfill cover design to prevent infiltration from atmospheric precipitation and for potential application of dry barriers to achieve subsurface containment and removal of volatile constituents. These analyses considered the technical as well as the economic aspects of the dry barrier concept

  15. Dry alcohol production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for dry alcohol production plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects a production plant with a capacity of 40 m3/y was manufactured, at "Zorka Pharma", Šabac in 1995-1996. The product meets all quality demands, as well as environmental regulations. The dry alcohol production process is fully automatized. There is no waste in the process, neither gaseous, nor liquid. The chosen process provides safe operation according to temperature regime and resistance in the pipes, air purification columns and filters. Working at increased pressure is suitable for evaporation and condensation at increased temperatures. The production process can be controlled manually, which is necessary during start-up, and repairs.

  16. Hanford Tank Waste - Near Source Treatment of Low Activity Waste

    International Nuclear Information System (INIS)

    Ramsey, William Gene

    2013-01-01

    Abstract only. Treatment and disposition of Hanford Site waste as currently planned consists of 100+ waste retrievals, waste delivery through up to 8+ miles of dedicated, in-ground piping, centralized mixing and blending operations- all leading to pre-treatment combination and separation processes followed by vitrification at the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The sequential nature of Tank Farm and WTP operations requires nominally 15-20 years of continuous operations before all waste can be retrieved from many Single Shell Tanks (SSTs). Also, the infrastructure necessary to mobilize and deliver the waste requires significant investment beyond that required for the WTP. Treating waste as closely as possible to individual tanks or groups- as allowed by the waste characteristics- is being investigated to determine the potential to 1) defer, reduce, and/or eliminate infrastructure requirements, and 2) significantly mitigate project risk by reducing the potential and impact of single point failures. The inventory of Hanford waste slated for processing and disposition as LAW is currently managed as high-level waste (HLW), i.e., the separation of fission products and other radionuclides has not commenced. A significant inventory of this waste (over 20M gallons) is in the form of precipitated saltcake maintained in single shell tanks, many of which are identified as potential leaking tanks. Retrieval and transport (as a liquid) must be staged within the waste feed delivery capability established by site infrastructure and WTP. Near Source treatment, if employed, would provide for the separation and stabilization processing necessary for waste located in remote farms (wherein most of the leaking tanks reside) significantly earlier than currently projected. Near Source treatment is intended to address the currently accepted site risk and also provides means to mitigate future issues likely to be faced over the coming decades. This paper

  17. Identification of items and activities important to waste form acceptance by Westinghouse GoCo sites

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Marra, S.L.; Dempster, J.; Randklev, E.H.

    1993-01-01

    The Department of Energy has established specifications (Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms, or WAPS) for canistered waste forms produced at Hanford, Savannah River, and West Valley. Compliance with these specifications requires that each waste form producer identify the items and activities which must be controlled to ensure compliance. As part of quality assurance oversight activities, reviewers have tried to compare the methodologies used by the waste form producers to identify items and activities important to waste form acceptance. Due to the lack of a documented comparison of the methods used by each producer, confusion has resulted over whether the methods being used are consistent. This confusion has been exacerbated by different systems of nomenclature used by each producer, and the different stages of development of each project. The waste form producers have met three times in the last two years, most recently on June 28, 1993, to exchange information on each producer's program. These meetings have been sponsored by the Westinghouse GoCo HLW Vitrification Committee. This document is the result of this most recent exchange. It fills the need for a documented comparison of the methodologies used to identify items and activities important to waste form acceptance. In this document, the methodology being used by each waste form producer is summarized, and the degree of consistency among the waste form producers is determined

  18. BULK VITRIFICATION TECHNOLOGY FOR THE TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE

    Energy Technology Data Exchange (ETDEWEB)

    ARD KE

    2011-04-11

    This report is one of four reports written to provide background information regarding immobilization technologies under consideration for supplemental immobilization of Hanford's low-activity waste. This paper is intended to provide the reader with general understanding of Bulk Vitrification and how it might be applied to immobilization of Hanford's low-activity waste.

  19. State-of-the-art report on low-level radioactive waste treatment

    International Nuclear Information System (INIS)

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out

  20. State-of-the-art report on low-level radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  1. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    International Nuclear Information System (INIS)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage

  2. Microwave and hot air drying of garlic puree: drying kinetics and quality characteristics

    Science.gov (United States)

    İlter, Işıl; Akyıl, Saniye; Devseren, Esra; Okut, Dilara; Koç, Mehmet; Kaymak Ertekin, Figen

    2018-02-01

    In this study, the effect of hot air and microwave drying on drying kinetics and some quality characteristics such as water activity, color, optic index and volatile oil of garlic puree was investigated. Optic index representing browning of the garlic puree increased excessively with an increase in microwave power and hot air drying temperature. However, volatile oil content of the dried samples was decreased by increasing of temperature and microwave power. By increasing drying temperature (50, 60 and 70 °C) and microwave power (180, 360 and 540 W), the drying time decreased from 8.5 h to 4 min. In order to determine the kinetic parameters, the experimental drying data were fitted to various semi-empirical models beside 2nd Fick's diffusion equation. Among them, the Page model gave a better fit for microwave-drying, while Logarithmic model gave a better fit for hot air drying. By increasing the microwave power and hot air drying temperature, the effective moisture diffusivity, De values ranged from 0.76×10-8 to 2.85×10-8 m2/s and from 2.21×10-10 to 3.07×10-10 m2/s, respectively. The activation energy was calculated as 20.90 kJ/mol for hot air drying and 21.96 W/g for microwave drying using an Arrhenius type equation.

  3. Quality checking task force destructive testing of active waste forms

    International Nuclear Information System (INIS)

    James, J.M.; Smith, D.L.

    1987-03-01

    The implications of sampling and testing of full size active packages of intermediate level wastes are summarised in this report. Sampling operations are technically feasible but a major difficulty will be the disposal of secondary waste. A literature survey indicated that destructive testing of wasteforms is not carried out as a routine operation in Europe or the USA. (author)

  4. Select polyphenolic fractions from dried plum enhance osteoblast activity through BMP-2 signaling.

    Science.gov (United States)

    Graef, Jennifer L; Rendina-Ruedy, Elizabeth; Crockett, Erica K; Ouyang, Ping; King, Jarrod B; Cichewicz, Robert H; Lucas, Edralin A; Smith, Brenda J

    2018-05-01

    Dried plum supplementation has been shown to enhance bone formation while suppressing bone resorption. Evidence from previous studies has demonstrated that these responses can be attributed in part to the fruit's polyphenolic compounds. The purpose of this study was to identify the most bioactive polyphenolic fractions of dried plum with a focus on their osteogenic activity and to investigate their mechanisms of action under normal and inflammatory conditions. Utilizing chromatographic techniques, six fractions of polyphenolic compounds were prepared from a crude extract of dried plum. Initial screening assays revealed that two fractions (DP-FrA and DP-FrB) had the greatest osteogenic potential. Subsequent experiments using primary bone-marrow-derived osteoblast cultures demonstrated these two fractions enhanced extracellular alkaline phosphatase (ALP), an indicator of osteoblast activity, and mineralized nodule formation under normal conditions. Both fractions enhanced bone morphogenetic protein (BMP) signaling, as indicated by increased Bmp2 and Runx2 gene expression and protein levels of phosphorylated Smad1/5. DP-FrB was most effective at up-regulating Tak1 and Smad1, as well as protein levels of phospho-p38. Under inflammatory conditions, TNF-α suppressed ALP and tended to decrease nodule formation (P=.0674). This response coincided with suppressed gene expression of Bmp2 and the up-regulation of Smad6, an inhibitor of BMP signaling. DP-FrA and DP-FrB partially normalized these responses. Our results show that certain fractions of polyphenolic compounds in dried plum up-regulate osteoblast activity by enhancing BMP signaling, and when this pathway is inhibited by TNF-α, the osteogenic response is attenuated. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Conveyor for sorting radioactive waste

    International Nuclear Information System (INIS)

    Prisco, A.J.; Johnson, A.N.

    1987-01-01

    An apparatus is described for detecting radioactive components in dry active waste, the apparatus comprising: means for reducing the waste to pieces of substantially uniform size, first and second conveyors and a housing for the conveyors; means for conveying the pieces from the means for reducing the waste to the first and second conveyors; each of the first and second conveyors includes a receiving portion and a discharge portion; the discharge portion is spaced above and upstream from the receiving portion to disperse the pieces as they are transferred from the first conveyor to the second conveyor so that pieces which are in clusters are separated from each other to increase the likelihood of detecting radiation emanating means for detecting radioactive radiation emanating from the pieces, at least one of radiation detector means is located on each of the conveyors. Each is disposed in close overlying relation to its respective conveyor so that low levels of radiation emanating from the pieces can be detected; each of the conveyors includes means for flattening the pieces of waste before the pieces pass under the radiation detector means; and the means for flattening disposed between the receiving portion of each conveyor and the radiation detector means; the housing is generally closed; and means for providing a generally closed connection between the housing and the means for reducing the waste so that air that is in the housing and in the means for reducing the waste can be controlled

  6. Single droplet drying for optimal spray drying of enzymes and probiotics

    OpenAIRE

    Schutyser, M.A.I.; Perdana, J.A.; Boom, R.M.

    2012-01-01

    Spray drying is a mild and cost-effective convective drying method. It can be applied to stabilise heat sensitive ingredients, such as enzymes and probiotic bacteria, albeit in industrial practice for example freeze drying or freezing are often preferred. The reason is that optimum drying conditions and tailored matrix formulations are required to avoid severe heat damage leading to loss in enzyme activity or reduced survival of bacteria. An overview is provided on the use of protective carbo...

  7. Methodology to remediate a mixed waste site

    International Nuclear Information System (INIS)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ''lessons learned'' from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors

  8. Methodology to remediate a mixed waste site

    Energy Technology Data Exchange (ETDEWEB)

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  9. Radiation effects on medium active waste forms. Annual report - 1988

    International Nuclear Information System (INIS)

    Johnson, D.; Wilding, C.; Lyon, C.

    1989-01-01

    Work has continued on measurements of dimensional changes, strength, and gas evolution on samples of several simulated waste forms under accelerated γ and α irradiation conditions. Samples of RMA5 (mixed ion exchangers in modified vinylester polymer) and RMA10 (incinerated PCM materials in cement) maintain their integrity during irradiation but samples of RMA3 (organic ion exchangers in cement) and RMA11.1 (mixed PCM materials in cement) swell and eventually disintegrate under some γ irradiation conditions. Disintegration of RMA3 samples occurred when samples were γ irradiated whilst immersed in water. Samples of RMA11.1 which cannot rapidly dry out swell, sometimes substantially, during γ irradiation. The principal gases of interest in gas evolution experiments are hydrogen and oxygen. Hydrogen is evolved under all circumstances but oxygen evolution does not always occur. Samples of RMA10 evolve oxygen when α irradiated in an inert atmosphere but oxygen concentration initially falls during α irradiation in air atmosphere. Samples of RMA11.1 absorb oxygen from an air atmosphere during both α and γ irradiation. A comparison has been carried out of the effects of γ and α irradiation on identical cement grouts using BFS/OPC mixes produced under high shear mixing conditions. In contrast to earlier results on such systems, no γ irradiated samples showed physical deterioration after irradiation to 9 MGy but the a irradiated samples all showed surface cracks after about 1 MGy. The gas evolution measurements showed that during α irradiation oxygen evolution commenced after a dose of ∼ 1 MGy whereas oxygen was completely removed from the atmosphere γ irradiation. Hydrogen was evolved under all conditions and the rate of production was found to be dependent upon the dose rate. More hydrogen was evolved during α irradiations than during γ irradiation. A technique for the measurement of hydrogen permeability through cement systems has been further developed

  10. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placed in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.

  11. The Transuranic Waste Program's integration and planning activities and the contributions of the TRU partnership

    International Nuclear Information System (INIS)

    Harms, T.C.; O'Neal, W.; Petersen, C.A.; McDonald, C.E.

    1994-02-01

    The Technical Support Division, EM-351 manages the integration and planning activities of the Transuranic Waste Program. The Transuranic Waste Program manager provides transuranic waste policy, guidance, and issue resolution to Headquarters and the Operations Offices. In addition, the program manager is responsible for developing and implementing an integrated, long-range waste management plan for the transuranic waste system. A steering committee, a core group of support contractors, and numerous interface working groups support the efforts of the program manager. This paper provides an overview of the US Department of Energy's transuranic waste integration activities and a long-range planning process that includes internal and external stakeholder participation. It discusses the contributions and benefits provided by the Transuranic Partnership, most significantly, the integration activities and the body of data collected and assembled by the Partnership

  12. Waste management, waste resource facilities and waste conversion processes

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    In this study, waste management concept, waste management system, biomass and bio-waste resources, waste classification, and waste management methods have been reviewed. Waste management is the collection, transport, processing, recycling or disposal, and monitoring of waste materials. A typical waste management system comprises collection, transportation, pre-treatment, processing, and final abatement of residues. The waste management system consists of the whole set of activities related to handling, treating, disposing or recycling the waste materials. General classification of wastes is difficult. Some of the most common sources of wastes are as follows: domestic wastes, commercial wastes, ashes, animal wastes, biomedical wastes, construction wastes, industrial solid wastes, sewer, biodegradable wastes, non-biodegradable wastes, and hazardous wastes.

  13. Method of processing radioactive liquid waste

    International Nuclear Information System (INIS)

    Motojima, Kenji; Kawamura, Fumio.

    1981-01-01

    Purpose: To increase the efficiency of removing radioactive cesium from radioactive liquid waste by employing zeolite affixed to metallic compound ferrocyanide as an adsorbent. Method: Regenerated liquid waste of a reactor condensation desalting unit, floor drain and so forth are collected through respective supply tubes to a liquid waste tank, and the liquid waste is fed by a pump to a column filled with zeolite containing a metallic compound ferrocyanide, such as with copper, zinc, manganese, iron, cobalt, nickel or the like. The liquid waste from which radioactive cesium is removed is dried and pelletized by volume reducing and solidifying means. (Yoshino, Y.)

  14. Waste reduction by re-use of low activated material - 16035

    International Nuclear Information System (INIS)

    Ehrlicher, Ulrich; Pauli, Heinz

    2009-01-01

    A multidisciplinary institute, equipped with research reactors and accelerator-driven research installations produces and, in the case of PSI, collects radioactive waste on one hand and requires material, especially for shielding purpose, on the other hand. The legislative framework for radiation protection, financial reasons and limited storage capacity strongly force Paul Scherrer Institute and comparable facilities to minimize radioactive waste. Besides free release of inactive components, recycling and re-use of low-level radioactive material in controlled areas are the best means for waste minimization. The re-use of slightly activated steel plates as a shielding material and the recycling of irradiated reactor graphite as a filling material embedded in mortar may give examples and encouragement for similar activities. Besides the advantages for radiation protection, the financial benefit can be measured in millions of dollars. (authors)

  15. Advantages on dry interim storage for spent nuclear fuel

    International Nuclear Information System (INIS)

    Romanato, L.S.; Rzyski, B.M.

    2006-01-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  16. Advantages on dry interim storage for spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Romanato, L.S. [Centro Tecnologico da Marinha em Sao Paulo, Av. Professor Lineu Prestes 2468, 05508-900 Sao Paulo (Brazil); Rzyski, B.M. [IPEN/ CNEN-SP, 05508-000 Sao Paulo (Brazil)]. e-mail: romanato@ctmsp.mar.mil.br

    2006-07-01

    When the nuclear fuel lose its ability to efficiently create energy it is removed from the core reactor and moved to a storage unit waiting for a final destination. Generally, the spent nuclear fuel (SNF) remains inside concrete basins with water within the reactors facility for the radioactive activity decay. Water cools the generated heat and shields radioactivity emissions. After some period of time in water basins the SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing installations, or still wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet installations, depending on the method adopted by the nuclear power plant or other plans of the country. In many SNF wet storage sites the capacity can be fulfilled very quickly. If so, additional area or other alternative storage system should be given. There are many options to provide capacity increase in the wet storage area, but dry storages are worldwide preferred since it reduces corrosion concerns. In the wet storage the temperature and water purity should be constantly controlled whereas in the dry storage the SNF stands protected in specially designed canisters. Dry interim storages are practical and approved in many countries especially that have the 'wait and see' philosophy (wait to see new technologies development). This paper shows the advantages of dry interim storages sites in comparison with the wet ones and the nowadays problems as terrorism. (Author)

  17. The very-low activity waste storage facility. A new waste management system; Le centre de stockage des dechets de tres faible activite. Une nouvelle filiere de gestion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Very-low activity wastes have a radioactivity level close to the natural one. This category of waste is taken into consideration by the French legislation and their storage is one of their point of achievement. This document gives a complete overview of the principles of storage implemented at the storage center for very-low activity wastes (CSTFA) sited in the Aube departement in the vicinity of the storage center for low- and intermediate activity wastes: storage concept, wastes confinement, center organization, environmental monitoring. (J.S.)

  18. Disposal Activities and the Unique Waste Streams at the Nevada National Security Site (NNSS)

    International Nuclear Information System (INIS)

    Arnold, P.

    2012-01-01

    This slide show documents waste disposal at the Nevada National Security Site. Topics covered include: radionuclide requirements for waste disposal; approved performance assessment (PA) for depleted uranium disposal; requirements; program approval; the Waste Acceptance Review Panel (WARP); description of the Radioactive Waste Acceptance Program (RWAP); facility evaluation; recent program accomplishments, nuclear facility safety changes; higher-activity waste stream disposal; and, large volume bulk waste streams

  19. Bioactive phytochemicals and antioxidant activity in fresh and dried lychee fractions1

    Directory of Open Access Journals (Sweden)

    Estela de Rezende Queiroz

    Full Text Available Fruit of the lychee cv. Bengal are approximately 50% peel and seeds, which are discarded. These by-products have antioxidant compounds which are capable of blocking the harmful effects of free radicals in the body. Bioactive compounds (ascorbic acid, beta-carotene, lycopene and phenols and antioxidant activity were evaluated in different extracts, both fresh and dried at 45 °C, of the skin, pulp and seeds of the lychee, which were subjected to principal component analysis to clarify which of the compounds are responsible for this activity. Principal component analysis explained 82.90% of the variance of the antioxidant profile of the lychee. The peel displayed higher levels of phenols, ascorbic acid, beta-carotene and antioxidant activity, while the seeds stood out due to their levels of lycopene. With drying, there was a decrease in the levels of ascorbic acid and beta-carotene and in antioxidant activity, with an increase in the levels of phenols and lycopene. The antioxidant activity found in the peel and seeds of the lychee is high, and is mainly due to ascorbic acid and beta-carotene, as demonstrated by principal component analysis, allowing the use of these fractions as sources of natural antioxidants.

  20. Cold Vacuum Drying (CVD) OCRWM Loop Error Determination

    International Nuclear Information System (INIS)

    PHILIPP, B.L.

    2000-01-01

    Characterization is specifically identified by the Richland Operations Office (RL) for the Office of Civilian Radioactive Waste Management (OCRWM) of the US Department of Energy (DOE), as requiring application of the requirements in the Quality Assurance Requirements and Description (QARD) (RW-0333P DOE 1997a). Those analyses that provide information that is necessary for repository acceptance require application of the QARD. The cold vacuum drying (CVD) project identified the loops that measure, display, and record multi-canister overpack (MCO) vacuum pressure and Tempered Water (TW) temperature data as providing OCRWM data per Application of the Office of Civilian Radioactive Waste Management (OCRWM) Quality Assurance Requirements to the Hanford Spent Nuclear Fuel Project HNF-SD-SNF-RPT-007. Vacuum pressure transmitters (PT 1*08, 1*10) and TW temperature transmitters (TIT-3*05, 3*12) are used to verify drying and to determine the water content within the MCO after CVD

  1. Low-level radioactive waste processing at nuclear power plants

    International Nuclear Information System (INIS)

    1992-12-01

    The Solid Radwaste Processing Source Book is presented as a supplement to the Liquid Radwaste Source Book released in 1990 and updated in 1991. The publication is the result of an industry-wide survey, and is intended as a resource for technical and managerial decisions involving of the processing of solid radioactive waste including ''wet'' and ''dry'' active waste as found at both Pressurized and Boiling Water Reactor sites. In addition to information on processes, vendors, volumes, and in-plant management activities, technology under consideration for future use and computer applications are listed. Together with key personnel and contact information contained in the Liquid Source Books, the collected data will be of great use when seeking specific, unbiased experience on which to base decisions related to so processing, disposal policy, or potential economic and regulatory impact

  2. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    Directory of Open Access Journals (Sweden)

    Popov Stevan D.

    2005-01-01

    Full Text Available The waste brewer's yeast S. cerevisiae (activated and non-activated was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positively the quality of produced bread regarding bread volume. The volume of developed gas in dough prepared with the use of non-activated BY was not sufficient, therefore, it should not be used as fermentation agent, but only as an additive in bread production process for bread freshness preservation. Intense mixing of dough results in more compressible crumb 48 hrs after baking compared to high-speed mixing.

  3. Evaluation of treatment for dry eye with 2-hydroxyestradiol using a dry eye rat model.

    Science.gov (United States)

    Higuchi, Akihiro; Oonishi, Erina; Kawakita, Tetsuya; Tsubota, Kazuo

    2016-01-01

    2-hydroxy estradiol (2-OHE2) is a catechol derivative of 17β -Estradiol (E2) and it is synthesized from E2 catalyzed by cytochrome P4501A1. Previous studies reported that 2-OHE2 is a physiologic antioxidant in lipoproteins, liver microsomes, and the brain. Catechol derivatives show an anti-inflammatory effect through the inhibition of prostaglandin endoperoxide synthase (PGS) activity. Corneal erosion caused by dry eye is related to an increase in oxidative stress and inflammation in ocular surface cells. We investigated the therapeutic effects of 2-OHE2 on corneal damage caused by dry eye. Steroidal radical scavenging activity was confirmed through the electron spin resonance (ESR) method. PGS activity was measured using the COX Fluorescent Activity Assay Kit. To evaluate the effect of 2-OHE2 on the treatment for dry eye, 2-OHE2 was applied as an eye drop experiment using dry eye model rats. 2-OHE2 scavenged tyrosyl radical and possibly suppressed oxidative stress in corneal epithelial cells. In addition, 2-OHE2 inhibited PGS activity, and 2-OHE2 is probably a competitive inhibitor of PGS. Corneal PGS activity was upregulated in the dry eye group. Therefore, 2-OHE2 eye drops improved corneal erosion in dry eye model rats. 2-OHE2 is a candidate for the treatment of dry eye through the suppression of inflammation and oxidative stress in the cornea.

  4. Method of processing radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Y; Kikuchi, M; Funabashi, K; Yusa, H; Horiuchi, S

    1978-12-21

    Purpose: To decrease the volume of radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid. Method: The concentration ratio of sodium hydroxide to boric acid by weight in radioactive liquid wastes essentially consisting of sodium hydroxide and boric acid is adjusted in the range of 0.28 - 0.4 by means of a pH detector and a sodium concentration detector. Thereafter, the radioactive liquid wastes are dried into powder and then discharged.

  5. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Science.gov (United States)

    2010-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before... exceed 30 nanograms per dry standard cubic meter (12 grains per billion dry standard cubic feet), corrected to 7 percent oxygen (dry basis). ...

  6. Pectin Methyl Esterase Activity Change in Intermediate Moisture Sun-Dried Figs after Storage

    Directory of Open Access Journals (Sweden)

    Dilek Demirbüker Kavak

    2015-12-01

    Full Text Available Intermediate moisture fruits can be obtained by rehydrating dried fruits. Intermediate moisture fruits are suitable for direct consumption compared to dry fruits and can be directly used in the production of various products such as bakery products, dairy products and candies. Aim of this study is to compare the pectin methyl esterase (PME activity of intermediate moisture figs which causes softening of the texture and to compare their microbial stability after 3 months storage period. For this purpose, dried figs were rehydrated in 30 and 80° C water until they reach 30% moisture content. Rehydrated samples were stored for 3 months at +4°C. Results showed that there was no statistically significant difference between the control samples and the samples rehydrated at 80°C according to the total viable counts. At the end of the storage period, results of residual PME activity in control samples was 24.1 μmol COOH min-1g-1, while it was found 17.4 μmol COOH min-1g-1 in samples rehydrated at 80°C. As a result rehydration conducted at 80°C provided 28% reduction in PME activity compared to the control samples rehydrated at 30°C, although it did not affect the microbial load significantly after storage.

  7. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Aghbashlo, Mortaza; Kianmehr, Mohammad H.; Samimi-Akhijahani, Hadi [Department of Agriculture Machinery, University of Tehran, Aboreyhan Campus (Iran)

    2008-10-15

    Berberis is known as a medicinal and ornamental plant in the world. Berberis fruit is used in medicine to cure liver, neck and stomach cancer, blood purification and mouth scent. Dried berberis fruit using new technology was preserved for relatively long time. Thin-layer drying simulation was used to obtain experiment data, using laboratory scale hot-air dryer of the static tray. Fick's second law was used as a major equation to calculate the moisture diffusivity with some simplification. The calculated value of moisture diffusivity varied from a minimum of 3.320 x 10{sup -10} to a maximum of 9 x 10{sup -9} m{sup 2}/s and the value of energy activation from a minimum of 110.837 to a maximum of 130.61 kJ/mol of from 50 C to 70 C with drying air velocities of 0.5-2 m/s. The high value of the energy of activation for berberis fruit probably related to the tissue of berberis fruit and high moisture content (about 74.28%w.b), and intensive changes in D{sub eff} values for a different air temperature at constant air velocity. The input energy values and specific energy requirement for thin-drying of berberis fruit were found to be in the range of 0.643348-35.20032 (kWh) and 20.9355-1110.0700 (kWh/kg) from 50 C to 70 C with drying air velocities of 0.5-2 m/s, respectively. (author)

  8. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  9. Safety issues in established predisposal waste management practices

    International Nuclear Information System (INIS)

    Thomas, W.

    2000-01-01

    Radioactive wastes generated at various stages in the nuclear fuel cycle vary considerably in relation to volume, physical and chemical properties, and radioactivity. The management of these wastes prior to disposal has to be adapted to these conditions, which calls for suitable characterization and minimization, collection, interim storage and conditioning of the wastes. Experience gained over decades shows that current predisposal waste management practices are well advanced. Whereas problems related to inadequate waste management practices in the past have been encountered at several sites and need ongoing remedial actions, modern practices have good safety records. Considerable development and improvement of waste management practices have been achieved and as a consequence of delays in implementing repositories in several countries they remain important tasks. Decommissioning and dismantling of nuclear facilities also have to be taken into account. In most cases, these activities can be performed using existing technical means and practices. No significant safety concerns have been found for the long term storage of spent fuel and vitrified waste. Dry storage has reached technical maturity and appears to be attractive, especially for aged fuel. It has, however, to be stressed that long term storage is not the ultimate solution. Continued efforts to implement repositories are mandatory in order to maintain a credible and responsible strategy for waste management. (author)

  10. Utilization of waste tire rubber in manufacture of oriented strandboard.

    Science.gov (United States)

    Ayrilmis, Nadir; Buyuksari, Umit; Avci, Erkan

    2009-09-01

    Some physical and mechanical properties of oriented strandboards (OSBs) containing waste tire rubber at various addition levels based on the oven-dry strand weight, using the same method as that used in the manufacture of OSB. Two resin types, phenol-formaldehyde (PF) and polyisocyanate, were used in the experiments. The manufacturing parameters were: a specific gravity of 0.65 and waste tire rubber content (10/90, 20/80 and 30/70 by wt.% of waste tire rubber/wood strand). Average internal bond values of PF-bonded OSB panels with rubber chips were between 17.6% and 48.5% lower than the average of the control samples while polyisocyanate bonded OSBs were 16.5-50.6%. However, water resistance and mechanical properties of OSBs made using polyisocyanate resin were found to comply with general-purpose OSB minimum property requirements of EN 300 Type 1 (1997) values for use in dry conditions at the lowest tire rubber loading level (10%) based on the oven-dry panel weight. The tire rubber improved water resistance of the OSB panel due to its almost hydrophobic property. Based on the findings obtained from this study, we concluded that waste tire rubber could be used for general-purpose OSB manufacturing up to 10% ratio based on the oven-dry panel weight.

  11. Denitration and chemical precipitation of medium level liquid wastes and conditioning of high level wastes from low level liquid wastes by a roll dryer and subsequent vitrification

    International Nuclear Information System (INIS)

    Halaszovich, S.; Dix, S.; Harms, R.

    1987-01-01

    Medium level liquid waste (MAW) from the reprocessing need after being fixed in cement an additional shielding to meet required radiation limits for handling and transportation. Normally this shielding consists of concrete and its weight and volume is several times higher than that of the waste product itself. By means of caesium separation using nickel-potassium-hexacyanoferrate and after few years of interim storage waiting for the decay of Ruthenium and Antimony the activities will be reduced below permissible values. (13 MBq/l in waste solution for Cs, 28 MBq/l for Sb and 34 MBq/l for Ru). Below these limits there is no need for additional shielding after cementation in a 400 l drum. Experimental results show, that Caesium can be precipitated and separated effectively not only in laboratory but also in a larger scale under hot cell conditions. The process investigated in this work has been developed from the FIPS process for vitrification of highly radioactive fission product solutions. It consists of: denitration, precipitation, sludge separation, drying and melting

  12. Dry-type cooling systems in electric power production

    International Nuclear Information System (INIS)

    Li, K.W.

    1973-01-01

    This study indicates that the dry-type cooling tower could be adopted in this country as an alternative method for removing waste heat from power plants. The use of dry cooling towers would not only lead to a change of cooling system design, but also to a change of overall thermal design in a power generating system. The principal drawbacks to using dry cooling towers in a large steam-turbine plant are the generating capacity loss, increased fuel consumption and the high capital cost of the dry cooling towers. These economic penalties must be evaluated in each specific case against the benefits that may result from the use of dry cooling towers. The benefits are principally these: (1) Fewer constraints in the selection of power plant sites, (2) No thermal discharge to the natural water bodies, (3) Elimination of vapor plumes and water evaporation loss, and (4) Freedom of adding new units to an existing facility where inadequate water supply may otherwise rule out this possibility

  13. Neutron activation analysis of alternative waste forms at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Johns, R.A.

    1981-01-01

    A remotely controlled system for neutron activation of candidate high-level waste (HLW) isolation forms was built by the Savannah River Laboratory at a Savannah River Plant reactor. With this system, samples can be irradiated for up to 24 hours and transferred through pneumatic tubing to a shielded repository unitl their activity is low enough for them to be handled in a radiobench. The principal use of the system is to support the Alternative Waste Forms Leach Testing (AWFLT) Program in which the comparative leachability of the various waste forms will be determined. The experimental method used in this work is based on neutron activation analysis techniques. Neutron irradiation of the solid waste form containing simulated HLW sludge activates elements in the sample. After suitable leaching of the solid matrix in standard solutions, the leachate and solid are assayed for gamma-emitting nuclides. From these measurements, the fraction of a specific element leached can be determined al half-lives with experimental ones, over a range of 24 orders of magnitude was obtained. This is a strong argument that the alpha decay could be considered a fission process with very high mass asymmetry and charge density asymmetry

  14. Mixed-waste minimization activities in the nuclear weapons complex

    International Nuclear Information System (INIS)

    Marchetti, J.A.; Suffern, J.S.

    1991-01-01

    Over the past 40 years, the US Department of Energy (DOE) and the nuclear weapons complex have successfully executed their mission of providing the country with a strong nuclear deterrent. Now, however, they must attain another mission at the same time: to eliminate or greatly reduce the environmental, safety, and health problems in the complex. Mixed-waste minimization activities have taken place in 11 of the complex production plants and laboratories: the Pinellas plant, the Mount plant, the Kansas City plant, the Y-12 plant, the Rocky Flats plant, the Savannah River Site (SRS), the Savannah River Site (SRS), the Pantex plant, the Nevada Test Site, Sandia National Laboratories, Los Alamos National Laboratory, and the Lawrence Livermore National Laboratory. The mixed-waste minimization opportunities that have been implemented to date by the production facilities are different from those that have been implemented by the laboratories. Areas of opportunity at the plants involve the following activities: (1) process design or improvement; (2) substitution of materials; (3) waste segregation; (4) recycling; and (5) administrative controls

  15. Waste management, decommissioning and environmental restoration for Canada's nuclear activities. Proceedings

    International Nuclear Information System (INIS)

    2011-01-01

    The Canadian Nuclear Society conference on Waste Management, Decommissioning and Environmental Restoration for Canada's Nuclear Activities was held in Toronto, Ontario, Canada on September 11-14, 2011. The conference provided a forum for discussion of the status and proposed future directions of technical, regularly, environmental, social and economic aspects of radioactive waste management, nuclear facility decommissioning, and environmental restoration activities for Canadian nuclear facilities. The conference included both plenary sessions and sessions devoted to more detailed technical issues. The plenary sessions were focussed on three broad themes: the overall Canadian program; low and intermediate waste; and, international perspectives. Topics of the technical sessions included: OPG's deep geologic repository for low and intermediate level waste; stakeholder interactions; decommissioning projects; uranium mine waste management; used fuel repository - design and safety assessment; federal policies, programs and oversight; regulatory considerations; aboriginal traditional knowledge; geological disposal - CRL site classification; geological disposal - modelling and engineered barriers; Port Hope Area Initiative; waste characterization; LILWM - treatment and processing; decommissioning projects and information management; international experience; environmental remediation; fuel cycles and waste processing.

  16. 40 CFR 63.1219 - What are the replacement standards for hazardous waste incinerators?

    Science.gov (United States)

    2010-07-01

    ... waste heat boiler or dry air pollution control system, either: (A) Emissions in excess of 0.20 ng TEQ..., for incinerators not equipped with either a waste heat boiler or dry air pollution control system... oxygen, and reported as propane; (6) Hydrogen chloride and chlorine gas (total chlorine) in excess of 32...

  17. Safety assessment of OPG's used fuel for dry storage

    International Nuclear Information System (INIS)

    Roman, H.; Khan, A.

    2005-01-01

    'Full text:' Ontario Power Generation (OPG) operates the Pickering Waste Management Facility (PWMF) and Western Waste Management Facility (WWMF) where OPG has been storing 10-year or older used fuel in the Dry Storage Containers (DSCs) since 1996 and 2003 respectively. The construction licence for the Darlington Used Fuel Dry Storage Facility (DUFDSF) was obtained in August 2004. Safety assessment of the used fuel for dry storage is required to support each request for regulatory approval to construct and operate a dry storage facility. The objective of the safety assessment is to assess the used fuel performance under normal operation and postulated credible accident scenarios. A reference used fuel bundle is defined based on the operating history and data on fuel discharged from the reactors of the specific nuclear generating station. The characteristics of the reference used fuel bundle are used to calculate the nuclide inventory, source term and decay heat used for the assessment. When assessing malfunctions and accidents, postulated external and internal events are considered. Consideration is also given to the design basis accidents of the specific nuclear generating station that could affect the used fuel under dry storage. For those events deemed credible (i.e. probability > 10 -7 ), a bounding fuel failure consequence is predicted. Given the chemical characteristics of the radionuclides in used fuel, the design of the CANDU fuel and the conditions inside the DSC, in the event that a used fuel bundle should become damaged during used fuel dry storage operations, the only significant radionuclides species that are volatile are krypton-85 and tritium. Release of these radionuclides is considered in calculating public and worker doses. (author)

  18. DryCardTM — A Low-Cost Dryness Indicator for Dried Products

    Directory of Open Access Journals (Sweden)

    James F. Thompson

    2017-10-01

    Full Text Available Mycotoxin contamination of food and feed is a significant health hazard in humid areas of the world. Fungal development can be halted if the water activity of dried products is kept below 0.65. This preliminary study evaluates the color response and response time of a low-cost humidity indicator that estimates water activity. The DryCardTM has a consistent color response to relative humidity and its response time is fast enough to be used in practical situations for estimating water activity. The card comes with use instructions and it can be reused many times. It is a crucial tool to assist smallholder farmers and traders in ensuring their crops have been adequately dried.

  19. Waste Composite Sensor Designed by Cellulose and Activated Carbon as Ethylene Absorber

    Directory of Open Access Journals (Sweden)

    S. Ummartyotin

    2016-01-01

    Full Text Available Activated carbon was successfully derived from scrap tile waste from thermochemical conversion. Chemical and physical modifications were therefore employed to modify the specific surface area and porosity of activated carbon. Cellulose was successfully extracted from palm front. Designation of waste composite was prepared by cellulose and activated carbon. Less than 30 wt% of activated carbon was integrated into cellulose sheet matrix. It was important to note that there is no change in mechanical and morphological properties. Small amount of activated carbon was well dispersed. In order to investigate the feasibility of composite as active packaging, oxygen permeation rate and ethylene gas adsorption ability were preliminary investigated.

  20. Performance objectives for the Hanford Immobilized Low-Activity Waste (ILAW) performance assessment

    International Nuclear Information System (INIS)

    MANN, F.M.

    1999-01-01

    Performance objectives for the disposal of low activity waste from Hanford Waste Tanks have been developed. These objectives have been based on DOE requirements, programmatic requirements, and public involvement. The DOE requirements include regulations that direct the performance assessment and are cited within the Radioactive Waste Management Order (DOE Order 435.1). Performance objectives for other DOE complex performance assessments have been included

  1. 75 FR 65625 - Agency Information Collection Activities; Proposed Collection; Comment Request; Hazardous Waste...

    Science.gov (United States)

    2010-10-26

    ... Activities; Proposed Collection; Comment Request; Hazardous Waste Specific Unit Requirements, and Special Waste Processes and Types, EPA ICR Number 1572.08, OMB Control Number 2050-0050 AGENCY: Environmental..., and Special Waste Processes and Types. ICR numbers: EPA ICR No. 1572.08, OMB Control No. 2050-0050...

  2. Vitrification of Three Low-Activity Radioactive Waste Streams from Hanford

    International Nuclear Information System (INIS)

    Ferrara, D.M.; Crawford, C.L.; Ha, B.C.; Bibler, N.E.

    1998-09-01

    As part of a demonstration for British Nuclear Fuels Limited, Incorporated (BNFL), the Immobilization Technology Section (ITS) of the Savannah River Technology Center (SRTC) has produced and characterized three low-activity waste (LAW) glasses from Hanford radioactive waste samples. The three LAW glasses were produced from radioactive supernate samples that had been treated by the Waste Processing Technology Section (WPTS) at SRTC to remove most of the radionuclides. These three glasses were produced by mixing the waste streams with between four and nine glass-forming chemicals in platinum/gold crucibles and heating the mixture to between 1120 and 1150 degrees C. Compositions of the resulting glass waste forms were close to the target compositions. Low concentrations of radionuclides in the LAW feed streams and, therefore, in the glass waste forms supported WPTS conclusions that pretreatment had been successful. No crystals were detected in the LAW glasses. In addition, all glass waste forms passed the leach tests that were performed. These included a 20 degrees C Product Consistency Test (PCT) and a modified version of the United States Environmental Protection Agency Toxicity Characteristic Leaching Procedure (TCLP)

  3. Dry process of smokes treatment with sodium bicarbonate and the recycling of sodic wastes; Proceso seco de depuracion de humos con bicarbonato sodico de reciclado de productos sodicos residuales

    Energy Technology Data Exchange (ETDEWEB)

    Catalan, X.

    1996-12-01

    The Neutrec process of Solvay for the acid emissions treatment by sodium bicarbonate is using in Belgium, France, Italy, The Netherland and Spain. there are 28 facilities for the smokes treatment. these smokes are coming from the urban, sanitary and hazardous wastes. The Neutrec process is using dry reactive for neutralizing the acid smoker. (Author)

  4. Monitoring and Inventory of Hazardous Pollutants Emissions from Solid Waste Open Burning

    Science.gov (United States)

    KIM Oanh, N. T.

    2017-12-01

    Open burning remains a way to dispose of solid waste in developing countries, commonly practiced in places where municipal solid waste (MSW) management is not sufficiently efficient. This open burning practice emits huge amounts of toxic air pollutants, including semi-VOC of dioxins (PCDD/F) and polycyclic aromatic hydrocarbons (PAHs), particulate matters (PM), and toxic gases. This study measured toxic substances released from simulated open burning experiments of MSW (5 batches) and plastic waste (3 batches) to determine emission factors (EFs). Carbon content of the waste before and after burning was measured and the EFs were calculated using the carbon balance method. The obtained EFs of CO; CO2; NO2 and SO2 were 102±61; 1,684±96; 0.69±0.54; and 1.44±1.18 g/kg of dry MSW. The corresponding values for plastic waste were 13.0±6.0; 1,824±10; 0.12±0.07; and 0.14±0.09 g/kg, respectively. The EF of coarse PM (PM10-2.5); PM2.5 and BC in PM2.5 were, respectively, 6.1±5.6; 6.4±5.1 and 1.1±0.7 g/kg of MSW, and 2.3±0.1; 2.5±0.3; and 0.2±0.2 g/kg of plastic waste. The EFs of 17 dioxins and 16 PAHs were respectively 1,050±500 ng-TEQ dioxins (70% in gas phase) and 117± 21 mg PAHs (92% in gas phase) per kg of MSW, while those for plastic waste were 8.6 ng TEQ dioxins (36% in gas phase) and 85.2±0.06 mg PAHs (99% in gas phase). Using the activity data from own surveys and literature, we estimated the annual emissions from solid waste open burning in Southeast Asia for 2015. Higher emissions in the domain were seen during the dry months and over large urban areas. The large amounts of toxic pollutants emitted from this open burning activity call for actions to stop this practice which in turn requires integrated environmental management approach simultaneously considering both solid waste and air pollution.

  5. Quantifying the transport impacts of domestic waste collection strategies.

    Science.gov (United States)

    McLeod, Fraser; Cherrett, Tom

    2008-11-01

    This paper models the effects of three different options for domestic waste collection using data from three Hampshire authorities: (i) joint working between neighbouring waste collection authorities; (ii) basing vehicles at waste disposal sites; and (iii) alternate weekly collection of residual waste and dry recyclables. A vehicle mileage savings of 3% was modelled for joint working, where existing vehicle allocations to depots were maintained, which increased to 5.9% when vehicles were re-allocated to depots optimally. Vehicle mileage was reduced by 13.5% when the collection rounds were based out of the two waste disposal sites rather than out of the existing depots, suggesting that the former could be the most effective place to keep vehicles providing that travel arrangements for the crews could be made. Alternate weekly collection was modelled to reduce vehicle mileage by around 8% and time taken by 14%, when compared with a typical scenario of weekly collection of residual and fortnightly collection of recyclable waste. These results were based on an assumption that 20% of the residual waste would be directly diverted into the dry recyclables waste stream.

  6. Quantifying the transport impacts of domestic waste collection strategies

    International Nuclear Information System (INIS)

    McLeod, Fraser; Cherrett, Tom

    2008-01-01

    This paper models the effects of three different options for domestic waste collection using data from three Hampshire authorities: (i) joint working between neighbouring waste collection authorities; (ii) basing vehicles at waste disposal sites; and (iii) alternate weekly collection of residual waste and dry recyclables. A vehicle mileage savings of 3% was modelled for joint working, where existing vehicle allocations to depots were maintained, which increased to 5.9% when vehicles were re-allocated to depots optimally. Vehicle mileage was reduced by 13.5% when the collection rounds were based out of the two waste disposal sites rather than out of the existing depots, suggesting that the former could be the most effective place to keep vehicles providing that travel arrangements for the crews could be made. Alternate weekly collection was modelled to reduce vehicle mileage by around 8% and time taken by 14%, when compared with a typical scenario of weekly collection of residual and fortnightly collection of recyclable waste. These results were based on an assumption that 20% of the residual waste would be directly diverted into the dry recyclables waste stream

  7. Characterization of selected waste tanks from the active LLLW system

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Griest, W.H.

    1996-08-01

    From September 1989 through January of 1990, there was a major effort to sample and analyze the Active Liquid-Low Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The purpose of this report is to summarize additional analytical data collected from some of the active waste tanks from November 1993 through February 1996. The analytical data for this report was collected for several unrelated projects which had different data requirements. The overall analyte list was similar for these projects and the level of quality assurance was the same for all work reported. the new data includes isotopic ratios for uranium and plutonium and an evaluation of the denature ratios to address criticality concerns. Also, radionuclides not previously measured in these waste tanks, including 99Tc and 237Np, are provided in this report

  8. A Comparative Evaluation of Dried Activated Sludge and Mixed Dried Activated Sudge with Rice Husk silica to Remove Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Seyed Mahmoud Mehdinia

    2013-03-01

    Full Text Available The aim of this study was to investigate the effectiveness of dried activated sludge (DAS and mixed dried activated sludge with rice husk silica (DAS & RHS for removal of hydrogen sulfide (H2S. Two laboratory-scale filter columns (packed one litter were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE with empty bed residence time (EBRT of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S.

  9. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Tongan [Pacific Northwest National Laboratory, Richland Washington; Chun, Jaehun [Pacific Northwest National Laboratory, Richland Washington; Dixon, Derek R. [Pacific Northwest National Laboratory, Richland Washington; Kim, Dongsang [Pacific Northwest National Laboratory, Richland Washington; Crum, Jarrod V. [Pacific Northwest National Laboratory, Richland Washington; Bonham, Charles C. [Pacific Northwest National Laboratory, Richland Washington; VanderVeer, Bradley J. [Pacific Northwest National Laboratory, Richland Washington; Rodriguez, Carmen P. [Pacific Northwest National Laboratory, Richland Washington; Weese, Brigitte L. [Pacific Northwest National Laboratory, Richland Washington; Schweiger, Michael J. [Pacific Northwest National Laboratory, Richland Washington; Kruger, Albert A. [U.S. Department of Energy, Office of River Protection, Richland Washington; Hrma, Pavel [Pacific Northwest National Laboratory, Richland Washington

    2017-12-07

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to the high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.

  10. Sun drying of residual annatto seed powder

    Directory of Open Access Journals (Sweden)

    Dyego da Costa Santos

    2015-01-01

    Full Text Available Residual annatto seeds are waste from bixin extraction in the food, pharmaceutical and cosmetic industries. Most of this by-product is currently discarded; however, the use of these seeds in human foods through the elaboration of powder added to other commercial powders is seen as a viable option. This study aimed at drying of residual annatto powder, with and without the oil layer derived from the industrial extraction of bixin, fitting different mathematical models to experimental data and calculating the effective moisture diffusivity of the samples. Powder containing oil exhibited the shortest drying time, highest drying rate (≈ 5.0 kg kg-1 min-1 and highest effective diffusivity (6.49 × 10-12 m2 s-1. All mathematical models assessed were a suitable representation of the drying kinetics of powders with and without oil, with R2 above 0.99 and root mean square error values lower than 1.0.

  11. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    International Nuclear Information System (INIS)

    Cozzi, A.; Crawford, C.; Fox, K.; Hansen, E.; Roberts, K.

    2015-01-01

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy's (DOE's) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the

  12. Supplemental Immobilization of Hanford Low-Activity Waste: Cast Stone Augmented Formulation Matrix Tests

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Crawford, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hansen, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Roberts, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-07-20

    More than 56 million gallons of radioactive and hazardous waste are stored in 177 underground storage tanks at the U.S. Department of Energy’s (DOE’s) Hanford Site in Washington State. The HLW will be vitrified in the HLW facility for ultimate disposal at an offsite federal repository. A portion (~35%) of the LAW will be vitrified in the LAW vitrification facility for disposal onsite at the Integrated Disposal Facility (IDF). The pretreatment and HLW vitrification facilities will have the capacity to treat and immobilize all of the wastes destined for those facilities. However, a second facility will be needed for the expected volume of LAW requiring immobilization. Cast Stone, a cementitious waste form, is being considered to provide the required additional LAW immobilization capacity. The Cast Stone waste form must be acceptable for disposal in the IDF. The Cast Stone waste form and immobilization process must be tested to demonstrate that the final Cast Stone waste form can comply with the waste acceptance criteria for the disposal facility and that the immobilization processes can be controlled to consistently provide an acceptable waste form product. A testing program was developed in fiscal year (FY) 2012 describing in detail the work needed to develop and qualify Cast Stone as a waste form for the solidification of Hanford LAW. A statistically designed test matrix was used to evaluate the effects of key parameters on the properties of the Cast Stone as it is initially prepared and after curing. For the processing properties, the water-to-dry-blend mix ratio was the most significant parameter in affecting the range of values observed for each property. The single shell tank (SST) Blend simulant also showed differences in measured properties compared to the other three simulants tested. A review of the testing matrix and results indicated that an additional set of tests would be beneficial to improve the understanding of the impacts noted in the Screening

  13. New concept for ARS dry spent fuel storage

    International Nuclear Information System (INIS)

    Doroszlai, P.G.K.; Johanson, N.W.; Patak, H.N.

    1980-01-01

    The dry fully passive and modular away-from-reactor (AFR) storage concept has been presented before for a size of 1500 to 3000 MTHM. Here it is suggested that the same concept is applicable for a small AR storage facility of 200 MTHM. Detailed investigations and feasibility studies have shown this concept to be economically interesting. Dry storage in the proposed concept has some other inherent advantages: spent fuel is stored in a dry and inert atmosphere, where no corrosion nor determination of cladding is to be expected during extended storage periods; storage canister and the silo concrete are additional barriers against activity release and increase therefore the security for long term safety; there are only passive systems involved where the heat is dissipated by natural convection and there is no need for additional emergency systems or special redundancy; concept of AR storage should be relatively easily licensed, as all requirements or constructions are well known standards of engineering; this storage concept creates no secondary waste nor contamination making decomissioning simple after retransfer of spent fuel canisters; manpower requirements for operation and maintenance is very small; operating costs are estimated to be some 2 US $/kg U (1980); investment costs are calculated to be 96 US $/kg U (May 1980) for a total size of 200 MTHM stored

  14. DESIGN OF THE DEMOSNTRATION BULK VITRIFICATION SYSTEM FOR THE SUPPLEMENTAL TREATMENT OF LOW ACTIVITY TANK WASTE AT HANFORD

    International Nuclear Information System (INIS)

    VAN BEEK JE

    2008-01-01

    In June 2004, the Demonstration Bulk Vitrification System (DBVS) was initiated with the intent to design, construct, and operate a full-scale bulk vitrification pilot-plant to treat low-activity tank waste from Hanford Tank 241-S-109. The DBVS facility uses In-Container Vitrification(trademark) (ICV(trademark)) at the core of the treatment process. The basic process steps combine liquid low-activity waste (LAW) and glassformers; dry the mixture; and then vitrify the mixture in a batch feed-while-melt process in a refractory lined steel container. Off-gases are processed through a state-of-the-art air pollution control system including sintered-metal filtration, thermal oxidation, acid gas scrubbing, and high-efficiency particulate air (HEPA) and high-efficiency gas adsorber (HEGA) filtration. Testing has focused on development and validation of the waste dryer, ICV, and sintered-metal filters (SMFs) equipment, operations enhancements, and glass formulation. With a parallel testing and design process, testing has allowed improvements to the DBVS equipment configuration and operating methodology, since its original inception. Design improvements include optimization of refractory panels in the ICV, simplifying glassformer addition equipment, increasing the number of waste feed chutes to the ICV, and adding capability for remote clean-out of piping, In addition, the U.S. Department of Energy (DOE) has provided an independent review of the entire DBVS process. While the review did not find any fatal flaws, some technical issues were identified that required a re-evaluation of the DBVS design and subsequent changes to the design. A 100 percent design package for the pilot plant will be completed and submitted to DOE for review in early 2008 that incorporates process improvements substantiated through testing and reviews. This paper provides a description of the bulk vitrification process and a discussion of major equipment design changes that have occurred based on full

  15. Microencapsulation by spray drying of Lannea microcarpa extract: Technological characteristics and antioxidant activity.

    Directory of Open Access Journals (Sweden)

    Francesca Sansone

    2014-08-01

    Full Text Available Context: A functional extract from Lannea microcarpa (Lm, possess interesting antioxidant and anti-inflammatory properties. However, the unprocessed dried extract occurs as sticky and low-water-soluble material showing critical properties for industrial applications. The unprocessed dried extract is not always enough stable to preserve its functional properties, also giving practical difficulties for the manufacturing. Aims: This research aimed to produce Lm extract microparticles with enhanced functional stability and technological characteristics by spray-drying. Methods: Lm extract was microencapsulated by spray-drying using a sodium-carboxymethylcellulose (NaCMC based matrix. Physicochemical and technological characteristics (determined by UV, HPLC, LLS, SEM, DSC, and in vitro dissolution tests, as well as antioxidant properties (DPPH-test of the resulting powder (LmC were examined. Results: The produced spray dried microparticles showed satisfying encapsulation efficiency, good functional stability and enhanced technological properties. The selected carrier and process conditions led to a stable and handling microencapsulated powder form with improved water dissolution rate. Moreover, the matrix was also able to preserve the antioxidant activity of the phenolic compounds-rich extract. Conclusions: The made-up powder resulted in a functional component that can be used with great potential in cosmetics, foods or nutraceutical products.

  16. Update of Nuclear Waste Policy Act transportation activities

    International Nuclear Information System (INIS)

    Callaghan, E.F.

    1987-01-01

    As directed by the Nuclear Waste Policy Act of 1982 (NWPA), the Department of Energy (DOE) is developing a nationwide system for transporting spent nuclear fuel and high-level radioactive waste from commercial power plants to deep geologic repositories for disposal. Plans for the transportation system will consider the following factors: the President's 1985 decision to co-locate some defense high-level waste with commercial waste in a repository, the NWPA requirement that the private sector be used to the fullest extent possible in developing and operating the system, and the possible approval by Congress of the DOE's proposal for a Monitored Retrievable Storage (MRS) facility, submitted in March 1987. (The MRS, if approved, would provide for the consolidation, packaging, and perhaps the temporary storage of spent fuel from reactors.) The ''Transportation Business Plan'', published in January 1986, reflects these considerations. The transportation system, when operational, will consist of two elements: (1) the cask system, which includes the transportation casks, the vehicular conveyances, tie-downs, and associated equipment for handling the casks; and (2) the transportation support system which is comprised of facilities, equipment, and services to support waste transportation. Development of the transportation system incorporates the following work elements: operational planning, support systems development, cash system development, systems analysis, and institutional activities. This paper focusses on the technical aspects of the system

  17. Research of rheological characteristics and determination of rational parameters of drying process of activated ferment for bakery products

    Directory of Open Access Journals (Sweden)

    D. M. Borodulin

    2017-01-01

    Full Text Available The work is aimed at investigating the rheological properties of the ferment in the process of maturation and storage with subsequent determination of the rational parameters of its drying in various drying plants with the analysing of microflora of dried samples. We studied the rheological properties of the ferment using the strain of the lactobacilli L. Acidothilus 146A (activator and without it, which showed that the ferment for the production of special purpose bakery products to non-Newtonian or anomalously viscous liquids described by the Osthald-de-Vale rheological equation. We found that the introduction the strain of the lactobacilli L. Acidothilus 146A helps to reduce the viscosity during maturation by almost 3 times, and when storing the samples – in 2 times, this is indicated by the value of the consistency coefficient. The activator reduces the influence of temperature, so the structure of the ferment becomes more stable. It is easier to further process in this state. Consequently, the energy consumption for production is significantly reduced and the increases expiration date after the strain of the lactobacilli L. Acidothilus 146A is added to the starter for the production of special purpose bakery products. We detected kinetic patterns of drying of the activated ferment in thermoradiation, convective and sublimation dryers under different temperature operating conditions. We have determined the rational parameters of drying the ferment for the production of bakery products of specialized purpose. We analyzed the useful microflora of the dried samples. It has been revealed that microorganisms undergoing convective and sublimation (freeze drying are subjected to the smallest destructive effect. We found that microorganisms are less destroyed by convective and freeze drying. The microbial titer in these samples is at least 1(105CFU/g. While drying by the method of infrared irradiation, this titer is lower by a factor of ten

  18. Waste form development program. Annual report, October 1982-September 1983

    International Nuclear Information System (INIS)

    Colombo, P.; Kalb, P.D.; Fuhrmann, M.

    1983-09-01

    This report provides a summary of the work conducted for the Waste Form Development/Test Program at Brookhaven National Laboratory in FY 1983 under the sponsorship of the US Department of Energy's Low-Level Waste Management Program. The primary focus of this work is the investigation of new solidification agents which will provide improved immobilization of low-level radioactive wastes in an efficient, cost-effective manner. A working set of preliminary waste form evaluation criteria which could impact upon the movement of radionuclides in the disposal environment was developed. The selection of potential solidification agents for further investigation is described. Two thermoplastic materials, low-density polyethylene and a modified sulfur cement were chosen as primary candidates for further study. Three waste types were selected for solidification process development and waste form property evaluation studies which represent both new volume reduction wastes (dried evaporator concentrates and incinerator ash) and current problem wastes (ion exchange resins). Preliminary process development scoping studies were conducted to verify the compatibility of selected solidification agents and waste types and the potential for improved solidification. Waste loadings of 60 wt % Na 2 SO 4 , 25 wt % H 3 BO 3 , 25 wt % incinerator ash and 50 wt % dry ion exchange resin were achieved using low density polyethylene as a matrix material. Samples incorporating 65 wt % Na 2 SO 4 , 40 wt % H 3 BO 3 , 20 wt % incinerator ash and 40 wt % dry ion exchange resin were successfully solidified in modified sulfur cement. Additional improvements are expected for both matrix materials as process parameters are optimized. Several preliminary property evaluation studies were performed to provide the basis for an initial assessment of waste form acceptability. These included a two-week water immersion test and compressive load testing

  19. Low-level waste research and development activities of the Department of Energy

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1986-01-01

    This paper presents an overview of the technical activities of the Department of Energy's Defense and Nuclear Energy Low-Level Radioactive Waste Management Programs (LLWPs). Although each Program was established with a different purpose, the technologies developed and demonstrated by each are transferable for use in both the commercial and DOE sectors. This paper presents an overview of the technical activities being pursued through both the Defense and Nuclear Energy LLWP's. These technologies have been placed in the following categories; Criteria and Standards, Systems Analysis, Information and Technology Transfer, Waste Treatment and Wast Form, Improved Near Surface Disposal, Greater Confinement Disposal, Corrective Measures, and Monitoring

  20. AECL's waste management and decommissioning program

    International Nuclear Information System (INIS)

    Kupferschmidt, W.C.H.

    2006-01-01

    Full text: Canada has developed significant expertise in radioactive waste management since the mid 1940s, when the Canadian nuclear program commenced activities at Chalk River Laboratories (CRL). Atomic Energy of Canada Limited (AECL), created as a Federal Crown Corporation in 1952, continues to manage wastes from these early days, as well as other radioactive wastes produced by Canadian hospitals, universities, industry, and operational wastes from AECL's current programs. AECL is also carrying out decommissioning of nuclear facilities and installations in Canada, predominantly at its own sites in Ontario (CRL, and the Douglas Point and Nuclear Power Demonstration prototype reactors), Manitoba (Whiteshell Laboratories) and Quebec (Gentilly-1 prototype reactor). At the CRL site, several major waste management enabling facilities are being developed to facilitate both the near- and long-term management of radioactive wastes. For example, the Liquid Waste Transfer and Storage Project is underway to recover and process highly radioactive liquid wastes, currently stored in underground tanks that, in some cases, date back to the initial operations of the site. This project will stabilize the wastes and place them in modern, monitored storage for subsequent solidification and disposal. Another initiative, the Fuel Packaging and Storage Project, has been initiated to recover and condition degraded used fuel that is currently stored in below-ground standpipes. The fuel will be then be stored in new facilities based on an adaptation of AECL's proven MACSTOR TM * dry storage system, originally designed for intermediate-term above-ground storage of used CANDU fuel bundles. Other commercial-based development work is underway to improve the storage density of the MACSTOR TM design, and to extend its application to interim storage of used LWR fuels as well as to the storage of intermediate-level radioactive waste arising from upcoming reactor refurbishment activities in Canada

  1. The methods of conversion of radioactive waste: a look at the past

    International Nuclear Information System (INIS)

    Rezchikov, D.

    2000-01-01

    In 1948, the Government of the USSR made provisions to establish an industrial complex to produce Pu-239 in the Chelyabinsk region. PA 'MAYAK' was part of this complex. It is now addressing radioactive waste disposition in peacetime. Making Pu-239 in metal form led to the formation of large quantities of liquid radioactive waste. Since it was impossible to clean the water at that time, radioactive waste was put in the Techa River until 1951. The liquid waste contained a mixture of radioactive Sr, Cs, Nb, Ru and other elements. Sr-90 and Cs-137 accounted for about a quarte of the radioactivity. Many people lived near the Techa and received large doses of radiation. About 2.7 million Curies was put into the river before this practice stopped arid waste was then put into Lake Karachay. High-activity waste was placed in concrete and steel for protection. The volume was cooled with water. When cooling was stopped, the dry mixture heated to 300-350 degrees and exploded. According to official information, the reason for the incident was because the system's control temperature and level of the waste were exceeded. Repair was impossible because radiation fields were high. Contents of the volume were released in the plume and spread into the atmosphere. Around 90 percent of the radioactivity fell near the place of the burst. The rest of the 2 million curies was spread by wind and appeared as the West Ural Trace. It was very important to utilize solid waste (SW). Around 200 special places were made for storage of SW. High-activity SW was kept in reinforced-concrete containers. Middle-activity waste was put in a trench. The total activity of SW is approximately 2 million Curies. (authors)

  2. Antifungal activity evaluation of Aloe arborescens dry extract against trichosporon genus yeasts

    Directory of Open Access Journals (Sweden)

    João Ricardo Bueno de Morais Borba

    2014-10-01

    Full Text Available The objective of this study was to investigate the antifungal activity of Aloe arborescens dry extract against Trichosporon genus yeast species. Extraction was carried out by means of a longitudinal incision in fresh leaves, which were collected on a vat, and the total volume was frozen and subsequently lyophilized. Then, 40 mg of the dry extract was dissolved in DMSO by gentle inversion in order to obtain a solution whose concentration was 4000 µg mL-1. This solution became limpid and slightly yellowish because the pigment of the latex was attenuated. It was performed serial dilutions from 2,000 to 15.625 µg mL-1 with RPMI-1640 broth. There was already no pigment in the first dilution of 2000 μg mL-1. It was analyzed fifteen strains of Trichosporon spp., and Candida albicans ATCC 10231 was used as control strain. We carried out the reading of microplates in the ELISA reader device at a wavelength of 530 nm, after incubation for 24 and 48 hours, and it was determinated the Minimum Inhibitory Concentration (MIC. The MIC50 value obtained for all Trichosporon species and for C. albicans was 500 µg mL-1. As a result, we concluded that Aloe arborescens dry extract has antifungal activity against Trichosporon yeasts.

  3. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    International Nuclear Information System (INIS)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta's K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports

  4. Choosing the right materials for a dry vault store

    International Nuclear Information System (INIS)

    Walters, J.

    1985-01-01

    Britain's National Nuclear Corporation has been treating various materials to see if they would be suitable for the construction of a dry vault store for spent fuel and/or vitrified waste. The factors influencing the choice of materials are considered. (UK)

  5. Report on the emergency response training and equipment activities through 1991 for the transportation of transuranic waste to the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1992-04-01

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility with the mission of demonstrating the safe shipment, emplacement and retrieval of radioactive transuranic (TRU) wastes resulting from the defense activities and programs of the United States. It is the only long-term storage facility constructed for TRU waste. This report provides the status on the Department of Energy (DOE) efforts as of December 31, 1991, regarding emergency response training and equipment funding provided to local, state, and tribal governments for waste shipments to the WIPP. Because of a growing public awareness of transportation activities involving nuclear materials, this report has been prepared to provide a status of the DOE's activities in this regard, as well as the cooperative efforts between the DOE and state and tribal governments

  6. Waste minimization activities in the Materials Fabrication Division at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Dini, J.W.

    1991-08-01

    The mission of the Materials Fabrication Division (MFD) is to provide fabrication services and technology in support of all programs at Lawrence Livermore National Laboratory (LLNL). MFD involvement is called for when fabrication activity requires levels of expertise, technology, equipment, process development, hazardous processes, security, or scheduling that is typically not commercially available. Customers are encouraged to utilize private industry for fabrication activity requiring routine processing or for production applications. Our waste minimization (WM) program has been directed at source reduction and recycling in concert with the working definition of waste minimization used by EPA. The principal focus of WM activities has been on hazardous wastes as defined by RCRA, however, all pollutant emissions into air, water and land are being considered as part of the program. The incentives include: (1) economics, (2) regulatory conformance, (3) public image and (4) environmental concern. This report discusses the waste minimization program at LLNL

  7. Cermets for high level waste containment

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-01-01

    Cermet materials are currently under investigation as an alternate for the primary containment of high level wastes. The cermet in this study is an iron--nickel base metal matrix containing uniformly dispersed, micron-size fission product oxides, aluminosilicates, and titanates. Cermets possess high thermal conductivity, and typical waste loading of 70 wt % with volume reduction factors of 2 to 200 and low processing volatility losses have been realized. Preliminary leach studies indicate a leach resistance comparable to other candidate waste forms; however, more quantitative data are required. Actual waste studies have begun on NFS Acid Thorex, SRP dried sludge and fresh, unneutralized SRP process wastes

  8. Los Alamos Scientific Laboratory waste management technology development activities. Summary progress report, 1979

    International Nuclear Information System (INIS)

    Johnson, L.J.

    1980-10-01

    Summary reports on the Department of Energy's Nuclear Energy-sponsored waste management technology development projects at the Los Alamos Scientific Laboratory describe progress for calendar year 1979. Activities in airborne, low-level, and transuranic waste management areas are discussed. Work progress on waste assay, treatment, disposal, and environmental monitoring is reviewed

  9. Bituminization of biologically harmful wastes

    International Nuclear Information System (INIS)

    Freund, M.; Magyar, M.; Mozes, G.; Csikos, R.; Kristof, M.; Toth, L.; Hima, G.

    1977-01-01

    The invention claims the bitumenization of biologically harmful wastes, such as industrial wastes containing radioactive materials. These wastes containing water are transported from sludge basins, this either by gravity or by mechanical stirrino. into a suitably adapted absorption zone or to several parallel zones filled with bitumen heated to 100 to 250 degC. An inert gas is forced into the system foaming the zone contents. The foam phase is decomposed by the action of heat while water is evaporated and condensed. Bitumen containing dry matter of the radioactive wastes is discharged from the bottom part of the absorption zone and stored in a tank. (Kr)

  10. Feed intake and growth performance of goats supplemented with soy waste

    Directory of Open Access Journals (Sweden)

    Mohammad Mijanur Rahman

    2014-07-01

    Full Text Available The objective of this work was to evaluate the effects of supplemental feeding of soy waste on the feed intake and growth rate of goats. Twenty male crossbred (Boer x local goats were assigned to two isonitrogenous diet groups: one of commercial pellet and the other of soy waste. The commercial pellet (1.0% and soy waste (0.8% were provided on the dry matter basis of body weight (BW per day, to the respective group of each diet. The soy waste group had lower daily intakes of total dry matter (0.79 vs. 0.88 kg and organic matter (665.71 vs. 790.44 g than the group fed pellet; however, the differences on daily intakes for grass (0.62 vs. 0.64 kg, crude protein (96.81 vs. 96.83 g, and neutral detergent fibre (483.70 vs. 499.86 g were not significant. No differences were observed between groups for BW gain. The feed conversion ratio and feed cost per kilogram of BW gain were lower for the group fed soy waste than for the one fed pellet. Goats fed supplemental soy waste have a lower total dry matter intake, feed conversion ratio, and feed cost per kilogram of body weight gain than those fed commercial pellets.

  11. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs

    International Nuclear Information System (INIS)

    Matsukami, Hidenori; Tue, Nguyen Minh; Suzuki, Go; Someya, Masayuki; Tuyen, Le Huu; Viet, Pham Hung; Takahashi, Shin; Tanabe, Shinsuke; Takigami, Hidetaka

    2015-01-01

    Three oligomeric organophosphorus flame retardants (o-PFRs), eight monomeric PFRs (m-PFRs), tetrabromobisphenol A (TBBPA), and polybrominated diphenyl ethers (PBDEs) were identified and quantified in surface soils and river sediments around the e-waste recycling area in Bui Dau, northern Vietnam. Around the e-waste recycling workshops, 1,3-phenylene bis(diphenyl phosphate) (PBDPP), bisphenol A bis(diphenyl phosphate) (BPA-BDPP), triphenyl phosphate (TPHP), TBBPA, and PBDEs were dominant among the investigated flame retardants (FRs). The respective concentrations of PBDPP, BPA-BDPP, TPHP, TBBPA and the total PBDEs were 6.6–14000 ng/g-dry, < 2–1500 ng/g-dry, 11–3300 ng/g-dry, < 5–2900 ng/g-dry, and 67–9200 ng/g-dry in surface soils, and 4.4–78 ng/g-dry, < 2–20 ng/g-dry, 7.3–38 ng/g-dry, 6.0–44 ng/g-dry and 100–350 ng/g-dry in river sediments. Near the open burning site of e-waste, tris(methylphenyl) phosphate (TMPP), (2-ethylhexyl)diphenyl phosphate (EHDPP), TPHP, and the total PBDEs were abundantly with respective concentrations of < 2–190 ng/g-dry, < 2–69 ng/g-dry, < 3–51 ng/g-dry and 1.7–67 ng/g-dry in surface soils. Open storage and burning of e-waste have been determined to be important factors contributing to the emissions of FRs. The environmental occurrence of emerging FRs, especially o-PFRs, indicates that the alternation of FRs addition in electronic products is shifting in response to domestic and international regulations of PBDEs. The emissions of alternatives from open storage and burning of e-waste might become greater than those of PBDEs in the following years. The presence and environmental effects of alternatives should be regarded as a risk factor along with e-waste recycling. - Highlights: • Open storage and burning of e-waste contributed to emission of FRs. • Types of FRs currently in emission are shifting in response to regulations of PBDEs. • Emerging PFRs were detected in soils and sediments around e-waste

  12. Flame retardant emission from e-waste recycling operation in northern Vietnam: Environmental occurrence of emerging organophosphorus esters used as alternatives for PBDEs

    Energy Technology Data Exchange (ETDEWEB)

    Matsukami, Hidenori, E-mail: matsukami.hidenori@nies.go.jp [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563 (Japan); Tue, Nguyen Minh [Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai, Hanoi (Viet Nam); Suzuki, Go [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Someya, Masayuki [Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna Koto, Tokyo 136-0075 (Japan); Tuyen, Le Huu; Viet, Pham Hung [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, 334 Nguyen Trai, Hanoi (Viet Nam); Takahashi, Shin [Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Center of Advanced Technology for the Environment, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566 (Japan); Tanabe, Shinsuke [Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Takigami, Hidetaka [Center for Material Cycles and Waste Management Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8563 (Japan)

    2015-05-01

    Three oligomeric organophosphorus flame retardants (o-PFRs), eight monomeric PFRs (m-PFRs), tetrabromobisphenol A (TBBPA), and polybrominated diphenyl ethers (PBDEs) were identified and quantified in surface soils and river sediments around the e-waste recycling area in Bui Dau, northern Vietnam. Around the e-waste recycling workshops, 1,3-phenylene bis(diphenyl phosphate) (PBDPP), bisphenol A bis(diphenyl phosphate) (BPA-BDPP), triphenyl phosphate (TPHP), TBBPA, and PBDEs were dominant among the investigated flame retardants (FRs). The respective concentrations of PBDPP, BPA-BDPP, TPHP, TBBPA and the total PBDEs were 6.6–14000 ng/g-dry, < 2–1500 ng/g-dry, 11–3300 ng/g-dry, < 5–2900 ng/g-dry, and 67–9200 ng/g-dry in surface soils, and 4.4–78 ng/g-dry, < 2–20 ng/g-dry, 7.3–38 ng/g-dry, 6.0–44 ng/g-dry and 100–350 ng/g-dry in river sediments. Near the open burning site of e-waste, tris(methylphenyl) phosphate (TMPP), (2-ethylhexyl)diphenyl phosphate (EHDPP), TPHP, and the total PBDEs were abundantly with respective concentrations of < 2–190 ng/g-dry, < 2–69 ng/g-dry, < 3–51 ng/g-dry and 1.7–67 ng/g-dry in surface soils. Open storage and burning of e-waste have been determined to be important factors contributing to the emissions of FRs. The environmental occurrence of emerging FRs, especially o-PFRs, indicates that the alternation of FRs addition in electronic products is shifting in response to domestic and international regulations of PBDEs. The emissions of alternatives from open storage and burning of e-waste might become greater than those of PBDEs in the following years. The presence and environmental effects of alternatives should be regarded as a risk factor along with e-waste recycling. - Highlights: • Open storage and burning of e-waste contributed to emission of FRs. • Types of FRs currently in emission are shifting in response to regulations of PBDEs. • Emerging PFRs were detected in soils and sediments around e-waste

  13. Optimisation of single-phase dry-thermophilic anaerobic digestion under high organic loading rates of industrial municipal solid waste: population dynamics.

    Science.gov (United States)

    Zahedi, S; Sales, D; Romero, L I; Solera, R

    2013-10-01

    Different high feed organic loading rates (OLRs) (from 5.7 g to 46.0 g TVS/l/d) or hydraulic retention times (HRTs) (from 15 d to 2 d) in single-phase dry-thermophilic anaerobic digestion (AD) of organic fraction municipal solid waste (OFMSW) were investigated. The specific gas production (SGP) values (0.25-0.53 m(3)/kg TVS) and the percentages of Eubacteria, Archaea, H2-utilising methanogens (HUMs) and acetate-utilising methanogens (AUMs) were stable within the ranges 80.2-91.1%, 12.4-18.5%, 4.4-9.8% and 5.5-10.9%, respectively. A HUM/AUM ratio greater than 0.7 seems to be necessary to maintain very low partial pressures of H2 required for dry AD process. Increasing OLR resulted in an increase in all the populations, except for propionate-utilising acetogens (PUAs). Optimal conditions were obtained at 3d HRT (OLR=30.7 g TVS/l/d), which is lower than the doubling time of acetogens and methanogens. The methane production (MP) was clearly higher than those reported in AD of OFMSW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. 1993 annual report of hazardous waste activities for the Oak Ridge K-25 site

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is a detailed listing of all of the Hazardous Waste activities occurring at Martin Marietta`s K-25 site. Contained herein are hazardous waste notification forms, waste stream reports, generator fee forms and various TSDR reports.

  15. Renewable energy source from pyrolysis of solid wastes

    International Nuclear Information System (INIS)

    Md Kawser Jamil; Farid Nasir Ani

    2000-01-01

    Malaysia is blessed with a significant renewable energy resource base such as solar energy and biomass. To continue with its industrial development, Malaysia must manages energy supply its c prudently in order to avoid becoming an energy importer supply. Most significantly renewable energy from biomass such as rice husks, wood wastes, oil palm wastes, rubber wastes and other agricultural wastes. Beside rice and timber. Malaysia produces a huge amount of palm oil and natural rubber. These generate a significant amount of solid wastes in the forms of oil palm shell and rubber. These wastes are producing pollution and emission problems in Malaysia which is causing an environmental issue. Besides energy is not recovered efficiently from these waste resources. From the elemental composition and thermogravimetric studies of the wastes, it appeared that the wastes could be used as an alternative value-added source of energy. For this purpose a fast pyrolysis of 300 mi-n lone, and 50 mm diameter stainless-steel reactor was designed and fabricated. The grounded, sieved and dried solid feed particles underwent pyrolysis reactor at moderate temperature and were converted into pyrolytic oil, solid char and cas. Oil and char were collected while the cas was flared. The oil was characterised by GC-MS technique. Detailed analysis of the oil showed that there was no concentration of biologically active polycyclic aromatic species in the oil. The fuel properties of the derived oils were also analysed and compared to diesel fuel. (Author)

  16. The effect of drying temperatures on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol contents in citrus seed and oils.

    Science.gov (United States)

    Al Juhaimi, Fahad; Özcan, Mehmet Musa; Uslu, Nurhan; Ghafoor, Kashif

    2018-01-01

    In this study, the effect of drying temperature on antioxidant activity, phenolic compounds, fatty acid composition and tocopherol content of citrus seeds and oils were studied. Kinnow mandarin seed, dried at 60 °C, exhibited the highest antioxidant activity. Orlendo orange seed had the maximum total phenolic content and α-tocopherol content, with a value of 63.349 mg/100 g and 28.085 mg/g (control samples), respectively. The antioxidant activity of Orlendo orange seed (63.349%) was higher than seeds of Eureka lemon (55.819%) and Kinnow mandarin (28.015%), while the highest total phenolic content was found in seeds of Kinnow mandarin, followed by Orlendo orange and Eureka lemon (113.132). 1.2-Dihydroxybenzene (13.171), kaempferol (10.780), (+)-catechin (9.341) and isorhamnetin (7.592) in mg/100 g were the major phenolic compounds found in Kinnow mandarin. Among the unsaturated fatty acids, linoleic acid was the most abundant acid in all oils, which varied from 44.4% (dried at 80 °C) to 46.1% (dried at 70 °C), from 39.0% (dried at 60 °C) to 40.0% (dried at 70 °C). The total phenolic content, antioxidant activity and phenolic compounds of citrus seeds and tocopherol content of seed oils were significantly affected by drying process and varied depending on the drying temperature.

  17. Method of processing radioactive wastes

    International Nuclear Information System (INIS)

    Nomura, Ichiro; Hashimoto, Yasuo.

    1984-01-01

    Purpose: To improve the volume-reduction effect, as well as enable simultaneous procession for the wastes such as burnable solid wastes, resin wastes or sludges, and further convert the processed materials into glass-solidified products which are much less burnable and stable chemically and thermally. Method: Auxiliaries mainly composed of SiO 2 such as clays, and wastes such as burnable solid wastes, waste resins and sludges are charged through a waste hopper into an incinerating melting furnace comprising an incinerating and a melting furnace, while radioactive concentrated liquid wastes are sprayed from a spray nozzle. The wastes are burnt by the heat from the melting furnace and combustion air, and the sprayed concentrated wastes are dried by the hot air after the combustion into solid components. The solid matters from the concentrated liquid wastes and the incinerating ashes of the wastes are melted together with the auxiliaries in the melting furnace and converted into glass-like matters. The glass-like matters thus formed are caused to flow into a vessel and gradually cooled to solidify. (Horiuchi, T.)

  18. Status of activities: Low-level radioactive waste management in the United States

    International Nuclear Information System (INIS)

    Ozaki, C.B.; Shilkett, R.C.; Kirkpatrick, T.D.

    1989-01-01

    A primary objective of low-level radioactive waste management in the United States is to protect the health and safety of the public and the quality of the environment. In support of this objective is the development of waste treatment and disposal technologies designed to provide stabilization and long-term institutional control of low-level radioactive wastes. Presented herein is a technical review of specific low-level radioactive waste management activities in the United States. Waste treatment and disposal technologies are discussed along with the performance objectives of the technologies aimed at protecting the health and safety of the public and the quality of the environment. 13 refs., 4 figs

  19. Method of heat decomposition for chemical decontaminating resin waste

    International Nuclear Information System (INIS)

    Kikuchi, Akira.

    1988-01-01

    Purpose: To make resin wastes into non-deleterious state, discharge them into a resin waste storage tank of existent radioactive waste processing facility and store and dispose them. Constitution: In the processing of chemical decontaminating resin wastes, iron exchange resins adsorbing chemical decontaminating agents comprising a solution of citric acid, oxalic acid, formic acid and EDTA alone or as a mixture of them are heated to dry, thermally decomposed and then separated from the ion exchange resins. That is, the main ingredients of the chemical decontaminating agents are heat-decomposed when heated and dried at about 250 deg C in air and converted into non-toxic gases such as CO, CO 2 , NO, NO 2 or H 2 O. Further, since combustion or carbonization of the basic materials for the resin is not caused at such a level of temperature, the resin wastes removed with organic acid and chelating agents are transferred to an existent resin waste storage tank and stored therein. In this way, facility cost and radiation exposure can remarkably be decreased. (Kamimura, M.)

  20. Nuclear waste: Status of DOE's nuclear waste site characterization activities

    International Nuclear Information System (INIS)

    1987-01-01

    Three potential nuclear waste repository sites have been selected to carry out characterization activities-the detailed geological testing to determine the suitability of each site as a repository. The sites are Hanford in south-central Washington State, Yucca Mountain in southern Nevada, and Deaf Smith in the Texas Panhandle. Two key issues affecting the total program are the estimations of the site characterization completion data and costs and DOE's relationship with the Nuclear Regulatory Commission which has been limited and its relations with affected states and Indian tribes which continue to be difficult